

FPGA Programming
for Beginners

Bring your ideas to life by creating hardware designs
and electronic circuits with SystemVerilog

Frank Bruno

BIRMINGHAM—MUMBAI

FPGA Programming for Beginners

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Associate Publishing Product Manager: Sankalp Khattri
Senior Editor: Rahul Dsouza
Content Development Editor: Nihar Kapadia
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Neil D'mello
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Roshan Kawale

First published: March 2021
Production reference: 1050221

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-541-3

www.packt.com

http://www.packt.com

Contributors

About the author
Frank Bruno is an experienced high-performance design engineer specializing in FPGAs
with some ASIC experience. He has experience working for companies such as Cruise,
SpaceX, Allston Trading, and Number Nine. He is currently working as an FPGA engineer
for Cruise.

About the reviewer
George Kaldis has a bachelor's degree in electrical engineering from Northeastern
University and has over 30 years of experience working with FPGAs. He is president of
GK-Digital LLC, an FPGA design consulting company. He has implemented many FPGA
designs for applications ranging from wireless/wired networking to high-frequency
trading and test equipment.

Table of Contents
Preface

Section 1: Introduction to FPGAs and Xilinx
Architectures

1
Introduction to FPGA Architectures and Xilinx Vivado

Technical requirements 4
Hardware 4
Software 4

What is an ASIC? 5
Why an ASIC or FPGA? 5

How does a company create a
programmable device using an
ASIC process? 8
Fundamental logic gates 8
More complex operations 12

Introducing FPGAs 13
Exploring the Xilinx Artix-7 and 7 series
devices 14
Combinational logic blocks 14
Storage 16
Clocking 17
I/Os 17

DSP48E1 17

ASMBL architecture 18
Introduction to the Vivado
toolset and evaluation boards 19
Evaluation boards 19
Nexys A7 100T (or 50T) 20
Basys 3 22

Introducing Vivado 24
Vivado installation 24
Directory structure 25
Running the example 29

Summary 42
Questions 42
Challenge 43

Further reading 43

ii Table of Contents

Section 2: Introduction to Verilog RTL
Design, Simulation, and Implementation

2
Combinational Logic

Technical requirements 47
Creating SystemVerilog
modules 48
How to create reusable code –
parameters 49

Introducing data types 50
Introducing built-in data types 50
Creating arrays 51
Handling multiple-driven nets 54
Handling signed and unsigned numbers 55
Adding bits to a signal by concatenating 55
Casting signed and unsigned numbers 56
Creating user-defined types 56
Accessing signals using values with
enumerated types 57

Packaging up code using
functions 57

Creating combinational logic 58
Using custom data types 64

Project 1 – creating
combinational logic 65
Testbench 66
Implementing a leading-one detector
using the case statement 69
Designing a reusable leading-one
detector using a for loop 73
Counting the number of ones 74
Implementing an adder/subtractor 74
Multiplier 76
Bringing it all together 78

Summary 80
Questions 80
Challenge 81

Further reading 81

3
Counting Button Presses

Technical requirements 83
What is a sequential element? 84
Clocking your design 84
Looking at a basic register 85
Registers in the Artix 7 90

Project 2 – Counting button
presses 93
Introducing the seven-segment display 93
Detecting button presses 96
What about simulation? 108

Table of Contents iii

Deep dive on synchronization 109
Why use multiple clocks? 109
Two-stage synchronizer 109
Synchronizing control signals 109
Passing data 111

Summary 112
Questions 113
Challenge 113

Further reading 114

4
Let's Build a Calculator

Technical requirements 116
Implementing our first
state machine 116
Writing a purely sequential state
machine 116
Splitting combination and sequential
logic in a state machine 118
Designing a calculator interface 119
Designing a Moore state machine 120
Implementing a Mealy state machine 122
Practical state machine design 123

Project 3 – Building a
simple calculator 123

Packaging for reuse 124
Coding the top level 126
Investigating the divider 132

Project 4 – Keeping cars in line 138
Defining the state diagram 139
Displaying our traffic lights 139

Summary 142
Questions 142
Challenge 143
Extra challenge 143

Further reading 143

5
FPGA Resources and How to Use Them

Technical requirements 146
Project 5 – Listening
and learning 146
What is a PDM microphone? 146
Simulating the microphone 150
Introducing storage 152
Capturing audio data 158

Project 6 – Using the
temperature sensor 161
Handling the data 163
Smoothing out the data 164

Summary 171
Questions 172
Further reading 173

iv Table of Contents

6
Math, Parallelism, and Pipelined Design

Technical requirements 176
Introduction to
fixed-point numbers 176
Project 7 – Using fixed-point
arithmetic in our
temperature sensor 178
Using fixed-point arithmetic to clean
up the bring-up time 178
Temperature conversion using fixed-
point arithmetic 181
What about floating-point numbers? 184
A quick look at the AXI streaming
interface 187

Project 8 – Updating the
temperature sensor project

to a pipelined floating-point
implementation 188
Fix to floating point conversion 189
Floating-point math operations 191
Float to fixed point conversion 193
Simulation 194

Parallel designs 195
ML and AI and massive parallelism 195
Parallel design – a quick example 196

Summary 197
Questions 197
Challenge 199

Further reading 199

Section 3: Interfacing with
External Components

7
Introduction to AXI

Technical requirements 204
AXI streaming 204
Project 9 – creating IPs for
Vivado using AXI
streaming interfaces 205
Seven-segment display
streaming interface 205
Developing the ADT7420 IP 212
Understanding the flt_temp core 212
IP integrator 213

AXI4 interfaces (full
and AXI-Lite) 222
Developing IPs – AXI-Lite, full,
and streaming 225
Adding an unpackaged IP to the
IP integrator 228

Summary 230
Questions 230
Further reading 231

Table of Contents v

8
Lots of Data? MIG and DDR2

Technical requirements 234
Project 10 – introducing
external memory 234
Introduction to DDR2 236
Generating a DDR2 controller using
the Xilinx MIG 237
Modifying the design for use
on the board 252

Other external memory types 257

Quad Data Rate (QDR) SRAM 257
HyperRAM 257
SPI RAM 257

Summary 258
Questions 258
Challenge 259

Further reading 259

9
A Better Way to Display – VGA

Technical requirements 262
Project 11 – Introducing
the VGA 262
Defining registers 266
Generating timing for the VGA 269
Displaying text 275

Testing the VGA controller 282
Examining the constraints 283

Summary 285
Questions 285
Challenge 286
Further reading 286

10
Bringing It All Together

Technical requirements 288
Investigating the
keyboard interface 288
Project 12 – keyboard handling 294
Testing the PS/2 298

Project 13 – bringing it all
together 301
Displaying PS/2 keycodes on
the VGA screen 302

Displaying the temperature
sensor data 305
Displaying audio data 307

Summary 311
Questions 311
Challenge 312
Further reading 312

vi Table of Contents

11
Advanced Topics

Technical requirements 313
Exploring more advanced
SystemVerilog constructs 314
Interfacing components using the
interface construct 314
Using structures 317
Block labels 318
Looping using for loops 319
Looping using do…while 320
Exiting a loop using disable 321
Skipping code using continue 321
Using constants 322

Exploring some more advanced
verification constructs 322
Introducing SystemVerilog queues 322

Display enhancements 324
A quick introduction to assertions 326
Using $error or $fatal in synthesis 326

Other gotchas and how
to avoid them 327
Inferring single bit wires 327
Bit width mismatches 328
Upgrading or downgrading
Vivado messages 328
Handling timing closure 330

Summary 336
Questions 337
Further reading 338
Why subscribe? 339

Other Books You May Enjoy
Index

Preface
Prepare yourself for some fun. I have been designing ASICs and FPGAs for 30 years and
every day brings new challenges and excitement as I push technology to develop new
applications. Over the course of my career, I've developed ASICs that powered military
aircraft, graphics that ran on high-end workstations and mainstream PCs, technology to
power the next generation of software-defined radios, and supplied space-based internet
to the globe. Now, I want to give some of that experience back to you.

Who this book is for
This book is for someone interested in learning about FPGA technology and how you
might use it in your own projects. We assume you know nothing about digital logic and
start by introducing basic gates and their functions and eventually develop full systems. A
little programming or hardware knowledge is helpful but not necessary. If you can install
software, plug in a USB cable, and follow the projects you will learn a lot.

What this book covers
Chapter 1, Introduction to FPGA Architectures and Xilinx Vivado, explains what an ASIC
and an FPGA is, and how to install Xilinx Vivado and create a small design.

Chapter 2, Combinational Logic, looks at writing a complete SystemVerilog module from
scratch to perform some basic operations to show how to use combinational logic in your
own designs. We'll also introduce testbenches and how to write one that self-checks.

Chapter 3, Counting Button Presses, builds upon the previous chapter's combination logic,
adding storage—sequential elements. We'll learn about the capabilities of the Artix-7 and
other FPGA devices to store data and design a simple project to count button presses.
We'll also take a look at using clocks and synchronization, one of the few things that can
break a design completely if not done correctly.

viii Preface

Chapter 4, Let's Build a Calculator, looks at how, to create more complex designs,
inevitably you need to keep track of the design state. In this chapter, we'll learn about
state machines and use a classic staple of engineering, the traffic light controller. We'll also
enhance our calculator and show how we can design a divider using a state-based design.

Chapter 5, FPGA Resources and How to Use Them, takes a step back after having quickly
dived into FPGA designs, examining some of the FPGA resources in more detail. To use
these resources, we'll introduce some of the board resources, the PDM microphone and
i2c temperature sensor attached to the FPGA, and use them in projects.

Chapter 6, Math, Parallelism, and Pipelined Design, takes a deeper dive into fixed-point
and floating-point numbers. We'll also look at pipelined designs and parallelism for
performance.

Chapter 7, Introduction to AXI, covers how Xilinx has adopted the AXI standard to
interface its IP and has developed a tool, IP integrator, to easily connect the IP graphically.
In this chapter, we'll look at AXI by taking our temperature sensor and using the IP
integrator to integrate the design.

Chapter 8, Lots of Data? MIG and DDR2, looks at how the Artix-7 provides a good
amount of memory, but what happens if we need access to megabytes or gigabytes of
temporary storage? Our board has DDR2 on it and in anticipation of implementing a
display controller, we'll look at the Xilinx Memory Interface Generator to implement the
DDR2 interface and test it in simulation and on the board.

Chapter 9, A Better Way to Display – VGA, looks at implementing a VGA and an easy way
to display text. We've used LEDs and a seven-segment display to output information from
our projects. This does limit us to what can be shown; for example, we can't display our
captured audio data and text.

Chapter 10, Bringing It All Together, covers adding to our inputs. We've covered the output
with VGA, but we'll add to our inputs by interfacing to the keyboard using PS/2. We'll
take our temperature sensor and PDM microphone and create a project that uses the VGA
to display this data.

Chapter 11, Advanced Topics, wraps things up by looking at some SystemVerilog concepts
that I skipped over but you may still find useful. We'll look at some more advanced
verification constructs and finally look at some other gotchas and how to avoid them.

Preface ix

To get the most out of this book
This book assumes no existing knowledge of FPGAs, logic design, or programming.
You'll need a computer with Windows or Linux. You'll be guided to install the necessary
software in the first chapter.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-FPGA-Programming. In case there's an update to the
code, it will be updated on the existing GitHub repository.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-FPGA-Programming
https://github.com/PacktPublishing/Learn-FPGA-Programming

x Preface

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781789805413_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "adt7420_i2c_bd.v provides the Verilog wrapper."

A block of code is set as follows:

always @(posedge CK) begin

 stage = D;

 Q = stage;

end

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

module dff (input wire D, CK, output logic Q);

 initial Q = 1;

 always_ff @(posedge CK) Q <= D;

endmodule

Any command-line input or output is written as follows:

`timescale 1ps/100fs

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the block design, right-click and select Add Module."

https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789805413_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789805413_ColorImages.pdf

Preface xi

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Introduction to

FPGAs and Xilinx
Architectures

In this section, you will get an understanding of what a Field Programmable Gate
Array (FPGA) is, what the underlying technology is, and an introduction to the
Artix-7 architecture.

This part of the book comprises the following chapter:

• Chapter 1, Introduction to FPGA Architectures and Xilinx Vivado

1
Introduction to

FPGA Architectures
and Xilinx Vivado

In the following chapter, we will be exploring Field Programmable Gate Arrays (FPGAs)
and the underlying technology that creates them. This underlying technology allows
companies such as Xilinx to produce a reprogrammable chip from an Application
Specific Integrated Circuit (ASIC) process. We'll then learn how to use an FPGA for a
simple task. Whether you want to accelerate mathematically complex operations such as
machine learning or artificial intelligence, or simply want to do some projects for fun,
such as retro computing or reproducing obsolete video game machines (https://
github.com/MiSTer-devel/Main_MiSTer/wiki), this book will jumpstart your
journey. There couldn't be a better time to get into this field than the present, even if only
as a hobby. Development boards are cheap and plentiful, and vendors have started making
their tools available for free for their low cost, smaller parts.

In this book, we are going to build some example designs to introduce you to FPGA
development, culminating in a project that can drive a VGA monitor.

By the end of this chapter, you should have a good understanding of an FPGA and
its components.

https://github.com/MiSTer-devel/Main_MiSTer/wiki
https://github.com/MiSTer-devel/Main_MiSTer/wiki

4 Introduction to FPGA Architectures and Xilinx Vivado

In this chapter, we are going to cover the following main topics:

• What is an ASIC?

• How does a company create an FPGA?

• What makes up an FPGA?

• How can we use the Xilinx Vivado tools to design, test, and implement an FPGA

Technical requirements
To follow along with the examples in this chapter, you need the following hardware
and software.:

Hardware
Unlike programming languages, SystemVerilog is a hardware description language,
and to really see the fruits of your work in this book, you will need an FPGA board to load
your designs into. For the purposes of this book, I am suggesting one of two development
boards, which are readily available. It is possible to target another board if you already
have one. However, some of the resources may not be identical or you may need to change
the constraints file (xdc) to access the resources that another board has:

• Information on the Nexys A7: https://store.digilentinc.com/nexys-
a7-fpga-trainer-board-recommended-for-ece-curriculum/.

• Information on the Basys 3 Artix-7 FPGA trainer board: https://store.
digilentinc.com/basys-3-artix-7-fpga-trainer-board-
recommended-for-introductory-users/.

The Nexys A7 is preferable if possible because it has external interfaces that will
be discussed in later chapters and will give you experience interfacing to external
components. I would recommend the 100T in case you get ambitious and would like
to explore more as the price difference is relatively small and it has twice the resources.
With the exception of the DDR memory, the Basys 3 board can do most of the projects,
although some may require the purchase of PMOD interface boards.

Software
You need the following software to follow along:

https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/

What is an ASIC? 5

• https://www.xilinx.com/products/design-tools/vivado.html

• Code files for all the examples in this chapter can be found in this book's GitHub
repository at https://github.com/PacktPublishing/Learn-FPGA-
Programming/tree/master/CH1.

What is an ASIC?
ASICs are the fundamental building blocks of modern electronics – your laptop or PC,
TV, cell phone, digital watch, almost everything you use on a day-to-day basis. It is also
the fundamental building block upon which the FPGA we will be looking at is built from.
In short, an ASIC is a custom-built chip designed using the same language and methods
we will be introducing in this book.

FPGAs came about as the technology to create ASICs followed Moore's law (Gordon
E. Moore, Cramming more components onto integrated circuits, Electronics, Volume
38, Number 8 (https://newsroom.intel.com/wp-content/uploads/
sites/11/2018/05/moores-law-electronics.pdf) – the idea that the
number of transistors on a chip doubles every 2 years. This has allowed for both very
cheap electronics in the case of mass-produced items containing ASICs and led to the
proliferation of lower cost FPGAs.

Why an ASIC or FPGA?
ASICs can be an inexpensive part when manufactured in high volumes. You can buy a
disposable calculator, a flash drive for pennies per gigabyte, an inexpensive cell phone;
they are all powered by at least one ASIC. ASICs are also sometimes a necessity when
speed is of the utmost importance, or the amount of logic that is needed is very large.
However, in these cases, they are typically only used when cost is not a factor.

We can break down the costs of developing a product based on an ASIC or FPGA into
Non-Recurring Engineering (NRE), the one-time cost to develop a chip, and the piece
price for every chip, excluding NRE. Ed Sperling states the following in CEO Outlook:
It Gets Much Harder From Here, Semiconductor Engineering, June 3, 2019, https://
semiengineering.com/ceo-outlook-the-easy-stuff-is-over/:

"The NRE for a 7nm chip is $25 million to $30 million, including mask set
and labor."

https://www.xilinx.com/products/design-tools/vivado.html
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH1
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH1
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://semiengineering.com/ceo-outlook-the-easy-stuff-is-over/
https://semiengineering.com/ceo-outlook-the-easy-stuff-is-over/

6 Introduction to FPGA Architectures and Xilinx Vivado

These costs include more than just the mask sets, the blueprint for the ASIC if you will,
that is used to deposit the materials on the silicon wafers that build the chip. It's also the
teams of design, implementation, and verification engineers that can number into the
hundreds. Usually factored into ASIC costs are re-spins, which are bug fixes. These are a
factor because large, complex devices struggle with first-time success.

Compare this to an FPGA. Fairly complex chips can be developed by a single person, or
small teams. Most of the NRE has been shouldered by the FPGA vendor in the design
of the FPGA chips, which are known good quantities. What little NRE is left is for tools
and engineering. Re-spins are free, except for time, since the chip can be reprogrammed
without million-dollar mask sets.

The trade-off is the per part cost. High volume ASICs with low complexity, like the one
inside a pocket calculator or a digital watch, can cost pennies. CPUs can run into the
hundreds or thousands of dollars. FPGAs, even the most inexpensive Spartan-7, start at a
few dollars and the largest and fastest can stretch into the tens of thousands of dollars.

Another factor is tool costs. As we will see later in this chapter, Xilinx provides the Vivado
tool suite for free in the form of a webpack for the smaller parts. This speeds adoption,
where the barrier to entry is now a computer and a development board. Even the cost of
developing more expensive parts is only a few thousand dollars if you need to purchase a
professional copy of Vivado. ASIC tools can run into the millions of dollars and require
years of training since the risk of failure is so high. As we will see in our projects, we'll
make mistakes, sometimes to demonstrate a concept, but the cost to fix it will only be a
few minutes of time, mostly to understand why it failed:

What is an ASIC? 7

Figure 1.1 – Simple ASIC versus FPGA flow

The flow for an ASIC or FPGA is essentially the same. ASIC flows tend to be more
linear, in that you have one chance to make a working part. With an FPGA, things such
as simulation can become an option, although strongly suggested for complex designs.
One difference is that the lab debug stage can also act as a form of simulation by using
ChipScope, or similar on-chip debugging techniques, to monitor internal signals for
debugging. The main difference is that each iteration through the steps costs only time in
an FPGA flow. In this situation, any changes to a fabricated ASIC design requires some
number of new mask sets that can run into the millions of dollars.

We've briefly looked at what an ASIC is and why we might choose an ASIC or an
FPGA for a given application. Now, let's take a look at how an FPGA is created using an
ASIC process.

8 Introduction to FPGA Architectures and Xilinx Vivado

How does a company create a programmable
device using an ASIC process?
The basis of any ASIC technology is the transistor, with the largest devices holding up to
a billion. There are multiple ASIC processes that have been developed over the years, and
they all rely on 0s and 1s, in other words, on or off transistors. These on or off transistors
can be thought of as Booleans, true or false values.

The basis of Boolean algebra was developed by George Bool in 1847. The fundamentals
of Boolean algebra make up the basis of the logic gates upon which all digital logic is
formed. The code that we will be writing will be at a fairly high level, but it is important to
understand the basics and it will give us a good springboard for a first project.

Fundamental logic gates
There are four basic logic gates. We typically write the truth tables for the gates to
understand their functionality. A truth table shows us what the output is for every set of
inputs to a circuit. Refer to the following example involving a NOT gate.

Important note
In this section, we are primarily discussing only the logical functions. There
are equivalent bitwise functions that will be introduced. Logical functions are
typically used in if statements, bitwise functions in logic operations.

Assign statement
In SystemVerilog, we can use an assign statement to take whatever value is on the
right-hand side of the equal sign to the left-hand side. Its usage is as follows:

assign out = in;

in can be another signal, function, or operation on multiple signals. out can be any valid
signal declared prior to the assign statement.

Comments
SystemVerilog provides two ways of commenting. The first is using a double slash,
//. This type of comment runs until the end of the line it's located on. The second type of
comment is a block comment. Both are shown here:

// Everything here is a comment.
/* I can span

How does a company create a programmable device using an ASIC process? 9

 Multiple
 Lines */

if statement
SystemVerilog provides a way of testing conditions via the if statement. The basic
syntax is as follows:

if (condition) event

We will discuss if statements in more detail in Chapter 2, Combinational Logic.

Logical NOT (!)
The output of the NOT gate produces the inverse of the signal going in. The function in
SystemVerilog can be written as follows:

assign out = !in; // logical or boolean operator

The associated truth table is as follows:

Figure 1.2 – NOT gate representation

The NOT gate is one of the most common operators we will be using:

if (!empty) ...

Often, we need to test a signal before performing an operation. For example, if we are
using a First in First Out (FIFO) storage to smooth out sporadic data or for crossing
clock domains, we'll need to test whether there is data available before popping it out for
use. FIFOs have flags used for flow control, the two most common being full and empty.
We can do this by testing the empty flag, as shown previously.

10 Introduction to FPGA Architectures and Xilinx Vivado

We will go into greater depth in later chapters on how to design a FIFO as well as use one.

Logical AND (&&), bitwise AND (&)
Often, we will want to test whether one or more conditions are active at the same time. To
do this, we will be using the AND gate.

The function in SystemVerilog can be written as follows:

assign out = in1 && in0; // logical or boolean operator

The associated truth table is as follows:

Figure 1.3 – AND gate representation

Continuing our FIFO example, you might be popping from one FIFO and pushing into
another:

if (!src_fifo_empty && !dst_fifo_full) ...

In this case, you want to make sure that both the source FIFO has data (is not empty) and
that the destination is not full. We can accomplish this by testing it via the if statement.

Logical OR (||), bitwise OR (|)
Another common occurrence is to check whether any one signal out of a group is set to
perform an operation.

The function in SystemVerilog can be written as follows:

assign out = in1 || and in0; // logical or boolean operator

How does a company create a programmable device using an ASIC process? 11

The associated truth table is as follows:

Figure 1.4 – OR gate representation

Next, we will look at the exclusive OR function.

XOR (^)
The exclusive OR function checks whether either one of two inputs is set, but not both. The
function in SystemVerilog can be written as follows:

assign out = in1 ^ and in0; // logical or boolean operator

The associated truth table is as follows:

Figure 1.5 – XOR gate representation

This function is used in building adders, parity, and error correcting and checking codes.
In the next section, we'll look at how an adder is built using the preceding gates.

12 Introduction to FPGA Architectures and Xilinx Vivado

More complex operations
We've looked at the basic components in the previous sections that make up every digital
design. Here we'll look at an example of how we can put together multiple logic gates to
perform work. For this we will introduce the concept of a full adder. A full adder takes
three inputs, A, B, and carry in, and produces two outputs, sum and carry out. Let's look
at the truth table:

Figure 1.6 – Full adder

The SystemVerilog code for the full adder written as Boolean logic would be
as follows:

assign Sum = A ^ B ^ Cin;

assign Cout = A & B | (A^B) & Cin;

You'll notice that we are using the bitwise operators for AND (&) and OR (|) since we
are operating on bits. From this straightforward, yet important example, you can see
that real-world functionality can be built from these basic building blocks. In fact, all the
circuits in an ASIC or FPGA are built this way, but luckily you don't need to dive into this
level of detail unless you really want to thanks to the proliferation of High-Level Design
Languages (HDLs), such as SystemVerilog.

Introducing FPGAs 13

Introducing FPGAs
A gate array in ASIC terms is a sea of gates with some number of mask steps that can be
configured for a given application. This allows for a more inexpensive product since the
company designing the ASIC only needs to pay for the masks necessary for configuring.
The FPGA takes this one step further by providing the programmability of the fabric as
part of the device. This does result in an increased cost as you are paying for interconnect
you are not using and the storage devices necessary to configure the FPGA fabric, but
allows for some cost reductions as these parts become standard devices that can be
mass produced.

If we look at the functions in the previous section through the adder example, we can
see one commonality; they can all be produced using a truth table. This becomes key in
FPGA development. We can regard these truth tables as Read Only Memory (ROM)
representations of the functions. In fact, we can regard them as Programmable ROMs
(PROMs) in the case of building up our FPGA.

Let's take the example of the fundamental logic functions. We can reproduce any of them
by utilizing a 2-input lookup table, which could look something like this:

Figure 1.7 – Two input LUT examples

This is an oversimplified example, but what we have are four storage elements, in this
case flip-flops, but in the case of an actual FPGA, more likely a much simpler structure
utilizing far fewer transistors. The storage elements are connected to one another such
that their configuration can be loaded. By attaching other Lookup Tables (LUTs) to the
chain, multiple LUTs can be configured at startup, or in the case of partial reconfiguration,
during normal operation. By adding a flip-flop, we can see the final structure of the LUT
take shape.

14 Introduction to FPGA Architectures and Xilinx Vivado

The power in the simplicity of the structure is the ability to replicate this design many
times over. In the case of modern FPGAs, they are built of many tiles or columns of logic
such as this, allowing a much simpler piece to be designed, implemented, and verified, and
then replicated to produce the large gate count devices available. This allows for a range
of lower cost devices with fewer columns of resources to larger devices with many more,
some even using Stacked Silicon Interconnects (SSI), which allows multiple ASIC dies to
be attached together via an interconnect substrate.

In 1985, Xilinx introduced the XC2064, what we would consider the first FPGA utilizing
an array of 64 3-input LUTs with one flip-flop. The breakthrough with this design was
that it was modular and had good interconnect resources. This entire part would be
approximately equivalent to 1 Combination Logic Block (CLB) in the Artix-7 we will
be targeting.

At the heart of an FPGA is the programmable fabric. The fabric consists of LUTs with
associated flip-flops making up slices and ultimately CLBs. These blocks are all connected
using a rich topology of routing channels, allowing for almost limitless configuration.
FPGAs also contain many other resources that we will explore over the course of this
book, block RAMs, Serial-Deserial (SERDES) cores, DSP elements, and many types of
programmable I/O.

Exploring the Xilinx Artix-7 and 7 series devices
The FPGAs we will be looking at in this book are the Artix-7 series of devices. These
devices are the highest performance per watt of the Xilinx 7 series devices. For a
reasonable price, they feature a large amount of relatively high-performance logic to
implement your designs. The FPGA components we will introduce here are common in
the Spartan (low end), Kintex (mid-range) and Virtex (high end) parts in the 7 series.

Combinational logic blocks
ASICs are made up of logic gates based upon libraries provided by ASIC foundries, such
as TSMC or Tower. These libraries can contain everything from AND, OR, and NOT gates to
more complicated math cells and storage elements. When developing an FPGA, you will
be targeting the same Boolean logic equations as you would in an ASIC. We will be using
a very similar flow. However, the synthesis process will target the CLBs of the FPGA:

Introducing FPGAs 15

Figure 1.8 – Xilinx UG474 7 series FPGAs CLB users' guide figure 1-1 (used with permission)

A CLB consists of a pair of slices, each of which contains four 6-input LUTs and their eight
flip-flops. Vivado (or optionally a third-party synthesis tool such as Synopsys Synplify)
compiles the SystemVerilog code and maps it to these CLB elements. To fully explore
the details of the CLB, I would suggest reading Xilinx UG474, 7 Series FPGAs CLB users'
guide (https://www.xilinx.com/support/documentation/user_guides/
ug474_7Series_CLB.pdf). At a high level, each LUT allows a degree of flexibility
such that any Boolean function with 6 inputs can be implemented or two arbitrarily
defined 5-input functions if they share common inputs. There is also dedicated high speed
carry logic for arithmetic functions, which will be discussed in later chapters.

The slices come in two formats, SLICEL (logic) and SLICEM (memory). SLICEM is a
superset of SLICEL. SLICEM adds the ability to configure the SLICE into a distributed
RAM or shift register. There are approximately three times the number of SLICELs as
SLICEMs. The following table for the two suggested development boards for this book
shows the breakdown:

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

16 Introduction to FPGA Architectures and Xilinx Vivado

Although it is theoretically possible to instantiate and force the functionality of lower-level
components, such as slices or LUTs, this is beyond the scope of this book, and a feature
not widely used. We will be targeting CLB usage through Vivado synthesis of the HDL
that we write.

Storage
Aside from the SLICEMs that make up the CLBs that can be used as memories or shift
registers, FPGAs contain Block RAMs (BRAM) that are larger storage elements. The 7
series parts all have 36 Kb BRAM that can be split into two 18 Kb BRAMs. The following
table shows the BRAM available in the parts on the recommended development boards:

BRAMs can be configured as follows:

• True dual port memories – Two read/write ports.

• Simple dual port memories – 1 read/1 write. In this case, a 36 Kb BRAM can be up
to 72 bits wide and an 18 Kb BRAM up to 36 bits wide.

• A single port.

Contents of BRAMs can be loaded at initialization and configured via a file or initial block
in the code. This can be useful for implementing ROMs or start up conditions.

BRAMs in 7 series devices also contain logic to implement FIFOs. This saves CLB
resources and reduces synthesis overhead and potential timing problems in a design. We
will go over FIFOs in a later chapter.

All 36 Kb BRAMs have dedicated Error Correction Code (ECC) functions. As this is
something more related to high reliability applications, such as medical-, automotive-, or
space-based, something we will not go into detail on in this book.

Introducing FPGAs 17

Clocking
7 series devices implement a rich clocking methodology, which can be explored in detail
in UG472 7 Series FPGAs clocking resources user guide (https://www.xilinx.com/
support/documentation/user_guides/ug472_7Series_Clocking.pdf).
For most purposes, our discussion in the PLL section will give you everything you need to
know; however, the referenced document will delve into far more detail.

I/Os
For the most part, we will limit ourselves to the I/Os supported by the two targeted
development boards. In general, the 7 series devices handle a variety of interfaces from
3.3v CMOS/TTL to LVDS and memory interface types. The boards we are using will
dictate the I/Os defined in our project files. For more information on all the supported
types, you can reference the UG471 7 Series FPGAs SelectIO resources user guide.

DSP48E1
FPGAs have a large footprint in Digital Signal Processing (DSP) applications that use
a lot of multipliers and, more specifically, Multiply Accumulate (MAC) functions. One
of the first innovations in FPGAs was to include hard multipliers followed by DSP blocks
that could implement MAC functions:

Figure 1.9 – Xilinx UG479 7 series DSP48E1 users' guide figure 1-1 (used with permission)

https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf

18 Introduction to FPGA Architectures and Xilinx Vivado

One of the most expensive operations in an FPGA is arithmetic. In an ASIC, the largest
and slowest operation is typically a multiplication operation, and the smaller or faster
operation is an add operation. For this reason, for many years, FPGA manufacturers have
been implementing hard arithmetic cores in their fabric. This makes the opposite true in
an FPGA, where the slower operation is typically an adder, especially as the widths get
larger. The reason for this is that the multiply has been hardened into a complex, pipelined
operation. We will explore the DSP operator more in later chapters. The UG479 7 Series
DSP48E1 user guide (https://www.xilinx.com/support/documentation/
user_guides/ug479_7Series_DSP48E1.pdf) is a good reference if you are
interested in delving into the details.

ASMBL architecture
The 7 series devices are the fourth generation where Xilinx has used the Advanced Silicon
Modular Block (ASMBL) architecture for implementation purposes. The idea behind this
is to enable FPGA platforms optimized for different target applications. Looking at the 7
series families, we can see how different configurations of slices are brought together to
achieve these goals. We can see how the pieces we covered in this chapter are arranged as
columns to give us the resources we will be using for our example projects ahead:

Figure 1.10 – Xilinx UG474 7 series FPGAs CLB users' guide figure 2-1 (used with permission)

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

Introduction to the Vivado toolset and evaluation boards 19

Now that we have looked at what makes up the Artix-7 and other 7 series, we need to get
the Xilinx tools installed so that we can get to our first project.

Introduction to the Vivado toolset and
evaluation boards
In this section, we will explore the evaluation boards recommended for the projects in this
book. We will walk through a very simple design using Vivado to introduce the tool and
show how to program the board and demonstrate the functionality of the FPGA.

Evaluation boards
There is no shortage of FPGA evaluation boards available for us to purchase. One
company that makes very affordable boards is Digilent. There are several nice features
that their boards tend to include, but one of the best is that they have a USB to UART
controller built in that Xilinx Vivado recognizes as a programming cable. This makes
configuring the device painless. The recommended boards also have the added advantage
of being powered over this same USB cable.

20 Introduction to FPGA Architectures and Xilinx Vivado

Nexys A7 100T (or 50T)
The Nexys A7 is the recommended board for this book. It has all the devices we'll target
over the course of the book:

Figure 1.11 – Digilent Nexys A7 board

The board features are as follows:

• Artix-7 XC7A100T or 50T

• 450+MHz operation

• 128 MB DDR2

• Serial Flash

• Built-in USB UART for downloading images and ChipScope debugging

• MicroSD card reader

• 10/100 Ethernet PHY

Evaluation boards 21

• PWM audio output/microphone input

• Temperature sensor

• 3 axis accelerometer

• 16 switches

• 16 LEDs

• 5 pushbuttons

• Two 3 color LED

• Two 4-digit 7-segment displays

• USB host device support

• Five PMOD (one XADC)

Let's take a look at the breakdown of the two devices the Nexys board can be ordered with:

One benefit to choosing the XC7A100T is the additional RAM. Especially when starting
out you may find yourself relying on chip debugging using ChipScope and the additional
RAM will allow for additional storage for wider busses or longer capture times. We'll
discuss ChipScope in a later chapter.

22 Introduction to FPGA Architectures and Xilinx Vivado

Basys 3
An alternative evaluation board is the Basys 3:

Figure 1.12 – Digilent Basys 3 board

This board has the same pushbuttons, LEDs, and switches, but only half the number of
seven segment displays. We'll be developing code that can run on either board using these
features. It does lack the DDR2 RAM, so it will limit using this for a framebuffer as we will
introduce in a later chapter. It is also missing the temperature sensor, microphone, and
audio, which we'll look at regarding serial interfaces. PMOD boards can be purchased that
have this functionality, however, to overcome this limitation.

The board features are as follows:

• Artix-7 XC7A35T

• 450+Mhz operation

• 128MB DDR2

• Serial Flash

Evaluation boards 23

• Built-in USB UART for downloading images and ChipScope debugging

• MicroSD card reader

• 10/100 Ethernet PHY

• PWM audio output/microphone input

• 16 switches

• 16 LEDs

• 5 pushbuttons

• Two 3-color LEDs

• Single 4-digit, 7-segment displays

• USB host device support

• Four PMODs (one dual purpose supporting XADC)

Let's now take a look at the breakdown of the Basys 3 board:

Important note
The Basys 3 board lacks the DDR 2 memory, accelerometers, and audio
capabilities, which will be addressed in later chapters. PMODs are available for
everything apart from the DDR2. I would recommend the Nexys A7 over the
Basys if possible.

We've just taken a look at the boards we are planning on using for the book. Now we need
to take a look at the Xilinx tool, Vivado, which will be what we use to design, simulate,
implement, and debug our FPGA designs.

24 Introduction to FPGA Architectures and Xilinx Vivado

Introducing Vivado
Once you have selected a board, the best way to get to know it is to work through an
example design.

Vivado is the Xilinx tool we will be using to implement, test, download, and debug our
designs. It can be run as a command-line tool in non-project mode, or in project mode
using the GUI. For our purposes, we will be using project mode via the GUI; however, we
will go through non-project mode as an introduction in the Appendix.

Vivado installation
Xilinx makes Vivado freely available in the form of a webpack for smaller devices. The
webpack contains all the features of the full version with a limitation based on device
support. It is available for either Windows or Linux. This book will show screenshots
for the Linux version; however, everything is tested on both, so you will be fine with
using either.

Important note
The Xilinx webpack forces tool feedback information to Xilinx. The paid
version allows this to be disabled.

Perform the following steps to effect installation:

1. Create an account at https://www.xilinx.com/.

2. Visit https://www.xilinx.com/support/download.html.

3. Download the Xilinx Unified Installer. For this book, we'll be using
version 2020.1.

4. On Windows, run the .exe file.

On Linux, use the following commands:
chmod +x Xilinx_Unified_2020.1_0602_1208_Lin64.bin; ./
Xilinx_Unified_2020.1_0602_1208_Lin64.bin

5. Enter your account information for the installation.

6. When prompted, you can install either Vitis or Vivado. We will not be using Vitis,
but it includes Vivado, so if you are adventurous and want to try Vitis out, feel free
to install this as well.

https://www.xilinx.com/
https://www.xilinx.com/support/download.html

Introducing Vivado 25

7. When prompted for the devices, you only need the 7 Series.

8. Pick an installation location or use the default option.

Once you've completed these steps, get a cup of coffee… take a nap… write a book. It is
going to take a while.

Directory structure
With Vivado installed, we can now walk through a very simple project to introduce you
to Vivado and to make sure everything is set up correctly. The directory structure I like to
use looks like the following:

Figure 1.13 – Directory structure

Items in bold are directories. For our first example design, we do not have a lot of code.
We will end up creating only three files: the HDL source code, the testbench, and a
constraints file.

Inside the hdl directory, we'll create a simple design, logic_ex.sv, to run
through Vivado:

Logic_ex.sv

`timescale 1ns/10ps

module logic_ex

 (

26 Introduction to FPGA Architectures and Xilinx Vivado

 input wire [1:0] SW,

 output logic [3:0] LED

);

 assign LED[0] = !SW[0];

 assign LED[1] = SW[1] && SW[0];

 assign LED[2] = SW[1] || SW[0];

 assign LED[3] = SW[1] ^ SW[0];

 endmodule // logic_ex

First, we'll define the timescale that we will be operating at in the simulator. 1ns/10ps
was pretty standard years ago and for what we'll be doing, it will work fine. If you get
involved using high-speed transceivers, you may encounter even smaller timescales, such
as 1ps/1fs.

Tip
Each module should reside in its own file and the file should be named the
same as the module. This can make life easier when using some tools, such as
commercial simulators or even custom scripting.

The syntax for defining the timescale is as follows:

`timescale <time unit>/<time precision>

time unit defines the value and unit of delays. time precision specifies the
rounding precision. This value can usually be overridden in the simulator and these
settings have no effect on synthesis. When using `timescale, it is best to set it in
all files:

Introducing Vivado 27

We define a port list with one input, SW, which is a 2-bit value that we will connect to the
two right-most switches on the board. We also define one output named LED, which are
four bits that represent the four LEDs above the four right-most switches:

tb.sv

`timescale 1ns/ 100ps;

module tb;

 logic [1:0] SW;

 logic [3:0] LED;

 logic_ex u_logic_ex (.*);

 //logic_ex u_logic_ex (.SW, .LED);

 //logic_ex u_logic_ex (.SW(switch_sig), .LED(led_sig));

 //logic_ex u_logic_ex (.*, .LED(led_sig));

Here we declare a top-level module called tb. Note that the top-level testbench module
should not have any ports. We also declare two logic types that we will hook up to the
hello world module.

Here, we instantiate logic_ex as an instance, u_logic_ex. There are multiple ways of
connecting ports. In the uncommented example, we are using .*, which will connect all
ports with the same name as a defined signal in the instantiating module.

The second example (commented out) uses .<name> of the port you wish to connect. It
requires the port name to already be defined.

Finally, if there is a signal with a different named signal, we could use the third example,
which allows port renaming. It is possible to mix .* with renamed ports, as shown in the
final example.

A testbench typically has two distinct parts, the stimulus generator and stimulus checker:

 // Stimulus

 initial begin

 $printtimescale(tb);

 SW = '0;

 for (int i = 0; i < 4; i++) begin

 $display("Setting switches to %2b", i[1:0]);

 SW = i[1:0];

 #100;

 end

28 Introduction to FPGA Architectures and Xilinx Vivado

 $display("PASS: logic_ex test PASSED!");

 $stop;

 end

The stimulus block is simple because the design we are testing is simple. We can nest it
completely in an initial block. When the simulator starts up, the initial block runs
serially. First it will print the timescale used in tb.sv. Then, SW input into the logic_
ex module is set to 0. Using a '0 in the assignment to SW tells the tool to set all bits to 0.
There is also an equivalent '1, which sets all bits to 1 or 'z, which would set all bits to
z. Verilog sizing rules say that assigning SW = 0 is equivalent to SW = 32'b0, which
would result in a sizing warning. To limit warnings, using '0, '1, or 'z is preferable.

Important note
SystemVerilog is an HDL and this is an important distinction. An
HDL must be able to model parallel operations since many or all the slices in
an FPGA will be running in parallel all the time. SW = '0; is a blocking
assignment. So, the assignment is made before moving on. We will discuss
blocking versus non-blocking when we discuss clocked processes.

The stimulus block then loops four times via the for loop. SystemVerilog has the
capability of declaring the loop variable within the for loop, in this case i. It is highly
advisable to declare it this way to avoid multiple driven net warnings if you are using the
same signal in multiple for loops.

Within the for loop, we print out the current setting of the switches using the system task
$display. Since we want to display only the 2 bits we are incrementing without leading
0s, we specify 2%b. We then set the value of SW to the lower two bits of i. Although we
don't need to, we add in a delay of 100ns by using #100.

We are also using $stop, which will terminate the simulation run when reached.

Important note
We know that the delay is in ns because of the timescale we define in the test.

We also declare a checker block. In any good testbench, the checker block should be self-
checking. This means that at the end of the test, we should be able to print whether the test
passed or failed, and, if it failed, why. This also means that writing a testbench can often be
as involved or even more involved than writing the code for the FPGA implementation.
This is beyond the scope of this book, however. All commercial simulators, including
the Vivado simulator, also support Universal Verification Methodology, which is a set of
SystemVerilog classes and functions specifically for testing HDL designs:

Introducing Vivado 29

 always @(SW, LED) begin

 if (!SW[0] !== LED[0]) begin

 $display("FAIL: NOT Gate mismatch");

 $stop;

 end

 if (&SW[1:0] !== LED[1]) begin

 $display("FAIL: AND Gate mismatch");

 $stop;

 end

 if (|SW[1:0] !== LED[2]) begin

 $display("FAIL: OR Gate mismatch");

 $stop;

 end

 if (^SW[1:0] !== LED[3]) begin

 $display("FAIL: XOR Gate mismatch");

 $stop;

 end

 end

endmodule

Conversely to the stimulus generation, we want this block to react to events from our
design. We accomplish this by using an always block, which is sensitive just to changes
on the SW inputs and LED outputs of the design. This is a simple case where we are
matching each LED to the corresponding SW values run through their respective
expected logic gate. We do this by using!==, which is not equals, but takes x's into
account in case there is a bug in the design. We will see more complex testbenches in
later chapters.

We are also using the reduction operators, &, |, and ^, which are applied to the two bits of
SW. &SW[1:0] is equivalent to SW[0] & SW[1].

Running the example
You will want to copy the files for this book from GitHub at this point or clone
the repository.

30 Introduction to FPGA Architectures and Xilinx Vivado

Loading the design
Let's load the design into Vivado:

1. Under Windows, locate the Vivado installation and double-click on the Vivado
icon. Under Linux, the procedure is as follows:

Source <Vivado Install>/settings.sh (or.csh)

Vivado

2. Perform steps 2 and 3 the first time you run Vivado.

3. Open Xhub Stores:

Figure 1.14 – Xhub Stores
The Xilinx Xhub Stores are a convenient way of adding scripts, board files, and
example designs to your Vivado installation.

Introducing Vivado 31

4. Install the board files for the example projects.

Select the Boards tab, and then navigate to the Digilent Artix A7 100T or 35T and
the Basys 3. You'll notice that there are quite a few commercial boards that easily
make their files available for installation:

Figure 1.15 – Adding the Digilent boards

32 Introduction to FPGA Architectures and Xilinx Vivado

5. Select the open project and navigate to CH1/build/logic_ex/logic_ex.prj
for the Nexys A7 board, or CH1/build/logic_ex/logic_ex_basys3.prj
for the Basys 3 board, as shown in the following screenshot:

Figure 1.16 – Open Project window

Introducing Vivado 33

Once open, you'll see the following:

Figure 1.17 – Vivado main screen for the logic_ex project

The Vivado project window gives us easy access to the design flow and all the information
relating to the design. On the left-hand side, we see Flow Navigator. This gives us all the
steps we will use to test and build our FPGA image. Currently, PROJECT MANAGER
is highlighted. This gives us easy access to the sources in the design and the project
summary. The project summary should be empty since we have loaded the project for
the first time. On future loads of the project, it will display the information from the
previous run.

34 Introduction to FPGA Architectures and Xilinx Vivado

Important note
To give you a jumpstart, all the projects in this book come complete with pre-
set-up project files. Please see the appendix for instructions on setting up the
first project in both project mode and non-project mode. This will guide you
for setting up your own projects in the future.

Let's explore the sources in the design:

Figure 1.18 – Design sources

Here we can see our design, logic_ex.sv. We also have a set of constraints and we can
see the testbench, tb.sv, instantiating logic_ex.sv under simulation sources. You
can double-click on any of the files and explore them in the context-sensitive editor built
into Vivado. The project is currently set up to reference the files in their current location
within the directory structure, so the file can be edited with whatever your favorite
editor is.

Looking at Project Summary, we can see the project is currently targeting the Arty
A7-100 board.

Introducing Vivado 35

Running a simulation
First, let's run the Vivado simulator to check the validity of our design.

