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Preface

Give him threepence, since he must make gain out of what he learns.
Euclid of Alexandria

This book is an outgrowth of five years of participating in mathematical olympiads, where
geometry flourishes in great vigor. The ideas, techniques, and proofs come from countless
resources—lectures at MOP∗ resources found online, discussions on the Art of Problem
Solving site, or even just late-night chats with friends. The problems are taken from contests
around the world, many of which I personally solved during the contest, and even a couple
of which are my own creations.

As I have learned from these olympiads, mathematical learning is not passive—the only
way to learn mathematics is by doing. Hence this book is centered heavily around solving
problems, making it especially suitable for students preparing for national or international
olympiads. Each chapter contains both examples and practice problems, ranging from easy
exercises to true challenges.

Indeed, I was inspired to write this book because as a contestant I did not find any
resources I particularly liked. Some books were rich in theory but contained few chal-
lenging problems for me to practice on. Other resources I found consisted of hundreds of
problems, loosely sorted in topics as broad as “collinearity and concurrence”, and lacking
any exposition on how a reader should come up with the solutions in the first place. I have
thus written this book keeping these issues in mind, and I hope that the structure of the
book reflects this.

I am indebted to many people for the materialization of this text. First and foremost, I
thank Paul Zeitz for the careful advice he provided that led me to eventually publish this
book. I am also deeply indebted to Chris Jeuell and Sam Korsky whose careful readings of
the manuscript led to hundreds of revisions and caught errors. Thanks guys!

I also warmly thank the many other individuals who made suggestions and comments
on early drafts. In particular, I would like to thank Ray Li, Qing Huang, and Girish Venkat
for their substantial contributions, as well as Jingyi Zhao, Cindy Zhang, and Tyler Zhu,
among many others. Of course any remaining errors were produced by me and I accept
sole responsibility for them. Another special thanks also to the Art of Problem Solving fora,

∗ The Mathematical Olympiad Summer Program, which is a training program for the USA team at the
International Mathematical Olympiad.

xi



xii Preface

from which countless problems in this text were discovered and shared. I would also like
to acknowledge Aaron Lin, who I collaborated with on early drafts of the book.

Finally, I of course need to thank everyone who makes the mathematical olympiads
possible—the students, the teachers, the problem writers, the coaches, the parents. Math
contests not only gave me access to the best peer group in the world but also pushed me
to limits that I never could have dreamed were possible. Without them, this book certainly
could not have been written.

Evan Chen
Fremont, CA



Preliminaries

0.1 The Structure of This Book
Loosely, each of the chapters is divided into the following parts.

� A theoretical portion, describing a set of related theorems and tools,
� One or more examples demonstrating the application of these tools, and
� A set of several practice problems.

The theoretical portion consists of theorems and techniques, as well as particular geo-
metric configurations. The configurations typically reappear later on, either in the proof
of another statement or in the solutions to exercises. Consequently, recognizing a given
configuration is often key to solving a particular problem. We present the configurations
from the same perspective as many of the problems.

The example problems demonstrate how the techniques in the chapter can be used to
solve problems. I have endeavored to not merely provide the solution, but to explain how
it comes from, and how a reader would think of it. Often a long commentary precedes the
actual formal solution, and almost always this commentary is longer than the solution itself.
The hope is to help the reader gain intuition and motivation, which are indispensable for
problem solving.

Finally, I have provided roughly a dozen practice problems at the end of each chapter.
The hints are numbered and appear in random order in Appendix B, and several of the
solutions in Appendix C. I have also tried to include the sources of the problems, so that a
diligent reader can find solutions online (for example on the Art of Problem Solving forums,
www.aops.com). A full listing of contest acronyms appears in Appendix D.

The book is organized so that earlier chapters never require material from later chapters.
However, many of the later chapters approximately commute. In particular, Part III does not
rely on Part II. Also, Chapters 6 and 7 can be read in either order. Readers are encouraged
to not be bureaucratic in their learning and move around as they see fit, e.g., skipping
complicated sections and returning to them later, or moving quickly through familiar
material.

xiii
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xiv Preliminaries

0.2 Centers of a Triangle
Throughout the text we refer to several centers of a triangle. For your reference, we define
them here.

It is not obvious that these centers exist based on these definitions; we prove this in
Chapter 3. For now, you should take their existence for granted.

A

B C

H

A

B C

G

A

B C

I

A

B C

O

Figure 0.2A. Meet the family! Clockwise from top left: the orthocenter H , centroid G, incenter I ,
and circumcenter O.

� The orthocenter of �ABC, usually denoted by H , is the intersection of the perpendic-
ulars (or altitudes) from A to BC, B to CA, and C to AB. The triangle formed by the
feet of these altitudes is called the orthic triangle.

� The centroid, usually denoted by G, is the intersection the medians, which are the lines
joining each vertex to the midpoint of the opposite side. The triangle formed by the
midpoints is called the medial triangle.

� Next, the incenter, usually denoted by I , is the intersection of the angle bisectors of the
angles of �ABC. It is also the center of a circle (the incircle) tangent to all three sides.
The radius of the incircle is called the inradius.

� Finally, the circumcenter, usually denoted by O, is the center of the unique circle (the
circumcircle) passing through the vertices of �ABC. The radius of this circumcircle is
called the circumradius.
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These four centers are shown in Figure 0.2A; we will encounter these remarkable points
again and again throughout the book.

0.3 Other Notations and Conventions
Consider a triangle ABC. Throughout this text, let a = BC, b = CA, c = AB, and abbre-
viate A = ∠BAC, B = ∠CBA, C = ∠ACB (for example, we may write sin 1

2A for
sin 1

2∠BAC). We let

s = 1

2
(a + b + c)

denote the semiperimeter of �ABC.
Next, define [P1P2 . . . Pn] to be the area of the polygon P1P2 . . . Pn. In particular,

[ABC] is area of �ABC. Finally, given a sequence of points P1, P2, . . . , Pn all lying on
one circle, let (P1P2 . . . Pn) denote this circle.

We use � to distinguish a directed angle from a standard angle ∠. (Directed angles are
defined in Chapter 1.) Angles are measured in degrees.

Finally, we often use the notation AB to denote either the segment AB or the line AB;
the use should be clear from context. In the rare case we need to make a distinction we
explicitly write out “line AB” or “segment AB”. Beginning in Chapter 9, we also use the
shorthand AB ∩ CD for the intersection of the two lines AB and CD.

In long algebraic computations which have some amount of symmetry, we may use
cyclic sum notation as follows: the notation∑

cyc

f (a, b, c)

is shorthand for the cyclic sum

f (a, b, c) + f (b, c, a) + f (c, a, b).

For example, ∑
cyc

a2b = a2b + b2c + c2a.
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C H A P T E R 1
Angle Chasing

This is your last chance. After this, there is no turning back. You take the blue pill—the
story ends, you wake up in your bed and believe whatever you want to believe. You
take the red pill—you stay in Wonderland and I show you how deep the rabbit-hole
goes. Morpheus in The Matrix

Angle chasing is one of the most fundamental skills in olympiad geometry. For that reason,
we dedicate the entire first chapter to fully developing the technique.

1.1 Triangles and Circles
Consider the following example problem, illustrated in Figure 1.1A.

Example 1.1. In quadrilateral WXYZ with perpendicular diagonals (as in Figure 1.1A),
we are given ∠WZX = 30◦, ∠XWY = 40◦, and ∠WYZ = 50◦.

(a) Compute ∠Z.
(b) Compute ∠X.

W X

Y

Z

40◦

50◦30◦

Figure 1.1A. Given these angles, which other angles can you compute?

You probably already know the following fact:

Proposition 1.2 (Triangle Sum). The sum of the angles in a triangle is 180◦.

3
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As it turns out, this is not sufficient to solve the entire problem, only the first half. The
next section develops the tools necessary for the second half. Nevertheless, it is perhaps
surprising what results we can derive from Proposition 1.2 alone. Here is one of the more
surprising theorems.

Theorem 1.3 (Inscribed Angle Theorem). If ∠ACB is inscribed in a circle, then it
subtends an arc with measure 2∠ACB.

Proof. Draw in OC. Set α = ∠ACO and β = ∠BCO, and let θ = α + β.

O

A B

C

θ

2θ

Figure 1.1B. The inscribed angle theorem.

We need some way to use the condition AO = BO = CO. How do we do so? Using
isosceles triangles, roughly the only way we know how to convert lengths into angles.
Because AO = CO, we know that ∠OAC = ∠OCA = α. How does this help? Using
Proposition 1.2 gives

∠AOC = 180◦ − (∠OAC + ∠OCA) = 180◦ − 2α.

Now we do exactly the same thing with B. We can derive

∠BOC = 180◦ − 2β.

Therefore,

∠AOB = 360◦ − (∠AOC + ∠BOC) = 360◦ − (360◦ − 2α − 2β) = 2θ

and we are done.

We can also get information about the centers defined in Section 0.2. For example,
recall the incenter is the intersection of the angle bisectors.

Example 1.4. If I is the incenter of �ABC then

∠BIC = 90◦ + 1

2
A.
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Proof. We have

∠BIC = 180◦ − (∠IBC + ∠ICB)

= 180◦ − 1

2
(B + C)

= 180◦ − 1

2
(180◦ − A)

= 90◦ + 1

2
A.

A

B C

I

Figure 1.1C. The incenter of a triangle.

Problems for this Section

Problem 1.5. Solve the first part of Example 1.1. Hint: 185

Problem 1.6. Let ABC be a triangle inscribed in a circle ω. Show that AC ⊥ CB if and
only if AB is a diameter of ω.

Problem 1.7. Let O and H denote the circumcenter and orthocenter of an acute �ABC,
respectively, as in Figure 1.1D. Show that ∠BAH = ∠CAO. Hints: 540 373

A

B C

H O

Figure 1.1D. The orthocenter and circumcenter. See Section 0.2 if you are not familiar with these.
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1.2 Cyclic Quadrilaterals
The heart of this section is the following proposition, which follows directly from the
inscribed angle theorem.

Proposition 1.8. Let ABCD be a convex cyclic quadrilateral. Then ∠ABC + ∠CDA =
180◦ and ∠ABD = ∠ACD.

Here a cyclic quadrilateral refers to a quadrilateral that can be inscribed in a circle.
See Figure 1.2A. More generally, points are concyclic if they all lie on some circle.

A

B

C
D

A

B

C
D

Figure 1.2A. Cyclic quadrilaterals with angles marked.

At first, this result seems not very impressive in comparison to our original theorem.
However, it turns out that the converse of the above fact is true as well. Here it is more
explicitly.

Theorem 1.9 (Cyclic Quadrilaterals). Let ABCD be a convex quadrilateral. Then the
following are equivalent:

(i) ABCD is cyclic.
(ii) ∠ABC + ∠CDA = 180◦.

(iii) ∠ABD = ∠ACD.

This turns out to be extremely useful, and several applications appear in the subsequent
sections. For now, however, let us resolve the problem we proposed at the beginning.

W X

Y

Z

40◦

50◦30◦

40◦

Figure 1.2B. Finishing Example 1.1. We discover WXYZ is cyclic.
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Solution to Example 1.1, part (b). Let P be the intersection of the diagonals. Then we
have ∠PZY = 90◦ − ∠PYZ = 40◦. Add this to the figure to obtain Figure 1.2B.

Now consider the 40◦ angles. They satisfy condition (iii) of Theorem 1.9. That means
the quadrilateral WXYZ is cyclic. Then by condition (ii), we know

∠X = 180◦ − ∠Z

Yet ∠Z = 30◦ + 40◦ = 70◦, so ∠X = 110◦, as desired.

In some ways, this solution is totally unexpected. Nowhere in the problem did the
problem mention a circle; nowhere in the solution does its center ever appear. And yet,
using the notion of a cyclic quadrilateral reduced it to a mere calculation, whereas the
problem was not tractable beforehand. This is where Theorem 1.9 draws its power.

We stress the importance of Theorem 1.9. It is not an exaggeration to say that more
than 50% of standard olympiad geometry problems use it as an intermediate step. We will
see countless applications of this theorem throughout the text.

Problems for this Section

Problem 1.10. Show that a trapezoid is cyclic if and only if it is isosceles.

Problem 1.11. Quadrilateral ABCD has ∠ABC = ∠ADC = 90◦. Show that ABCD is
cyclic, and that (ABCD) (that is, the circumcircle of ABCD) has diameter AC.

1.3 The Orthic Triangle
In �ABC, let D, E, F denote the feet of the altitudes from A, B, and C. The �DEF is
called the orthic triangle of �ABC. This is illustrated in Figure 1.3A.

A

B CD

E

F
H

Figure 1.3A. The orthic triangle.

It also turns out that lines AD, BE, and CF all pass through a common point H , which
is called the orthocenter of H . We will show the orthocenter exists in Chapter 3.



8 1. Angle Chasing

Although there are no circles drawn in the figure, the diagram actually contains six
cyclic quadrilaterals.

Problem 1.12. In Figure 1.3A, there are six cyclic quadrilaterals with vertices in
{A,B,C,D,E, F,H }. What are they? Hint: 91

To get you started, one of them is AFHE. This is because ∠AFH = ∠AEH = 90◦,
and so we can apply (ii) of Theorem 1.9. Now find the other five!

Once the quadrilaterals are found, we are in a position of power; we can apply any
part of Theorem 1.9 freely to these six quadrilaterals. (In fact, you can say even more—the
right angles also tell you where the diameter of the circle is. See Problem 1.6.) Upon closer
inspection, one stumbles upon the following.

Example 1.13. Prove that H is the incenter of �DEF .

Check that this looks reasonable in Figure 1.3A.
We encourage the reader to try this problem before reading the solution below.

Solution to Example 1.13. Refer to Figure 1.3A. We prove that DH is the bisector of
∠EDF . The other cases are identical, and left as an exercise.

Because ∠BFH = ∠BDH = 90◦, we see that BFHD is cyclic by Theorem 1.9.
Applying the last clause of Theorem 1.9 again, we find

∠FDH = ∠FBH.

Similarly, ∠HEC = ∠HDC = 90◦, so CEHD is cyclic. Therefore,

∠HDE = ∠HCE.

Because we want to prove that ∠FDH = ∠HDE, we only need to prove that ∠FBH =
∠HCE; in other words, ∠FBE = ∠FCE. This is equivalent to showing that FBCE is
cyclic, which follows from ∠BFC = ∠BEC = 90◦. (One can also simply show that both
are equal to 90◦ − A by considering right triangles BEA and CFA.)

Hence, DH is indeed the bisector, and therefore we conclude that H is the incenter of
�DEF .

Combining the results of the above, we obtain our first configuration.

Lemma 1.14 (The Orthic Triangle). Suppose �DEF is the orthic triangle of acute
�ABC with orthocenter H . Then

(a) Points A, E, F , H lie on a circle with diameter AH .
(b) Points B, E, F , C lie on a circle with diameter BC.
(c) H is the incenter of �DEF .

Problems for this Section

Problem 1.15. Work out the similar cases in the solution to Example 1.13. That is, explicitly
check that EH and FH are actually bisectors as well.
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Problem 1.16. In Figure 1.3A, show that �AEF , �BFD, and �CDE are each similar
to �ABC. Hint: 181

A

B C

H

X Y

Figure 1.3B. Reflecting the orthocenter. See Lemma 1.17.

Lemma 1.17 (Reflecting the Orthocenter). Let H be the orthocenter of �ABC, as in
Figure 1.3B. Let X be the reflection of H over BC and Y the reflection over the midpoint
of BC.

(a) Show that X lies on (ABC).
(b) Show that AY is a diameter of (ABC). Hint: 674

1.4 The Incenter/Excenter Lemma
We now turn our attention from the orthocenter to the incenter. Unlike before, the cyclic
quadrilateral is essentially given to us. We can use it to produce some interesting results.

Lemma 1.18 (The Incenter/Excenter Lemma). Let ABC be a triangle with incenter I .
Ray AI meets (ABC) again at L. Let IA be the reflection of I over L. Then,

(a) The points I , B, C, and IA lie on a circle with diameter IIA and center L. In particular,
LI = LB = LC = LIA.

(b) Rays BIA and CIA bisect the exterior angles of �ABC.

By “exterior angle”, we mean that ray BIA bisects the angle formed by the segment
BC and the extension of line AB past B. The point IA is called the A-excenter∗ of �ABC;
we visit it again in Section 2.6.

Let us see what we can do with cyclic quadrilateral ABLC.

∗ Usually the A-excenter is defined as the intersection of exterior angle bisectors of ∠B and ∠C, rather than
as the reflection of I over L. In any case, Lemma 1.18 shows these definitions are equivalent.
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A

B C

L

I

IA

Figure 1.4A. Lemma 1.18, the incenter/excenter lemma.

Proof. Let ∠A = 2α, ∠B = 2β, and ∠C = 2γ and notice that ∠A + ∠B + ∠C =
180◦ ⇒ α + β + γ = 90◦.

Our first goal is to prove that LI = LB. We prove this by establishing ∠IBL = ∠LIB

(this lets us convert the conclusion completely into the language of angles). To do this, we
invoke (iii) of Theorem 1.9 to get ∠CBL = ∠LAC = ∠IAC = α. Therefore,

∠IBL = ∠IBC + ∠CBL = β + α.

All that remains is to compute ∠BIL. But this is simple, as

∠BIL = 180◦ − ∠AIB = ∠IBA + ∠BAI = α + β

Therefore triangle LBI is isosceles, with LI = LB, which is what we wanted.
Similar calculations give LI = LC.
Because LB = LI = LC, we see that L is indeed the center of (IBC). Because L is

given to be the midpoint of IIA, it follows that IIA is a diameter of (LBC) as well.
Let us now approach the second part. We wish to show that ∠IABC = 1

2 (180◦ − 2β) =
90◦ − β. Recalling that IIA is a diameter of the circle, we observe that

∠IBIA = ∠ICIA = 90◦.

so ∠IABC = ∠IABI − ∠IBC = 90◦ − β.
Similar calculations yield that ∠BCIA = 90◦ − γ , as required.

This configuration shows up very often in olympiad geometry, so recognize it when it
appears!

Problem for this Section

Problem 1.19. Fill in the two similar calculations in the proof of Lemma 1.18.
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1.5 Directed Angles
Some motivation is in order. Look again at Figure 1.3A. We assumed that �ABC was
acute. What happens if that is not true? For example, what if ∠A > 90◦ as in Figure 1.5A?

A

B C
D

E

F

H

Figure 1.5A. No one likes configuration issues.

There should be something scary in the above figure. Earlier, we proved that points B,
E, A, D were concyclic using criterion (iii) of Theorem 1.9. Now, the situation is different.
Has anything changed?

Problem 1.20. Recall the six cyclic quadrilaterals from Problem 1.12. Check that they are
still cyclic in Figure 1.5A.

Problem 1.21. Prove that, in fact, A is the orthocenter of �HBC.

In this case, we are okay, but the dangers are clear. For example, when �ABC was
acute, we proved that B, H , F , D were concyclic by noticing that the opposite angles
satisfied ∠BDH + ∠HFB = 180◦. Here, however, we instead have to use the fact that
∠BDH = ∠BFH ; in other words, for the same problem we have to use different parts of
Theorem 1.9. We should not need to worry about solving the same problem twice!

How do we handle this? The solution is to use directed angles mod 180◦. Such angles
will be denoted with a � symbol instead of the standard ∠. (This notation is not standard;
should you use it on a contest, do not neglect to say so in the opening lines of your solution.)

Here is how it works. First, we consider �ABC to be positive if the vertices A, B, C

appear in clockwise order, and negative otherwise. In particular, �ABC �= �CBA; they
are negatives. See Figure 1.5B.

Then, we are taking the angles modulo 180◦. For example,

−150◦ = 30◦ = 210◦.

Why on earth would we adopt such a strange convention? The key is that our
Theorem 1.9 can now be rewritten as follows.
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A

B

C

50◦

Figure 1.5B. Here, �ABC = 50◦ and �CBA = −50◦.

Theorem 1.22 (Cyclic Quadrilaterals with Directed Angles). Points A, B, X, Y lie on
a circle if and only if

�AXB = �AYB.

This seems too good to be true, as we have dropped the convex condition—there is now
only one case of the theorem. In other words, as long as we direct our angles, we no longer
have to worry about configuration issues when applying Theorem 1.9.

Problem 1.23. Verify that parts (ii) and (iii) of Theorem 1.9 match the description in
Theorem 1.22.

We present some more convenient truths in the following proposition.

Proposition 1.24 (Directed Angles). For any distinct points A, B, C, P in the plane, we
have the following rules.

Oblivion. �APA = 0.

Anti-Reflexivity. �ABC = −�CBA.

Replacement. �PBA = �PBC if and only if A, B, C are collinear. (What happens
when P = A?) Equivalently, if C lies on line BA, then the A in �PBA may be
replaced by C.

Right Angles. If AP ⊥ BP , then �APB = �BPA = 90◦.

Directed Angle Addition. �APB + �BPC = �APC.

Triangle Sum. �ABC + �BCA + �CAB = 0.

Isosceles Triangles. AB = AC if and only if �ACB = �CBA.

Inscribed Angle Theorem. If (ABC) has center P , then �APB = 2�ACB.

Parallel Lines. If AB ‖ CD, then �ABC + �BCD = 0.

One thing we have to be careful about is that 2�ABC = 2�XYZ does not imply
�ABC = �XYZ, because we are taking angles modulo 180◦. Hence it does not make
sense to take half of a directed angle.†

Problem 1.25. Convince yourself that all the claims in Proposition 1.24 are correct.

† Because of this, it is customary to take arc measures modulo 360◦. We may then write the inscribed angle
theorem as �ABC = 1

2 ÂC. This is okay since �ABC is taken mod 180◦ but ÂC is taken mod 360◦.
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Directed angles are quite counterintuitive at first, but with a little practice they become
much more natural. The right way to think about them is to solve the problem for a specific
configuration, but write down all statements in terms of directed angles. The solution for a
specific configuration then automatically applies to all configurations.

Before moving in to a less trivial example, let us finish the issue with the orthic triangle
once and for all.

Example 1.26. Let H be the orthocenter of �ABC, acute or not. Using directed angles,
show that AEHF , BFHD, CDHE, BEFC, CFDA, and ADEB are cyclic.

Solution. We know that

90◦ = �ADB = �ADC

90◦ = �BEC = �BEA

90◦ = �CFA = �CFB

because of right angles. Then

�AEH = �AEB = −�BEA = −90◦ = 90◦

and

�AFH = �AFC = −�CFA = −90◦ = 90◦

so A, E, F , H are concyclic. Also,

�BFC = −�CFB = −90◦ = 90◦ = �BEC

so B, E, F , C are concyclic. The other quadrilaterals have similar stories.

We conclude with one final example.

Lemma 1.27 (Miquel Point of a Triangle). Points D, E, F lie on lines BC, CA, and
AB of �ABC, respectively. Then there exists a point lying on all three circles (AEF ),
(BFD), (CDE).

This point is often called the Miquel point of the triangle.
It should be clear by looking at Figure 1.5C that many, many configurations are possible.

Trying to handle this with standard angles would be quite messy. Fortunately, we can get
them all in one go with directed angles.

Let K be the intersection of (BFD) and (CDE) other than D. The goal is to show that
AFEK is cyclic as well. For the case when K is inside �ABC, this is an easy angle chase.
All we need to do is use the corresponding statements with directed angles for each step.

We strongly encourage readers to try this themselves before reading the solution that
follows.

First, here is the solution for the first configuration of Figure 1.5C. Define K as above.
Now we just notice that ∠FKD = 180◦ − B and ∠EKD = 180◦ − C. Consequently,
∠FKE = 360◦ − (180◦ − C) − (180◦ − B) = B + C = 180◦ − A and AFEK is cyclic.
Now we just need to convert this into directed angles.
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A

B CD

EF

A

B C

D
E

F

A

B C D

E

F

Figure 1.5C. The Miquel point, as in Lemma 1.27.

Proof. The first two claims are just

�FKD = �FBD = �ABC and �DKE = �DCE = �BCA.

We also know that

�FKD + �DKE + �EKF = 0 and �ABC + �BCA + �CAB = 0.

The first equation represents the fact that the sum of the angles at K is 360◦; the second
is the fact that the sum of the angles in a triangle is 180◦. From here we derive that
�CAB = �EKF . But �CAB = �EAF ; hence �EAF = �EKF as desired.

Having hopefully convinced you that directed angles are natural and often useful, let us
provide a warning on when not to use them. Most importantly, you should not use directed
angles when the problem only works for a certain configuration! An example of this is
Problem 1.38; the problem statement becomes false if the quadrilateral is instead ABDC.
You should also avoid using directed angles if you need to invoke trigonometry, or if you
need to take half an angle (as in Problem 1.38 again). These operations do not make sense
modulo 180◦.

Problems for this Section

Problem 1.28. We claimed that �FKD + �DKE + �EKF = 0 in the above proof.
Verify this using Proposition 1.24.

Problem 1.29. Show that for any distinct points A, B, C, D we have �ABC + �BCD +
�CDA + �DAB = 0. Hints: 114 645
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Lemma 1.30. Points A, B, C lie on a circle with center O. Show that �OAC = 90◦ −
�CBA. (This is not completely trivial.) Hints: 8 530 109

1.6 Tangents to Circles and Phantom Points
Here we introduce one final configuration and one general technique.

First, we discuss the tangents to a circle. In many ways, one can think of it as
Theorem 1.22 applied to the “quadrilateral” AABC. Indeed, consider a point X on the
circle and the line XA. As we move X closer to A, the line XA approaches the tangent at
A. The limiting case becomes the theorem below.

Proposition 1.31 (Tangent Criterion). Suppose �ABC is inscribed in a circle with
center O. Let P be a point in the plane. Then the following are equivalent:

(i) PA is tangent to (ABC).
(ii) OA ⊥ AP .

(iii) �PAB = �ACB.

AP

B

C

O

Figure 1.6A. PA is a tangent to (ABC). See Proposition 1.31.

In the following example we also introduce the technique of adding a phantom point.
(This general theme is sometimes also called reverse reconstruction.)

Example 1.32. Let ABC be an acute triangle with circumcenter O, and let K be a
point such that KA is tangent to (ABC) and ∠KCB = 90◦. Point D lies on BC such that
KD ‖ AB. Show that line DO passes through A.

This problem is perhaps a bit trickier to solve directly, because we have not developed
any tools to show that three points are collinear. (We will!) But here is a different idea.
We define a phantom point D′ as the intersection of ray AO with BC. If we can show
that KD′ ‖ AB, then this will prove D′ = D, because there is only one point on BC with
KD ‖ AB.

Fortunately, this can be done with merely the angle chasing that we know earlier. We
leave it as Problem 1.33. As a hint, you will have to use both parts of Proposition 1.31.

We have actually encountered a similar idea before, in our proof of Lemma 1.27. The
idea was to let (BDF ) and (CDE) intersect at a point K , and then show that K was on the
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A

B C

O

D

K

A

B C

O

D′

K

D

Figure 1.6B. Example 1.32, and the phantom point.

third circle as well. This theme is common in geometry. A second example where phantom
points are helpful is Lemma 1.45 on page 19.

It is worth noting that solutions using phantom points can often (but not always) be
rearranged to avoid them, although such solutions may be much less natural. For example,
another way to solve Example 1.32 is to show that �KAO = �KAD. Problem 1.34 is the
most common example of a problem that is not easy to rewrite without phantom points.

Problems for this Section

Problem 1.33. Let ABC be a triangle and let ray AO meet BC at D′. Point K is selected
so that KA is tangent to (ABC) and ∠KC = 90◦. Prove that KD′ ‖ AB.

Problem 1.34. In scalene triangle ABC, let K be the intersection of the angle bisector of
∠A and the perpendicular bisector of BC. Prove that the points A, B, C, K are concyclic.
Hints: 356 101

1.7 Solving a Problem from the IMO Shortlist
To conclude the chapter, we leave the reader with one last example problem. We hope the
discussion is instructive.

Example 1.35 (Shortlist 2010/G1). Let ABC be an acute triangle with D,E,F the
feet of the altitudes lying on BC,CA,AB respectively. One of the intersection points of
the line EF and the circumcircle is P . The lines BP and DF meet at point Q. Prove that
AP = AQ.

In this problem there are two possible configurations. Directed angles allows us to
handle both, but let us focus on just one—say P2 and Q2.

The first thing we notice is the orthic triangle. Because of it we should keep the results
of Lemma 1.14 close at heart. Additionally, we are essentially given that ACBP2 is a cyclic
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A

B CD

E

F

H
P1

P2

Q1

Q2

Figure 1.7A. IMO Shortlist 2010, Problem G1 (Example 1.35).

quadrilateral. Let us see what we can do with that. The conclusion AP2 = AQ2 seems
better expressed in terms of angles—we want to show that �AQ2P2 = �Q2P2A. Now we
already know �Q2P2A, because

�Q2P2A = �BP2A = �BCA

so it is equivalent to compute �AQ2P2.
There are two ways to realize the next step. The first is wishful thinking—the hope

that a convenient cyclic quadrilateral will give us �AQ2P2. The second way is to have a
scaled diagram at hand. Either way, we stumble upon the following hope: might AQ2P2F

be cyclic? It certainly looks like it in the diagram.
How might we prove that AQ2P2F is cyclic? Trying to use supplementary angles seems

not as hopeful, because this is what we want to use as a final step. However, inscribed arcs
seems more promising. We already know �AP2Q2 = �ACB. Might we be able to find
AFQ2? Yes—we know that

�AFQ2 = �AFD

and now we are certain this will succeed, because �AFD is entirely within the realm of
�ABC and its orthic triangle. In other words, we have eliminated P and Q. In fact,

�AFD = �ACD = �ACB
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since AFDC is cyclic. This solves the problem for P2 and Q2. Because we have been
careful to direct all the angles, this automatically solves the case P1 and Q1 as well—and
this is why directed angles are useful.

It is important to realize that the above is not a well-written proof, but instead a
description of how to arrive at the solution. Below is an example of how to write the proof
in a contest—one direction only (so without working backwards like we did at first), and
without the motivation. Follow along in the following proof with P1 and Q1, checking that
the directed angles work out.

Solution to Example 1.35. First, because APBC and AFDC are cyclic,

�QPA = �BPA = �BCA = �DCA = �DFA = �QFA.

Therefore, we see AFPQ is cyclic. Then

�AQP = �AFP = �AFE = �AHE = �DHE = �DCE = �BCA.

We deduce that �AQP = �BCA = �QPA which is enough to imply that �APQ is
isosceles with AP = AQ.

This problem is much easier if Lemma 1.14 is kept in mind. In that case, the only
key observation is that AFPQ is cyclic. As we saw above, one way to make this key
observation is to merely peruse the diagram for quadrilaterals that appear cyclic. That is
why it is often a good idea, on any contest problem, to draw a scaled diagram using ruler and
compass—in fact, preferably more than one diagram. This often gives away intermediate
steps in the problem, prevents you from missing obvious facts, or gives you something
to attempt to prove. It will also prevent you from wasting time trying to prove false
statements.

1.8 Problems
Problem 1.36. Let ABCDE be a convex pentagon such that BCDE is a square with
center O and ∠A = 90◦. Prove that AO bisects ∠BAE. Hints: 18 115 Sol: p.241

Problem 1.37 (BAMO 1999/2). Let O = (0, 0), A = (0, a), and B = (0, b), where 0 <

a < b are reals. Let � be a circle with diameter AB and let P be any other point on �. Line
PA meets the x-axis again at Q. Prove that ∠BQP = ∠BOP . Hints: 635 100

Problem 1.38. In cyclic quadrilateral ABCD, let I1 and I2 denote the incenters of �ABC

and �DBC, respectively. Prove that I1I2BC is cyclic. Hints: 684 569

Problem 1.39 (CGMO 2012/5). Let ABC be a triangle. The incircle of �ABC is tangent
to AB and AC at D and E respectively. Let O denote the circumcenter of �BCI .

Prove that ∠ODB = ∠OEC. Hints: 643 89 Sol: p.241

Problem 1.40 (Canada 1991/3). Let P be a point inside circle ω. Consider the set of
chords of ω that contain P . Prove that their midpoints all lie on a circle. Hints: 455 186 169
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Problem 1.41 (Russian Olympiad 1996). Points E and F are on side BC of convex
quadrilateral ABCD (with E closer than F to B). It is known that ∠BAE = ∠CDF and
∠EAF = ∠FDE. Prove that ∠FAC = ∠EDB. Hints: 245 614

Lemma 1.42. Let ABC be an acute triangle inscribed in circle �. Let X be the midpoint
of the arc B̂C not containing A and define Y , Z similarly. Show that the orthocenter of
XYZ is the incenter I of ABC. Hints: 432 21 326 195

A

B C

X

Y

Z
I

Figure 1.8A. Lemma 1.42. I is the orthocenter of �XYZ.

Problem 1.43 (JMO 2011/5). Points A,B,C,D,E lie on a circle ω and point P lies
outside the circle. The given points are such that (i) lines PB and PD are tangent to ω, (ii)
P,A,C are collinear, and (iii) DE ‖ AC.

Prove that BE bisects AC. Hints: 401 575 Sol: p.242

Lemma 1.44 (Three Tangents). Let ABC be an acute triangle. Let BE and CF be
altitudes of �ABC, and denote by M the midpoint of BC. Prove that ME, MF , and the
line through A parallel to BC are all tangents to (AEF ). Hints: 24 335

A

B CM

E

F

Figure 1.8B. Lemma 1.44, involving tangents to (AEF ).

Lemma 1.45 (Right Angles on Incircle Chord). The incircle of �ABC is tangent to
BC, CA, AB at D, E, F , respectively. Let M and N be the midpoints of BC and AC,
respectively. Ray BI meets line EF at K . Show that BK ⊥ CK . Then show K lies on line
MN . Hints: 460 84
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A

B CD

E

F

K

M

N

Figure 1.8C. Diagram for Lemma 1.45.

Problem 1.46 (Canada 1997/4). The point O is situated inside the parallelogram ABCD

such that ∠AOB + ∠COD = 180◦. Prove that ∠OBC = ∠ODC. Hints: 386 110 214 Sol:

p.242

Problem 1.47 (IMO 2006/1). Let ABC be triangle with incenter I . A point P in the
interior of the triangle satisfies

∠PBA + ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P = I . Hints: 212 453 670

Lemma 1.48 (Simson Line). Let ABC be a triangle and P be any point on (ABC). Let
X, Y , Z be the feet of the perpendiculars from P onto lines BC, CA, and AB. Prove that
points X, Y , Z are collinear. Hints: 278 502 Sol: p.243

A

B C

P

X

Y

Z

Figure 1.8D. Lemma 1.48; the Simson line.

Problem 1.49 (USAMO 2010/1). Let AXYZB be a convex pentagon inscribed in a
semicircle of diameter AB. Denote by P , Q, R, S the feet of the perpendiculars from Y

onto lines AX, BX, AZ, BZ, respectively. Prove that the acute angle formed by lines PQ

and RS is half the size of ∠XOZ, where O is the midpoint of segment AB. Hint: 661



1.8. Problems 21

Problem 1.50 (IMO 2013/4). Let ABC be an acute triangle with orthocenter H , and let
W be a point on the side BC, between B and C. The points M and N are the feet of the
altitudes drawn from B and C, respectively. ω1 is the circumcircle of triangle BWN and
X is a point such that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of triangle
CWM and Y is a point such that WY is a diameter of ω2. Show that the points X, Y , and
H are collinear. Hints: 106 157 15 Sol: p.243

Problem 1.51 (IMO 1985/1). A circle has center on the side AB of the cyclic quadrilateral
ABCD. The other three sides are tangent to the circle. Prove that AD + BC = AB. Hints:

36 201
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Circles

Construct a circle of radius zero. . .

Although it is often an intermediate step, angle chasing is usually not enough to solve a
problem completely. In this chapter, we develop some other fundamental tools involving
circles.

2.1 Orientations of Similar Triangles
You probably already know the similarity criterion for triangles. Similar triangles are useful
because they let us convert angle information into lengths. This leads to the power of a
point theorem, arguably the most common sets of similar triangles.

In preparation for the upcoming section, we develop the notion of similar triangles that
are similarly oriented and oppositely oriented.

Here is how it works. Consider triangles ABC and XYZ. We say they are directly
similar, or similar and similarly oriented, if

�ABC = �XYZ, �BCA = �YZX, and �CAB = �ZXY.

We say they are oppositely similar, or similar and oppositely oriented, if

�ABC = −�XYZ, �BCA = −�YZX, and �CAB = −�ZXY.

If they are either directly similar or oppositely similar, then they are similar. We write
�ABC ∼ �XYZ in this case. See Figure 2.1A for an illustration.

Two of the angle equalities imply the third, so this is essentially directed AA. Remember
to pay attention to the order of the points.

T1
T2 T3

Figure 2.1A. T1 is directly similar to T2 and oppositely to T3.

23
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The upshot of this is that we may continue to use directed angles when proving triangles
are similar; we just need to be a little more careful. In any case, as you probably already
know, similar triangles also produce ratios of lengths.

Proposition 2.1 (Similar Triangles). The following are equivalent for triangles ABC

and XYZ.

(i) �ABC ∼ �XYZ.
(ii) (AA) ∠A = ∠X and ∠B = ∠Y .

(iii) (SAS) ∠B = ∠Y , and AB : XY = BC : YZ.
(iv) (SSS) AB : XY = BC : YZ = CA : ZX.

Thus, lengths (particularly their ratios) can induce similar triangles and vice versa. It is
important to notice that SAS similarity does not have a directed form; see Problem 2.2. In
the context of angle chasing, we are interested in showing that two triangles are similar using
directed AA, and then using the resulting length information to finish the problem. The
power of a point theorem in the next section is perhaps the greatest demonstration. However,
we remind the reader that angle chasing is only a small part of olympiad geometry, and not
to overuse it.

Problem for this Section

Problem 2.2. Find an example of two triangles ABC and XYZ such that AB : XY =
BC : YZ, �BCA = �YZX, but �ABC and �XYZ are not similar.

2.2 Power of a Point
Cyclic quadrilaterals have many equal angles, so it should come as no surprise that we
should be able to find some similar triangles. Let us see what length relations we can
deduce.

Consider four points A, B, X, Y lying on a circle. Let line AB and line XY intersect at
P . See Figure 2.2A.

A

B

X
Y

P

A

B

X

Y

P

Figure 2.2A. Configurations in power of a point.

A simple directed angle chase gives that

�PAY = �BAY = �BXY = �BXP = −�PXB
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and

�AYP = �AYX = �ABX = �PBX = −�XBP.

As a result, we deduce that �PAY is oppositely similar to �PXB.
Therefore, we derive

PA

PY
= PX

PB

or

PA · PB = PX · PY.

This is the heart of the theorem. Another way to think of this is that the quantity
PA · PB does not depend on the choice of line AB, but instead only on the point P . In
particular, if we choose line AB to pass through the center of the circle, we obtain that
PA · PB = |PO − r||PO + r| where O and r are the center and radius of ω, respectively.
In light of this, we define the power of P with respect to the circle ω by

Powω(P ) = OP 2 − r2.

This quantity may be negative. Actually, the sign allows us to detect whether P lies inside
the circle or not. With this definition we obtain the following properties.

Theorem 2.3 (Power of a Point). Consider a circle ω and an arbitrary point P .

(a) The quantity Powω(P ) is positive, zero, or negative according to whether P is outside,
on, or inside ω, respectively.

(b) If 	 is a line through P intersecting ω at two distinct points X and Y , then

PX · PY = |Powω(P )| .
(c) If P is outside ω and PA is a tangent to ω at a point A on ω, then

PA2 = Powω(P ).

Perhaps even more important is the converse of the power of a point, which allows us
to find cyclic quadrilaterals based on length. Here it is.

Theorem 2.4 (Converse of the Power of a Point). Let A, B, X, Y be four distinct points
in the plane and let lines AB and XY intersect at P . Suppose that either P lies in both of
the segments AB and XY , or in neither segment. If PA · PB = PX · PY , then A, B, X,
Y are concyclic.

Proof. The proof is by phantom points (see Example 1.32, say). Let line XP meet
(ABX) at Y ′. Then A, B, X, Y ′ are concyclic. Therefore, by power of a point, PA · PB =
PX · PY ′. Yet we are given PA · PB = PX · PY . This implies PY = PY ′.

We are not quite done! We would like that Y = Y ′, but PY = PY ′ is not quite enough.
See Figure 2.2B. It is possible that Y and Y ′ are reflections across point P .

Fortunately, the final condition now comes in. Assume for the sake of contradiction that
Y �= Y ′; then Y and Y ′ are reflections across P . The fact that A, B, X, Y ′ are concyclic
implies that P lies in both or neither of AB and XY ′. Either way, this changes if we consider
AB and XY . This violates the second hypothesis of the theorem, contradiction.



26 2. Circles

A

B

X
Y ′P

Y

Figure 2.2B. It’s a trap! PA · PB = PX · PY almost implies concyclic, but not quite.

As you might guess, the above theorem often provides a bridge between angle chasing
and lengths. In fact, it can appear in even more unexpected ways. See the next section.

Problems for this Section

Problem 2.5. Prove Theorem 2.3.

Problem 2.6. Let ABC be a right triangle with ∠ACB = 90◦. Give a proof of the
Pythagorean theorem using Figure 2.2C. (Make sure to avoid a circular proof.)

B

C
A

a

b

Figure 2.2C. A proof of the Pythagorean theorem.

2.3 The Radical Axis and Radical Center
We start this section with a teaser.

Example 2.7. Three circles intersect as in Figure 2.3A. Prove that the common chords
are concurrent.

This seems totally beyond the reach of angle chasing, and indeed it is. The key to
unlocking this is the radical axis.

Given two circles ω1 and ω2 with distinct centers, the radical axis of the circles is the
set of points P such that

Powω1 (P ) = Powω2 (P ).

At first, this seems completely arbitrary. What could possibly be interesting about having
equal power to two circles? Surprisingly, the situation is almost the opposite.
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Figure 2.3A. The common chords are concurrent.

Theorem 2.8 (Radical Axis). Let ω1 and ω2 be circles with distinct centers O1 and O2.
The radical axis of ω1 and ω2 is a straight line perpendicular to O1O2.

In particular, if ω1 and ω2 intersect at two points A and B, then the radical axis is line
AB.

An illustration is in Figure 2.3B.

O1 O2

A

B

O1 O2

O1 O2 O1 O2

Figure 2.3B. Radical axes on display.

Proof. This is one of the nicer applications of Cartesian coordinates—we are motivated
to do so by the squares of lengths appearing, and the perpendicularity of the lines. Suppose
that O1 = (a, 0) and O2 = (b, 0) in the coordinate plane and the circles have radii r1 and
r2 respectively. Then for any point P = (x, y) we have

Powω1 (P ) = O1P
2 − r2

1 = (x − a)2 + y2 − r2
1 .
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Similarly,

Powω2 (P ) = O2P
2 − r2

2 = (x − b)2 + y2 − r2
2 .

Equating the two, we find the radical axis of ω1 and ω2 is the set of points P = (x, y)
satisfying

0 = Powω1 (P ) − Powω2 (P )

= [
(x − a)2 + y2 − r2

1

] − [
(x − b)2 + y2 − r2

2

]
= (−2a + 2b)x + (

a2 − b2 + r2
2 − r2

1

)
which is a straight line perpendicular to the x-axis (as −2a + 2b �= 0). This implies the
result.

The second part is an immediately corollary. The points A and B have equal power
(namely zero) to both circles; therefore, both A and B lie on the radical axis. Consequently,
the radical axis must be the line AB itself.

As a side remark, you might have realized in the proof that the standard equation of
a circle (x − m)2 + (y − n)2 − r2 = 0 is actually just the expansion of Powω((x, y)) = 0.
That is, the expression (x − m)2 + (y − n)2 − r2 actually yields the power of the point
(x, y) in Cartesian coordinates to the circle centered at (m, n) with radius r .

The power of Theorem 2.8 (no pun intended) is the fact that it is essentially an “if and
only if” statement. That is, a point has equal power to both circles if and only if it lies on
the radical axis, which we know much about.

Let us now return to the problem we saw at the beginning of this section. Some of you
may already be able to guess the ending.

Proof of Example 2.7. The common chords are radical axes. Let 	12 be the radical axis
of ω1 and ω2, and let 	23 be the radical axis of ω2 and ω3.

Let P be the intersection of these two lines. Then

P ∈ 	12 ⇒ Powω1 (P ) = Powω2 (P )

and

P ∈ 	23 ⇒ Powω2 (P ) = Powω3 (P )

which implies Powω1 (P ) = Powω3 (P ). Hence P ∈ 	31 and accordingly we discover that all
three lines pass through P .

In general, consider three circles with distinct centers O1, O2, O3. In light of the
discussion above, there are two possibilities.

1. Usually, the pairwise radical axes concur at a single point K . In that case, we call K the
radical center of the three circles.

2. Occasionally, the three radical axes will be pairwise parallel (or even the same line).
Because the radical axis of two circles is perpendicular to the line joining its centers,
this (annoying) case can only occur if O1, O2, O3 are collinear.
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It is easy to see that these are the only possibilities; whenever two radical axes intersect,
then the third one must pass through their intersection point.

We should also recognize that the converse to Example 2.7 is also true. Here is the full
configuration.

Theorem 2.9 (Radical Center of Intersecting Circles). Let ω1 and ω2 be two circles
with centers O1 and O2. Select points A and B on ω1 and points C and D on ω2. Then the
following are equivalent:

(a) A, B, C, D lie on a circle with center O3 not on line O1O2.
(b) Lines AB and CD intersect on the radical axis of ω1 and ω2.

P

A

B

C

D

Figure 2.3C. The converse is also true. See Theorem 2.9.

Proof. We have already shown one direction. Now suppose lines AB and CD intersect
at P , and that P lies on the radical axis. Then

±PA · PB = Powω1 (P ) = Powω2 (P ) = ±PC · PD.

We need one final remark: we see that Powω1 (P ) > 0 if and only if P lies strictly between
A and B. Similarly, Powω2 (P ) > 0 if and only if P lies strictly between C and D. Because
Powω1 (P ) = Powω2 (P ), we have the good case of Theorem 2.4. Hence, because PA · PB =
PC · PD, we conclude that A, B, C, D are concyclic. Because lines AB and CD are not
parallel, it must also be the case that the points O1, O2, O3 are not collinear.

We have been very careful in our examples above to check that the power of a point
holds in the right direction, and to treat the two cases “concurrent” or “all parallel”. In
practice, this is more rarely an issue, because the specific configuration in an olympiad
problem often excludes such pathological configurations. Perhaps one notable exception is
USAMO 2009/1 (Example 2.21).
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To conclude this section, here is one interesting application of the radical axis that is
too surprising to be excluded.

Proposition 2.10. In a triangle ABC, the circumcenter exists. That is, there is a point O

such that OA = OB = OC.

Proof. Construct a circle of radius zero (!) centered at A, and denote it by ωA. Define
ωB and ωC similarly. Because the centers are not collinear, we can find their radical center
O.

Now we know the powers from O to each of ωA, ωB , ωC are equal. Rephrased, the
(squared) length of the “tangents” to each circle are equal: that is, OA2 = OB2 = OC2.
(To see that OA2 really is the power, just use PowωA

(O) = OA2 − 02 = OA2.) From here
we derive that OA = OB = OC, as required.

Of course, the radical axes are actually just the perpendicular bisectors of the sides. But
this presentation was simply too surprising to forgo. This may be the first time you have
seen a circle of radius zero; it will not be the last.

Problems for this Section

Lemma 2.11. Let ABC be a triangle and consider a point P in its interior. Suppose that
BC is tangent to the circumcircles of triangles ABP and ACP . Prove that ray AP bisects
BC.

A

B C

P

Figure 2.3D. Diagram for Lemma 2.11.

Problem 2.12. Show that the orthocenter of a triangle exists using radical axes. That is, if
AD, BE, and CF are altitudes of a triangle ABC, show that the altitudes are concurrent.
Hint: 367

2.4 Coaxial Circles
If a set of circles have the same radical axes, then we say they are coaxial. A collection
of such circles is called a pencil of coaxial circles. In particular, if circles are coaxal, their
centers are collinear. (The converse is not true.)

Coaxial circles can arise naturally in the following way.



2.5. Revisiting Tangents: The Incenter 31

Figure 2.4A. Two pencils of coaxial circles.

Lemma 2.13 (Finding Coaxial Circles). Three distinct circles �1, �2, �3 pass through
a point X. Then their centers are collinear if and only if they share a second common point.

Proof. Both conditions are equivalent to being coaxial.

2.5 Revisiting Tangents: The Incenter
We consider again an angle bisector. See Figure 2.5A.

For any point P on the angle bisector, the distances from P to the sides are equal.
Consequently, we can draw a circle centered at P tangent to the two sides. Conversely, the
two tangents to any circle always have equal length, and the center of that circle lies on the
corresponding angle bisector.

A

B C

P

Figure 2.5A. Two tangents to a circle.

From these remarks we can better understand the incenter.

Proposition 2.14. In any triangle ABC, the angle bisectors concur at a point I , which is
the center of a circle inscribed in the triangle.

Proof. Essentially we are going to complete Figure 2.5A to obtain Figure 2.5B. Let the
angle bisectors of ∠B and ∠C intersect at a point I . We claim that I is the desired incenter.

Let D, E, F be the projections of I onto BC, CA, and AB, respectively. Because I is
on the angle bisector of ∠B, we know that IF = ID. Because I is on the angle bisector
of ∠C, we know that ID = IE. (If this reminds you of the proof of the radical center, it
should!) Therefore, IE = IF , and we deduce that I is also on the angle bisector of ∠A.
Finally, the circle centered at I with radius ID = IE = IF is evidently tangent to all
sides.
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A

B CD

E
F I

x

y

y z

z

x

Figure 2.5B. Describing the incircle of a triangle.

The triangle DEF is called the contact triangle of �ABC.
We can say even more. In Figure 2.5B we have marked the equal lengths induced by the

tangents as x, y, and z. Considering each of the sides, this gives us a system of equations
of three variables

y + z = a

z + x = b

x + y = c.

Now we can solve for x, y, and z in terms of a, b, c. This is left as an exercise, but we state
the result here. (Here s = 1

2 (a + b + c).)

Lemma 2.15 (Tangents to the Incircle). If DEF is the contact triangle of �ABC, then
AE = AF = s − a. Similarly, BF = BD = s − b and CD = CE = s − c.

Problem for this Section

Problem 2.16. Prove Lemma 2.15.

2.6 The Excircles
In Lemma 1.18 we briefly alluded the excenter of a triangle. Let us consider it more
completely here. The A-excircle of a triangle ABC is the circle that is tangent to BC,
the extension of AB past B, and the extension of AC past C. See Figure 2.6A. The
A-excenter, usually denoted IA, is the center of the A-excircle. The B-excircle and C-
excircles are defined similarly and their centers are unsurprisingly called the B-excenter
and the C-excenter.

We have to actually check that the A-excircle exists, as it is not entirely obvious from
the definition. The proof is exactly analogous to that for the incenter, except with the angle
bisector from B replaced with an external angle bisector, and similarly for C. As a simple
corollary, the incenter of ABC lies on AIA.

Now let us see if we can find similar length relations as in the incircle. Let X be the
tangency point of the A-excircle on BC and B1 and C1 the tangency points to rays AB and
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A

B C

I

D

E

F

X

IA

B1

C1

Figure 2.6A. The incircle and A-excircle.

AC. We know that AB1 = AC1 and that

AB1 + AC1 = (AB + BB1) + (AC + CC1)

= (AB + BX) + (AC + CX)

= AB + AC + BC

= 2s.

We have now obtained the following.

Lemma 2.17 (Tangents to the Excircle). If AB1 and AC1 are the tangents to the A-
excircle, then AB1 = AC1 = s.

Let us make one last remark: in Figure 2.6A, the triangles AIF and AIAB1 are directly
similar. (Why?) This lets us relate the A-exradius, or the radius of the excircle, to the other
lengths in the triangle. This exradius is usually denoted ra . See Lemma 2.19.

Problems for this Section

Problem 2.18. Let the external angle bisectors of B and C in a triangle ABC intersect at
IA. Show that IA is the center of a circle tangent to BC, the extension of AB through B,
and the extension of AC through C. Furthermore, show that IA lies on ray AI .

Lemma 2.19 (Length of Exradius). Prove that the A-exradius has length

ra = s

s − a
r.

Hint: 302

Lemma 2.20. Let ABC be a triangle. Suppose its incircle and A-excircle are tangent to
BC at X and D, respectively. Show that BX = CD and BD = CX.
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2.7 Example Problems
We finish this chapter with several problems, which we feel are either instructive, classical,
or too surprising to not be shared.

Example 2.21 (USAMO 2009/1). Given circles ω1 and ω2 intersecting at points X and
Y , let 	1 be a line through the center of ω1 intersecting ω2 at points P and Q and let 	2 be a
line through the center of ω2 intersecting ω1 at points R and S. Prove that if P , Q, R, and
S lie on a circle then the center of this circle lies on line XY .

O1 O2

X

Y

O3

P

Q

R

S

Figure 2.7A. The first problem of the 2009 USAMO.

This was actually a very nasty USAMO problem, in the sense that it was easy to lose
partial credit. We will see why.

Let O3 and ω3 be the circumcenter and circumcircle, respectively, of the cyclic quadri-
lateral PQRS. After drawing the diagram, we are immediately reminded of our radical
axes. In fact, we already know that that lines PQ, RS, and XY concur at a point X, by
Theorem 2.9. Call this point H .

Now, what else do we know? Well, glancing at the diagram∗ it appears that O1O3 ⊥ RS.
And of course this we know is true, because RS is the radical axis of ω1 an ω3. Similarly,
we notice that PQ is perpendicular to O1O3.

Focus on �O1O2O3. We see that H is its orthocenter. Therefore the altitude from O3

to O1O2 must pass through H . But line XY is precisely that altitude: it passes through H

and is perpendicular to O1O2. Hence, O3 lies on line XY , and we are done.
Or are we?
Look at Theorem 2.9 again. In order to apply it, we need to know that O1, O2, O3 are

not collinear. Unfortunately, this is not always true—see Figure 2.7B.
Fortunately, noticing this case is much harder than actually doing it. We use phantom

points. Let O be the midpoint of XY . (We pick this point because we know this is where O3

∗ And you are drawing large scaled diagrams, right?



2.7. Example Problems 35

O1 O2

X

Y

O

P

Q

R

S

Figure 2.7B. An unnoticed special case.

must be for the problem to hold.) Now we just need to show that OP = OQ = OR = OS,
from which it will follow that O = O3.

This looks much easier. It should seem like we should be able to compute everything
using just repeated applications of the Pythagorean theorem (and the definition of a circle).
Trying this,

OP 2 = OO2
1 + O1P

2

= OO2
1 + (O2P

2 − O1O
2
2 )

= OO2
1 + r2

2 − O1O
2
2 .

Now the point P is gone from the expression, but the r2 needs to go if we hope to get a

symmetric expression. We can get rid of it by using O2X = r2 =
√

XO2 + OO2
2 .

OP 2 = OO2
1 + (O2X

2 + OX2) − O1O
2
2

= OX2 + OO2
1 + OO2

2 − O1O
2
2

=
(

1

2
XY

)2

+ OO2
1 + OO2

2 − O1O
2
2 .

This is symmetric; the exact same calculations with Q, R, and S yield the same results. We
conclude OP 2 = OQ2 = OR2 = OS2 = (

1
2XY

)2 + OO2
1 + OO2

2 − O1O
2
2 as desired.

Having presented the perhaps more natural solution above, here is a solution with a
more analytic flavor. It carefully avoids the configuration issues in the first solution.

Solution to Example 2.21. Let r1, r2, r3 denote the circumradii of ω1, ω2, and ω3,
respectively.
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We wish to show that O3 lies on the radical axis of ω1 and ω2. Let us encode the
conditions using power of a point. Because O1 is on the radical axis of ω2 and ω3,

Powω2 (O1) = Powω3 (O1)

⇒ O1O
2
2 − r2

2 = O1O
2
3 − r2

3 .

Similarly, because O2 is on the radical axis of ω1 and ω3, we have

Powω1 (O2) = Powω3 (O2)

⇒ O1O
2
2 − r2

1 = O2O
2
3 − r2

3 .

Subtracting the two gives

(O1O
2
2 − r2

2 ) − (O1O
2
2 − r2

1 ) = (O1O
2
3 − r2

3 ) − (O2O
2
3 − r2

3 )

⇒ r2
1 − r2

2 = O1O
2
3 − O2O

2
3

⇒ O2O
2
3 − r2

2 = O1O
2
3 − r2

1

⇒ Powω2 (O3) = Powω1 (O3)

as desired.

The main idea of this solution is to encode everything in terms of lengths using the
radical axis. Effectively, we write down the givens as equations. We also write the desired
conclusion as an equation, namely Powω2 (O3) = Powω1 (O3), then forget about geometry
and do algebra. It is an unfortunate irony of olympiad geometry that analytic solutions are
often immune to configuration issues that would otherwise plague traditional solutions.

The next example is a classical result of Euler.

Lemma 2.22 (Euler’s Theorem). Let ABC be a triangle. Let R and r denote its circum-
radius and inradius, respectively. Let O and I denote its circumcenter and incenter. Then
OI 2 = R(R − 2r). In particular, R ≥ 2r .

The first thing we notice is that the relation is equivalent to proving R2 − OI 2 = 2Rr .
This is power of a point, clear as day. So, we let ray AI hit the circumcircle again at L.
Evidently we just need to show

AI · IL = 2Rr.

This looks much nicer to work with—noticing the power expressions gave us a way to
clean up the problem statement, and gives us some structure to work on.

We work backwards for a little bit. The final condition appears like similar triangles.
So perhaps we may rewrite it as

AI

r
= 2R

IL
.

There are not too many ways the left-hand side can show up like that. We drop the altitude
from I to AB as F . Then �AIF has the ratios that we want. (You can also drop the foot to
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A

B C

L

K

I
F

O

Figure 2.7C. Proving Euler’s theorem.

AC, but this is the same thing.) All that remains is to construct a similar triangle with the
lengths 2R and IL. Unfortunately, IL does not play well in this diagram.

But we hope that by now you recognize IL from Lemma 1.18! Write BL = IL. Then
let K be the point such that KL is a diameter of the circle. Then �KBL has the dimensions
we want. Could the triangles in question be similar? Yes: ∠KBL and ∠AFI are both right
angles, and∠BAL = ∠BKL by cyclic quadrilaterals. Hence this produces AI · IL = 2Rr

and we are done.
As usual, this is not how a solution should be written up in a contest. Solutions should

be only written forwards, and without explaining where the steps come from.

Solution to Lemma 2.22. Let ray AI meet the circumcircle again at L and let K be
the point diametrically opposite L. Let F be the foot from I to AB. Notice that ∠FAI =
∠BAL = ∠BKL and ∠AFI = ∠KBL = 90◦, so

AI

r
= AI

IF
= KL

LB
= 2R

LI

and hence AI · IL = 2Rr . Because I lies inside �ABC, we deduce the power of I with
respect to (ABC) is 2Rr = R2 − OI 2. Consequently, OI 2 = R(R − 2r).

The construction of the diameter appears again in Chapter 3, when we derive the
extended law of sines, Theorem 3.1.

Our last example is from the All-Russian Mathematical Olympiad, whose solution is
totally unexpected. Please ponder it before reading the solution.

Example 2.23 (Russian Olympiad 2010). Triangle ABC has perimeter 4. Points X

and Y lie on rays AB and AC, respectively, such that AX = AY = 1. Segments BC and
XY intersect at point M . Prove that the perimeter of either �ABM or �ACM is 2.
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A

B C

X

Y

M

Figure 2.7D. A problem from the All-Russian MO 2010.

What strange conditions have been given. We are told the lengths AX = AY = 1 and
the perimeter of �ABC is 4, and effectively nothing else. The conclusion, which is an
either-or statement, is equally puzzling.

Let us reflect the point A over both X and Y to two points U and V so that AU = AV =
2. This seems slightly better, because AU = AV = 2 now, and the “two” in the perimeter
is now present. But what do we do? Recalling that s = 2 in the triangle, we find that U and
V are the tangency points of the excircle, call it �a . Set IA the excenter, tangent to BC at
T . See Figure 2.7E.

A

B C

X

Y

M

IA

T

U

V

Figure 2.7E. Adding an excircle to handle the conditions.

Looking back, we have now encoded the AX = AY = 1 condition as follows: X and
Y are the midpoints of the tangents to the A-excircle. We need to show that one of �ABM

or �ACM has perimeter equal to the length of the tangent.
Now the question is: how do we use this?
Let us look carefully again at the diagram. It would seem to suggest that in this case,

�ABM is the one with perimeter two (and not �ACM). What would have to be true in
order to obtain the relation AB + BM + MA = AU? Trying to bring the lengths closer
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to the triangle in question, we write AU = AB + BU = AB + BT . So we would need
BM + MA = BT , or MA = MT .

So it would appear that the points X, M , Y have the property that their distance to A

equals the length of their tangents to the A-excircle. This motivates a last addition to our
diagram: construct a circle of radius zero at A, say ω0. Then X and Y lie on the radical axis
of ω0 and �a; hence so does M! Now we have MA = MT , as required.

Now how does the either-or condition come in? Now it is clear: it reflects whether T

lies on BM or CM . (It must lie in at least one, because we are told that M lies inside the
segment BC, and the tangency points of the A-excircle to BC always lie in this segment
as well.) This completes the solution, which we present concisely below.

Solution to Example 2.23. Let IA be the center of the A-excircle, tangent to BC at T ,
and to the extensions of AB and AC at U and V . We see that AU = AV = s = 2. Then XY

is the radical axis of the A-excircle and the circle of radius zero at A. Therefore AM = MT .
Assume without loss of generality that T lies on MC, as opposed to MB. Then AB +

BM + MA = AB + BM + MT = AB + BT = AB + BU = AU = 2 as desired.

While we have tried our best to present the solution in a natural way, it is no secret that
this is a hard problem by any standard. It is fortunate that such pernicious problems are
rare.

2.8 Problems
Lemma 2.24. Let ABC be a triangle with IA, IB , and IC as excenters. Prove that triangle
IAIBIC has orthocenter I and that triangle ABC is its orthic triangle. Hints: 564 103

Theorem 2.25 (The Pitot Theorem). Let ABCD be a quadrilateral. If a circle can be
inscribed† in it, prove that AB + CD = BC + DA. Hint: 467

A

B

CD

Figure 2.8A. The Pitot theorem: AB + CD = BC + DA.

† The converse of the Pitot theorem is in fact also true: if AB + CD = BC + DA, then a circle can be inscribed
inside ABCD. Thus, if you ever need to prove AB + CD = BC + DA, you may safely replace this with the
“inscribed” condition.
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Problem 2.26 (USAMO 1990/5). An acute-angled triangle ABC is given in the plane. The
circle with diameter AB intersects altitude CC ′ and its extension at points M and N , and
the circle with diameter AC intersects altitude BB ′ and its extensions at P and Q. Prove
that the points M , N , P , Q lie on a common circle. Hints: 260 73 409 Sol: p.244

Problem 2.27 (BAMO 2012/4). Given a segment AB in the plane, choose on it a point
M different from A and B. Two equilateral triangles AMC and BMD in the plane are
constructed on the same side of segment AB . The circumcircles of the two triangles intersect
in point M and another point N .