To do this, click Run Simulation | Run Behavioral Simulation under PROJECT
MANAGER. You will see that there are some other options available that are grayed out.
These options allow you to run post synthesis or post implementation with or without
timing. Behavioral simulation is relatively quick and will accurately represent the function
of your design if the code is written properly. I would recommend not running post
synthesis or implementation simulation unless you are debugging a board failure and need
to accurately test the implemented version of the design as you'll find that the simulations
will slow down dramatically.

Running the behavioral simulation will elaborate the design, the first step in the overall
flow. The simulation view will take over the Vivado main screen:

Figure 1.19 – Simulation view

36 Introduction to FPGA Architectures and Xilinx Vivado

The Scope screen gives us access to the objects within a given module. In this case, within
the testbench (tb), we can see two signals, SW[1:0] and LED[3:0]. I've added them to
the waves and expanded the view:

Figure 1.20 – Wave view

The wave view allows us to look at the signals in the design and how they are behaving
as the simulation progresses. This will be the most widely used feature of the simulator
when debugging problems. We can see the SW signal incrementing due to the for loop
in the testbench. Correspondingly, we see the LED values change. The current display is
in hex, but it is possible to change it to binary or, by clicking on the > symbol to the right
of the signal, to display the individual bits of the signal. Also notice that each change in
the signals corresponds to a 100ns time advance. This is due to the #100 we are using to
advance time and the timescale setting.

Introducing Vivado 37

The final window is the most important for a self-checking testbench:

Figure 1.21 – Tcl Console

The Tcl console will display all the outputs from $display, or assertions in the design.
In this case, we can see the output from our $printtimescale(tb) function as 1ns/
100ps. We also see the values that the switches are set to and can see within the waves the
same values. Finally, we see PASS: logic_ex test PASSED!, giving us the result of the test.
I would encourage you to experiment with the testbench. Change the operators or invert
them to verify that the test fails if you do. This exercise will give you confidence that the
testbench is functioning correctly.

The goal of verification is not to ensure the design passes; it is to try to make it fail. This is
a simple case, so it is not really possible, but make sure that you test unexpected situations
to make sure your design is robust.

Tip
It is advisable to adopt a convention in how you indicate tests passing and
failing. This test is simple. However, a much more robust test suite for an
actual design may have random stimulus and many targeted tests. Adopting a
convention such as displaying the words PASS and FAIL allows for easy post-
processing of test results.

38 Introduction to FPGA Architectures and Xilinx Vivado

Implementation
Now that we have confidence that the design works as intended, it is time to build it and
test it on the board.

First, let's look at the .xdc file. Click back on Project Manager in Flow Navigator, and
then expand the constraints and double-click on the xdc file.

The following lines should be uncommented out for the Arty A7-100T to set the
configuration voltages:

set_property CFGBVS VCCO [current_design]

set_property CONFIG_VOLTAGE 3.3 [current_design]

set_property is the tcl command, which will set a given design property used by
Vivado. In the preceding command, we are setting CFGBVS and CONFIG_VOLTAGE to
the values required by the Artix-7 FPGA.

The following code block sets up the switch and LED locations (placed together
for convenience):

set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 }
[get_ports { SW[0] }]; #IO_L24N_T3_RS0_15 Sch=sw[0]

set_property -dict { PACKAGE_PIN L16 IOSTANDARD LVCMOS33 }
[get_ports { SW[1] }]; #IO_L3N_T0_DQS_EMCCLK_14 Sch=sw[1]

set_property -dict { PACKAGE_PIN H17 IOSTANDARD LVCMOS33 }
[get_ports { LED[0] }]; #IO_L18P_T2_A24_15 Sch=led[0]

set_property -dict { PACKAGE_PIN K15 IOSTANDARD LVCMOS33 }
[get_ports { LED[1] }]; #IO_L24P_T3_RS1_15 Sch=led[1]

set_property -dict { PACKAGE_PIN J13 IOSTANDARD LVCMOS33 }
[get_ports { LED[2] }]; #IO_L17N_T2_A25_15 Sch=led[2]

set_property -dict { PACKAGE_PIN N14 IOSTANDARD LVCMOS33 }
[get_ports { LED[3] }]; #IO_L8P_T1_D11_14 Sch=led[3]

The set_property commands create a tcl dictionary (-dict) containing PACKAGE_
PIN and IOSTANDARD for each port on the design. We use the get_port TCL
command to return a port on the design. # is a comment in the TCL.

The pin locations and I/O standards are defined by the board manufacturer. They have
used 3.3 V I/Os and the pins are as specified.

The steps to generate a bitstream are as follows:

1. Synthesis: Map SystemVerilog to an intermediate logic format for optimizing.

Introducing Vivado 39

2. Implementation: Place the design, optimize the place results, and route the design.

3. Generate bitstream: Generate the physical file to download to the board.

These can be run individually. You might take this route if you need to look at the
intermediate results to see how the area or timing is coming out, or if you are designing a
custom board and need to do pin planning. In our case, we can click directly on Generate
Bitstream and allow it to run all the steps automatically for us. Allow it to use the defaults.
When complete, open the implemented results:

Figure 1.22 – Project Summary

40 Introduction to FPGA Architectures and Xilinx Vivado

Here we can see the summary of our implementation. We are using 2 LUTs and 6 I/Os
(SW + LED). There is no timing since this design is purely combinational, otherwise we'd
see more information regarding timing numbers.

If we click the Device tab, we can get a picture of how the device is being used:

Figure 1.23 – Device view

Here we can see the little white dot midway down the left-hand side. This represents
where the LUTs are being placed.

Introducing Vivado 41

Program the board
You have made it to the end of the chapter and now it's time to see the board in action:

1. Make sure it is plugged in and turned on.

2. Now, click on Open hardware manager, the last option under Flow Navigator. The
hardware manager view will open in the main window.

3. Click Open target | Autoconnect.

4. Now, select the program device. The bitstream should be selected automatically. The
lights will go out on the board for a few seconds and then, if the left two switches are
down, you will be greeted with this:

Figure 1.24 – Board bringup

5. Flip the switches, and go through 00, 01, 10, 11, where 0 is down, 1 is up. Do the
lights match the simulation? Do they match what you think they should be? Do
you occasionally see one flicker as the switches are flipped? The last question will be
answered in Chapter 3, Counting Button Presses.

42 Introduction to FPGA Architectures and Xilinx Vivado

Congratulations! You've completed your first project on an FPGA board. You've taken
the first step on this journey and reconfigured the hardware in the FPGA to do some
simple tasks. As we go through the book, the tasks will become more complex and more
interesting and soon you'll be able to build upon this to create your own projects.

Summary
In this chapter, we've learned the basics of ASICs and FPGAs, how they are built, and
when they make monetary sense. We've learned to use an FPGA board and program it.
This sets us up for the rest of the book, where we will use this board and our programming
skills in a variety of tasks and projects. Ultimately, these skills will be the foundation for
developing your own designs, be they for work or for play.

The next chapter will build upon our example design as we delve further into
combinational logic design.

Questions
1. When might you use an FPGA?

a) You are prototyping an application that may eventually be an ASIC.

b) You will only have very small volumes.

c) You need something that you can easily change the algorithms on in the future.

d) All of the above.

2. When would you use an ASIC?

a) You are developing a very specialized application, with just a small number to be
built and the budget is tight.

b) You've been asked to design a calculator that will be mass produced and that
requires a custom processor.

c) You need something extremely low power and cost is not a consideration.

d) You are developing an imaging satellite and want the ability to update the
algorithms over the lifetime of the satellite.

e) a and b.

3. We have seen a full adder in the chapter. A half adder is a circuit that can add two
inputs, in other words, no carry in. Can you write the truth table for the sum and
carry for a half adder?

Further reading 43

4. Modify the code and testbench to test the following gates: NAND (not AND), NOR
(not OR), and XNOR (not XOR). Hint: You can invert a unary operator by adding a ~
operator in front of it, in other words, NAND is ~&. Try it on the board.

Challenge
1. Open CH1/build/challenge.prj.

2. Modify the lines in challenge.sv to implement a full adder:

 assign LED[0] = ; // Write the code for the Sum

 assign LED[1] = ; // Write the code for the Carry

3. Modify tb_challenge.sv to test it:

 if () begin // Modify for checking

Hint: You may want to jump ahead in the book to look at addition or do a quick web
search.

Further reading
Please refer to the following links for more information:

• 7 Series FPGAs Configurable Logic Block: https://www.xilinx.com/
support/documentation/user_guides/ug474_7Series_CLB.pdf

• 7 Series FPGAs Clocking Resources: https://www.xilinx.com/support/
documentation/user_guides/ug472_7Series_Clocking.pdf

• 7 Series DSP48E1 Slice: https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_DSP48E1.pdf

• Nexys A7 Reference Manual: https://reference.digilentinc.com/
reference/programmable-logic/nexys-a7/reference-manual

• Basys 3 Reference Manual: https://reference.digilentinc.com/
reference/programmable-logic/basys-3/reference-manual

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual

Section 2: Introduction
to Verilog RTL Design,

Simulation, and
Implementation

In this section, you will learn to program SystemVerilog up to an intermediate level.
You will design, test, and implement multiple designs from specification through to
implementation on an actual board (if you desire).

This part of the book comprises the following chapters:

• Chapter 2, Combinational Logic

• Chapter 3, Counting Button Presses

• Chapter 4, Let's Build a Calculator

• Chapter 5, FPGA Resources and How to Use Them

• Chapter 6, Math, Parallelism, and Pipelined Design

2
Combinational Logic

Designs are typically composed of combinational and sequential logic. Combinational
logic is made up simply of gates, as we saw in Chapter 1, Introduction to FPGA
Architectures and Xilinx Vivado. Sequential logic maintains state, usually based on a clock
edge, but it can be level-based as well, as we will discuss when we learn what not to do
when inferring sequential logic.

In this chapter, we are going to explore writing a complete SystemVerilog module
from scratch that can perform some basic real-world operations that you may use one day
in your actual designs.

In this chapter, we are going to cover the following main topics:

• Creating SystemVerilog modules

• Introducing data types

• Packaging up code using functions

• Project – creating combinational logic

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

48 Combinational Logic

To follow along with the examples and the project, please take a look at the code
files for this chapter at the following GitHub repository: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH2.

Creating SystemVerilog modules
At the heart of every design are the modules that compose it. From the testbench that's
used to verify the design to any instantiated components, they are all declared somewhere
as a module. For the example design we'll be covering in this chapter, we'll be creating a
set of modules representing the functions that we can access via the buttons and switches
on the evaluation board. We'll use these switches to set values, and we'll use five buttons to
perform operations.

Let's take a look at the components of a module declaration:

module project_2

#(parameter SELECTOR,

 Parameter BITS = 16)

(input wire [BITS-1:0] SW,

 input wire BTNC,

 input wire BTNU,

 input wire BTNL,

 input wire BTNR,

 input wire BTND,

 output logic signed [BITS-1:0]);

We are creating a module called project_2, which will be the top level of our design.
The first section within #() is the parameter list, which allows us to define parameters
that we can use within the port list or module. We can also define parameters anywhere
within the module, and they can also be overridden during instantiation. However,
parameters must be defined prior to use.

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH2
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH2

Creating SystemVerilog modules 49

How to create reusable code – parameters
Parameters can be used to override information in a module's instantiation. This
information can be used within the module to control the size of the data, as is the case
with BITS, which has a default value of 16 if it's not overridden. Parameters can also
control the instantiation of logic or modules, as we'll see when we explore the case
statement. We can also create a parameter, SELECTOR, which has no default. This is
a good way to make sure that something is set in the instantiation since there is no default.
If it is not overridden, it will result in an error.

Parameters can be integers, strings, or even types:

#(parameter type SW_T = logic unsigned [15:0], …

 (input SW_T SW, …

Here, we created a type, SW_T, that defaults to logic unsigned [15:0] and creates
a port using this type, SW. When the module is instantiated, a new type can be passed,
thus overriding the default and allowing for greater design reuse.

Tip
It is good practice to keep parameters intended to be overridden within the
parameter list and use localparams, which cannot be overridden, within
the module itself. Parameters provide us with a great way to express design
intent. When you return to a design after a long period of time, magic numbers
such as 3.14 have much less meaning than pi.

Let's take a look at the data types we'll be using in SystemVerilog for data movement.

50 Combinational Logic

Introducing data types
All computer programming languages need variables. These are places in memory
or registers that store values that the program that's running can access. Hardware Design
Languages (HDLs) are a little different in that you are building hardware. There are
variable equivalents in terms of storage/sequential logic, which we'll discuss in the next
chapter, but we also need wires to move data around the hardware we're building using the
FPGA routing resources, even if they are never stored:

Figure 2.1 – Program flow versus HDL flow

As we can see, in a traditional flow, you have a computer that has a processor and
memory. The program flows linearly; however, with modern machines, there are
increasing levels of parallelism. When you write SystemVerilog, you are using data
types to create hardware that will store or move data around physically from Lookup
Tables (LUTs) to LUTs. If you want to use external memory, which is something we
will introduce in Chapter 8, Lots of Data? MIG and DDR2, you need to implement the
hardware to communicate with the memory.

Introducing built-in data types
SystemVerilog has multiple built-in types, but the most interesting ones for design are
the logic and bit type:

• logic: We used this type in the previous chapter. The logic type can represent a 0,
1, x (undefined or treated as don't care, as we'll see shortly), or z (tri-state or also a
don't care).

Introducing data types 51

Important note
If you've ever used verilog, you will know of the reg type. This was a
confusing type to new HDL designers as they would see reg and think it's
short for register. In fact, a reg type was any signal originating from an
always block, even though always blocks could be used to generate
combinational logic, as we'll see shortly. Although reg can still be used for
backward compatibility, you would be better off using logic or bit, which
can be used in both assign statements and always blocks. The logic
type also allows for the propagation of x through a design. This can be helpful
for debugging startup conditions.

• bit: The bit type uses less memory to store than logic, but it can only store a 0
or 1. This allows for lower memory usage and potentially faster simulation at the
expense of tracking undefined values.

There are also four other, lesser used two state types:

• byte: 8 bits

• shortint: 16 bits

• int: 32 bits

• longint: 64 bits

Important note
The differences between bit and logic are purely related to how they behave
in simulation. Both types will generate the same logic and storage elements in
hardware. All the other types only differ in size or default sign representation.

With that, we've looked at the basic types. But what if we need to deal with different sizes
of data or more data than the types can handle?

Creating arrays
The reason that byte, shortint, int, and longint are not used as much is because
typically, you will size your signals as needed; for example:

bit [7:0] my_byte; // define an 8 bit value

52 Combinational Logic

Here, my_byte is defined as a packed 8-bit value. It's possible to also create an
unpacked version:

bit my_byte[8]; // define an 8 bit value

Packed versions have the advantage of slicing into arrays, while unpacked versions have
the advantage of inferring memories, as we'll discuss in Chapter 5, FPGA Resources and
How to Use Them.

Arrays can also have multiple dimensions:

bit [2:0][7:0] my_byte[1024][768]; // define an 8 bit value

// 3 4 1 2 Array ordering

The ordering of the array is defined in the preceding code. The following are valid ways to
access the array:

my_array[0][0] Returns a value of [2:0][7:0]

my_array[1023][767][2] Returns an 8 bit value

Defining an array can be done using a range, such as [7:0], or a number of elements,
such as [1024].

Querying arrays
SystemVerilog provides system functions for accessing array information. As we'll see
in this project, this allows for reusable code.

Important note
The dimension parameter is optional and defaults to 1.

This becomes even more important when we want to implement type parameters:

Introducing data types 53

These system functions allow us to query an array to get its parameters.

Assigning to arrays
When we want to assign a value to a signal defined as an array, we should size it properly
to avoid warnings. If we don't specify a size, then the size defaults to 32 bits, which was
part of the Verilog Language Reference Manual (LRM).

There are three ways we can assign without providing a sign: '1 assigns all bits to 1, '0
assigns all bits to 0, and 'z assigns all bits to z. If we have a single packed dimension, we
can use n'b to specify a binary value of n bits, n'd to specify a decimal value of n bits, or
n'h to specify a hex value of n bits:

logic [63:0] data;

assign data = '1; // same as data = 64'hFFFFFFFFFFFFFFFF;

assign data = '0; // same as data = 64'd0;

assign data = 'z; // same as data = 64'hzzzzzzzzzzzzzzzz;

assign data = 0; // data[31:0] = 0, data[63:32] untouched.

54 Combinational Logic

It's important to remember that n in these cases is the number of bits, not the number
of digits.

Handling multiple-driven nets
There is one other type that deserves to be mentioned, although we will not be using it for
a while. This is a wire. The wire type represents 120 different possible values; that is, the
four basic values – 0, 1, x, and z – and drive strengths. The wire type has what is known
as a resolution function. Wire types are the only signals that can be connected to multiple
drivers. We will see this when we introduce the Serial Peripheral Interface (SPI) protocol
and access the DDR2 memory on the Nexys A7 board:

Figure 2.2 – Tri state example

FPGAs, in general, do not have internal tri-state capabilities. The preceding example
shows two devices each with tri-state Input/Output (I/O) buffers connected:

logic [1:0] in;

logic [1:0] out;

logic [1:0] enable;

tri1 R_in;

assign R_in = (enable[0]) ? out[0] : 'z;

Introducing data types 55

assign R_in = (enable[1]) ? out[1] : 'z;

assign in[0] = R_in;

assign in[1] = R_in;

The preceding code demonstrates how the two tri-state buffers are constructed. tri1 is a
testbench construct where a signal is declared as a tri-state with a weak pullup to 1.

Handling signed and unsigned numbers
Verilog had just one signed signal type, integer. SystemVerilog allows us to
define both unsigned and signed numbers explicitly for any built-in type:

bit signed [31:0] signed_vect; // Create a 32 bit signed value

bit unsigned [31:0] unsigned_vect; // create a 32 bit unsigned
value

When performing signed arithmetic, it's important to make sure the sizing is correct.
Also, when computing with signed numbers, you should make sure all the signals
involved are signed so that the correct result is obtained.

Important note
Digital logic, such as computer processors or FPGA implementations, use
2's complement to represent signed numbers. What this means is that to
negate a number, you simply invert it and add 1. For example, to get -1 in
2's complement, assuming there's 4 bits for representation, we would take
4'b0001, invert it to get 4'b1110, and add 1, resulting in 4'b1111. Bit 3
is the sign bit, so if it's 0, the number is positive and 1 if it's negative. This also
means that the maximum number of signed values that we can represent by
using 4 bits is 4'b0111 or +7 and 4'b1000 or -8.

Adding bits to a signal by concatenating
SystemVerilog provides a powerful concatenation function, {}, for adding bits or
signals to create larger vectors or replication. When casting an unsigned integer to a
signed integer, typically, you'll want to use the concatenation operator, {}, to prepend
1'b0 into the sign bit so that the resulting signal remains unsigned. The concatenation
operator can be used to merge multiple signals together, such as {1'b0, unsigned_
vect}. It can also be used to replicate signals. For example, {2{unsigned_vect}}
would be equivalent to {unsigned_vect, unsigned_vect}.

56 Combinational Logic

Casting signed and unsigned numbers
You can cast an unsigned number to a signed number by using the signed' keyword,
and cast a signed number to an unsigned number using the unsigned' keyword:

logic unsigned [15:0] unsigned_vect = 16'hFFFF;

logic unsigned [15:0] final_vect;

logic signed [16:0] signed_vect;

logic signed [15:0] signed_vect_small;

assign signed_vect = signed'({1'b0, unsigned_vect}); //
+65535

assign signed_vect_small = signed'(unsigned_vect); // -1

assign unsigned_vect = unsigned'(signed_vect);

assign final_vect = unsigned'(signed_vect_small); // 65535

Here, you can see that an unsigned 16-bit number can go from 0 to 65535. A 16-bit signed
number can go from -32768 to 32767, so if we assign a number larger than 32767, it would
have its sign bit set in the same-sized signed number, causing it to become negative.

These are equivalent to the verilog system functions; that is, $signed() and
$unsigned(). However, it's preferable to use the casting operators.

Important note
When casting signed to unsigned or unsigned to signed, pay attention to sizing.
For example, to maintain the positive nature of unsigned, typically, you'll use
the concatenation operator, {}, as in signed({1'b0, unsigned_
vect});, which means the resulting signal will be 1 bit larger. When going
from signed to unsigned, care must be taken to ensure that the number is
positive; otherwise, the resulting assignment will not be correct. You can see an
example of mismatched assignments in the preceding code, where signed_
vect_small becomes -1 rather than 65535 and final_vect becomes
65535, even though signed_vect_small is -1.

Creating user-defined types
We can create our own types using typedef. A common example that's used in
SystemVerilog is to create a user-defined type for speeding up simulations. This can
be done by using a define:

`ifdef FAST_SIM

 typedef bit bit_t

Packaging up code using functions 57

`else

 typedef logic bit_t

`endif

If FAST_SIM is defined, then any time we use bit_t, the simulator will use bit;
otherwise, it will use logic. This will speed up simulations.

Tip
It is a good idea to adopt a naming convention when creating types – in this
case, _t. This helps you identify user-defined types and avoid confusion when
using the type within your design.

Accessing signals using values with enumerated types
When it comes to readability, it's often preferable to use variables with values that make
more sense and are self-documenting. We can use enumerated types to accomplish this,
like so:

enum bit [1:0] {RED, GREEN, BLUE} color;

In this case, we are creating a variable, color, made up of the values RED, GREEN, and
BLUE. Simulators will display these values in their waveforms. We'll discuss enumerated
types in more detail in Chapter 3, Counting Button Presses.

Packaging up code using functions
Often, we'll have code that we will be reusing within the same module or that's common
to a group of modules. We can package this code up in a function:

function [4:0] func_addr_decode(input [31:0] addr);

 func_addr_decode = '0;

 for (int i = 0; i < 32; i++) begin

 if (addr[i]) begin

 return(i);

 end

 end

endfunction

58 Combinational Logic

Here, we created a function called func_addr_decode that returns a 5-bit value.
function takes a 32-bit input called address. Functions can have multiple outputs, but
we will not be using this feature. To return the function's value, you can assign the result
to the function name or use the return statement.

Creating combinational logic
The two main ways of creating logic are via assign statements and always blocks.
assign statements are convenient when creating purely combinational logic with only
a few terms. This is not to say the resulting logic will necessarily be small. For instance,
you could create a large multiply accumulator using a single line of code, or large
combinational structures by utilizing an assign statement and calling a function:

assign mac = (a * b) + old_mac;

assign addr_decoder = func_addr_decode(current_address);

An always block allows for more complex functionality to be defined in a single process.
We looked at always blocks in the previous chapter. There, we were using a sensitivity
list in the context of a testbench. Sensitivity lists allow an always block to only be
triggered when a signal in the list changes. Let's look back at the testbench that was
provided in Chapter 1, Introduction to FPGA Architectures and Xilinx Vivado:

always @(SW, LED) begin

In this example, the always block would only be triggered when SW or LED transitions
from one state to another.

Important note
Sensitivity lists are not synthesizable and are only useful in testing.
always_comb is recommended when describing synthesizable code
in an always block.

When we write synthesizable code using an always block, we use the always_comb
structure. This type of code is synthesizable and recommended for combinational logic.
The reason is that always_comb will create a warning or error if we inadvertently
create a latch.

Packaging up code using functions 59

Important note
A note about latches: They are a type of storage element. They are level-
sensitive, meaning that they are transparent when the gating signal is high, but
when the gating signal transitions to low, the value is held. Latches do have
their uses, particularly in the ASIC world, but they should be avoided at all
costs in an FPGA as they almost always lead to timing problems and random
failures. That being said, we will demonstrate how a latch works and why it can
be bad as part of this chapter's project.

There are a few different operations that can go within an always block. Since we are
generating combinational logic, we must make sure that all the possible paths through any
of these commands are covered. We will discuss this later.

Handling assignment operators
There are two basic types of assignments in SystemVerilog: blocking and
non-blocking. Because we are writing in an HDL, we need to be able to model the
hardware we are creating. All the hardware you design will be effectively running in
parallel inside the FPGA.

Creating multiple assignments using non-blocking assignments
In hardware, whenever you create multiple always blocks, they are all executing at the
same time. Since this is effectively impossible on a normal computer running linearly or,
at best, a few threads in parallel, we need a way to model parallel behavior. Simulators
accomplish this by using a scheduler that splits up simulation time into delta cycles. This
way, if multiple assignments are scheduled to happen, there is still a linear flow to them.
This makes handling blocking and non-blocking assignments critical.

A non-blocking assignment is something that is scheduled to occur within a delta when
the simulator's time advances. We will discuss non-blocking in more detail in Chapter 3,
Counting Button Presses.

Using blocking assignments
Blocking assignments occur immediately. With rare exception, usually only with regards
to testbenches, all assignments within an always_comb block will be blocking.

60 Combinational Logic

There are several blocking assignments in SystemVerilog:

There are also some shortcuts for incrementing or decrementing signals.

Incrementing signals
Here's a list of the shortcuts for incrementing:

• Pre-increment, ++i, increments the value of I before using it

• Post-increment, i++, increments I after using it

• Pre-decrement, --i, increments the value of I before using it

• Post-decrement, i--, increments I after using it

Now that we've learned how to manipulate values, let's learn how to use these variables to
make decisions.

Making decisions – if-then-else
One of the basics of any programming language is to control the flow through any
operation. In the case of an HDL, this is generating the actual logic that will be implemented
in the FPGA fabric. We can view an if-then-else statement as a multiplexor, the conditional
expression of the if statement the select lines. Let's take a look at it in its simplest form:

if (add == 1) sum = a + b;

else sum = a - b;

Packaging up code using functions 61

This will essentially select whether b will be added or subtracted from a based on whether
the add signal is high. A simplified view of what could be generated is shown in the
following diagram:

Figure 2.3 – An if-then-else representation

In all likelihood, the logic will be implemented in a much less expensive way. It's
worth looking at the results of your designs as they are built to understand the kind of
optimizations that occur.

Comparing values
SystemVerilog supports normal equality operations such as == and !=. These
operators check if two sides of a comparison are equal or not equal, respectively. Since we
are dealing with hardware and there is the possibility of us having undefined values, there
is a disadvantage to these operators in that x's can cause a match, even if it's not intended,
by falling through to the else clause. This is usually more of an issue in testbenches.
There are versions of these operators that are resistant to x's; that is, === and !==. In a
testbench, it is advised to use these operators to avoid unanticipated matches.

Comparing wildcard equality operators
It is also possible to match against ranges of values. This is possible using the =?= and !?=
operators. These allow us to use wildcards in the match condition. For example, say you
had a 32-bit bus, but needed to handle odd aligned addressing:

if (address[3:0] =?= 4'b00zz) slot = 0;

else if (address[3:0] =?= 4'b01zz) slot = 1;

The wildcard operators allow you to do this. The preceding examples would ignore the
lower two bits.

62 Combinational Logic

Qualifying if statements with unique or priority
Normally, when thinking of an if statement, you think of each if evaluation as a separate
comparison relying on the previous ifs that came before it. This type of if statement is a
priority, meaning that the first if that matches will evaluate to true. In the simple example
shown previously, we can see that we are looking at the same address and masking out the
lowest two bits. Often, during optimization, the tool will realize that the if statements
cannot overlap and will optimize the logic accordingly. However, if we know this to be the
case, we can use the unique keyword to tell Vivado that each if doesn't overlap with any
that come before or after. This allows the tool to better optimize the resulting logic. Care
must be taken, however. Let's see what would happen if we tried to do the following:

unique if (address[3:0] =?= 4'b00zz) slot = 0;

else if (address[3:0] =?= 4'b01zz) slot = 1;

else if (address[3:0] =?= 4'b1000) slot = 2;

else if (address[3:0] =?= 4'b1zzz) slot = 3;

Here, we can see that the last two else if statements overlap. If we specify unique
in this case, we are likely to get a mismatch between simulation and synthesis. If
address[3:0] was equal to 4'b1000 during the simulation, the simulator would
issue a warning that the unique condition had been violated. Synthesis would optimize
incorrectly, and the logic wouldn't work as intended. We'll see this when we violate
unique on a case statement, when we work on this chapter's project.

This type of if is actually a priority, and if we wanted to, we could direct the tool, like so:

priority if (address[3:0] =?= 4'b00zz) slot = 0;

Priority is not really required except to provide clarity of intent. This is because the tool
will usually be able to figure out if an if can be optimized as unique. If not, it will be
treated as priority.

Introducing the case statement
A case statement is typically used for making a larger number of comparisons. There are
three versions of the case statement you might use: case, casex, and casez. The case
statement is used when wildcards are not necessary. If you want to use wildcards, as we
saw previously, casez is recommended. There are two ways case statements are usually
used. The first is more traditional:

casez (address[3:0])

 4'b00zz: slot = 0;

 4'b01zz: slot = 1;

Packaging up code using functions 63

 4'b1000: slot = 2;

 4'b1zzz: slot = 3;

endcase

Just like in the case of the if statement, unique or priority can be used to guide
the tool. Also, we can have a default fall-through case that can be defined. This must be
defined if unique is used.

Important note
unique and priority are powerful tools in that they can greatly reduce
the final logic's area and timing. However, care must be taken as incorrectly
specifying them can cause logic errors. Simulation will check that the conditions
are not violated, but it will only detect cases that occur during simulation.

There is another way of writing a case statement that can be especially useful:

priority case (1'b1)

 address[3]: slot = 0;

 address[2]: slot = 1;

 address[1]: slot = 2;

 address[0]: slot = 3;

endcase

In this particular case, we have created a leading-one detector. Since we may have multiple
bits set, specifying a unique modifier could cause optimization problems. If the design had
one-hot encoding on address, then specifying unique would create a more optimized
solution.

Important note
There are different ways to encode data. Binary encoding can set multiple
bits at the same time and is typically an incrementing value. One-hot
encoding has one bit set at a time. This makes decoding simpler. There is
also something we'll explore when we discuss First-In-First-Out (FIFOs),
called gray coding, which is a manner of encoding that is impervious to
synchronization problems when properly constrained.

For more simple selections, SystemVerilog supplies a simple way of handling this.

64 Combinational Logic

Using the conditional operator to select data
SystemVerilog provides a shortcut for conditionally selecting a result in the
following form:

Out = (sel) ? ina : inb;

When sel is high, ina will be assigned to out; otherwise, inb will be assigned to out.

Tip
Writing sel ? … is a shortcut for sel == 1'b1 ? ….

In this section, we've looked at basic data types and arrays and how to use them. In the
next section, we'll learn how to use custom data types more tailored to our designs.

Using custom data types
SystemVerilog provides us with a variety of ways to create user-defined types.
User-defined types can also be stored in arrays.

Creating structures
Structures allow us to group signals that belong together. For example, if we wanted
to create a 16-bit value composed of two 8-bit values, h and l, we could do something
like this:

typedef struct packed {bit [7:0] h; bit [7:0] l;} reg_t;

reg_t cpu_reg;

assign cpu_reg.h = 8'hFE;

Here's what the keywords signify:

• typedef signifies we are creating a user-defined type.

• struct means we are creating a structure.

• packed signifies the structure is to be packed in-memory.

Tip
Structures and unions can be packed or unpacked, but as packed tends to make
more sense in the context of hardware, it's what we'll use here.

Project 1 – creating combinational logic 65

We access parts of a structure by using the created signal by appending the part of the
structure – in this case, h – separated with a period.

Creating unions
A union allows us to create a variable with multiple representations. This is useful if
you need multiple methods for accessing the same data. For instance, as microprocessors
advanced from 8 bits to 16 bits, there needed to be ways of accessing parts of the register
for older operations:

union packed {bit [15:0] x; cpu_reg cr;} a_reg;

always_comb begin

 a_reg.x = 16'hFFFF;

 a_reg.cr.h = '0;

end

In the preceding example, we created a union of a 16-bit register and a structure
composed of two 8-bit values. After the first blocking assignment, a_reg sets all bits
to 1. After the second assignment, the upper 8 bits were set to 0, meaning a_reg is
16'h00FF.

Project 1 – creating combinational logic
In this chapter, we've discussed signal types and how to create combinational logic. This
project will contain multiple components that allow us to come up with a small calculator.
It will be a rather simple one and will have the following capabilities:

• Find the leading-one position of a vector's input via switches

• Add, subtract, or multiply two numbers

• Count the number of switches that have been set

66 Combinational Logic

The following diagram shows what the Nexys A7 board looks like:

Figure 2.4 – Nexys A7 board I/O

In the previous chapter's project, we learn how to use switches for input and LEDs for
output. In this project, we'll be using all the switches in the preceding diagram for the
number of ones calculator and the leading-one detector. For the leading-one detector,
we'll detect the position of the left-most switch that's been set out of the 16 positions.

For the arithmetic operations, we'll divide the switches into two groups. Switches 7:0
will be for input B, while switches 15:8 will be for input A. The output will be displayed
as a 2's complement number using all the 16 LEDs above the switches, as shown in the
preceding diagram. This means that -1 would mean all the LEDs are lit, while 0 would
mean that all the LEDs are off.

Testbench
Since we will be building up individual components, we'll want a versatile testbench that
will allow us to test each component individually and then all together. We'll accomplish
this by using parameters. In this testbench, there are three parameters:

• SELECTOR is used for the leading-one module to determine one of four ways of
finding the leading-one. It's also used to select between addition or subtraction for
the add_sub module.

Project 1 – creating combinational logic 67

• UNIQUE_CASE determines whether we are going to generate unique case values
or purely random numbers that can have multiple bits set.

• TESTCASE allows us to test individual components (LEADING_ONES, NUM_ONES,
ADD, SUB, and MULT) or all of them (ALL).

To change these parameters in the testbench, select Settings | Simulation |
Generics/Parameters:

Figure 2.5 – Specifying simulation parameters

68 Combinational Logic

Similarly, to change the parameters for the implementation, select Settings | General |
Generics/Parameters:

Figure 2.6 – Specifying implementation parameters

There are many ways to write testbenches. In the past, I've used separate include files for
individual tests and used a shell script to invoke the simulator multiple times. If you are
interested in exploring this type of testbench, please check out my open source graphics
accelerator GPLGPU on GitHub: https://github.com/asicguy/gplgpu. What
we will be using for our project is something simpler: using parameters to select test cases.

In general, there are three ways of testing your design.

https://github.com/asicguy/gplgpu

Project 1 – creating combinational logic 69

Simulating using targeted testing
This type of test is used when you have a specific test case you want to make sure is hit.
An example of this would be to see what happens when no bits are set in the leading-one
detector, all bits are set in the number of ones, or the largest and smallest numbers in the
case of mathematical operations. They can also be used to round out randomized testing.

Simulating using randomized testing
We are using this mostly in the self-checking testbenches that we'll be creating. To
accomplish this, we'll use two system functions:

• $random(), which returns a 32-bit random number. It returns a new random
number every time it's invoked.

• $urandom_range(a,b), which returns a number inclusively between a and b.
In our case, we are using $urandom_range(0,4) to set one of the four buttons.

Next, we'll learn how to simulate using constrained randomization.

Simulating using constrained randomization
SystemVerilog has a very robust set of testing capabilities built into it. You can
imagine this type of testing being used if you have a CPU with a number of valid
instructions, and you want to randomize the testbench so that it uses these instructions
and makes sure they are all used at some point. This is beyond the scope of this book, but
I'll provide links in the Further reading section.

Implementing a leading-one detector using the case
statement
Our first module will be a leading-one detector. We'll implement it in a few different ways
and take a look at the advantages, disadvantages, and potential problems.

70 Combinational Logic

The first thing we need to decide is if the incoming signal is one-hot. If it is one-hot, we
can get an optimized result by using the unique keyword:

Figure 2.7 – Testing leading-one using a case statement

Verify that your simulation parameters are set as shown in the preceding screenshot.

Controlling implementation using generate
Take a moment and examine the leading_ones.sv file. Here, you'll see how a
generate statement can be used to selectively create code. The format of a generate
statement is generate <condition>, as follows:

generate
 if (SELECTOR == "UNIQUE_CASE") begin : g_UNIQUE_CASE

In this case, the condition is an if statement, and is used to selectively instantiate one of
four always blocks. Case statements and for loops are also valid conditions that we'll
explore as we progress. This is where parameters are especially useful for controlling what
gets created.

 Tip
It is a good idea to use labels inside generate blocks. In future versions of
SystemVerilog, this will be a requirement.

Notice that the case statement's default is commented out. Leave it as-is for now and run
the test:

WARNING: 100000ns : none of the conditions were true for unique
case from File:/home/fbruno/git/books/Learn-FPGA-Programming/
CH2/hdl/leading_ones.sv:17

Project 1 – creating combinational logic 71

Why are we getting a warning? When we create a unique case, we must ensure that not
only do we ever only match once, but we also match one. We want to make LED = 0
when no SW is set, so we uncomment the default. Now, we can run it again and the test
will pass.

Important note
Parameters can control how logic is implemented or how testbench code
is executed. In the testbench, you will see if (UNIQUE_CASE ==
"TRUE") begin, which controls how the code is executed to limit the
number of ones being set.

Now, let's allow non-unique values to see how the simulator handles them. Change
UNIQUE_CASE to "FALSE":

Setting switches to 0011010100100100

WARNING: 0ns : Multiple conditions true

 condition at line:21 conflicts with condition at line:20

 for unique case from File:/home/fbruno/git/books/Learn-
FPGA-Programming/CH2/hdl/leading_ones.sv:17

This is only the first one that I saw, but you will see many. If our testbench hits cases that
violate our unique assumption, we will see warnings that let us know the design may
have problems.

So, let's see what happens when we take the design through to a bitstream by itself.
Make sure that Settings | General | Top Module Name is set to leading_ones and
that SELECTOR, under Generics/Parameters, is set to UNIQUE_CASE. Then, click on
Generate Bitstream.

Important note
Generics/Parameters are set in two places in Vivado. General settings apply to
building the design. Simulation applies only to simulation.

72 Combinational Logic

Take a look at the project summary. In the lower left of the window, look at the
post-implementation utilization. By default, it comes up with a graph, but you can click on
the table option to get hard numbers. In my build, this is what I got:

Figure 2.8 – Post-implementation utilization

We used 7 LUTs for this implementation. But what happens when we try this on the
board? Open the hardware manager and the target, and then choose Program device.

We are expecting one-hot values, so try setting one bit at a time, starting from 0, so that
only one switch is up at a time, one-hot encoded. Do you see the LEDs light up properly?
You should see the binary value for the switch you have set plus one, so SW0 will show
5'b00001, SW1 will show 5'b00010, and SW15 will show 5'b10000. Now, try to set
multiple switches, such as 15 and 0. What did you get? In my case, I saw 5'b10001.
Now, try some others. You'll notice that some combinations still give the correct value by
chance. There must be something to those warnings!

Now, let's try rebuilding without the unique keyword. Set SELECTOR to "CASE" and
then generate the bitstream.

By looking at the summary of this build, we can see that handling priority cost us almost
2x the number of LUTs. My build took 13. Let's try it on the board.

Try combining multiple switches. Do you always get the switch position +1 for the
uppermost switch?

In this section, you saw that unique allows optimization. The unique case statement
was almost half the size of the case without unique. The case statement does have
the disadvantage of us having to specify all possible cases, so it's not really reusable for
an arbitrary number of cases. Let's explore another, more scalable way of handling
a leading-one detector: using a for loop.

Project 1 – creating combinational logic 73

Designing a reusable leading-one detector using
a for loop
The for loop allows us to quickly create replicated logic. In the case of a leading-one
detector, it is also easy to imagine how we can do this using a for loop. There are two
ways to accomplish this, both of which we'll look at in this section.

Setting SELECTOR = DOWN_FOR
The first is straightforward and follows along the lines of how the case statement
accomplishes this task:

always_comb begin

 LED = '0;

 for (int i = $high(SW); i >= $low(SW); i--) begin

 if (SW[i]) begin

 LED = i + 1;

 break;

 end

 end

end

We use the $high and $low system tasks for reusability. The loop breaks when a 1 is
detected for the first time.

Tip
A break in a for loop is synthesizable. The important thing to consider is
whether you can unroll the loop or if there is a way to write the loop in a way
that the break isn't necessary. If you can think of a relatively easy way this can
be done, then you probably won't have an issue synthesizing it.

For example, we could unroll the loop by writing it as follows:

Logic [3:0] SW;

always_comb begin
 LED = '0;

 if (SW[3]) LED = 4;

 else if (SW[2]) LED = 3;

 else if (SW[1]) LED = 2;

 else if (SW[0]) LED = 1;

74 Combinational Logic

 else LED = 0;

end

We can now look at another way of writing the for loop that satisfies our unrolling
requirement.

Setting SELECTOR = UP_FOR
By progressing from the lowest bit to the highest bit while searching for a 1, we are
guaranteed to find the highest bit as the last 1 that's found. This is also how you know that
the break can be synthesized, since we have found a way to rewrite the for loop so that
it's not necessary.

Counting the number of ones
Related to finding the leading-one is counting the number of ones in a vector. We can do
this easily using a for loop:

always_comb begin

 LED = '0;

 for (int i = $low(SW); i <= $high(SW); i++) begin

 LED += SW[i];

 end

end

Set SELECTOR to NUM_ONES and TEST_CASE to NUM_ONES and run the simulation to
verify it works. Verify that SELECTOR is set to NUM_ONES under the General tab and that the
top module's name is set to num_ones. Then, generate the bitstream and run it on the board.

Verify the design on the board by flipping the switches one by one in any order. You
should see the LEDs light up in the pattern of a binary count; that is, 16'b0, 16'b1,
16'b10, 16'b11, and so on.

Implementing an adder/subtractor
Let's take a look at the add_sub module. There are many ways to implement an adder or
subractor in math in general. Many companies sell tools for high performance or low gate
count designs. For FPGAs, 99% of the time, you are better off letting the tools optimize
your designs. Because of this, you'll see that the module itself is fairly small. We choose
whether we are adding or subtracting based on the SELECTOR parameter.

Project 1 – creating combinational logic 75

Add
Set SELECTOR to ADD and TEST_CASE to ADD and run the simulation to verify it works.
Verify that SELECTOR is set to ADD under the General tab and that the top module's
name is set to add_sub. Then, generate the bitstream and run it on the board:

Figure 2.9 – Top module set to add_sub

Once you've downloaded the bitstream on the board, try some combinations of bits on the
lower 8 and upper 8 bits. In particular, if you set bit 0 and bit 8 both to 1, you should see
bit 1 set on the LED; that is, a value of 16'h2. Now, try setting bit 0 and bit 15 – what do
you get?

It may look a bit weird seeing so many LEDs lit, but you'll notice that only the upper bits
are lit. This is because we have specified 8'h80 + 8'h1. Since we are specifying two's
complement numbers, in decimal, this would be -128 + 1 or -127, which in hex would be
16'hFF81.

76 Combinational Logic

Subtractor
Set SELECTOR to SUB and TEST_CASE to SUB and run the simulation to verify it works.
Verify that SELECTOR is set to SUB under the General tab and that the top module's
name is set to add_sub. Then, generate the bitstream and run it on the board.

Now, we are subtracting the lower 8 bits from the upper 8 bits. Try setting bit to 0. All the
LEDs should be lit, or -1.

Important note
Remember, to get -1 in binary, we invert and add 1; for example,
-16'b0000000000000001 = 16'b1111111111111110 + 1 =
16'b1111111111111111.

Note that for the adder and subtractor, no matter what you add with signed numbers, the
upper 8 bits will always be either all 0s or all 1s.

Multiplier
The final module we will look at is the multiplier. HDL is the simplest out of all of them,
and since the multiplier is only 8*8, by default, it is implemented in LUTs.

Set SELECTOR to MULT and TEST_CASE to MULT and run the simulation to verify
it works.

This simulation is automated. However, we can also use the add_force command in the
simulator. An example of this is shown in the following screenshot. A force will override a
value on a signal in the simulator. When the simulation ended, I forced a value of 0x1234
onto the SW input of the multiplier. Since I've done this, I need to advance simulation
time, which I can do with run 10ns.

The force command is good for when you are trying to isolate a particular scenario or
experiment with a what if scenario during a run. In general, you will not want to simulate
solely this way as you'll want to have a way of reproducing your results, so putting your
tests in a SystemVerilog testbench is a better long-term solution.

Project 1 – creating combinational logic 77

If and when you are done with a scenario, you can use the remove_forces command
on a signal to return control to the testbench:

Figure 2.10 – Force statement in a simulation

Verify that SELECTOR is set to MULT under the General tab and the top module name is
set to mult then generate the bitstream and run it on the board:

Figure 2.11 – Multiplier utilization

The preceding snippet shows our utilization from building the multiplier.

Tip
Adding two signed numbers of size n will result in a value of size n.
Adding two unsigned numbers of size n will result in a value of size n+1.
Multiplying two numbers of size n will result in a value of size 2*n.

78 Combinational Logic

Bringing it all together
Now, we'll create a simple ALU top level so that we can bring everything together. Take a look
at project_2. There are five buttons on the board. We'll use these to control the output:

Instantiate the submodules. We'll need to use add_sub twice and use SELECTOR so that
it's hardcoded to select the one we want. We'll still pass the selector to the leading-one
calculator in case we want to play around with it:

leading_ones #(.SELECTOR(SELECTOR), .BITS(BITS))

 u_lo (.*, .LED(LO_LED));

add_sub #(.SELECTOR("ADD"), .BITS(BITS))

 u_ad (.*, .LED(AD_LED));

add_sub #(.SELECTOR("SUB"), .BITS(BITS))

 u_sb (.*, .LED(SB_LED));

num_ones #(.BITS(BITS))

 u_no (.*, .LED(NO_LED));

mult #(.BITS(BITS))

 u_mt (.*, .LED(MULT_LED));

Now that we have overridden the names of the LED outputs of the submodules, we can
mux them to the LEDs:

always_comb begin

 LED = '0;

 case (1'b1)

 BTNC: LED = MULT_LED;

 BTNU: LED = LO_LED;

 BTND: LED = NO_LED;

 BTNL: LED = AD_LED;

Project 1 – creating combinational logic 79

 BTNR: LED = SB_LED;

 endcase

end

Set TEST_CASE to ALL and run the simulation to verify it works. Verify that SELECTOR
is set to UNIQUE_CASE, CASE, UP_FOR, or DOWN_FOR under the General tab and that
the top module's name is set to project_2. Then, generate the bitstream and run it on
the board:

Figure 2.12 – Complete project_2 utilization

When the image finishes downloading, the LEDs will be off. Flip some switches and select
a function by pushing a button. Congratulations – your simple calculator is complete!
Notice that when you release the button, the LEDs go dark.