(a) Prove that AD and BC pass through point N . Hints: 57 77

(b) Prove that no matter where one chooses the point M along segment AB, all lines MN

will pass through some fixed point K in the plane. Hints: 230 654

Problem 2.28 (JMO 2012/1). Given a triangle ABC, let P and Q be points on segments
AB and AC, respectively, such that AP = AQ. Let S and R be distinct points on segment
BC such that S lies between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove
that P , Q, R, S are concyclic. Hints: 435 601 537 122

Problem 2.29 (IMO 2008/1). Let H be the orthocenter of an acute-angled triangle ABC.
The circle �A centered at the midpoint of BC and passing through H intersects the sideline
BC at points A1 and A2. Similarly, define the points B1, B2, C1, and C2. Prove that six
points A1, A2, B1, B2, C1, and C2 are concyclic. Hints: 82 597 Sol: p.244

Problem 2.30 (USAMO 1997/2). Let ABC be a triangle. Take points D, E, F on the
perpendicular bisectors of BC, CA, AB respectively. Show that the lines through A, B, C

perpendicular to EF , FD, DE respectively are concurrent. Hints: 596 2 611

Problem 2.31 (IMO 1995/1). Let A, B, C, D be four distinct points on a line, in that order.
The circles with diameters AC and BD intersect at X and Y . The line XY meets BC at
Z. Let P be a point on the line XY other than Z. The line CP intersects the circle with
diameter AC at C and M , and the line BP intersects the circle with diameter BD at B and
N . Prove that the lines AM , DN , XY are concurrent. Hints: 49 159 134

Problem 2.32 (USAMO 1998/2). Let C1 and C2 be concentric circles, with C2 in the interior
of C1. From a point A on C1 one draws the tangent AB to C2 (B ∈ C2). Let C be the second
point of intersection of ray AB and C1, and let D be the midpoint of AB. A line passing
through A intersects C2 at E and F in such a way that the perpendicular bisectors of DE

and CF intersect at a point M on AB. Find, with proof, the ratio AM/MC. Hints: 659 355

482

Problem 2.33 (IMO 2000/1). Two circles G1 and G2 intersect at two points M and N . Let
AB be the line tangent to these circles at A and B, respectively, so that M lies closer to AB

than N . Let CD be the line parallel to AB and passing through the point M , with C on G1

and D on G2. Lines AC and BD meet at E; lines AN and CD meet at P ; lines BN and
CD meet at Q. Show that EP = EQ. Hints: 17 174
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Problem 2.34 (Canada 1990/3). Let ABCD be a cyclic quadrilateral whose diagonals
meet at P . Let W , X, Y , Z be the feet of P onto AB, BC, CD, DA, respectively. Show
that WX + YZ = XY + WZ. Hints: 1 414 440 Sol: p.245

Problem 2.35 (IMO 2009/2). Let ABC be a triangle with circumcenter O. The points P

and Q are interior points of the sides CA and AB, respectively. Let K , L, and M be the
midpoints of the segments BP , CQ, and PQ, respectively, and let � be the circle passing
through K , L, and M . Suppose that the line PQ is tangent to the circle �. Prove that
OP = OQ. Hints: 78 544 346

Problem 2.36. Let AD, BE, CF be the altitudes of a scalene triangle ABC with circum-
center O. Prove that (AOD), (BOE), and (COF ) intersect at point X other than O. Hints:

553 79 Sol: p.245

Problem 2.37 (Canada 2007/5). Let the incircle of triangle ABC touch sides BC, CA,
and AB at D, E, and F , respectively. Let ω, ω1, ω2, and ω3 denote the circumcircles of
triangles ABC, AEF , BDF , and CDE respectively. Let ω and ω1 intersect at A and P , ω

and ω2 intersect at B and Q, ω and ω3 intersect at C and R.

(a) Prove that ω1, ω2, and ω3 intersect in a common point.
(b) Show that lines PD, QE, and RF are concurrent. Hints: 376 548 660

Problem 2.38 (Iran TST 2011/1). In acute triangle ABC, ∠B is greater than ∠C. Let
M be the midpoint of BC and let E and F be the feet of the altitudes from B and C,
respectively. Let K and L be the midpoints of ME and MF , respectively, and let T be on
line KL such that T A ‖ BC. Prove that T A = T M . Hints: 297 495 154 Sol: p.246





C H A P T E R 3
Lengths and Ratios

As one, who versed in geometric lore, would fain
Measure the circle Dante, The Divine Comedy

3.1 The Extended Law of Sines
Aside from angles and similar triangles, one way to relate angles to lengths is through the
law of sines. A more thorough introduction to the true power of trigonometry occurs in
Section 5.3, but we see that it already proves useful here in our study of lengths.

Theorem 3.1 (The Extended Law of Sines). In a triangle ABC with circumradius R,
we have

a

sin A
= b

sin B
= c

sin C
= 2R.

This so-called “extended form” contains the final clause of 2R at the end. It has the
advantage that it makes the symmetry more clear (if a

sin A
= 2R is true, then the other parts

follow rather immediately). The extended form also gives us a hint of a direct proof:

A

B C

X

O

A

B C
XO

Figure 3.1A. Proving the law of sines.

Proof. As discussed above we only need to prove a
sin A

= 2R. Let BX be a diameter
of the circumcircle, as in Figure 3.1A. Evidently �BXC = �BAC. Now consider triangle

43
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BXC. It is a right triangle with BC = a, BX = 2R, and either ∠BXC = A or ∠BXC =
180◦ − A (depending on whether ∠A is acute). Either way,

sin A = sin∠BXC = a

2R

and the proof ends here.

The law of sines will be used later to provide a different form of the upcoming Ceva’s
theorem, namely Theorem 3.4.

Problem for this Section

Theorem 3.2 (Angle Bisector Theorem). Let ABC be a triangle and D a point on BC

so that AD is the internal angle bisector of ∠BAC. Show that

AB

AC
= DB

DC
.

Hint: 417

3.2 Ceva’s Theorem
In a triangle, a cevian is a line joining a vertex of the triangle to a point on the interior∗

of the opposite side. A natural question is when three cevians of a triangle are concurrent.
This is answered by Ceva’s theorem.

A

B CX

Y

PZ

A

B CX ′

Y

P ′Z

X

Figure 3.2A. Three cevians are concurrent as in Ceva’s theorem.

Theorem 3.3 (Ceva’s Theorem). Let AX, BY , CZ be cevians of a triangle ABC. They
concur if and only if

BX

XC
· CY

YA
· AZ

ZB
= 1.

The proof is by areas: we use the fact that if two triangles share an altitude, the ratio of
the areas is the ratio of their bases. This trick is very useful in general.

∗ Some authors permit cevians to land on points on the extensions of the opposite side as well. For this chapter
we assume cevians lie in the interior of the triangle unless otherwise specified.
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Proof. Let us first assume the cevians concur at P , and try to show the ratios multiply
to 1. Since �BAX and �XAC share an altitude, as do �BPX and �XPC, we derive

BX

XC
= [BAX]

[XAC]
= [BPX]

[XPC]
.

Now we are going to use a little algebraic trick: if a
b

= x
y

, then a
b

= x
y

= a+x
b+y

. For example,

since 4
6 = 10

15 , both are equal to 4+10
6+15 = 14

21 . Applying this to the area ratios yields

BX

XC
= [BAX] − [BPX]

[XAC] − [XPC]
= [BAP ]

[ACP ]
.

But now the conclusion is imminent, since

CY

YA
= [CBP ]

[BAP ]
and

AZ

ZB
= [ACP ]

[CBP ]

whence multiplying gives the desired BX
XC

· CY
YA

· AZ
ZB

= 1.
Now how do we handle the other direction? Dead simple with phantom points. Assume

AX, BY , CZ are cevians with

BX

XC
· CY

YA
· AZ

ZB
= 1.

Let BY and CZ intersect at P ′, and let ray AP ′ meet BC at X′ (right half of Figure 3.2A).
By our work already done, we know that

BX′

X′C
· CY

YA
· AZ

ZB
= 1.

Thus BX′
X′C = BX

XC
, which is enough to imply X = X′.

The proof above illustrated two useful ideas—the use of area ratios, and the use of
phantom points.

As you might guess, Ceva’s theorem is extremely useful for showing that three lines
are concurrent. It can also be written in a trigonometric form.

Theorem 3.4 (Trigonometric Form of Ceva’s Theorem). Let AX, BY , CZ be cevians
of a triangle ABC. They concur if and only if

sin∠BAX sin∠CBY sin∠ACZ

sin∠XAC sin∠YBA sin∠ZCB
= 1.

The proof is a simple exercise—just use the law of sines.
With this, the existence of the orthocenter, the incenter, and the centroid are all totally

straightforward. For the orthocenter†, we compute

sin(90◦ − B) sin(90◦ − C) sin(90◦ − A)

sin(90◦ − C) sin(90◦ − A) sin(90◦ − B)
= 1.

† Actually we need to handle the case where �ABC is obtuse separately, since in that case two of the altitudes
fall outside the triangle. We develop the necessary generalization in the next section, when we discuss directed
lengths in Menelaus’s theorem.
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For the incenter, we compute

sin 1
2A sin 1

2B sin 1
2C

sin 1
2A sin 1

2B sin 1
2C

= 1.

We could also have used the angle bisector theorem in the standard form of Ceva’s theorem,
giving

c

b

a

c

b

a
= 1.

Finally, for the centroid we have

1

1

1

1

1

1
= 1

and we no longer have to take the existence of our centers for granted!

Problems for this Section

Problem 3.5. Show the trigonometric form of Ceva holds.

Problem 3.6. Let AM , BE, and CF be concurrent cevians of a triangle ABC. Show that
EF ‖ BC if and only if BM = MC.

3.3 Directed Lengths and Menelaus’s Theorem
The analogous form of Ceva’s theorem is called Menelaus’s theorem, which specifies when
three points on the sides of a triangle (or their extensions) are collinear.

Theorem 3.7 (Menelaus’s Theorem). Let X, Y , Z be points on lines BC, CA, AB in a
triangle ABC, distinct from its vertices. Then X, Y , Z are collinear if and only if

BX

XC
· CY

YA
· AZ

ZB
= −1

where the lengths are directed.

Here we have introduced ratios of directed lengths. Given collinear points A, Z, B, we
say that the ratio AZ

ZB
is positive if Z lies between A and B, and negative otherwise. (This is

much the same idea as the signs we used in defining the power of a point.) We always say
explicitly when lengths are taken to be directed.

Notice the similarity to Ceva’s theorem. The use of −1 instead of 1 is important—for
if X, Y , Z each lie in the interiors of the sides, it is impossible for the three to be collinear!

Essentially the directed lengths are simply encoding two cases of Menelaus’s theorem:
when either one or three of {X, Y,Z} lie outside the corresponding side. It is easy to check
that the sign of the directed ratio is negative precisely in these cases.

There are many proofs of Menelaus’s theorem that we leave to other sources. The proof
we give shows one direction; if the ratios multiply to −1, then the points are collinear. (The
other direction then follows using phantom points.) It is inspired by a proof to Monge’s
theorem (Theorem 3.22), and it is so surprising that we could not resist including it.
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A

B C

Y

Z

X

A

B C

Y

Z

X

Figure 3.3A. The two cases of Menelaus’s theorem.

Proof. First, suppose that the points X, Y , Z lie on the sides of the triangle in such a
way that

BX

XC
· CY

YA
· AZ

ZB
= −1.

Then it is possible to find nonzero real numbers p, q, r for which

q

r
= −BX

XC
,

r

p
= −CY

YA
,

p

q
= −AZ

ZB
.

Now we go into three dimensions! Let P be the plane of triangle ABC (this page) and
construct point A1 such that A1A ⊥ P and AA1 = p; we take A1 to be above the page if
p > 0 and below the page otherwise. Now define B1 and C1 analogously, so that BB1 = q

and CC1 = r .

Figure 3.3B. The 3D proof of Menelaus’s theorem.

One can easily check (say, by similar triangles) that the points B1, C1, and X are
collinear. Indeed, just consider the right triangles C1CX and B1BX, and note the ratios of
the legs. Similarly, line A1B1 passes through Z and A1C1 passes through Y .

But now consider the plane Q of the triangle A1B1C1. The intersection of planes P and
Q is a line. However, this line contains the points X, Y , Z, so we are done.

It also turns out that Ceva’s theorem (as well as its trigonometric form) can be gener-
alized using directed lengths. We can write this in the following manner. This should be
taken as the full form of Ceva’s theorem.



48 3. Lengths and Ratios

Theorem 3.8 (Ceva’s Theorem with Directed Lengths). Let ABC be a triangle and X,
Y , Z be points on lines BC, CA, AB distinct from its vertices. Then lines AX, BY , CZ

are concurrent if and only if

AZ

ZB
· BX

XC
· CY

YA
= 1

where the ratios are directed.

The condition is equivalent to

sin∠BAX sin∠CBY sin∠ACZ

sin∠XAC sin∠YBA sin∠ZCB
= 1

where either exactly one or exactly three of X, Y , Z lie strictly inside sides BC, CA, AB.
Because exactly two altitudes land outside the sides in an obtuse triangle, this generalization
lets us complete the proof that the orthocenter exists for obtuse triangles. (What about for
right triangles?)

3.4 The Centroid and the Medial Triangle

A

B C

G

x x

y

yz

z

M

NL

Figure 3.4A. Area ratios on the centroid of a triangle.

We can say even more about the centroid than just its existence by again considering
area ratios. Consider Figure 3.4A, where we have added the midpoints of each of the sides
(the triangle they determine is called the medial triangle). Notice that

1 = BM

MC
= [GMB]

[CMG]

as discussed before in our proof of Ceva’s theorem. Consequently [GMB] = [CMG] and
so we mark their areas with an x in Figure 3.4A. We can similarly define y and z.

But now, by the exact same reasoning,

1 = BM

MC
= [AMB]

[CMA]
= x + 2z

x + 2y
.

Hence y = z. Analogous work gives x = y and x = z. So that means the six areas of the
triangles are all equal.
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In that vein, we deduce

AG

GM
= [GAB]

[MGB]
= 2z

x
= 2.

This yields an important fact concerning the centroid of the triangle.

Lemma 3.9 (Centroid Division). The centroid of a triangle divides the median into a
2 : 1 ratio.

Just how powerful can area ratios become? Answer: you can build a whole coordinate
system around them. See Chapter 7.

3.5 Homothety and the Nine-Point Circle
First of all, what is a homothety? A homothety or dilation is a special type of similarity,
in which a figure is dilated from a center. See Figure 3.5A.

O

A

B C

h(A)

h(B)
h(C)

Figure 3.5A. A homothety h with center O acting on ABC.

More formally, a homothety h is a transformation defined by a center O and a real
number k. It sends a point P to another point h(P ), multiplying the distance from O by k.
The number k is the scale factor. It is important to note that k can be negative, in which
case we have a negative homothety. See Figure 3.5B.

O

A

B
C

h(A)

h(B)h(C)

Figure 3.5B. A negative homothety with center O.

In other words, all this is a fancy special case of similar triangles.
Homothety preserves many things, including but not limited to tangency, angles (both

vanilla and directed), circles, and so on. They do not preserve length, but they work well
enough: the lengths are simply all multiplied by k.

Furthermore, given noncongruent parallel segments AB and XY (what happens if
AB = XY ?), we can consider the intersection point O of lines AX and BY . This is the
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center of a homothety sending one segment to the other. (As is the intersection of lines
AY and BX—one of these is negative.) As a result, parallel lines are often indicators of
homotheties.

A consequence of this is the following useful lemma.

Lemma 3.10 (Homothetic Triangles). Let ABC and XYZ be non-congruent triangles
such that AB ‖ XY , BC ‖ YZ, and CA ‖ ZX. Then lines AX, BY , CZ concur at some
point O, and O is a center of a homothety mapping �ABC to �XYZ.

Convince yourself that this is true. The proof is to take a homothety h with X = h(A)
and Y = h(B) and then check that we must have Z = h(C).

One famous application of homothety is the so-called nine-point circle. Recall
Lemma 1.17, which states that the reflection of the orthocenter over BC, as well as the
reflection over the midpoint of BC, lies on (ABC). In Figure 3.5C, we have added in the
reflections over the other sides as well.

A

B C

ON9H

Figure 3.5C. The nine-point circle.

We now have nine points on (ABC) with center O, the three reflections of H over
the sides, the three reflections of H over the midpoints, and the vertices of the triangle
themselves.

Let us now take a homothety h at H (meaning with center H ) and with scale factor 1
2 .

This brings all the reflections back onto the sides of ABC, while also giving us as an added
bonus the midpoints of AH , BH , CH . In addition, O gets mapped to the midpoint of OH ,
say N9.
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On the other hand homothety preserves circles, so astonishingly enough, these nine
points remain concyclic. We even know the center of the circle—it is the image h(O) = N9,
called the nine-point center. We even know the radius! It is just half of the circumradius
(ABC). This circles is called the nine-point circle.

Lemma 3.11 (Nine-Point Circle). Let ABC be a triangle with circumcenter O and
orthocenter H , and denote by N9 the midpoint of OH . Then the midpoints of AB, BC, CA,
AH , BH , CH , as well as the feet of the altitudes of �ABC, lie on a circle centered at N9.
Moreover, the radius of this circle is half the radius of (ABC).

We will see several more applications of homothety in Chapter 4, but this is one of the
most memorable. A second application is the Euler line—the circumcenter, orthocenter, and
centroid are collinear as well! We leave this famous result as Lemma 3.13; see Figure 3.5D.

Problems for this Section

Problem 3.12. Give an alternative proof of Lemma 3.9 by taking a negative homothety.
Hints: 360 165 348

A

B C

O
G

H
N9

Figure 3.5D. The Euler line of a triangle.

Lemma 3.13 (Euler Line). In triangle ABC, prove that O, G, H (with their usual
meanings) are collinear and that G divides OH in a 2 : 1 ratio. Hints: 426 47 314

3.6 Example Problems
Our first example is from the very first European Girl’s Math Olympiad. It is a good
example of how recognizing one of our configurations (in this case, the reflections of the
orthocenters) can lead to an elegant solution.

Example 3.14 (EGMO 2012/7). Let ABC be an acute-angled triangle with circumcircle
� and orthocenter H . Let K be a point of � on the other side of BC from A. Let L be the
reflection of K across AB, and let M be the reflection of K across BC. Let E be the second
point of intersection of � with the circumcircle of triangle BLM . Show that the lines KH ,
EM , and BC are concurrent.
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A

B C

H

K

M

L
E

Figure 3.6A. From the first European Girl’s Olympiad.

Upon first reading the problem, there are two observations we can make about it.

1. There are a lot of reflections.
2. The orthocenter does not do anything until the last sentence, when it magically appears

as the endpoint of one of the concurrent lines.

This is a pretty tell-tale sign. What does the orthocenter have to do with reflections and
the circumcircle? We need to tie in the orthocenter somehow, otherwise it is just floating in
the middle of nowhere. How do we do this?

These questions motivate us to reflect H over BC and AB to points HA and HC ,
corresponding to the reflections of K across these segments. This move incorporates both
the observations above. At this point we realize that MHA and HK concur on BC for
obvious reasons. So the problem is actually asking to show that HA, M , and E are collinear.
This is certainly progress.

A

B C

H

HA

HC

K

M

L
E′

Figure 3.6B. Adding in some reflections.
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At this point we can instead let E′ be the intersection of HAM with � and try to show
that BLE′M is concyclic. We are motivated to use phantom points to handle collinearity
(since “concyclic” is easier to show), and we choose E because HA and M are simpler—
they are just reflections of given points. (Of course, it is probably possible to rewrite the
proof without phantom points.) In any case, it suffices to prove �LE′M = �LBM .

However, we can compute �LBM easily. It is just

�LBK + �KBM = 2 (�ABK + �KBC) = 2�ABC.

So now we have reduced this to showing that �LE′M = 2�ABC.
Examining the scaled diagram closely suggests that L, HC , and E′ might be collinear.

Is this true? It would sure seem so. To see how useful our conjecture might be, we quickly
conjure

�HCE′HA = �HCBHA = 2�ABC.

Thus the desired conclusion is actually equivalent to showing these three points are collinear.
Now we certainly want to establish this.

How do we go about proving this? Angle chasing seems the most straightforward. It
would suffice to prove that �LHCB = �E′HCB; the latter is equal to �E′HAB, which by
symmetry happens to equal �BHK . So we need �LHCB = �BHK—which is clear by
symmetry.

Solution to Example 3.14. Let HA and HC be the reflections of H across BC and BA,
which lie on �. Let E′ be the second intersection of line HAM with �. By construction,
lines E′M and HK concur on BC. First, we claim that L, HC , and E′ are collinear. By
reflections,

�LHCB = −�KHB = �MHAB

and

�MHAB = �E′HAB = �E′HCB

as desired. Now,

�LE′M = �HCE′HA = �HCBHA = 2�ABC

and

�LBM = �LBK + �KBM = 2�ABK + 2�KBC = 2�ABC

so B, L, E′, M are concyclic. Hence E = E′ and we are done.

The second example is similar in spirit.

Example 3.15 (Shortlist 2000/G3). Let O be the circumcenter and H the orthocenter
of an acute triangle ABC. Show that there exist points D, E, and F on sides BC, CA, and
AB respectively such that

OD + DH = OE + EH = OF + FH

and the lines AD, BE, and CF are concurrent.
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The weird part of this problem is the sum condition. Why OD + DH = OE + EH =
OF + FH? The good news is that at least we can (try to) pick the points D, E, F . So we
focus on using this to get rid of the strange condition. Are there any choices of D, E, F

that readily satisfy the condition, and which induce concurrent cevians?
Having a ruler and compass is important here. After you make a guess for the points D,

E, F , you better make sure that the three lines look concurrent. It is helpful to have more
than one diagram for this.

One guess might be to use orthocenter reflections again. If we let HA, HB , HC denote the
reflections, then OD + DHA = OE + EHB = OF + FHC . Hence we can just pick let
D be the intersection of OHA and BC, and define E and F similarly. Then OD + DHA =
OE + EHB = OF + FHC = R, where R is the circumradius of �ABC.

A

B C

HA

HB

HC

D

E
F

H O

Figure 3.6C. Reflecting the orthocenter again for Example 3.15.

Now the moment of truth—are we lucky enough that the cevians concur? The computer-
generated Figure 3.6C probably gives it away, but draw a diagram or two and convince
yourself. This is how you check if you are going in the right direction on a contest.

Once convinced of that, we are in good shape. We just need to show that the cevians
concur. Naturally, we fall back to Ceva’s theorem for that. Unfortunately, we do not know
much in the way of lengths (other than the carefully contrived OD + DH = R). Nor do
we know much about the angles ∠BAD and ∠CAD. So how else can we compute BD

CD
?

This is all we need, since once BD
CD

is found, we simply find the other two ratios in the
same manner and multiply all three together. This product must be one, at which point we
win.

The main idea now is to use the law of sines. Let us focus on triangles BDHA and
CDHA. Because HA was the reflection of an orthocenter, we know a lot about its angles.
Specifically,

�HABD = �HABC = −�HBC = 90◦ − C
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and

�DHAB = �OHAB = 90◦ − �BAHA = 90◦ − �BAH = B

where�BHAO = 90◦ − �BAHA follows from Lemma 1.30. (Although I am mainly using
directed angles here from force of habit; ABC is acute so this could likely be avoided.)

This is good, because the law of sines now lets us compute useful ratios. Noting that our
angles were directed positively (that is, �HABD and �DHAB both are counterclockwise),
we can apply the law of sines to obtain

BD

DHA

= sin∠DHAB

sin∠HABD
= sin B

cos C
.

The similar equation for �CDHA is

CD

DHA

= sin C

cos B

and upon dividing we obtain

BD

CD
= sin B cos B

sin C cos C
.

Thus

CE

EA
= sin C cos C

sin A cos A

and

AF

FB
= sin A cos A

sin B cos B

and Ceva’s theorem completes the solution.
A second alternative approach for obtaining the ratio BD

CD
involves the law of sines on

triangle BOC. We present it below.

Solution to Example 3.15. Let HA, HB , HC denote the reflections of H over BC, CA,
AB, respectively. Let D denote the intersection of OHA and BC. Evidently OD + DH =
OD + DHA is the radius of (ABC). Hence if we select E and F analogously, we obtain
OD + DH = OE + EH = OF + FH .

We now show that AD, BE, CF are concurrent. Let R denote the circumradius of
ABC. By the law of sines on �OBD, we find that

BD

R
= sin∠BOD

sin∠BDO
= sin 2∠BAHA

sin∠BDO
= sin 2B

sin∠BDO
.

Similarly,

CD

R
= sin 2C

sin∠CDO

whence dividing gives

BD

CD
= sin 2B

sin 2C
.
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It follows that

BD

CD
· CE

EA
· BF

FA
= 1

and hence we are done by Ceva’s theorem.

What is the moral of the story here? First of all, good diagrams are really important for
making sure what you are trying to prove is true. Secondly, flipping the orthocenter over the
sides is a useful trick (though not the only one) for floating orthocenters that do not seem
connected to anything else in the diagram. Thirdly, you should think of Ceva’s theorem
whenever you are going after a symmetric concurrency (as in this problem), since this lets
you focus on just one third of the diagram and use symmetry on the other two-thirds. And
finally, when you need ratios but only have angles, you can often make the connection via
the law of sines.

3.7 Problems
Problem 3.16. Let ABC be a triangle with contact triangle DEF . Prove that AD, BE,
CF concur. The point of concurrency is the Gergonne point‡ of triangle ABC. Hint: 683

Lemma 3.17. In cyclic quadrilateral ABCD, points X and Y are the orthocenters of
�ABC and �BCD. Show that AXYD is a parallelogram. Hints: 410 238 592 Sol: p.246

Problem 3.18. Let AD, BE, CF be concurrent cevians in a triangle, meeting at P . Prove
that

PD

AD
+ PE

BE
+ PF

CF
= 1.

Hints: 339 16 46

Problem 3.19 (Shortlist 2006/G3). Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠ABC = ∠ACD = ∠ADE.

Diagonals BD and CE meet at P . Prove that ray AP bisects CD. Hints: 31 61 478 Sol: p.247

Problem 3.20 (BAMO 2013/3). Let H be the orthocenter of an acute triangle ABC.
Consider the circumcenters of triangles ABH , BCH , and CAH . Prove that they are the
vertices of a triangle that is congruent to ABC. Hints: 119 200 350

Problem 3.21 (USAMO 2003/4). Let ABC be a triangle. A circle passing through A

and B intersects segments AC and BC at D and E, respectively. Lines AB and DE

intersect at F , while lines BD and CF intersect at M . Prove that MF = MC if and only
if MB · MD = MC2. Hints: 662 480 446

Theorem 3.22 (Monge’s Theorem). Consider disjoint circles ω1, ω2, ω3 in the plane, no
two congruent. For each pair of circles, we construct the intersection of their common
external tangents. Prove that these three intersections are collinear. Hints: 102 48 Sol: p.247

‡ Take note: the Gergonne point is not the incenter!
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Figure 3.7A. Monge’s theorem. The three points are collinear.

Theorem 3.23 (Cevian Nest). Let AX, BY , CZ be concurrent cevians of ABC. Let XD,
YE, ZF be concurrent cevians in triangle XYZ. Prove that rays AD, BE, CF concur.
Hints: 284 613 591 225 Sol: p.248

A

B CX

Y

Z

D

E

F

Figure 3.7B. Cevian nest

Problem 3.24. Let ABC be an acute triangle and suppose X is a point on (ABC) with
AX ‖ BC and X �= A. Denote by G the centroid of triangle ABC, and by K the foot of
the altitude from A to BC. Prove that K , G, X are collinear. Hints: 671 248 244

Problem 3.25 (USAMO 1993/2). Let ABCD be a quadrilateral whose diagonals AC and
BD are perpendicular and intersect at E. Prove that the reflections of E across AB, BC,
CD, DA are concyclic. Hints: 272 491 265

Problem 3.26 (EGMO 2013/1). The side BC of the triangle ABC is extended beyond C

to D so that CD = BC. The side CA is extended beyond A to E so that AE = 2CA. Prove
that if AD = BE then the triangle ABC is right-angled. Hints: 475 74 307 207 290 Sol: p.248

Problem 3.27 (APMO 2004/2). Let O be the circumcenter and H the orthocenter of an
acute triangle ABC. Prove that the area of one of the triangles AOH , BOH , and COH is
equal to the sum of the areas of the other two. Hints: 599 152 598 545
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Problem 3.28 (Shortlist 2001/G1). Let A1 be the center of the square inscribed in acute
triangle ABC with two vertices of the square on side BC. Thus one of the two remaining
vertices of the square is on side AB and the other is on AC. Points B1 and C1 are defined
in a similar way for inscribed squares with two vertices on sides AC and AB, respectively.
Prove that lines AA1, BB1, CC1 are concurrent. Hints: 618 665 383

Problem 3.29 (USA TSTST 2011/4). Acute triangle ABC is inscribed in circle ω. Let H

and O denote its orthocenter and circumcenter, respectively. Let M and N be the midpoints
of sides AB and AC, respectively. Rays MH and NH meet ω at P and Q, respectively.
Lines MN and PQ meet at R. Prove that OA ⊥ RA. Hints: 459 570 148 Sol: p.249

Problem 3.30 (USAMO 2015/2). Quadrilateral APBQ is inscribed in circle ω with
∠P = ∠Q = 90◦ and AP = AQ < BP . Let X be a variable point on segment PQ. Line
AX meets ω again at S (other than A). Point T lies on arc AQB of ω such that XT is
perpendicular to AX. Let M denote the midpoint of chord ST . As X varies on segment
PQ, show that M moves along a circle. Hints: 533 501 116 639 418



C H A P T E R 4
Assorted Configurations

There is light at the end of the tunnel, but it is moving away at speed c.

There are two ways to think about the configurations in this chapter. One is as a list of
configurations to be memorized and recognized on contests. Another is as just a set of
problems that frequently appear as subproblems (or superproblems) of olympiad problems.
We prefer the second view, and have arranged this chapter accordingly.

4.1 Simson Lines Revisited
Let ABC be a triangle and P be any point, and denote by X, Y , Z the feet of the
perpendiculars from P onto lines BC, CA, and AB. From Lemma 1.48 the points X, Y , Z

are collinear if and only if P lies on (ABC). When P does lie on (ABC), this is called the
Simson line of P with respect to ABC. We can say much more about this.

Denote by H the orthocenter of triangle ABC and let line PX meet (ABC) again at a
point K , and let line AH intersect the Simson line at the point L. The completed figure is
shown in Figure 4.1A.

We make a few synthetic observations.

Proposition 4.1. Prove that the Simson line is parallel to AK in the notation of
Figure 4.1A. Hints: 390 151

Of course XK ‖ AL, and hence we discover LAKX is a parallelogram.

Problem 4.2. Let K ′ be the reflection of K across BC. Show that K ′ is the orthocenter of
�PBC. Hint: 521

We can now apply Lemma 3.17 to deduce that AHPK ′ is a parallelogram. Using this,
one can solve the next problem.

Problem 4.3. Show that LHXP is a parallelogram. Hint: 97

From the above we can immediately deduce Lemma 4.4.

Lemma 4.4 (Simson Line Bisection). Let ABC be a triangle with orthocenter H . If P

is a point on (ABC) then its Simson line bisects PH .

59
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A

B C

P

X

Y

Z

K

H

D

K ′

L

Figure 4.1A. Simson lines revisited.

Do not miss Simson lines when they appear. Contest problems that involve the Simson
line usually only drop two of the altitudes and thus clandestinely construct the Simson line.
Do not be fooled!

4.2 Incircles and Excircles
In Figure 4.2A we have drawn all three excenters of triangle ABC. Angle chasing gives an
easy observation.

A

B C

IA

IB

IC

I

Figure 4.2A. The excenters of a triangle.

Problem 4.5. Check ∠IAIB = 90◦ and ∠IAIC = 90◦.

As a corollary, A lies on IBIC . We also know (say, from Section 2.6) that the points
A, I , and IA are collinear. Actually AIA ⊥ IBIC . Our observations can be summarized as
follows.
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Lemma 4.6 (Duality of Orthocenters and Excenters). If IA, IB , IC are the excenters of
�ABC, then triangle ABC is the orthic triangle of �IAIBIC , and the orthocenter is I .

This duality is important to remember. The orthic triangle and excenters are “dual”
concepts—they correspond exactly to each other. Problem writers sometimes phrase a
problem stated more naturally in one framework with the other in an effort to make the
problem artificially harder. Watch for this when it happens.