Adding a latch
Since we are not using any clocks yet, let's add a latch. In this particular case, the switches
are static, so using a latch shouldn't cause us any problems:

always_latch begin

//always_comb begin

 //LED = '0;

Change always_comb to always_latch and comment out the LED = '0; default.
Then, rerun it. What happens when you download and try to select an operation? If your
build is like mine, then this operation will not be what you expected and the LEDs will
seem to behave in an almost random fashion. This is the reason that I have stressed not
to use latches. If you encounter a situation where your circuit doesn't behave as intended,
search the compile logs and make sure no latch is inferred.

80 Combinational Logic

Summary
In this chapter, we learned how to create combinational logic, how to create different
modules, and how to test them as utilize self-checking testbenches. We also explored
different optimizations we can perform on the case statement and showed you how to get
substantial area savings in some cases, but also how we may have problems if our design
assumptions are incorrect. We then mentioned latches and the problems they cause, even
when they should be safe.

At this point, hopefully, you have some confidence in how to create logic and test it. In the
next chapter, we'll introduce sequential logic; that is, using registers to store values and
perform operations. We'll expand upon our simple calculator and see how we can improve
it now that we have some storage elements.

Questions
1. A packed array is used to infer memories. True or false?

2. A break statement can be used in a for loop when?

a) Any time.

b) If it's possible to rewrite the for loop in such a way as to not need the break.

c) Only if you can reverse the direction of the loop; that is, go from low to high
instead of high to low.

3. Size the add_unsigned, add_signed, and mult signals:

Logic unsigned [7:0] a_unsigned;

logic unsigned [7:0] b_unsigned;

logic signed [7:0] a_signed;

logic signed [7:0] b_signed;

assign add_unsigned = a_unsigned + b_unsigned;

assign add_signed = a_signed + b_signed;

assign mult = a_unsigned * b_unsigned;

4. Division is a very costly operation. Look at the supported Vivado constructs in the
Vivado Synthesis manual (Further reading). Can you easily replace the multiply
operation with a division operation? What is possible without custom code?

Further reading 81

Challenge
Look at the following add_sub module:

 logic signed [BITS/2-1:0] a_in;

 logic signed [BITS/2-1:0] b_in;

 …

 {a_in, b_in} = SW;

If you were to replace a_in and b_in with a custom type that encapsulates both, would
you use a structure or a union? Modify the code so that it uses your custom type, and then
simulate and try it on the board.

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• UVM information: https://www.accellera.org/downloads/
standards/uvm

• Vivado Synthesis manual: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2020_1/ug901-vivado-
synthesis.pdf

https://www.accellera.org/downloads/standards/uvm
https://www.accellera.org/downloads/standards/uvm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug901-vivado-synthesis.pdf

3
Counting Button

Presses
In this chapter, we'll learn how to maintain the state of a design by adding sequential
elements. Limited to combinational logic with no way to store information, we can't
actually accomplish very much. In order to have a useful CPU, you need a program
counter, registers, and long-term storage. What would your cell phone be without the
capability to store numbers, emails, or pictures?

In this chapter, we are going to cover the following main topics:

• Learn what sequential elements are and how to use them

• Project – Counting button presses

• Looking at synchronization in detail

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH3.

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH3
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH3

84 Counting Button Presses

What is a sequential element?
We looked at the latch in Chapter 1, Introduction to FPGA Architectures and Xilinx Vivado,
and we saw that it's not something we really want to be using. What FPGA designers use
to store information is a register, or flip flop. Before we create our first flip flop, we need a
quick introduction to clocks.

Clocking your design
In the realm of digital logic, we usually need at least one source of timing in our design
and often several. We call this source of timing a clock, which is usually generated by an
external crystal oscillator that vibrates at a certain frequency and generates a string of 0s
and 1s in our design. Sometimes we'll use the clock input directly, but if we need a specific
frequency faster or slower than our input, we have other options such as Phase Locked
Loops (PLLs) and Mixed Mode Clock Managers (MMCMs), which we'll discuss in
Chapter 5, FPGA Resources and How to Use Them.

When we draw timing diagrams, we typically draw our clocks and the inputs and outputs
as square waves, as shown in Figure 3.1:

Figure 3.1 – Simple clock

We also need to tell Vivado about the clock we have created so it can properly time our
designs. Up until now, we've ignored timing since we haven't had a reference to measure
time against. We'll be adding the following to our XDC file:

Clock signal

set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } \

 [get_ports { clk }]; #IO_L12P_T1_MRCC_35 Sch=clk100mhz

create_clock -add -name clk -period 10.00 -waveform {0 5} \

 [get_ports {clk}];

What is a sequential element? 85

To create a clock in a design, we use the create_clock Tool Command Language
(TCL) command. We need to specify the period of the clock in nanoseconds and,
optionally, we can specify what the waveform looks like. We apply this to a port on the
design using get_ports and give the clock a name using -name. In more complex
designs, it's possible to define multiple clocks on a given pin; for example, you might have
a fast clock for performance and a slow clock for saving power and use a Phase Lock
Loop (PLL) to generate the clock. By applying multiple clocks, the timing analyzer can
make sure that your design meets timing and has safe clock domain crossings.

Tip
In most cases, you don't need to worry about specifying the waveform. If
you have multiple clocks of the same frequency shifted in phase, then you
would want to specify the waveform option to ensure the timing analysis is
performed properly.

For now, we'll keep things simple and generate a single clock.

Looking at a basic register
If you were designing an ASIC, you'd likely have a few different register types in your
library because they may be optimized for area based on functionality, such as toggle Flip
Flops (FF), devices that toggle when the control signal is high and they are clocked. Since
Xilinx is targeting all possible design types, the registers are based on what are known as
D Flip Flops (DFFs):

Figure 3.2 – Simple DFF

The simple DFF in Figure 3.2 accepts data in the D input and stores it every clock cycle,
presenting it in the Q output. This type of storage element must be continuously fed
because every change in the input is mirrored in the output.

86 Counting Button Presses

Creating a flip flop
In SystemVerilog, we can create a flip flop in one of two ways: using always_ff @
(edge sensitivity list) or always @(edge sensitivity list).

Two SystemVerilog keywords that convey an event occurring on the edge of a signal
are posedge, the rising edge of the clock, and negedge, the falling edge. In general,
we'll only be using the rising edge, but in some special circumstances you may need the
falling edge:

Figure 3.3 – Posedge DFF timing

The preceding diagram shows the clock edges labeled as posedge and negedge.

Tip
In general, stick to one edge of the clock and use it consistently. In our designs,
we'll be strictly using the positive edge. This will help prevent timing problems
in your design.

Let's look at how we construct a DFF in SystemVerilog:

CH3/simple_ff/hdl/simple_ff.sv

module dff (input wire D, CK, output logic Q);

 always_ff @(posedge CK) Q <= D;

endmodule

What is a sequential element? 87

always_ff has the advantage of conveying design intent. Vivado accepts the construct;
however, it doesn't generate an error if an FF is not inferred. Other tools will generate
an error, so it's advisable to still use always_ff in most instances. If you'd like to try
simulating this or running on the Nexys A7 board, the project is located at https://
github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/
CH3/simple_ff. Follow the procedures you learned in Chapter 2, Combinational Logic,
to simulate, build, and test:

Figure 3.4 – Simple FF timing

From the preceding waveform, we see that Q is changing along with every D input. It
allows us to store data, but if we were just using a DFF we would need to add recirculating
logic ourselves to hold the data.

When to use always @() for FF generation
There is a limitation to always_ff in that any signal generated from it cannot be driven
by any other construct. FPGAs support using an initial statement to determine the FF
startup value. In our simple_ff.sv example, the startup value for Q is not defined by
the code. This can be seen in Figure 3.4, where the startup condition is 'x. This means that
the synthesis tool can use either 0 or 1. We can, however, create an initial value for the FF:

CH3/simple_init_ff/hdl/simple_init_ff.sv

module dff (input wire D, CK, output logic Q);

 initial Q = 1;

 always_ff @(posedge CK) Q <= D;

endmodule

However, if we try to run the simulator, we'll get the following in the messages pane:

Figure 3.5 – Simulation failure using always_ff with an initial value

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH3/simple_ff
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH3/simple_ff
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH3/simple_ff

88 Counting Button Presses

The fix is to change always_ff to always, and the design will work correctly. Make the
change and run the simulation again:

Figure 3.6 – Initial value of Q

Q has an initial value of 1 in the preceding simulation; however, the first clock cycle
immediately loads D, which is 0, into Q.

Using non-blocking assignments
You'll notice that for the first time we've performed an assignment by using <=, or the
non-blocking assignment. The reason for using a non-blocking assignment is that now
that we have introduced sequential elements, we need to address the inherent parallelism
in Hardware Design Languages (HDLs) and look at scheduling as a way of modeling it.

Up until now, everything we've done has occurred as any conventional program would,
in a series of steps performed sequentially. Let's take a look at how this would work if we
applied the same structure to a block of code inferring a register:

CH3/blocking/hdl/blocking.sv

always @(posedge CK) begin

 stage = D;

 Q = stage;

end

Now we've introduced an intermediate storage element called stage. What happens if we
run a simulation on the preceding code?

Figure 3.7 – Simulation of blocking assignments in a clocked always block

What is a sequential element? 89

The important thing to note is that stage is immediately assigned the value of D,
then Q is immediately the value of stage. stage in effect becomes a wire in the final
implementation.

What happens if we try changing BLOCK to "FALSE" in the testbench?

always @(posedge CK) begin

 stage <= D;

 Q <= stage;

End

If we run the simulation, we now see stage behaving as a pipeline stage, as intended:

Figure 3.8 – Simulation of non-blocking assignments in a clocked always block

Notice the difference. When we look at the preceding code using non-blocking
assignments, it reads as follows:

• Schedule the assignment of D to the next value of stage, but the current value of
stage remains the same.

• Schedule the assignment of the current value of stage to the next value of Q.

In fact, the simulator will go through the entire code of the design scheduling the
assignments. These scheduled events are referred to as delta cycles. Once that has been
completed, then time will advance. The assignments will then take effect and it will do it
again. This is how we want our designs to behave.

 Tip
All combinational blocks (always_comb) in a design should use blocking
assignments. All sequential blocks (always @(posedge) or always_
ff) should use non-blocking assignments. Failure to adhere to this can cause
simulation/synthesis mismatches.

90 Counting Button Presses

The project to demonstrate blocking versus non-blocking can be found in CH3/
blocking/build/blocking.xpr.

Registers in the Artix 7
We've looked at the simplest version of a register. These map fine into the Artix 7.
However, the Artix 7 registers offer a lot more functionalities, which we'll examine here.

There are two FFs for every LUT, one dedicated FF and one that can be configured as
an FF or Latch. As we saw in Chapter 2, Combinational Logic, latches are unreliable at
best, so we won't be going over them here. Also, if latches are selected, the other four FFs
cannot be used, further limiting the number of resources available. Here is an example of
Combinational Logic Block (CLB) registers:

Figure 3.9 – Artix 7 CLB registers

For each group of FFs, we can see we now have a shared clock enable, a shared clock, and
a shared set or reset line. The D inputs are all individually selectable from within the Look
Up Tables (LUTs) or the LUT can be bypassed.

What is a sequential element? 91

How to hold onto state using clock enables
The simple DFFs we've looked at change output whenever the input changes. Clock
enables allow an FF to hold onto its value whenever we are not actively changing the data.
Let's look at how we can use this in practice:

module dff (input wire D, CK, CE, output logic Q);

 initial Q = 1;

 always @(posedge CK) if (CE) Q <= D;

endmodule

We can look at the waveforms and see how using the CE affects the Q output of the FF:

Figure 3.10 – Clock enabled FF

Notice how the first time D goes high along with the CE, Q goes high also. Once CE goes
low, the value Q remains high regardless of the D input value.

Resetting the FF
We have seen how we can use an initial value to have the device come up in a known state.
This works great after the initial download, but what if we need to operate in a system
that gets reset on occasion? Xilinx designed the Artix 7 Field Programmable Gate Array
(FPGA) with a configurable set/reset system. The LUT register's Set/Reset (SR) input can
be configured as set or reset and synchronous or asynchronous.

The first choice is whether you need to set/reset your FF asynchronously or synchronously.
Synchronously means the reset signal is generated by the clock driving the FF so it will
be properly timed in the design. The limitation is that a clock is required to be running
when you use synchronous resets. If the clock is not guaranteed to be running, then you
need an asynchronous reset. Asynchronous resets should be designed such that they will
assert asynchronously and release synchronously to the FF clock. This eliminates potential
timing problems in the design.

92 Counting Button Presses

Xilinx recommends limiting resets to essential signals to speed up timing analysis and
save routing resources by limiting high fanout nets:

CH3/simple_ff_async/hdl/simple_ff_async.sv, ASYNC = "TRUE"

always @(posedge CK, posedge SR) begin

 if (SR) Q <= '0;

 else if (CE) Q <= D;

end

In the preeding code, we see an example of inferring an FF with an asynchronous reset.
It's a reset because Q gets a value of '0 when SR goes high. It would be a set if it went to
a value of '1. We can see from the waveforms that the reset immediately affects the Q
output:

Figure 3.11 – Asynchronous reset simulation

Here, we can see an example of an FF with a synchronous reset:

CH3/simple_ff_async/hdl/simple_ff_async.sv, ASYNC != "TRUE"

always_ff @(posedge CK) begin

 if (SR) Q <= '0;

 else if (CE) Q <= D;

end

Looking at the asynchronous version, we can see that posedge SR is in the sensitivity
list. This is what allows the reset to be effective without the clock. We can see from the
simulation waveforms that the reset is not effective until the clock starts running, unlike
the asynchronous reset:

Project 2 – Counting button presses 93

Figure 3.12 – Synchronous reset simulation

Tip
I would recommend synchronous resets when a reset is necessary unless you
are not guaranteed to have a running clock. Limit the number of signals to be
reset and the tool will take care of timing analysis.

Now that we have the basics of registers behind us, let's tackle this chapter's project.

Project 2 – Counting button presses
The project in this chapter will count button presses and display the count in a human-
readable form using the seven-segment display.

Introducing the seven-segment display
In the previous chapters, we displayed binary numbers by using the LEDs on the board.
You might have wondered why we weren't using the row of unlit 8s. The reason is that
there is timing associated with the display that we need registers to accomplish.

Let's take a look at how we light up the seven segments. The following diagram shows
which segment is controlled by which cathode:

Figure 3.13 – Seven segment display

94 Counting Button Presses

Looking at the preceding diagram, we can see there are eight signals that define whether a
given LED is lit or not. To compose an image, we simply need to come up with a module
that takes in a Binary Coded Decimal (BCD) or hexadecimal number and converts it to
a format that the display can handle. We have a few choices of how to implement this. We
can create one converter that can handle the whole display or we can have one converter
for each digit. Either way, we need a design.

Important note
We've been using binary up until now, displaying one LED per bit.
Hexadecimal numbers represent 4-bit binary numbers from 4'b0000 =
4'h0 to 4'b1111 = 4'hF. BCD numbers are a way of representing
decimal numbers in computer storage by using the values 4'b0000 =
4'd0 to 4'b1001 = 4'd9; values above 9 are not used.

Regardless of whether we are displaying BCD or hexadecimal, we can create a module that
takes in a 4-bit number and encodes the bits we want to display, in this case onto an 8-bit
cathode bus. We take the digit point (DP) in as a separate signal to keep it aligned with
the other data:

CH3/counting_buttons/hdl/cathode_top.sv

always_ff @(posedge clk) begin

 cathode[7] <= digit_point;

 case (encoded)

 4'h0: cathode[6:0] <= 7'b1000000;

 4'h1: cathode[6:0] <= 7'b1111001;

 …

 4'hE: cathode[6:0] <= 7'b0000110;

 4'hF: cathode[6:0] <= 7'b0001110;

 endcase

end

If we look at Figure 3.13 we can see how the seven-segment displays are mapped. Each
segment will light up when driven to 0. This is called an active low signal. From the code
in cathode_top you can see, for example, that when encoded is 4'h0, segments A-F
are driven low, so they will be lit, and segment G is high, so it will be off. If we look at
Figure 3.13, you can see this would result in a 0 being displayed.

Project 2 – Counting button presses 95

Let's now take a look at the timing we need to display on the physical display. Note
that the Basys 3 version has only 4x7 segments, so we'll need to make our encoding
module parameterizable:

Figure 3.14 – Seven-segment display timing

We need to generate the anode signal by cycling a value of 0 through all the anode
positions at a refresh rate of 1/8, or ¼ if using the Basys 3 board. We'll create two counters:

CH3/counting_buttons/hdl/seven_segment.sv

localparam INTERVAL = int'(1000000000 / (CLK_PER *REFR_RATE));

First, we'll create a local parameter, INTERVAL, that will be used to figure out the interval
in which we need to cycle through the anodes. Note that we can calculate parameters.
In this case, we are taking 1*10^9 nanoseconds in a second and dividing it by the clock
period (100 MHz clock has a period of 10 nanoseconds, the period of the clock fed
directly into the Arty A7 100T board) multiplied by the refresh rate. Since this will return
a floating point value, we cast it to an integer by using int'():

initial begin

 refresh_count = '0;

 anode_count = '0;

end

always @(posedge clk) begin

 if (refresh_count == INTERVAL) begin

96 Counting Button Presses

 refresh_count <= '0;

 anode_count <= anode_count + 1'b1;

 end else refresh_count <= refresh_count + 1'b1;

 anode <= '1;

 anode[anode_count] <= '0;

 cathode <= segments[anode_count];

end

Looking at the preceding code, we are generating two counters, the first of which is the
refresh counter, which generates the timing for when we will assert each anode. The
INTERVAL for this counter is set based on the refresh rate. When the refresh counter
reaches the INTERVAL value, we reset it and increment our second counter, anode_
count. This specifies which anode will be asserted (the signal is active low, so drive a
0) for updating the seven-segment display. We don't bound the anode_count because
it will count to either 4 or 8, so we can simply let it roll over naturally. If the number
of displays was not a power of 2, we could bound our count the same way as we do
refresh_count.

Detecting button presses
The buttons on the board are wired to deliver a 1 when pushed, meaning they are
normally driving a value of 0 into the FPGA. This means to detect a button press we need
to look for a rising edge.

Analyzing timing
Let's quickly take a look at clock relationships and how timing is analyzed. There are two
main timing constraints between data and a clock:

Figure 3.15 – Timing constraints

Project 2 – Counting button presses 97

These constraints must be met for a design's reliable operation. The first constraint is the
setup time, or Tsu in the timing constraints diagram. This is the amount of time that the
signal is required to be stable prior to the clock edge. If the signal transitions within or
after the Tsu, then the device may not operate correctly. In a synchronous design, Tsu is
usually only violated if the clock frequency is too fast for the longest clock to clock data
paths in the design. The thing about setup time in a synchronous design is that it can be
fixed by lowering the clock speed or redesigning it to cut down long timing paths.

The second constraint, hold time or Thold, is the window in which a signal must remain
stable after the clock. It's normally not a problem in a single Super Logic Region (SLR)
device such as the one we are using. However, it is often a problem when designs have
multiple clocks and care is not taken to properly synchronize signals between the clocks.
The issue with hold time is that there is no way to fix it by reducing clock speed—you can
only prevent it. When it occurs in a synchronous design, the cause is usually locally routed
clocks in designs with major routing congestion.

Important note
Xilinx builds very large devices that consist of multiple FPGA die bonded to
 a substrate. Each one of these dies is what is called an SLR. This allows for
high-density devices that rival ASICs in terms of gate counts.

When we have a purely asynchronous signal, such as BTNC, the center button, we cannot
fix the setup and hold as easily without proper synchronization.

Looking at asynchronous issues
Hopefully, in your mind you can picture how a purely random asynchronous signal such
as BTNC could cause both setup and hold time violations. To show the problem, I've
added a create_clock timing constraint on the BTNC input that you can uncomment
and run. The frequency doesn't matter, just that we create it so the edges will wander with
its relationship to clk:

CH3/counting_buttons/build/Nexys-A7-100T-Master.xdc

create_clock -add -name BTNC -period 99.99 [get_ports {BTNC}];

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets BTNC_IBUF]

98 Counting Button Presses

We'll also need to set CLOCK_DEDICATED_ROUTE to FALSE since the BTNC, the center
button, pin was not set to a dedicated clock pin. Normally you want an external clock
on your FPGA to come in on a pin that connects to the dedicated clock resources of the
FPGA. CLOCK_DEDICATED_ROUTING relaxes this constraint so it can use internal
routing resources. This can add clock skew that could be a problem with related clocks,
but in our case it won't. Let's look at the timing summary.

Using the asynchronous signal directly
Set ASYNC_BUTTON in counting buttons to NOCLOCK. We'll leave the clock constraints
to represent an asynchronous signal coming in on the input. We'll use BTNC as an input
directly to a register clocked on clk.

After building the design, look again at the clock interactions and you'll see the BTNC to
the clk path is still unsafe:

Figure 3.16 – Asynchronous BTNC input

Investigating further we see that we have a 0 ns timing requirement:

Figure 3.17 – Timing requirements

Project 2 – Counting button presses 99

This is a sign that the signals originate from asynchronous clocks. The way the timing
analysis works is that when you have clocks of different frequencies, the tool will walk the
edges through each other to find the worst-case alignment for timing. In this case, Vivado
has found an alignment where the signal needs to meet a 0-nanosecond requirement.

You can also bring up the clock interaction window:

Figure 3.18 – Clock interaction

The clock interaction pane shows us the paths from BTNC to clk are timed, but they
are unsafe.

If you try this on the board, you'll see that the seven-segment display will increment on
every push of the center button. It counts up in hexadecimal. You can also reset the design
by using the red reset button on the board.

100 Counting Button Presses

The problem with push buttons
The way we finally get everything to work is to properly synchronize our BTNC signal.
Because the BTNC signal is being pressed on human timescales, we can consider it a static
signal except for when the button is depressed and released. When dealing with a signal
like this, we can use a two-stage synchronizer plus an additional FF for edge detection:

Figure 3.19 – Button down synchronizer

If we look at Figure 3.19, we can see that on clock cycle 0, it's possible we may violate
timing on FF0. This is represented by an X in the timing diagram, but it's in fact
when FF0 has gone metastable. Metastability is when the output Q of an FF is in an
indeterminate state because setup or hold times have been violated. That is, FF1 will
recognize it as a 0 or a 1, but it's not guaranteed which one. This is why FF0 drives one
and only one FF. If it were to drive two or more FF, it is possible that each FF would see a
different value. By the time FF1 has output its Q value, it is safe to use in a design on the
clk clock domain, but because we cannot use FF0 and we need to detect an edge, we
need FF2 to hold the old value of BTNC:

logic [2:0] button_sync;

always @(posedge clk) begin

 button_sync <= button_sync << 1 | BTNC;

Project 2 – Counting button presses 101

 if (button_sync[2:1] == 2'b01) button_down <= '1;

 else button_down <= '0;

end

If you recall, << is the left shift operator, so we can view button_sync <= button_
sync << 1 | BTNC; as a shift register where bit 0 is the asynchronous FF, which is
why it's not used in the comparison operation.

Important note
Metastability is all about statistics and mean time between failure analysis. It is
still possible for FF1 or FF2 to propagate the metastability of FF0; however,
it is statistically unlikely. It's important to understand this point as it's often a
question asked in interviews.

There is still one problem we need to address.

Designing a safe implementation
Make sure to comment out the BTNC constraints added in the previous section and set
ASYNC_BUTTON = "SAFE". After running the design, open the timing summary:

Figure 3.20 – Timing for properly synchronized design

If you look at the clock interaction pane, you'll see everything is safe. We can now try it on
the board.

One thing you may notice is that you may still occasionally see some counting weirdness.
We have forgotten to take one thing into account. We are dealing with mechanical
switches and mechanical switches suffer from a phenomenon called bouncing:

Figure 3.21 – Undebounced switch

102 Counting Button Presses

Figure 3.19 shows a condensed view of an electromechanical switch and how it will oscillate
for some period of time before settling. What we need to do is create a circuit that waits for a
period of time after it detects the switch being depressed, resetting itself if it detects a bounce:

always @(posedge clk) begin

 button_down <= '0;

 button_sync <= button_sync << 1 | BTNC;

 if (button_sync[2:1] == 2'b01) counter_en <= '1;

 else if (~button_sync[1]) counter_en <= '0;

 if (counter_en) begin

 counter <= counter + 1'b1;

 if (&counter) begin

 counter_en <= '0;

 counter <= '0;

 button_down <= '1;

 end

 end

end

The preceding circuit starts a timer when the button is detected being pushed, that is,
the falling edge. It then waits 256 clock cycles to make sure the switch doesn't bounce,
resetting the counter if it does and waiting to detect the next edge.

Try this on the board and you'll see no more weird counting issues.

The final stats for the design are 68 LUTs, 133 FF, and a Worst Negative Slack (WNS) of
6.732. We have a lot of room to increase the clock speed if so desired. We were targeting
a 100 MHz clock (with a 10 nanosecond period). With a WNS slack of 6.732, we could
decrease our clock period to 10-6.732, which would be about 300 MHz clock.

When analyzing timing in a design, aside from constraints, we have a few other metrics:

• WNS: The longest path slack in the design in nanoseconds. If a design is violating
timing, it will be negative.

• Total Negative Slack (TNS): The sum total of all violating paths in the design
(0 if WNS is positive).

• Worst Hold Slack (WHS): Must be positive or 0 for a functional design.

• Total Hold Slack (THS): Must be positive or 0 for a functional design.

Now, let's see how we can switch to decimal representation.

Project 2 – Counting button presses 103

Switching to decimal representation
The counter up until now counts in hexadecimal. I've been working with binary/
hexadecimal numbers for 30 years, so I'm fairly used to it. However, most people are
more comfortable with decimal numbers. As is usually the case, there are multiple ways
of accomplishing a task. We can count in binary and convert to decimal, or simply count
in decimal.

For this design, I decided to count in decimal. If we are representing decimal on eight seven-
segment displays, the maximum number we could represent is 99,999,999. If we counted in
binary and converted, we'd get 2^32 = 4,294,967,296, and that wouldn't fit on the display
(not that you would spend the rest of eternity pushing buttons to count that high):

// Decimal increment function

function [NUM_SEGMENTS-1:0][3:0] dec_inc;

 input [NUM_SEGMENTS-1:0][3:0] din;

 bit [3:0] next_val;

 bit carry_in;

 carry_in = '1;

 for (int i = 0; i < NUM_SEGMENTS; i++) begin

 next_val = din[i] + carry_in;

 if (next_val > 9) begin

 dec_inc[i] = '0;

 carry_in = '1;

 end else begin

 dec_inc[i] = next_val;

 carry_in = '0;

 end

 end // for (int i = 0; i < NUM_SEGMENTS; i++)

endfunction // dec_inc

The preceding function accepts Binary Coded Decimal (BCD) encoded data. The for
loop iterates over each digit counting up until it reaches 10, in which case it resets that
digit to 0 and feeds a carry into the next digit.

Change the mode from HEX to DEC and build.

The final stats for the design are 97 LUTs, 133 FF, and a WNS of 1.490. There is a cost for a
more readable display: approximately 50% more LUTs and about 5 nanoseconds of delay,
however, we still easily meet timing at 100 MHz.

104 Counting Button Presses

Introducing the ILA
Xilinx provides a very capable on-chip debugging solution within Vivado called an
Integrated Logic Analyzer (ILA). An ILA gives us the ability to add a logic analyzer that
we can insert into our design. The simplest way of approaching an ILA is to start by marking
signals for debugging. We can do this by adding the mark_debug attribute as follows:

(* mark_debug = "true" *) logic button_down;

(* ASYNC_REG = "TRUE", mark_debug = "true" *) logic [2:0]
button_sync;

We apply attributes to signals by using the SystemVerilog comment style (* *). You
can see how multiple attributes can be applied by looking at button_sync.

Both the SAFE and DEBOUNCE circuits have mark_debug already set. Pick SAFE and
let's look at the steps to set up and run an ILA.

Marking signals for debugging
If you take a look at CH3/counting_buttons/hdl/counting_buttons.sv, you'll
see a few signals marked for debugging. Don't worry about getting everything, but the
more you can add now that are of interest, the better chance of finding them after synthesis:

Figure 3.22 – Setting up an ILA

Project 2 – Counting button presses 105

You need to follow these steps:

1. Select Run Synthesis and Open Synthesized Design. Usually we combine this
step with generating a bitstream, but we need to run synthesis by itself so we can
set up debugging.

2. Select Set Up Debug…:

Figure 3.23 – Set Up Debug

3. A window will pop up. Select Next.

4. Select Continue Debugging (since we have already added signals via mark_debug).
I've added the synchronization registers and the button down output. If you look at
the DEBOUNCE version, you'll see the counter as well.

106 Counting Button Presses

5. Select the Find Nets to Add… button. Click OK. This will show you all the nets that
you could probe in the design:

Figure 3.24 – Adding nets

6. We have enough to look at, so simply hit Cancel.

Feel free to add some more signals if you'd like, or experiment later. The thing to
remember is that you have only the block RAM in the FPGA for internal storage of
waves, so the more signals you add, potentially the less sample depth is available.
We have a large device, so there's nothing to worry about right now.

7. Back on the setup debug screen, hit Next.

Leave the ILA core options at the default. A sample depth of 1024 is fine for now. Our
clock speed is slow enough that we don't need pipe stages. An ILA has some advanced
debugging features, but we won't get into them here.

Programming the device
As is always the case, we need to build the device so we can see our results. Select Finish
and generate the bitstream:

Project 2 – Counting button presses 107

Figure 3.25 – Program Device

You'll notice that the debug probes are now being set up. Select Program.

You'll now have the ILA view open:

Figure 3.26 – ILA view

The Settings pane allows you to limit the data depth. Sometimes you may select a large
storage space in a build but want to limit what you capture in a specific run and you can
do that here. The trigger position sets how many samples are captured prior to the trigger.
In our case, we are looking at 10 samples prior to our trigger, and the rest are after.

108 Counting Button Presses

In the trigger setup, we'll add something to trigger on:

Figure 3.27 – Trigger Setup

I've selected to trigger whenever bit 1 of button_sync goes high:

Figure 3.28 – Run a trigger

We have a few choices for capturing signals in the ILA. Immediate Trigger (>>) will
capture the signals in their current state. Auto Trigger (the right arrow with the green
circle) will rearm the trigger automatically after firing. Single Trigger sets us up for
capturing a single event. Finally, if you are unable to fire your trigger, you can stop it and set
up another with the Stop Trigger button.

Try Single Trigger, then push the center button and you should see what I have in Figure
3.28. I was unable to capture an anomaly, but this at least shows you how to use an ILA for
debugging problems on board.

What about simulation?
In this chapter, we took advantage of the capabilities of lab debug rather than running
simulations. This is not something I would normally do. However, it would take too
much time and effort to write a model to test the seven-segment display and also model a
bouncing switch. It's an FPGA after all, and we can program and test as many times as we
want. It's not a route I usually go down, but for this project it worked well.

Deep dive on synchronization 109

Deep dive on synchronization
In project 2, we dipped our toes into synchronizing a signal from an external source.
In later designs, we'll be interfacing between multiple clock domains. For instance, in
Chapter 5, FPGA Resources and How to Use Them, we'll be interfacing between our main
logic and a DDR controller running on a different clock domain.

Why use multiple clocks?
There are several clocking considerations when architecting your FPGA design.
Sometimes you are forced to use a given clock for an interface. For example, if you are
designing something that interfaces to 10G Ethernet, somewhere in your design will be
a multiple of 156.25 MHz or 322.27 MHz depending on if you are interfacing with the
PCS or PMA layer. This is because data must be driven out at this frequency and arrives at
this frequency.

Other times, you may be looking for high performance or lower power. Increasing your
clock speed can increase your throughput or calculations per second if you need data fast
or perform lots of operations. Running a faster clock costs more in terms of power. If you
are designing something that needs to operate in a lower power environment, you still
may need to receive data at a faster rate, but save power by performing operations slower.

Two-stage synchronizer
The heart of synchronization is a two-stage synchronizer. When we define the two stages
on the destination clock domain, we apply the ASYNC_REG attribute to the FF. This
attribute tells Vivado that these registers are used for synchronizing and should be placed
as close together as possible. A simple two-stage synchronizer looks like this:

(* ASYNC_REG = "TRUE" *) logic [1:0] sync;

always @(posedge dst_clk) sync <= sync << 1 | async;

This creates two flops on the dst_clk domain and tells Vivado to handle them as such.

Synchronizing control signals
Often, you may have slower speed status signals that are coming from one clock domain
to another. These signals will toggle infrequently and either you handshake between both
sides of the interface or the design is guaranteed to change infrequently enough that you
don't need to worry about handshaking.

110 Counting Button Presses

For this type of interface, we can use a toggle synchronizer. A toggle synchronizer toggles
the signal crossing clock domains and then generates a pulse when an edge is detected
on the synchronized domain. You can see why we need to make sure that we do not send
toggles across faster than we can generate pulses on the receiving side. One way to prevent
this is to send a similar toggle signal back as an acknowledgement:

logic async_toggle;

(* ASYNC_REG = "TRUE" *) logic [2:0] sync;

logic sync_pulse;

always @(posedge src_clk)

 if (ctrl_in) async_toggle <= ~async_toggle;

always @(posedge dst_clk) sync <= sync << 1 | async_toggle;

assign sync_pulse = ^sync[2:1];

In the following figure, you can see an illustration of a toggle synchronizer waveform:

Figure 3.29 – Toggle synchronizer waveform

You'll note in the waveform that the rising edge of async_toggle may violate timing on
sync[0]. This is represented by an X. Although sync[0] may go metastable, sync[1]
will statistically register a 0 or 1 and that will safely pass to sync[2]. However, since it
is statistical, we don't know which of the two cycles highlighted will generate the pulse on
dst_clk.

Deep dive on synchronization 111

Passing data
If we have data that meets the criteria of the preceding synchronizer (that is, the data will
be stable for the amount of time to be captured on the dst_clk), we can pass it along
with the control signal. The source data is captured and held on the src_clk for the time
necessary for synchronizing. If the clock relationships are known, this can be done by
waiting for a long enough period of time, or we can pass an acknowledge signal back from
dst_clk when the sync pulse is received:

Figure 3.30 – Passing data across clock domains

We do this by registering it on the same cycle we toggle the signal crossing to the
synchronizer:

logic async_toggle;

logic [31:0] async_data;

(* ASYNC_REG = "TRUE" *) logic [2:0] sync;

logic sync_pulse;

logic [31:0] sync_data;

always @(posedge src_clk)

 if (ctrl_in) begin

 async_toggle <= ~async_toggle;

112 Counting Button Presses

 async_data <= …;

 end

always @(posedge dst_clk) begin

 sync <= sync << 1 | async_toggle;

 if (sync_pulse) sync_data <= async_data;

end

assign sync_pulse = ^sync[2:1];

This code will safely transfer the data; however, we need to provide one constraint
to Vivado:

set_max_delay -datapath_only \

 [2*[get_property PERIOD [get_clocks dst_clk]]] \

 -from [get_cells async_data*] -to [get_cells sync_data*]

This constrains the path from async data to sync data to be two destination clock cycles or
less. The reason is that we know the two-stage synchronizer will take two or three clocks
for the pulse to appear from when the toggle signal switches. We apply this constraint to
all bits on the bus.

We can add an acknowledge signal if we need handshaking to let the sender know data
has reached the destination. It would be synchronized the same way.

FIFOs are a third common way of synchronizing that we'll discuss in Chapter 5, FPGA
Resources and How to Use Them.

Summary
In this chapter, we introduced sequential elements, how to store data, and how to write
constraints for these elements for Vivado. Along with learning how to write combinational
logic, we now have the fundamentals to create just about any design. We've developed a
better way of displaying information and even made a more human-readable version of it.
It's important to look at what you have accomplished thus far. You've seen how to handle
external inputs operating asynchronously to the system clock. You've interfaced to a more
sophisticated output display. We've also debugged on the board using an ILA. This should
give you the confidence to experiment a bit and the challenge question will allow you to
do just that.

In the next chapter, we'll build on the lessons and skills we learned in this chapter by
building something more substantial: a calculator.

Questions 113

Questions
1. It's best to use blocking assignments in sequential blocks and non-blocking in

combinational blocks.

a) True

b) False

2. It is best to reset all sequential elements in a design.

a) True

b) False

3. What are the most common ways of synchronizing?

a) always @(posedge signal)

b) always @(negedge signal)

c) FIFO or a two-stage synchronizer with or without data.

d) Synchronizers… who needs synchronizers?

4. When would we use always @(posedge clk) rather than always_ff @
(posedge clk)?

a) When we get tired of typing.

b) When we need to use an initial statement to preload the register.

c) When we need to reset the register either synchronously or asynchronously.

5. When do we need to add debouncing logic?

a) When we cross clock domains

b) Whenever we send data from one FF to another

c) When we are dealing with electromechanical buttons or switches

Challenge
In Chapter 2, with Combinational Logic, we created a design that could perform some
simple operations and display data in binary on the LEDs:

1. Modify the code to use the seven-segment display module to output the data rather
than the LEDs, or in addition to the LEDs. Display in either hex or decimal. If you
go the decimal route, you'll either need to use the function for adding in decimal or
do a conversion before displaying it.

2. Run it on the board to verify its operation.

114 Counting Button Presses

Further reading
Please refer to the following for more information:

• To read further about the design constraints that can be applied within Vivado:
https://www.xilinx.com/support/documentation-navigation/
design-hubs/dh0004-vivado-applying-design-constraints-hub.
html

• More information on Vivado properties: https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2020_1/ug912-
vivado-properties.pdf

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0004-vivado-applying-design-constraints-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0004-vivado-applying-design-constraints-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0004-vivado-applying-design-constraints-hub.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug912-vivado-properties.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug912-vivado-properties.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug912-vivado-properties.pdf

4
Let's Build

a Calculator
In this chapter, we are going to take our SystemVerilog knowledge of combinational logic
and sequential elements to discuss state machine design. We'll look at the classic state
machine designs and develop a traffic light controller, a staple of Electrical Engineering
(EE) projects.

We've built a controller for a 7-segment display that we can use to show numerical
values and we know how to handle button and switch inputs safely. Now, we'll take this
knowledge and show how we can define a state machine to keep track of the calculation
we want to perform and develop our first truly useful design, a simple calculator capable
of entering two 16-bit numbers and adding, subtracting, multiplying, and dividing them,
placing the output on the 7-segment display.

Once you've completed this chapter, you should be able to construct simple state
machines, use simple state machines to implement algorithms, and understand the basics
of computer math.

116 Let's Build a Calculator

In this chapter, we are going to cover the following main topics:

• Introducing the main types of state machines in a design: Mealy and Moore

• Implementing a traffic light controller using a state machine

• Designing a simple state machine for our calculator

• Designing and simulating an integer divider

• Running it on the board

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH4.

Implementing our first state machine
In general, a state machine takes in a number of events and, based on the events, moves
through a set of states that can produce one or more outputs. A state machine can be quite
simple or extremely complex. In the previous chapter, we designed a simple circuit to control
our 7-segment display. The 7-segment controller contained two counters that cycled a zero
through the cathodes and presented the anode data for each digit. We could have written a
state machine to handle this; however, it was easier to write it the way we did.

Before we dive into our calculator project, we need to go over the two ways of coding state
machines and the two traditional state machine implementations.

Writing a purely sequential state machine
The first way of coding a state machine is to write it in a single always block driven by a
clock.

This kind of state machine would look something like this:

enum bit {IDLE, DATA} state;

initial state = IDLE; // Define initial state

always @(posedge clk) begin

 case (state)

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH4
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH4

Implementing our first state machine 117

 IDLE: begin

 dout_en <= '0;

 if (start) begin

 dout_en <= '1;

 state <= DATA;

 end

 end

 DATA: begin

 dout_en <= '1;

 if (done) begin

 dout_en <= '0;

 state <= IDLE;

 end

 end

 endcase

end

You can see from the preceding code that we are defining our states using an enum
register called state. We then assign an initial value, the value that will be loaded
when the FPGA starts up.

Tip
Use enum types for state machine definitions. Good names help convey
design intent and, when simulating the waves, it will display state names rather
than numbers.

The main code is in the always block. We use a case statement to define our state
machine states, IDLE and DATA. There are two inputs to the state machine, start and
done, and one output, dout_en. This type of code is concise and fast since there is a full
clock cycle for all outputs from the state machine. It does have a potential disadvantage
in that every output will be registered. In some cases, you may want an output to occur as
soon as input changes and this is not possible when you write the state machine this way.

The previous version of the state machine simply used a single state variable. Another way
of coding a state machine is by splitting the state variable into current and next states. Let's
look more in-depth in the next section.

118 Let's Build a Calculator

Splitting combination and sequential logic in a state
machine
We can break up the state machine into a combinational portion based on the current
state that generated the next state to be registered:

enum bit {IDLE, DATA} current_state, next_state;

initial current_state = IDLE; // Define initial state

always @(posedge clk) current_state <= next_state;

always_comb begin

 current_state = next_state; // avoid a latch

 dout_en = '0; // avoid a latch

 case (current_state)

 IDLE: begin

 if (start) begin

 dout_en = '1;

 next_state = DATA;

 end

 end

 DATA: begin

 dout_en = '1;

 if (done) begin

 dout_en = '0;

 next_state = IDLE;

 end

 end

 endcase

end

Looking at the preceding code, we can see there are a lot of similarities. There are some
functional differences in that dout_en is combinationally generated. To make this
equivalent, we would need to register dout_en.

Implementing our first state machine 119

Either way is acceptable for constructing a state machine. In fact, both have advantages
and I tend to mix up their usage depending on the situation. Before we discuss the two
classic state machine types, let's define what we want to accomplish in this project.

Designing a calculator interface
Let's look again at what we have available for inputs. Both Basys 3 and Nexys A7 have an
array of 16 LEDs, 16 switches, and a 5-pushbutton array:

Figure 4.1 – FPGA board buttons and switches

We can use the switches to input a 16-bit value in either hex or Binary Coded Decimal
(BCD). We have 5 buttons available. The functions that we'll perform are as follows:

• Left: A+B

• Right: A-B

• Up: A*B

• Center: =

• Down: Clear

Using the 7-segment displays, we can handle the result output and, using an LED, we can
show the sign bit.

120 Let's Build a Calculator

With our input/output (I/O) designed, we can focus on a state machine:

Figure 4.2 – Ideal calculator state machine

Now, let's discuss the two classic state machine types and how we could implement the
calculator using either one.

Designing a Moore state machine
In 1956, Edward F. Moore presented the concept of a state machine whose outputs are
governed strictly by the state of the machine in his paper, "Gedanken-experiments on
Sequential Machines."

What this means in practice is that the current state generates the outputs. The inputs
only govern the next state logic. In general, this type of state machine can reach high clock
speeds since the outputs have a full clock cycle to affect the design. These state machines
can be large since decision logic doesn't affect the outputs directly, but rather leads to new
states, increasing the state space.

Implementing our first state machine 121

You can find the following code in the CH4/hdl/calculator_moore.sv folder:

typedef enum bit [2:0]

 {

 IDLE,

 WAIT4BUTTON,

 ADD,

 SUB,

 MULT,

 } state_t;

Looking at the Moore version of the calculator, we can see individual states for each
operation. As we stated previously, we have a full clock cycle for each operation. This
could be an advantage if we were pushing speed in our technology, but, as we saw
previously, the add operation has plenty of time:

IDLE: begin

 accumulator <= '0;

 last_op <= buttons; // operation to perform

 accumulator <= switch;

 if (start) state <= buttons[DOWN] ? IDLE : WAIT4BUTTON;

end

WAIT4BUTTON: begin

 op_store <= buttons;

 if (start) begin

 case (1'b1)

 last_op[UP]: state <= MULT;

 last_op[DOWN]: state <= IDLE;

 last_op[LEFT]: state <= ADD;

 last_op[RIGHT]: state <= SUB;

 default: state <= WAIT4BUTTON;

 endcase // case (1'b1)

 end else state <= WAIT4BUTTON;

end

MULT: begin

 last_op <= op_store; // Store our last operation

 accumulator <= accumulator * switch;

 state <= WAIT4BUTTON;

end

122 Let's Build a Calculator

We won't go through the entire state machine here. Please take a few minutes and peruse
the following link: https://github.com/PacktPublishing/Learn-FPGA-
Programming/blob/master/CH4/hdl/calculator_moore.sv.

Once a button has been pushed, the switch values and the operation are loaded into
accumulator and last_op. When the next button is pushed, we execute the previous
operation on the accumulator and the second switch values. This behaves like a pocket
calculator, where you would push X + Y = and the result would appear on the screen.
Also, you can chain operations, X + Y – Z =, for example.

If you look at the state machine design, you'll see that inputs only affect next state values
and that operations on data take a state.

Let's examine how this would look in a Mealy state machine design.

Implementing a Mealy state machine
In 1955, George H. Mealy introduced the concept of a state machine whose outputs are
determined by the current state and inputs. We can see an example of our calculator state
machine implemented this way.

You can find the following code in the CH4/hdl/calculator_mealy.sv folder:

typedef enum bit

 {

 IDLE,

 WAIT4BUTTON

 } state_t;

From the state definitions, you can see that the state space is greatly reduced. We've gone
from five states to two. How are we able to accomplish this?

case (state)

 IDLE: begin

 last_op <= buttons; // operation to perform

 accumulator <= switch;

 if (start) state <= buttons[DOWN] ? IDLE : WAIT4BUTTON;

 end

 WAIT4BUTTON: begin

 if (start) begin

 last_op <= buttons; // Store our last operation

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH4/hdl/calculator_moore.sv
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH4/hdl/calculator_moore.sv

Project 3 – Building a simple calculator 123

 case (1'b1)

 last_op[UP]: accumulator <= accumulator * switch;

 last_op[DOWN]: state <= IDLE;

 last_op[LEFT]: accumulator <= accumulator + switch;

 last_op[RIGHT]: accumulator <= accumulator - switch;

 default: state <= WAIT4BUTTON;

 endcase // case (1'b1)

 end else state <= WAIT4BUTTON;

 end

endcase // case (state)

We no longer have the limitation of using an input to only change states. Now we are able
to use the inputs to affect the operations directly. In the Moore state machine, we had
states dedicated to our operations. Now we simply stay in the WAIT4BUTTON state.

Knowing about Mealy and Moore state machine design is mostly academic. If you
decide to pursue a career in FPGAs, you'll probably be asked what the difference is in an
interview, but mostly because, when applying for a first job in a field, there's not much
beyond academics that us engineers know to ask. What you will really need going forward
is some practical advice.

Practical state machine design
The reality of state machine design is that you should not worry about the formality of the
code and whether it is Mealy or Moore. Use what you are comfortable with and fits the
solution you are working toward. In practice, I tend to use a mix of styles based upon the
task I'm working on. In some cases, it might be a Moore type, or it may be a hybrid type
using a split current state/next state design.

With the basics of state machine design under our belt, let's look at a practical project
whose heart is a state machine.

Project 3 – Building a simple calculator
Now that we've gone over state machine basics and showed the core of our calculator, we
need to look at how we'll actually implement the calculator. The first issue that will come
up is how do we store our data in the design. Previously, we used BCD when we were
incrementing our values. There was a simple solution presented for the BCD incrementor.

124 Let's Build a Calculator

If we wanted to keep the internal data as BCD, we would need to develop a BCD adder,
subtractor, and multiplier. This is a more complicated option than a simple incrementor.
Alternatively, we can explore the possibility of keeping our internal representation as
binary, but convert to decimal to display. This has the added advantage that we can use the
SystemVerilog add, subtract, and multiply operators as-is on binary representation and
then create a conversion function.

The project files can be found in the following locations:

• Nexys A7: CH4/build/calculator/calculator.xpr

• Basys 3: CH4/build/calculator/calculator_basys3.xpr

Before we go down that route, let's consider SystemVerilog packages.

Packaging for reuse
SystemVerilog provides the capability of creating packages to encapsulate code that we
want to reuse among multiple modules. It also provides a convenient way of reusing code
for multiple applications.

You can find the following code in the CH4/hdl/calculator_pkg.sv folder:

`ifndef NUM_SEGMENTS

`define NUM_SEGMENTS 8

`endif

`ifndef _CALCULATOR_PKG

`define _CALCULATOR_PKG

package calculator_pkg;

 localparam NUM_SEGMENTS = `NUM_SEGMENTS;

 localparam UP = 3'd0;

 localparam DOWN = 3'd1;

We create a package like we would an empty module – package <package name>;.

A package can contain parameters, functions, tasks, and user-defined types. In our case,
we define localparams to make identifying the buttons easier and a function to convert
the binary representation to BCD:

 function bit [NUM_SEGMENTS-1:0][3:0] bin_to_bcd;

 // we want to support either 4 or 8 segments

 input [31:0] bin_in;

 bit [NUM_SEGMENTS*4-1:0] shifted;

Project 3 – Building a simple calculator 125

 shifted = {30'b0, bin_in[31:30]};

 for (int i = 29; i >= 1; i--) begin

 shifted = shifted << 1 | bin_in[i];

 for (int j = 0; j < NUM_SEGMENTS; j++) begin

 if (shifted[j*4+:4] > 4) shifted[j*4+:4] += 3;

 end

 end

 shifted = shifted << 1 | bin_in[0];

 for (int i = 0; i < NUM_SEGMENTS; i++) begin

 bin_to_bcd[i] = shifted[4*i+:4];

 end

 endfunction // bin_to_bcd

endpackage // calculator_pkg

`endif

You can see that there is some complexity to the conversion function. It's this type of thing
that worries me when designing. The multiple for loops need to be unrolled to create the
logic that will perform the actual task in the FPGA. Even at 100 MHz, this will be a challenge.

Tip
If you are using non-project flow, rather than project flow, like we are, you
should add the following:

`ifndef _CALCULATOR_PKG

`define _CALCULATOR_PKG

This will prevent the package from being redefined, which can cause warnings
or errors.

There is one major limitation with SystemVerilog packages. You can't pass in parameters.
This is why you see I had to define NUM_SEGMENTS within the package itself.

We can get around this by using `define:

`ifndef NUM_SEGMENTS

`define NUM_SEGMENTS 8

`endif

Then we can assign the definition to localparam:

 localparam NUM_SEGMENTS = `NUM_SEGMENTS;

126 Let's Build a Calculator

Within non-project mode, you can override the parameter within your TCL scripts.
Within project mode, you can override the defines from within the PROJECT
MANAGER settings. Now you'll need to do it within multiple areas as we have done
before for synthesis and simulation.

Coding the top level
Take a look at the top-level calculator module.

You can find the following code in the CH4/hdl/calculator_top.sv folder:

`ifndef NUM_SEGMENTS

`define NUM_SEGMENTS 8

`endif

module calculator_top

 #(

 parameter BITS = 32,

 parameter NUM_SEGMENTS = `NUM_SEGMENTS,

 parameter SM_TYPE = "MEALY" // MEALY or MOORE

)(

 input wire clk,

 input wire [15:0] SW,

 input wire [4:0] buttons,

 output logic [NUM_SEGMENTS-1:0] anode,

 output logic [7:0] cathode

);

We can select the internal data storage size by setting the BITS parameter. We can also
set the number of segments (as we discussed in the Packages section) and the state
machine type.

We will use the seven_segment controller that we developed in Chapter 3, Counting
Button Presses, as well as the button debouncing machine:

 generate

 if (USE_PLL == "TRUE") begin : g_USE_PLL

 sys_pll u_sys_pll

 (

 .clk_in1 (clk),

Project 3 – Building a simple calculator 127

 .clk_out1 (clk_50)

);

 end else begin : g_NO_PLL

 assign clk_50 = clk;

 end

 endgenerate

You'll notice that there is a PLL in the design and I've created an internal clock,
clk_50. The next section will cover PLL generation. For our first run, we'll be using
USE_PLL = "FALSE":

Figure 4.3 – Mealy calculator design, 100 MHz

From this run, we can see that the design doesn't meet timing at 100 MHz. We can look
at the failing paths in the timing analyzer and note that the binary to BCD converter
doesn't meet the timing requirements:

Figure 4.4 – Mealy timing

128 Let's Build a Calculator

The Moore state machine has more time to perform operations, but it likely won't do
much for our violating paths as these are through the converter. Try running it again with
SM_TYPE set to MOORE. You'll see that the results are very similar; a few more storage
elements in the Moore design and slightly better timing.

Changing frequencies by using a PLL or MMCM
The Artix 7 has Clock Management Tiles (CMTs) that are the core of the clocking
resources in the devices we are using. The Nexys A7 100T has 6 CMT. The Nexys A7 50T
and Basys 3 both have 5 CMTs.

A CMT contains one Phase Locked Loop (PLL) and one Mixed Mode Clock Manager
(MMCM). PLLs and MMCMs can be used for frequency synthesis, that is, creating a
faster or slower clock from an incoming clock:

Figure 4.5 – PLL/MMCM clock synthesis

You can see from the preceding diagram that we can take a clock input. For our boards,
this is a 100 MHz clock and can generate a faster or slower clock based upon our needs.
There are other uses for the CMT that we won't get into in this book because of the limited
interfaces our boards have.

Let's build our PLL to reduce our internal clock to 50 MHz so we can meet timing in our
design. This will be our introduction to the IP catalog. Xilinx and its partners provide IP
for their FPGA devices, some of which are free while others can be licensed. I'd encourage
you to look over what's available, especially the free options. Let's see how to do this:

1. Select the IP catalog:

Project 3 – Building a simple calculator 129

Figure 4.6 – IP Catalog

2. Next, we'll look at the clocking wizard:

Figure 4.7 – Clocking wizard

130 Let's Build a Calculator

3. The first step to creating IP from the wizard is to customize it. Select the IP
Location button and make sure to specify CH5/build/IP. Then, change the
component name to sys_pll. Make sure CLK_IN1 is set to sys clock:

Figure 4.8 – Customize IP

4. Select output cocks and set clk_out1 to 50 MHz. Since this is an even division of
100 MHz, it will be able to do it exactly. In some cases, it will do its best but the
frequency will be off a little. Make sure to deselect reset and locked as we don't
need those outputs:

Project 3 – Building a simple calculator 131

Figure 4.9 – Output clocks

5. We have already built the FPGA, so you can cancel it. If you wanted to build it, then
click OK and it will ask to add it to the project and generate the output products:

6. Now, set the USE_PLL parameter in PROJECT MANAGER | Settings | General to
TRUE, as we have done previously.

7. Now, set PLL to TRUE and perform the following build:

Figure 4.10 – Mealy state machine at 50 MHz

132 Let's Build a Calculator

Now that we have lowered the clock speed, the tool doesn't work as hard to meet
unreasonable timing. You can see the effects of this by the LUT count going down
in this run. Timing is met comfortably. Try it out on the board. Try the add and
multiply operations.

Now, try reloading it and subtract something from 0. You'll see the display all lit up with
what looks like random values. We didn't add support for negative numbers. This is
something to think about for this chapter's challenge question.

One thing to note is that our calculator is fairly simple. It supports addition, subtraction,
and multiplication. Why wasn't division included? Think back to when you learned long
division. It's a process of shifting and subtracting numbers when there is a large enough
value to subtract from. It turns out that add/subtract and multiply operations are very
simple relative to division and so are baked into the FPGA fabric. To perform division,
we'll need to look at how this can be done.

Investigating the divider
There are two classic algorithms for integer division: restoring and non-restoring. The
difference between the two methods are that when you perform the test subtraction
at every pass, you either restore or keep the result negative based on the method used.
Non-restoring division has a correction step at the end.

Let's now explore how to implement a non-restoring divider for our calculator.

Building a non-restoring divider state machine
The first step is to create a state diagram for our proposed state machine. We can find the
non-restoring algorithm defined in many places on the internet. I've created a proposed
state diagram here:

Project 3 – Building a simple calculator 133

Figure 4.11 – Non-restoring division algorithm

From the preceding state machine diagram, we can see that this is one of the more
involved state machine designs we have approached yet. We have multiple tests and
branch conditions.

As in many state machines, we begin idle. When we are instructed to divide, we initialize
our internal variables. Then, enter the main loop at Step 2. We test the remainder sign
and then shift our remainder and quotient. If the remainder is negative, we add the
divisor, otherwise we subtract it. Then we feed the inverted remainder sign back into the
quotient lowest bit and subtract our counter. If the counter is not zero, we return to Step 2,
otherwise we test the remainder sign one last time and if it is negative, we add the divisor
in again, otherwise we are done.

134 Let's Build a Calculator

Let's take a look at the divider source code and hopefully it will be clear. You can find the
following code in the CH4/hdl/divider_nr.sv folder:

module divider_nr #(parameter BITS = 16)

 (

 input wire clk,

 input wire start,

 input wire unsigned [BITS-1:0] dividend,

 input wire unsigned [BITS-1:0] divisor,

 output logic done,

 output logic unsigned [BITS-1:0] quotient,

 output logic unsigned [BITS-1:0] remainder

);

The first thing to note is that we've added two signals to control the state machine
execution, start and done. We have a couple of options when handling division. We
can either always take the number of clock cycles equal to the number of bits of the
dividend, or we can adjust the dividend to remove leading 0's as these will always result
in those bits being 0 on the quotient. Since we already developed a leading 1's detector,
I chose to use this to speed up the division operation when we can. For our current
application, this is not important. However, I tend to design for performance, so I wanted
to reuse the module.

When we receive a start signal, the divider will begin operation:

always @(posedge clk) begin

 done <= '0;

 case (state)

 IDLE: begin

 if (start) state <= INIT;

 end

 INIT: begin

 state <= LEFT_SHIFT;

 quotient <= dividend << (BITS - num_bits_w);

 int_remainder <= '0;

 num_bits <= num_bits_w;

 end

Project 3 – Building a simple calculator 135

Note that done has a default value of '0, so it will only go high for as long as we assert
it. When we enter the INIT state, we'll left-shift the dividend to remove leading 0's and
set num_bits to know how long the divider will run for. We also define an intermediate
remainder result of 0:

 leading_ones

 #(

 .SELECTOR ("DOWN_FOR"),

 .BITS (BITS)

)

 u_leading_ones

 (

 .SW (dividend),

 .LED (num_bits_w)

);

Currently, leading_ones is built as a module for the board and we are using the port
names that the boards provided. To make this truly portable, we would rename the ports
to be something more in line with our leading ones detector, such as vector_in and
ones_position:

LEFT_SHIFT: begin

 {int_remainder, quotient} <= {int_remainder, quotient} << 1;

 if (int_remainder[$left(int_remainder)])

 state <= ADJ_REMAINDER0;

 else

 state <= ADJ_REMAINDER1;

end

The number of bits is returned from the leading_ones function we developed.
LEFT_SHIFT represents states 2a and 2b in our state diagram. Left-shift our intermediate
results. When we do the comparison on the sign bit, int_remainder[$left(int_
remainder)], remember that $left will return the uppermost bit, or the sign bit of
our internal remainder. Also recall that since we are using non-blocking, we can shift and
test the previous value in the same clock cycle.

Tip
if (A) is a shortcut for if (A!=0).

136 Let's Build a Calculator

We have two states for updating the internal remainder, AJD_REMAINDER[2]. These two
states represent the third steps in the state diagram:

 UPDATE_QUOTIENT: begin

 state <= TEST_N;

 quotient[0] <= ~int_remainder[$left(int_remainder)];

 num_bits <= num_bits - 1'b1;

 end

 TEST_N: begin

 if (|num_bits)

 state <= LEFT_SHIFT;

 else

 state <= TEST_REMAINDER1;

 end

We then update the quotient least significant bit, adjust the number of bits processed, and
then test whether we have completed shifting:

 TEST_REMAINDER1: begin

 if (int_remainder[$left(int_remainder)])

 state <= ADJ_REMAINDER2;

 else

 state <= DIV_DONE;

 end

 ADJ_REMAINDER2: begin

 state <= DIV_DONE;

 int_remainder <= int_remainder + divisor;

 end

 DIV_DONE: begin

 done <= '1;

 state <= IDLE;

 end

If we have completed shifting, we then test and update the intermediate remainder if
appropriate. Finally, we assert the done signal to signify that the result is ready.

With the design complete, let's try it in a simulation.

Project 3 – Building a simple calculator 137

Simulating the divider
I've created a divider testbench. This will allow us to verify our division algorithm prior
to implementation.

You can find the following code in the CH4/tb/tb_divider_nr.sv folder:

 for (int i = 0; i < 100; i++) begin

 dividend <= $random;

 divisor <= $random;

 start <= '1;

 @(posedge clk);

 start <= '0;

 while (!done) @(posedge clk);

 repeat (5) @(posedge clk);

 end

The heart of the code creates a random dividend and divisor. We start and then wait until
done goes high before injecting the next values:

 always @(posedge clk) begin

 if (done &&

 (quotient != dividend/divisor) &&

 (remainder != dividend%divisor)) begin

 $display("failure!");

 $display("quotient: %d", quotient);

 $display("remainder: %d", remainder);

 $display("expected Q: %d", dividend/divisor);

 $display("expected R: %d", dividend%divisor);

 $stop;

 end

 end

The testing logic checks the quotient and remainder against the values returned by the
SystemVerilog division operator (/) and the modulo operator (%).

138 Let's Build a Calculator

Important note
SystemVerilog has a division operator. However, it is only synthesizable if it
is a power of 2 or returns a fixed value. There is also a modulo operator (%),
which will return the remainder of a value divided by another value. This is only
synthesizable if it returns a fixed value or the right-hand side is a power of 2.

Sizing the intermediate remainder
Note that I've declared the intermediate remainder result as 1 bit larger than our
actual remainder:

logic signed [BITS:0] int_remainder;

I'm not ashamed to admit that I struggled verifying the design. I had initially declared
the internal remainder as BITS-1:0. What I had neglected to consider was that we are
dealing with unsigned numbers up to 64,535. Since we are adding or subtracting the
divisor from int_remainder, we have a 16-bit unsigned value +/- a 16-bit unsigned
value. This means we need a 17-bit internal remainder to preserve the sign bit.

We've now finished our simple calculator. We've made it complete by adding a
complex division function. Now, let's move on to another staple from the engineering
curriculum – the traffic light controller.

Project 4 – Keeping cars in line
A classic design challenge for budding engineers is designing a traffic light controller. The
Xilinx project files for the Nexys A7 can be found in CH4/build/traffic_light/
traffic_light.xpr. Basys 3 doesn't provide the tricolor LEDs, so this project cannot
be done directly using it:

Figure 4.12 – Traffic light controller intersection

Project 4 – Keeping cars in line 139

The preceding diagram shows the basic scenario. We have an intersection with four traffic
lights and four sensors labeled up, down, left, and right.

Some ground rules are as follows:

• When a light is green, it will stay green for a minimum of 10 seconds.

• When a car goes through a green light, it is ignored.

• When a car waits at the red light, it signals the green to switch after it has been
green for 10 seconds.

• The light will stay yellow for 1 second when transitioning from green to red.

We've defined the problem. The first step, as always, is to create our state diagram.

Defining the state diagram
Oftentimes, I'll dive right in and code, and so a state diagram can be a good way of
documenting intent and finding potential problems ahead of time:

Figure 4.13 – Traffic light controller state diagram

The state machine looks relatively straightforward. It has a linear flow, with only two
inputs and counters that hold state for a minimum amount of time. We know how to run
our traffic lights, but how can we use our board to display the state of our traffic lights.

Displaying our traffic lights
Luckily, our boards have three colored LEDs on them. With the tricolor LEDs, we can
display just about any color on the spectrum by using Pulse Width Modulation (PWM).
There are three outputs for each LED: red, green, and blue.

140 Let's Build a Calculator

Pulse width modulation
In digital logic, we convey information at its most basic level as strings of ones and zeros.
When we lit LEDs before, we applied a '1 for the LED to be lit and a '0 for it to be off.
With these tricolor LEDs, we have control over three outputs, one each for red, green,
and blue. If we set any of these to a '1 by itself, we will get that color very brightly lit. It is
recommended that we apply a signal with a duty cycle of less than 100% to keep the LED
from being blinding. In the case of the traffic light controller, I have it set at 50%:

always @(posedge clk) begin

 light_count <= ~light_count;

 R <= '0;

 G <= '0;

 B <= '0;

 if (light_count) begin

By creating a single-bit signal, called light_count, and using the if statement, I make
sure the LED is only lit 50% of the time.

You might notice one potential problem with the tricolor LED. We have red and green for
our traffic light, but not yellow. If you remember color theory, you know we can mix red
and green to make yellow:

 GREEN: begin

 G[0] <= '1;

 end

 YELLOW: begin

 R[0] <= '1;

 G[0] <= '1;

 end

 RED: begin

 R[0] <= '1;

 End

It's not really practical to create a state space large enough to implement the 1 second or
10 second delay. We'll need to find a way to implement the delay circuit. One method is to
create a counter and reference it within our state machine.

Project 4 – Keeping cars in line 141

Implementing delays with a counter
The last element we need is a counter. If you take a look at our state diagram in Figure
4.13, you'll see we are only ever counting 1 second or 10 seconds. We could make two
separate counters, but what I did was create one counter large enough to count to 10
seconds and reuse it for both:

 localparam COUNT_1S = int'(100000000 / CLK_PER);

 localparam COUNT_10S = 10 * int'(100000000 / CLK_PER);

 bit [$clog2(COUNT_10S)-1:0] counter;

We've sized the counter to 10 seconds, and we have two parameters defined for terminal
counts. When we want to count, we simply enable the counter via enable_count and test
for the terminal value using the if statement. When the counter is not in use, we reset it to 0:

 always @(posedge clk) begin

 lr_reg <= lr_reg << 1 | SW[0];

 ud_reg <= ud_reg << 1 | SW[1];

 enable_count <= '0;

 if (enable_count) begin

 counter <= counter + 1'b1;

 end else begin

 counter <= '0;

 end

 case (state)

 INIT_UD_GREEN: begin

 up_down <= GREEN;

 left_right <= RED;

 enable_count <= '1;

 if (counter == COUNT_10S) state <= UD_GREEN_LR_RED;

 end

Look over the state machine and see that its flow matches the state diagram. Run it on
the board.

Now you should have a functional traffic light controller. Play with the switches and
verify that the lights will stay in a given state until a car is detected. Verify the lights cycle
correctly. It's a lot simpler to design a traffic light controller nowadays. I had to do it on a
bread board with discrete parts when I went through university.

142 Let's Build a Calculator

Summary
In this chapter, we've seen how we can use our knowledge of SystemVerilog sequential
and combinational elements to develop state machines. We've looked at two classical state
machine designs and then developed a simple calculator using this knowledge. We also
touched on some basic math as well as exploring how to develop an integer divider using
SystemVerilog.

We looked at design reuse by implementing a package for our calculator and also reusing
the leading ones detector we developed previously.

We briefly went over implementation of our state machine and saw at a high level how we
can control our clock speed using a PLL so the design will run on the board.

With this knowledge, you can now look at expanding the calculator. We are currently
only handling unsigned numbers. However, it wouldn't be that hard to make it handle
signed numbers.

In the next chapter we are going to take a look at some of the board resources. We'll learn
how to capture audio data and play it back. We'll learn about the temperature sensor, make
a thermostat, and display the temperature on our trusty 7-segment display. We'll also learn
about data processing and smooth out our sensor to make it a little less jumpy.

Questions
1. In the divider module, we perform a shift of the intermediate results. Why did we

use the following:

{int_remainder, quotient} <= {int_remainder, quotient} <<
1;

Rather than this:
{int_remainder, quotient} <<= 1;

a) It better conveys design intent.

b) <<= is a blocking assignment and we are using it in a clocked block, which
violates the principles we laid out regarding safe design practices.

c) When we use a concatenation function, {}, we cannot use <<=.

Further reading 143

2. Which of the following are synthesizable SystemVerilog?

logic [15:0] A, B;

a) A / B

b) A / 4

c) A % B

d) 5 % 4

3. Experiment with the colors in the traffic light controller design. Can you come up
with different colors by expanding the counter size and enabling the RGB outputs at
different times? The color space is practically unlimited.

4. Our calculator doesn't currently implement the divide function. Can you modify
it to support division? On the Basys 3 board, you'll need to replace one of the
currently mapped buttons. On the Nexys A7 board, you can use the CPU reset
button or remap the buttons.

Challenge
Our simple calculator currently only handles unsigned numbers. In the case of addition,
subtraction, and multiplication, the binary representation is already in two's compliment
representation. Remember that to take the two's compliment of a number, you invert
and add one. Can you modify the design to handle negative number representation? You
might want to use one of the LEDs to represent the sign of the result.

Extra challenge
It is harder to handle negative numbers from the divider. Can you modify the
non-restoring divider to make it also handle negative numbers?

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• https://reference.digilentinc.com/reference/programmable-
logic/nexys-a7/reference-manual

• https://www.xilinx.com/support/documentation/user_guides/
ug472_7Series_Clocking.pdf

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf

5
FPGA Resources and

How to Use Them
In this chapter, we are going to take a look at some of the underlying FPGA resources in
more detail. You've been introduced to some of these in brief, such as Random Access
Memories (RAMs) and DSP blocks, while others have been glossed over, such as PLLs,
where we used one to fix a timing problem in our calculator design. We'll build upon our
previous experience by incorporating these new resources.

By the completion of this chapter, you'll have a good idea of how to interface with external
components. You'll be introduced to a few different data formats, pulse width modulation,
and pulse data modulation. You'll see a simple serial bus in action, i2c, as well as how to
implement storage in the form of a FIFO.

In this chapter, we are going to cover the following main topics:

• What is a PDM microphone?

• Simulating the microphone

• Introducing storage

• Handling i2c temperature sensor data

• Smoothing out the data

• A look at FIFOs

146 FPGA Resources and How to Use Them

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH5.

Project 5 – Listening and learning
This project requires the microphone on the Nexys A7 board. To run this on the Basys 3
board, an additional pmod microphone needs to be installed, interfaced, and the XDC file
modified accordingly.

The Nexys A7 board has a digital microphone on board that we can use to capture the
ambient noise, speech, and suchlike from the environment the board is in. We'll be
utilizing this microphone to capture sound. In order to do that, we'll need to explore the
format of the data and how to sample it.

It's also possible to play it back.

What is a PDM microphone?
A digital microphone needs to take analog audio data and convert it to digital data usable
by electronics. A Pulse Density Modulation (PDM) signal is captured by a 1-bit DAC
that encodes its output as a string of pulses. When the pulses are denser over a period of
time, they represent larger values. In Figure 5.1, we see a signal from the testbench as a
sine wave. The following signal shows an example of what a PDM form of that waveform
might look like:

Figure 5.1 – PDM waveform example

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH5
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH5

Project 5 – Listening and learning 147

The advantage of this type of signal is that we only need a single wire to transmit the
information since typically, audio is limited to about 24 KHz and our clock rate will be
orders of magnitude above this.

Let's take a look at interfacing with the microphone. The project is located at CH5/
build/pdm_audio/pdm_audio.xpr.

You can find the following code in the CH5/hdl/pdm_top.sv folder:

module pdm_top

 #(parameter CLK_FREQ = 100)

 (

 input wire clk, // 100Mhz clock

 // Microphone interface

 output logic m_clk,

 output logic m_lr_sel,

 input wire m_data,

 output logic R,

 output logic G,

 output logic B,

 output logic [0:0] LED

);

We can see here that we are using the 100 MHz clock as we will need a clock source to
communicate with the microphone. There are two outputs to the microphone and the data
back (m_data). The two outputs are a clock at the frequency of the data * the number of
sampling cycles; in this case, 12 KHz * 128 samples = 1.536 MHz. The last signal, m_lr_
sel, selects whether data is presented on the rising or falling edge of the clock. This is
so two devices could share the same data bus to give a left and right channel, as shown in
Figure 5.2:

Figure 5.2 – Microphone timing – left/right channel

148 FPGA Resources and How to Use Them

I've also brought out one of our tricolor LEDs to display the amplitude information as
feedback.

The clock to the microphone needs to be between 1 and 3.3 MHz. Following the design
guidance from the Nexys A7 manual, I've constructed a circuit to generate timing for the
device.

You can find the following code in the CH5/hdl/pdm_inputs.sv folder:

module pdm_inputs

 #(

 parameter CLK_FREQ = 100, // Mhz

 parameter SAMPLE_RATE = 2400000 // Hz

)

 (

 input wire clk, // 100Mhz

 // Microphone interface

 output logic m_clk,

 output logic m_clk_en,

 input wire m_data,

 // Amplitude outputs

 output logic [6:0] amplitude,

 output logic amplitude_valid

);

The pdm_inputs module generates the clock to the microphone and receives the data
back:

localparam CLK_COUNT = int'((CLK_FREQ*1000000)/(SAMPLE_
RATE*2));

…

 if (clk_counter == CLK_COUNT - 1) begin

 clk_counter <= '0;

 m_clk <= ~m_clk;

 m_clk_en <= ~m_clk;

 end else

 clk_counter <= clk_counter + 1;

Project 5 – Listening and learning 149

In terms of generating a new clock, we have a couple of choices. The best one is to use
a PLL or MMCM to generate a precise clock that we can use. In the case of such a slow
clock, this is not possible. What we can do, since we have a fairly high-speed clock
running at 100 MHz, is that we can create a counter that counts to a value representing
half the clock period of our generated clock and then we can create a clean clock from a
flip flop. We don't want to see this clock directly in our design, so we create a m_clk_en
pulse that lets us know when we can capture data on the rising edge of this clock.

To quantize the PDM data, we need to create a set of overlapping windows as shown in
Figure 5.3. The overlapping windows allow us to sub-sample the results to increase the
resolution of our samples, doubling our sampling frequency:

Figure 5.3 – Sampling

We have a routine that collects 12 KHz samples interleaved to create a 24 KHz output:

if (m_clk_en) begin

 counter[0] <= counter[0] + 1'b1;

 counter[1] <= counter[1] + 1'b1;

 if (counter[0] == 199) begin

 counter[0] <= '0;

 amplitude <= sample_counter[0];

 amplitude_valid <= '1;

 sample_counter[0] <= '0;

 end else if (counter[0] < 128) begin

 sample_counter[0] <= sample_counter[0] + m_data;

 end

150 FPGA Resources and How to Use Them

 if (counter[1] == 227) begin

 counter[1] <= '0;

 amplitude <= sample_counter[1] + m_data;

 amplitude_valid <= '1;

 sample_counter[1] <= '0;

 end else if (counter[1] > 100) begin

 sample_counter[1] <= sample_counter[1] + m_data;

 end

end

The sampling logic operates on the rising edge of the 2.4 MHz clock generated to
the microphone. We accomplish this by using m_clk_en to limit when the logic
operates. The timers are set up according to the Nexys A7 documentation: https://
reference.digilentinc.com/reference/programmable-logic/nexys-
a7/reference-manual.

Now the coding is complete. In this case, it's fairly easy to simulate. We can create a
testbench that feeds in a sine wave and see how our design reacts.

Simulating the microphone
I've created a testbench that we can use to verify our core. Let's verify our code and make
sure we can capture the data.

You can find the following code in the CH5/tb/tb_pdm.sv folder:

`timescale 1ns/10ps

module tb_pdm;

The testbench is made up of a sine wave generator and a PDM encoder. If you run the
testbench, you can see by the waves that the pdm_inputs module tracks the data from
the sine wave generator:

Figure 5.4 – Sine wave data versus amplitude data

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual

Project 5 – Listening and learning 151

I've also added the amplitude signals into chipscope so we can see the results on the
board. Build the design and run it. We can use an online tone generator, such as the one
at https://www.szynalski.com/tone-generator/, as a sine wave to generate a
test tone using a computer:

Figure 5.5 – Chipscope wave capture

In Figure 5.5, we can see a capture of my voice in the microphone. I found that you need
to be very close to capture anything of use.

One setting in chipscope that is very helpful for a very slow clock speed is to enable
capture control:

Figure 5.6 – Capture control

https://www.szynalski.com/tone-generator/

152 FPGA Resources and How to Use Them

When capture control is enabled, you can access another pane in the ILA, which allows
you to limit when data is captured to your buffer:

Figure 5.7 – Capture settings

amplitude_valid is set at a rate of 24 KHz. Capture setup allows us to capture only
what we really want to capture to extract the valid amplitude information. Looking at the
preceding waveform in Figure 5.5, the center point is at ~7'd64, which corresponds to 0.

We've shown that we can receive the PDM data and generate amplitude values at 24 KHz,
but we aren't doing anything with it yet. Let's add some storage.

Introducing storage
Now that we have managed to capture some audio data, we need to do something with it.
Currently, the data register is constantly overwritten every 24 KHz. There's a lot we can
do with audio data, but initially we need to store it away. What we can do is create a RAM
and when we push a button, start capturing the data, lighting an LED when complete.

RAM – Inferring versus instantiating versus the IP catalog
We have a number of choices in creating a RAM. The most flexible method of creating a
RAM is to infer it. This has the advantage of having cross-platform support by most FPGA
vendors as well as devices. Xilinx has provided a number of templates you can use that
will aid you in getting started:

Project 5 – Listening and learning 153

Figure 5.8 – Language templates

If you select Tools | Language Templates, you can access a variety of code samples
that can help jump start your design. Before we get into coding our RAM, let's look
at the basic types.

Basic RAM types
There are three basic RAM types:

• Single Port (SP)

• Simple Dual Port (SDP)

• True Dual Port (TDP)

154 FPGA Resources and How to Use Them

Often, we'll look at schematics to see what the ports of a core look like. In this case, we can
show how the RAMs would connect to a design, as shown in Figure 5.9:

Figure 5.9 – RAM types

Internally, the RAM blocks in the Artix 7 are fairly complex. They support configurable
data width, byte enables, and error correction codes. I would recommend reading through
the 7-series memory resource guide (reference in the Further reading section). I've found
ways around seemingly insurmountable engineering problems, such as how to effectively
implement a 64 KB deep RAM, by realizing that different configurations of the RAM can
solve the problem inherently.

Single port RAMs
A single port RAM is the simplest type. This RAM has one address port, meaning that it
can read from and write to memory at a single location on a clock cycle. This type of RAM
is simple to infer using SystemVerilog:

localparam MEM_DEPTH = 256;

localparam MEM_WIDTH = 8;

logic [MEM_WIDTH-1:0] memory[MEM_DEPTH];

logic [$clog2(MEM_DEPTH)-1:0] address;

logic [MEM_WIDTH-1:0] write_data, read_data;

logic wren;

initial memory = '{default: '0};

always @(posedge clk) begin

 if (wren) memory[address] <= write_data;

 read_data <= memory[address];

end

Project 5 – Listening and learning 155

The preceding code shows how to infer a single port RAM. We define a WIDTH parameter
of 8 bits and a DEPTH parameter of 256 x 8-bit bytes. We can see the memory array is
written when wren is high. The RAM is read every cycle based on the address. The
initial statement is optional. Block RAMs and SLICEM memory can have an initial value,
whereas UltraRAM cannot.

A few important points to consider are the following:

• The storage must be declared as unpacked:

logic [MEM_WIDTH-1:0] memory[MEM_DEPTH];

• You can initialize the memory types with the exception of UltraRAM, which the
Artix 7 doesn't have. To keep things portable, you shouldn't initialize very large
RAM blocks.

• Block RAMs must have synchronous read data. Distributed RAMs (remember those
SLICEMs?) can have asynchronous read ports. Having an asynchronous read port
cuts into your timing budget significantly.

Tip
Using the '{} representation makes it easier to initialize sparsely populated
unpacked arrays. You can initialize individual locations by using their address
and the defaults for all others. For example, `{0: 8'hFF, 7'h40,
default: '0}; would initialize location 0 to 0xFF, 1 to 0x40, and the
rest to 0.

Single port memories can only read from, or write to, a single location at a time. Simple
dual port memories are a little more flexible in that you have independent control of the
read and write addresses, so it's possible to read from a different location than where you
are writing from. This is particularly useful when building FIFOs.

Simple dual port RAM
A simple dual port RAM consists of two clocks, a read and write clock. It is a subset of
the true dual port RAM where you have one write port and one read port both utilizing
the same or different clocks. These types of RAMs are often used for elasticity, in the case
of a FIFO, or when data needs to be written from different addresses from where writes
are currently occurring. These types of RAMs are also fairly easy to code up:

localparam MEM_DEPTH = 256;

localparam MEM_WIDTH = 8;

logic [MEM_WIDTH-1:0] memory[MEM_DEPTH];

156 FPGA Resources and How to Use Them

logic [$clog2(MEM_DEPTH)-1:0] wr_address, rd_address;

logic [MEM_WIDTH-1:0] write_data, read_data;

logic wren;

initial memory = '{default: '0};

always @(posedge wr_clk)

 if (wren) memory[wr_address] <= write_data;

always @(posedge rd_clk) read_data <= memory[rd_address];

The SDP RAM looks very much like a single port RAM, the main difference being the
separation of the write and read address. Note that wr_clk and rd_clk can be the same
clock or different. The underlying resource is the same.

The first two memory types are the ones you'll use the most. However, there is one other
type that is less frequently used.

True dual port RAM
A true dual port RAM allows full read/write access from both ports. There are some
restrictions in terms of what happens if there are address collisions on a read or write. I
usually will use the option of xilinx xpm_memory if I am using a true dual port RAM;
however, they too can be inferred:

localparam MEM_DEPTH = 256;

localparam MEM_WIDTH = 8;

logic [MEM_WIDTH-1:0] memory[MEM_DEPTH];

logic [$clog2(MEM_DEPTH)-1:0] address_a, address_b;

logic [MEM_WIDTH-1:0] write_data_a, read_data_a;

logic [MEM_WIDTH-1:0] write_data_b, read_data_b;

logic wren_a, wren_b;

initial memory = '{default: '0};

always @(posedge clk_a) begin

 if (wren_a) memory[address_a] <= write_data_a;

 read_data_a <= memory[address_a];

end

always @(posedge clk_b) begin

 if (wren_b) memory[address_b] <= write_data_b;

 read_data_b <= memory[address_b];

end

Project 5 – Listening and learning 157

From the preceding code, you'll notice it looks very much like two single port memories.
The difference is that both always blocks reference the same storage, providing dual ports
in the memory.

We've seen how to infer all three memory types. Xilinx provides macros for common
functions such as Clock Domain Crossing (CDC), FIFOs, and RAMs as part of their
Xilinx Parameterized Macro (XPM) functions.

Important note
Vivado will map your inferred memory based on size. You can force a
particular implementation by using the ram_style attribute, for example:

(* ram_style = "block" *) logic [7:0] memory[256];
// Block RAM

(* ram_style = "distributed" *) logic [7:0]
memory[256]; // SLICEM based memory

(* ram_style = "registers" *) logic [7:0]
memory[256]; // Use FFs

Now, let's look at the Xilinx macros provided.

Instantiating memories using xpm_memory
The XPM functions are all located in <vivado install>/data/ip/xpm. We want to
look at xpm_memory. There are six variants within the file:

• xpm_memory_dpdistram: Dual port distributed RAM

• xpm_memory_dprom: Dual port ROM

• xpm_memory_sdpram: Simple dual port RAM

• xpm_memory_spram: Single port RAM

• xpm_memory_sprom: Single port ROM

• xpm_memory_tdpram: True dual port RAM

If you need a true dual port RAM, I would explore this file and use xpm_memory_
tdpram to instantiate it.

158 FPGA Resources and How to Use Them

Using the IP catalog to create memory
The last option is to use the IP catalog to create a specific memory function. I would not
recommend this option as it limits your ability to target newer FPGA families or other
vendor's FPGAs without regenerating the components.

In the previous section, we've seen how to infer or instantiate memory. We have choices to
make in the next section, where we'll capture the audio data.

Capturing audio data
Now that we know how to build a RAM, we can infer one to capture some audio data:

// Capture RAM

logic [6:0] amplitude_store[RAM_SIZE];

logic [$clog2(RAM_SIZE)-1:0] ram_wraddr;

logic [$clog2(RAM_SIZE)-1:0] ram_rdaddr;

logic ram_we;

logic [6:0] ram_dout;

always @(posedge clk) begin

 if (ram_we) amplitude_store[ram_wraddr] <= amplitude;

 ram_dout <= amplitude_store[ram_rdaddr];

end

To activate the capture, we can utilize one of the push buttons to initiate the capture:

// Capture the Audio data

always @(posedge clk) begin

 button_csync <= button_csync << 1 | BTNC;

 ram_we <= '0;

 for (int i = 0; i < 16; i++)

 if (clr_led[i]) LED[i] <= '0;

 if (button_csync[2:1] == 2'b01) begin

 start_capture <= '1;

 LED <= '0;

 end else if (start_capture && amplitude_valid) begin

 LED[ram_wraddr[$clog2(RAM_SIZE)-1:$clog2(RAM_SIZE)-4]] <=
'1;

 ram_we <= '1;

 ram_wraddr <= ram_wraddr + 1'b1;

Project 5 – Listening and learning 159

 if (&ram_wraddr) begin

 start_capture <= '0;

 LED[15] <= '1;

 end

 end

end // always @ (posedge clk)

The preceding code synchronizes the center button press and then starts a counter to
capture RAM_SIZE samples. It's good to give feedback to the user, so we'll use the upper
bits of the address to light the LEDs one at a time.

Once we capture the audio data, we need to do something with it to show our mastery of
memory creation. Luckily, the Nexys A7 board does offer audio out:

// Playback the audio

always @(posedge clk) begin

 button_usync <= button_usync << 1 | BTNU;

 m_clk_en_del <= m_clk_en;

 clr_led <= '0;

 if (button_usync[2:1] == 2'b01) begin

 start_playback <= '1;

 ram_rdaddr <= '0;

 end else if (start_playback && m_clk_en_del) begin

 clr_led[clr_addr] <= '1;

 AUD_PWM_en <= '1;

 if (amplitude_valid) begin

 ram_rdaddr <= ram_rdaddr + 1'b1;

 amp_counter <= 7'd1;

 amp_capture <= ram_dout;

 if (ram_dout != 0) AUD_PWM_en <= '0; // Activate pull up

 end else begin

 amp_counter <= amp_counter + 1'b1;

 if (amp_capture < amp_counter) AUD_PWM_en <= '0; //
Activate pull up

 end

 if (&ram_rdaddr) start_playback <= '0;

 end

160 FPGA Resources and How to Use Them

end

assign AUD_PWM = AUD_PWM_en ? '0 : 'z;

Again, we'll need to capture the button press and look for an edge. We have similar code
to walk through the memory to output the data. We also turn off the LEDs one by one to
show our activity.

There's one thing to note about driving the speaker. The output is an open drain output.
This means that in order to drive a signal to the circuit driving, we will drive the signal
low for a 0, but when we want the output to be a '1', we'll tristate it and a pull-up resistor
on the board will take it to the correct level. The way we build a tristate signal is as follows:

1. Define the output as a wire:

output wire AUD_PWM

2. Define the internal control signal:

logic AUD_PWM_en;

3. Infer the tristate output:

assign AUD_PWM = AUD_PWM_en ? '0 : 'z;

When AUD_PWM_en is driven high, the output will be 0. When it's low, the output will be
tristated.

Now that we can drive our headphone jack, we need to look at the output format. Much
like our input uses PDM, the output uses Pulse Width Modulation (PWM). In PDM, we
received a string of ones and zeros that we could count over a period of time to determine
the amplitude of a signal.

Now we've got the amplitude and we need to turn it into a PWM signal. Luckily, that is a
fairly easy process. We can accomplish this by creating a 7-bit counter and comparing the
count value to the amplitude over that period and sending a one out as long as it's less:

if (button_usync[2:1] == 2'b01) begin

 start_playback <= '1;

 ram_rdaddr <= '0;

end else if (start_playback && m_clk_en_del) begin

 clr_led[clr_addr] <= '1;

 AUD_PWM_en <= '1;

 if (amplitude_valid) begin

Project 6 – Using the temperature sensor 161

 ram_rdaddr <= ram_rdaddr + 1'b1;

 amp_counter <= 7'd1;

 amp_capture <= ram_dout;

 if (ram_dout != 0) AUD_PWM_en <= '0; // Activate pull up

 end else begin

 amp_counter <= amp_counter + 1'b1;

 if (amp_capture < amp_counter) AUD_PWM_en <= '0; //
Activate pull up

 end

 if (&ram_rdaddr) start_playback <= '0;

end

Now it's time to build and try it on the board. Press the center button. The lights should
turn on one by one. When complete, press the up button and the lights will go off one by
one. If you plug in headphones, you should hear some noise. I tapped the microphone and
heard the taps when played back.

In Project 5, we learned how to capture PDM data and store it in a RAM. We also learned
how to play the data back using PWM through the audio port. It's just an introduction
and gives a lot of opportunity for you to improve upon it. With an FPGA with hundreds of
DSP blocks and RAM, you could add audio effects, play sounds backward, amplify, filter,
and so on.

Project 6 – Using the temperature sensor
The Nexys A7 board has an Analog Device ADT7420 temperature sensor. This chip uses
an industry-standard I2C interface to communicate with. This two-wire interface is used
primarily for slower speed devices. It has the advantage of allowing multiple chips to be
connected through the same interface and be addressed individually. In our case, we will
be using it to simply read the current temperature from the device and display the value
on the 7-segment display.

162 FPGA Resources and How to Use Them

Our first step will be to design an I2C interface. In Chapter 7, Introduction to AXI, we'll
be looking at designing a general-purpose I2C interface, but for now, we'll use the fact
that the ADT7420 comes up in a mode where we can get temperature data by reading two
locations. First, let's take a look at the timing diagram for the I2C bus and the read cycle
we'll be using:

Figure 5.10 – I2C timing

We can see from the timing diagram that we have setup and hold times, which we have
seen before relative to our own designs. We also have minimum clock widths we need to
maintain. We can define parameters to handle these.

You can find the following code in the CH5/hdl/i2c_temp.sv folder:

 localparam TIME_1SEC = int'(INTERVAL/CLK_PER); // Clock
ticks in 1 sec

 localparam TIME_THDSTA = int'(600/CLK_PER);

 localparam TIME_TSUSTA = int'(600/CLK_PER);

 localparam TIME_THIGH = int'(600/CLK_PER);

 localparam TIME_TLOW = int'(1300/CLK_PER);

 localparam TIME_TSUDAT = int'(20/CLK_PER);

 localparam TIME_TSUSTO = int'(600/CLK_PER);

 localparam TIME_THDDAT = int'(30/CLK_PER);

I would encourage you to look at the state machine in the i2c_temp module. The state
machine controls the access to the temperature sensor on the Nexys A7 board. It's fairly
straightforward:

1. Wait for 1 second.

2. Send the start pattern on the SDA/SCL wires. This sends out the read command to
the temperature sensor and then reads back the two 8-bit registers that contain the
current temperature in Celsius.

Project 6 – Using the temperature sensor 163

3. Iterate until we have transmitted and received the data back.

4. Stop the transfer and go back to Step 1.

To access the temperature sensor, we've defined three buses:

• Send the predefined start, address, read, and stop signals.

• Force the bus to tristate during the ACK cycles and data cycles.