Problem 4.7. How are Lemma 1.18, Lemma 3.11, and Lemma 4.6 related? Hint: 458

Let us now concentrate further on a smaller part of the diagram. In Figure 4.2B we
focus on just the A-excircle, tangent to BC at point X. We have drawn a line parallel to BC

tangent again to the incircle at a point E. Suppose it intersects AB and AC at B ′ and C ′.
Evidently �AB ′C ′ and �ABC are homothetic. But the incircle of �ABC is the A-excircle
of �AB ′C ′.

A

B C

I

IA

D X

E
B′ C ′

Figure 4.2B. The homothety between the incircle and A-excircle.

Problem 4.8. Prove that A, E, and X are collinear and that DE is a diameter of the incircle.
Hint: 508

We also know that BD = CX, so we can actually phrase this statement without referring
to the excircle.

Lemma 4.9 (The Diameter of the Incircle). Let ABC be a triangle whose incircle is
tangent to BC at D. If DE is a diameter of the incircle and ray AE meets BC at X, then
BD = CX and X is the tangency point of the A-excircle to BC.

Incircles and excircles often have dual properties. For example, check that the following
is true as well.
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Lemma 4.10 (Diameter of the Excircle). In the notation of Lemma 4.9, suppose XY is
a diameter of the A-excircle. Show that D lies on AY .

Problem for this Section

Problem 4.11. If M is the midpoint of BC, prove that AE ‖ IM .

4.3 Midpoints of Altitudes
The results from the previous configuration extend to our next one. In Figure 4.3A we have
removed the points B ′ and C ′ from Figure 4.2B and added an altitude AK with midpoint
M . By Lemma 4.9 and Lemma 4.10, we already know that A, E, and X are collinear, as
are A, D, and Y .

A

B C

I

IA

D X

Y

E

K

M

Figure 4.3A. Midpoints of altitudes.

Problem 4.12. Prove that points X, I , M are collinear. Hints: 138 175

Problem 4.13. Show that D, IA, M are collinear. Hint: 336
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We can restate these results as the following lemma.

Lemma 4.14 (Midpoint of Altitudes). Let ABC be a triangle with incenter I and A-
excenter IA, and let D and X be the associated tangency points on BC. Then lines DIA

and XI concur at the midpoint of the altitude from A.

4.4 Even More Incircle and Incenter Configurations
Let DEF be the contact triangle of a triangle ABC, and consider the point X on EF such
that XD ⊥ BC. The situation is shown in Figure 4.4A. The claim is that ray AX bisects
BC.

A

B C

I

D

E

F

M

X
B′ C ′

Figure 4.4A. The median intersects a side of the contact triangle.

Suppose we were trying to prove this. The key insight is that point M is kind of a
distraction. We can eliminate it, along with BC, by taking the line through X parallel to
BC and considering a homothety. Let the line meet AB and AC again at B ′ and C ′. Now
it suffices to prove that X is the midpoint of B ′C ′.

Problem 4.15. Show that I must lie on (AB ′C ′). Hint: 64

Problem 4.16. Prove that XB ′ = XC ′. Hint: 470

Once we have these results, our next configuration is immediate.

Lemma 4.17 (An Incircle Concurrency). Let ABC be a triangle with incenter I and
contact triangle DEF . If M is the midpoint of BC, then EF , AM and ray DI concur.

4.5 Isogonal and Isotomic Conjugates
This particular configuration is fairly straightforward.

Lemma 4.18 (Isogonal Conjugates). Let ABC be a triangle and P any point not
collinear with any of the sides. There exists a unique point P ∗ satisfying the relations

�BAP = �P ∗AC, �CBP = �P ∗BA, �ACP = �P ∗CB.



64 4. Assorted Configurations

A

B C

PP ∗

Figure 4.5A. P and P ∗ are isogonal conjugates.

The point P ∗ is called the isogonal conjugate of the point P . We also say line AP ∗

is isogonal to (or “is the isogonal of”) line AP with respect to triangle ABC; however we
often omit the phrase “with respect to triangle ABC” if the context is clear. In other words,
two lines through A are isogonal if they are reflections over the angle bisector of ∠A.

A better way to phrase the lemma is the “buy two get one free” perspective, as in the
exercise below.

Problem 4.19. Show that if two of the angle relations in Lemma 4.18 hold, then so does
the third. Hint: 9

The isotomic conjugate is defined similarly. For a point P and triangle ABC, let X, Y ,
Z be the feet of the cevians through P . Let X′ be the reflection of X about the midpoint of
BC and define Y ′ and Z′ similarly. Then the cevians AX′, BY ′, and CZ′ concur at a point
P t , the isotomic conjugate of P .

Problem 4.20. Prove that the cevians AX′, BY ′, and CZ′ concur as described above.

Problems for this Section

Problem 4.21. Check that if Q is the isogonal conjugate of P , then P is the isogonal
conjugate of Q.

Theorem 4.22 (Isogonal Ratios). Let D and E be points on BC so that AD and AE are
isogonal. Then

BD

DC
· BE

EC
=

(
AB

AC

)2

.

Hint: 184

Problem 4.23. What is the isogonal conjugate of a triangle’s circumcenter?

4.6 Symmedians
The isogonal of a median in a triangle is called a symmedian. The concurrency point of the
three symmedians is the isogonal conjugate of the centroid, called the symmedian point.

Symmedians have tons of nice properties. We first show how they arise naturally.
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Lemma 4.24 (Constructing the Symmedian). Let X be the intersection of the tangents
to (ABC) at B and C. Then line AX is a symmedian.

The proof is a direct computation with the law of sines. Let M be the intersection of
the isogonal of AX on BC; we wish to prove that M is the midpoint of BC.

Problem 4.25. Show that

BM

MC
= sin∠B sin∠BAX

sin∠C sin∠CAX
= 1.

Now let us describe several additional properties of symmedians.

Lemma 4.26 (Properties of the Symmedian). Let ABC be a triangle, and let the
tangents to its circumcircle at B and C meet at point X. Let AX meet (ABC) again at K

and BC at D. Then AD is the A-symmedian and

(a) KA is a K-symmedian of �KBC.
(b) �ABK and �AMC are directly similar.
(c) We have

BD

DC
=

(
AB

AC

)2

.

(d) We have

AB

BK
= AC

CK
.

(e) (BCX) passes through the midpoint of AK .
(f) BC is the B-symmedian of �BAK , and the C-symmedian of �CAK .
(g) BC is the interior angle bisector of ∠AMK , and MX is the exterior angle bisector.

A

B CM

X

K

D

Figure 4.6A. The A-symmedian of a triangle

Here property (a) is obvious from the tangent construction, while (c) is a special case of
Theorem 4.22. Properties (b) and (e) follow from straightforward angle chasing. The rest



66 4. Assorted Configurations

of the properties are described in the exercises. Extracting some of these properties yields
the following.

Lemma 4.27 (Symmedians in Cyclic Quadrilaterals). Let ABCD be a cyclic quadri-
lateral. The following are equivalent.

(a) AB · CD = BC · DA.
(b) AC is an A-symmedian of �DAB.
(c) AC is a C-symmedian of �BCD.
(d) BD is a B-symmedian of �ABC.
(e) BD is a D-symmedian of �CDA.

In Chapter 9, we learn that such a quadrilateral is called a harmonic quadrilateral,
and possesses even more interesting properties.

Problems for this Section

Problem 4.28. Verify (d) of Lemma 4.26. Hint: 194

Problem 4.29. Show that (f) of Lemma 4.26 follows (with some effort) from (d). Hints: 190

628 584

Problem 4.30. Prove (g) of Lemma 4.26. Hints: 65 474

4.7 Circles Inscribed in Segments

O

T

P

M

K
A B

Figure 4.7A. A circle is inscribed in a segment.

Our next configuration involves a tangent circle. Let � be a circle with center O and
a chord AB, and consider a circle ω tangent internally to � at T and to AB at K . Let
M denote the midpoint of the arc ÂB not containing T . For no good reason, the region
bounded by AB and the other arc ÂB containing T is called a segment, hence the title of
this section.

As the centers of ω and � are collinear with T (by tangency), it follows there is a
homothety at T mapping ω to �.
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Problem 4.31. Show that this homothety takes K to M , and in particular that T , K , and
M are collinear.

Problem 4.32. Show that �T MB ∼ �BMK .

The last implication gives that MK · MT = MB2. So, we deduce the following.

Lemma 4.33 (Circles Inscribed in Segments). Let AB be a chord of a circle �. Let ω

be a circle tangent to chord AB at K and internally tangent to ω at T . Then ray T K passes
through the midpoint M of the arc ÂB not containing T .

Moreover, MA2 = MB2 is the power of M with respect to ω.

This configuration is even more straightforward with inversion, discussed in Chapter 8.
A reader comfortable with inversion is encouraged to reconstruct the proof using a suitable
inversion at M .

The above configuration extends naturally to the next one, shown in Figure 4.7B. Let
C be another point on arc ÂB containing T , and let D be a point on AB such that CD is
tangent to ω at L.

The circle ω is called a curvilinear incircle of ABC. (As D varies along AB, we
obtain many curvilinear incircles, hence we refer to “a” curvilinear incircle. The next
section discusses the special case A = D.) We claim that if I is the intersection of CM and
KL, then I is the incenter of �ABC.

T

M

K
A B

C

I

L

D

Figure 4.7B. More unusual tangent circles.

Problem 4.34. Prove that the points C, L, I , T are concyclic. Hints: 69 273 140

Problem 4.35. Show that �MKI ∼ �MIT , and that the triangles are oppositely oriented.
Hints: 472 236

Finally, how do we derive that I is the incenter? The similarity above gives that
MI 2 = MK · MT , but yet

MK · MT = MA2 = MB2
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by Lemma 4.33. Hence MI = MA = MB, and Lemma 1.18 establishes the configuration
below.

Lemma 4.36 (Curvilinear Incircle Chords). Let ABC be a triangle and D be a point
on AB. Suppose a circle ω is tangent to CD at L, AB at K , and also to (ABC). Then the
incenter of ABC lies on line LK .

4.8 Mixtilinear Incircles
The A-mixtilinear incircle of a triangle ABC is the circle internally tangent to (ABC), as
well as to sides AB and AC.

A

B C

T

K

LI

A

B C

S

T

K

LI

MC

MB

Figure 4.8A. An A-mixtilinear incircle.

Throughout this section, we let ωA refer to this A-mixtilinear circle. Let T denote the
tangency point of the ωA with (ABC), and K and L the tangency points on AB and AC.
Taking D = A in Lemma 4.36, we know that the incenter I of �ABC lies on KL.

Problem 4.37. Using the fact that I lies on KL, check that I is in fact the midpoint of KL.

In Chapter 9 we give a nice alternative proof that I is the midpoint of KL using Pascal’s
theorem.

Let us see if we can learn anything interesting about the point T now. Let MC and MB

be the midpoints of arcs ÂB and ÂC. We of course already know (from Lemma 4.33) that
T is the intersection of lines KMC and LMB . Now, extend line T I to meet the circumcircle
of �ABC again at point S. The completed figure is show in Figure 4.8A.

Problem 4.38. Prove that ∠AT K = ∠LT I . Hint: 469

Problem 4.39. Prove that S is the midpoint of the arc B̂C containing A. Hint: 342
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Hence, we deduce that line T I passes through the midpoint of arc B̂C not containing
T . A second way to prove this is through angle chasing: one can show∗ that quadrilaterals
BKIT and CLIT are cyclic since

�IKT = �LKT = �MBMCT = �MBBT = �IBT .

In any case this gives us �MCT S = �KT I = �KBI = �ABI for free, allowing us to
establish the same conclusion as before.

In Chapter 8, we also prove (as part of Problem 8.31) that if E is the contact point of the
A-excircle with BC, then AT and AE are isogonal. Moreover, as Problem 4.49 we ask the
reader to prove that the isogonal of T A with respect to �T BC passes through the contact
point of the incircle at BC. These additional results are exhibited in Figure 4.8B.

A

B CD

T

E

Figure 4.8B. Segments AT and AE are isogonal in �ABC, while segments T D and T A are
isogonal in �T BC.

Combining the results in Figure 4.8A and Figure 4.8B into one big lemma:

Lemma 4.40 (Mixtilinear Incircles). Let ABC be a triangle and let its A-mixtilinear
circle be tangent to AB, AC, and (ABC) at K , L, and T , respectively. Denote by D and
E the contact points of the incircle and A-excircle on BC, respectively.

(a) The midpoint I of KL is the incenter of �ABC.
(b) Lines T K and T L pass through the midpoints of arcs ÂB and ÂC not containing T .
(c) Line T I passes through the midpoint of arc B̂C containing A.
(d) The angles ∠BAT and ∠CAE are equal.
(e) The angles ∠BT A and ∠CT D are equal.
(f) Quadrilaterals BKIT and CLIT are concyclic.

For even more, see Lemma 7.42.

∗ Actually, we already proved this during our proof of Lemma 4.36.
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4.9 Problems
These are not in any order—I cannot spoil the fun here!

Problem 4.41 (Hong Kong 1998). Let PQRS be a cyclic quadrilateral with ∠PSR = 90◦

and let H and K be the feet of the altitudes from Q to lines PR and PS. Prove that HK

bisects QS. Hints: 267 420

Problem 4.42 (USAMO 1988/4). Suppose �ABC is a triangle with incenter I . Show
that the circumcenters of �IAB, �IBC, and �ICA lie on a circle whose center is the
circumcenter of �ABC. Hint: 249 Sol: p.249

Problem 4.43 (USAMO 1995/3). Given a nonisosceles, nonright triangle ABC, let O

denote its circumcenter, and let A1, B1, and C1 be the midpoints of sides BC, CA, and AB,
respectively. Point A2 is located on the ray OA1 so that �OAA1 is similar to �OA2A.
Points B2 and C2 on rays OB1 and OC1, respectively, are defined similarly. Prove that lines
AA2, BB2, and CC2 are concurrent. Hints: 691 550 128

Problem 4.44 (USA TST 2014). Let ABC be an acute triangle and let X be a variable
interior point on the minor arc B̂C. Let P and Q be the feet of the perpendiculars from X to
lines CA and CB, respectively. Let R be the intersection of line PQ and the perpendicular
from B to AC. Let 	 be the line through P parallel to XR. Prove that as X varies along
minor arc B̂C, the line 	 always passes through a fixed point. Hints: 45 424 Sol: p.249

Problem 4.45 (USA TST 2011/1). In an acute scalene triangle ABC, points D, E, F lie on
sides BC, CA, AB, respectively, such that AD ⊥ BC, BE ⊥ CA, CF ⊥ AB. Altitudes
AD,BE,CF meet at orthocenter H . Points P and Q lie on segment EF such that
AP ⊥ EF and HQ ⊥ EF . Lines DP and QH intersect at point R. Compute HQ/HR.
Hints: 124 317 26 Sol: p.250

Problem 4.46 (ELMO Shortlist 2012). Circles � and ω are internally tangent at point C.
Chord AB of � is tangent to ω at E, where E is the midpoint of AB. Another circle, ω1

is tangent to �, ω, and AB at D, Z, and F respectively. Rays CD and AB meet at P . If
M �= C is the midpoint of major arc AB, show that

tan∠ZEP = PE

CM
.

Hints: 370 40 672 211

Problem 4.47 (USAMO 2011/5). Let P be a point inside convex quadrilateral ABCD.
Points Q1 and Q2 are located within ABCD such that

∠Q1BC = ∠ABP, ∠Q1CB = ∠DCP,

∠Q2AD = ∠BAP, ∠Q2DA = ∠CDP.

Prove that Q1Q2 ‖ AB if and only if Q1Q2 ‖ CD. Hints: 4 528

Problem 4.48 (Japanese Olympiad 2009). Triangle ABC is inscribed in circle �. A circle
with center O is drawn, tangent to side BC at a point P , and internally tangent to the arc BC
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of � not containing A at a point Q. Show that if ∠BAO = ∠CAO then ∠PAO = ∠QAO.
Hints: 220 676 19

Problem 4.49. Let ABC be a triangle and let its incircle touch BC at D. Let T be the
tangency point of the A-mixtilinear incircle with (ABC). Prove that ∠BT A = ∠CT D.
Hints: 646 529 192 425

Problem 4.50 (Vietnam TST 2003/2). Let ABC be a scalene triangle with circumcenter
O and incenter I . Let H , K , L be the feet of the altitudes of triangle ABC from the vertices
A, B, C, respectively. Denote by A0, B0, C0 the midpoints of these altitudes AH , BK , CL,
respectively. The incircle of triangle ABC touches the sides BC, CA, AB at the points D,
E, F , respectively. Prove that the four lines A0D, B0E, C0F , and OI are concurrent. Hints:

442 11 514 Sol: p.250

Problem 4.51 (Sharygin 2013). The incircle of �ABC touches BC, CA, AB at points
A′, B ′ and C ′ respectively. The perpendicular from the incenter I to the C-median meets
the line A′B ′ in point K . Prove that CK ‖ AB. Hints: 274 551 258

Problem 4.52 (APMO 2012/4). Let ABC be an acute triangle. Denote by D the foot of
the perpendicular line drawn from the point A to the side BC, by M the midpoint of BC,
and by H the orthocenter of ABC. Let E be the point of intersection of the circumcircle �

of the triangle ABC and the ray MH , and F be the point of intersection (other than E) of
the line ED and the circle �. Prove that BF

CF
= AB

AC
must hold. Hints: 593 454 28 228 Sol: p.251

Problem 4.53 (Shortlist 2002/G7). The incircle � of the acute triangle ABC is tangent
to BC at a point K . Let AD be an altitude of triangle ABC, and let M be the midpoint of
the segment AD. If N is the common point of the circle � and the line KM (distinct from
K), then prove that the incircle � and the circumcircle of triangle BCN are tangent to each
other at the point N Hints: 205 634 450 177 276

For a real challenge, check out Problem 11.19.
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C H A P T E R 5
Computational Geometry

Since you are now studying geometry and trigonometry, I will give you a problem.
A ship sails the ocean. It left Boston with a cargo of wool. It grosses 200 tons. It is
bound for Le Havre. The mainmast is broken, the cabin boy is on deck, there are 12
passengers aboard, the wind is blowing east-north-east, the clock points to a quarter
past three in the afternoon. It is the month of May. How old is the captain?

Gustave Flaubert

Suppose you are given a triangle with side lengths 13, 14, 15. Can you compute its
circumradius? How about its inradius?

Up until now we have used tools from classical Euclidean geometry to develop elegant
results. The following three chapters focus much more on computation: using messier
methods to achieve results directly.

This chapter lays the foundation for future chapters by presenting fundamental rela-
tions between the quantities of a triangle. We also introduce Cartesian coordinates and
trigonometric computation, which are capable of solving problems in their own right.

5.1 Cartesian Coordinates
The xy-plane provides a framework in which we can intersect lines, drop perpendiculars,
and so on.

Unfortunately, as Cartesian coordinates are well-known to most competitors, olympiads
tend to avoid problems that can be easily solved by coordinates. Because of this, we will
not go into a deep exploration of their use. However, we mention one or two tricks that are
less frequently seen, in the hopes that they may be helpful in a solution using Cartesian
coordinates.

First is the so-called shoelace formula. It involves a determinant; if you are unfamiliar
with determinants, consult Appendix A.1.

75
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Theorem 5.1 (Shoelace Formula). Consider three points A = (x1, y1), B = (x2, y2), and
C = (x3, y3). The signed area of triangle ABC is given by the determinant∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
In the shoelace formula, we have used the convention of a signed areas. That means

the area of a triangle ABC is considered positive if A, B, C appear in counterclockwise
order, and negative otherwise.

A

B

C

X

Y
Z

Figure 5.1A. On the left, ABC has positive signed area because its vertices are labelled counter-
clockwise. On the right, XYZ has negative signed area since its vertices are labelled clockwise.

The most useful special case of the shoelace formula is the following: three points
are collinear if and only if the area of the “triangle” they determine is zero. Hence the
shoelace formula can be used to establish collinearity. Because we are using determinants,
the formula is now symmetric. The more well-known routine to establish collinearity is to
verify that

y3 − y1

x3 − x1
= y2 − y1

x2 − x1
,

which unnecessarily loses symmetry.
A second occasionally useful trick, which we state without proof:

Proposition 5.2 (Point-Line Distance Formula). Let 	 be the line determined by the
equation Ax + By + C = 0. The distance from a point P = (x1, y1) to 	 is

|Ax1 + By1 + C|√
A2 + B2

.

This allows us to compute distances from points to lines without explicitly finding the
coordinates of the perpendicular foot.

Cartesian coordinates have some shortcomings, since they rely heavily on a central
right angle, and there is no natural symmetric way to select the coordinates of an arbitrary
triangle. Problems that can be solved by Cartesian coordinates can often also be solved
more easily by complex numbers or barycentric coordinates (discussed in the next two
chapters).

Put in a more positive way, problems for which coordinates are effective tend to have
some defining characteristics. For example,

� The problem features a prominent right angle which can be situated at the origin, or
� The problem involves intersections or perpendiculars.
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5.2 Areas
Let us now answer the question posed at the very beginning of this chapter. It turns out that
one can link many important quantities of a triangle through its area.

Theorem 5.3 (Area Formulas). The area of a triangle ABC is equal to each of the
following.

[ABC] = 1

2
ab sin C = 1

2
bc sin A = 1

2
ca sin B

= a2 sin B sin C

2 sin A

= abc

4R

= sr

=
√

s(s − a)(s − b)(s − c).

Here s = 1
2 (a + b + c) is the semiperimeter of the triangle, and R and r are the circum-

radius and inradius of �ABC, respectively. The formula
√

s(s − a)(s − b)(s − c) is often
called Heron’s formula. It has the nice property that given a, b, c, one can use it to extract
r and R.

Proof. First, we establish the formula [ABC] = 1
2ab sin C (the other formulas follow

analogously). Seeing the sine, we decide to drop altitudes. Let X be the foot of the altitude
from A onto BC as in Figure 5.2A, so that [ABC] = 1

2AX · BC = 1
2a · AX. Now observe

that AX = AC sin C = b sin C (regardless of whether ∠C is acute) and hence we obtain
[ABC] = 1

2ab sin C.

A

B CX

Figure 5.2A. We obtain [ABC] = 1
2 AX · BC = 1

2 ab sin C. This is configuration independent.

The next two lines follow from applying the extended law of sines to eliminate b or
sin C, respectively. Explicitly,

1

2
ab sin C = 1

2
a

(
a sin B

sin A

)
sin C = a2 sin B sin C

2 sin A

and

1

2
ab sin C = 1

2
ab

( c

2R

)
= abc

4R
.

The proof that [ABC] = sr is a cute exercise, which we leave to the reader as Problem 5.5.
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Now for the least obvious step, the proof of Heron’s formula. We present a proof using
the following trigonometric fact.

If x, y, z satisfy x + y + z = 180◦ and 0◦ < x, y, z < 90◦, then tan x + tan y +
tan z = tan x tan y tan z.

We prove this in greater generality as Proposition 6.39. Construct the contact triangle∗

DEF of ABC, as in Figure 5.2B.

A

B CD

E

F
I

s− a

s− b

s− b s− c

s− c

s− a

Figure 5.2B. Using the contact triangle to obtain Heron’s formula.

Applying Lemma 2.15 we may deduce

tan

(
90◦ − 1

2
A

)
= tan (∠AIE) = s − a

r
.

Similarly,

tan

(
90◦ − 1

2
B

)
= s − b

r

tan

(
90◦ − 1

2
C

)
= s − c

r
.

The aforementioned trigonometric identity applies (since 270◦ − 1
2 (A + B + C) = 180◦)

and yields

s − a

r
· s − b

r
· s − c

r
= s − a

r
+ s − b

r
+ s − c

r

= 3s − (a + b + c)

r

= s

r
.

This gives (sr)2 = s(s − a)(s − b)(s − c) as desired.

We can now answer the question posed at the beginning of the chapter.
∗ Recall that the contact triangle of ABC was defined in Chapter 2 as the triangle whose vertices are the contact

points of the incircle with the sides of ABC.



5.3. Trigonometry 79

Example 5.4. Find the circumradius and inradius of a triangle ABC with side lengths
AB = 13, BC = 14, CA = 15.

Solution. First, we use Heron’s formula to compute the area. Letting a = 14, b = 15,
c = 13, we have s = 1

2 (a + b + c) = 21 and Heron’s formula yields√
s(s − a)(s − b)(s − c) =

√
21 · 7 · 6 · 8 = 84.

Hence

[ABC] = abc

4R
⇒ R = abc

4[ABC]
= 13 · 14 · 15

4 · 84
= 65

8
.

Furthermore,

r = [ABC]

s
= 84

21
= 4.

Of course, one would never see this type of computation on an olympiad, but this is just to
illustrate a point. When doing computation, it is useful to be able to relate the quantities of
a triangle to each other quickly. Areas provide a means to do this.

Problems for this Section

Problem 5.5. Show that [ABC] = sr . Hint: 462

Problem 5.6. In �ABC we have AB = 13, BC = 14, CA = 15. Find the length of the
altitude from A onto BC.

5.3 Trigonometry
We have already met the extended law of sines (Theorem 3.1), which states that

a

sin A
= b

sin B
= c

sin C
= 2R.

This is the first main trigonometric relation in a triangle. The second is the law of cosines,
which we state below.

Theorem 5.7 (Law of Cosines). Given a triangle ABC, we have

a2 = b2 + c2 − 2bc cos A.

Equivalently,

cos A = b2 + c2 − a2

2bc
.

Together the law of sines and the law of cosines form the backbone of trigonometric
force. As we are about to see, these two in combination can single-handedly eradicate entire
problems.

The way to do this is by thinking about degrees of freedom. Essentially, a statement
in olympiad geometry has some number of parameters that can be selected, after which
the rest of the diagram is uniquely determined, up to translation and rotation. For example,
a triangle is determined by three parameters—for example, three sides, two sides and an
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included angle, or a side and two angles. Hence, we say that a generic triangle has three
degrees of freedom.

For a subtler example, look at Problem 1.43 again.

Points A,B,C,D,E lie on a circle ω and point P lies outside the circle. The given
points are such that (i) lines PB and PD are tangent to ω, (ii) P,A,C are collinear,
and (iii) DE ‖ AC. Prove that BE bisects AC.

How many degrees of freedom does this problem have? Suppose we drop the center
O of the circle in the plane somewhere. We have one degree of freedom in picking its
radius, and another degree of freedom in picking the distance OP . (Selecting the point
P only gives one degree of freedom because we can rotate P about O arbitrarily without
changing the figure.) At this point we can construct the tangents PB and PD. We get one
more degree of freedom in picking the point A on the circle, but then both C and E are
determined. So in total, this problem has three degrees of freedom.

Why do we care? The point of trigonometry is to start with however many degrees of
freedom are given, assign variables for each, and then blatantly pin down the remaining
lengths and angles in terms of these variables. This is exactly what the law of cosines and
the law of sines do.

Unfortunately, we also often obtain lots of ugly products of trigonometric expressions.
This is where trigonometric identities come into play. Of course a reader is likely already
familiar with the identities

1 = sin2 θ + cos2 θ

sin (−θ ) = − sin θ

cos (−θ ) = cos θ

sin (α + β) = sin α cos β + sin β cos α

cos (α + β) = cos α cos β − sin α sin β.

The trickier identities are the so-called product-to-sum identities, which are indispens-
able for trigonometric calculation.

Proposition 5.8 (Product-Sum Identities). For arbitrary α and β we have

2 cos α cos β = cos (α − β) + cos (α + β)

2 sin α sin β = cos (α − β) − cos (α + β)

2 sin α cos β = sin (α − β) + sin (α + β) .

It is not necessary to memorize these because they are easy to rederive: just remember that
the expansion of

cos (x − y) ± cos (x + y)

has some cancellations. Changing the cosines to sines gives the other identities.
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The product-sum identities let us repeatedly decompose messes obtained from a trigono-
metric siege into single sums. An example is the proof of Ptolemy’s theorem, which follows
this section.

5.4 Ptolemy’s Theorem
There are some other non-trigonometric ways to relate side lengths when we have more
than just a triangle. One often useful with cyclic quadrilaterals is Ptolemy’s theorem†.

Theorem 5.9 (Ptolemy’s Theorem). Let ABCD be a cyclic quadrilateral. Then

AB · CD + BC · DA = AC · BD.

We are about to give a proof using trigonometry, but a more elegant proof appears in
Chapter 8.

Before beginning our trigonometric attack, we should think about what to set as our
variables. One might be tempted to set the lengths as variables, but this does little good.
A second idea is to look at angles. Angles are nice because of the extended law of sines,
which we can tie in to the circumradius. In fact, if we set R = 1

2 as the radius of (ABCD)
(meaning we assume without loss of generality that we have diameter 1), we immediately
get

AB = sin∠AXB

for any point X on the circumcircle. So it makes sense to use angles as variables.

A

B C

D

α1

α2

α3

α4

Figure 5.4A. A proof of Ptolemy’s theorem.

A reasonable choice of our parameters is ∠ADB, ∠BAC, ∠CBD, ∠DCA. Most
importantly, these four angles uniquely determine the diagram. This is really important,
since otherwise we have no way of knowing if we have handled all the conditions. Note
that there is actually a relation between these four angles; namely that they sum to 180◦. We

† Ptolemy’s theorem is actually an inequality: if A, B, C, D are four arbitrary points then AB · CD + BC ·
DA ≥ AC · BD, and equality holds if A, B, C, D lie on a circle or line in that order.
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can use four variables anyways to preserve symmetry, but we need to keep this condition
in mind as we proceed. Fortunately this particular condition is not so bad. If worst comes
to worst, we can dump α4 by replacing it with 180◦ − (α1 + α2 + α3).

These are important remarks to make in general. Whenever you begin a calculation you
need to think about degrees of freedom, and pick your variables to encompass all of them.

The other good part of this choice, of course, is that we get all the lengths we want from
these angles immediately.

Proof. Let us denote α1, α2, α3, and α4 as the angles ∠ADB, ∠BAC, ∠CBD and
∠DCA, and for convenience let us assume that the circumcircle of ABCD has unit
diameter. Then by the extended law of sines, we obtain

AB = sin α1, BC = sin α2, CD = sin α3, DA = sin α4.

Furthermore,

AC = sin∠ABC = sin (α3 + α4)

and

BD = sin∠DAB = sin (α2 + α3) .

Note that we could have just as easily chosen BD = sin∠BCD = sin (α1 + α4). The
quantities are equal, so the choice is irrelevant.

Now we just want to show that

sin α1 sin α3 + sin α2 sin α4 = sin (α3 + α4) sin (α2 + α3)

for α1 + α2 + α3 + α4 = 180◦.
All the geometry is gone, so we appeal to Proposition 5.8 in order to deal with the

products. We have that

sin α1 sin α3 = 1

2
(cos (α1 − α3) − cos (α1 + α3))

sin α2 sin α4 = 1

2
(cos (α2 − α4) − cos (α2 + α4))

sin (α2 + α3) sin (α3 + α4) = 1

2
(cos (α2 − α4) − cos (α2 + 2α3 + α4)) .

We appear to be in pretty good shape here, because using our condition we find the
cancellation

cos (α1 + α3) + cos (α2 + α4) = 0

on the left-hand side. We use the sum condition again to clean up the weird α2 + 2α3 + α4;
we have

cos (α2 + 2α3 + α4) = cos (180◦ − α1 + α3) = − cos (α1 − α3) .

and now everything is clear.

It is important to notice the power of trigonometry here. Once all the geometry was
gone, we knew we had something that had to be true; hence the problem reduced to making
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ends (expressions?) meet. Notice how the product-sum identities were used to deal with
these resulting expressions.

It is deeply reassuring to know with full confidence that eventually the trigonometry
will work out. The only downside is that sometimes the computations are too unwieldy to
do by hand.

Actually, we can even refine Ptolemy’s theorem as follows.