• Capture the data from the SDA bus.

The state machine provides us with access to the temperature sensor itself and returns the
data. Now we'll need to find a way to display the data so a human can understand it.

Handling the data
We need to determine how best to display the temperature. The ADT7420 returns the data
as a 16-bit value:

[15:7] Integer

[6:3] fraction * 0.0625

[2:0] Don't Care

We can use our bin_to_bcd function on the integer portion to generate our 7-segment
display data, but what can we do to calculate the fractional portion? We only have 16
values, so we could create a lookup table and simply look up the lower 4 digits. This is
effectively creating a ROM that can be indexed into. A ROM is created much like a RAM:

logic [15:0] fraction_table[16];

initial begin

 for (int i = 0; i < 16; i++) fraction_table[i] = i*625;

end

We can then convert the temperature based on the output of the temperature sensor chip:

// convert temperature from

always @(posedge clk) begin

 convert_frac <= convert;

 if (convert) begin

 encoded_int <= bin_to_bcd(temp_data[15:7]); // Decimal
portion

 fraction <= bin_to_bcd(fraction_table[temp_data[6:3]]);

164 FPGA Resources and How to Use Them

 decimal <= 8'b00010000;

 end

end // always @ (posedge clk)

assign encoded = {encoded_int[3:0], encoded_frac[3:0]};

One disadvantage of converting the temperature every second and having a fractional
precision is that the display will change quite a bit depending on your environment. We
can apply what is essentially a filter to the data so that we take the average temperature
over a period of time.

Now that we have learned how to handle the data, let's learn more about how we can filter
and improve the quality of that data.

Smoothing out the data
In base 10, it's very inexpensive to divide by a multiple of 10. Every multiple of ten is
simply a shift to the right of 1 digit:

12345/10 = 1234.5 Truncated = 1234, Rounded = 1235

12345/100 = 123.45 Truncated = 123, Rounded = 123

Similarly, in binary, every shift to the right is a division by 2:

10110>>1 = 1011.0 Truncated = 1011, Rounded = 1011

10110>>2 = 101.10 Truncated = 101, Rounded = 110

How does this help us with filtering? If we want to filter over a period of 2, 4, 8, 16, 32…
2^n samples, the division operation is virtually free since it is simply a shift and possible
rounding.

Project 6 – Using the temperature sensor 165

We can create a simple filter by summing our temperature data over a period of time:

Figure 5.11 – Simple moving average filter

The way we create a moving average filter is to keep a running average over a period
of time. In the preceding case, I picked 16 cycles, although any power of two is a good
choice. A non-power of two is an option, but until we discuss how to improve this filter in
Chapter 6, Math, Parallelism, and Pipelined Design, I wouldn't consider it.

The way the filter works is that we add incoming data to an accumulator and subtract the
output from 16 clock cycles previously. The accumulator then contains the sum of the
incoming data over the last 16 cycles. If we divide this by 16, we have an average over the
last 16 cycles.

Deeper dive into FIFOs
The heart of a FIFO is a RAM, a read and a write pointer, and flag generation logic. In a
synchronous FIFO, it is very easy to implement:

Figure 5.12 – Synchronous FIFO

166 FPGA Resources and How to Use Them

The write pointer increments on every push and the read pointer increments on every
pop.

Generating the flags boils down to comparing the read and write pointers against one
another. When we are dealing with a synchronous FIFO, these comparisons are easy
since everything is generated by the same clock and is properly timed. What about an
asynchronous FIFO, that is, a FIFO with separate read and write clocks?

Remember our discussions on synchronization and multibit buses. What happens if we
try to compare a read and write address on different clocks?

Figure 5.13 – Asynchronous FIFO (non-functional)

The difference between a synchronous FIFO and an asynchronous FIFO is shown by the
dotted line down the middle of Figure 5.13. Each half is an independent clock domain. In
Figure 5.12, everything is on a single clock domain.

Project 6 – Using the temperature sensor 167

Let's consider a read and write pointer on different clock domains. Assume the clocks have
no relationship and that the depth of the FIFO is 16 with 4-bit addresses:

Figure 5.14 – FIFO addressing

Looking at the preceding diagram, you can see that when the counter has multiple bits
changing at the same time and the clocks are asynchronous, we really can't determine
what the captured address will be.

We can fix this issue by gray coding the address pointers.

Gray coding
Binary counts increment by adding a 1 to the lowest bit. This results in a count such as the
following:

00 – 01 – 10 – 11.

Gray coding only allows one bit to change at a time, such as the following sequence:

00 – 01 – 11 – 10

Important note
Gray coded counters have a limited range as they must always only have
one-bit change at a time. A power of 2 is always safe to implement, but other
combinations, such as 2^n + 2^m, also work.

168 FPGA Resources and How to Use Them

Let's take a look at a FIFO using a gray code:

Figure 5.15 – Asynchronous FIFO with gray coding

By adding a gray code module and synchronizers across each clock domain, we can
compare the gray coded values against each other or convert them back to binary on the
destination clock.

Since gray codes only allow one bit to change at a time, we are guaranteed to either
capture the old value or the new one and not capture a transitional value that would cause
a FIFO empty, full, or word count error.

Project 6 – Using the temperature sensor 169

Constraints
This is a case where we will want to utilize the set_max_delay constraint between the
write pointer and the first register in the synchronizer:

Figure 5.16 – Using set_max_delay

Looking at one side of the gray code and synchronizer logic (there is a similar circuit on
the read side), we can see where we need to apply the set max_delay timing constraint:

Set_max_delay -datapath_only <delay> -from [get_pins FF0/Q] -to
[get_pins FF1/D] -datapath_only

To be absolutely safe, the delay should be set to the destination clock period or less. It can
be up to 2 destination clocks, but to be safe, use between 1 and 1.5* the destination clock
period.

Generating our FIFO
We will be using a synchronous FIFO, but understanding how an asynchronous FIFO
works is of critical importance if you decide to pursue a career utilizing FPGAs. You will
almost certainly be asked an interview question regarding this.

170 FPGA Resources and How to Use Them

We have the advantage the Xilinx has created a macro for us to use, xpm_fifo_(sync
| async). You can view the instantiation in i2c_temp.sv. You'll see that there are
a lot of ports that we are not using. We'll simply be pushing data into the FIFO on every
convert signal and we have a small state machine that generates our data to be converted
to send to our 7-segment display interface:

Figure 5.17 – Simple temperature filter state machine

We can look at the state machine and it's very straightforward. We create an elastic
buffer using the FIFO to hold 16 samples. As each new sample comes in, we build up our
accumulator value. When we hit 16 samples, we divide the accumulator by 16 and that
gives us the average temperature over the previous 16 seconds:

always @(posedge clk) begin

 rden <= '0;

 rden_del <= rden;

 smooth_convert <= '0;

 if (convert) begin

 smooth_count <= smooth_count + 1'b1;

 accumulator <= accumulator + temp_data;

 end else if (smooth_count == 16) begin

Summary 171

 rden <= '1;

 smooth_count <= smooth_count - 1'b1;

 end else if (rden) begin

 accumulator <= accumulator - dout;

 end else if (rden_del) begin

 smooth_convert <= '1;

 smooth_data <= accumulator >> 4;

 end

end

Take a look at the preceding code and see whether you can pick out the state progression.
It's not written as we have before, but you should be able to make out the flow. Once
you've had a chance to look over the code, build it and try it out on the board.

One thing that may be a surprise is that the output stays 0 for a long period of time, 16
seconds to be precise. This is because we are waiting to fill the FIFO. What would happen
if we output the accumulator/16 every cycle? Think about it for a minute or change the
code and see.

If we always output accumulator/16, we would end up with a temperature creeping up
from 1/16 the current temperature to the average current temperature of the room. For
something non-critical such as this, either method would be acceptable, but what if we
didn't want to do this and we always wanted the current value. For that, you'll need to
wait until Chapter 6, Math, Parallelism, and Pipelined Design, when we discuss fixed point
representation.

Summary
In this chapter, we've explored how to do some simple communication with the outside
world. We've gathered microphone data, stored it, and played it back. We've also
explored the I2C bus, a common way of communicating with slower speed devices. We
captured temperature data and showed how we could display a fixed-point number on
the 7-segment display. We introduced FIFOs and discussed how we can filter the data to
remove the noisiness of the temperature data varying.

I2C interfaces are used to communicate with many low speed devices such as A/Ds and
D/As and are very important for a lot of FPGA designs. You should feel comfortable
that you can do it at this point, and we will explore making a more generic version of
the interface in a later chapter. If you are interested in audio data, you should have some
confidence in capturing, manipulating, and generating audio.

172 FPGA Resources and How to Use Them

In the next chapter, we are going to look at some mathematical operations. We'll explore
how we can smoothly bring up our temperature sensor with fixed point math. We'll take a
look at floating point numbers and operations we can perform on the audio data.

Questions
1. What are the advantages of an I2C bus?

a) We can move large amounts of data quickly.

b) We only need two wires to communicate.

c) Multiple devices can be connected using only two wires.

d) All of the above.

e) Only (b) and (c).

2. What would be the preferred order of preference when you require a memory?

a) Use the IP catalog, infer, use xpm_memory

b) Use xpm_memory, use the IP catalog, infer

c) Infer, use xpm_memory, use the IP catalog

d) Use the IP catalog, use xpm_memory, infer

3. assign data = (data_en) ? 'z : '0;

a) Infers a multiplier

b) Infers a register

c) Infers a tristate IO

4. Gray coding is used in FIFOs.

a) Always

b) To pass counter information across clock domains in an asynchronous FIFO

c) Only in synchronous FIFOs

Further reading 173

The following code creates what kind of memory?
always @(posedge clk) begin

 if (wren) store[addr] <= din;

 dout <= store[addr];

end

a) Simple dual port

b) True dual port

c) Single port

d) ROM

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• https://reference.digilentinc.com/reference/programmable-
logic/nexys-a7/reference-manual

• Temperature sensor specification: https://www.analog.com/media/en/
technical-documentation/data-sheets/adt7420.pdf

• Deeper dive into FIFOs: http://www.sunburst-design.com/papers/
CummingsSNUG2002SJ_FIFO2.pdf

• https://www.xilinx.com/support/documentation/user_guides/
ug473_7Series_Memory_Resources.pdf

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://www.analog.com/media/en/technical-documentation/data-sheets/adt7420.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adt7420.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf

6
Math, Parallelism,

and Pipelined Design
Microprocessors are custom designed ASICs that can have very high performance when
running at very high frequencies – up to 5 Ghz as of writing this book. These processors
are general-purpose, meaning they need to balance their operations for a wide variety
of tasks. In contrast, the Artix 7 we are targeting can hit speeds of up to 300-400 Mhz.
Higher-end FPGAs can hit speeds of up to 800 Mhz. Unlike microprocessors, FPGAs can
be targeted for a specific application. Because of this, we can utilize design techniques
such as parallelism; that is, replicating logic in order to perform more tasks for a given
clock cycle than a microprocessor can. We can also use pipelining to achieve a high
throughput.

In this chapter, we will look deeper at fixed-point numbers with regards to our
temperature sensor. We'll also look at floating-point numbers and see why we might
want to use one over the other. Then, we'll look at the limitations of using floating-point
numbers in an FPGA (or even in general). We'll then explore parallelism and pipelined
designs by looking at the Xilinx FFT IP and how we can apply them to our audio file.

By the end of this chapter, you should have a good handle on fixed- and floating-point
math. You'll have an understanding of AXI streaming and how you can connect multiple
components together using it. This will demonstrate pipelining, one of the two ways of
getting performance from an FPGA. We'll briefly discuss how FPGAs are used in parallel
systems.

176 Math, Parallelism, and Pipelined Design

In this chapter, we are going to cover the following main topics:

• Fixed-point arithmetic

• Single precision and double precision floating-point numbers

• Floating-point arithmetic

• Pipelined designs

• Parallel designs

Let's get started!

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and projects in this chapter, take a look at the code files
for this chapter by going to this book's GitHub repository: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH6.

Introduction to fixed-point numbers
We've worked extensively with binary and BCD numbers throughout this book. Binary
is great for math because addition, subtraction, and multiplication are cheap and easy.
Division isn't too bad, but more time-consuming. We have only really used BCD numbers
for displaying output.

In the previous chapter, we needed to introduce fixed-point numbers. Recall the
temperature sensor format:

[15:7] Integer

[6:3] fraction * 0.0625

[2:0] Don't Care

If we look at mathematical operations, we know that adding two numbers increases the
result size by 1 bit and that to multiply two numbers, we need to add the sizes together.
The one question is where the fixed point goes in both cases:

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH6
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH6

Introduction to fixed-point numbers 177

Figure 6.1 – Addition/subtraction and multiplication of fixed-point numbers

The important thing to remember is that when you're adding two fixed-point numbers,
the digit point will remain at the same location. When multiplying, you add both the
integer bit positions to get the resultant integer bits and the number of both fractional bits
to get the resultant fractional bits. This can be seen in the preceding diagram. Here, we are
multiplying two numbers of 9.4, which results in 18.8.

One of the important things to remember is that when you add, you must make sure
the decimal points of both numbers are aligned. When you multiply, there is no such
requirement.

The advantage of dealing with fixed-point numbers is that the same logic is used for math
operations in binary as fixed point. The only the difference is maintaining where the
decimal point is in your logic.

Now that we have learned how to utilize fixed-point arithmetic, we'll put it to work in our
temperature sensor.

178 Math, Parallelism, and Pipelined Design

Project 7 – Using fixed-point arithmetic in our
temperature sensor
Let's take a look at how we can optimize our temperature averaging to handle the 16
seconds where the temperature is incorrectly calculated. This happens because we are
dividing an invalid temperature over the first 15 clock cycles.

There are cases where either a delay or inaccurate results can't occur. I was actually asked a
job interview question regarding how to make sure that the output from this type of filter
was valid during the bring-up time, so this really is a practical question that you may need
to address someday.

Using fixed-point arithmetic to clean up the bring-up
time
First, let's take a look at what a fixed-point scaling factor looks like. In the end, we want
to scale to that of a single value from the sensor. To do this, we want to scale by a fraction.
The following table shows the first 15 cycles, plus the steady state of the accumulator. I've
populated the following table to show the fractions we need to calculate:

Project 7 – Using fixed-point arithmetic in our temperature sensor 179

We'll need to multiply the accumulator by the fractional value and shift it to get the scaled
result. If we do this, rather than see the temperature ramp up, we should see it stay fairly
consistent.

I recommend the following site for converting fractional values into a binary
representation: https://www.exploringbinary.com/binary-converter/. By
converting the fractions into a decimal fraction and using this website, I came up with the
following conversion table:

 divide[0] = 17'b1_00000000_00000000; // 1

 divide[1] = 17'b0_10000000_00000000; // 1/2

 divide[2] = 17'b0_01010101_01010101; // 1/3

 divide[3] = 17'b0_01000000_00000000; // 1/4

 divide[4] = 17'b0_00110011_00110011; // 1/5

 divide[5] = 17'b0_00101010_10101010; // 1/6

 divide[6] = 17'b0_00100100_10010010; // 1/7

 divide[7] = 17'b0_00100000_00000000; // 1/8

 divide[8] = 17'b0_00011100_01110001; // 1/9

 divide[9] = 17'b0_00011001_10011001; // 1/10

 divide[10] = 17'b0_00010111_01000101; // 1/11

 divide[11] = 17'b0_00010101_01010101; // 1/12

 divide[12] = 17'b0_00010011_10110001; // 1/13

 divide[13] = 17'b0_00010010_01001001; // 1/14

 divide[14] = 17'b0_00010001_00010001; // 1/15

 divide[15] = 17'b0_00010000_00000000; // 1/16

 divide[16] = 17'b0_00010000_00000000; // 1/16

Remember from the previous chapter that we can create a ROM using an initial statement.
The first thing we need to do is decide how many bits of precision we need. A DSP 48
can handle an 18x25 two's compliment multiplication. Because of this, I chose a 17-bit
unsigned scaling factor. Making the factor larger could impact the number of multipliers
used or the speed of operation; making it smaller won't make a difference in terms of
resources needed, but could reduce the accuracy.

https://www.exploringbinary.com/binary-converter/

180 Math, Parallelism, and Pipelined Design

The preceding table is of the format 1.16 and is truncated and not rounded. You can
consider rounding the values. Rounding a binary number is as simple as adding the
uppermost bit you are going to truncate to the bits you are going to keep:

Figure 6.2 – Rounding

0.00000 rounding to 4 bits would be 0.0000.

0.00001 rounding to 4 bits would be 0.0001.

0.11111 rounding to 4 bits would be 1.0000.

So, we've got our scaling factors, but how can we utilize them? I've modified the pipeline
we created so that the accumulator now calculates on every input, the scaling factor is
applied, and the data is displayed. Previously, we only outputted the data once 16 cycles of
data had been accumulated:

always @(posedge clk) begin

 rden <= '0;

 smooth_convert <= '0;

 convert_pipe <= convert_pipe << 1;

 if (convert) begin

 convert_pipe[0] <= '1;

 smooth_count <= smooth_count + 1'b1;

 accumulator <= accumulator +

 temp_data[15:3];

 end else if (smooth_count == 16) begin

 rden <= '1;

Project 7 – Using fixed-point arithmetic in our temperature sensor 181

 smooth_count <= smooth_count - 1'b1;

 end else if (rden) begin

 accumulator <= accumulator - dout;

 end else if (convert_pipe[2]) begin

 if (~sample_count[4]) sample_count <= sample_count + 1'b1;

 smooth_data <= accumulator *

 divide[sample_count];

 end else if (convert_pipe[3]) begin

 smooth_convert <= '1;

 smooth_data <= smooth_data >> 16;

 end

end

The pipeline is now free running since it shifted convert_pipe freely. What we've
changed is that we scale the accumulator value by the scaling factor we defined.
Remember our discussion regarding multiplication. Here, we've added 16 bits of the
fraction to our scaled value, so we need to remove that in the end. We can accomplish this
by adding a stage, convert_pipe[3].

We can run the simulation and see that the data is fairly constant. I've modified the
testbench to input a constant 25 degrees Celsius, 0x19 in hex. Now, build the bitstream
and try it on the board. Rather than 16 seconds of 0, you should see 1 second and then
data being displayed. It should be fairly constant for the time the board is up.

From this project, you should notice that fixed-point arithmetic isn't costly and is very
easy to implement. The pipeline only has four clock cycles to calculate the smoothed-out
temperature over the last 16 cycles.

Temperature conversion using fixed-point arithmetic
Our temperature sensor project should be good enough for everyone. We can display the
device temperature to 1/16 of a degree Celsius precision and we've added averaging, which
means we can now bring it up cleanly. However, it is missing one thing. If you are outside
the US, I'm sure you could care less what the temperature is in anything except Celsius,
but in the US, we stubbornly hold onto imperial measurements. Bear with me as I add
Fahrenheit conversion so that I can tell what the temperature actually is.

182 Math, Parallelism, and Pipelined Design

First, let's take a look at the formula that's used to convert Celsius into Fahrenheit:

Figure 6.3 – Formula for converting Celsius into Fahrenheit

As we can see, the formula is straightforward. We implement a divider and a multiplier,
but since 9/5 is a constant, we can create a fixed-point representation of it and then
multiply it by the constant. Recall how long it took for our divider and that we can
perform multiplication in a single cycle? This highlights something important to bear
in mind. Often, there are multiple ways of tackling a problem. The first or most obvious
solution isn't always the best, so it's a good idea to keep an open mind about other ways to
implement a solution.

As is usually the case, we have a choice regarding where we can perform this operation. To
keep things small and simple, I propose we do this once we scale down our intermediate
result. This reduces the multiplier's size.

We'll also need a way to select Celsius or Fahrenheit, so we'll add SW[0] to control
Celsius/Fahrenheit and LED[0] to indicate if we are displaying Fahrenheit.

I've modified our pipeline slightly so that we can apply the conversion:

end else if (convert_pipe[3]) begin

 smooth_data <= smooth_data >> 16;

 smooth_convert <= ~SW;

end else if (convert_pipe[4]) begin

 smooth_convert <= SW;

 smooth_data <= ((smooth_data * NINE_FIFTHS) >>
16) + (32 << 4);

end

The main change is that, in convert_pipe[3], we selectively send the Celsius data
to the BCD conversion by using smooth_convert <= ~SW. convert_pipe[4]
handles the heavy lifting of the Fahrenheit conversion. Note that in this case, we are taking
advantage of more of the DSP 48 than we have in the past since we are performing a
multiply and an add in a single clock cycle.

Project 7 – Using fixed-point arithmetic in our temperature sensor 183

Build the design and verify the Fahrenheit display:

Figure 6.4 – i2c_temp, fixed point with Fahrenheit conversion

With a positive WNS, we are making timing comfortably and are using very few device
resources. Let's take a look at the conversion pipeline in the simulation:

Figure 6.5 – Fixed-point I2C simulation with Fahrenheit conversion

Here, you can see that the pipeline is short and performs the conversion with a small
number of device resources when we use a fixed-point implementation.

Looking at our design, we didn't have to modify the I2C interface. In fact, we can make
it a more general-purpose core that we could use to connect to other I2C devices. We'll
address this in Chapter 7, Introduction to AXI.

184 Math, Parallelism, and Pipelined Design

What about floating-point numbers?
You've probably heard of floating-point numbers. Where fixed-point numbers can only
represent a very limited, defined range of fractional values, floating-point numbers can
represent numbers from the very small to the very large, although their precision is
limited based on the standard that's used. The Institute of Electrical and Electronics
Engineers (IEEE) has defined a number of floating-point formats. Graphics card
companies such as Nvidia have also contributed to the standard over the years.

Floating-point arithmetic operations are expensive compared to fixed-point ones. To
give you an idea of this, it wasn't until the Pentium processor that Intel standardized
on integrating its floating-point coprocessor into the main microprocessor. Prior to the
Pentium processor, every x86, from 8086 to the 80486 had a corresponding x87 processor
(8087, 80287, and so on) that provided floating-point operations.

Some of the reasons for Xilinx's choices in designing the DSP48 blocks in their designs
was to better support floating point in FPGAs. Floating point is no longer as prohibitive to
include as it was when I started FPGA design, though it is still generally slower and more
complex than fixed point.

Let's take a look at the IEEE single and double precision floating-point representations of
numbers:

Figure 6.6 – IEEE single precision floating-point representation

The sign bit is the same as a two's compliment number in that a '1' indicates a negative
value and a '0' indicates a positive value. The fraction is an unsigned 24-bit number.
You'll notice that only 23 bits have been defined. The 24th bit is an implied 1, where
the number represented is 1.fraction. This is made possible since the value of 0 is
represented by the 32-bit field being set to all 0s.

The exponent is biased from 127, so the actual exponent is -127 to give a value from -126
to +127. -127 and + 128 are reserved.

What we can infer from this is that floating point is an excellent choice when we have
numbers relatively close together but have a large potential range of values. Floating
point covers these cases, but at the cost of resources and processing time. Math is more
costly and slower than fixed point, but if in one set of calculations you are operating at
a microscopic scale and in another set, you are at a galactic scale, you can use a single
format.

Project 7 – Using fixed-point arithmetic in our temperature sensor 185

Double precision extends the exponent to 11 bits and the fraction to 52 bits.

In the past, if you wanted to design something using floating point, you'd need to design
your own floating-point operators. An example of a floating-point operator can be found
in my GPLGPU project at https://github.com/asicguy/gplgpu/tree/
master/hdl/math.

I'll discuss the main components here. For this analysis, I'll be focusing on the
floating-point designs for the GPLGPU that were implemented in ASICs in 1998 and
re-implemented in FPGAs in the early 2000s. Depending on the speed you are targeting,
the pipelining may be more or less the same, but this is a good baseline and starting point
for discussion.

Floating-point addition and subtraction
Where multiplication is typically a slower operator for binary or fixed-point numbers,
addition/subtraction can actually have more latency in terms of floating point. The reason
for this is that we need to align our decimal point as if we were doing the calculations by
hand. Remember that the fraction has an implied 1. This means that once the addition or
subtraction is complete, we need to adjust the exponent so that the final fraction is of the
form 1.x.

Floating-point multiplication
Floating-point multiplication is not as complex. We simply add the exponents and
multiply the mantissa.

Floating-point reciprocal
Here is where things get interesting. Integer division is a series of subtractions that are
performed by restoring and non-restoring division. This gives us a precise answer, though
for large integer values, it can take hundreds of clock cycles to complete.

Like our integer division algorithms, we'll need a similar algorithm for floating-
point multiplication. What I've used in the past is Newton-Raphson. It consists of an
initial guess that's provided via a lookup table. This is precalculated. Then, successive
approximations converge on a solution. You may remember (or have heard about)
the Pentium division bug. This bug occurred due to bad table values in their division
algorithm.

https://github.com/asicguy/gplgpu/tree/master/hdl/math
https://github.com/asicguy/gplgpu/tree/master/hdl/math

186 Math, Parallelism, and Pipelined Design

A more practical floating-point operation library
You are welcome to explore or use the functions in the GPLGPU. They are licensed under
GPL v3. However, let's explore what Xilinx has to offer for floating-point libraries:

Figure 6.7 – Xilinx floating point IP

We talked about the Xilinx IP catalog previously. Search for floating and you'll find the
floating-point IP wizard. You will see that Xilinx provides a complete set of operators with
Vivado.

Like much of Xilinx IP, it utilizes an AXI interface – specifically the AXI streaming
interface. Let's explore it in more detail.

Project 7 – Using fixed-point arithmetic in our temperature sensor 187

A quick look at the AXI streaming interface
Xilinx IP has almost universally migrated to using the AXI bus, which is a set of protocols
defined by ARM. There are three AXI variants; we'll look at them in more detail in
Chapter 7, Introduction to AXI. However, we will need to take a quick look at the AXI
streaming interface in order to use the Xilinx floating-point IP.

When Xilinx started building SOC FPGAs with integrated processors, they needed a bus
standard for their IP, as well as user-produced IP. Since ARM already had IP interfaces
defined, Xilinx took its IP with native interfaces or older style interfaces and ported them
to AXI for compatibility with the ARM processors.

AXI streaming is point-to-point communication that's been optimized for data
movement. It is the simplest of the AXI protocols in that it doesn't require address
decoding, so it's used for a lot of IP work. First, let's take a look at how an AXI streaming
interface works:

Figure 6.8 – AXI stream example

The interface itself is straightforward. The data source drives a valid signal, along with
data. A transfer is terminated when tlast is asserted. The slave can throttle the data using
tready. You can see from the waveform that data is only transferred when tread and
tvalid are asserted. If tready goes low, the source must hold tlast, tdata, and tvalid until
tready goes high.

Now, let's examine what we need to add or change in the design to convert it into floating
point.

188 Math, Parallelism, and Pipelined Design

Project 8 – Updating the temperature
sensor project to a pipelined floating-point
implementation
First, let's put our proposed design into a diagram to determine what we need:

Figure 6.9 – Floating-point conversion pipeline

The pipeline looks very similar to our previous temperature pipeline. The main differences
are that we are now converting to/from floating point on the input and output. Internally,
the old 4-5 stage pipeline is handled similarly. However, each stage is no longer a single
clock cycle since floating-point operations take longer to process.

To convert our temperature sensor and Fahrenheit conversion, we will need the following
floating-point operations, all of which we can generate from the Vivado IP catalog as we'll
see in the next section.

Project 8 – Updating the temperature sensor project to a pipelined floating-point implementation 189

Fix to floating point conversion
We'll need to make a couple of modifications to customize the fix_to_float operator
for our particular use case:

Figure 6.10 – fix_to_float format configuration

190 Math, Parallelism, and Pipelined Design

Recall that the format of the temperature sensor is 4 bits of a fraction and 9 bits of an
integer. Xilinx likes to make the streaming interface a multiple of 8, so I set the conversion
to 12.4:

Figure 6.11 – Changing the interface

We'll want to modify the flow control so that it's non-blocking. It's not strictly necessary
for this design, but it will maximize our resource usage when pipelining it to give us an
idea of the worst-case floating-point resources. This pane also gives you the option of
adding some of the optional components of the AXI bust: the tlast and tuser signals. Tlast
is useful if you'll be passing large amounts of data and you need to determine when a
grouping of data finishes. On the other hand, tuser allows you to pass information, along
with data, so that you can use it in your design.

Project 8 – Updating the temperature sensor project to a pipelined floating-point implementation 191

Floating-point math operations
If we construct our pipeline with a little extra control logic, we can share the addition and
subtraction, as we did in our fixed-point case:

Figure 6.12 – Add/Subtract

Make sure that you change the interface, as shown in Figure 6.11.

192 Math, Parallelism, and Pipelined Design

We'll need two additional components: a multiplier and a fused multiply add. Make sure
that you follow Figure 6.11 when modifying the interfaces for both. When you generate
the fused multiply add, make sure you select only Add:

Figure 6.13 – Fused multiply add

Finally, we'll need to convert back to fixed point for our seven-segment display.

Project 8 – Updating the temperature sensor project to a pipelined floating-point implementation 193

Float to fixed point conversion
Let's look at what we need to do to generate our fixed-point output:

Figure 6.14 – Customizing float to fixed output

With that, we've got all the components of our pipeline so that we can take fixed points in,
operate entirely on the data as a floating point, and then write the data out as a fixed point.

Let's take a look at our simulation to see what our latency looks like.

194 Math, Parallelism, and Pipelined Design

Simulation
If you take a look at the latency in the components, you'll see that each floating-point
operation is adding quite a bit of latency over our fixed-point attempt. We can take a look
at our simulation to see what the actual latency looks like:

Figure 6.15 – Floating-point temperature simulation

Here, you can see how much latency has been added. We've gone from 5 clocks to about
50. We have plenty of time, so this isn't really a problem. Let's take a look at our resource
usage:

Figure 6.16 – Floating-point temperature utilization

Parallel designs 195

Let's compare the utilization of our fixed-point implementation to our floating-point
implementation:

Even though the design is quite small, the difference is pretty remarkable in terms of
latency and area.

This project should give you some insight into some of the advanced math options of
using floating point, as well as how the AXI streaming interface can be used to connect
multiple pieces of the IP together. You may have noticed that we didn't have to keep track
of pipelining as we simply used the valid signals in and out of each core as our control
signals.

With floating point out of the way, let's touch briefly on parallelism.

Parallel designs
FPGAs, being a blank slate, provide the fabric we can use to construct various
applications. People use FPGAs for signal processing applications such as software-
defined radio (SDR), high performance computing applications, and, more recently,
artificial intelligence (AI) and machine learning (ML).

ML and AI and massive parallelism
In recent years, ML and AI have boomed. Self-driving cars, deep fake generation and
analysis, and market predictions are but a few of the topics that these applications have
been applied to.

It's easy to see why. The Artix part we are targeting has up to 240 DSP blocks. The largest
Virtex Ultrascale+ that Xilinx makes has almost 4,000 DSP blocks and 9,000 Logic cells.
Xilinx advertises up to 38.3 TOP/s for INT8 operations in the VU13P.

It's beyond the scope of this book to provide an overall introduction, but I would certainly
encourage investigating the resources available for parallel designs.

196 Math, Parallelism, and Pipelined Design

Parallel design – a quick example
Let's take a look at a quick example that shows a massively parallel implementation. In
this case, we want to create an adder tree that will output the sum of 256 inputs in 8 clock
cycles.

Here, we need to discuss latency and throughput. Latency is the number of clock cycles
(or time) it takes to produce a result. In the parallel example presented here, we have a
latency of 8 clock cycles. Because the design is pipelined, we can produce a new result
every clock cycle after the initial data, as long as new data is being fed in:

Figure 6.17 – Parallel design example

Let's see how this can be implemented in SystemVerilog:

always @(posedge clk) begin

 for (int i = 0; i < 128; i++)

 int_data0[i] <= in_data[i*2+0] + in_data[i*2+1];

 for (int i = 0; i < 64; i++)

 int_data1[i] <= int_data0[i*2+0] + int_data0[i*2+1];

 for (int i = 0; i < 32; i++)

 int_data2[i] <= int_data1[i*2+0] + int_data1[i*2+1];

 for (int i = 0; i < 16; i++)

 int_data3[i] <= int_data2[i*2+0] + int_data2[i*2+1];

 for (int i = 0; i < 8; i++)

 int_data4[i] <= int_data3[i*2+0] + int_data3[i*2+1];

 for (int i = 0; i < 4; i++)

 int_data5[i] <= int_data4[i*2+0] + int_data4[i*2+1];

Summary 197

 for (int i = 0; i < 2; i++)

 int_data6[i] <= int_data5[i*2+0] + int_data5[i*2+1];

 out_data <= int_data6[0] + int_data6[1];

 int_valid <= int_valid << 1 | in_valid;

 out_valid <= int_valid[6];

end // always @ (posedge clk)

This will create a tree of 255 adders. The operation is both parallel, in the sense that we are
going to handle all the inputs simultaneously, and pipelined in that new data can be fed
into every clock cycle. As we mentioned previously, after 8 clock cycles, we'll have the first
sum available for use. Every cycle after that, a new sum will be available.

Summary
In this chapter, we took our temperature sensor project and improved upon it using fixed-
point math. We removed our startup condition so that the temperature is output almost
immediately and constantly filtered through the life of the design. We then looked at
floating-point operations and converted the design into a floating-point pipeline. This led
us to introducing AXI streaming, which will only become more important as we proceed
throughout this book.

In the next chapter, we are going to delve further into AXI interfaces, package up some of
our IP into AXI format so that we can reuse it, and introduce the IP integrator and block
design tool.

Questions
1. If we have a large dynamic range in our numbers, what are we better off using?

a. Integers

b. Fixed point

c. Floating point

d. Imaginary

198 Math, Parallelism, and Pipelined Design

2. Which order represents the number complexity from least complex to most
complex?

a. Fixed point, integers, floating point

b. Integer, fixed point, floating point

c. Floating point, fixed point, integer

d. Integer, floating point, fixed point

3. The following code is an example of what kind of design?

always @(posedge clk) begin

 if (stage[0]) out[0] <= fp_out[0];

 if (stage[1]) out[1] <= out[0] + fp_out[1];

 if (stage[2]) out[2] <= out[1] + out[0] + fp_out[2];

end

a. Pipelined

b. Parallel

c. State machine

4. The following code is an example of what kind of design?

always @(posedge clk) begin

 for (int i = 0; i < 128; i++) dout[i] <= din[i*2] +
din[i*2+1];

end

a. Pipelined

b. Parallel

c. State machine

5. Which of the following signals makes up an AXI streaming interface?

a. tdata

b. tvalid

c. tready

d. tlast

e. tuser

f. taddr

Further reading 199

6. A 16.16 * 8.16 fixed-point multiplier would result in an output of what?

a. 16.16

b. 17.16

c. 32.32

d. 24.32

Challenge
We are not using all of the seven-segment display. Earlier, we used an LED to indicate
degrees Celsius or Fahrenheit. Can you modify the code so that it uses one (or two) of the
seven segments to display C/F or oC/oF?

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• The Nexys A7 reference manual: https://reference.digilentinc.com/
reference/programmable-logic/nexys-a7/reference-manual

• Temperature sensor specification: https://www.analog.com/media/en/
technical-documentation/data-sheets/adt7420.pdf

• Xilinx DSP 48 users guide for 7-series parts (Artix-7): https://www.xilinx.
com/support/documentation/user_guides/ug479_7Series_
DSP48E1.pdf

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://www.analog.com/media/en/technical-documentation/data-sheets/adt7420.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adt7420.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

Section 3:
Interfacing

with External
Components

Up until now, we've limited our connections to the outside world to buttons, switches,
LEDs, and 7-segment displays. We are going to update them to make them more reusable
and add some more interesting components to the mix. By the end of this section, we will
be able to replace the buttons and switches with a PS/2 keyboard and replace the LEDs
and 7-segment display with a Video Graphics Array (VGA) controller.

This part of the book comprises the following chapters:

Chapter 7, Introduction to AXI

Chapter 8, Lots of Data? MIG and DDR2

Chapter 9, A Better Way to Display – VGA

Chapter 10, Bringing It All Together

Chapter 11, Advanced Topics

7
Introduction to AXI

As Field-Programmable Gate Arrays (FPGAs) became larger and more complex,
vendors such as Xilinx began offering Intellectual Property (IP), designed and tested to
accelerate design implementation. These first IPs often had simple interfaces, sometimes
referred to as native interfaces. Xilinx offered early high-end parts with PowerPC cores
and their own MicroBlaze cores, each of which had differing interfaces. When Xilinx
adopted ARM processors as part of their Zynq family, they standardized the ARM
processor interfaces, using the Advanced eXtensible Interface (AXI). In order to best
use Xilinx IPs, we have already looked at the streaming interface. There are two other
interfaces that are commonly used: AXI-Lite and AXI full.

By the end of this chapter, you'll have a good handle on the flavors of AXI and when to
use them. You'll know how to create your own IPs using AXI to make integration with
other IPs easier. Finally, you'll have developed a temperature sensor using AXI and the IP
integrator.

In this chapter, we are going to cover the following main topics:

• AXI streaming

• Project 9 – creating IPs for Vivado using AXI streaming interfaces

• Introduction to the IP integrator

• AXI4 interfaces (full and AXI-Lite)

• Developing IPs – AXI-Lite, full, and streaming

204 Introduction to AXI

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH7.

AXI streaming
We took a brief dip into AXI and the streaming interface in Chapter 6, Math, Parallelism,
and Pipelined Design. AXI streaming is used primarily as a lightweight conduit to move
data between two points, as shown in Figure 7.1:

Figure 7.1 – AXI streaming with an optional tuser signal

There is an optional sideband signal included for completeness, tuser. This signal can be
passed along with the stream, but it's up to the source and sink to understand how this
signal is used.

Before we dive into the other AXI types, let's break up our I2C temperature sensor into
AXI streaming-based IPs.

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH7
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH7

Project 9 – creating IPs for Vivado using AXI streaming interfaces 205

Project 9 – creating IPs for Vivado using AXI
streaming interfaces
In this project, we are going to take our I2C temperature sensor and split it into IPs that
we can use in the IP integrator to reconstruct our project.

Our initial design looked like this:

Figure 7.2 – Original temperature sensor pipeline

Looking at the Xilinx floating-point IP, fix to float, float to fix, add/sub, scaler, and fused
multiply/add are all IP blocks with streaming interfaces. What we need to address is the
I2C interface that reads the temperature from the ADT7420, the temperature pipeline
itself, and the seven-segment display interface. Let's tackle the seven-segment display first.

Seven-segment display streaming interface
The first thing we need to do is create a directory to house our IP sources. This will make
packaging easier. We'll do this by creating a directory under CH7/build/IP/seven_
segment. Inside this directory, we have an hdl directory that contains the stripped-
down seven-segment portion of our temperature sensor.

If we abide by a few rules, it will be easier to create the IP. The complete manual can be
found at https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf.
We have already named our clock signal clk, which is one of the ways the tool can
automatically identify clock signals. To create an AXI streaming bus that can be extracted
automatically, we need to name our interface signals in a consistent way:

• <interface name>_tdata (required)

• <interface name>_tvalid (required)

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf

206 Introduction to AXI

• <interface name>_tready

• <interface name>_tstrb

• <interface name>_tkeep

• <interface name>_tlast

• <interface name>_tid

• <interface name>_tdest

• <interface name>_tuser

Our port list for the IP now looks like this:

module seven_segment

 #(

 parameter NUM_SEGMENTS = 8,

 parameter CLK_PER = 10, // Clock period in ns

 parameter REFR_RATE = 1000 // Refresh rate in Hz

)(

 input wire clk,

 input wire seven_segment_tvalid,

 input wire [NUM_SEGMENTS*4-1:0] seven_segment_tdata,

 input wire [NUM_SEGMENTS-1:0] seven_segment_tuser,

 output logic [NUM_SEGMENTS-1:0] anode,

 output logic [7:0] cathode

);

anode and cathode will become external interfaces on the board. We've named our
AXI streaming interface seven_segment and clk should be recognized without any
special handling.

Let's look at packaging our IP:

1. The first step in this process would be to create an IP:

Project 9 – creating IPs for Vivado using AXI streaming interfaces 207

Figure 7.3 – Creating and packaging the IP
The first dialog box simply summarizes what we are going to do. We've modified the
code to encapsulate the IP.

Figure 7.4 – Packaging the directory

208 Introduction to AXI

2. Make sure to select Package a Specified Directory and click Next.

Figure 7.5 – Specifying the source directory

Project 9 – creating IPs for Vivado using AXI streaming interfaces 209

3. Make sure that Package as a library core is unchecked. Select the seven_
segment directory under Create and Package New IP.

Figure 7.6 – Destination directory

210 Introduction to AXI

4. We need to specify the project name and the destination location. In this case, we'll
create an ip_repo directory within the build directory. Then, select Next.

Figure 7.7 – Basic settings

5. You can define the basic IP settings on the page shown in the preceding screenshot.
Let's verify the ports and interfaces, as shown in the following figure:

Figure 7.8 – Verifying ports

Project 9 – creating IPs for Vivado using AXI streaming interfaces 211

6. We can see that the IP packager was able to find the clock port and the seven-
segment AXI slave port automatically. The other two ports are simply brought
out as is.

Figure 7.9 – Review the IP

7. Finally, review the IP and then press Package IP.

At this point, the IP is ready to use. You will notice that I've added the optional tuser
interface in this version of the streaming interface. I did this because we need a way of
passing along the digit point for the display. Since there is no standard for using tuser,
it's important that the master interface knows how to drive it and the slave knows how to
interpret it.

I've packaged up two more IPs for us to use: the adt7420_i2c interface and the
floating-point temperature sensor core. The reason I created the temperature sensor core
itself is so that we can use the Block Design (BD) tool as an alternative to developing this
version of the design. We could have kept our old top level and simply instantiated our
two new cores. Typically, I prefer to work in SystemVerilog directly, but there are times,
such as when developing an FPGA System on Chip (SOC), when you will need to use the
BD tool for at least some of the design.

Let's take a quick look at the ADT7420 code that makes up our new IP.

212 Introduction to AXI

Developing the ADT7420 IP
First, let's take a look at the new top level for our IP:

module adt7420_i2c

 #(

 parameter INTERVAL = 1000000000,

 parameter CLK_PER = 10

)(

 input wire clk, // 100Mhz clock

 // Temperature Sensor Interface

 inout wire TMP_SCL,

 inout wire TMP_SDA,

 inout wire TMP_INT,

 inout wire TMP_CT,

 output logic fix_temp_tvalid,

 output logic [15:0] fix_temp_tdata

);

We've got our clock, our I2C bus, and connections to the temperature-sensing chip.

This file contains the I2C state machine. Feel free to take a look. The difference is that the
output of the temperature is now AXI streaming. The IP is already built, but if you want,
you can build it again as an exercise.

Finally, we can take a quick look at the core of the design where we perform the floating-
point temperature smoothing, Fahrenheit conversion, and output to our seven-segment
display IP.

Understanding the flt_temp core
The floating-point temperature sensor core is the most complex block in our design.
It connects to our other two IP cores as well as the floating-point logic we previously
generated. The core of the flt_temp module is unchanged from our previous design;
however, we now have a new interface definition for the AXI streaming interfaces.

I encourage you to take a look at the Hardware Description Language (HDL). We'll see
in the next section as we build the BD what the cores look like.

Project 9 – creating IPs for Vivado using AXI streaming interfaces 213

IP integrator
The IP integrator provides a graphical user interface for hooking up IP cores using
schematic capture with BD. We've gone through the preceding steps for our three IP cores.
This procedure has added the cores to our project for use:

1. Our first step is to create our BD and add the cores:

Figure 7.10 – Create Block Design

214 Introduction to AXI

Selecting Create Block Design will bring up the tool we'll be using in this section.

Figure 7.11 – Adding an IP

2. With the main BD window up, the first thing to do is add the IP. We'll start with our
adt7420_i2c core IP and take a look at it.

Figure 7.12 – Selecting our IP

Project 9 – creating IPs for Vivado using AXI streaming interfaces 215

3. Clicking + will bring up a popup to search for our IP. We can type in adt and find
the interface we are looking for. Double-click to add to the design. Now we can take
a look at what the core looks like when placed and the options we can set:

Figure 7.13 – IP core configuration

If you recall from our original design, we specified two parameters for this core. Unless
you modify them, they will appear as is within the core configuration when you double-
click on the core instance in the block diagram:

module adt7420_i2c

 #(

 parameter INTERVAL = 1000000000,

 parameter CLK_PER = 10)

Since the parameters in our cores are already set to what we need for the Nexys A7 board,
we don't need to change anything. Take a look at the design instance and you'll see our
port list:

 input wire clk, // 100Mhz clock

 // Temperature Sensor Interface

 inout wire TMP_SCL,

 inout wire TMP_SDA,

 inout wire TMP_INT,

 inout wire TMP_CT,

216 Introduction to AXI

 output logic fix_temp_tvalid,

 output logic [15:0] fix_temp_tdata

Because the streaming interface was identified when packaging the IP, it's collapsed in the
diagram and marked as fix_temp. The clock port will be connected to our clock source
and we'll hook up the TMP_* ports to external interfaces:

1. Let's continue and add all of the IPs we'll need for the design:

Figure 7.14 – User IPs added to the design
We still have quite a few IPs to add to our design; we need all our floating-point
cores. Take a look back at Figure 7.2 if you need to, but our names should also give
us a clue as to what's needed. All the floating-point cores are simply configurations
of the floating-point IP, so search in the add IP popup for floating point. We'll
need to do this step five times.

 Figure 7.15 – Block properties

Project 9 – creating IPs for Vivado using AXI streaming interfaces 217

The default name for the IP is simply the IP name with an incrementing number
appended to it. We can rename our instances so they are more user-friendly. Select
the IP after you configure it and then on the left side of the BD window, you'll see
the Block Properties pane. This gives easy access to the configuration as well as the
ability to change the instance name.