Theorem 5.10 (Strong Form of Ptolemy’s Theorem). In a cyclic quadrilateral ABCD

with AB = a, BC = b, CD = c, DA = d we have

AC2 = (ac + bd)(ad + bc)

ab + cd
and BD2 = (ac + bd)(ab + cd)

ad + bc
.

It is not hard to see that Ptolemy’s theorem follows immediately from Theorem 5.10.
Let us briefly sketch two proofs. The first is to simply set

AC2 = a2 + b2 − 2ab cos∠ABC = c2 + d2 − 2cd cos∠ADC

and then note that ∠ADC + ∠ABC = 180◦. With enough calculation this gives the result.
A second proof involves using the original Ptolemy’s theorem on three cyclic quadrilat-

erals, where

(i) The first quadrilateral is ABCD, so its sides measure a, b, c, d in that order.
(ii) The second has sides measuring a, b, d, c in that order.

(iii) The third has sides measuring a, c, b, d in that order.

These all have the same circumradius, and one finds that there are only three distinct
diagonal lengths. Applying the usual Ptolemy’s theorem and doing some algebra then
yields the conclusion. The details are left as an exercise.

A consequence of Ptolemy’s theorem is the so-called Stewart’s theorem, which we
present here as a bit of trivia.

Theorem 5.11 (Stewart’s Theorem). Let ABC be a triangle. Let D be a point on BC

and let m = DB, n = DC, d = AD. Then

a(d2 + mn) = b2m + c2n.

Often this is written in the form

man + dad = bmb + cnc

as a mnemonic—“a man and his dad put a bomb in the sink”.

Proof. Let ray AD meet (ABC) again at P . By similar triangles we obtain

BP

m
= b

d
and

CP

n
= c

d
.

Furthermore, by power of a point we know that

DP = mn

d
.
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A

B C

P

D

c bd

m n

Figure 5.4B. Statement and proof of Stewart’s theorem.

Now apply Ptolemy’s theorem to obtain

BC · AP = AC · BP + AB · CP

whence

a ·
(
d + mn

d

)
= b · bm

d
+ c · cn

d

which yields Stewart’s theorem.

Stewart’s theorem can also be proved by using the law of cosines. One can check that

m2 + d2 − c2

2md
= cos∠ADB = − cos∠ADC = −n2 + d2 − b2

2nd

and rearranging gives m(n2 + d2 − b2) + n(m2 + d2 − c2) = 0, or a(mn + d2) = b2m +
c2n.

Unlike Ptolemy’s theorem, Stewart’s theorem seldom sees use on olympiads. However,
it features prominently on short-answer contests by providing a means to compute the
length of a cevian.

Problem for this Section

Problem 5.12. Complete the synthetic proof above of Theorem 5.10, the stronger version
of Ptolemy’s theorem. Hint: 67

5.5 Example Problems
First we provide an example that illustrates the combination of Cartesian coordinates with
length calculations. This problem was selected from the Harvard-MIT Math Tournament’s
Team Round in 2014.
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Example 5.13 (Harvard-MIT Math Tournament 2014). Let ABC be an acute triangle
with circumcenter O such that AB = 4, AC = 5, BC = 6. Let D be the foot of the altitude
from A to BC and E be the intersection of lines AO and BC. Suppose that X is on BC

between D and E such that there is a point Y on AD satisfying XY ‖ AO and YO ⊥ AX.
Determine the length of BX.

A

B CXD E

Y
O

Figure 5.5A. Tossing on the coordinate plane with origin D.

This is a nice and difficult problem that could appear readily on the olympiad. Before we
utterly spoil it, here is a quick sketch of the synthetic solution. Let ray AX meet (ABC)
at P . First, show that the tangent to the circumcircle at A is concurrent with lines OY

and BC. (This can be done with angle chasing.) Now use this to show that the tangent at
P also passes through the concurrency point. This implies by Lemma 4.26 that AX is a
symmedian; hence we obtain that

BX

CX
=

(
AB

AC

)2

at which point we can easily compute BX.
Now let us exploit the fact that this problem is phrased computationally to provide

a brute-force solution. Let us look at what conditions we have to decide how we might
proceed.

� The point D is the foot of an altitude onto BC.
� The point E is the intersection of a line through the circumcenter O and the side BC.
� The points X and Y have a parallel condition and a perpendicularity condition.

Seeing right angles inspires us to use Cartesian coordinates. If so, where should we
place the origin? The point D looks like a good candidate, as this lets us handle nicely the
altitude, and makes the points A, B, C related to side lengths. In addition, the condition
XY ‖ AO is nicely encoded. (Actually one might notice that the point E does little in the
problem. But it will be useful anyways for our computations.)
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Solution to Example 5.13. First we need to compute AD. We can do this by using the
area of ABC (obtained from Heron’s formula); compute

AD = 2[ABC]

BC
= 2

6
·
√

15

2
· 7

2
· 5

2
· 3

2
= 1

3
· 15

4

√
7 = 5

4

√
7.

This makes BD =
√

42 − 25
16 · 7 = 9

4 and subsequently CD = 6 − 9
4 = 15

4 . So we set

D = (0, 0)

B = (−9, 0)

C = (15, 0)

A = (0, 5
√

7).

Here we are scaling the coordinate system up by a factor of four to ease computation (by
eliminating fractions).

Next, we ought to compute O. We can compute the circumradius using

abc

4R
= 15

4

√
7 ⇒ R = 8√

7
.

So the distance from O to BC is√
82

7
− 32 = 1√

7
=

√
7

7
.

Also, noticing that O is directly overhead the midpoint of BC, we can compute

O =
(

3,
4

7

√
7

)
in our coordinate system. (The extra factor of four again comes from our scaling.)

Next we need to compute E. We can do so using Theorem 4.22 (as AD and AE are
isogonal), or by simply finding the x-intercept of the line AO. We do the latter. The slope
of line AO is

5
√

7 − 4
7

√
7

0 − 3
= −31

21

√
7

and hence the coordinate of E is

E =
(

5
√

7
31
21

√
7
, 0

)
=

(
105

31
, 0

)
.

Now for a trick—we can encode the parallel condition by letting r denote the ratio
between the lengths of XY and AE. Therefore

X =
(

105

31
r, 0

)
and Y =

(
0, 5

√
7 · r

)
.
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(Similar triangles forever!) Now the condition AX ⊥ YO is just a slope condition. We have

−1 = (slope of AX) · (slope of YO)

= 5
√

7 − 0

0 − 105
31 r

·
4
7

√
7 − 5

√
7 · r

3 − 0

=
(−31

21r

) (
4 − 35r

3

)
⇒ 21r

31
= 4 − 35r

3

⇒ 63r = 124 − 1085r

⇒ r = 31

287
.

We are home free—note that

X =
(

105

31
· 31

287
, 0

)
=

(
15

41
, 0

)
.

Hence, subtracting and scaling back gives

BX = 1

4

(
15

41
+ 9

)
= 96

41

and we are done.

This is a typical coordinate solution. It is remarkable how little geometric insight was
required after the first few lines—the rest was simply algebraic manipulations. In the context
of olympiad problems, we generally have variables instead of the constants a = 4, b = 5,
c = 6 that we did here.

Next, we provide an example of a trigonometric solution. This was problem four at the
IMO 2009.

Example 5.14 (IMO 2009/4). Let ABC be a triangle with AB = AC. The angle bisec-
tors of ∠CAB and ∠ABC meet the sides BC and CA at D and E, respectively. Let K

be the incenter of triangle ADC. Suppose that ∠BEK = 45◦. Find all possible values of
∠CAB.

What makes this problem so ripe for calculation? Well, if we scale down the diagram
(dropping a degree of freedom), then all points are determined by one angle. . . and then
we have a constraint ∠BEK = 45◦. So up to scaling, this problem has zero degrees of
freedom. This makes it pretty tempting to approach with computation.

First, we label all the angles in the figure. We choose to set ∠DAC = 2x, so that

∠ACI = ∠ICD = 45◦ − x.

Here I is the incenter of ABC. In that case ∠AIE = ∠DIC (why?), but ∠DIC =
1
2∠BIC = x + 45◦, hence ∠AIE = x + 45◦. Some more angle chasing gives ∠KEC =
3x.
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A

CB D

E

K

Figure 5.5B. Example 5.14.

A

CD

I

E

K

2x

45 ◦−
x

45◦− x

45◦ 3x

Figure 5.5C. Setup for a trigonometric computation.

Having chased all the angles we want, we need a relationship. We can find it by
considering the side ratio IK

KC
. Using the angle bisector theorem, we can express this in

terms of triangle IDC; however we can also express it in terms of triangle IEC. This gives
us an algebraic equation to solve.

Solution to Example 5.14. Let I be the incenter, and set ∠DAC = 2x (so that 0◦ <

x < 45◦). From ∠AIE = ∠DIC, it is easy to compute

∠KIE = 90◦ − 2x, ∠ECI = 45◦ − x, ∠IEK = 45◦, ∠KEC = 3x.
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Hence by the law of sines, we can obtain

IK

KC
=

sin 45◦ · EK
sin(90◦−2x)

sin (3x) · EK
sin(45◦−x)

= sin 45◦ sin (45◦ − x)

sin (3x) sin (90◦ − 2x)
.

Also, by the angle bisector theorem on �IDC, we have

IK

KC
= ID

DC
= sin (45◦ − x)

sin (45◦ + x)
.

Equating these and cancelling sin (45◦ − x) �= 0 gives

sin 45◦ sin (45◦ + x) = sin 3x sin (90◦ − 2x) .

Applying the product-sum formula (again, we are just trying to break down things as
much as possible), this just becomes

cos (x) − cos (90◦ + x) = cos (5x − 90◦) − cos (90◦ + x)

or cos x = cos (5x − 90◦).
At this point we are basically done; the rest is making sure we do not miss any solutions

and write up the completion nicely. One nice way to do this is by using product-sum in
reverse as

0 = cos (5x − 90◦) − cos x = 2 sin (3x − 45◦) sin (2x − 45◦) .

This way we merely consider the two cases

sin (3x − 45◦) = 0 and sin (2x − 45◦) = 0.

Notice that sin θ = 0 if and only θ is an integer multiple of 180◦. Using the bound 0◦ <

x < 45◦, it is easy to see that that the permissible values of x are x = 15◦ and x = 45
2

◦
. As

∠A = 4x, this corresponds to ∠A = 60◦ and ∠A = 90◦, the final answer.

Our last quick example is a problem from the 2004 Chinese Girl’s Math Olympiad.

Example 5.15 (CGMO 2004/6). Let ABC be an acute triangle with O as its circum-
center. Line AO intersects BC at D. Points E and F are on AB and AC respectively such
that A, E, D, F are concyclic. Prove that the length of the projection of line segment EF

on side BC does not depend on the positions of E and F .

In our figure we have denoted the projections of E and F by X and Y , respectively.
How might we approach this problem computationally? Our goal is to get everything

in terms of the quantities in a triangle, and we have one degree of freedom in our problem.
We are interested in the length XY , so it seems natural to write

XY = BC − (BX + CY )

because the lengths BX and CY seem easy to calculate—they are the legs of a right triangle.
Actually, we may even just write

BX = BE cos B and CY = CF cos C.
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A

B C

O

D

E

F

X Y

Figure 5.5D. Show that the length of XY depends only on ABC.

We do not have to worry about cos B anymore, and so we can go for BE. Naturally, we
reach to power of a point, as we have

BE · BA = BT · BD

where we have defined T as the second intersection of our cyclic quadrilateral with side
BC (this is a sort of proxy point). Similarly, CF · CA = CD · CT . Now we have a natural
choice for encoding our degree of freedom: define u = BT , v = CT with u + v = a. Then
we can compute the lengths BD and CD by whatever means we choose, directly evaluate
BX + CY , and hope we get something constant.

Solution to Example 5.15. Recall that ∠BAD = ∠BAO = 90◦ − C and ∠CAD =
∠CAO = 90◦ − B. First, we can compute using the law of sines that

BD

CD
= sin∠BAD · AB

sin∠ADB

sin∠CAD · AC
sin∠ADC

= c cos C

b cos B
.

Now let X and Y denote the feet of E and F onto BC and T the second intersection of
(AEF ) with BC. Let u = BT , v = CT where u + v = a; we have

BX + CY = BE cos B + CF cos C

= u · BD

c
cos B + v · CD

b
cos C

= cos B cos C

(
BD

c cos C
u + CD

b cos B
v

)
.

Because

BD

c cos C
= CD

b cos B

and

u + v = a

we see that BX + CY does not depend on the choice of u and v, completing the solution.
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5.6 Problems
Another good source of practice problems are any problems in the previous sections that
you failed to solve synthetically, since you should have some insight into the problem’s
structure. See how you can use computation to make up for missed synthetic observations.
(This advice applies to the next two chapters as well.)

Problem 5.16 (Star Theorem). Let A1A2A3A4A5 be a convex pentagon. Suppose rays
A2A3 and A5A4 meet at the point X1. Define X2, X3, X4, X5 similarly. Prove that

5∏
i=1

XiAi+2 =
5∏

i=1

XiAi+3

where the indices are taken modulo 5. (See Figure 5.6A.) Hints: 407 448 Sol: p.251

A1

A2

A3

A4

A5

X1

X2

X3

X4

X5

Figure 5.6A. Star theorem—the product of the dashed segments is the product of the dotted ones.

Problem 5.17. Let ABC be a triangle with inradius r . If the exradii ‡ of ABC are rA, rB ,
rC , show that the triangle has area

√
r · rA · rB · rC . Hint: 38

Problem 5.18 (APMO 2013/1). Let ABC be an acute triangle with altitudes AD, BE and
CF , and let O be the center of its circumcircle. Show that the segments OA, OF , OB,
OD, OC, OE dissect the triangle ABC into three pairs of triangles that have equal areas.
Hints: 162 678

Problem 5.19 (EGMO 2013/1). The side BC of the triangle ABC is extended beyond
C to D so that CD = BC. The side CA is extended beyond A to E so that AE = 2CA.
Prove that if AD = BE then triangle ABC is right-angled. Hints: 202 275

Problem 5.20 (Harvard-MIT Math Tournament 2013). Let triangle ABC satisfy
2BC = AB + AC and have incenter I and circumcircle ω. Let D be the intersection
of AI and ω (with A,D distinct). Prove that I is the midpoint of AD. Hints: 372 477

Problem 5.21 (USAMO 2010/4). Let ABC be a triangle with ∠A = 90◦. Points D and E

lie on sides AC and AB, respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB.

‡ Recall from Chapter 2 that the A-exradius of �ABC is the radius of the excircle opposite A. The B and C

exradii are defined similarly.
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Segments BD and CE meet at I . Determine whether or not it is possible for segments AB,
AC, BI , ID, CI , IE to all have integer lengths. Hints: 437 603 565 Sol: p.252

Problem 5.22 (Iran Olympiad 1999). Let I be the incenter of triangle ABC and let ray
AI meet the circumcircle of ABC at D. Denote the feet of the perpendiculars from I to
lines BD and CD by E and F , respectively. If IE + IF = 1

2AD, calculate ∠BAC. Hints:

359 610 365 479 Sol: p.252

Problem 5.23 (CGMO 2002/4). Circles �1 and �2 interest at two points B and C, and BC

is the diameter of �1. Construct a tangent line to circle �1 at C intersecting �2 at another
point A. Line AB meets �1 again at E and line CE meets �2 again at F . Let H be an
arbitrary point on segment AF . Line HE meets �2 again at G, and BG meets AC at D.

Prove that

AH

HF
= AC

CD
.

Hints: 452 62 344 219

Problem 5.24 (IMO 2007/4). In triangle ABC the bisector of angle BCA intersects the
circumcircle again at R, the perpendicular bisector of BC at P , and the perpendicular
bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that
the triangles RPK and RQL have the same area. Hints: 457 291 139 161

Problem 5.25 (JMO 2013/5). Quadrilateral XABY is inscribed in the semicircle ω with
diameter XY . Segments AY and BX meet at P . Point Z is the foot of the perpendicular
from P to line XY . Point C lies on ω such that line XC is perpendicular to line AZ. Let Q

be the intersection of segments AY and XC. Prove that

BY

XP
+ CY

XQ
= AY

AX
.

Hints: 622 476 299 656

Problem 5.26 (CGMO 2007/5). Point D lies inside triangle ABC such that ∠DAC =
∠DCA = 30◦ and ∠DBA = 60◦. Point E is the midpoint of segment BC. Point F lies on
segment AC with AF = 2FC. Prove that DE ⊥ EF . Hints: 483 690 180 542 693

Problem 5.27 (ISL 2011/G1). Let ABC be an acute triangle. Let ω be a circle whose
center L lies on the side BC. Suppose that ω is tangent to AB at B ′ and AC at C ′. Suppose
also that the circumcenter O of triangle ABC lies on the shorter arc B ′C ′ of ω. Prove that
the circumcircle of ABC and ω meet at two points. Hints: 13 87 93 500 60 Sol: p.253

Problem 5.28 (IMO 2001/1). Consider an acute-angled triangle ABC. Let P be the foot
of the altitude of triangle ABC issuing from the vertex A, and let O be the circumcenter of
triangle ABC. Assume that ∠C ≥ ∠B + 30◦. Prove that ∠A + ∠COP < 90◦. Hints: 619

246 522

Problem 5.29 (IMO 2001/5). Let ABC be a triangle. Let AP bisect ∠BAC and let BQ

bisect ∠ABC, with P on BC and Q on AC. If AB + BP = AQ + QB and ∠BAC = 60◦,
what are the angles of the triangle? Hints: 43 71 441 226 Sol: p.254
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Problem 5.30 (IMO 2001/6). Let a > b > c > d be positive integers and suppose that

ac + bd = (b + d + a − c)(b + d − a + c).

Prove that ab + cd is not prime.§ Hints: 166 555 523 429 515 Sol: p.255

§ IMO 2001 was a strange year.





C H A P T E R 6
Complex Numbers

As long as algebra and geometry have been separated, their progress have been slow
and their uses limited; but when these two sciences have been united, they have lent
each mutual forces, and have marched together towards perfection.

Joseph Louis Lagrange

In this chapter, we demonstrate the use of complex numbers to solve problems in geom-
etry. We develop some background in the first three sections. The real geometry starts in
Section 6.4, when the unit circle appears.

6.1 What is a Complex Number?
Recall some facts from high school algebra. A complex number is a number of the form

z = a + bi

where a and b are real numbers and i2 = −1. The real number a is called the real part,
denoted Re(z). The set of all complex numbers is denoted C.

We also know that every complex number can be expressed in polar form as

z = r (cos θ + i sin θ ) = reiθ

where r is a nonnegative real number and θ is a real number. (The formula eiθ = cos θ +
i sin θ is a famous result known as Euler’s formula.) A diagram may make this clearer;
much like in the xy-plane, every complex number can be plotted in the complex plane at
a point (a, b). See Figure 6.1A.

The magnitude of z = a + bi = reiθ , denoted |z|, is equal to r , or equivalently,

|z| =
√

a2 + b2.

The number θ is called the argument of z, denoted arg z. It is the angle measured counter-
clockwise from the real axis, as shown in Figure 6.1A. Except in the special case z = 0, the
fact that r is a positive real implies θ is unique up to shifting by 360◦. (As a specific example,
cos 50◦ + i sin 50◦ = cos 410◦ + i sin 410◦.) Therefore, for the rest of this chapter we take
these arguments modulo 360◦.

95
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Im

Re
0

z = 3 + 4i

z = 3 − 4i

−1 − 2i

|z| = 5

θ

Figure 6.1A. The numbers z = 3 + 4i and −1 − 2i are plotted in the complex plane; z = 3 − 4i is
the conjugate of z.

Finally, the complex conjugate of z (or just conjugate) is the number

z = a − bi = re−iθ .

Pictorially, it represents the reflection of z over the real axis.
The conjugate has many nice properties: it behaves well with respect to basically every

operation. For example, whenever w and z are complex numbers, we have

w + z = w + z, w − z = w − z, w · z = w · z, w/z = w/z,

and so on. (Verify these.) This lets us write, for instance,(
z − a

b − a

)
= z − a

b − a

and similarly reduce other arbitrarily complicated expressions. Another important relation
is that for any complex number z,

|z|2 = zz.

This is easy to prove and, as we see later, extremely useful.
Throughout this chapter, we let A denote the point in the complex plane that corresponds

to a complex number a, and adopt similar conventions for the other letters, with lowercase
letters denoting complex numbers, and uppercase letters denoting points.

6.2 Adding and Multiplying Complex Numbers
Complex numbers can be viewed a lot like vectors (u, v). We simply think about them in
the component form u + vi and note that adding them corresponds to vector addition.
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This means that all the additive structure of vectors (see Appendix A.3) carries over.
For example,

1. The midpoint M of AB is m = 1
2 (a + b).

2. Three points A, B, C are collinear if (and only if) c = λa + (1 − λ)b for some real
number λ.

3. The centroid G of a triangle ABC is g = 1
3 (a + b + c).

4. A quadrilateral ABCD is a parallelogram if and only if a + c = b + d.

And so on. In particular, adding a complex number corresponds to translation, just as in
vectors.

However, complex numbers have some additional structure—they can be multiplied.
The multiplication is particularly powerful. The key is that if z1 = r1e

iθ1 and z2 = r2e
iθ2 ,

then z1z2 = r1r2e
i(θ1+θ2), which implies

|z1z2| = |z1| |z2| and arg z1z2 = arg z1 + arg z2 for all z1, z2 ∈ C.

We remind the reader that here (and throughout this chapter) we are taking arg z modulo
360◦. So the above equality really means arg z1z2 ≡ arg z1 + arg z2 (mod 360◦).

Im

Re0

z

w

i(z − w) + w

z − w

i(z − w)

Im

Re0

z = 3 + 4i
iz = 4 − 3i

Figure 6.2A. Rotating by 90◦ is just multiplying by i.

Example 6.1. Multiplying by i is equivalent to rotating by 90◦ counterclockwise around
the origin.

Proof. Just notice that |i| = 1 and arg i = 1
2π = 90◦.

This is fine and well, but how do we rotate around arbitrary points? Suppose we want to
rotate z = −1 − 2i by 90◦ counterclockwise about the point w = −2 − 4i. The answer is
simple; we translate the entire diagram so that w �→ 0 (by subtracting w). We then multiply
by i, and then translate back. In equations, this looks like

z �→ i(z − w) + w.

Pictorially, this is much more intuitive. See Figure 6.2A.
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We can generalize further to any complex number other than i. For any complex number
w and nonzero α, the map

z �→ α(z − w) + w

is a spiral similarity. That means it is a map that rotates by arg α and dilates by |α|; it is a
composition of a rotation and a homothety. Spiral similarity is discussed in more detail in
Section 10.1.

Im

Re0

z

w

2i(z − w) + w

z − w2i(z − w)

Figure 6.2B. A spiral similarity z �→ 2i(z − w) + w. It rotates by 90◦ and dilates by a factor of 2.

We can do even more, as the following lemma shows.

Lemma 6.2 (Complex Reflection). Let W be the reflection of Z over a given AB. Then

w = (a − b)z + ab − ab

a − b
.

Im

Re0 1

a

b
z

w

Im

Re0 1

b− a
z − a

w − a

Im

Re0 1

z−a
b−a

w−a
b−a

Figure 6.2C. Reflecting about AB.

Proof. We remarked earlier that the map z �→ z was a reflection across the real axis.
We would like to do something similar with a and b.

Figure 6.2C essentially gives away the proof. We first shift the entire diagram by
subtracting a. Then, we apply a spiral similarity through dividing by the shifted b − a,
so that the line we are trying to reflect across becomes the real axis. Under these two
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transformations

z �→ z − a

b − a
and w �→ w − a

b − a
.

But these two are now conjugate! That is,

z − a

b − a
=

(
w − a

b − a

)
.

This is better expressed as

w − a

b − a
=

(
z − a

b − a

)
= z − a

b − a
.

Solving for w and doing some computation we obtain

w = a(b − a) + (b − a)(z − a)

b − a
= (a − b)z + ab − ab

a − b

as desired.

Problem for this Section

Lemma 6.3. Show that the foot of the altitude from Z to AB is given by

(a − b)z + (a − b)z + ab − ab

2(a − b)
.

6.3 Collinearity and Perpendicularity
Let us first state two obvious facts about the complex conjugate.

Proposition 6.4 (Properties of Complex Conjugates). Let z be a complex number.

(a) z = z if and only if z is a real number.
(b) z + z = 0 if and only if z is pure imaginary; that is, z = ri for some real number r .

Im

Re

Im

Re0

a

b

c

d

0

b− a
d− c

Figure 6.3A. AB ⊥ CD if d−c

b−a
is pure imaginary.
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First, let us develop a criterion for when AB ⊥ CD. Consider four complex numbers
a, b, c, d and look at the corresponding vectors b − a and d − c.

Since arg z/w = arg z − arg w, we observe that the d − c and b − a are perpendicular
precisely when their arguments differ by ±90◦; that is, when d−c

b−a
is pure imaginary. In

terms of conjugates, we deduce the following.

Lemma 6.5 (Perpendicularity Criterion). The complex numbers a, b, c, d have the
property AB ⊥ CD if and only if

d − c

b − a
+

(
d − c

b − a

)
= 0.

By effectively the same means, we can arrive at a collinearity criterion.

Lemma 6.6. Complex numbers z, a, b are collinear if and only if

z − a

z − b
=

(
z − a

z − b

)
.

The proof is essentially the same as that of Lemma 6.5; we consider the displacements
z − a and z − b, and hope that their quotient is a real number. The details are left as an
exercise.

However, you might notice that that Lemma 6.6 is not symmetric, which seems disap-
pointing. Actually, we ran into the exact same issue in Section 5.1, when we were trying to
find a nice criterion for collinear points. Surprisingly, the same method works here as well.

Theorem 6.7 (Complex Shoelace Formula). If a, b, c are complex numbers, then the
signed area of triangle ABC is given by

i

4

∣∣∣∣∣∣
a a 1
b b 1
c c 1

∣∣∣∣∣∣ .
In particular, the points a, b, c are collinear if and only if the determinant is zero.

Here the signed area is the convention described in Section 5.1. This formula actually
follows from the standard shoelace formula; write a = ax + ayi, b = bx + byi, and c =
cx + cyi, and apply the shoelace formula to a, b, c. The details, which consist entirely of
linear algebra, are left as an exercise.

Problem for this Section

Problem 6.8. Prove Lemma 6.6.

6.4 The Unit Circle
Up until now we have had conjugates in many of our expressions. We now show how to
handle them, closing the gap between olympiad geometry and complex numbers.

In the complex plane, the unit circle is the set of complex numbers z with |z| = 1; that
is, it is a circle centered at 0 with radius 1. We have the following.
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Proposition 6.9. For any z on the unit circle, z = 1
z
.

This follows from zz = |z|2, where we take advantage of the fact that |z| = 1. That
means we can now compute conjugates in terms of the original complex numbers. Here are
two examples of straightforward applications.

Example 6.10. If a, b, c, and x lie on the unit circle, then ax + bc = 0 if and only if
AX ⊥ BC.

A

B C

X

Figure 6.4A. AX ⊥ BC implies ax + bc = 0.

Proof. By Lemma 6.3 we know that AX ⊥ BC is equivalent to

0 = x − a

b − c
+

(
x − a

b − c

)
= x − a

b − c
+ x − a

b − c
.

Applying a = 1
a

, this is equal to

x − a

b − c
+

1
x

− 1
a

1
b

− 1
c

= x − a

b − c
+

a−x
xa

c−b
bc

= x − a

b − c

(
1 + xa

bc

)
.

Since a, b, c, x are distinct, the first quantity is nonzero; hence we obtain xa
bc

= −1,
equivalent to ax + bc = 0.

We now present a refinement of Lemma 6.3. It is used extremely frequently, so remember
it!

Lemma 6.11 (Complex Foot). If a and b, a �= b, are on the unit circle and z is an
arbitrary complex number, then the foot from Z to AB is given by

1

2
(a + b + z − abz).

Proof. Putting a = 1
a

and b = 1
b

in Lemma 6.3 we get

1

2

(
z + (a − b)z + b

a
− a

b

1
a

− 1
b

)
= 1

2
(z + a + b − abz).
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In the limiting case a = b, we obtain the foot from z to the tangent at a.
We are now in a position to derive some useful results, independent of any geometry

we know. The following beautiful result is critical, and really shows how powerful complex
numbers are.

Lemma 6.12 (Complex Euler Line). Let ABC be a triangle, and assume a, b, c lie on
the unit circle. Then

(a) The circumcenter is o = 0.
(b) The centroid is g = 1

3 (a + b + c).
(c) The orthocenter is h = a + b + c.

In particular, the points O, G, H are collinear in a 1 : 2 ratio.

Proof. The fact that o = 0 is obvious, since we set the circumcircle of ABC as the
unit circle. The fact that g = 1

3 (a + b + c) follows by interpreting the complex numbers as
vectors.

Let h be the orthocenter. There are many ways to prove that h = a + b + c, and we
present the solution which uses no geometry. Because AH ⊥ BC we know by Lemma 6.5
that

0 = h − a

b − c
+ h − a

b − c

= h − a

b − c
+ h − 1

a

1
b

− 1
c

= h − a

b − c
− bc

h − 1
a

b − c
.

Therefore,

bc

(
h − 1

a

)
= h − a

⇒ abch − bc = ah − a2

⇒ abch − ah = bc − a2.

We can derive similar equations from BH ⊥ CA and CH ⊥ AB. Hence, we wish to solve
the system of equations

abch − ah = bc − a2

abch − bh = ca − b2

abch − ch = ab − c2.

Just subtract the first two equations to get

(b − a)h = b2 − a2 + bc − ca = (b − a)(a + b + c).

Since b �= a, we obtain h = a + b + c. It is not too hard to verify that this is indeed a
solution to all three equations, and so we have established that the orthocenter exists and
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has coordinates h = a + b + c. Finally, since h = 3g it follows that O, G, H are collinear
with OH = 3OG; this establishes the Euler line.

Example 6.13 (Nine-Point Circle). If a, b, c lie on the unit circle, and H is the
orthocenter of �ABC, the point n9 = 1

2 (a + b + c) is a distance of 1
2 from the midpoint of

BC, the midpoint of AH , and the foot from A to BC.

Proof. First, we check the distance to the midpoint of BC. It is∣∣∣∣n9 − b + c

2

∣∣∣∣ =
∣∣∣a
2

∣∣∣ = 1

2
|a| = 1

2
.

Then we check the distance to the midpoint of AH . It is∣∣∣∣n9 − 1

2
(a + (a + b + c))

∣∣∣∣ =
∣∣∣−a

2

∣∣∣ = 1

2
.

Finally, we check the distance to the foot of the altitude is also 1
2 . By Lemma 6.11, this is

the point 1
2

(
a + b + c − bc

a

)
. So∣∣∣∣n9 − 1

2

(
a + b + c − bc

a

)∣∣∣∣ =
∣∣∣∣1

2

bc

a

∣∣∣∣ = 1

2

|b| |c|
|a| = 1

2
.

That was easy.

We hope this convinces you that setting (ABC) as the unit circle is an extremely potent
technique. After all, it just trivialized a large portion of Chapter 3.

Problem for this Section

Problem 6.14. (Lemma 1.17) Let H be the orthocenter of �ABC. Let X be the reflection
of H over BC and Y the reflection over the midpoint of BC. Prove that X and Y lie on
(ABC), and AY is a diameter.

6.5 Useful Formulas
Here are some other useful formulas. First we provide a criterion for when four points are
concyclic.

Theorem 6.15 (Concyclic Complex Numbers). Let a, b, c, d be distinct complex num-
bers, not all collinear. Then A, B, C, D are concyclic if and only if

b − a

c − a
÷ b − d

c − d

is a real number.

The proof is left as an exercise. (Actually, we see in Chapter 9 that if A, B, C, D are
indeed cyclic, then this is the cross ratio of the four points ABCD.)

In the same spirit as the complex shoelace formula (Theorem 6.7) is the following
similarity criterion. To show �ABC and �XYZ are similar with the same orientation,
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most people attempt to prove c−a
b−a

= z−x
y−x

or some similar variant. Actually, a symmetric
version of this formula∗ exists.