2. Let's continue with the rest of the floating-point IPs:

Figure 7.16 – Full design

218 Introduction to AXI

We can now look at the design. We'll need to hook up the streaming interfaces
manually as I did in Figure 7.16. You'll also have noticed that a banner appeared at
some point when adding the IP telling you that the BD tool recognizes that it can
automate some of the connections for you:

Figure 7.17 – Connection automation

3. In this case, the tool will connect up our clocks and system reset for us. Once that's
complete, we can connect up our external ports. In this case, we'll do it manually.

Project 9 – creating IPs for Vivado using AXI streaming interfaces 219

Figure 7.18 – Validate Design
When you have completed your schematic, click the validate design button. This
will ensure that there are no errors with your design.

Important note
If you were building something with AXI-Lite or full interfaces, you would
need to make sure the addressing was set up prior to building. We'll look at that
in the next chapter.

4. The design has no errors, so we need to build the output products and then generate
the bitstream:

Figure 7.19 – Generating output products

220 Introduction to AXI

5. One important thing is that our design has tri-state buffers internally. In order
to have the design function properly, we need to select Global for the synthesis
options. This appears to be a limitation that doesn't allow you to use the Out Of
Context (OOC) synthesis if tri-state ports are embedded in the design:

Figure 7.20 – Global synthesis

6. Finally, we need to create the HDL wrapper, which will become the top level of our
design (refer to Figure 7.18):

Figure 7.21 – Create HDL Wrapper

Project 9 – creating IPs for Vivado using AXI streaming interfaces 221

Let's take a look at the final design. Here the schematic is complete:

Figure 7.22 – Completed BD

Functionally, this design will be equivalent to what we developed in Chapter 6, Math,
Parallelism, and Pipelined Design. This is simply another way of jumpstarting your designs
if you are using a lot of IPs. It is most useful when using processors and is practically
required for SOC designs. In the end, you can embed your own IPs as we have done or
actually package up your BD and include it in an HDL design.

Let's look at debugging our design.

IP integrator debugging
The IP integrator makes it easy to debug your design. Simply right-click on any net or
bus and select Debug. This is especially useful when used on AXI buses as the Integrated
Logic Analyzer (ILA) understands the bus structure and the transaction protocol and will
display information in a meaningful way:

Figure 7.23 – AXI Streaming ILA

222 Introduction to AXI

Add a debug core by right-clicking on the fp_addsub master output. Generate the
bitstream and set a trigger on the rising edge (R) of tvalid. You should trigger on a
pair of transactions. Try adding some other ILAs and watch the transactions. As the
temperature sensor is running, you can trigger on the tvalid signals and watch as data
propagates through the floating-point pipeline.

Now that we have examined using the IP integrator to build and debug a design, let's take
a look at the other two flavors of AXI interfaces we will be using throughout the rest of the
book.

AXI4 interfaces (full and AXI-Lite)
The AXI4 interface is a full-featured processor interface used by ARM to allow the easy
connection of peripherals to their processors. Xilinx has adopted this interface to connect
its hard and soft processors to other cores, whether AXI-Lite, full, or streaming. Because
it is full-featured, it can be costly to implement and should really only be considered
when you need an addressable interface with high-performance bursting capability. There
are five components to an AXI full or AXI-Lite interface. Reads consist of an address
component and data component:

Figure 7.24 – AXI read channel

The preceding figure conceptually shows how a read operation in AXI occurs. An address
and a control bus signal the slave to perform a read. In an AXI-Lite interface, this is a
single location; in a full interface, it can be for a burst of data. These types of reads are
posted reads, meaning that if the interface supports it, multiple read requests can be made
before data starts coming back.

AXI4 interfaces (full and AXI-Lite) 223

When the slave interface is ready, it can start sending data back. If the master and slave
support it, the slave can perform out-of-order reads, using the ID channel to signal which
group the data is associated with. This can allow increased performance in not having to
reorder data.

Writes have three components: the write address, write data, and write response channels:

Figure 7.25 – AXI write channel

The master will issue write commands via the write address channel, which is either
preceded by data or followed by write data. The slave will respond via the write response
channel, which will signal whether the write completed successfully or with an error.

The main differentiators between full and AXI-Lite interfaces are bursting capabilities for
full interfaces and single beat transfers for AXI-Lite interfaces. AXI-Lite interfaces have a
few more restrictions, such as smaller bus width support and non-cacheable and normal
non-locked accesses.

224 Introduction to AXI

There are a variety of cores available for instantiating in BD or instantiating in your
design:

Figure 7.26 – Available AXI IPs

A typical design would consist of a microcontroller, such as the ARM Cortex or Xilinx
MicroBlaze, or your core logic and connected peripherals. The peripherals typically
connect to an AXI interconnect block, which can become costly to implement depending
on the number of active master interfaces, whether buffering is enabled, and whether it's a
full crossbar or not.

We'll take a quick look at an alternative way to package a core from scratch.

Developing IPs – AXI-Lite, full, and streaming 225

Developing IPs – AXI-Lite, full, and streaming
We'll take a look at how we can develop an IP through packaging it by defining the
interfaces first:

Figure 7.27 – Creating a new AXI4 peripheral

226 Introduction to AXI

This is a way of creating an IP by creating a wrapper first and then inserting your IP:

Figure 7.28 – Defining the IP

We'll create a pdm_capture module that will have a register to trigger a read. We can
then read back the same register to determine whether the read is completed. Data can
then be read from a second register.

Figure 7.29 – Default interface definition

Developing IPs – AXI-Lite, full, and streaming 227

The default interface definition is perfect for what we need. You can investigate the options
and see that it is very easy to add any of the AXI interfaces we've discussed. If you explore
the IP directory, you'll see the following files created under the HDL directory:

• pdm_capture_v1_0.v: The top level of our IP. We'll add our interface to the
microphone here.

• pdm_capture_v1_0_S00_AXI.v: The AXI portion of the design with registers.

You'll see in both generated modules places to put logic and ports:

module pdm_capture_v1_0_S00_AXI #

(

 // Users to add parameters here

 Place USER parameters here

 // User parameters ends

 // Do not modify the parameters beyond this line

Looking at the port list, you can see where to place the ports needed for the top level:

(

 // Users to add ports here

 Place USER ports here

 // User ports ends

 // Do not modify the ports beyond this line

Finally, within the design itself, there are bracketing comments on where to add
your code:

// Add user logic here

 Place USER logic here

// User logic ends

There is an additional way to add an IP in the IP integrator that doesn't involve explicitly
creating an IP block; however, currently, it does require that the top level of the IP be a
Verilog file and not SystemVerilog.

228 Introduction to AXI

Adding an unpackaged IP to the IP integrator
At https://github.com/PacktPublishing/Learn-FPGA-Programming/
blob/master/CH7/build/i2c_temp_flt_bd/i2c_temp_flt_bd.xpr, there
are two files, adt7420_i2c_mod.sv and adt7420_i2c_bd.v. Now, adt7420_
i2c_mod.sv is a copy of the adt7420_i2c.sv IP file that is renamed so it doesn't
cause problems with a naming conflict. adt7420_i2c_bd.v provides the Verilog
wrapper.

Add an IP by doing the following:

1. Open https://github.com/PacktPublishing/Learn-FPGA-
Programming/CH7/build/i2c_temp_dlt_bd/i2c_temp_dlt_bd.xpr.

2. Right-click on Design Sources and add the files as shown in Figure 7.30:

Figure 7.30 – Adding files to the design

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH7/build/i2c_temp_flt_bd/i2c_temp_flt_bd.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH7/build/i2c_temp_flt_bd/i2c_temp_flt_bd.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/CH7/build/i2c_temp_dlt_bd/i2c_temp_dlt_bd.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/CH7/build/i2c_temp_dlt_bd/i2c_temp_dlt_bd.xpr

Developing IPs – AXI-Lite, full, and streaming 229

3. Open the IP integrator.

4. In the BD, right-click and select Add Module:

Figure 7.31 – Adding a module to the IP integrator

5. Select OK.

Now we can compare the HDL module to the IP we created earlier:

Figure 7.32 – HDL module versus created IP

230 Introduction to AXI

The RTL module acts just like an IP block created earlier in the chapter. You can modify
the parameters and the interfaces are detected if named properly.

We'll be leaving the IP integrator and will explore other FPGA features in the next few
chapters.

Summary
We've seen how to generate IPs from an existing SystemVerilog file and used this to
recreate our temperature sensor project using the IP integrator. We looked at how we can
easily debug using the IP integrator and how the ILA is AXI-aware. We've also looked
at how we can package IPs by using the IP packager to generate a wrapper with AXI
interfaces that we can use to create our core designs.

We've gone from flashing LEDs in Chapter 1, Introduction to FPGA Architectures and
Xilinx Vivado, to using a seven-segment display to display information in Chapter 3,
Counting Button Presses. In Chapter 8, Lots of Data? MIG and DDR2, we are going to
look at developing a display controller using the Video Graphics Array (VGA) interface,
which will give us much more capability in displaying the outputs from our temperature
sensor, microphone, and calculator.

Questions
1. What are AXI streaming interfaces best for?

a) Burst transactions to multiple memory addresses

b) Point-to-point connections

c) High-performance connections

d) B&C

2. What is the IP integrator?

a) An easy way to create block-based designs using Xilinx or user-defined IP

b) A context-sensitive editor for HDL designs

c) Not very good at aiding design debug

3. If you want to create an IP from an existing design, you would use Create and
package new IP. True or false?

4. You cannot use Create and package new IP to generate a design wrapper with AXI
interfaces to create your own designs. True or false?

Further reading 231

5. When should full AXI interfaces be used?

a) When you need a high-performance interface that can burst data to multiple
memory addresses.

b) When you only write a single register at a time infrequently.

c) When you have lots of data to move between two cores where the destination is a
FIFO-like interface.

d) All the time. They are cheap to implement and can do everything.

Further reading
For more information about what was covered in the chapter, please refer to the following:

• https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2020_1/ug1119-vivado-creating-packaging-ip-tutorial.
pdf

• https://developer.arm.com/documentation/ihi0022/e/AMBA-
AXI3-and-AXI4-Protocol-Specification

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification

8
Lots of Data? MIG

and DDR2
We've been working our way up toward a more functional design that can gather
information, do some useful work, and present it in a meaningful manner. In previous
chapters, we captured audio data and temperature data. We also looked at wrapping some
of the interfaces so that we could use the IP integrator . The IP integrator also allowed for
easily instancing floating-point operations. This has given us some functional designs, but
we've been limited to using LEDs and then seven-segment displays, making it difficult to
visualize information such as the PDM waveform data or even the temperature.

We have another option when it comes to displaying using our boards: the VGA
connector. To effectively use it, we will need access to quite a bit of memory. To display
640x480 8-bit color, we would need 300 kilobytes, almost 1 megabyte for true color. We
can certainly play some games to stretch out our memory, but alternatively, we can use the
onboard Double Data Rate, 2nd generation (DDR2) as a frame buffer and draw what we
want to be displayed into it.

234 Lots of Data? MIG and DDR2

By the end of this chapter, you'll have been introduced to external memory, generated a
DDR2 controller, and tested it both in simulation and on the board. You'll be comfortable
with how to use external memory in your own designs.

In this chapter, we are going to cover the following main topics:

• DDR memory basics

• Using the Xilinx Memory Interface Generator (MIG)

• A brief look at other memory types

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH8.

Project 10 – introducing external memory
Up until now, we've been using internal Block RAM (BRAM) or distributed RAM. These
types of memory are very fast. BRAMs can be accessed in a single clock cycle up to the
maximum frequency (fmax) of the device given certain constraints. Look up table
memories (LUTRAMs) are a little more flexible in that they can be used asynchronously.
Both types of memory are very convenient for small storage, lookup tables, fast memory
for things such as cache, and if you have enough for a design, keeping costs and
complexity down.

There are many external memory types available for use in designs. Looking just at
synchronous Dynamic RAMs (DRAMs) that are still available, we can see how the
performance has changed with each generation:

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH8
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH8

Project 10 – introducing external memory 235

Figure 8.1 – External DRAM performance

Looking at the preceding chart, the first question would be what is the performance of
the internal BRAM versus the external memory? What are the trade-offs? A single FPGA
BRAM would be in the range of 300 MT/s. As we discussed previously, we can take
advantage of parallelism and access many BRAMs in parallel, although effectively using all
that memory would require a highly parallel structure.

236 Lots of Data? MIG and DDR2

The disadvantage of external memory and each passing generation is that latency, the time
it takes from requesting data to getting it back, goes up. SDRAM can take five or so clocks
at 100 MHz. DDR4 can take 80 clocks at 300 MHz. The logic to interface to the memories
also gets very complex. You can write a DDR2 controller yourself; I have done it before.
DDR4 controllers from Xilinx have embedded processors to handle initialization and
periodic operations. When we generate our memory controller, we can look at the timing
in a simulation.

We won't be tackling memory controller design here. If you are interested, I would advise
looking for SDRAM or DDR memory controllers online. There are many freely available.

Finally, as we mentioned previously, DRAM brings with it capacity. Newer FPGAs have
optional High-Bandwidth Memory (HBM) that provides internal DRAM with large
capacities, but for most FPGAs, the cost-effective solution is to use external memory when
capacity is important.

With our introduction out of the way, let's look at DDR2 specifically.

Introduction to DDR2
Behind the scenes, there is a lot that the Xilinx memory controller handles for us. BRAM/
LUTRAM is Static RAM (SRAM). Static memory is very large compared to dynamic
memory. Static memory can take four transistors per bit (4T) cell. Dynamic memory, in
contrast, is primarily a capacitor used to hold a charge with a transistor attached to it. It is
also built on an optimized ASIC process to minimize the area of the chip. This allows for
much higher densities, as we see in Figure 8.1.

Dynamic memory is partitioned into rows, columns, and banks. A single row containing
multiple columns within a bank can be active at any one time. This is accomplished by
sending an activate command to the memory. Once a row is opened in a particular bank,
the columns can be accessed very rapidly.

Within a DRAM, you can have multiple banks, each with a different row open at the same
time. This allows quicker access to larger blocks of data. When you want to switch rows
within a bank, the open row must be precharged to close it before the new bank/row can
be activated.

Finally, a refresh command must be issued periodically to the DRAM, which requires all
open banks to be precharged prior to the refresh. The refresh reads out a row and writes it
back again to refresh the charges in the capacitors holding the data.

With this background behind us, let's look at the steps to generate memory.

Project 10 – introducing external memory 237

Generating a DDR2 controller using the Xilinx MIG
The Nexys A7 shares the same pinout as the Nexys DDR and you can
find a premade project on the website at https://reference.
digilentinc.com/reference/programmable-logic/nexys-
4-ddr/start?_ga=2.168036321.1345263114.1604794648-
84804473.1599434198#additional_resources. We will, however, go through
generating a component here so that you can see the options and how they relate to the
underlying DDR2 architecture:

1. First, we need to use the IP catalog to generate the MIG controller:

Figure 8.2 – Start MIG

2. Select IP Catalog and search for MIG. Then, double-click to start the MIG wizard.

Figure 8.3 – MIG start screen

https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start?_ga=2.168036321.1345263114.1604794648-84804473.1599434198#additional_resources
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start?_ga=2.168036321.1345263114.1604794648-84804473.1599434198#additional_resources
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start?_ga=2.168036321.1345263114.1604794648-84804473.1599434198#additional_resources
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start?_ga=2.168036321.1345263114.1604794648-84804473.1599434198#additional_resources

238 Lots of Data? MIG and DDR2

3. Your project should already be set up for our board. Confirm the FPGA part for the
board, then select Next:

Figure 8.4 – MIG options

4. Now, we need to select Create Design to generate our new MIG design. I've
renamed the controller to something more meaningful. On our board, we only need
one controller and I've chosen an AXI4 interface as opposed to a native interface.
Then, select Next so that we can look at pin compatibility:

Project 10 – introducing external memory 239

Figure 8.5 – Pin compatibility

240 Lots of Data? MIG and DDR2

5. If you were generating a MIG controller for your own board, you may want to have
the option of using a larger or smaller part. In this case, you could select multiple
pin-compatible FPGAs to make sure your MIG controller would work in any part
you eventually put on your board. In this case, we can select the 50 and 100 ones,
but Digilent has already picked the correct spot for both boards. Select Next to
choose the memory type:

Figure 8.6 – Memory selection

6. The Artix 7 supports DDR2 and 3 using the MIG. Our board has DDR2, so
make sure to pick that one. Although all DDRs have similar names, they are not
compatible, so make sure you pick the correct one for your board. Select Next so
that we can select the controller options:

Project 10 – introducing external memory 241

Figure 8.7 – Controller options

Looking at Section 3.1 of the Nexys A7 documentation (link in Further reading), it
recommends the settings we will use in this section. Most importantly, we need to
select the correct part. Digilent also recommends a slightly slower clock speed for easier
implementation. Select a data width of 16. There are two more options that are more or
less optional.

The first is the number of bank machines. Remember that the device has eight banks. To
improve performance, we can implement multiple bank machines at the expense of area
in our design.

242 Lots of Data? MIG and DDR2

Finally, we can choose to maintain the strict ordering of requests or allow reordering. If
we allow reordering, we can improve performance.

Next, we'll look at the AXI parameters.

Setting AXI parameters
There are a few parameter options that we have control over:

Figure 8.8 – AXI parameters

The main thing we need to consider for AXI parameters is the arbitration scheme. Because
a major aspect of the controller is to handle our display, we need to make sure we never
starve our display controller. To do this, we specify a read priority for arbitration. In the
next section, we'll set the memory options.

Project 10 – introducing external memory 243

Setting memory options
There are two options we need to set according to the Digilent documentation. These are
shown in Figure 8.9. The first is the burst type, which can be sequential or interleaved.
Over the course of my time designing with external memory, I've never used interleaved;
however, the option is there if you have a use for it:

Figure 8.9 – Memory options

We also have a choice of how we address the memory. There are three components to any
address: the bank, the row, and the column. Remember that the memory can only open
up one row per bank, but can have one active row for each of the eight banks. Ideally, we
would analyze our usage pattern to maximize our performance. Often, this is done by
analyzing a C model of your system or through simulation. For now, I'm going to choose
[ROW, BANK, COLUMN] so that we access multiple banks when we implement our
VGA controller in a later chapter.

Next, we'll address the FPGA options for the controller.

244 Lots of Data? MIG and DDR2

Defining the FPGA options
There are a number of options available for the FPGA, some of which we need to change
for the board we are using:

1. We'll be generating the clock internally, so we will specify both the system clock and
the reference clock as No Buffer. I've also enabled the debug interface so that we can
take a closer look inside the FPGA while it's running.

We can leave the rest of the settings as default:

Figure 8.10 – MIG FPGA options

Project 10 – introducing external memory 245

2. On the next screen, we can leave everything as default:

Figure 8.11 – Extended FPGA options

3. On the next screen, we'll define the pins. Digilent has provided a .ucf file for the
DDR constraints. It's included in CH8/build/xdc/mig.ucf:

Figure 8.12 – Pin selection

246 Lots of Data? MIG and DDR2

4. First, select Read XDC/UCF and read the mig.ucf file. Then, you must select
Validate to verify the pinout and unlock the Next button. Now, we can move on to
the system signals selection:

Figure 8.13 – System signals selection

5. We have already selected internal signals for some signals. The others we will also
use internally since they are not brought out on the board. Don't change anything
on this screen and we'll look at the summary screen after hitting Next:

Project 10 – introducing external memory 247

Figure 8.14 – MIG summary

6. On this screen, you can review the summary of the DDR2 controller that we are
going to generate. Verify that it matches the parameters we've selected and then hit
Next:

Figure 8.15 – Simulation options

248 Lots of Data? MIG and DDR2

7. Xilinx provides a micron model for use with simulations of the DDR2 core. In order
to generate it, you must accept the license. This is advisable since it will allow you
to simulate the core against a real DDR2 model. Select Accept (recommended) or
Decline, then select Next:

Figure 8.16 – Printed circuit board information

8. The MIG reminds you about the user guide in the event that you are designing your
own Printed Circuit Board (PCB). Since we can assume that Digilent has already
handled this, it can be safely ignored. If you decide to design your own board in the
future, Xilinx provides many resources and checklists that you should follow. Feel
free to inspect the user guide or just select Next:

Figure 8.17 – Generating the core

Project 10 – introducing external memory 249

We've reached the end of the options and you can simply select Generate. One more
window will pop up to generate OOC modules. Select Generate again.

9. Now, the core generation is complete. You'll see the core inside your design sources:

Figure 8.18 – Creating the example design
One very nice thing about a lot of the Xilinx cores – the MIG cores in particular
– is that you can generate an example design for simulation and sometimes
implementation. As previously mentioned, when optimizing addressing, you will
likely want to simulate, and the example design can give you a jump start on this.

10. To generate the example design, right-click on the .xci file in the design sources
and select Open IP Example Design:

Figure 8.19 – Open IP Example Design

250 Lots of Data? MIG and DDR2

11. Make sure you've selected a good subdirectory for your example design and select
OK:

Figure 8.20 – Viewing the example design

You can now see that we have the example design loaded, along with a simple testbench.
We'll want to modify the top level so that we can run it on the board and take a look at it
using the Integrated Logic Analyzer (ILA). Before we change anything, let's verify that
the generated testbench runs without problems. This is a good engineering practice. There
is nothing worse than modifying and running, then realizing that the original generated
design didn't work properly in the first place.

To do this, select Run Simulation as we have done previously.

Notice that this simulation takes a lot longer than anything we've done so far. You can see
from the timescale the testbench is operating at that we need very precise timing for the
DDR simulation:

`timescale 1ps/100fs

Project 10 – introducing external memory 251

We can also take a look at the simulation output to see just how long a simulation is. The
initialization and calibration phase takes 100 microseconds. The actual test takes about
half that time:

Figure 8.21 – MIG simulation

If your simulation completed successfully, you should see finish highlighted in your
simulation window:

Figure 8.22 – Simulation completed successfully

252 Lots of Data? MIG and DDR2

Now, we have proven out the Xilinx testbench using the Xilinx traffic generator module.
Let's go ahead and modify our design so that we can run it on the board and look at it
with the ILA.

Modifying the design for use on the board
I've copied the example design over so that we can implement the changes without
affecting the original design. Looking at the Xilinx implemented design, sys_clk_i is
being generated at 325 MHz. The first thing we'll need to do is modify our top level for the
board, which means we'll need to add a Mixed Mode Clock Manager (MMCM) to take
our 100 MHz system clock and generate the 325 MHz clock. We'll also need to generate
clk_ref_i. If we look at the testbench, we'll see that this clock should be 200 MHz:

Figure 8.23 – sys_pll settings

Note that in the sys_pll clock output clock definitions, one interesting thing about
the output clocks is that order does matter. If you try to swap the clocks, that is, instead
of clk_out1 being 200 MHz and clk_out2 being 325 MHz they are 325/200 MHz,
you'll find that the clocks are no longer precise. Sometimes, you need to try different
combinations of output clocks to get close to what you are targeting.

Next, we'll address our top level. I've modified it to contain the ports we'll need and
remove the ones we don't:

inout [15:0] ddr2_dq,

inout [1:0] ddr2_dqs_n,

inout [1:0] ddr2_dqs_p,

Project 10 – introducing external memory 253

output [12:0] ddr2_addr,

output [2:0] ddr2_ba,

output ddr2_ras_n,

output ddr2_cas_n,

output ddr2_we_n,

output [0:0] ddr2_ck_p,

output [0:0] ddr2_ck_n,

output [0:0] ddr2_cke,

output [0:0] ddr2_cs_n,

output [1:0] ddr2_dm,

input ext_clk,

output tg_compare_error,

output init_calib_complete,

input sys_rst,

output LED

);

wire clk_ref_i;

wire sys_clk_i;

assign LED = sys_rst;

sys_pll u_sys_pll

 (.clk_out1 (clk_ref_i),

 .clk_out2 (sys_clk_i),

 .clk_in1 (ext_clk),

 .resetn (sys_rst));

I've removed the two clocks, clk_ref_i and sys_clk_i, and made them internal.
I've added an external clock, ext_clk, so that we can bring in 100 MHz from the crystal
oscillator and use the PLL to generate 200 and 325 MHz clocks that we need for the
DDR2. I've also instantiated the PLL in the top-level design.

We'll need to also modify the testbench for the 100 MHz clock:

parameter CLKIN_PERIOD = 10000; //3077;

// Input Clock Period

I've commented out the old clock period for 325 MHz and replaced it with a 100 MHz
clock. Now, our PLL will generate the correct clocks and we can verify this in simulation.

254 Lots of Data? MIG and DDR2

Finally, we can build our design for the Nexys A7. Unfortunately, we won't be able to run
this on the Basys 3 board.

Once you've downloaded the image to the board, you can bring up the ILA. The pattern
generator and checker are running constantly, so you can trigger immediately to see
activity:

Figure 8.24 – DDR2 ILA

You can trigger immediately and see activity on the DDR2 internal interfaces. Looking at
the LED on the board should show no errors detected and the ILA will show the activity
generated.

Project 10 – introducing external memory 255

The DDR2 core as we generated it has one other trick up its sleeve. It also has the Vivado
debug logic core Virtual I/O (VIO) interface. This interface can be used in your designs
to provide input and output functionality from within Vivado to aid on-chip debugging.
In the case of the DDR2 interface, it provides insight into what is going on in the core and
also allows changing configuration on the fly.

You can bring up the VIO by selecting the hw_vios tab:

Figure 8.25 – Adding Hardware (HW) VIOs

256 Lots of Data? MIG and DDR2

You can press the + button to add probes. For now, simply add them all:

Figure 8.26 – VIO signals

From Figure 8.26, you can see signals labeled as Output and Input. The direction is
relevant to the VIO core. You can monitor input signals and make changes to output
signals that will be reflected in the pattern generator and checker. In the preceding
figure, I have marked the order to apply a change to the pattern generator. To change the
configuration, you would perform the following operations:

Other external memory types 257

1. Set vio_modify_enable to 1.

2. Set vio_addr_mode_value to 1 = fixed address, 2 = Psuedo Random Binary
Sequence (PRBS) address or sequential address.

3. Set vio_bl_mode_value to 1 = Fixed bl or 2 = PRBS bl.

4. Set vio_data_mode_value to 1 = fixed, 2 = DGEN_ADDR, 3 = DGEN_HAMMER,
4 = DGEN_NEIGHBOR, 5 = DGEN_WALKING1, and 6 = DGEN_WALKING0, DGEN_
PRBS.

Now, we've looked at DDR2 and in the next chapter, we'll be using it for our display
controller. Briefly, we'll look at other external memory types that are used with FPGAs.

Other external memory types
There are a variety of memory types that have been introduced over the years that are or
have become more common with FPGAs. I want to briefly touch on them as you might be
interested in them for your own projects in the future.

Quad Data Rate (QDR) SRAM
Quad Data Rate (QDR) SRAM is commonly used in networking applications. Like
DDR memory, data is transferred on both edges of the clock for performance. Unlike
DDR, QDR has both read and write channels, so you can issue read and write commands
simultaneously. Also, unlike DDR DRAM, this is an SRAM, so there are no refresh cycles
and the latency for a read or write can be as low as about 13 clock cycles at 300 MHz.

QDR has a much larger capability than FPGA internal memory, but much less than DDR.
It's also relatively expensive, which is why it's mostly used in networking applications.

HyperRAM
HyperRAM is a type of self-refreshing DRAM designed for Low Pin Count (LPC)
applications. It has performance and sizes similar to DDR (not 2+) memories making it
ideal for some applications. There are PMOD boards available for HyperRAM.

SPI RAM
There is a very LPC RAM-utilizing Serial Peripheral Interface (SPI). These RAMs have
similar capabilities to DDR (not 2+) and fairly good performance using as few as eight
pins. PMOD boards are available with these memories also.

258 Lots of Data? MIG and DDR2

Summary
In this chapter, we've looked at external memory, in particular, DDR2, as that is what we
have readily available on the Nexys A7. We've looked at generating a core using the Xilinx
MIG controller and how to generate the example design. We've then run the example
design on the board and, using the ILA, seen it in operation. We've also taken a quick look
at other external memory types.

Up until now, we've limited ourselves to LEDs and seven-segment displays for our output.
In the next chapter, we are going to take the DDR controller and create a VGA controller.
Dust off your CRT or LCD with a VGA connector and we'll work on displaying our
temperature sensor data, our audio data, and calculator data using a real display.

Questions
1. Which of the following are true about internal versus external memory?

a) DDR memory storage capacity is much smaller than BRAM.

b) For the same memory data width, DDR has much higher performance than
BRAM.

c) The latency to access data from BRAM and DDR is identical.

d) You should always use LUTRAM first before using any other memory type.

2. To generate DDR2 memory for our project, we used the Xilinx:

a) Massive IP Goliath (MIG)

b) Minimally Informative Google (MIG)

c) Memory Interface Generator (MIG)

3. We can use ILAs to examine data in the FPGA and VIOs to read and write data.

a) True

b) False

4. Artix 7 FPGAs can use which of the following memories from the MIG?

a) DDR2

b) DDR3

c) DDR4

d) LPDDR2

e) QDR

Further reading 259

5. It is possible to use HyperRAM, SPI RAM, and SDRAM if you are willing to write
your own controllers.

a) True

b) False

Challenge
We've created the DDR2 using the MIG and we have the example design. We don't have a
way of inserting errors. Can you utilize a button or switch on our board and use it to inject
an error into the data either to or from the memory.

Hint: You can use an XOR gate to inject the error. When the bit coming from the
pushbutton or switch is 0, then the output of the XOR will be unchanged. If you set the bit,
it will invert the data passing through.

Further reading
For more information about what was covered in this chapter, please refer to the
following:

• https://www.micron.com/products/dram/ddr2-sdram/part-
catalog/mt47h64m16hr-25

• https://reference.digilentinc.com/reference/programmable-
logic/nexys-a7/reference-manual

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual

9
A Better Way to

Display – VGA
Up until now, we've been limited to displaying information using LEDs, single color or
RGB, as well as the 7-segment display. We are quite capable of performing operations
and displaying limited information, as we have demonstrated with our temperature
sensor and calculator. The Nexys A7 offers an additional output that can provide us
with an almost unlimited method of displaying information, the Video Graphics Array
(VGA) connector. The VGA connector on the Nexys A7 can display resolutions of up to
1600x1200, with up to 2^12 or 4,096 colors. What allows us to unlock this capability is
that we now know how to use our external memory, which will provide our framebuffer.

By the end of this chapter, we'll have created a method of displaying data on a Cathode
Ray Tube (CRT) or LCD monitor via the VGA connector. In Chapter 10, Bringing It All
Together, we'll use this methodology to upgrade some of our projects to utilize the new
display.

In this chapter, we are going to cover the following main topics using a project,
Introducing the VGA:

• Defining registers

• Generating timing for the VGA

• Displaying text

262 A Better Way to Display – VGA

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/CH8.

A VGA-capable monitor and cable are also required if you want to implement the project
on the board.

Project 11 – Introducing the VGA
The earliest professional computer displays were simple monochrome text displays. The
earliest personal computers, such as the Apple 2, could display 280x192 pixels with a small
number of colors. The Commodore 64 and IBM/PC could display 320x200, again with
limited color palettes. The original IBM VGA was introduced in 1987 and it allowed for
higher resolutions and standardized the connector going forward until digital displays
such as LCDs became the norm.

The first thing we'll need to look at is how the screen is drawn. Whether you are using
a CRT display or a modern LCD, the timing is still supported to provide backward
compatibility. Originally, the VGA output was designed to drive an electron gun to light
up phosphors on a CRT. This meant timing spanned the entire display, plus time for the
gun to shift from one side of the screen to the other, or from the bottom back to the top.
Figure 9.1 shows the various timing parameters and their relationship to what is displayed
on the screen:

Project 11 – Introducing the VGA 263

Figure 9.1 – VGA screen timing information as displayed

The main components of the output that we need to generate are as follows:

• Hsync – Horizontal synchronization signal

• Vsync – Vertical synchronization signal

• Red[3:0], Green[3:0], Blue[3:0] – RGB color values. In a real display these would
be 8 bits per color (24 bits per pixel (bpp)). However, Digilent opted to create
a resistor array implementation of a Digital to Analog Converter (DAC) rather
than a true DAC, thereby limiting the bpp to 444 or 12 bpps.

264 A Better Way to Display – VGA

We're going to want to make the VGA controller be as generic as possible. To do this, we'll
create a register-based interface, so we'll need to figure out what the values we'll need for a
given resolution are.

Important note
The following timing list is fairly comprehensive for a 4:3 aspect ratio display
(older CRT/ TV). Depending on the display you use, some of these will not
work. We'll default to 640x480 @ 60Hz since this is the base VGA display and
should be supported by everything.

We can look at a list of Video Electronics Standards Association (VESA) standards to
get an idea of what we want to display:

Project 11 – Introducing the VGA 265

The preceding table contains the timing for the possible modes our display will support.
The first thing to note is that the clock frequency that we'll need varies quite a bit from
25.18 MHz through 195 MHz. We'll address this by introducing clock reconfiguration,
which is available in the clocking wizard. We can also make registers for storing the
various parameters we'll need, so we'll use an AXI Lite interface for our registers.

Now let's take the relevant numbers from the preceding table and put them into a timing
diagram so that we can visualize the actual signals going to the display:

Figure 9.2 – Video timing diagram

In Figure 9.2, we can see how the timing works. The timing is broken up into two sections.
The first is the frame time, which can be looked at as the Vsync timing, which is based on
the number of scanlines. Each scanline is similarly composed of the Hsync plus data.

To keep things simple, we'll assume that data is stored as 1-bit values. Typically, VGA and
VESA modes would have 8-, 16-, or 32-bit colors. 8-bit values would be used as an index
into a palette of 256 colors out of 16 million colors. 16-bit colors would typically be 565 or
555 (RGB) values, and 32-bit color was actually 888 RGB values capable of displaying 16
million colors. For our purposes, and since we are tackling quite a bit, I'll keep to storing
1-bit color. A pixel will be on or off.

266 A Better Way to Display – VGA

Important note
When dealing with colors, we'll reference them by the number of bits used
to represent them (8, 16, 24, or 32) and the number of bits per color channel
(565, 555, or 888), where each digit represents the number of bits used for each
color: red, green, and blue.

Defining registers
The first step we'll need for our VGA controller is to define a set of registers we can use
to solve our problem. We know the timing parameters from Figure 9.1 and the associated
table. From this we can derive some parameters. For our VGA, I would propose the
following set:

• Horizontal display start – The number of horizontal pixels before the display starts,
equivalent to the horizontal back porch minus one.

• Horizontal display width – The width of the display.

• Horizontal sync width – Hsync width.

• Horizontal display total width – The total width of display and non-display
portions.

• Vertical display start – The number of display lines before the display starts,
equivalent to the vertical back porch minus one.

• Vertical display height – The height of the visible display.

• Vertical sync width – Vsync height in scan lines.

• Vertical display total height – The total height of the display and non-display
portions.

• VGA format – The pixel depth for a given screen.

• Display address – The display address to read from. This can be written at any time,
but will not take effect until the beginning of the next frame to prevent tearing.

• Horizontal and vertical polarity selections – Because different modes have active
high or low polarities for the sync pulses, we need to provide a way of selecting
between them.

Project 11 – Introducing the VGA 267

• Display pitch – We need to know how many display pages to read for a given
scanline as well as how many to count by for each subsequent scanline.

• Load mode – Typically, in complex designs, we may have multiple registers that
make up a complete set of values necessary for a given function. We must provide a
way to update them all simultaneously once updating is complete.

Our registers will be accessible via an AXI Lite interface.

Coding a simple AXI Lite interface
The write side of the AXI interface involves three components: the address bus, the data
bus, and the response bus. We can see the address interface in the core interface definition:

input wire reg_awvalid,

output logic reg_awready,

input wire [11:0] reg_awaddr,

input wire reg_wvalid,

output logic reg_wready,

input wire [31:0] reg_wdata,

input wire [3:0] reg_wstrb,

input wire reg_bready,

output logic reg_bvalid,

output logic [1:0] reg_bresp,

268 A Better Way to Display – VGA

The slave device must be able to handle the address and data buses independently. In our
design, we'll write both at the same time, but it's possible that a master device may provide
either an address or data before the other. We'll address this in our register state machine:

Figure 9.3 – AXI Lite state machine

Figure 9.3 shows the basic state machine. If awvalid and wvalid are both high, then we can
generate the response. If we are missing one of the components to a full transfer, either
awvalid or wvalid, we proceed to a wait state and then to the BRESP state.

Finally, in the BRESP state, as soon as we see bready, we generate a success response and
transition back to idle.

Now let's examine the actual timing generation.

Project 11 – Introducing the VGA 269

Generating timing for the VGA
We'll need two Phase Locked Loops (PLLs) or Mixed Mode Clock Managers (MMCMs)
for our design. The first PLL will be a duplicate of the one we created in Chapter 8, Lots
of Data? MIG and DDR2, to generate clocks for the DDR2 memory controller and also
our internal clocks. We will generate the second one so that we can change the timing
parameters. By default when the design powers up it will display a VGA resolution
of 640x480 @ 60 Hz. The main difference in our configuration is to select Dynamic
Reconfig:

Figure 9.4 – Dynamic reconfiguration

270 A Better Way to Display – VGA

Adding dynamic reconfiguration exposes an AXI Lite interface in the clocking wizard
that we can use to reconfigure the PLL on the fly. The registers we need to focus on can
be found in the clocking wizard drive 6.0 at https://www.xilinx.com/support/
documentation/ip_documentation/clk_wiz/v6_0/pg065-clk-wiz.
pdf. We'll only be reconfiguring clk0. In the following screenshot, I've extracted the
information we need from the clocking wizard. In Figure 9.5, you can see how to extract
these numbers yourself:

Figure 9.5 – Extracting reconfiguration parameters

The parameters we need (based on a 200 MHz input clock) are as follows:

• Divide Counter: In Figure 9.5, for 25.18 MHz, this is 9.

• Clock feedback multiplier (Mult Counter) integer: For 25.18 MHz, this is 50.

• Clock feedback multiplier (Mult Counter) fraction: For 25.18 MHz, this is 000.

• Clock feedback divider value integer: For 25.18 MHz, this is 44.

• Clock feedback divider value fraction: For 25.18 MHz, this is 125.

Project 11 – Introducing the VGA 271

The values can be calculated, but you need to be careful to make sure you don't exceed the
maximum PLL frequency. The following table shows the values we need for all our VGA
frequencies:

We can use the preceding table to create code to load our pixel PLL. We also need to load
the register values for the resolution we need. Let's set that table up first.

First, we'll create a structure to hold the table we'll use to set up the PLL and VGA
controller for each of the 17 resolutions that we'll support. We'll create a simple AXI Lite
state machine that can configure the desired resolution, but in the future, we could use a
microcontroller in the system:

 typedef struct packed {

 logic [7:0] divide_count;

 logic [15:8] mult_integer;

 logic [25:16] mult_fraction;

 logic [7:0] divide_integer;

 logic [17:0] divide_fraction;

272 A Better Way to Display – VGA

 logic [11:0] horiz_display_start;

 logic [11:0] horiz_display_width;

 logic [11:0] horiz_sync_width;

 logic [11:0] horiz_total_width;

 logic [11:0] vert_display_start;

 logic [11:0] vert_display_width;

 logic [11:0] vert_sync_width;

 logic [11:0] vert_total_width;

 logic hpol;

 logic vpol;

 logic [12:0] pitch;

 } resolution_t;

The structure encapsulates all the necessary parameters. We can define a variable and
initialize it in an initial block to use as constants:

 resolution_t resolution[17];

 initial begin

 // 640x480 @ 60Hz

 resolution[0].divide_count = 8'd3;

 resolution[0].mult_integer = 8'd21;

 resolution[0].mult_fraction = 10'd625;

 resolution[0].divide_integer = 8'd28;

 resolution[0].divide_fraction = 10'd625;

 resolution[0].horiz_display_start = 12'd15;

 resolution[0].horiz_display_width = 12'd640;

 resolution[0].horiz_sync_width = 12'd96;

 resolution[0].horiz_total_width = 12'd799;

 resolution[0].vert_display_start = 12'd9;

 resolution[0].vert_display_width = 12'd480;

 resolution[0].vert_sync_width = 12'd2;

 resolution[0].vert_total_width = 12'd524;

 resolution[0].hpol = '0;

 resolution[0].vpol = '0;

 resolution[0].pitch = 13'd5;

We will define all 17 modes in our code. Only the first/default mode is shown here. With
this we can now create our state machine to load the VGA and PLL.

Project 11 – Introducing the VGA 273

The state machine is divided into two sections: CFG_WR0-2 loads the MMCM with
our clock configuration settings, while CFG_WR3-5 loads the resolution for the VGA
controller. The state machine operates as follows:

1. It detects a button press and starts loading MMCM parameters.

2. CFG_WR0 checks which valids are active. In the event that only wvalid or
awvalid is active, we have two substates, CFG_WR1 and CFG_WR2, to await the
missing valid.

3. Once both valids are valid, we advance the register write. We must write all 24
registers in the MMCM before we move on to the VGA.

4. The VGA portion of the state machine operates similarly to the MMCM portion
and we advance through the VGA parameters. Once complete, we go back to idle.

The VGA core handles the monitor timing and the display output.

Important note
Depending on your monitor type, you may not be able to display all
resolutions. Some monitors are also more forgiving than others of timing
problems. My particular monitor could go to 1280x1024 @ 85 Hz but no
higher. Due to timing constraints, I would recommend not going higher than
1280x1024 @ 75 Hz.

Let's now take a deeper dive into the timing generator.

Monitor timing generator
To handle sync generation, we'll need two counters. The first counter, horiz_count,
will generate the timing and pixel output for each scanline. The second counter, vert_
count, counts the number of scanlines to determine when to start displaying pixels and
generate the Vsync:

if (horiz_count >= horiz_total_width) begin

 horiz_count <= '0;

 if (vert_count >= vert_total_width) vert_count <= '0;

 else vert_count <= vert_count + 1'b1;

 scanline <= vert_count - vert_display_start + 2;

 mc_addr <= scanline * pitch;

 mc_words <= pitch;

274 A Better Way to Display – VGA

end else

 horiz_count <= horiz_count + 1'b1;

The preceding code zeroes out the horiz_count signal when we reach the end of a
scanline. You'll notice that the comparison is a greater than or equal to horiz_total_
width signal. The way we update counters doesn't stop or restart the timing generation.
This will ensure that if we were to accidently put something out of range, the counts will
recover. Similarly, we do the same with the vertical count.

This block also generates a few other parameters we need for displaying pixels. The first
is the scanline information. This calculates the scanline currently being operated on.
Scanline zero would be the first displayable scanline.

We also register the address for the current scanline and the pitch, which is also the
number of 16-byte words to be read for each scanline. Note that this number can be
greater than or equal to the number of bytes we need.

It helps when you are using slower parts or trying to achieve a higher clock speed to look
for opportunities to precalculate mathematical operations when you can. In the preceding
code, I'm calculating the address we need:

mc_addr <= scanline * pitch;

This is because you'll see in the code where we read from memory that we need to make
sure we don't violate AXI rules:

vga_hblank <= ~((horiz_count > horiz_display_start) &

 (horiz_count <=

 (horiz_display_start + horiz_display_width)));

vga_hsync <= polarity[1] ^

 ~(horiz_count > (horiz_total_width - horiz_sync_width));

vga_vblank <= ~((vert_count > vert_display_start) &

 (vert_count <=

 (vert_display_start + vert_display_width)));

vga_vsync <= polarity[0] ^

 ~(vert_count > (vert_total_width - vert_sync_width));

You'll see that we are generating the Hsync and Vsync as shown in Figure 9.1 at the end of
the scanline and the display window. We calculate the time to generate this by creating the
sync from the horizontal or vertical total minus the sync width. We also need to use our
polarity registers to generate the correct sync polarity. Exclusive-OR gates can be used as
programmable inverters.

Project 11 – Introducing the VGA 275

We also generate the blank signals. These aren't technically necessary unless you are using
a real DAC, when those signals are used to zero out the pixel output, although you could
use them similarly. I've included them since, in simulation, it can assist in locating when
data is expected to be output.

In this section of code, we also generate a toggle mc_req signal for requesting data to be
displayed:

if (vga_hblank && ~last_hblank && ~vga_vblank)

 mc_req <= ~mc_req;

last_hblank <= vga_hblank;

We are taking advantage of the dead time of the display to prefetch the next scanline
of data. When hblank is going away, in other words, the rising edge of hblank, we'll
generate a request as long as we are not in the vertical blanking period.

Now that we have an operational display, we need something interesting to display on it.

Displaying text
A text character in its oldest and simplest form is a bitmap. Modern operating systems
may use things such as TrueType, which can scale cleanly and easily at different
resolutions. However, the oldest form of displaying text was to store a pattern in memory
and then copy it to the screen.

I've included a file called text_rom.sv. It is essentially a lookup table:

module text_rom

 (input clock, // Clock

 input [7:0] index, // Character Index

 input [2:0] sub_index, // Y position in character

 output logic [7:0] bitmap_out);

276 A Better Way to Display – VGA

Functionally, we can view the text ROM in the following diagram:

Figure 9.6 – text_rom

Every clock cycle, a character is looked up using the index and the subindex references the
scanline of the character. In Figure 9.6, you can see an example where we are requesting
character 0x32, which is American Standard Code for Information Interchange
(ASCII) for the number 2. We are asking for the sixth scanline of the character. This
returns the value 0xFC on the next cycle, which represents the pixels from the sixth
scanline of the number 2.

Important note
ASCII code is one of the major standards for encoding text. One nice thing
about ASCII is that the numbers 0-9 are encoded from 0x30-0x39.

text_rom.sv contains all the ASIC uppercase and lowercase characters and numbers
as well as a few fill characters. ASCII is normally represented by an 8-bit value, so there is
plenty of room to add new characters to display:

always @(posedge clock)

 case ({index, sub_index})

 …

 // 2

 {8'h32, 3'h0}: bitmap <= 8'h78;

 {8'h32, 3'h1}: bitmap <= 8'hCC;

 {8'h32, 3'h2}: bitmap <= 8'h0C;

 {8'h32, 3'h3}: bitmap <= 8'h38;

Project 11 – Introducing the VGA 277

 {8'h32, 3'h4}: bitmap <= 8'h60;

 {8'h32, 3'h5}: bitmap <= 8'hC0;

 {8'h32, 3'h6}: bitmap <= 8'hFC;

 {8'h32, 3'h7}: bitmap <= 8'h00;

Here we can see what the lookup for the number 2, 0x32, looks like. This is the same as
what is represented in Figure 9.6.

One thing about the way data is stored is that in the application I developed, we'll need to
flip the data coming out. I've added the following code:

always @* begin

 for (int i = 0; i < 8; i++) begin

 bitmap_out[i] = bitmap[7-i];

 end

end

This code flips the bits. Without it the text will appear reversed. You may or may not need
this for your own applications, so it's good to know it exists in the event you need it or
need to remove it.

Back to our top-level VGA. We'll add a string of text with each resolution setting so that
when the display is set, we can print out what we have set it to:

res_text[0] = " zH06 @ 084x046";

Notice that the text is written backward as a string. This is because we are starting from bit
0 of character 0 and building it up to character 15, bit 7.

Requesting memory
For our display, we need to take our memory request signal and synchronize it to the
memory controller clock. We'll also use this opportunity to reset the pixel FIFO. Note that
we are toggling the request signal at the end of the line, so this provides a couple of key
features for our design:

• We won't be displaying anything, so we can simply reset the FIFO.

• We should have quite a bit of time to reset the FIFO and start getting data back for
displaying.

278 A Better Way to Display – VGA

We can construct a state machine to handle our memory accesses as shown in the
following code block:

case (mem_cs)

 MEM_IDLE: begin

 mem_arvalid <= '0;

 if (^mc_req_sync[2:1]) begin

 fifo_rst <= '1;

 mem_cs <= MEM_W4RSTH;

 end

 end

 MEM_W4RSTH: begin

 next_addr <= mc_addr + mc_words;

 len_diff <= 2047 - mc_addr[10:0];

 if (wr_rst_busy) begin

 fifo_rst <= '0;

 mem_cs <= MEM_W4RSTL;

 end

 end

When we synchronize and detect an edge on the request, we reset the FIFO. The FIFOs
provide an output to indicate when they are busy during a reset, so in the second state, we
wait for the reset to go high, then release the reset, and enter the state to wait for it to go
low again. We can take advantage of our wait time to calculate the next address and see
how many scanlines there are before we reach the 2K (2,048) byte boundary.

Important note
When making a burst request over AXI, you cannot cross the 2,048-byte
boundary. We must take this into account and break up bursts that might
possibly violate this rule.

We'll use these parameters to test for a boundary crossing in the following code block:

MEM_W4RSTL: begin

 if (~wr_rst_busy) begin

 // Make a request from the current address

 mem_araddr <= mc_addr;

 if (next_addr[31:11] != mc_addr[31:11]) begin

Project 11 – Introducing the VGA 279

 // look if we are going to cross 2K boundary

 mem_arlen <= len_diff;

 if (mem_arready) mem_cs <= MEM_REQ;

 else mem_cs <= MEM_W4RDY1;

 end else begin

 // Make a single request

 mem_arlen <= mc_words - 1;

 if (mem_arready) mem_cs <= MEM_IDLE;

 else mem_cs <= MEM_W4RDY0;

 end // else: !if(next_addr[12])

 // Calculate the parameters for second request

 next_addr <= mc_addr + len_diff + 1'b1;

 len_diff <= mc_words - len_diff;

 end

 end // case: MEM_W4RSTH

When the reset goes away, we can make a request to the memory controller. We have
already calculated the next address, so we can test the upper bits to see whether the next
address falls into the next 2,048-byte page. Based on the test, we'll either make a single
request or a request for the last part of the current 2,048-byte page. In either case, we
can move directly to the second request or back to IDLE if the awready signal is high,
otherwise we need to move to a state to wait for awready.

We'll also pre-calculate the address and length of the second request in the event we need
it:

MEM_REQ: begin

 if (~wr_rst_busy) begin

 mem_araddr <= next_addr;

 mem_arlen <= len_diff;

 if (mem_arready) mem_cs <= MEM_IDLE;

 else mem_cs <= MEM_W4RDY0;

 end

end // case: MEM_W4RSTH

The final state handles the remainder of the scanline if it crossed the 2,048-byte boundary.

280 A Better Way to Display – VGA

To handle the data coming back, we'll use a Xilinx async, xpm_fifo, as shown in the
following code block:

 // Pixel FIFO

 // large enough for one scanline at 1920x32bpp (480 bytes)

 xpm_fifo_async

 #(.FIFO_WRITE_DEPTH (512),

 .WRITE_DATA_WIDTH (128),

 .READ_MODE ("fwft"))

 u_xpm_fifo_async

 (.rst (fifo_rst),

 .wr_clk (mem_clk),

 .wr_en (mem_rvalid),

 .din (mem_rdata),

 .wr_rst_busy (wr_rst_busy),

 .rd_clk (vga_clk),

 .rd_en (vga_pop),

 .dout (vga_data),

 .empty (vga_empty),

 .rd_rst_busy (rd_rst_busy));

The main things to observe regarding the FIFO is that we are writing on the memory
clock and reading on the VGA pixel clock. In this design, I haven't taken any precautions
to make sure the data is loaded for a scanline or to handle exceptions. This results in the
memory reads being fire and forget. We have a state machine that makes the request and
the data is pushed back into a FIFO to be read out.

The FIFO is configured as first-word fall-through (fwft), which means the data is ready
on the output for immediate use.

Finally, we need to read from the FIFO and display on the screen:

initial scan_cs = SCAN_IDLE;

always @(posedge vga_clk) begin

 vga_pop <= '0;

 case (scan_cs)

 SCAN_IDLE: begin

 if (horiz_count == horiz_display_start) begin

 if (vga_data[0]) vga_rgb <= ~vga_empty;

Project 11 – Introducing the VGA 281

 else vga_rgb <= '0;

 scan_cs <= SCAN_OUT;

 pix_count <= '0;

 end

 end

 SCAN_OUT: begin

 pix_count <= pix_count + 1'b1;

 // Right now just do single bit per pixel

 if (pix_count == 126) begin

 vga_pop <= ~vga_empty;

 end

 if (vga_data[pix_count]) vga_rgb <= '1;

 else vga_rgb <= '0;

 if (rd_rst_busy) scan_cs <= SCAN_IDLE;

 end

 endcase // case (scan_cs)

end

The display state machine is pretty simple. We wait until we reach the first scanline and
then, based on the pixel format, we can display on the screen. This version of the code
only supports 1 bpp.

At this point, we can run on the board and we should see VGA output. We've initialized
the core to run at 640x480 @ 60 Hz:

Figure 9.7 – First VGA screen attempt

282 A Better Way to Display – VGA

I've fixed this problem in the code you are running. Without a startup clearing of the
memory, we are at the mercy of old data or data from the memory controller initialization
being displayed:

Figure 9.8 – Sample resolutions

When you first bring up the project, it will clear the screen and display 640x480 @ 60 Hz.
This is accomplished by one state that is only executed when powering on:

CFG_IDLE0: begin

 update_text <= ~update_text;

 cfg_state <= CFG_IDLE1;

end

We've now completed a simple, yet useful, VGA controller. I hope when looking at this
that you can see that writing hardware that is useful isn't out of reach. Certainly, there is
a lot of work that goes on behind the scenes in order to make sure it works for what you
want.

Testing the VGA controller
Most of the testing was done on the board. The turnaround time for a compile is short.
The simulation time for a full frame is very long using the Vivado Simulator due to the
PLLs and the memory controller. It is, however, a good way to check the first few scanlines
of a display to make sure they look okay and that the timing works alright.

The two main pieces that we need for simulating are the clock generator and the register
load:

initial clk = '0;

always begin

Project 11 – Introducing the VGA 283

 clk = #5 ~clk;

end

…

initial begin

 SW <= 8;

 button_c <= '1;

 repeat (1000) @(posedge clk);

 while (~u_vga.init_calib_complete) @(posedge clk);

 $display("DDR calibration complete");

 while (~u_vga.locked) @(posedge clk);

 button_c <= '1;

 repeat (100) @(posedge clk);

 button_c <= '0;

 repeat (10000) @(posedge clk);

end

A more complete testbench could contain tasks for saving video frames, but given the
speed, you are better off running on the board. To run on the board, we need to examine
the constraints necessary.

Examining the constraints
In the VGA we have quite a bit of clock domain crossing to handle. The FIFO handles the
data, but we have data going from our AXI interface to our memory controller clock and
then to the VGA display clock. On top of this, we have a variable frequency VGA clock
from the programmable MMCM.

When you implement an MMCM or PLL, Vivado will automatically create a generated
clock on the output. Since we will reprogram the PLL during operation, we'll need to
override this with the maximum clock we expect to see during operation:

create_clock -period 7.41 -name vga_clk -add [get_pins u_clk/
clk_out1]

We'll also need the clock periods for setting up the following constraints. We can get the
period parameter from a clock by using get_property. get_clocks can be used to
access the clock information:

set vga_clk_period [get_property PERIOD [get_clocks vga_clk]]

set clk200_period [get_property PERIOD [get_clocks clk_out1_

284 A Better Way to Display – VGA

sys_clk]]

set clkui_period [get_property PERIOD [get_clocks clk_pll_i]]

Experimenting a bit, I was able to discover that we could reliably run up to about 135
MHz, so I provided this as a clock on the PLL output.

Now we need to add constraints for our synchronizer inputs. Since these are single signal
toggle synchronizers, we'll false-path the input to the first stage of the synchronizer flip
flops:

set_false_path -from u_vga_core/load_mode_reg*/C -to */load_
mode_sync_reg[0]/D

set_false_path -from u_vga_core/mc_req_reg*/C -to */mc_req_
sync_reg[0]/D

set_false_path -from update_text_reg/C -to update_text_sync_
reg[0]/D

We'll also add in max_delay constraints to make sure to properly constrain the
registers between clock domains and to not push the tool to meet unreasonable timing
requirements. We do this as follows:

set_max_delay -datapath_only -from */horiz_display_start_reg*
[expr 1.5 * $vga_clk_period]

set_max_delay -datapath_only -from */horiz_display_width_reg*
[expr 1.5 * $vga_clk_period]

…

set_max_delay -datapath_only -from *sw_capt_reg*/C [expr 1.5 *
$clkui_period]

set_max_delay allows us to set the amount of time from any point to any other point.
-datapath_only tells the timing engine to not consider clock delays in computing the
delays.

With this we have implemented our design on the board and met timing. In the next
chapter, we'll add in a keyboard and use the VGA as a capstone project where we can use
it to display data from our previous projects.

Summary 285

Summary
In this chapter, we've introduced a better way of displaying data. Previously, we were
limited to the physical outputs: a row of 16 LEDs, two tricolor LEDs, and the 7-segment
display. We made good use of them for the simple testing of logic functions, our traffic
light controller, and our simple calculator. We've used a ROM to display text. We've
introduced a programmable PLL and used our DDR2 controller. We're now ready to
tackle our capstone project.

In the next chapter, we'll wrap up the book by putting everything together. We can use our
VGA to display the output from our temperature sensor, calculator, and microphone. We'll
also introduce the PS/2 keyboard interface to provide an easier way to control the system.

Questions
1. You can use an XOR gate as:

a) A way to add two bits

b) A way to multiply two bits

c) A programmable inverter

2. We are limited to what resolution when generating a VGA controller?

a) 640x480 @ 60 Hz

b) 1280x1024 @ 85 Hz

c) 1920x1200 @ 60 Hz

d) A resolution our monitor can handle and a pixel clock that we can reliably meet
timing for in our design

3. Building a VGA controller in an FPGA is impractical.

a) True

b) False

4. How many colors can we represent with 888 or 24 bpp?

a) 2 colors

b) 16 colors

c) 64K colors

d) True color, or 16 million colors

286 A Better Way to Display – VGA

5. An AXI Lite write interface consists of which of the following?

a) A write address

b) Write data

c) A write response

d) All of the above

6. An AXI Lite read interface consists of which of the following?

a) A read address

b) Read data

c) A read response

d) All of the above

e) (a) and (b)

Challenge
The current VGA design only displays black and white. Can you change the design to
display two different colors? Can you modify it to use some switches on the board to select
these colors?

Further reading
For more information about what was covered in this chapter, please refer to the following
links:

• https://www.xilinx.com/support/documentation/ip_
documentation/clk_wiz/v6_0/pg065-clk-wiz.pdf

• https://glenwing.github.io/docs/VESA-DMT-1.13.pdf

https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v6_0/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v6_0/pg065-clk-wiz.pdf
https://glenwing.github.io/docs/VESA-DMT-1.13.pdf

10
Bringing It All

Together
Take a deep breath and reflect on what you've accomplished in getting to this point in
the book. You started the journey with little or no SystemVerilog knowledge and were
unaware of how to build hardware in an FPGA. Over the course of this book, you've
gone from simple logic functions utilizing switches to light LEDs to as far as writing text
out on a VGA screen.

In this chapter, we'll investigate the PS/2 interface, which is a way of communicating with
a keyboard or mouse that Digilent has chosen to use. We'll then be taking our VGA from
Chapter 9, A Better Way to Display – VGA, and adapting it to display more data than the
resolution we currently have selected. We'll use it to output scan codes from the keyboard
so you can see how it operates. We'll also adapt our temperature sensor to display on the
VGA. Finally, we'll take the audio captured by the PDM microphone and display it as a
waveform on the screen.

By the end of this chapter, you'll have an interactive piece of hardware that displays
keyboard scancodes, the temperature in Fahrenheit or Celsius (selectable via the
keyboard), and the audio data as a waveform.

288 Bringing It All Together

In this chapter, we are going to cover the following main topics:

• Using a keyboard – introduction to the USB to PS/2 interface

• Displaying data from the keyboard on the screen

• Converting the temperature sensor to use the VGA display

• Converting the PDM microphone to use the VGA display

• Bringing everything together in a final project

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH10.

If you want to implement the project on the board, you'll require a VGA-capable monitor,
cable, and USB keyboard.

Important note
The Nexys A7 supports a USB keyboard capable of supporting PS/2
BIOS modes. While writing this chapter, I was only able to find one older
keyboard that worked 100%. This is a limitation of the Digilent board as
the PIC source code for interfacing the USB to PS/2 is closed source. If you
can't find a compatible keyboard or don't want to buy one, you can still
view the PS/2 output in the Integrate Logic Analyzer (ILA). Here is one
keyboard that is known to work: https://www.amazon.ca/gp/
product/B07THJFXJN/ref=ppx_yo_dt_b_search_asin_
title?ie=UTF8&psc=1&fpw=alm. Modern gaming-type keyboards do
not appear to work reliably.

Now let's look at the keyboard interface on the Digilent boards.

Investigating the keyboard interface
I'm sure you are familiar with computer keyboards as a user, but perhaps not how
keyboards are physically implemented.

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH10
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH10
https://www.amazon.ca/gp/product/B07THJFXJN/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1&fpw=alm
https://www.amazon.ca/gp/product/B07THJFXJN/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1&fpw=alm
https://www.amazon.ca/gp/product/B07THJFXJN/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1&fpw=alm

Investigating the keyboard interface 289

Keyboards consist of a matrix of switches. When you depress a key, you close a circuit.
A keyboard controller activates one line at a time and checks to see which lines are
connected, which will identify a unique key (assuming only one key is pressed). It will also
detect when a key is released:

Figure 10.1 – Keyboard matrix

The keyboard controller will apply a voltage across each input one at a time. With the
voltage applied, it will look at the outputs to identify whether any key is pressed. In Figure
10.1, when the controller scans input 2, and key K is depressed, output 2 will be active high.

When IBM introduced the PS/2 computer, they introduced a new keyboard and mouse
standard. The keyboard pulled the matrix decoder into the keyboard and simplified the
interface to two wires. The protocol consists of 11-bit transfers that consist of a start bit,
data byte, odd parity, and stop bit. The data is transmitted from least significant bit (LSB)
to most significant bit (MSB). On Digilent boards, the keyboard is connected to a USB
interface, a PIC microcontroller acts as the PS/2 device, and the FPGA acts as the host:

Figure 10.2 – PS/2 device to host timing

290 Bringing It All Together

Figure 10.2 shows how a device communicates with the host. The device is always
responsible for generating the clock to the host. We can look at how this protocol works
by examining the PS/2 state machine:

IDLE: begin

 if (counter_100us != COUNT_100us) begin

 counter_100us <= counter_100us + 1'b1;

 xmit_ready <= '0;

 end else begin

 xmit_ready <= '1;

 end

 data_counter <= '0;

 if (~ps2_clk_clean && ps2_clk_clean_last) begin

 counter_100us <= '0;

 state <= CLK_FALL0;

 end else if (~tx_ready && xmit_ready) begin

 counter_100us <= '0;

 tx_data_out <= {1'b1, ~^tx_data,tx_data, 1'b0};

 state <= XMIT0;

 end else if (send_set && xmit_ready) begin

 clr_set <= '1;

 counter_100us <= '0;

 tx_data_out <= {1'b1, ~^send_data, send_data, 1'b0};

 state <= XMIT0;

 end

end

In the idle state, we watch for a falling edge of ps2_clock: ~ps2_clk_clean &&
ps2_clk_clean_last, we receive an external request to send data, or we send the
initialization data:

CLK_FALL0: begin

 // capture data

 data_capture <= {ps2_data_clean, data_capture[10:1]};

 data_counter <= data_counter + 1'b1;

 state <= CLK_FALL1;

end

Investigating the keyboard interface 291

CLK_FALL1: begin

 // Clock has gone low, wait for it to go high

 if (ps2_clk_clean) state <= CLK_HIGH;

end

CLK_HIGH: begin

 if (data_counter == 11) begin

 counter_100us <= '0;

 done <= '1;

 err <= ~^data_capture[9:1];

 state <= IDLE;

 end else if (~ps2_clk_clean) state <= CLK_FALL0;

end

The next three states handle capturing the data from the device:

1. Capture the data when the clock goes low in CLK_FALL0.

2. Wait for the clock to go high in CLK_FALL1.

3. In CLK_HIGH, if we receive 11 data bits, go back to idle, or wait for clock to fall and
return to CLK_FALL0.

You can see from the FPGA perspective that the receive protocol is very straightforward.
We package up the data for use by the instantiating design using the following code:

initial begin

 out_state = OUT_IDLE;

 rx_data = '0; rx_user = '0; rx_valid = '0;

end

always @(posedge clk) begin

 rx_valid <= '0;

 case (out_state)

 OUT_IDLE: begin

 if (done && rx_ready) begin

 rx_data <= data_capture[8:1];

 rx_user <= err; // Error indicator

 rx_valid <= '1;

 if (~rx_ready) out_state <= OUT_WAIT;

 end

 end

292 Bringing It All Together

 OUT_WAIT: if (rx_ready) out_state <= OUT_IDLE;

 endcase

 if (reset) out_state <= OUT_IDLE;

end

This creates an AXI streaming interface out of the ps2_host module.

The PIC microcontroller that acts as the USB to PS/2 interface is essentially a black box
into which we have no visibility. This causes a problem if the keyboards are not behaving
as expected. As I debugged the problem of finding a keyboard that worked with the Nexys
A7, I developed a complete host interface and generated a startup sequence similar to the
ones I found online captured by people during startup:

Figure 10.3 – PS/2 host to device timing

When using a PS/2 mouse, host to device communication is required. For keyboards, it's
not strictly necessary, although to set the keyboard lights, such as caps lock or num lock,
the host controls this by issuing commands. Figure 10.3 shows how this communication
occurs. The protocol operates as per the write portion of the following state machine:

XMIT0: begin

 // Drop the clock to signal to device and hold low 100us

end

XMIT1: begin

 // put out the data and release the clock to device

 // Wait 20us

end

XMIT2: begin

 // Every clock negedge advance the data

end

XMIT3: begin

 // Wait for clock to drop

end

Investigating the keyboard interface 293

XMIT4: begin

 // Wait for ACK

end

XMIT5: begin

 // Wait for data to go high

end

XMIT6: begin

 // Wait for clock to rise then go back to idle

end

A mouse or keyboard can be connected at any one time, but not both. The project only
supports a keyboard. As part of my debug efforts, I generated the entire initialization
represented in the preceding start_state state machine:

Figure 10.4 – PS/2 initialization

The state machine sends and receives the sequence before bringing up the device. If you
experience problems with the keyboard you are trying to use, you can use the ILA that we
introduced in Chapter 3, Counting Button Presses, to determine whether the sequence has
been followed properly.

294 Bringing It All Together

During normal operation, once the keyboard is initialized, scancodes are generated for
every keypress:

Figure 10.5 – PS/2 keyboard scan codes

On the Digilent board, when a key is pressed on the keyboard, the PIC will convert the
USB protocol to PS/2 and generate a scancode representing the keypress to the FPGA.
Figure 10.5 shows the scancodes for most keys. If a key is shifted, a shift modifier code is
sent prior to the key's scancode. If a key is held down, the key will be repeatedly sent every
100 ms. When a key is released, an F0 scancode is sent along with the keycode. Finally,
there are some extended keys that will have an E0 code sent prior to the scancode. When
this type of key is released, an 0xE0 and 0xF0 value will be sent to represent a key up
event. The FPGA can also communicate with the keyboard for setting the caps lock or
num lock LEDs.

Now, let's look at developing a project where we can test the capabilities of the keyboard.

Project 12 – keyboard handling
We've looked at what the PS/2 interface looks like. Let's now put together a simple
interface so that we can test our knowledge before we move on to our design integration.
The first step is that we need to debounce our PS/2 signals. I've put together a debounce
circuit and test bench so we can verify it. This cannot be built as is, but let's look
at it. Open up https://github.com/PacktPublishing/Learn-FPGA-
Programming/blob/master/CH10/build/debounce/debounce.xpr.
This version of the code will act as a reusable core. We want to make sure that we only
change state after we've seen the CYCLES number of the same value. This will act as our
debouncing circuit.

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH10/build/debounce/debounce.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH10/build/debounce/debounce.xpr

Project 12 – keyboard handling 295

The interface is straightforward, as we can see in the following code:

module debounce

 #(parameter CYCLES = 16)

 (input wire clk,

 input wire sig_in,

 output logic sig_out);

The actual debouncing is handled by checking to see whether we have maintained the
same state for the CYCLES period. Notice that we double clock the sig_in signal to
make sure we don't have metastability problems:

always @(posedge clk) begin

 sig_in_sync <= sig_in_sync << 1 | sig_in;

 if (sig_in_sync[1] != current_state) begin

 current_state <= sig_in_sync;

 cycle_count <= '0;

 end else if (cycle_count == CYCLES) begin

 cycle_count <= '0;

 sig_out <= current_state;

 end else begin

 cycle_count <= cycle_count + 1'b1;

 end

end

The nice thing about a small design like this is that it's easy to test exhaustively, as can be
seen in the following test bench:

 initial begin

 sig_in = '0;

 // Test that we don't switch states too soon

 for (int i = 0; i < CYCLES; i++) begin

 sig_in = '1;

 repeat (i) @(posedge clk);

 sig_in = '0;

 repeat (CYCLES-i) @(posedge clk);

 end

296 Bringing It All Together

 sig_in = '1;

 repeat (100) @(posedge clk);

 for (int i = 0; i < CYCLES; i++) begin

 sig_in = '0;

 repeat (i) @(posedge clk);

 sig_in = '1;

 repeat (CYCLES-i) @(posedge clk);

 end

 sig_in = '0;

 repeat (100) @(posedge clk);

 $display("Test Finished!");

 $finish;

 end // initial begin

The first loop incrementally changes the number of cycles, the signal is high until we reach
the CYCLES threshold and the debounced output switches. Similarly, the second loop
does the opposite to change from high to low. Figure 10.6 shows the simulation output:

Figure 10.6 – Debounce simulation

We have a good debounce circuit, so we can move on to our PS/2 code. We'll make our
keyboard handler use AXI streaming to more easily integrate into other designs. The
interface to our core will be designed as follows:

module ps2_host

 #(parameter CLK_PER = 10,

 parameter CYCLES = 16)

 (input wire clk,

 inout ps2_clk,

 inout ps2_data,

 // Transmit data to the keyboard from the FPGA

 input wire tx_valid,

 input wire [7:0] tx_data,

Project 12 – keyboard handling 297

 output logic tx_ready,

 // Data from the device to the FPGA

 output logic [7:0] rx_data,

 output logic rx_user, // Error indicator

 output logic rx_valid,

 input wire rx_ready

);

We have our two tristate signals, ps2_clk and ps2_data. We have a transmit interface
that is, as yet, undeveloped. This interface could be used to set caps lock, repeat rate,
or other parameters the keyboard can receive. There is a second bus that reports data
received from the keyboard. We do have a user signal, which we'll use to report a parity
error if detected:

// Clean up the signals coming in

debounce

 #(.CYCLES (CYCLES))

u_debounce[2]

 (.clk (clk),

 .sig_in ({ps2_clk, ps2_data}),

 .sig_out ({ps2_clk_clean, ps2_data_clean})

);

The first step will be to add an array of instances to instantiate two debouncing circuits on
the ps2 data lines:

// Enable drives a 0 out on the clock or data lines

assign ps2_clk = ps2_clk_en ? '0 : 'z;

assign ps2_data = ps2_data_en ? '0 : 'z;

We'll need the tristate on data regardless. The tristate on clock is needed for the master
implementation. Note that when enable is asserted, we drive a low signal. We tristate the
output when driving a one on the enable, relying on the pullup to raise the logic level high.

With the keyboard interface designed, let's look at how we might test this.

298 Bringing It All Together

Testing the PS/2
Now we've got our PS/2 keyboard state machine and we can write a quick test bench.
Open https://github.com/PacktPublishing/Learn-FPGA-Programming/
blob/master/CH10/build/ps2/ps2.xpr. We have a test that can be used to verify
that scancodes from the keyboard can be received properly. The main component of the
state machine is the send_key task. This task takes in a scancode and converts it to a
PS/2 interface:

task send_key;

 input [7:0] keycode;

 input error;

 begin

 // Generate the PS/2 timing to send the keycode and use

 // error to generate good/ bad parity

 end

endtask // send_key

A SystemVerilog task is used to encapsulate a series of events that can have timing. In this
particular case, we are generating the PS/2 data stream for the host.

We'll also add another task to handle the keyboard receive:

task rx_key;

 input [7:0] exp_data;

 begin

 // Wait for ED

 edge_count = '0;

 // Wait for first falling edge, then rising edge

 @(negedge ps2_clk);

 @(posedge ps2_clk);

 while (edge_count < 10) begin

 repeat (100) @(posedge clk);

 ps2_clk0 = '1;

 repeat (100) @(posedge clk);

 if (edge_count == 10) ps2_data0 = '1;

 data_capt[edge_count++] <= ps2_data;

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH10/build/ps2/ps2.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH10/build/ps2/ps2.xpr

Project 12 – keyboard handling 299

 ps2_clk0 = '0;

 end

 repeat (100) @(posedge clk);

 ps2_data0 = '1;

 repeat (100) @(posedge clk);

 ps2_clk0 = '1;

 repeat (100) @(posedge clk);

 ps2_data0 = '0;

 ps2_clk0 = '0;

 repeat (100) @(posedge clk);

 $display("Captured data: %h", data_capt[8:1]);

 if (data_capt[8:1] != exp_data) begin

 $error("Data miscompared! Expected %h != Received %h",

 exp_data, data_capt[8:1]);

 end

 end

endtask // rx_key

This task, or a similar block in the test bench, is required since there is handshaking
between the test bench (device) and the host, and the device is responsible for generating
the clock. One thing to note about the rx_key task is that it doesn't maintain proper
timing. I chose to go down this route as the host is only detecting edges and this will speed
up the simulation. In general, however, it's good practice to match your simulations
to what the actual signals look like as this can uncover obscure problems you may
otherwise miss.

300 Bringing It All Together

We'll also want to implement a self-checking function. In order to do this, we'll also
introduce a construct that allows parallel operation, the fork…join function. Figure
10.7 shows conceptually what we are trying to accomplish by running the stimulus in one
process and the checking logic in another:

Figure 10.7 – Fork join conceptually used in the test bench

The left and right blocks after the fork represent begin…end blocks. Since they are
within the fork…join keywords, the two begin…end blocks will run in parallel to one
another. The left side generates the stimulus and responses, while the right side checks the
last four send key combinations. We can run this in the simulator:

Project 13 – bringing it all together 301

Figure 10.8 – PS/2 test sequence

Figure 10.8 shows the waves from simulating the PS/2 test bench. The initialization
sequence represents the keyboard self test passed through the boot sequence of a
computer. The test sequence contains two sets of good data and two sets of errored data.

Now we've got a better way of getting data into the FPGA via the keyboard and we'll use it
in our final project.

Project 13 – bringing it all together
You should take a moment to consider the path you've taken over the course of the book.
In the beginning, you toggled some switches and lit some lights. You've built some simple
designs, such as a calculator and traffic light controller. You've captured and converted
temperature sensor information, captured audio data, and displayed data on a VGA monitor.

Now we'll look back on these projects to gather a few of them and combine them into a final
design. The base will be the VGA we created in Chapter 9, A Better Way to Display – VGA.
This will allow us to easily display text or graphics. In the previous section, we simulated the
PS/2. However, we haven't seen it in operation. Luckily, every keypress generates at least 3
bytes, 1 byte for keydown and 2 bytes for keyup for most keys. We can come up with a clever
way of displaying this to the screen. Finally, we can look at the audio data. We can see the
data in the ILA, but what if we could view the waveform on the screen?

This project is contained within https://github.com/PacktPublishing/
Learn-FPGA-Programming/blob/master/CH10/build/final_project/
final_project.xpr.

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH10/build/final_project/final_project.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH10/build/final_project/final_project.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH10/build/final_project/final_project.xpr

302 Bringing It All Together

Displaying PS/2 keycodes on the VGA screen
Our PS/2 host interface block provides a convenient way of capturing information via
the streaming interface. This interface provides one byte at a time, which we receive from
the keyboard. Let's take a look at how we might capture and display the information on
the screen.

To display the VGA mode information, we created a 16-byte (128-bit) array to store the
information. This fits nicely into our DDR2 interface implementation, so we'll maintain
similar arrays for the PS/2 characters. Since every byte from the PS/2 takes two bytes in
our character array, we can define our storage as follows:

typedef struct packed

 {logic [7:0] data;

 logic error;

 } ps2_t;

localparam PS2_DEPTH = 8;

ps2_t ps2_data_capt;

logic [PS2_DEPTH*2-1:0][7:0] ps2_data_store;

logic ps2_toggle;

(* async_reg = "TRUE" *) logic [2:0] ps2_sync;

logic update_ps2;

logic clear_ps2;

We'll run the PS/2 interface on the 200 MHz clock. Luckily, we made our design clock
frequency independent and we can let it know how fast we'll run it by specifying the clock
period. The interface from the PS/2 to the VGA will be asynchronous, so we do have to
consider clock domain crossing.

Since we'll also be using the keyboard to select between Fahrenheit and Celsius, we'll need
to detect when the C or F key is pressed and keep track of the state:

// toggle sync and capture the data

always @(posedge clk200) begin

 if (ps2_rx_valid) begin

 ps2_toggle <= ~ps2_toggle;

 ps2_data_capt <= '{data: ps2_rx_data, error: ps2_rx_err};

 case (ps2_rx_data)

 8'h2B: ftemp <= '1; // F = fahrenheit

 8'h21: ftemp <= '0; // C = celsius

Project 13 – bringing it all together 303

 endcase

 end

end

If you recall the AXI streaming interface, we'll get a valid signal along with the data. When
ps2_rx_valid goes high, we'll toggle a signal that we can capture on the ui_clk
signal. We'll store the data in the structure alongside the signal. Finally, we'll look for the
scancode for F and C, 0x2B and 0x21, respectively. We'll keep track of whether we want
Fahrenheit or Celsius by using an ftemp signal.

On the ui_clk domain, we'll look for an edge on the synchronized toggle signal. We'll
create a shift register, as shown in Figure 10.9. PS/2 scancodes will get the hexadecimal
number converted to ASCII characters, they will be pushed into location 0, and each
character position will be pushed along the pipeline:

Figure 10.9 – Shift register

Shift registers are a common design component, so much so that the slices in the Xilinx
FPGAs have special modes to more optimally use them as shift registers.

We can see how this is coded in the final project:

if (^ps2_sync[2:1]) begin

 update_ps2 <= '1;

 for (int i = PS2_DEPTH-1; i >= 0; i--) begin

 if (i == 0) begin

 for (int j = 1; j >= 0; j--) begin

 // Convert nibble into a character

 end

 end else begin

 ps2_data_store[i*2+:2] <= ps2_data_store[(i-1)*2+:2];

 end

 end // for (int i = 0; i < PS2_DEPTH; i++)

end

304 Bringing It All Together

The outer loop works from the uppermost character, copying the next lower character into
it until it reaches character 0, when we convert each nibble into an ASCII character.

Once the register is loaded, we signal the text state machine to update the screen:

end else if (update_ps2) begin // if (^update_text_sync[2:1])

 // We'll start the PS2 output on line 8

 y_offset <= 8 * real_pitch;

 clear_ps2 <= '1;

 char_index <= ps2_data_store[0];

 capt_text <= ps2_data_store;

 s_ddr_awvalid <= '0;

 s_ddr_wvalid <= '0;

 text_sm <= TEXT_WRITE0;

We are reusing the same interface we had with the VGA, modified slightly so that we
can pass in the char_index signal, but also the capt_text signal that we'll use. We'll
expand upon this for the temperature sensor and audio data. When we run this in the
final project, you'll see the scan codes' output on the display, as shown in Figure 10.10:

Figure 10.10 – Displaying scancodes as keys are pressed

Each keystroke pushes one or more bytes into the shift register from the left to the right.
This is why the third byte, B2, which is actually 0x2B in hex, is the make code, f0 is the
break code, and B2 is the F key. These three bytes represent pressing and releasing the F
key. You'll also notice a string of AF values, again 0xFA, since it is nibble swapped, which
represents the keyboard acknowledge if you examine the initialization routine.

With this code, we now can display 8 bytes of PS/2 data on the screen. Let's now look at
adding the temperature sensor.

Project 13 – bringing it all together 305

Displaying the temperature sensor data
Previously in Chapter 6, Math, Parallelism, and Pipelined Design, we developed the
floating-point temperature sensor module. We now need to take the data that would
be displayed to the 7-segment display and convert it to ASCII and display it on the
VGA screen. To accomplish this, I've created a wrapper, i2c_wrapper. This module
encapsulates the i2c_temp_flt module we developed previously and creates the output
string, again adhering to the 16 characters we defined previously.

Recall that temp_valid and encoded are the outputs from the temperature sensor
core. The value on encoded is a decimal representation, with the decimal point always at
position 4. We also have the ability to select Fahrenheit or Celsius, so we'll want to add an
F or C to the output to differentiate the mode we are in:

Final_project.sv

always @(posedge clk) begin

 if (temp_valid) begin

 update_temp <= ~update_temp;

 capt_temp <= " F 0000.0000";

 capt_temp[9] <= 8'h0C; // Degree symbol

 if (ftemp) capt_temp[10] <= "F";

 else capt_temp[10] <= "C";

 for (int i = 7; i >= 0; i--) begin

 if (i > 3) begin

 capt_temp[7-i] <= 8'h30+encoded[i];

 end else begin

 capt_temp[8-i] <= 8'h30+encoded[i];

 end

 end

 end

end // always @ (posedge clk)

https://github.com/PacktPublishing/Learn-FPGA-Programming/CH10/hdl/text_
rom.sv

The key points are the update_temp toggle signal, since we are running on the 200 MHz
clock domain and need to have a clean way of signaling our display function that new data
is available. We define the format of capt_temp and override the F/C based upon the
ftemp signal.

306 Bringing It All Together

We can use a trick that the ASCII for 0-9 is 0x30-0x39. The loop spaces the digits
around the decimal point, and we add the integer value to 0x30 to give us the ASCII
character to display.

To display the string, we'll use the same function in the text state machine:

end else if (update_temp_capt) begin

 // We'll start the temperature output on line 16

 y_offset <= 16 * real_pitch;

 update_temp_capt <= '0;

 char_index <= capt_temp[0];

 capt_text <= capt_temp;

 s_ddr_awvalid <= '0;

 s_ddr_wvalid <= '0;

 text_sm <= TEXT_WRITE0;

When the synchronized update is captured and we are not working on another text
update, we'll pass along the captured temperature string and output to the display. One
additional enhancement we can make is to create a custom character to represent the
degrees symbol.

Adding a custom character to the text ROM
One addition we made is to add the degree symbol to the ROM characters. You can see
where we set this:

 capt_temp[9] <= 8'h0C; // Degree symbol

I've selected the first empty location, 0x0C, in the text ROM and created a representation
for the degrees symbol. In Figure 10.11, you can see how a character is constructed:

Figure 10.11 – Constructing the degree symbol

Project 13 – bringing it all together 307

There are eight scanlines for every character. Each scanline represents the bits to display.
To calculate the bytes, every lit pixel in each nibble needs to be added together. By doing
this, we can construct the lookup for the symbol:

// Degree Symbol

{8'h0C, 3'h0}: bitmap <= 8'h38;

{8'h0C, 3'h1}: bitmap <= 8'h44;

{8'h0C, 3'h2}: bitmap <= 8'h44;

{8'h0C, 3'h3}: bitmap <= 8'h44;

{8'h0C, 3'h4}: bitmap <= 8'h38;

{8'h0C, 3'h5}: bitmap <= 8'h00;

{8'h0C, 3'h6}: bitmap <= 8'h00;

{8'h0C, 3'h7}: bitmap <= 8'h00;

Now that we've completed the temperature sensor data, let's look at how we can display
the audio data.

Displaying audio data
The final display section will actually display the waveform as a raw graphic. There are a
couple of choices in terms of how we display the information, but in the end, we'll want to
show the amplitude of the wave.

Normally, these types of waveforms are displayed across a screen from left to right, as in
Figure 10.12:

Figure 10.12 – Typical sine wave representation

This type of implementation cannot be done easily and efficiently at the hardware level.
For the purposes of the final project, I propose that we display the output vertically. Recall
the pdm_input module. It captures a 7-bit audio sample that can natively be represented
as a dot on a 128-bit scanline segment.

308 Bringing It All Together

Since we created a reusable design where we can specify the clock frequency, we can use the
pdm_inputs core as we created it. We will need to add some external logic to buffer the
data. Since we'll be displaying vertically, we are limited to fewer than 480 scan lines. We'll
limit our display area to 256 scanlines of audio. Since we'll be plotting data and capturing
samples in parallel, we'll need a simple dual port RAM, one read, and one write port:

Figure 10.13 – Buffering audio data for display

We'll create a storage buffer of 1,024 samples, although 512 would be more than enough.
The reason for not using only 256 samples is that there is a possibility of overwriting data
before it's read. This will ensure that the 256 samples plotted are consecutive:

always @(posedge clk200) begin

 if (amplitude_valid) begin

 amplitude_store[amp_wr] <= amplitude;

 amp_wr <= amp_wr + 1'b1;

 end

 amp_data <= amplitude_store[amp_rd];

end

The storage is inferred as we discussed back in Chapter 5, FPGA Resources and How to Use
Them, the only difference being that the amp_wr pointer is incremented on every sample.

Finally, we create a signal that will update the display on every VSync. This required
a modification to the VGA to generate a toggle signal on every VSync. I decided to put the
logic in the vga_core module, as VGA sync polarity changes for different resolutions.

To pass the data to the text state machine, I decided to use a FIFO. This allows us to easily
cross clock domains, and we can pass the vertical location as well as the scanline segment
we want to display.

Project 13 – bringing it all together 309

I create a state machine, wave_sm, that handles the scanline generation:

case (wave_sm)

 WAVE_IDLE: begin

 if (^vga_sync_toggle_sync[2:1]) begin

 // get the amplitude data from behind the write pointer

 // by 256 samples

 amp_rd <= amp_wr - 256;

 rd_count <= '0;

 wave_sm <= WAVE_READ0;

 end

 end

 WAVE_READ0: begin

 // address to ram valid this cycle

 amp_rd <= amp_rd + 1'b1;

 rd_count <= rd_count + 1'b1;

 wave_sm <= WAVE_READ1;

 end

 WAVE_READ1: begin

 // address to ram valid this cycle

 amp_rd <= amp_rd + 1'b1;

 rd_count <= rd_count + 1'b1;

 pdm_push <= '1;

 pdm_din.address <= 31 + rd_count;

 pdm_din.data <= 1'b1 << amp_data;

 if (rd_count[8]) wave_sm <= WAVE_IDLE;

 end

endcase // case (wave_sm)

When vga_sync toggles, we look back by rewinding 256 samples and then read out
and push the display segments for 256 scanlines. On the text state side, we will write one
scanline at a time:

end else if (!pdm_empty) begin

 pdm_pop <= '1;

 char_y <= '1; // Force only one line to be written

 update_temp_capt <= '0;

 s_ddr_awvalid <= '1;

310 Bringing It All Together

 s_ddr_awaddr <= pdm_dout.address * real_pitch;

 s_ddr_wvalid <= '1;

 s_ddr_wdata <= pdm_dout.data;

 text_sm <= TEXT_WRITE2;

We handle this by setting the char_y count to 7, so we'll only write one scanline for
every FIFO pop. We'll also trigger the write here since we don't need to loop over
multiple scanlines.

At this point, you should build the project and see what it looks like on the board. Once
you download the bitstream, you'll be greeted with a display as seen in Figure 10.14:

Figure 10.14 – Initial bringup

I would recommend playing some audio or downloading a tone generator to get a more
interesting output, as shown in Figure 10.15:

Figure 10.15 – Final project output

Summary 311

This screenshot was taken of the final project capturing a tone from a cell phone tone
generator application. You can see all the components represented here:

• Resolution

• Scancodes

• Temperature sensor in Fahrenheit

• The audio capture

You've now completed the capstone project of the book. You've brought together some
reusable components and created a useful application from them. No longer restricted by
a few LEDs, you've created a graphical display and added output text and graphics to it.

Summary
In this chapter, we've explored the PS/2 keyboard interface by creating an interface that can
write to and receive data from the keyboard. With the PS/2 ready to use, we've then taken
pieces from the last few chapters: the VGA to display our data, the temperature sensor to
provide some numerical output, and the PDM interface so we can add something more
graphics-oriented. You've now completed the journey from basic logic gates to coding
something that can display text and graphics on the screen. It's possible to go much further
with writing pure SystemVerilog, but looking at a soft processor is a good next step.

There is one final chapter containing some more advanced constructs that can help in
your design and simulation and then you'll be ready to tackle your own design challenges.

Questions
1. PS/2 keyboards use a two-wire interface consisting of:

a) Keyup/keydown

b) Clock/data

c) Data in/data out

2. A scancode is generated whenever a key is:

a) Pressed

b) Released

c) Held down

d) All of the above

312 Bringing It All Together

3. To display the scancodes on the VGA, we used:

a) A hex to ASCII converter

b) A shift register

c) A BCD encoder

d) (a) and (b)

4. To display audio data, how was the text state machine modified?

a) It takes in 128 bits of graphical data and writes that to the correct address for that
scanline using text_sm.

b) The graphics are mapped to characters and we reuse the text_sm state variable.

c) We created a new graphics state machine.

5. To trigger an audio update, we:

a) Update on every sample captured

b) Update every second

c) Update on every vertical sync

d) Update whenever nothing else is going on

Challenge
Usually, audio data is displayed horizontally. Can you modify the code to create
a horizontal display? This is a challenging problem and could take a little while to
get right. Here are a couple of hints:

• You may want to clear the area and then simply plot the dots that need to be set.

• You may want to buffer up 128 bits of each scanline and use the existing FIFO
interface to display the data.

There are a bunch of ways to accomplish this, but you should be able to find one that works.

Further reading
For more information about what was covered in this chapter, please refer to the
following link:

• https://www.avrfreaks.net/sites/default/files/PS2%20
Keyboard.pdf

https://www.avrfreaks.net/sites/default/files/PS2%20Keyboard.pdf
https://www.avrfreaks.net/sites/default/files/PS2%20Keyboard.pdf

11
Advanced Topics

Over the course of the book, you've had the opportunity to try your hand at a few different
projects. To get you started quickly, we limited some of the syntax. This chapter will
introduce a few new constructs you may find useful for synthesis and verification. I'll also
introduce some things to watch out for.

By the end of this chapter, you'll have been exposed to almost all the useful SystemVerilog
constructs for designing and testing FPGAs.

In this chapter, we are going to cover the following main topics:

• Exploring more advanced SystemVerilog constructs

• Exploring some more advanced verification constructs

• Other gotchas and how to avoid them

Technical requirements
The technical requirements for this chapter are the same as those for Chapter 1,
Introduction to FPGA Architectures and Xilinx Vivado.

To follow along with the examples and the project, you can find the code files for
this chapter at the following repository on GitHub: https://github.com/
PacktPublishing/Learn-FPGA-Programming/tree/master/CH11.

https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH11
https://github.com/PacktPublishing/Learn-FPGA-Programming/tree/master/CH11

314 Advanced Topics

Exploring more advanced SystemVerilog
constructs
We've used many basic constructs in our designs. The syntax we've used is enough to
construct anything you would like to design. There are some other design constructs that
can be useful, so I'd like to at least introduce them with an example of how to use them.
The most useful construct is the interface.

Interfacing components using the interface construct
SystemVerilog interfaces can be thought of as modules that straddle other modules. An
interface in its simplest form is a bundle of wires, very much like a structure. However,
unlike a structure, the direction of each individual signal is independent, meaning that
you can have both inputs and outputs defined within the interface.