Theorem 6.16 (Complex Similarity). Two triangles ABC and XYZ are directly similar
if and only if

0 =
∣∣∣∣∣∣
a x 1
b y 1
c z 1

∣∣∣∣∣∣ .
Proof. The triangles are similar if and only if

c − a

b − a
= z − x

y − x
.

One can check this is equivalent to the determinant being equal to zero.

Now, here is the complete form for the intersection of two lines.

Theorem 6.17 (Complex Intersection). If lines AB and CD are not parallel then their
intersection is given by

(ab − ab)(c − d) − (a − b)(cd − cd)

(a − b)(c − d) − (a − b)(c − d)
.

In particular, if |a| = |b| = |c| = |d| = 1 then this simplifies to

ab(c + d) − cd(a + b)

ab − cd
.

Proof. Solve the system of equations

0 =
∣∣∣∣∣∣
z z 1
a a 1
b b 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
z z 1
c c 1
d d 1

∣∣∣∣∣∣ .
This is not much fun, but you get the result with enough patience. If a = 1

a
and its analogous

forms are substituted, then we get the second expression.

It is worth noting that the conjugate of the second expression in Theorem 6.17 is a+b−c−d
ab−cd

.
This theorem exemplifies why the choice of unit circle is extremely important—the

formula becomes far simpler when a, b, c, d are on the unit circle. In general, the more
points that lie on the unit circle, the better, because the conjugates become simple reciprocals
rather than complicated expressions.

Nonetheless, the fully general intersection formula is sometimes useful as well. In par-
ticular, if d = 0 the expression is actually somewhat tamer. It is also often possible to apply
translations before applying the theorem to simplify the computation; see Example 6.26 for
an instance of this.

You can even get the intersection of two circles—sort of. Here is the statement, just for
fun. We give the proof in Section 10.1, but you are welcome to prove it now.

∗ What happens below when we take x = a, y = b, z = c?
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Lemma 6.18. Suppose X and Y are the intersection points of two circles. Points A and
B lie on the first circle, C and D on the second, such that lines AC and BD pass through
X. Then

y = ad − bc

a + d − b − c
.

Y

A

B

C
D

X

Figure 6.5A. Handling circle intersections in the complex plane.

Finally, one common configuration which complex numbers handles well is the inter-
section of two tangents to the unit circle.

Lemma 6.19 (Complex Tangent Intersection). Let A and B be points on the unit circle
with a + b �= 0. Then

2ab

a + b
= 2

a + b

is the intersection point of the tangents at A and B.

a

b

2ab
a + b

Figure 6.5B. Intersecting two tangents in the complex plane.

Proof. Consult Figure 6.5B. Let M be the midpoint of AB and P be the desired
intersection point. It is not hard to show that OM · OP = 1 (where o = 0) by similar
triangles. Hence |m| |p| = 1.

We claim this implies m · p = 1. Indeed, the magnitudes are correct, and because O,
M , P are collinear, the argument is zero as well. Hence

p = 1

m
= 2

a + b
= 2

1
a

+ 1
b

= 2ab

a + b
.

Problems for this Section

Problem 6.20. Prove Theorem 6.16. Hint: 217
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Problem 6.21. Prove that the complex shoelace formula (Theorem 6.7) follows from
Theorem 5.1. Hint: 644

Problem 6.22. Let ABC be a triangle with orthocenter H and let P be a point on (ABC).

(a) Show that the Simson line (Lemma 1.48) exists, i.e., that the feet from P onto AB, BC,
CA are collinear.

(b) Establish Lemma 4.4; that is, show that the Simson line at P bisects PH .

Hint: 535

6.6 Complex Incenter and Circumcenter
Two other complex setups worth mentioning are the incenter and the circumcenter.

Let us start with a different question. If b and c lie on the unit circle, what is the midpoint
of minor arc B̂C? It might be tempting to say

√
bc, but unfortunately taking a square root

of a complex number raises problems. For example, consider

(1 − i)2 = (i − 1)2 = −2i.

We can no longer take a “positive root” because there is no notion of “positive” or “negative”
complex numbers.

Fortunately there is a way around this. If we set b = w2 and c = v2, then we can
designate one of vw or −vw as the midpoint of arc BC. This motivates the following
lemma.

a = u2

b = v2 c = w2

−vw

−wu

−uv

I

Figure 6.6A. Lemma 1.42.

Lemma 6.23 (Complex Incenter). Given ABC on the unit circle, it is possible to pick
complex numbers u, v, w such that

(a) a = u2, b = v2, c = w2, and
(b) the midpoint of arc B̂C not containing A is −vw; the analogous midpoints opposite B

and C are −wu and −uv.

In this case the incenter I is given by −(uv + vw + wu).
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Proof. Proving the first two claims involves cumbersome algebra; you can probably
skip it but we include it for completeness. By rotating the triangle, we may assume that
a = 1. Now set u = −1, and let v and w represent the desired midpoints. We claim this is
the desired (u, v,w). See Figure 6.6B.

a = 1

w

v
b = w2

c = v2

−vw

vw

a = 1

w

v

b = w2

c = v2

−vw

vw

Figure 6.6B. Proving the midpoints of arcs formula.

By construction, b = w2 and c = v2. It remains to show that −vw actually lies on the
arc B̂C not containing A (as opposed to the midpoint of the arc containing A). This is
equivalent to showing vw and a = 1 lie on the same side of BC.

Now for some boring details. We consider two cases, which can be extended to cover
all situations.

� Both v and w have arguments between 0 and π . Let β be the argument of v, and γ the
argument of w. Assume without loss of generality β > γ . Then arg a = 0, arg c = 2γ ,
arg vw = β + γ and arg w2 = 2β, where

0 < 2γ < β + γ < 2β < 2π.

This establishes the conclusion.
� w has argument β and v has argument −γ , where 0 < β, γ < π . Let θ = β − γ be the

argument of vw and without loss of generality assume θ > 0. We also have arg a = 0,
arg w2 = min{2β, 2π − 2γ }, and arg v2 = max{2β, 2π − 2γ }, where

0 < θ < min{2β, 2π − 2γ } < max{2β, 2π − 2γ } < 2π

as needed.

For the more interesting part, recall Lemma 1.42. We see I is the orthocenter of the
triangle with vertices −vw, −wu, −uv, and hence is −(uv + vw + wu) since all three
vertices lie on the unit circle.

Note also that |u| = |v| = |w| = 1, so in particular u = 1
u

, v = 1
v
, w = 1

w
still hold.

The last formula we present is the formula for the circumcenter. While we usually set
the circumcenter we care about to zero, it is actually possible to compute the circumcenter
of an arbitrary triangle, although it is not always feasible to do this computation.
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Lemma 6.24 (Complex Circumcenter). The circumcenter of a triangle XYZ is given
by the quotient ∣∣∣∣∣∣

x xx 1
y yy 1
z zz 1

∣∣∣∣∣∣ ÷
∣∣∣∣∣∣
x x 1
y y 1
z z 1

∣∣∣∣∣∣ .
In particular, if z = 0 then the above expression equals

xy (x − y)

xy − xy
.

Proof. Let P be the circumcenter of �XYZ and R the circumradius. We have

R2 = |x − p|2 = (x − p)(x − p)

implying

xp + xp + R2 = pp + xx.

Hence, we obtain the system of equations

xp + xp + R2 − pp = xx

yp + yp + R2 − pp = yy

zp + zp + R2 − pp = zz.

By Cramer’s Rule (Theorem A.4), we can view p, p, and R2 − pp as the unknowns
(surprise!) to get

p =
∣∣∣∣∣∣
x xx 1
y yy 1
z zz 1

∣∣∣∣∣∣ ÷
∣∣∣∣∣∣
x x 1
y y 1
z z 1

∣∣∣∣∣∣
as required.

It is often useful to shift the points x, y, z to clear out common terms before applying the
circumcenter formula. In particular, one can shift z to zero before evaluating the determinant,
which simplifies the computation significantly (but breaks the symmetry). In this case the
circumcenter is given by

z + −x ′y ′(x ′ − y ′)
x ′y ′ − x ′y ′

where x ′ = x − z and y ′ = y − z.

6.7 Example Problems
First, a classical result on the nine-point circle.

Proposition 6.25 (The Feuerbach Tangency). The incircle and the nine-point circle of
a (non-equilateral) triangle are tangent to each other. (The point of tangency is called the
Feuerbach point.)
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Suppose we wish to prove this using complex numbers. Firstly, how do we handle the
tangent condition? Circles are not particularly nice in complex numbers, so perhaps our
best bet is to try lengths. If I and N9 are the incenter and nine-point center, then it would
suffice to prove

IN9 = 1

2
R − r or equivalently 2IN9 = R − 2r

since the nine-point circle has radius 1
2R.

Actually, does the right-hand side look familiar? According to Lemma 2.22, we have
R − 2r = 1

R
IO2, where O is the circumcenter. That means we simply want to prove that

R · 2IN9 = IO2.

Now we are in business. If we toss this on the complex plane with R = 1, all we have to
do is compute some absolute values.

Seeing the incenter, let us put A = x2, B = y2, C = z2 as in Lemma 6.23. Note in
particular that R = 1. Then the incenter is given by −(xy + yz + zx) while the nine-point
center is given by 1

2

(
x2 + y2 + z2

)
. Evidently we get that

2IN9 = 2

∣∣∣∣1

2

(
x2 + y2 + z2

) − [−(xy + yz + zx)]

∣∣∣∣ = |x + y + z|2 .

A miracle occurs—we manage to get a perfect square! Now we just compute IO2, and of
course we should get exactly the same thing and we can call it a day. We find

IO2 = |−(xy + yz + zx) − 0|2 = |xy + yz + zx|2 .

Oh wait, those are not actually the same.
The problem has now reduced to showing that |x + y + z|2 = |xy + yz + zx|2, which

might seem unexpected. Fortunately, squares of absolute values reduce to just conjugates.
The left hand side is merely

(x + y + z)

(
1

x
+ 1

y
+ 1

z

)
while the right hand side is

(xy + yz + zx)

(
1

xy
+ 1

yz
+ 1

zx

)
.

These are both equal to (x+y+z)(xy+yz+zx)
xyz

, so we are done.

Solution to Proposition 6.25. Using Lemma 6.23 we put complex numbers x2, y2, z2,
and −(xy + yz + zx) for A, B, C, I respectively. Let N9 be the center of the nine-point
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circle and let O be the circumcenter. Notice that

2IN9 = 2

∣∣∣∣1

2
(x2 + y2 + z2) − [−(xy + yz + zx)]

∣∣∣∣
= |x + y + z|2

= |xy + yz + zx|2

= IO2

= R(R − 2r)

= R − 2r

where R and r are the circumradius and inradius, respectively. (We have R = 1 because
we are on the unit circle.) It follows that IN9 = 1

2R − r and hence that the circles are
tangent.

For our second example, we examine a problem from a USA team selection test. We
present two solutions, one entirely computational (requiring basically no geometric skill at
all) and one that only minimally touches on complex numbers.

Example 6.26 (USA TSTST 2013/1). Let ABC be a triangle and D, E, F be the
midpoints of arcs BC, CA, AB on the circumcircle. Line 	a passes through the feet of the
perpendiculars from A to DB and DC. Line ma passes through the feet of the perpendiculars
from D to AB and AC. Let A1 denote the intersection of lines 	a and ma . Define points B1

and C1 similarly. Prove that triangles DEF and A1B1C1 are similar to each other.

A

B C

D

A1

Figure 6.7A. The first problem of the 2013 TSTST.

What makes this problem good for complex numbers? First, there are loads of points all
on a single circle, (ABC), and we will almost certainly choose that as the unit circle. The
perpendiculars are also great here, because we are dropping altitudes to the chords of the
circle, so we can use Lemma 6.11. Thirdly, there is a lot of symmetry—after we compute
A1 it is straightforward to compute B1 and C1. And finally, the similarity is a condition we
know how to deal with.
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Down to business. We want to compute A1. In our usual notation, we see that the foot
from D to AB (which we denote by P1) is given by

p1 = 1

2

(
a + b + d − abd

)
.

If we set a = x2 and so on, along with d = −yz, then this reduces to

p1 = 1

2

(
x2 + y2 − yz + x2y

z

)
.

Similarly, the foot from D to AC is

p2 = 1

2

(
x2 + z2 − yz + x2z

y

)
.

We now consider the other half of the story. The feet from A to BD and CD, which we call
Q1 and Q2, are none other than

q1 = 1

2

(
x2 + y2 − yz + y3z

x2

)
and q2 = 1

2

(
x2 + z2 − yz + yz3

x2

)
.

Now we need to construct A1. Unfortunately, trying to apply Theorem 6.17 directly looks
painful (but feasible). We can do better by noticing that there are a lot of repeated terms in
these four points. So here is the idea: consider the map

τ : α �→ 2α − (x2 + y2 + z2 − yz).

Where did that come from? The key observation is that τ preserves intersections, since it
just combines a dilation and a translation. That means that if A1 is the intersection of lines
P1P2 and Q1Q2, then τ (A1) represents the intersection of lines τ (P1)τ (P2) and τ (Q1)τ (Q2).
And now it is pretty clear why we chose that map. Everything simplifies beautifully under
τ . We got rid of the 1

2 s and trimmed out all the extra fat with the x2 − yz terms that were
appearing everywhere. Thus,

τ (p1) = −z2 + x2y

z
τ (p2) = −y2 + x2z

y

τ (q1) = −z2 + y3z

x2
τ (q2) = −y2 + z3y

x2
.

This looks much friendlier—still messy, maybe, but we can make it through. Abbreviating
x ′ for τ (x), and applying Theorem 6.17, we see that τ (a1) equals(

p′
1p

′
2 − p′

1p
′
2

) (
q ′

1 − q ′
2

) − (
q ′

1q
′
2 − q ′

1q
′
2

) (
p′

1 − p′
2

)(
p′

1 − p′
2

) (
q ′

1 − q ′
2

) − (
p′

1 − p′
2

) (
q ′

1 − q ′
2

) .

At this point you might want to estimate how long this computation is going to take—it
is starting to look pretty lengthy. Fortunately the time limit for this test was 4.5 hours for
three problems. This looks like it might be a 15 or 20 minute computation, which is really
not a bad investment at all.



112 6. Complex Numbers

We take this calculation one bit at a time. First,

p′
1p

′
2 − p′

1p
′
2 =

(
−z2 + x2y

z

)(
− 1

y2
+ y

x2z

)
−

(
y2 + x2z

y

) (
− 1

z2
+ z

x2y

)
.

A couple of remarks. Notice you can save some effort by noticing that τ (p1)τ (p2) and
τ (p2)τ (p1) just switch y and z. That way we only need to expand once. Also, notice how
all terms have the same degree. When your expression has this property, you can use degrees
as a quick way to catch obvious errors.

Now, expanding gives

p′
1p

′
2 − p′

1p
′
2 =

(
z2

y2
+ y2

z2
− x2

yz
− yz

x2

)
−

(
y2

z2
+ y2

z2
− x2

yz
− yz

x2

)
= 0.

It looks like we will not need τ (q1) − τ (q2) after all. We then evaluate

q ′
1q

′
2 − q ′

1q
′
2 =

(
−z2 + y3z

x2

) (
− 1

y2
+ x2

yz3

)
−

(
−y2 + yz3

x2

)(
− 1

z2
+ x2

y3z

)
=

(
z2

y2
− yz

x2
− x2

yz
+ y2

z2

)
−

(
y2

z2
− yz

x2
− x2

yz
+ y2

z2

)
= 0.

So τ (a1) = 0, a big surprise. (Usually it does not turn out this well.) For just a dozen lines
of algebra we obtain

τ (a1) = 0 ⇒ a1 = 1

2

(
x2 + y2 + z2 − yz

)
.

Do we need to do the same for B1 and C1? Of course not. We simply exploit symmetry to
get

b1 = 1

2

(
x2 + y2 + z2 − zx

)
.

c1 = 1

2

(
x2 + y2 + z2 − xy

)
.
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Now we just need to show that this is similar to triangle DEF , which has vertices −yz,
−zx, −xy. One can do this quite painlessly by appealing to Theorem 6.16. However, one
can simply note that A1, B1, C1 are the midpoints of the segments joining x2 + y2 + z2 to
each of D, E, F . This solves the problem.

We promised a mostly synthetic solution, though. An observant reader has probably by
now noticed that x2 + y2 + z2 = a + b + c is the orthocenter of ABC. Hence A1 is the
midpoint of DH . Does this configuration look familiar now?

Solution to Example 6.26. Let H be the orthocenter of ABC.
Firstly, ma is the Simson line from D onto ABC, so it passes through the midpoint M1

of DH by Lemma 4.4. Now let HA be the orthocenter of �DBC. Since 	a is the Simson
line of A onto BCD, it passes through the midpoint of DHA, say M2.

We claim that these midpoints are the same. Indeed, in the language of complex numbers,

m1 = (a + b + c) + d

2
= a + (b + c + d)

2
= m2.

Hence A1 is the midpoint of DH . Similarly, B1 is the midpoint of EH and C1 is the
midpoint of FH . It follows that H is the center of a homothety taking A1B1C1 onto DEF ,
completing the problem.

Notice that we never actually used the fact that D was a midpoint of arc AB in the
above solution. In fact, it is totally irrelevant. The problem holds true for any D, E, F on
the circumcircle.

The point 1
2 (a + b + c + d) for a cyclic quadrilateral ABCD is called the Euler point or

the anticenter of the cyclic quadrilateral. Note that as a corollary of the above calculations,
we find that the Simson lines from A onto �BCD, B onto �CDA, C onto �DAB and D

onto �ABC all pass through the anticenter.

For our third example, we select a problem from the USAMO 2012. This one is more
straightforward, especially with our knowledge of the determinant.

Example 6.27 (USAMO 2012/5). Let P be a point in the plane of �ABC, and γ a line
passing through P . Let A′, B ′, C ′ be the points where the reflections of lines PA,PB,PC

with respect to γ intersect lines BC,AC,AB respectively. Prove that A′, B ′, C ′ are collinear.

A

B C

P

A′

Figure 6.7B. USAMO 2012—reflecting lines over sides.
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We might be tempted to set (ABC) as the unit circle again, but that would make the
reflections through an arbitrary P quite gory. A better idea is to use the reflections to our
advantage rather than avoid them—let us set γ as the real axis, so that the reflection of A

across γ has coordinate a. Of course, we may as well set p = 0 at this point.
With this setup, the rest is a computation. Note that determinants heavily simplify our

calculation.

Solution to Example 6.27. Let P be the origin of the complex plane (meaning p = 0)
and γ be the real axis. Now notice that A′ is the intersection of lines bc and pa. Applying
the formula for the intersection of lines gives

a′ = a(bc − bc)

(b − c)a − (b − c)a
.

Also,

a′ = a(bc − bc)

(b − c)a − (b − c)a
.

Considering the cyclic quantities, the area of a′b′c′ is a multiple of∣∣∣∣∣∣∣∣∣
a(bc−bc)

(b−c)a−(b−c)a
a(bc−bc)

(b−c)a−(b−c)a
1

b(ca−ca)
(c−a)b−(c−a)b

b(ca−ca)
(c−a)b−(c−a)b

1

c(ab−ab)
(a−b)c−(a−b)c

c(ab−ab)
(a−b)c−(a−b)c

1

∣∣∣∣∣∣∣∣∣ .
This is actually a multiple of ∣∣∣∣∣∣∣∣

a a (b−c)a−(b−c)a
bc−bc

b b (c−a)b−(c−a)b
ca−ca

c c (a−b)c−(a−b)c
ab−ab

∣∣∣∣∣∣∣∣ .
But now if we evaluate by minors, the denominators bc − bc exactly cancel out with the
resulting determinants, and we get∑

cyc

(b − c)a − (b − c)a

bc − bc
·
∣∣∣∣ b b

c c

∣∣∣∣ =
∑
cyc

(
ab − ac + ca − ba

) = 0

as desired. (Here, the “cyclic sum” is as defined in Section 0.3.)

We finish with a cute lemma about equilateral triangles in the complex plane.

Lemma 6.28 (Complex Equilateral Triangles). Let ABC be a triangle. It is equilateral
if and only if a2 + b2 + c2 = ab + bc + ca.

Proof. Let u = a − b, v = b − c, w = c − a. Notice that ABC is equilateral if and
only if u, v, w are the roots of some cubic z3 − α = 0. (Why?) So we actually consider the
polynomial

(z − u)(z − v)(z − w).
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Expanding and noting u + v + w = 0, we have that it is

z3 + (uv + vw + wu)z − uvw.

Hence ABC is equilateral if and only if uv + vw + wu = 0.
The rest is algebra. Rewrite the given as

a2 + b2 + c2 = ab + bc + ca,

or equivalently,

0 = (a − b)2 + (b − c)2 + (c − a)2 = u2 + v2 + w2.

Standard manipulation with symmetric sums now gives us

0 = (u + v + w)2 = u2 + v2 + w2 + 2(uv + vw + wu).

So uv + vw + wu = 0 if and only if a2 + b2 + c2 = ab + bc + ca, as desired.

6.8 When (Not) to use Complex Numbers
In this section we echo some of the comments made above in the examples.

First, let us mention briefly what types of problems are NOT good candidates for
complex numbers. The worst enemy of complex numbers is multiple circles. Complex
numbers give control over the unit circle, but offer little help with handling any other circles.
Intersections of arbitrary lines are also unwieldy (to say nothing of arbitrary circumcenters
or incenters).

However, if most of the points can be coaxed into lying on a single circle, then we are
in good shape. Moreover, if a central triangle features prominently on this circle, we have
already seen that we can deal with its triangle centers. Indeed one of the most common
techniques is to set (ABC) as the unit circle. This has the added bonus of exploiting any
symmetry in the problem.

Finally, you should always look for synthetic observations to simplify a complex num-
bers solution. One attitude I like to use when solving a geometry problem is to use synthetic
techniques until a problem is either solved or reduced to something that is readily susceptible
to computation.

6.9 Problems
Problem 6.29. Give a proof of the inscribed angle theorem using complex numbers. Hints:

506 343

Lemma 6.30 (Complex Chord). Show that a point P lies on a chord AB of the unit circle
if and only if p + abp = a + b. Hint: 86 Sol: p.256

Problem 6.31. Let ABCD be a cyclic quadrilateral. Let HA, HB , HC , HD denote the
orthocenters of triangles BCD, CDA, DAB, and ABC, respectively. Prove that AHA,
BHB , CHC , and DHD concur. Hint: 132
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Problem 6.32. Let ABCD be a quadrilateral circumscribed around a circle with center I .
Prove that I lies on the line joining the midpoints of AC and BD. Hints: 526 395 Sol: p.257

Problem 6.33 (Chinese TST 2011). Let ABC be a triangle, and let A′, B ′, C ′ be points
on its circumcircle, diametrically opposite A, B, C, respectively. Let P be any point inside
ABC and let D, E, F be the feet of the altitudes from P onto BC, CA, AB, respectively.
Let X, Y , Z denote the reflections of A′, B ′, C ′ over D, E, F , respectively.

Show that triangles XYZ and ABC are similar to each other. Hints: 141 149

Proposition 6.34 (Napoleon’s Theorem). Let ABC be a triangle and erect equilateral
triangles on sides BC, CA, AB outside of ABC with centers OA, OB , OC . Prove that
�OAOBOC is equilateral and that its center coincides with the centroid of triangle ABC.
Hints: 380 237 558

A

B C

OA

OB
OC

Figure 6.9A. Napoleon’s theorem.

Problem 6.35 (USAMO 2015/2). Quadrilateral APBQ is inscribed in circle ω with
∠P = ∠Q = 90◦ and AP = AQ < BP . Let X be a variable point on segment PQ. Line
AX meets ω again at S (other than A). Point T lies on arc AQB of ω such that XT is
perpendicular to AX. Let M denote the midpoint of chord ST . As X varies on segment
PQ, show that M moves along a circle. Hints: 133 361 316 283 Sol: p.258

Problem 6.36 (MOP 2006). Point H is the orthocenter of triangle ABC. Points D, E, and
F lie on the circumcircle of triangle ABC such that AD ‖ BE ‖ CF . Points S, T , and U

are the respective reflections of D, E, and F across the lines BC, CA, and AB. Prove that
S, T , U , and H are concyclic. Hints: 313 173 513 Sol: p.259

Problem 6.37 (USA January TST for IMO 2014). Let ABCD be a cyclic quadrilateral,
and let E, F , G, and H be the midpoints of AB, BC, CD, DA, respectively. Let W , X, Y ,
and Z be the orthocenters of triangles AHE, BEF , CFG, and DGH , respectively. Prove
that quadrilaterals ABCD and WXYZ have the same area. Hints: 552 85 187 296

Problem 6.38 (Online Math Open Fall 2013). Let ABC be a triangle with AB = 13,
AC = 25, and tan A = 3

4 . Denote the reflections of B, C across AC, AB by D, E,
respectively, and let O be the circumcenter of triangle ABC. Let P be a point such
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that �DPO ∼ �PEO, and let X and Y be the midpoints of the major and minor arcs B̂C

of the circumcircle of triangle ABC. Find PX · PY . Hints: 30 303 608 Sol: p.260

Proposition 6.39 (Tangent Addition). Consider angles A, B, C in the open interval
(−90◦, 90◦).

(a) Let x = tan A, y = tan B, z = tan C. Prove that

tan (A + B + C) = (x + y + z) − xyz

1 − (xy + yz + zx)

if xy + yz + zx �= 1, and is undefined otherwise.
(b) Generalize to multiple variables. Hints: 32 650 408 589 Sol: p.261

Proposition 6.40 (Schiffler Point). Let ABC be a triangle with incenter I . Prove that the
Euler lines of triangles AIB, BIC, CIA, and ABC are concurrent (called the Schiffler
point of ABC). Hints: 547 586 332

Problem 6.41 (IMO 2009/2). Let ABC be a triangle with circumcenter O. The points P

and Q are interior points of the sides CA and AB, respectively. Let K , L, and M be the
midpoints of the segments BP , CQ, and PQ, respectively, and let � be the circle passing
through K , L, and M . Suppose that the line PQ is tangent to the circle �. Prove that
OP = OQ. Hints: 50 72 357

Problem 6.42 (APMO 2010/4). Let ABC be an acute triangle with AB > BC and
AC > BC. Denote by O and H the circumcenter and orthocenter of ABC. Suppose
that the circumcircle of triangle AHC intersects the line AB at M (other than A), and the
circumcircle of triangle AHB intersects the line AC at N (other than A). Prove that the
circumcenter of triangle MNH lies on line OH . Hints: 642 121 445 Sol: p.261

Problem 6.43 (Shortlist 2006/G9). Points A1, B1, C1 are chosen on the sides BC, CA,
AB of a triangle ABC respectively. The circumcircles of triangles AB1C1, BC1A1, CA1B1

intersect the circumcircle of triangle ABC again at points A2, B2, C2 respectively (A2 �=
A,B2 �= B,C2 �= C). Points A3, B3, C3 are symmetric to A1, B1, C1 with respect to the
midpoints of the sides BC, CA, AB respectively. Prove that triangles A2B2C2 and A3B3C3

are similar. Hints: 509 210 167

Problem 6.44 (MOP 2006). Given a cyclic quadrilateral ABCD with circumcenter O and
a point P on the plane, let O1, O2, O3, O4 denote the circumcenters of triangles PAB,
PBC, PCD, PDA respectively. Prove that the midpoints of segments O1O3, O2O4, and
OP are collinear. Hints: 29 431 Sol: p.263

Problem 6.45 (Shortlist 1998/G6). Let ABCDEF be a convex hexagon such that ∠B +
∠D + ∠F = 360◦ and

AB

BC
· CD

DE
· EF

FA
= 1.

Prove that

BC

CA
· AE

EF
· FD

DB
= 1.

Hints: 153 668 649 197 Sol: p.264
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Problem 6.46 (ELMO Shortlist 2013). Let ABC be a triangle inscribed in circle ω, and
let the medians from B and C intersect ω at D and E respectively. Let O1 be the center
of the circle through D tangent to AC at C, and let O2 be the center of the circle through
E tangent to AB at B. Prove that O1, O2, and the nine-point center of ABC are collinear.
Hints: 371 655 554 203



C H A P T E R 7
Barycentric Coordinates

I suppose it is tempting, if the only tool you have is a hammer, to treat everything as
if it were a nail. Maslow’s Hammer

We now present another technique, barycentric coordinates. At the time of writing, it is
surprisingly unknown to most olympiad contestants and problem writers.

In this chapter, the area notation [XYZ] refers to signed areas (see Section 5.1). That
means that the area [XYZ] is positive if the points X, Y , Z are oriented in counterclockwise
order, and negative otherwise.

7.1 Definitions and First Theorems
Throughout this section we fix a nondegenerate triangle ABC, called the reference triangle.
(This is much like selecting an origin and axes in a Cartesian coordinate system.) Each
point P in the plane is assigned an ordered triple of real numbers P = (x, y, z) such that

�P = x �A + y �B + z �C and x + y + z = 1.

These are called the barycentric coordinates of point P with respect to triangle ABC.
Barycentric coordinates are also sometimes called areal coordinates because if P =

(x, y, z), then the signed area [PBC] is equal to x[ABC], and so on. In other words, these
coordinates can be viewed as

P =
(

[PBC]

[ABC]
,

[PCA]

[BCA]
,

[PAB]

[CAB]

)
.

The areas are signed in order to permit the point P to lie outside the triangle. If P = (x, y, z)
and A lie on opposite sides of BC, then the signed areas of [PBC] and [ABC] have
opposite signs and x < 0. In particular, the point P lies in the interior of ABC if and only
if x, y, z > 0.

Observe that A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1). This is why barycentric
coordinates are substantially more suited for standard triangle geometry problems; the
vertices are both simple and symmetric.

The soul of barycentric coordinates derives from the following result, which we state
without proof.

119



120 7. Barycentric Coordinates

A

B C

P

D

E
F

x

yz

Figure 7.1A. Regions corresponding to the areas of ABC when P is inside the triangle.

Theorem 7.1 (Barycentric Area Formula). Let P1, P2, P3 be points with barycentric
coordinates Pi = (xi, yi, zi) for i = 1, 2, 3. Then the signed area of �P1P2P3 is given by
the determinant

[P1P2P3]

[ABC]
=

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
Again, the area is signed, following the convention in Section 5.1.

As a corollary, we derive the equation of a line.

Theorem 7.2 (Equation of a Line). The equation of a line takes the form ux + vy + wz =
0 where u, v, w are real numbers. The u, v, and w are unique up to scaling.

Proof. The main idea is that three points are collinear if and only if the signed area of
their “triangle” is zero. Suppose we wish to characterize the points P = (x, y, z) lying on
a line XY , where X = (x1, y1, z1) and Y = (x2, y2, z2). Using the above area formula with
[PAB] = 0, we find this occurs precisely when

0 = (y1z2 − y2z1)x + (z1x2 − z2x1)y + (x1y2 − x2y1)z,

i.e., 0 = ux + vy + wz for some constants u, v, w.

In particular, the equation for the line AB is simply z = 0, by substituting (1, 0, 0) and
(0, 1, 0) into ux + vy + wz = 0. In general, the formula for a cevian through A is of the
form vy + wz = 0, by substituting the point A = (1, 0, 0).

In fact, the above techniques are already sufficient to prove both Ceva’s and Menelaus’s
theorem.

Example 7.3 (Ceva’s Theorem). Let D, E, F be points in the interiors of sides BC,
CA, AB of a triangle ABC. Then the cevians AD, BE, CF are concurrent if and only if

BD

DC

CE

EA

AF

FB
= 1.



7.1. Definitions and First Theorems 121

Proof. Define

D = (0, d, 1 − d)

E = (1 − e, 0, e)

F = (f, 1 − f, 0)

where d, e, f are real numbers strictly between 0 and 1.
Then the corresponding equations of lines are

AD : dz = (1 − d)y

BE : ex = (1 − e)z

CF : fy = (1 − f )x.

We wish to show there is a nontrivial solution to this system of equations (i.e., one other
than (0, 0, 0)) if and only if def = (1 − d)(1 − e)(1 − f ), which is evidently equivalent to
the constraint BD

DC
CE
EA

AF
FB

= 1.
First suppose that a nontrivial solution (x, y, z) exists. Notice that if any of x, y, z is

zero, then the others must all be zero as well. So we may assume xyz �= 0. Now taking the
product and cancelling xyz yields def = (1 − d)(1 − e)(1 − f ).

On the other hand, suppose the condition def = (1 − d)(1 − e)(1 − f ) holds. We
opportunistically pick x, y, z. Put y1 = d and z1 = 1 − d. Then we require

x1 = 1 − e

e
(1 − d) = f

1 − f
d

and this is okay since def = (1 − d)(1 − e)(1 − f ); hence we can set x1 as above. Thus
x = x1, y = y1, and z = z1 is a solution to the equations above.

However, there is no reason to believe that x1 + y1 + z1 = 1, so the triple we found
earlier may not actually correspond to a point. (However, we at least know x1, y1, z1 > 0.)
This is not a big issue: we instead consider the triple

(x, y, z) =
(

x1

x1 + y1 + z1
,

y1

x1 + y1 + z1
,

z1

x1 + y1 + z1

)
which still satisfies the conditions, but now has sum 1. Thus this triple corresponds to the
desired point of concurrency.

The last step in the above proof illustrates that barycentric coordinates are homogeneous.
Let us make his idea explicit. Suppose (x, y, z) lies on a line

ux + vy + wz = 0.

Then so does the “triple”, (2x, 2y, 2z), (1000x, 1000y, 1000z) or indeed any multiple. In
light of this, we permit unhomogenized barycentric coordinates by writing (x : y : z) as
shorthand for the appropriate triple

(x : y : z) =
(

x

x + y + z
,

y

x + y + z
,

z

x + y + z

)
whenever x + y + z �= 0. Note the use of colons instead of commas. An equivalent defini-
tion is as follows: for any nonzero k, the points (x : y : z) and (kx : ky : kz) are considered
the same, and (x : y : z) = (x, y, z) when x + y + z = 1.
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This shorthand is convenient because such coordinates may still be “plugged in” to the
line formula, often saving computations. For example, we have the following convenient
corollary.

Theorem 7.4 (Barycentric Cevian). Let P = (x1 : y1 : z1) be any point other than A.
Then the points on line AP (other than A) can be parametrized by

(t : y1 : z1)

where t ∈ R and t + y1 + z1 �= 0.

On the other hand, it makes no sense to put unhomogenized coordinates into, say,
the area formula. For these purposes, our usual coordinates (x, y, z) with the restriction
x + y + z = 1 will be called homogenized barycentric coordinates and delimited with
colons.

Problems for this Section

Problem 7.5. Find the coordinates for the midpoint of AB. Hint: 623

Lemma 7.6 (Barycentric Conjugates). Let P = (x : y : z) be a point with x, y, z �= 0.
Show that the isogonal conjugate of P is given by

P ∗ =
(

a2

x
:

b2

y
:

c2

z

)
and the isotomic conjugate is given by

P t =
(

1

x
:

1

y
:

1

z

)
.

Hint: 419

7.2 Centers of the Triangle
In Table 7.1 we give explicit forms for several centers of the reference triangle. Remember
that (u : v : w) refers to the point with coordinates ( u

u+v+w
, v

u+v+w
, w

u+v+w
); that is, we are

not normalizing the coordinates.
This is so important we say it twice: the coordinates here are unhomogenized.
Here G, I , H , O denote the usual centroid, incenter, orthocenter, and circumcenter,

while IA denotes the A-excenter and K denotes the symmedian point. Notice that O and
H are not particularly nice in barycentric coordinates (as compared to in, say, complex
numbers), but I and K are particularly elegant.

It is often more useful to convert the trigonometric forms of H and O into expressions
entirely in terms of the side lengths by

O = (a2SA : b2SB : c2SC)

and

H = (SBSC : SCSA : SASB)
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Table 7.1. Barycentric Coordinates of the Centers of
a Triangle.

Point/Coordinates Sketch of Proof

G = (1 : 1 : 1) Trivial
I = (a : b : c) Areal definition
IA = (−a : b : c), etc. Areal definition
K = (a2 : b2 : c2) Isogonal conjugates
H = (tan A : tan B : tan C) Areal definition
O = (sin 2A : sin 2B : sin 2C) Areal definition

where we define

SA = b2 + c2 − a2

2
, SB = c2 + a2 − b2

2
, SC = a2 + b2 − c2

2
.

In Section 7.6 we investigate further properties of these expressions which provide a more
viable way of dealing with them.

Just to provide some intuition on why Table 7.1 and Theorem 7.4 are useful, here is a
simple example.

Example 7.7. Find the barycentric coordinates for the intersection of the internal angle
bisector from A and the symmedian from B.

Solution. Suppose the desired intersection point is P = (x : y : z). It is the intersection
of lines AI and BK . According to Theorem 7.4, because I = (a : b : c) we deduce that
y : z = b : c. Similarly, because K = (a2 : b2 : c2) we deduce that x : z = a2 : c2. It is now
elementary to find a solution to this: take

P = (a2 : bc : c2).

Moral: Cevians are extremely good in barycentric coordinates. And do not be afraid to use
the law of sines if you have angles instead of side ratios.

Problems for this Section

Problem 7.8. Using the areal definition, show that I = (a : b : c). Deduce the angle bisector
theorem. Hint: 605

Problem 7.9. Find the barycentric coordinates for the intersection of the symmedian from
A and the median from B. Hint: 463

7.3 Collinearity, Concurrence, and Points at Infinity
Theorem 7.1 can often be applied to show that three points are collinear. Specifically, we
have the following result.
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Theorem 7.10 (Collinearity). Consider points P1, P2, P3 with Pi = (xi : yi : zi) for
i = 1, 2, 3. The three points are collinear if and only if

0 =
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
Note the coordinates need not be homogenized! This saves much computation.

Proof. The signed area of P1, P2, P3 is zero (i.e., the points are collinear) if and only if

0 =

∣∣∣∣∣∣∣∣
x1

x1+y1+z1

y1

x1+y1+z1

z1
x1+y1+z1

x2
x2+y2+z2

y2

x2+y2+z2

z2
x2+y2+z2

x3
x3+y3+z3

y3

x3+y3+z3

z3
x3+y3+z3

∣∣∣∣∣∣∣∣ · [ABC].

The right-hand side simplifies as

[ABC]∏3
i=1 (xi + yi + zi)

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
Because [ABC] �= 0 the conclusion follows.

This can be restated in the following useful form.

Proposition 7.11. The line through two points P = (x1 : y1 : z1) and Q = (x2 : y2 : z2)
is given precisely by the formula

0 =
∣∣∣∣∣∣
x y z

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣ .
We often use this in combination with Theorem 7.4 in order to intersect a cevian with

an arbitrary line through two points.
We also have a similar criterion for when three lines are concurrent. However, before

proceeding, we make a remark about points at infinity. We earlier defined

(x : y : z) =
(

x

x + y + z
,

y

x + y + z
,

z

x + y + z

)
whenever x + y + z �= 0. What of the case x + y + z = 0?

Consider two parallel lines u1x + v1y + w1z = 0 and u2x + v2y + w2z = 0. Because
they are parallel, we know that the system

0 = u1x + v1y + w1z

0 = u2x + v2y + w2z

1 = x + y + z
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has no solutions (x, y, z). This is only possible when∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

1 1 1

∣∣∣∣∣∣ = 0.

However, this implies that the system of equations

0 = u1x + v1y + w1z

0 = u2x + v2y + w2z

0 = x + y + z

has a nontrivial solution! (Conversely, if the lines are not parallel, the determinant is nonzero,
and hence there is exactly one solution, namely (0, 0, 0).)

In light of this, we make each of our lines just “a little longer” by adding one point
to it, a point at infinity. It is a point (x : y : z) satisfying the equation of the line and the
additional condition x + y + z = 0. With this addition, every two lines intersect; the lines
that were parallel before now correspond to lines that intersect at points at infinity. Points
at infinity are defined more precisely at the start of Chapter 9.

Example 7.12. Find the point at infinity along the internal bisector of angle A.

Solution. The point at infinity is (−(b + c) : b : c). After all, it lies on the equation of
the angle bisector, and the sum of its coordinates is zero.

Theorem 7.13 (Concurrence). Consider three lines

	i : uix + viy + wiz = 0

for i = 1, 2, 3. They are concurrent or all parallel if and only if

0 =
∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ .
Proof. This is essentially linear algebra. Consider the system of equations

0 = u1x + v1y + w1z

0 = u2x + v2y + w2z

0 = u3x + v3y + w3z.

It always has a solution (x, y, z) = (0, 0, 0) and other solutions exist if and only if the lines
concur (possibly at a point at infinity), which occurs only when the determinant of the
matrix is zero.
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7.4 Displacement Vectors
In this section, we develop the notion of distance and direction through the use of vectors.
This gives us a distance formula, and hence a circle formula, as well as a formula for the
distance between two lines.

The chief definition is as follows. A displacement vector of two (normalized) points
P = (p1, p2, p3) and Q = (q1, q2, q3) is denoted by

−→
PQ and is equal to (q1 − p1, q2 −

p2, q3 − p3). Note that the sum of the coordinates of a displacement vector is 0.
This section frequently involves translating the circumcenter O to the zero vector �0;

this lets us invoke properties of the dot product described in Appendix A.3. This translation
is valid since the point (x, y, z) satisfies x + y + z = 1, so the coordinates of the points do
not change as a result; to be explicit, we can write

�P − �O = x
(

�A − �O
)

+ y
(

�B − �O
)

+ z
(

�C − �O
)

since x + y + z = 1. As a result, however:

It is important that x + y + z = 1 when doing calculations with displacement vectors.

Our first major result is the distance formula.

Theorem 7.14 (Distance Formula). Let P and Q be two arbitrary points and consider
a displacement vector

−→
PQ = (x, y, z). Then the distance from P to Q is given by

|PQ|2 = −a2yz − b2zx − c2xy.

Proof. Translate the coordinate plane so that the circumcenter O becomes the zero
vector. Recall (from Appendix A.3) that this implies

�A · �A = R2 and �A · �B = R2 − 1

2
c2.

Here R is the circumradius of triangle ABC, as usual. Then we simply compute

|PQ|2 =
(
x �A + y �B + z �C

)
·
(
x �A + y �B + z �C

)
.

Applying the properties of the dot product and using cyclic sum notation (defined in
Section 0.3),

|PQ|2 =
∑
cyc

x2 �A · �A + 2
∑
cyc

xy �A · �B

= R2(x2 + y2 + z2) + 2
∑
cyc

xy

(
R2 − 1

2
c2

)
.

Collecting the R2 terms,

|PQ|2 = R2(x2 + y2 + z2 + 2xy + 2yz + 2zx) − (c2xy + a2yz + b2zx)

= R2(x + y + z)2 − a2yz − b2zx − c2xy

= −a2yz − b2zx − c2xy

since x + y + z = 0, being the sum of the coordinates in a displacement vector.
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As a consequence we can deduce the formula for the equation of a circle. It looks
unwieldy, but it can often be tamed; see the remarks that follow the proof.

Theorem 7.15 (Barycentric Circle). The general equation of a circle is

−a2yz − b2zx − c2xy + (ux + vy + wz)(x + y + z) = 0

for reals u, v,w.

Proof. Assume the circle has center (j, k, l) and radius r . Then applying the distance
formula, we see that the circle is given by

−a2(y − k)(z − l) − b2(z − l)(x − j ) − c2(x − j )(y − k) = r2.

Expand everything, and collect terms to get

−a2yz − b2zx − c2xy + C1x + C2y + C3z = C

for some hideous constants Ci and C. Since x + y + z = 1, we can rewrite

−a2yz − b2zx − c2xy + ux + vy + wz = 0

as

−a2yz − b2zx − c2xy + (ux + vy + wz)(x + y + z) = 0

where u = C1 − C, etc.

While this may look complicated, it turns out that circles that pass through vertices and
sides are often very nice. For example, consider what occurs if the circle passes through
A = (1, 0, 0). The terms a2yz, b2zx, c2xy all vanish, and accordingly we arrive at u = 0.
Even if only one coordinate is zero, we still find many vanishing terms. Several examples
are illustrated in the exercises.

As a result, whenever you are trying to solve a problem involving circumcircles through
barycentrics, you should strive to set up the coordinates so that points on the circle are points
on the sides, or better yet, vertices of the reference triangle. In other words, the choice of
reference triangle is of paramount importance whenever circles appear.

Our last development for this section is a criterion to determine when two displacement
vectors are perpendicular.

Theorem 7.16 (Barycentric Perpendiculars). Let
−−→
MN = (x1, y1, z1) and

−→
PQ =

(x2, y2, z2) be displacement vectors. Then MN ⊥ PQ if and only if

0 = a2(z1y2 + y1z2) + b2(x1z2 + z1x2) + c2(y1x2 + x1y2).

The proof is essentially the same as before: shift �O to the zero vector, and then expand
the condition

−−→
MN · −→

PQ = 0, which is equivalent to perpendicularity. We encourage you
to prove the theorem yourself before reading the following proof.

Proof. Translate �O to �0. It is necessary and sufficient that(
x1 �A + y1 �B + z1 �C

)
·
(
x2 �A + y2 �B + z2 �C

)
= 0.
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Expanding, this is just∑
cyc

(
x1x2 �A · �A

)
+

∑
cyc

(
(x1y2 + x2y1) �A · �B

)
= 0.

Taking advantage of the fact that �O = 0, we may rewrite this as

0 =
∑
cyc

(x1x2R
2) +

∑
cyc

(x1y2 + x2y1)

(
R2 − c2

2

)
.

This rearranges as

R2

(∑
cyc

(x1x2) +
∑
cyc

(x1y2 + x2y1)

)
= 1

2

∑
cyc

(
(x1y2 + x2y1)(c2)

)
R2(x1 + y1 + z1)(x2 + y2 + z2) = 1

2

∑
cyc

(
(x1y2 + x2y1)(c2)

)
.

But we know that x1 + y1 + z1 = x2 + y2 + z2 = 0 in a displacement vector, so this
becomes

R2 · 0 · 0 = 1

2

∑
cyc

(
(x1y2 + x2y1)(c2)

)
0 =

∑
cyc

(
(x1y2 + x2y1)(c2)

)
.

Theorem 7.16 is particularly useful when one of the displacement vectors is a side of the
triangle. Several applications are given in the exercises, and more are seen in the examples
section.

Problems for this Section

Lemma 7.17 (Barycentric Circumcircle). The circumcircle (ABC) of the reference tri-
angle has equation

a2yz + b2zx + c2xy = 0.

Hint: 688

Problem 7.18. Consider a displacement vector
−→
PQ = (x1, y1, z1). Show that PQ ⊥ BC

if and only if

0 = a2(z1 − y1) + x1(c2 − b2).

Lemma 7.19 (Barycentric Perpendicular Bisector). The perpendicular bisector of BC

has equation

0 = a2(z − y) + x(c2 − b2).
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7.5 A Demonstration from the IMO Shortlist
Before proceeding to even more obscure theory, we take the time to discuss an illustrative
example. Here is a problem from the IMO Shortlist of 2011.

Example 7.20 (Shortlist 2011/G6). Let ABC be a triangle with AB = AC and let D

be the midpoint of AC. The angle bisector of ∠BAC intersects the circle through D, B,
and C at the point E inside triangle ABC. The line BD intersects the circle through A, E,
and B in two points B and F . The lines AF and BE meet at a point I , and the lines CI

and BD meet at a point K . Show that I is the incenter of triangle KAB.

B C

A

DD′
E

F

I

K

Figure 7.5A. IMO Shortlist 2011, Problem G6 (Example 7.20).

There are many nice and relatively painless synthetic observations that you can make
in this problem. However, for the sake of discussion, we pretend we missed all of them.
How should we apply barycentric coordinates?

Perhaps a better question is whether we should apply barycentric coordinates at all.
There are two circles, but they seem relatively tame. There are lots of intersections of lines,
but they seem to be mostly things that could be made into cevians. The final condition is
about an angle bisector, which could pose difficulties, but we might make it.

A large part of this decision is based on what we choose for our reference triangle. At
first we might be inclined to choose �ABC, as the two circles in the problem pass through
at least two vertices, and the condition AB = AC is easy to encode. However, trying to
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prove that BI bisects ∠ABD, and that AI bisects ∠BAK , seems much less pleasant. Can
we make at least one of them nicer?

That motivates a new choice of reference triangle: let us pick �ABD instead. That way,
the BE bisection condition is extremely clean, and in fact almost immediate from the start
(since E is the first point we compute). We still have the property that all circles pass through
two vertices. Even better, the points F and K now lie on a side of the triangle, rather than
just on some cevian (even though cevians are usually good too). And the second bisection
condition looks much nicer now too, because we would only need to check AB2

AK2 = BF 2

FK2 ;
since F and K lie on BD, the right-hand side of this equality looks much better, and so the
only truly nontrivial step would be computing AK2. And finally, the isosceles condition is
just AB = 2AD, which is trivial to encode.

It really is quite important that everything works out. A single thorn can doom the
entire solution. We should always worry the most about the most time-consuming step of
the entire plan—often this bottleneck takes longer to clear than the rest of the problem
combined.

Let us begin. Set A = (1, 0, 0), B = (0, 1, 0), and D = (0, 0, 1), and denote a = BD,
b = AD, c = AB = 2b. We also abbreviate ∠A = ∠BAD, ∠B = ∠DBA, and ∠D =
∠ADB.

Our first objective is to compute E, so we need the equation of (BDC). We know
that C is the reflection of A over D, and hence C = (−1, 0, 2). Thus we are plugging in
B = (0, 1, 0), C = (−1, 0, 2), and D = (0, 0, 1) into the circle equation

(BDC) : −a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz) = 0.

The points B and D now force v = w = 0—indeed this is why we want circles to pass
through vertices. Now plugging in C gives

2b2 − u = 0 ⇒ u = 2b2.

Great. Now E lies on the bisector of ∠BAD. Hence, set E = (t : 1 : 2) (which is equivalent
to (bs : b : 2b) = (bs : b : c), where s = t

b
) for some t . We can now solve for t by just

dropping it into the circle equation, which gives

−a2(1)(2) − b2(2)(t) − c2(t)(1) + (3 + t)(2b2 · t) = 0.

Putting c = 2b, we enjoy a cancellation of all the t terms, leaving us with merely 2b2 · t2 =
2a2, and hence t = ± a

b
. We pick t > 0 since E is in the interior, and accordingly we deduce

E = (
a
b

: 1 : 2
)
, or

E = (a : b : 2b) = (a : b : c) .

This means E is the incenter of �ABD! Glancing back at the diagram, that implies that
BE is the angle bisector of ∠ABD. And the explanation is simple: if D′ is the reflection of
D across AE, then the arcs D′E and DE of (BCD) are equal by simple symmetry. Hence
∠D′BE = ∠EBD. Oops. That was embarrassing. But let us trudge on.

The next step is to compute the point F . We first need the equation of (AEB). By
proceeding as before with generic u, v, w, we may derive that u = v = 0 with the points
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A and B. As for E, we require

−a2bc − b2ca − c2ab + (a + b + c)(cw) = 0 ⇒ w = ab.

Now set F = (0 : m : n) and throw this into our discovered circle formula. The computa-
tions give us

−a2mn + (m + n)(abn) = 0 ⇒ −am + b(m + n) = 0

and so m : n = b : a − b. Hence

F = (0 : b : a − b) =
(

0 :
b

a
:

a − b

a

)
.

Wait, that is pretty clean. Why might that be?
Upon further thought, we see that

DF = b

a
· BD = b = AD.

In other words, F is the reflection of A over the bisector ED. Is this obvious? Yes, it is—the
center of (AEB) lies on ED by our ubiquitous Lemma 1.18. Cue sound of slap against
forehead.

(At this point we might take a moment to verify that a > b, to rule out configuration
issues. This just follows from the triangle inequality a + b > 2b.)

Next, we compute I . This is trivial, because AF and BE are cevians. Verify that

I = (a(a − b) : bc : c(a − b)) = (
a(a − b) : 2b2 : 2b(a − b)

)
is the correct point.

We now wish to compute K . Let us set K = (0 : y : z) and solve again for y : z. Because
the points I , K , and C are collinear, our collinearity criterion (Theorem 7.10) gives us

0 =
∣∣∣∣∣∣

0 y z

−1 0 2
a(a − b) 2b2 2b(a − b)

∣∣∣∣∣∣ .
Let us see if we make more zeros. Add a(a − b) times the second row to the last to obtain

0 = 2

∣∣∣∣∣∣
0 y z

−1 0 2
0 b2 (b + a)(a − b)

∣∣∣∣∣∣ .
Here we have factored the naturally occurring 2 in the bottom row. Apparently this implies,
upon evaluating by minors (in the first column) that we have

0 =
∣∣∣∣ y z

b2 a2 − b2

∣∣∣∣ .
Hence we discover K = (

0 : b2 : a2 − b2
) =

(
0, b2

a2 ,
a2−b2

a2

)
. This is really nice as well.

Actually, it implies in a similar way as before that

DK = b2

a
= AD2

BD
⇒ DB · DK = AD2.
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Did we miss another synthetic observation? This new discovery implies �DAK ∼ �DBA,
and hence ∠KAD = ∠KBA. That would mean ∠BAK = ∠A − ∠B, which is positive
by a > b.

Our calculations have given us ∠BAK = ∠A − ∠B, meaning it suffices to prove that
∠BAF = 1

2 (∠A − ∠B). And yet ∠BAE = 1
2∠A, so we only need to prove ∠FAE =

1
2∠B. In a blinding flash of obvious, ∠FAE = ∠FBE = 1

2∠B and we are done.
The calculation of K from F encodes all of the nontrivial synthetic steps of the problem,

and our surprise at the resulting K led us naturally to the end. We write this up nicely, hiding
the fact that we ever missed such steps.

Solution to Example 7.20. Let D′ be the midpoint of AB. Evidently the points B, D′,
D, E, C are concyclic. By symmetry, DE = D′E, and hence BE is a bisector of ∠D′BD.
It follows that E is the incenter of triangle ABD. Since the center of (AEB) lies on ray
DE by Lemma 1.18, it follows that the reflection of A over ED lies on (AEB), and hence
is F .

We now claim that DK · DB = DA2. The proof is by barycentric coordinates on
�ABD. Set A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1) and let a = BD, b = AD, and
c = AB = 2b. The observations above imply that F = (0 : b : b − a) and E = (a : b : c).
This implies

I = (a(a − b) : bc : c(a − b)) = (
a(a − b) : 2b2 : 2b(a − b)

)
.

Finally, C = (−1, 0, 2). Hence if K = (0 : y : z) then we have

0 =
∣∣∣∣∣∣

0 y z

−1 0 2
a(a − b) 2b2 2b(a − b)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 y z

−1 0 2
0 2b2 2(a2 − b2)

∣∣∣∣∣∣
so y : z = b2 : (a2 − b2), so K =

(
0, b2

a2 , 1 − b2

a2

)
. It follows immediately that DK = b2

a

as desired.
Now remark that

DK · DB = DA2 ⇒ �DAK ∼ �DBA ⇒ ∠FAD = ∠B.

So ∠BAK = ∠A − ∠B. But ∠EAD = 1
2∠A and ∠FAE = ∠FBE = 1

2∠B imply
∠BAF = 1

2 (∠A − ∠B), and we are done.

7.6 Conway’s Notations
We now adapt Conway’s notation∗ and define

SA = b2 + c2 − a2

2

and SB and SC analogously. Furthermore, let us define the shorthand SBC = SBSC , and so
on.

We first encountered these when we gave the coordinates of the circumcenter, and
claimed they were friendlier than they seemed. This is because they happen to satisfy a

∗ The notation is named after John Horton Conway, a British mathematician.
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lot of nice identities. For example, it is easy to see that SB + SC = a2. Here are some less
obvious ones.

Proposition 7.21 (Conway Identities). Let S denote twice the area of triangle ABC.
Then

S2 = SAB + SBC + SCA

= SBC + a2SA

= 1

2
(a2SA + b2SB + c2SC)

= (bc)2 − S2
A.

In particular,

a2Sa + b2SB − c2SC = 2SAB.

One might notice that there are a lot of a2SA and SAB terms involved. This is because these
are the coordinates of the circumcenter and orthocenter—hence these terms tend to arise
naturally, and the identities provide a way of manipulating them.

More generally, if S is again equal to twice the area of triangle ABC, we define

Sθ = S cot θ.

Here the angle is directed modulo 180◦. The special case when θ = ∠A yields SA =
1
2 (b2 + c2 − a2).

With this notation, we also have the following occasionally useful result.

Theorem 7.22 (Conway’s Formula). Let P be an arbitrary point. If β = �PBC and
γ = �BCP , then

P = (−a2 : SC + Sγ : SB + Sβ

)
.

The proof follows by computing the signed areas of triangles PBC, PAB, PCA and
performing some manipulations. The proof is not particularly insightful and left to a diligent
reader as an exercise. An example of an application appears in the exercises, Problem 7.37.

7.7 Displacement Vectors, Continued
In this section we refine some of our work in Section 7.4.

First of all, we look at our circle again:

−a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz) = 0.

It might have seemed odd to insist on the negative signs in the first three terms, since we
could have just as easily inverted the signs of u, v, w. It turns out that there is a good reason
for this. Recall that we derived the circle formula by writing

(distance from (x, y, z) to center)2 − radius2 = 0.
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This should look familiar! What happens if we substitute an arbitrary point (x, y, z) into the
formula? In that case we obtain the power of a point with respect to the circle. Explicitly,
we obtain the following lemma.

Lemma 7.23 (Barycentric Power of a Point). Let ω be the circle given by

−a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz) = 0.

Then let P = (x, y, z) be any point. Then

Powω(P ) = −a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz).

Note that we must have (x, y, z) homogenized here. Otherwise the distance formula breaks,
and hence so does this lemma.

An easy but nonetheless indispensable consequence of Lemma 7.23 is the following
lemma which gives us the radical axis of two circles.

Lemma 7.24 (Barycentric Radical Axis). Suppose two non-concentric circles are given
by the equations

−a2yz − b2zx − c2xy + (x + y + z)(u1x + v1y + w1z) = 0

−a2yz − b2zx − c2xy + (x + y + z)(u2x + v2y + w2z) = 0.

Then their radical axis is given by

(u1 − u2)x + (v1 − v2)y + (w1 − w2)z = 0.

Proof. Just set the powers equal to each other and remark x + y + z �= 0. Notice that
this equation is homogeneous.

We may also improve upon Theorem 7.16. In our proof of the theorem, we shifted �O
to zero and then used that

R2(x1 + y1 + z1)(x2 + y2 + z2) = R2 · 0 · 0 = 0.

In fact, we only need one of the displacement vectors to be zero for the entire product to be
zero. For the other, we can get away with using a pseudo displacement vector; that is, we
may cheat and, for example, write

−−→
HO = �H − �O = �H = �A + �B + �C = (1, 1, 1) .

(Again, �O = 0 here. The lemma that �H = �A + �B + �C under these conditions was proved
in Chapter 6.)

Of course this is strictly nonsense, but the idea is there. Here is the formal statement.

Theorem 7.25 (Generalized Perpendicularity). Suppose M , N , P , and Q are points
with

−−→
MN = x1

−→
AO + y1

−→
BO + z1

−→
CO

−→
PQ = x2

−→
AO + y2

−→
BO + z2

−→
CO

such that either x1 + y1 + z1 = 0 or x2 + y2 + z2 = 0.
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In that case, lines MN and PQ are perpendicular if and only if

0 = a2(z1y2 + y1z2) + b2(x1z2 + z1x2) + c2(y1x2 + x1y2).

Proof. Repeat the proof of Theorem 7.16.

This becomes useful when O or H is involved in a perpendicularity. For example, we
can obtain the following corollary by finding the perpendicular line to AO through A.

Example 7.26. The tangent to (ABC) at A is given by

b2z + c2y = 0.

Proof. Let P = (x, y, z) be a point on the tangent and assume as usual that �O = 0. The
displacement vector

−→
PA is

−→
PA = (x − 1, y, z) = (x − 1) �A + y �B + z �C.

We can also use the pseudo displacement vector
−→
AO = �A − �O = 1 �A + 0 �B + 0 �C.

Putting (x1, y1, z1) = (x − 1, y, z) and (x2, y2, z2) = (1, 0, 0) yields the result.

7.8 More Examples
Our first example is the famous Pascal’s theorem from projective geometry.

Example 7.27 (Pascal’s Theorem). Let A, B, C, D, E, F be six distinct points on a
circle �. Prove that the three intersections of lines AB and DE, BC and EF , and CD and
FA are collinear.

A

B

C

D

E

F

Figure 7.8A. Pascal’s theorem (or one case thereof).

This problem seems okay because we have lots of intersections and only one circle.
Now we need to decide on a reference triangle. We might be tempted to pick ABC, but

doing so loses much of the symmetry in the statement of Pascal’s theorem. In addition, the
lines DE and EF would fail to be cevians. Let us set reference triangle ACE instead—
this way, our computations are symmetric, and the lines AB, DE, BC, EF , CD, FA are
symmetric.

We can now proceed with the computation.
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Solution. In some terrible notation, let a = CE, b = EA, c = AE. Set A = (1, 0, 0),
C = (0, 1, 0), E = (0, 0, 1). We still have to deal with the other points, which have a lot of
freedom. Now we write

B = (x1 : y1 : z1)

D = (x2 : y2 : z2)

F = (x3 : y3 : z3)

and hope for the best. Here, the points are subject to the constraint that they must lie on
(ACE). That is, we have that

−a2yizi − b2zixi − c2xiyi = 0, i = 1, 2, 3.

Hopefully this will be helpful later, but for now there is no clear way to use this.
Now to actually compute the intersections. First, we need to smash the cevians AB and

ED together. (For organization, I am always writing the vertex of the reference triangle
first.) The line AB is the locus of points (x : y : z) with y : z = y1 : z1, while the line ED

is the locus of points with x : y = x2 : y2. Hence, the intersection of lines AB and ED is

AB ∩ ED =
(

x2

y2
: 1 :

z1

y1

)
.

(Here we are borrowing the intersection notation from Chapter 9, a bit prematurely. Bear
with me.) We can do the exact same procedure to determine the other intersections:

CD ∩ AF =
(

x2

z2
:

y3

z3
: 1

)

EF ∩ CB =
(

1 :
y3

x3
:

z1

x1

)
.

Now to show that these are collinear, it suffices to show that the determinant∣∣∣∣∣∣∣∣∣∣∣∣

1
y3

x3

z1

x1

x2

y2
1

z1

y1

x2

z2

y3

z3
1

∣∣∣∣∣∣∣∣∣∣∣∣
is zero. (We have lined up the 1s on the main diagonal.) Seeing this, we are inspired to
rewrite our given condition as

a2 · 1

x1
+ b2 · 1

y1
+ c2 · 1

z1
= 0

a2 · 1

x2
+ b2 · 1

y2
+ c2 · 1

z2
= 0

a2 · 1

x3
+ b2 · 1

y3
+ c2 · 1

z3
= 0.
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Linear algebra now tells us that

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1

x1

1

y1

1

z1

1

x2

1

y2

1

z2

1

x3

1

y3

1

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣
but this equals

1

x2y3z1
·

∣∣∣∣∣∣∣∣∣∣∣∣

z1

x1

z1

y1
1

1
x2

y2

x2

z2

y3

x3
1

y3

z3

∣∣∣∣∣∣∣∣∣∣∣∣
which quickly implies that the first determinant is zero.

There is actually little geometry involved in our proof of Pascal’s theorem. In fact,
there is very little special about the use of barycentric coordinates versus any other type of
symmetric coordinates. Indeed they are a special case of homogeneous coordinates, i.e.,
a coordinate system that identifies (kx : ky : kz) with (x, y, z). This is why the determinant
calculations involved virtually no geometric observations.

Our next example involves a pair of incircles.