I've created a project to show ps2_host implemented using an interface: https://
github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/
CH11/build/ps2_host/ps2_host.xpr

Interfaces also have the added advantage that you can encapsulate functions, tasks, and
assertions that are related to the given interface signals. This improves design reusability
and improves design development. Most of the designs we have worked with so far have
only had a few levels of nested modules. Large designs can have signals that can delve
many times deeper. By encapsulating an interface, adding, removing, or resizing a signal
becomes as easy as modifying the interface definition.

We can look at modifying the ps2_host module to use an interface. Remember that our
original version back in Chapter 10, Bringing It All Together, had an interface that looked
as shown in the following code:

// Transmit data to the keyboard from the FPGA

input wire tx_valid,

input wire [7:0] tx_data,

output logic tx_ready,

// Data from the device to the FPGA

output logic [7:0] rx_data,

output logic rx_user, // Error indicator

output logic rx_valid,

input wire rx_ready

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/ps2_host/ps2_host.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/ps2_host/ps2_host.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/ps2_host/ps2_host.xpr

Exploring more advanced SystemVerilog constructs 315

This type of design is a good example to implement an interface for. It's a good idea
to maintain a constant naming convention. What I typically do is name an interface
<interface_name>.intf and save each interface in its own .sv file.

Interfaces can contain parameters and a port list like a module. In ps2_intf, we won't
need these; however, we will take advantage of the function encapsulation:

interface ps2_intf;

 // Interfaces can contain parameter lists like a module

 // Interfaces can contain IO like a module

 logic tx_valid;

 logic [7:0] tx_data;

 logic tx_ready;

 logic [7:0] rx_data;

 logic rx_user;

 logic rx_valid;

 logic rx_ready;

The first part of the interface defines the signals within the interface itself. The second
section contains modports. Modports allow us to define the direction of signals. If a
modport is not used, the signal is considered bidirectional:

 modport master

 (output tx_valid,

 output tx_data,

 input tx_ready,

 input rx_data,

 input rx_user,

 input rx_valid,

 output rx_ready);

 modport slave

 (input tx_valid,

 input tx_data,

 output tx_ready,

 output rx_data,

 output rx_user,

 output rx_valid,

316 Advanced Topics

 input rx_ready,

 import parity_gen,

 import parity_check);

The things to notice here are the import keywords on the slave modport. These allow
the functions to be used within the slave interface. This allows us to limit the visibility of
functions or internal signals to only authorized modports. This allows related functions
such as the parity functions in the following code to be used by the instantiating module:

function parity_gen(input [7:0] din);

 begin

 return ~^din;

 end

endfunction // parity_gen

function parity_check(input [8:0] din);

 begin

 return ~^din;

 end

endfunction // parity_check

By encapsulating the functions within the interface, we keep everything needed to generate
a PS/2 command or check the incoming scancode. This will help reusability in the future:

Figure 11.1 – Interface signals in the Vivado simulator

You can see from Figure 11.1 that the interface shows up separately in the signal list almost
like a module. You can also see the modports show up when expanded. If you add the
signals to the wave viewer, they look the same as any other signal:

Exploring more advanced SystemVerilog constructs 317

Figure 11.2 – Simulation waveform for interfaces

The test included in this project will pass when run. We'll look a little closer at the
testbench when we discuss queues. Interfaces are completely optional to use. Some people
find them very useful, others don't like to use them. If they work for you, they can really
come in handy.

There are some Vivado limitations currently, however. The top-level module cannot use
interfaces as ports. Block Design (BD) subdesigns cannot use interfaces either. If you
limit the connections within a design using SystemVerilog, you will be fine.

Now let's look at structures in a little more detail.

Using structures
Throughout the book, we've used structures. They provide a convenient way to package
data and make your design easier to follow. Recall in Chapter 9, A Better Way to Display –
VGA, we used a structure to hold our resolution information for the VGA:

typedef struct packed {

 logic [7:0] divide_count;

 logic [15:8] mult_integer;

 logic [25:16] mult_fraction;

 …

 logic hpol;

 logic vpol;

 logic [12:0] pitch;

} resolution_t;

Creating a typedef of a structure as in the preceding code effectively creates a new type.
You can create packed and unpacked arrays of structures or use them as you would any
other type. An example of this is creating our table of resolutions:

resolution_t resolution[18];

318 Advanced Topics

We have a couple of ways of assigning to. The first is assigning by component, which we
used in Chapter 9, A Better Way to Display – VGA:

// 25.18 Mhz 640x480 @ 60Hz

resolution[0].divide_count = 8'd9;

resolution[0].mult_integer = 8'd50;

resolution[0].mult_fraction = 10'd000;

…

resolution[0].hpol = '0;

resolution[0].vpol = '0;

resolution[0].pitch = 13'd5*16; // 5 rows at
1bpp

Another way is to assign by name:

// 25.18 Mhz 640x480 @ 60Hz

resolution[0] = '{default: '0,

 divide_count: 8'd9,

 mult_integer: 8'd50,

 mult_fraction: 10'd000,

 …

 Pitch: 13'd5*16}; // 5 rows at 1bpp

When assigning in this way, you can use the default keyword to assign values to
anything not specified. The preceding two snippets of code are equivalent.

Block labels
Any begin…end block can be labeled. I've created an example project to show this:
https://github.com/PacktPublishing/Learn-FPGA-Programming/
blob/master/CH11/build/labels/labels.xpr.

This is highly recommended for generate statements as this will be a requirement in
future versions of SystemVerilog. This can help with readability. Block labels can also be
useful if using disable, as we'll see. In the following code, we'll look at an example of
how block labels can help catch coding errors:

always_ff @(posedge clk) begin

 // mismatched block label

 if (subtraction) begin : l_addition_op

 dout <= in0 - in1;

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/labels/labels.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/labels/labels.xpr

Exploring more advanced SystemVerilog constructs 319

 end : l_subtraction_op

 // reusing a label

 if (addition) begin : l_addition_op

 dout <= in0 + in1;

 end : l_addition_op

end

Labeling can also help to keep track of which block a section of code is in. Labels cannot
be reused. Also, errors will result if the start and end label are not the same. Running the
preceding code through the Vivado simulator yields the following:

ERROR: [VRFC 10-3516] mismatch in closing label 'l_subtraction_
op'; expected 'l_addition_op' [/home/fbruno/git/books/Learn-
FPGA-Programming/CH11/hdl/labels.sv:12]

ERROR: [VRFC 10-2934] 'l_addition_op' is already declared [/
home/fbruno/git/books/Learn-FPGA-Programming/CH11/hdl/labels.
sv:16]

ERROR: [VRFC 10-3516] mismatch in closing label 'l_addition_
op'; expected '<unnamed>' [/home/fbruno/git/books/Learn-FPGA-
Programming/CH11/hdl/labels.sv:16]

ERROR: [VRFC 10-2865] module 'labels' ignored due to previous
errors [/home/fbruno/git/books/Learn-FPGA-Programming/CH11/hdl/
labels.sv:1]

Labeling is optional, but can be worthwhile if you practice it. Now let's look at
looping constructs.

Looping using for loops
We have been using for loops throughout the book. In every case, we have defined the loop
variables within the for loop and this is highly desirable. for loops also allow for multiple
loop variables, although only one test is allowed for ending the loop. Here's an example:

for (int i = 0, j = 0; i *j < 256; i++, j+=8) begin

The preceding example is perfectly fine for synthesis and implementation.

320 Advanced Topics

Looping using do…while
We have seen while loops, particularly in our PS/2 testing in Chapter 10, Bringing It All
Together. do…while and while loops are synthesizable.

We can see two implementations of a last_ones function using both types of loops:

always_comb begin

 done = '0;

 i = 0;

 while (!done) begin

 if (vector[i] || (i==15)) done = '1;

 else i += 1;

 end

 last_ones = i;

end

Another way of coding this would be to use a do…while loop as shown in the following
code. do…while loops are particularly useful when you want the loop to execute at
least once:

always_comb begin

 done = '0;

 i = 0;

 do

 if (vector[i] || (i==15)) done = '1;

 else i += 1;

 while (!done);

 last_ones = i;

end

These could both be used to detect the smallest bit position set. As mentioned with for
loops, as long as you can unroll the loop it's synthesizable.

We have looked at simple loops, but what if you have a more complex operation involving
nested loops?

Exploring more advanced SystemVerilog constructs 321

Exiting a loop using disable
We have used break in a for loop to exit when finding a bit set. What can we do if we
have nested loops? The disable statement allows you disable a named block. This is
synthesizable, much like the break statement is synthesizable:

always_comb begin

 first_ones = '0;

 for (int i = 0; i < 4; i++) begin : outer_loop

 for (int j = 0; j < 8; j++) begin : inner_loop

 if (din[i][j]) begin

 first_ones = 6'(i*8 + j);

 disable outer_loop;

 end

 end : inner_loop

 end : outer_loop

end // always_comb begin

In the preceding code, we are searching a two-dimensional array, din, for the first one
detected. Once found, we want to capture its position in the array, 6'(i*8 + j), and stop
the search.

In addition to break and disable, SystemVerilog also supports continue.

Skipping code using continue
Back in Chapter 4, Let's Build a Calculator, we developed a leading 1s indicator. We could
recode it to use continue:

always_comb begin

 LED = '0;

 for (int i = $low(SW); i <= $high(SW); i++) begin

 if (~SW[i]) continue;

 LED = i + 1;

 end

end

As an alternative to breaking a loop, we might want to skip over something in the loop if
we should encounter it. The preceding loop shows how we can skip all 0s in a vector, only
capturing the position of the final 1 detected.

322 Advanced Topics

Using constants
Constants provide a way of letting the tool know something cannot be changed
during execution:

// do not allow changing this during execution

const int bus_width = 8;

If bus_width is used on the left-hand side of an equation in the design, the tool will
produce an error.

In this section, we had a look at a few constructs for design. You may find some of them
worthy of further investigation and use, but they are certainly optional, so use or ignore
them as you see fit.

Now let's look at some constructs for improving the simulation of your designs.

Exploring some more advanced verification
constructs
The testing we have done thus far has been pretty simple, even when we used self-
checking. There is one construct that I have found very useful over the years. The queue is
easy to use and understand.

Introducing SystemVerilog queues
Often, you need to generate an input in a design that will produce an expected output
some time later. Examples of this are parsing engines, data processing engines, and, as we
saw in Chapter 9, A Better Way to Display – VGA, the PS/2 interface.

When I modified the ps2_host module, I decided to upgrade the testbench for it using
queues. I had to create a structure to define what I wanted to store in the queue:

typedef struct packed

 {

 logic [7:0] data;

 logic parity;

 } ps2_rx_data_t;

This structure will store our expected data as we generate data in the ps2_host for testing.

Exploring some more advanced verification constructs 323

A queue is defined as follows:

ps2_rx_data_t ps2_rx_data[$];

It looks much like an unpacked array, except the size is defined as [$], which defines it as a
queue that can be manipulated in tests. We can access the queue by pushing to the front or
back and popping from the back or front. These functions, along with the size() operator,
are the most useful for simulating. There are other functions for inserting or deleting, and I
recommend further research if you think it might be useful for your application.

The following diagram shows the queue conceptually. Typically, you will push into one
side and pop from the other. The choice is arbitrary. You will note that it's possible to push
or pop from both sides, which can come in handy if you need to test the value on one side
and possibly write it back to the same location:

Figure 11.3 – SystemVerilog queue structure

This becomes useful in a testbench by storing what you expect to see. To do this for the
ps2 testbench, I added the following to the send_key task. Since we know what we are
sending into the PS/2 interface, we can store the expected output:

task send_key;

 input [7:0] keycode;

 input error;

 ps2_rx_data_t local_data;

 begin

 local_data.data = keycode;

 local_data.parity = error;

 ps2_rx_data.push_front(local_data);

When the send_key task is called, we build the structure that represents the expected
data and push it into the queue. I've replaced the checking function with the queue:

while (~done) begin

 while (!rx_valid) @(posedge clk);

 popped_data = ps2_rx_data.pop_back();

 exp_data = popped_data.data;

324 Advanced Topics

 exp_user = popped_data.parity;

 if ((exp_data != rx_data) ||

 (exp_user != rx_user)) begin

 $display("mismatch on output %d", valid_count);

 $stop;

 end else begin

 $display("output matched %d", valid_count);

 end

 valid_count++;

 @(posedge clk);

 if (valid_count == 16) done = '1;

end

Whenever there is an rx_valid signal, the queue is popped and the data from the queue
is compared to the data from the design. This is a good way of identifying errors in a
design. In this testbench, we are checking a certain number of expected outputs. In other
operations you may use the size function to determine if there is data available:

if (popped_data.size() != 0)

Next, let's take a look at some improvements to the display system function.

Display enhancements
We've used $display in our simulations. This system task is originally from
SystemVerilog and it supported a way of displaying the basic types:

• %h, %H – Hexadecimal value

• %d, %D – Decimal value

• %b, %B – Binary value

• %m, %M – Hierarchical name

• %s, %S – String

• %t, %T – Time

• %f, %F – Real number in decimal format

• %e, %E – Real number in exponential format

Exploring some more advanced verification constructs 325

If you use these as is, the display will pad data to fit the output. Here's an example:

int a, b;

$display("a=%h b=%h", a, b);

// example output

A=00000001 b=0000FFFF

SystemVerilog offers a few enhancements. You can use %0h to completely remove leading
0s or %(number)h to limit the output to a certain number of digits. Also, %x can be used
in the place of %h:

int a, b;

$display("a=%0x b=%4x", a, b);

// example output

A=1 b=FFFF

%p allows you to print structures in a formatted fashion. I've modified tb_ps2.sv to use
%p to print passing values:

$display("output matched %d: %p", valid_count, popped_data);

output matched 12: '{data:85,parity:1'b0}

output matched 13: '{data:170,parity:1'b0}

output matched 14: '{data:85,parity:1'b1}

output matched 15: '{data:170,parity:1'b1}

You can also display the name of an enumerated type by using .name:

enum bit {TRUE = 1'b1, FALSE = 1'b0} my_bool;

$display("The state of my_bool is %s", mybool.name);

SystemVerilog also adds $sformats, which is like $display, but it returns a string that
you can pass into $display or a log.

I want to at least introduce you to assertions in SystemVerilog at a very high level.
Assertions could take up a book all to themselves as verification is a topic unto itself.

326 Advanced Topics

A quick introduction to assertions
Assertions are a way of adding self-checking into your code. Assertions are generally
ignored by synthesis, and they can be stored in separate files and bound to design
modules. I won't go into assertions in depth here, but I encourage you to look into them
via the link in the Further reading section. I would, however, like to introduce a few other
additions for displaying information. They behave like $display, but they have severity
levels attached to them. These are as follows:

• $info

• $warning

• $error

• $fatal

These severity levels allow messages in a simulation to be filtered more easily. For example,
you may want to mask $info messages or even $warning messages during long runs
when the design is being regressed. There is another interesting use for $error or $fatal.

Using $error or $fatal in synthesis
Often, you may have a reusable module that will only work with certain combinations
of parameters. You can use $error or $fatal to test for these conditions and cause
synthesis to abort if they occur. When using these tasks in this way, the evaluation needs
to be static, that is, not dynamically changing, but something like testing a parameter
setting. For example, if we look back at Chapter 3, Counting Button Presses, and our seven
segment encoder, we might want to limit it to four or eight segments:

module seven_segment #(parameter NUM_SEGMENTS = 8, …

initial begin

 if (NUM_SEGMENTS != 4 || NUM_SEGMENTS != 8)

 $fatal("Number of segments must be set to 4 or 8");

end

In the preceding code snippet, if the number of segments is not 4 or 8, Vivado will fail
the synthesis.

Finally, let's take a look at some gotchas and things to watch out for.

Other gotchas and how to avoid them 327

Other gotchas and how to avoid them
As we near the end of our journey, there are a few more things that we should look at,
along with how we can detect them or avoid them all together.

Inferring single bit wires
From the advent of Verilog, it has always been legal to use a wire without defining it.
This can happen if it is a port on an instantiate module. There is an example project:
https://github.com/PacktPublishing/Learn-FPGA-Programming/
blob/master/CH11/build/inferred_wire/inferred_wire.xpr.

You can see that I've created a variable-width adder module and connected three of
them up:

adder #(4) u_add0 (.in0(SW[3:0]), .in1(SW[7:4]),

 .out(add0_out));

adder #(4) u_add1 (.in0(SW[11:8]), .in1(SW[15:12]),

 .out(add1_out));

adder #(5) u_add2 (.in0(add0_out), .in1(add1_out),

 .out(LED[5:0]));

There is no testbench, but if you try to simulate you will get the following warnings:

WARNING: [VRFC 10-3091] actual bit length 1 differs from formal
bit length 5 for port 'out' [/home/fbruno/git/books/Learn-FPGA-
Programming/CH11/hdl/inferred_wire.sv:9]

WARNING: [VRFC 10-3091] actual bit length 1 differs from formal
bit length 5 for port 'out' [/home/fbruno/git/books/Learn-FPGA-
Programming/CH11/hdl/inferred_wire.sv:10]

WARNING: [VRFC 10-3091] actual bit length 1 differs from formal
bit length 5 for port 'in0' [/home/fbruno/git/books/Learn-FPGA-
Programming/CH11/hdl/inferred_wire.sv:12]

You can see that single bit wires were inferred. To avoid these problems, uncomment the
first and last lines of the file. `default_nettype allows us to define what happens with
inferred wires. By specifying none, we tell the synthesis and simulation it's an error if we
don't define the nettype of a signal. Now if we run it, you should see this:

ERROR: [VRFC 10-2989] 'add0_out' is not declared [/home/fbruno/
git/books/Learn-FPGA-Programming/CH11/hdl/inferred_wire.sv:10]

ERROR: [VRFC 10-2989] 'add1_out' is not declared [/home/fbruno/
git/books/Learn-FPGA-Programming/CH11/hdl/inferred_wire.sv:11]

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/inferred_wire/inferred_wire.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/inferred_wire/inferred_wire.xpr

328 Advanced Topics

ERROR: [VRFC 10-2989] 'add0_out' is not declared [/home/fbruno/
git/books/Learn-FPGA-Programming/CH11/hdl/inferred_wire.sv:13]

It is best practice to always use default_nettype set to none at the top of a module
and default_nettype set to wire at the end. The latter is useful in the case of legacy
IP that may have inferred wires that you don't have the ability to change. Bit width
problems should not be overlooked.

Bit width mismatches
Since it's only a warning, they can easily be overlooked; however, as the design is being
developed you should take care to watch for these issues.

We've talked about latches previously in Chapter 2, Combinational Logic, but how can we
make sure to avoid them?

Upgrading or downgrading Vivado messages
Vivado will display many messages during the design flow. As we discussed previously,
latches should be considered an error if they are inferred.

I've created a project to illustrate this: https://github.com/PacktPublishing/
Learn-FPGA-Programming/blob/master/CH11/build/latch_error/
latch_error.xpr.

Without tcl.pre in the project that I set up as specified in Figure 11.4, we would
encounter the following warning. However, the design would generate a bitstream. If this
is missed on something critical such as a state machine, the design is destined to fail at
some point:

WARNING: [Synth 8-327] inferring latch for variable 'LED_reg'
[/home/fbruno/git/books/Learn-FPGA-Programming/CH11/hdl/latch_
error.sv:9]

We can change the severity of any message in the flow by creating a tcl file, which is read
in prior to synthesis:

set_msg_config -id {[Synth 8-327]} -new_severity ERROR

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/latch_error/latch_error.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/latch_error/latch_error.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/latch_error/latch_error.xpr

Other gotchas and how to avoid them 329

We will then specify to use this file prior to synthesis by changing an option in the
synthesis settings:

Figure 11.4 – Setting up tcl.pre

Now, if you try to generate a bitstream, you will encounter the following:

ERROR: [Synth 8-327] inferring latch for variable 'LED_reg' [/
home/fbruno/git/books/Learn-FPGA-Programming/CH11/hdl/latch_
error.sv:9]

This same methodology can be used to promote or demote any message.

Finally, let's look at timing closure.

330 Advanced Topics

Handling timing closure
One of the biggest problems you will run into as a new design engineer is meeting the
timing requirements in your designs. There are multiple sets of problems that you will
encounter, as we have seen throughout the book. The first type of problem is missing
a clock domain crossing. I've removed one of the constraints from the final project to
demonstrate this failure:

Figure 11.5 – Clock domain crossing problem

When you encounter a timing problem with inter-clock path violations, address them
first. The tools will often not continue to optimize paths once timing cannot be met, so the
intra-clock paths may be a false alarm at this point. Let's investigate the paths:

Figure 11.6 – Timing violation report

Looking at the report we notice a couple of things. The first is the clock domains. We
know we are crossing between two domains. The second is the requirement. When you
see a requirement of 0, or sometimes a very small fraction of the clock period, you should
realize that it's a clock domain problem. In this case, we already properly synchronize; I
just removed the constraint.

The second type of failure is simply not having enough time in a clock period to do the
operation as designed. This can be caused by any of the following:

• Placement: You can use pblock constraints to try to guide placement. This is hit or
miss and is beyond the scope of this book.

Other gotchas and how to avoid them 331

• Routing: If you have a very high utilization, routing can become congested. Trying
to redesign some paths to ease timing may help.

• Too much logic in a path: This can be resolved by adding pipelining or breaking up
long paths if possible.

• Lack of DSP pipelining: This falls under the previous bullet of too much logic.
If you are trying to do more than the DSP can handle without using some of the
internal resources, you may need to evaluate adding pipeline stages.

If you are unable to fix the timing, the last possibility is to run the clock slower if possible.

We'll take a deeper look at addressing too much logic in the following section.

How to pipeline a design
We've seen that too much logic in a path can cause timing closure problems. This can be
addressed in a few ways:

• Using aggressive optimizations

• Pipelining logic

• Pipelining DSP elements

Open up https://github.com/PacktPublishing/Learn-FPGA-
Programming/blob/master/CH11/build/pipeline/pipeline.xpr. This
design implements a 32x64 bit multiplier, resulting in a 96-bit output:

always @(posedge clk) begin

 for (int i = 0; i <= PIPELINE; i++) begin

 if (i == 0) result[0] <= mult_a * mult_b;

 else result[i] <= result[i-1];

 end

 if (button_l) result_rotate <= result[PIPELINE];

 else result_rotate <= {result_rotate[79:0],

 result_rotate[95:80]};

end

https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/pipeline/pipeline.xpr
https://github.com/PacktPublishing/Learn-FPGA-Programming/blob/master/CH11/build/pipeline/pipeline.xpr

332 Advanced Topics

The core of the design is the multiplier. I've defined a PIPELINE parameter to enable
pipelining of the multiplier in the event we cannot make timing. The way PIPELINE
works is to add register stages after the multiplier, as we can see in Figure 11.7:

Figure 11.7 – Pipeline before retiming

We are trying to do this in one clock cycle. I've set the clock frequency to 200 MHz to
challenge the tool. This results in a timing failure:

Figure 11.8 – 32x64-bit multiplier timing failure

Other gotchas and how to avoid them 333

As a first step, we can try adjusting the synthesis and implementation settings:

Figure 11.9 – Synthesis options

334 Advanced Topics

We also want to enable opt_design and phys_opt_design, as well as play with some
of the options, in this case enabling Explore, as seen in Figure 11.10:

Figure 11.10 – Implementation options

Other gotchas and how to avoid them 335

With these implementation options set, we can try another attempt at meeting timing. We
are now met with a slightly smaller timing violation:

Figure 11.11 – Advanced settings timing report

This is obviously not enough to significantly change the results, but it did buy us a little
time. Now we can try to add some pipelining. I've made the design such that we can insert
pipelining after the math operation. Retiming can move these registers into the design to
break up long timing paths. This can be done on logic, DSP elements, and BRAMs. Let's
initially try setting PIPELINE = 1 in the General settings tab:

Figure 11.12 – PIPELINE=1 timing report

This setting actually uses the inserted registers to break up some of the external timing
paths, leaving the DSP block intact. You can see this by looking at the schematic in Vivado
and searching for the result registers.

Finally, if we set PIPELINE = 2 in the general settings and rerun, we'll see that retiming
will push our design over the edge into positive slack:

Figure 11.13 – PIPELINE=2 timing report

336 Advanced Topics

We gain this positive slack by the retiming engine pushing one set of registers into the
multiplier. Conceptually, this would look like Figure 11.14:

Figure 11.14 – PIPELINE=2 Conceptual

This section should give you some ideas about addressing timing problems. Sometimes,
you do need to go a little deeper and rewrite the code. For example, the 32*64 multiplier
could be broken into two 32*32 multipliers plus an adder, which I'll leave as an exercise
for you.

Hopefully, this chapter has provided some additional resources and things to watch out
for as you design your own projects.

Summary
In this chapter, we've looked at some more advanced and lesser used SystemVerilog
constructs. The main one is interfaces, which allow better design reuse and encapsulation.
We've investigated some more advanced looping, structures, and labels.

We've also looked at some more advanced verification constructs. These will help you as
your designs grow and get more complex.

Finally, we looked at some gotchas, how to avoid them, and some basics of timing closure.

You've now completed the book and should be able to tackle some tasks on your own.
As I mentioned at the beginning, there are many community efforts, such as the Mister
Project, that could use some people with FPGA knowledge. There are also projects you
can try to tackle on your own to land a job. Whatever you choose, I hope that you find it
as fun and rewarding as I do.

Questions 337

Questions
1. Interfaces are useful for:

a) Encapsulating signals belonging together

b) Encapsulating functions, tasks, and assertions associated with the interface

c) Changing a design deeply embedded within other designs

d) All of the above

2. Structures can be assigned by:

a) Component

b) Name

c) Interface

d) (a) and (b)

3. Block labels allow easier matching of begin…end blocks.

a) True

b) False

4. If we want to exit a loop, we can use:

a) break on any loop

b) disable on any loop label

c) break on an outer loop or disable on any loop label

5. Continue can be used to skip the rest of a loop.

a) True

b) False

6. Queues are useful for:

a) Creating a flexible FIFO for use in verification

b) Creating a flexible FIFO for use in design and verification

c) Nothing

338 Advanced Topics

7. The following code snippet does what?

initial begin

 if (NUM_SEGMENTS != 4 || NUM_SEGMENTS != 8)

 $fatal("This design only supports 4 or 8 segments");

 end

end

a) Causes a fatal error in simulation that the design can only support 4 or 8 segments

b) Causes a fatal error in synthesis that the design can only support 4 or 8 segments

c) All of the above

8. Things to watch out for in designs are:

a) Accidently inferring single bit wires

b) Mismatched bit widths

c) Latch inference

d) Clock domain crossing issues

e) All of the above

9. We have seen that we can use retiming to implement a 32x64 multiplier. In
that section, I mentioned that you can implement this as two 32x32 multipliers
and an adder. Write the SystemVerilog to implement this. Bonus: Does your
implementation need to change if you implement signed multiplication?

Further reading
For more information about what was covered in the chapter, please refer to the following:

• http://staging.doulos.com/knowhow/systemverilog/
systemverilog-tutorials/systemverilog-assertions-tutorial/

http://staging.doulos.com/knowhow/systemverilog/systemverilog-tutorials/systemverilog-assertions-tutorial/
http://staging.doulos.com/knowhow/systemverilog/systemverilog-tutorials/systemverilog-assertions-tutorial/

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

340 Other Books You May Enjoy

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Practical Python Programming for IoT

Gary Smart

ISBN: 978-1-83898-246-1

• Understand electronic interfacing with Raspberry Pi from scratch

• Gain knowledge of building sensor and actuator electronic circuits

• Structure your code in Python using Async IO, pub/sub models, and more

• Automate real-world IoT projects using sensor and actuator integration

• Integrate electronics with ThingSpeak and IFTTT to enable automation

• Build and use RESTful APIs, WebSockets, and MQTT with sensors and actuators

• Set up a Raspberry Pi and Python development environment for IoT projects

https://www.packtpub.com/product/practical-python-programming-for-iot/9781838982461

Why subscribe? 341

Hands-On RTOS with Microcontrollers

Brian Amos

ISBN: 978-1-83882-673-4

• Understand when to use an RTOS for a project

• Explore RTOS concepts such as tasks, mutexes, semaphores, and queues

• Discover different microcontroller units (MCUs) and choose the best one for
your project

• Evaluate and select the best IDE and middleware stack for your project

• Use professional-grade tools for analyzing and debugging your application

• Get FreeRTOS-based applications up and running on an STM32 board

https://www.packtpub.com/product/hands-on-rtos-with-microcontrollers/9781838826734

342 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

Symbols
$error

using, in synthesis 326
$fatal

using, in synthesis 326

A
adder/subtractor

implementing 74
add module 75
ADT7420 temperature sensor

data, handling 163, 164
data, smoothing 164, 165
using 161-163

Advanced Silicon Modular Block
(ASMBL) architecture 18

advanced verification constructs 322
arrays

creating 51, 52
querying 52, 53
values, assigning to 53

artificial intelligence (AI)
massive parallelism 195

Artix 7
registers 90

ASCII codes 276
ASIC

about 5
need for 5-7

ASIC process
used, for creating programmable

device 8
assertions 326
assignment operators

handling 59
assign statement 8
audio data

capturing 158-161
displaying 307-311
storage 152

AXI4 interfaces 222-224
AXI Lite state machine 268
AXI streaming

with optional tuser signal 204
AXI streaming interface 187

344 Index

AXI streaming interfaces, used for
creating IPs for Vivado

about 205
ADT7420 IP, developing 212
flt_temp core 212
IP integrator 213-221
seven-segment display streaming

interface 205-211

B
basic register 85
Basys 3

about 22, 23
features 22

Basys 3 Artix-7 FPGA trainer board
reference link 4

Binary Coded Decimal (BCD) 94, 103
bits

adding, to signal 55
bits per pixel (bpp) 263
bit width mismatches 328
bitwise AND (&) 10
bitwise OR (||) 10
Block Design (BD) 211, 317
blocking assignments

using 59
block labels 318, 319
Block RAM (BRAM) 16, 234
built-in data types, SystemVerilog

bit 51
logic 50

C
calculator

building 123
divider, investigating 132

packaging, for reuse 124, 125
top-level calculator module,

coding 126-128
case statement

about 62, 63
used, for implementing leading

ones detector 69
clock

FF, resetting 91, 92
Clock Domain Crossing (CDC) 157
clock domains

data, passing across 111, 112
clock enabled FF 91
clocking 17
Clock Management Tiles (CMTs) 128
code

packaging up, with functions 57, 58
combinational logic

adder/subtractor, implementing 74
assignment operators, handling 59
case statement 62, 63
case statement, used for implementing

leading ones detector 69
conditional operator, used

for selecting data 64
creating 58, 59, 65, 66
decisions, making 60, 61
for loop, used for designing

leading ones detector 73
implementing 78, 79
number of ones, counting 74
testbench 66

Combinational Logic Block
(CLB) registers 90

Combination Logic Block (CLB) 14, 15
comments 8
complex operations 12

Index 345

components
interfacing, with interface

construct 314-316
concatenation function 55
conditional operator

used, for selecting data 64
constants

using 322
constrained randomization 69
constraint 169
continue statement

used, for skipping code 321
control signals

synchronizing 109, 110
count button presses project

about 93
asynchronous issues, viewing 97
asynchronous signal, using 98, 99
decimal representation 103
push buttons, issues 100, 101
safe implementation, designing 101, 102
timing, analyzing 96, 97

custom character
adding, to text ROM 306, 307

custom data types
using 64

D
data

selecting, with conditional operator 64
data types 50
DDR2 236
decisions

making 60, 61
design

clocking 84, 85
pipelining 331-336

D Flip Flops (DFFs) 85
Digital Signal Processing (DSP) 17
digit point (DP) 94
disable statement

used, for exiting loop 321
display system function

improvements 324, 325
divider

intermediate remainder, sizing 138
investigating 132
simulating 137

do…while
using, for looping 320

dynamic memory
banks 236
columns 236
rows 236

Dynamic RAMs (DRAMs) 234

E
enum types 117
Error Correction Code (ECC) 16
evaluation boards 19
example design

modifying, for use on board 252-256
example, Vivado

broad, programming 41
design, loading 30-37
implementation 38-40
running 29

external memory
about 234
disadvantage 236

346 Index

F
FF generation

always @(), using 87, 88
Field Programmable Gate Array (FPGA)

about 13, 91
need for 5-7

First in First Out (FIFO)
about 9, 165
addressing 167
asynchronous FIFO 166
generating 169-171
synchronous FIFO 166
with gray coding 167, 168

first word fall through (fwft) 280
fixed-point arithmetic

used, for cleaning up bring-up
time 178-181

using, for temperature
conversion 181-183

using, in temperature sensor project 178
fixed-point numbers

about 176, 177
advantages 177

flip flop
creating 86, 87

floating-point numbers
about 184
addition and subtraction 185
multiplication 185
operation library 186
reciprocal 185

floating-point operator, GPLGPU project
reference link 185

for loop
used, for designing reusable

leading ones detector 73
using, for looping 319

functions
used, for packaging up code 57, 58

G
gray coding

using 167, 168

H
hardware 4
Hardware Design Language (HDL) 59, 88
High-Bandwidth Memory (HBM) 236
horizontal synchronization signal 263
HyperRAM 257

I
if statements

about 9
qualifying, with unique or priority 62

if-then-else 60, 61
import keywords 316
Input/Output (I/O) buffers 54
Institute of Electrical and Electronics

Engineers (IEEE) 184
integer division 185
Integrated Logic Analyzer (ILA)

about 104, 221, 250
device, programming 106-108
signals, marking for debugging 104-106

interface 314
interface construct

used, for interfacing
components 314-316

I/Os 17

Index 347

IP catalog
using, to create memory 158

IP integrator
about 213
debugging 221
unpackaged IP, adding to 228-230

IPs
developing 225-227

K
keyboard handling 294-297
keyboard interface

investigating 288-294

L
latch

about 59
adding 79

latency 196
leading ones detector

implementation, controlling
with generate 70-72

implementing, with case statement 69
least significant bit (LSB) 289
logical AND (&&) 10
logical NOT (!) 9
logical OR (||) 10
logic gates 8
look up table memories (LUTRAMs) 234
Look Up Tables (LUTs) 90
loop

disabling, with disable 321
Low Pin Count (LPC) 257

M
machine learning (ML)

massive parallelism 195
maximum frequency (fmax) 234
Mealy state machine

implementing 122, 123
memories

instantiating, with xpm_memory 157
memory

creating, with IP catalog 158
requesting 277-282

memory types
about 257
HyperRAM 257
Quad Data Rate (QDR) SRAM 257
SPI RAM 257

microphone
simulating 150-152
using, in Nexys A7 board 146

microprocessors 175
Mixed Mode Clock Manager

(MMCM) 84, 128, 252, 269, 273
modports 315
Moore state machine

designing 120-122
most significant bit (MSB) 289
multiple assignments

creating, with non-blocking
assignments 59

multiple clocks
need for 109

multiple-driven nets
handling 54

multiplier module 76, 77
multiply accumulate (MAC) 17

348 Index

N
Newton-Raphson 185
Nexys A7

about 4
reference link 4

Nexys A7 100T (or 50T)
about 20
features 20

Nexys A7 board
microphone, using 146

non-blocking assignments
used, for creating multiple

assignments 59
using 88, 89

Non-Recurring Engineering (NRE) 5
non-restoring divider state machine

building 132-136
number of ones

counting 74

O
online tone generator

reference link 151
Out Of Context (OOC) synthesis 220

P
package 124
parallel design implementation

example 196, 197
parameters 49
PDM microphone

defining 146
interfacing with 147-150

PDM waveform
example 147

Phase Locked Loop (PLL) 84, 128, 269
pipelined floating-point implementation

about 188
fix to floating point conversion 189, 190
floating-point math operations 191, 192
float to fixed point conversion 193
simulation 194, 195

Printed Circuit Board (PCB) 248
priority 63
programmable device

creating, with ASIC process 8
Programmable ROMs (PROMs) 13
PS/2 keyboard state machine

testing 298-301
PS/2 keycodes

displaying, on VGA screen 302-304
Psuedo Random Binary

Sequence (PRBS) 257
Pulse Density Modulation (PDM) 146
Pulse Width Modulation (PWM) 140, 160

Q
Quad Data Rate (QDR) SRAM 257

R
RAM

creating 152
RAM types

about 154
simple dual port RAM 155, 156
single port RAM 154, 155
true dual port RAM 156, 157

randomized testing 69
Read Only Memory (ROM) 13
registers, Artix 7 90

Index 349

reusable code
creating 49

reusable leading ones detector
designing, with for loop 73

S
SELECTOR = DOWN_FOR

setting 73, 74
SELECTOR = UP_FOR

setting 74
sequential element 84
Serial-Deserial (SERDES) 14
Serial Peripheral Interface (SPI) 257
seven-segment display 93-96
signals

accessing, values with enumerated
types used 57

bits, adding to 55
incrementing 60

signed numbers
casting 56
handling 55

simple dual port RAM 155, 156
simulation 108
single bit wires

inferring 327, 328
single port RAM 154, 155
software 4
software-defined radio (SDR) 195
SPI RAM 257
state machine

calculator interface, designing 119, 120
code, writing 116, 117
combination and sequential

logic, splitting 118, 119
implementing 116

state machine design 123

Static RAM (SRAM) 236
storage 16
structures

creating 64
using 317, 318

subtractor module 76
Super Logic Region (SLR) 97
synchronization 109
System on Chip (SOC) 221
SystemVerilog

about 4
built-in data types 50, 51

SystemVerilog constructs
about 314
block labels 318, 319
code, skipping with continue

statement 321
components, interfacing with

interface construct 314-317
constants, using 322
loop, exiting with disable statement 321
looping, with do…while loops 320
looping, with for loops 319
structures, using 317, 318

SystemVerilog modules
creating 48

SystemVerilog queues 322-324

T
targeted testing 69
temperature conversion

with fixed-point arithmetic 181-183
temperature sensor data

displaying 305, 306

350 Index

temperature sensor project
fixed-point arithmetic, using 178
updating, to pipelined floating-

point implementation 188
testbench

parameters 66-68
text ROM

custom character, adding to 306, 307
timing

generating, for VGA 269-273
timing closure

handling 330
timing generator

monitoring 273, 274
toggle Flip Flops (FF) 85
top-level calculator module

coding 126-128
frequencies, modifying with

PLL/MMCM 128-132
Total Hold Slack (THS) 102
Total Negative Slack (TNS) 102
traffic light controller

ground rules 139
intersection 138
state diagram, defining 139

traffic light controller, LEDs
delays, implementing with counter 141
displaying 139
displaying, with PWM 140

true dual port RAM 156, 157
tuser 204
two-stage synchronizer 109

U
UG479 7 Series DSP48E1 user guide

reference link 18
unions

creating 65
unique 63
unpackaged IP

adding, to IP integrator 228-230
unsigned numbers

casting 56
handling 55

user-defined types
creating 56

V
values

comparing 61
values, with enumerated types

used, for accessing signals 57
vertical synchronization signal 263
VGA

about 262
AXI lite interface, coding 267, 268
constraints, examining 283, 284
registers, defining 266, 267
text, displaying 275-277
timing, generating for 269-273

VGA controller
testing 282

VGA screen
PS/2 keycodes, displaying on 302-304

Video Electronics Standards Association
(VESA) standards 264, 265

video timing 265

Index 351

Virtual I/O (VIO) interface 255
Vivado

about 24
directory structure 25-29
installing 24

Vivado messages
downgrading 328, 329
upgrading 328, 329

Vivado toolset 19

W
wildcard equality operators

comparing 61
Worst Hold Slack (WHS) 102
Worst Negative Slack (WNS) 102

X
Xilinx Artix-7 series devices 14
Xilinx IP 187
Xilinx MIG, used for generating

DDR2 controller
about 237-241
AXI parameters, setting 242
FPGA options, defining 244-251
memory options, setting 243

Xilinx Parameterized Macro (XPM) 157
XOR (^) 11
xpm_memory

used, for instantiating memories 157

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to FPGAs and Xilinx Architectures
	Chapter 1: Introduction to FPGA Architectures and Xilinx Vivado
	Technical requirements
	Hardware
	Software

	What is an ASIC?
	Why an ASIC or FPGA?

	How does a company create a programmable device using an ASIC process?
	Fundamental logic gates
	More complex operations

	Introducing FPGAs
	Exploring the Xilinx Artix-7 and 7 series devices
	Combinational logic blocks
	Storage
	Clocking
	I/Os
	DSP48E1

	ASMBL architecture
	Introduction to the Vivado toolset and evaluation boards
	Evaluation boards
	Nexys A7 100T (or 50T)
	Basys 3

	Introducing Vivado
	Vivado installation
	Directory structure
	Running the example

	Summary
	Questions
	Challenge

	Further reading

	Section 2: Introduction to Verilog RTL Design, Simulation, and Implementation
	Chapter 2: Combinational Logic
	Technical requirements
	Creating SystemVerilog modules
	How to create reusable code – parameters

	Introducing data types
	Introducing built-in data types
	Creating arrays
	Handling multiple-driven nets
	Handling signed and unsigned numbers
	Adding bits to a signal by concatenating
	Casting signed and unsigned numbers
	Creating user-defined types
	Accessing signals using values with enumerated types

	Packaging up code using functions
	Creating combinational logic
	Using custom data types

	Project 1 – creating combinational logic
	Testbench
	Implementing a leading-one detector using the case statement
	Designing a reusable leading-one detector using
a for loop
	Counting the number of ones
	Implementing an adder/subtractor
	Multiplier
	Bringing it all together

	Summary
	Questions
	Challenge

	Further reading

	Chapter 3: Counting Button Presses
	Technical requirements
	What is a sequential element?
	Clocking your design
	Looking at a basic register
	Registers in the Artix 7

	Project 2 – Counting button presses
	Introducing the seven-segment display
	Detecting button presses
	What about simulation?

	Deep dive on synchronization
	Why use multiple clocks?
	Two-stage synchronizer
	Synchronizing control signals
	Passing data

	Summary
	Questions
	Challenge

	Further reading

	Chapter 4: Let's Build
a Calculator
	Technical requirements
	Implementing our first state machine
	Writing a purely sequential state machine
	Splitting combination and sequential logic in a state machine
	Designing a calculator interface
	Designing a Moore state machine
	Implementing a Mealy state machine
	Practical state machine design

	Project 3 – Building a simple calculator
	Packaging for reuse
	Coding the top level
	Investigating the divider

	Project 4 – Keeping cars in line
	Defining the state diagram
	Displaying our traffic lights

	Summary
	Questions
	Challenge
	Extra challenge

	Further reading

	Chapter 5: FPGA Resources and How to Use Them
	Technical requirements
	Project 5 – Listening and learning
	What is a PDM microphone?
	Simulating the microphone
	Introducing storage
	Capturing audio data

	Project 6 – Using the temperature sensor
	Handling the data
	Smoothing out the data

	Summary
	Questions
	Further reading

	Chapter 6: Math, Parallelism, and Pipelined Design
	Technical requirements
	Introduction to fixed-point numbers
	Project 7 – Using fixed-point arithmetic in our temperature sensor
	Using fixed-point arithmetic to clean up the bring-up time
	Temperature conversion using fixed-point arithmetic
	What about floating-point numbers?
	A quick look at the AXI streaming interface

	Project 8 – Updating the temperature sensor project to a pipelined floating-point implementation
	Fix to floating point conversion
	Floating-point math operations
	Float to fixed point conversion
	Simulation

	Parallel designs
	ML and AI and massive parallelism
	Parallel design – a quick example

	Summary
	Questions
	Challenge

	Further reading

	Section 3: Interfacing with External Components
	Chapter 7: Introduction to AXI
	Technical requirements
	AXI streaming
	Project 9 – creating IPs for Vivado using AXI streaming interfaces
	Seven-segment display streaming interface
	Developing the ADT7420 IP
	Understanding the flt_temp core
	IP integrator

	AXI4 interfaces (full and AXI-Lite)
	Developing IPs – AXI-Lite, full, and streaming
	Adding an unpackaged IP to the IP integrator

	Summary
	Questions
	Further reading

	Chapter 8: Lots of Data? MIG and DDR2
	Technical requirements
	Project 10 – introducing external memory
	Introduction to DDR2
	Generating a DDR2 controller using the Xilinx MIG
	Modifying the design for use on the board

	Other external memory types
	Quad Data Rate (QDR) SRAM
	HyperRAM
	SPI RAM

	Summary
	Questions
	Challenge

	Further reading

	Chapter 9: A Better Way to Display – VGA
	Technical requirements
	Project 11 – Introducing the VGA
	Defining registers
	Generating timing for the VGA
	Displaying text
	Testing the VGA controller
	Examining the constraints

	Summary
	Questions
	Challenge
	Further reading

	Chapter 10: Bringing It All Together
	Technical requirements
	Investigating the keyboard interface
	Project 12 – keyboard handling
	Testing the PS/2

	Project 13 – bringing it all together
	Displaying PS/2 keycodes on the VGA screen
	Displaying the temperature sensor data
	Displaying audio data

	Summary
	Questions
	Challenge
	Further reading

	Chapter 11: Advanced Topics
	Technical requirements
	Exploring more advanced SystemVerilog constructs
	Interfacing components using the interface construct
	Using structures
	Block labels
	Looping using for loops
	Looping using do…while
	Exiting a loop using disable
	Skipping code using continue
	Using constants

	Exploring some more advanced verification constructs
	Introducing SystemVerilog queues
	Display enhancements
	A quick introduction to assertions
	Using $error or $fatal in synthesis

	Other gotchas and how to avoid them
	Inferring single bit wires
	Bit width mismatches
	Upgrading or downgrading Vivado messages
	Handling timing closure

	Summary
	Questions
	Further reading
	Why subscribe?

	Other Books
You May Enjoy
	Index