Example 7.28. Let ABC be a triangle and D a point on BC. Let I1 and I2 denote the
incenters of triangles ABD and ACD, respectively. Lines BI2 and CI1 meet at K . Prove
that K lies on AD if and only if AD is the angle bisector of angle A.

A

B CD

I2I1 K

Figure 7.8B. Using barycentric coordinates to tame incircles.

The first thing we notice in this problem is the incenters. This should evoke fear, because
we do not know much about how to deal with incenters other than that of ABC. Fortunately,
these ones seem somewhat bound to ABC, so we might be okay.
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We take ABC as the reference triangle. (After all, we do have a set of concurrent
cevians, so this seems like something we want to use.) Now the hard part is deciding how
to determine I2.

Perhaps we can phrase I2 as the intersection of two angle bisectors. Obviously one of
them is the C-bisector. For the other, we consider the bisector DI2 (using AI2 will also
work). If we can intersect the lines DI2 and CI2, this will of course give I2.

So how can we handle DI2? If we let C1 be the intersection of DI2 with AC, then C1

splits side AC in an AD : AC ratio, by the angle bisector theorem. This suggests setting
d = AD, p = CD, q = BD, where p + q = a. In that case, C1 = (p : 0 : d).

One might pause to worry about the fact we now have six variables. There are some
relations, p + q = a and Stewart’s theorem, but we prefer not to use these. The reassurance
is that so far all our equations have been of linear degree, so high degrees seem unlikely to
appear. Indeed, we see that the solution is very short.

Solution to Example 7.28. Use barycentric coordinates with respect to ABC. Put
AD = d, CD = p, BD = q.

Let ray DI2 meet AC at C1. Evidently C1 = (p : 0 : d) while D = (0 : p : q).
Thus if I2 = (a : b : t) then we have∣∣∣∣∣∣

p 0 d

0 p q

a b t

∣∣∣∣∣∣ = 0 ⇒ t = ad + bq

p

which yields

I2 = (ap : bp : ad + bq).

Similarly,

I1 = (aq : ad + cp : cq).

So lines BI2 and CI1 intersect at a point

K = (apq : p(ad + cp) : q(ad + bq)) .

This lies on line AD, so

p

q
= p(ad + cp)

q(ad + bq)
.

Hence we obtain cp = bq or p : q = b : c implying D is the foot of the angle bisector.

Next in line is a problem from the USAMO in 2008.

Example 7.29 (USAMO 2008/2). Let ABC be an acute, scalene triangle, and let M , N ,
and P be the midpoints of BC, CA, and AB, respectively. Let the perpendicular bisectors
of AB and AC intersect ray AM in points D and E respectively, and let lines BD and CE

intersect in point F , inside triangle ABC. Prove that points A, N , F , and P all lie on one
circle.

This one is actually a straightforward computation (but not a straightforward synthetic
problem) with reference triangle ABC, but we have selected it to illustrate the use of
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A

B CM

NP
D

E

F

Figure 7.8C. Show that A, N , F , P are concyclic.

determinants and Conway’s notation. There are only two nontrivial steps we will make.
The first is to compute D as the intersection of lines PO and AM (where O is of course
the circumcenter); there are other approaches but this is (I think) the cleanest. The second
is that a homothety with ratio 2 at A to check that F lies on (ANP ); we show that the
reflection of A over F lies on (ABC), which solves the problem. All else is algebra.

Solution to Example 7.29. First, we find the coordinates of D. As D lies on AM , we
know D = (t : 1 : 1) for some t . Now by Lemma 7.19, we find

0 = b2(t − 1) + (a2 − c2) ⇒ t = c2 + b2 − a2

b2
.

Thus we obtain

D = (
2SA : c2 : c2) .

Analogously E = (2SA : b2 : b2), and it follows that

F = (
2SA : b2 : c2

)
.

The sum of the coordinates of F is

(b2 + c2 − a2) + b2 + c2 = 2b2 + 2c2 − a2.

Hence the reflection of A over F is simply

2F − A = (−a2 : 2b2 : 2c2
)
.

It is evident that F ′ lies on (ABC) : −a2yz − b2zx − c2xy = 0, and we are done.

Our final example is the closing problem from Chapter 3. It stretches the power of our
technique by showing even intersections with circles can be handled.

Example 7.30 (USA TSTST 2011/4). Acute triangle ABC is inscribed in circle ω.
Let H and O denote its orthocenter and circumcenter, respectively. Let M and N be the
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midpoints of sides AB and AC, respectively. Rays MH and NH meet ω at P and Q,
respectively. Lines MN and PQ meet at R. Prove that OA ⊥ RA.

A

B C

H

M N

P

Q

R

Figure 7.8D. Show that RA is a tangent.

This one is going to be wilder. We step back and plan before we begin the siege.
Intersecting MN and PQ, and then showing the result is tangent, does not seem too

hard. We have M , N , and H for free. However, it seems trickier to obtain the coordinates
of P and Q.

Not all hope is lost. We want to avoid solving quadratics, so consider what happens
when we intersect line MH with circle (ABC). Because M = (1 : 1 : 0) and H = (SBC :
SCA : SAB), the equation of line MH can be computed as

0 = x − y +
(

SAC − SBC

SAB

)
z.

Also, we of course know 0 = a2yz + b2zx + c2xy. Let us select P = (x : y : −SAB). Then
our system of equations in x and y is

x + y = SC (SA − SB)

c2xy = SASB

(
a2y + b2x

)
.

We can attempt to solve directly for x, and we get some sloppy quadratic of the form
αx2 + βx + γ = 0 for some (messy) expressions α, β, γ . The quadratic formula seems
hopeless at this point.

But we are not stuck yet. Think about the two values of x. They correspond to the
coordinates of two points, P and second point P ′, which has been marked in Figure 7.8E.

But the point P ′ is very familiar—it is just the point diametrically opposite C, and also
the reflection of H over M . So it is straightforward to compute the value of x corresponding
to P ′. Vieta’s formulas then tell us the sum of the roots of our quadratic is − β

α
, and we get

our value of x for free.
Now we can start the computation.
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A

B C

H

M
N

P

Q

P ′ Q′

Figure 7.8E. Vieta jumping, anyone?

Solution to Example 7.30. We use barycentrics on ABC.
First, we compute the coordinates of P ′, the second intersection of line MH with

(ABC). Since it is the reflection of H = (SBC, SCA, SAB) over M , and the coordinates of
H sum to SAB + SBC + SCA, we may write

P ′ = 2

(
SAB + SBC + SCA

2
:

SAB + SBC + SCA

2
: 0

)
− (SBC : SCA : SAB)

= (SAB + SAC : SAB + SBC : −SAB)

= (
a2SA : b2SB : −SAB

)
.

Now let us determine the coordinates of P , where we let P = (
x ′ : y ′ : z′) =(

x ′ : y ′ : −SAB

)
(valid since we just scale the coordinates so that z′ = −SAB). Because

it lies on line MH , we find

0 = x ′ − y ′ +
(

SAC − SBC

SAB

)
z′ ⇒ y ′ = x ′ + SBC − SAC.

Also, we know that a2y ′z′ + b2z′x ′ + c2x ′y ′ = 0, which gives

c2x ′y ′ = SAB

(
a2y ′ + b2x ′) .

Substituting, we have

c2 (
x ′ (x ′ + SBC − SAC

)) = SAB

(
a2 (

x ′ + SBC − SAC

) + b2x ′) .

Collecting like terms gives the quadratic

c2x ′2 + [
c2 (SBC − SAC) − (a2 + b2)SAB

]
x ′ + constant = 0.

By Vieta’s formulas, then, the x ′ we seek is just

a2 + b2

c2
SAB − SBC + SAC − a2SA.



142 7. Barycentric Coordinates

Writing a2 = SAB + SAC in hopes of clearing out some terms, this becomes

a2 + b2 − c2

c2
SAB − SBC = SASBSC

c2
− SBC.

Now y ′ = SASBSC

c2 − SAC . Cleaning further,

P = (
S2

BSC : S2
ASC : c2SAB

)
.

Analogous calculations give that

Q = (
SBS2

C : b2SAC : S2
ASB

)
.

Finding the equation of line PQ looks painful, so let us find where R should be
first. Let the tangent to A meet line MN at R′. It is straightforward to derive that R′ =(
b2 − c2 : b2 : −c2

)
. Now we can just take a determinant. To show the three points P , Q,

R′ are collinear it suffices to check that

0 =

∣∣∣∣∣∣∣∣
S2

BSC S2
ASC c2SASB

SBS2
C b2SASC S2

ASB

b2 − c2 b2 −c2

∣∣∣∣∣∣∣∣ .
Note that S2

BSC − S2
ASC − c2SASB = c2 [SC(SB − SA) − SASB]. So upon subtracting the

second and third columns from the first, this factors as

(SBC − SAB − SAC) ·

∣∣∣∣∣∣∣∣
c2 S2

ASC c2SASB

b2 b2SASC S2
ASB

0 b2 −c2

∣∣∣∣∣∣∣∣ .
To show this is zero, it suffices to check that

b2
(
c2S2

ASB − b2c2SASB

) = c2
(
b2S2

ASC − b2c2SASC

)
.

The left-hand side factors as SASBb2c2
(
SA − b2

) = −SASBSCb2c2 and so does the right-
hand side, so we are done.

This is certainly a somewhat brutal solution, but the calculation can be carried out
within a half hour (and two pages) with some experience (and little insight). Notice how
Conway’s notation kept the expressions manageable.

7.9 When (Not) to Use Barycentric Coordinates
To summarize, let us discuss briefly when barycentrics are useful.

� Cevians are wonderful in every way, shape, and form. Know them, use them, love them.
Pick reference triangles in which many lines become cevians.

� Problems heavily involving centers of a prominent triangle are in general good, because
we have nice forms for most of the centers.

� Intersections of lines, collinearity, and concurrence are fine. Bonus points when cevians
are involved.
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� Problems that are symmetric around the vertices of a triangle. Because barycentric
coordinates are also symmetric, this allows us to take advantage of the nice symmetry,
unlike with Cartesian coordinates.

� Ratios, lengths, or areas.
� Problems with few points. This is kind of obvious—the fewer points you have to compute,

the better.

In contrast, here are things that barycentric coordinates do not handle well.

� Lots of circles. One can sometimes find a way around circles (for example, if only the
radical axis or power of a point is relevant).

� Circles that do not pass through vertices of sides of a reference triangle. In general, the
equation of a circle through three completely arbitrary points will be very ugly. However,
the circle becomes much more tractable if the points it passes through have zeros.

� Arbitrary circumcenters.
� General angle conditions. Of course, there are exceptions; they typically involve angle

conditions that can be translated into length conditions. The angle bisector theorem is
your friend here.

7.10 Problems
There are quite a few contest problems that can be solved by barycentrics; this represents a
rather small subset of problems I have encountered that are susceptible. Part of the reason is
that, at the time of writing, barycentrics are a relatively unknown technique. As a result, test-
writers are not aware when a problem they propose is trivialized by barycentric coordinates,
as they would have been for a problem approachable by either complex numbers or Cartesian
coordinates.

Lemma 7.31. Let ABC be a triangle with altitude AL and let M be the midpoint of AL.
If K is the symmedian point of triangle ABC, prove that KM bisects BC. Hints: 652 393

Problem 7.32. Let I and G denote the incenter and centroid of a triangle ABC and let
N denote the Nagel point; this is the intersection of the cevians that join A to the contact
point of the A-excircle on BC, and similarly for B and C. Prove that I , G, N are collinear
and that NG = 2GI . Hints: 271 243

Problem 7.33 (IMO 2014/4). Let P and Q be on segment BC of an acute triangle ABC

such that ∠PAB = ∠BCA and ∠CAQ = ∠ABC. Let M and N be the points on AP and
AQ, respectively, such that P is the midpoint of AM and Q is the midpoint of AN . Prove
that the intersection of BM and CN is on the circumference of triangle ABC. Hints: 486 574

251 Sol: p.265

Problem 7.34 (EGMO 2013/1). The side BC of triangle ABC is extended beyond C to
D so that CD = BC. The side CA is extended beyond A to E so that AE = 2CA. Prove
that, if AD = BE, then triangle ABC is right-angled. Hint: 188 Sol: p.265

Problem 7.35 (ELMO Shortlist 2013). In �ABC, a point D lies on line BC. The
circumcircle of ABD meets AC at F (other than A), and the circumcircle of ADC meets
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AB at E (other than A). Prove that as D varies, the circumcircle of AEF always passes
through a fixed point other than A, and that this point lies on the median from A to BC.
Hints: 657 653

Problem 7.36 (IMO 2012/1). Given triangle ABC the point J is the center of the excircle
opposite the vertex A. This excircle is tangent to side BC at M , and to lines AB and AC at
K and L, respectively. Lines LM and BJ meet at F , and lines KM and CJ meet at G. Let
S be the point of intersection of lines AF and BC, and let T be the point of intersection of
lines AG and BC. Prove that M is the midpoint of ST . Hints: 447 280 Sol: p.266

Problem 7.37 (Shortlist 2001/G1). Let A1 be the center of the square inscribed in acute
triangle ABC with two vertices of the square on side BC. Thus one of the two remaining
vertices of the square is on side AB and the other is on AC. Points B1, C1 are defined in
a similar way for inscribed squares with two vertices on sides AC and AB, respectively.
Prove that lines AA1, BB1, CC1 are concurrent. Hints: 123 466

Problem 7.38 (USA TST 2008/7). Let ABC be a triangle with G as its centroid. Let P be
a variable point on segment BC. Points Q and R lie on sides AC and AB respectively, such
that PQ ‖ AB and PR ‖ AC. Prove that, as P varies along segment BC, the circumcircle
of triangle AQR passes through a fixed point X such that ∠BAG = ∠CAX. Hints: 6 647

Sol: p.266

Problem 7.39 (USAMO 2001/2). Let ABC be a triangle and let ω be its incircle. Denote
by D1 and E1 the points where ω is tangent to sides BC and AC, respectively. Denote
by D2 and E2 the points on sides BC and AC, respectively, such that CD2 = BD1 and
CE2 = AE1, and denote by P the point of intersection of segments AD2 and BE2. Circle
ω intersects segment AD2 at two points, the closer of which to the vertex A is denoted by
Q. Prove that AQ = D2P . Hints: 320 160

Problem 7.40 (USA TSTST 2012/7). Triangle ABC is inscribed in circle �. The interior
angle bisector of angle A intersects side BC and � at D and L (other than A), respectively.
Let M be the midpoint of side BC. The circumcircle of triangle ADM intersects sides AB

and AC again at Q and P (other than A), respectively. Let N be the midpoint of segment
PQ, and let H be the foot of the perpendicular from L to line ND. Prove that line ML is
tangent to the circumcircle of triangle HMN . Hints: 381 345 576

Problem 7.41. Let ABC be a triangle with incenter I . Let P and Q denote the reflections of
B and C across CI and BI , respectively. Show that PQ ⊥ OI , where O is the circumcenter
of ABC. Hints: 396 461

Lemma 7.42. Let ABC be a triangle with circumcircle � and let TA denote the tangency
points of the A-mixtilinear incircle to �. Define TB and TC similarly. Prove that lines ATA,
BTB , CTC , IO are concurrent, where I and O denote the incenter and circumcenter of
triangle ABC. Hints: 490 54 602 488 Sol: p.267

Problem 7.43 (USA December TST for IMO 2012). In acute triangle ABC, ∠A < ∠B

and ∠A < ∠C. Let P be a variable point on side BC. Points D and E lie on sides AB and
AC, respectively, such that BP = PD and CP = PE. Prove that as P moves along side
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BC, the circumcircle of triangle ADE passes through a fixed point other than A. Hints: 179

144 137

Problem 7.44 (Sharygin 2013). Let C1 be an arbitrary point on side AB of �ABC. Points
A1 and B1 are on rays BC and AC such that ∠AC1B1 = ∠BC1A1 = ∠ACB. The lines
AA1 and BB1 meet in point C2. Prove that all the lines C1C2 have a common point. Hints:

51 12 66 304 Sol: p.268

Problem 7.45 (APMO 2013/5). Let ABCD be a quadrilateral inscribed in a circle ω, and
let P be a point on the extension of AC such that PB and PD are tangent to ω. The tangent
at C intersects PD at Q and the line AD at R. Let E be the second point of intersection
between AQ and ω. Prove that B, E, R are collinear. Hints: 379 524 129

Problem 7.46 (USAMO 2005/3). Let ABC be an acute-angled triangle, and let P and Q be
two points on its side BC. Construct a point C1 in such a way that the convex quadrilateral
APBC1 is cyclic, QC1 ‖ CA, and C1 and Q lie on opposite sides of line AB. Construct
a point B1 in such a way that the convex quadrilateral APCB1 is cyclic, QB1 ‖ BA, and
B1 and Q lie on opposite sides of line AC. Prove that the points B1, C1, P , and Q lie on a
circle. Hints: 191 325 204

Problem 7.47 (Shortlist 2011/G2). Let A1A2A3A4 be a non-cyclic quadrilateral. For
1 ≤ i ≤ 4, let Oi and ri be the circumcenter and the circumradius of triangle Ai+1Ai+2Ai+3

(where Ai+4 = Ai). Prove that

1

O1A
2
1 − r2

1

+ 1

O2A
2
2 − r2

2

+ 1

O3A
2
3 − r2

3

+ 1

O4A
2
4 − r2

4

= 0.

Hints: 468 588 224 621 Sol: p.269

Problem 7.48 (Romania TST 2010). Let ABC be a scalene triangle, let I be its incenter,
and let A1, B1, and C1 be the points of contact of the excircles with the sides BC, CA,
and AB, respectively. Prove that the circumcircles of the triangles AIA1, BIB1, and CIC1

have a common point different from I . Hints: 549 23 94

Problem 7.49 (ELMO 2012/5). Let ABC be an acute triangle with AB < AC, and let D

and E be points on side BC such that BD = CE and D lies between B and E. Suppose
there exists a point P inside ABC such that PD ‖ AE and ∠PAB = ∠EAC. Prove that
∠PBA = ∠PCA. Hints: 171 229 Sol: p.270

Problem 7.50 (USA TST 2004/4). Let ABC be a triangle. Choose a point D in its interior.
Let ω1 be a circle passing through B and D and ω2 be a circle passing through C and D so
that the other point of intersection of the two circles lies on AD. Let ω1 and ω2 intersect
side BC at E and F , respectively. Denote by X the intersection of lines DF and AB, and
let Y the intersection of DE and AC. Show that XY ‖ BC. Hints: 301 206 567 126

Problem 7.51 (USA TSTST 2012/2). Let ABCD be a quadrilateral with AC = BD. Diag-
onals AC and BD meet at P . Let ω1 and O1 denote the circumcircle and the circumcenter
of triangle ABP . Let ω2 and O2 denote the circumcircle and circumcenter of triangle CDP .
Segment BC meets ω1 and ω2 again at S and T (other than B and C), respectively. Let
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M and N be the midpoints of minor arcs ŜP (not including B) and T̂ P (not including C).
Prove that MN ‖ O1O2. Hints: 651 518 664 364

Problem 7.52 (IMO 2004/5). In a convex quadrilateral ABCD, the diagonal BD bisects
neither the angle ABC nor the angle CDA. Point P lies inside ABCD with ∠PCB =
∠DBA and ∠PDC = ∠BDA. Prove that ABCD is a cyclic quadrilateral if and only if
AP = CP . Hints: 117 266 641 349 Sol: p.270

Problem 7.53 (Shortlist 2006/G4). Let ABC be a triangle with ∠C < ∠A < 90◦. Select
point D on side AC so that BD = BA. The incircle of ABC is tangent to AB and AC at
points K and L, respectively. Let J be the incenter of triangle BCD. Prove that the line
KL bisects AJ . Hints: 5 295 281 394
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C H A P T E R 8
Inversion

Out of nothing I have created a strange new universe. János Bolyai

In this chapter we discuss the method of inversion in the plane. This technique is useful for
turning circles into lines and for handling tangent figures.

8.1 Circles are Lines
A cline (or generalized circle) refers to either a circle or a line. Throughout the chapter, we
use “circle” and “line” to refer to the ordinary shapes, and “cline” when we wish to refer
to both.

The idea is to view every line as a circle with infinite radius. We add a special point P∞
to the plane, which every ordinary line passes through (and no circle passes through). This
is called the point at infinity. Therefore, every choice of three distinct points determines a
unique cline—three ordinary points determine a circle, while two ordinary points plus the
point at infinity determine a line.

With this said, we can now define an inversion. Let ω be a circle with center O and
radius R. We say an inversion about ω is a map (that is, a transformation) which does the
following.

ω

O A A∗

Figure 8.1A. A∗ is the image of the point A when we take an inversion about ω.

� The center O of the circle is sent to P∞.
� The point P∞ is sent to O.

149
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� For any other point A, we send A to the point A∗ lying on ray OA such that OA · OA∗ =
r2.

Try to apply the third rule to A = O and A = P∞, and the motivation for the first two
rules becomes much clearer. The way to remember it is “ r2

0 = ∞” and “ r2

∞ = 0”.
At first, this rule seems arbitrary and contrived. What good could it do? First, we make

a few simple observations.

1. A point A lies on ω if and only if A = A∗. In other words, the points of ω are fixed.
2. Inversion swaps pairs of points. In other words, the inverse of A∗ is A itself. In still other

words, (A∗)∗ = A.

We can also find a geometric interpretation for this mapping, which provides an impor-
tant setting in which inverses arise naturally.

Lemma 8.1 (Inversion and Tangents). Let A be a point inside ω, other than O, and A∗

be its inverse. Then the tangents from A∗ to ω are collinear with A.

This configuration is shown in Figure 8.1A. It is a simple exercise in similar triangles:
just check that OA · OA∗ = r2.

This is all fine and well, but it does not provide any clue why we should care about
inversion. Inversion is not very interesting if we only look at one point at a time—how
about two points A and B?

O

A

B

A∗

B∗

Figure 8.1B. Inversion preserves angles, kind of.

This situation is shown in Figure 8.1B. Now we have some more structure. Because
OA · OA∗ = OB · OB∗ = r2, by power of a point we see that quadrilateral ABB∗A∗ is
cyclic. Hence we obtain the following theorem.

Theorem 8.2 (Inversion and Angles). If A∗ and B∗ are the inverses of A and B under
inversion centered at O, then �OAB = −�OB∗A∗.

Unfortunately, this does not generalize nicely∗ to arbitrary angles, as the theorem only
handles angles with one vertex at O.

It is worth remarking how unimportant the particular value of r has been so far. Indeed,
we see that often the radius is ignored altogether; in this case, we refer to this as inversion

∗ The correct generalization is to define an angle between two clines to be the angle formed by the tangents at
an intersection point. This happens to be preserved under inversion. However, this is in general not as useful.
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around P , meaning that we invert with respect to a circle centered at P with any positive
radius. (After all, scaling r is equivalent to just applying a homothety with ratio r2.)

Problem for this Section

Problem 8.3. If z is a nonzero complex number, show that the inverse of z with respect to
the unit circle is (z)−1.

8.2 Where Do Clines Go?
So far we have derived only a few very basic properties of inversion, nothing that would
suggest it could be a viable method of attack for a problem. The results of this section will
change that.

Rather than looking at just one or two points, we consider entire clines. The simplest
example is a just a line through O.

Proposition 8.4. A line passing through O inverts to itself.

By this we mean that if we take each point on a line 	 (including O and P∞) and invert
it, then look at the resulting locus of points, we get 	 back again. The proof is clear.

What about a line not passing through O? Surprisingly, it is a circle! See Figure 8.2A

O

A B C

A∗

B∗

C∗

γ

ω

�

Figure 8.2A. A line inverts to a circle through O, and vice versa.

Proposition 8.5. The inverse of a line 	 not passing through O is a circle γ passing
through O. Furthermore, the line through O perpendicular to 	 passes through the center
of γ .

Proof. Let 	∗ be the inverse of our line. Because P∞ lies on 	, we must have O on 	∗.
We show 	∗ is a circle.

Let A, B, C be any three points on 	. It suffices to show that O, A∗, B∗, C∗ are concyclic.
This is easy enough. Because they are collinear, �OAB = �OAC. Using Theorem 8.2,
�OB∗A∗ = �OC∗A∗, as desired. Since any four points on 	∗ are concyclic, that implies
	∗ is just a circle.

It remains to show that 	 is perpendicular to the line passing through the centers of ω

(the circle we are inverting about) and γ . This is not hard to see in the picture. For a proof,
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let X be the point on 	 closest to O (so OX ⊥ 	). Then X∗ is the point on γ farthest from
O, so that OX∗ is a diameter of γ . Since O, X, X∗ are collinear by definition, this implies
the result.

In a completely analogous fashion one can derive the converse—the image of a circle
passing through O is a line. Also, notice how the points on ω are fixed during the whole
transformation.

This begs the question—what happens to the other circles? It turns out that these circles
also invert to circles. Our proof here is of a different style than the previous one (although
the previous proof can be rewritten to look more like this one). Refer to Figure 8.2B.

O A B B∗ A∗

C

C∗

Figure 8.2B. A circle inverts to another circle.

Proposition 8.6. Let γ be a circle not passing through O. Then γ ∗ is also a circle and
does not contain O.

Proof. Because neither O nor P∞ is on γ , the inverse γ ∗ cannot contain these points
either. Now, let AB be a diameter of γ with O on line AB (and A,B �= O). It suffices to
prove that γ ∗ is a circle with diameter A∗B∗.

Consider any point C on γ . Observe that

90◦ = �BCA = −�OCB + �OCA.

By Theorem 8.2, we see that −�OCA = �OA∗C∗ and −�OCB = �OB∗C∗. Hence, a
quick angle chase gives

90◦ = �OB∗C∗ − �OA∗C∗ = �A∗B∗C∗ − �B∗A∗C∗ = −�B∗C∗A∗

and hence C∗ lies on the circle with diameter A∗B∗. By similar work, any point on γ ∗ has
inverse lying on γ , and we are done.

It is worth noting that the centers of these circles are also collinear. (However, keep in
mind that the centers of the circle do not map to each other!)

We can summarize our findings in the following lemma.

Theorem 8.7 (Images of Clines). A cline inverts to a cline. Specifically, in an inversion
through a circle with center O,
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(a) A line through O inverts to itself.
(b) A circle through O inverts to a line (not through O), and vice versa. The diameter of

this circle containing O is perpendicular to the line.
(c) A circle not through O inverts to another circle not through O. The centers of these

circles are collinear with O.

We promised that inversion gives the power to turn circles into lines. This is a result of
(b)—if we invert through a point with many circles, then all those circles become lines.

Finally, one important remark. Tangent clines (that is, clines which intersect exactly
once, including at P∞ in the case of two lines) remain tangent under inversion. This has the
power to send tangent circles to parallel lines—we simply invert around the point at which
they are internally or externally tangent.

Problems for this Section

Problem 8.8. In Figure 8.2C, sketch the inverse of the five solid clines (two lines and three
circles) about the dotted circle ω. Hint: 279

O

Figure 8.2C. Practice inverting.

Lemma 8.9 (Inverting an Orthocenter). Let ABC be a triangle with orthocenter H and
altitudes AD, BE, CF . Perform an inversion around C with radius

√
CH · CF . Where do

the six points each go? Hint: 257

Lemma 8.10 (Inverting a Circumcenter). Let ABC be a triangle with circumcenter O.
Invert around C with radius 1. What is the relation between O∗, C, A∗, and B∗? Hint: 252

Lemma 8.11 (Inverting the Incircle). Let ABC be a triangle with circumcircle � and
contact triangle DEF . Consider an inversion with respect to the incircle of triangle ABC.
Show that � is sent to the nine-point circle of triangle DEF . Hint: 560
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8.3 An Example from the USAMO
An example at this point would likely be illuminating. We revisit a problem first given in
Chapter 3.

Example 8.12 (USAMO 1993/2). Let ABCD be a quadrilateral whose diagonals AC

and BD are perpendicular and intersect at E. Prove that the reflections of E across AB,
BC, CD, DA are concyclic.

A

B

C

D
E

W

X
Y

Z

Figure 8.3A. Adding in some circles.

Let the reflections respectively be W , X, Y , Z.
At first, this problem seems a strange candidate for inversion. Indeed, there are no

circles. Nevertheless, upon thinking about the reflection condition one might notice

AW = AE = AZ

which motivates us to construct a circle ωA centered at A passing through all three points. If
we define ωB , ωC , and ωD similarly, suddenly we no longer have to worry about reflections.
W is the just the second intersection of ωA and ωB , and so on.

Let us rephrase this problem in steps now.

1. Let ABCD be a quadrilateral with perpendicular diagonals that meet at E.
2. Let ωA be a circle centered at A through E.
3. Define ωB , ωC , ωD similarly.
4. Let W be the intersection of ωA and ωB other than E.
5. Define X, Y , Z similarly.
6. Prove that WXYZ is concyclic.
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At this point, it may not be clear why we want to invert. Many students learning inversion
for the first time are tempted to invert about ωA. As far as I can tell, this leads nowhere,
because it misses out on one of the most compelling reasons to invert:

Inversion lets us turn circles into lines.

This is why inversion around ωA seems fruitless. There are few (read: zero) circles
passing through A, so all the circles in the figure stay as circles, while some former lines
become new circles. Hence inverting about ωA is counterproductive: the resulting problem
is more complicated than the original!

So what point has a lot of circles passing through it? Well, how about E? All four circles
pass through it. Hence, we invert around a circle centered at E with radius 1. (Just because
a point has no circle around it does not prevent us from using it as the center of inversion!)

What happens to each of the mapped points? Let us consider it step-by-step.

1. A∗B∗C∗D∗ is still some quadrilateral. As A∗, and C∗ stay on line AC, and B∗ and D∗

stay on line BD, we have that A∗B∗C∗D∗ also has perpendicular diagonals meeting at
E. Since ABCD is arbitrary, we likewise treat A∗B∗C∗D∗ as arbitrary.†

2. ωA passes through E, so it maps to some line perpendicular to line EA. This is not
enough information to determine ω∗

A yet—what is the point of intersection ω∗
A has with

line EA? Actually, it is the midpoint of A∗E. For let MA be the point diametrically
opposite E on ωA; this is the pre-image of the their intersection. Now A is the midpoint
of MAE, so M∗

A is the midpoint of A∗E.
In other words, ω∗

A is the perpendicular bisector of A∗E.
3. Define ω∗

B , ω∗
C , ω∗

D similarly.
4. W ∗ is the intersection of the two lines ω∗

A and ω∗
B , simply because W is the intersection

of ωA and ωB other than E. (Of course, ω∗
A and ω∗

B also meet at the point at infinity,
which is the image of E.)

5. X∗, Y ∗, Z∗ are also defined similarly.
6. We wish to show WXYZ is cyclic. By Theorem 8.7, this is equivalent to showing

W ∗X∗Y ∗Z∗ is cyclic.

This is the thought process for inverting a problem. We consider the steps used to construct
the original problem, and one by one find their inversive analogs. While perhaps not easy
at first, this requires no ingenuity and is a skill that can be picked up with enough practice,
since it is really just a mechanical calculation.

Figure 8.3B shows the completed diagram.
We are just moments from finishing. We wish to show that quadrilateral W ∗X∗Y ∗Z∗ is

cyclic. But it is a rectangle, so this is obvious!

Solution to Example 8.12. Define ωA, ωB , ωC , ωD to be circles centered at A, B, C, D

passing through E. Observe that W is the second intersection of ωA and ωB , et cetera.

† Degrees of freedom, anyone? When you are considering the inverted version of a problem, you want to
make sure the number of degrees of freedom does not change. See Section 5.3 for more discussion on degrees of
freedom.
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E

W ∗

X∗ Y ∗

Z∗

A∗

B∗

C∗

D∗

ω∗
A

ω∗
B

ω∗
C

ω∗
D

Figure 8.3B. Inverting the USAMO.

Consider an inversion at E. It maps ωA, ωB , ωC , ωD to four lines which are the sides of
a rectangle. Hence the images of W , X, Y , Z under this inversion form a rectangle, which
in particular is cyclic. Inverting back, WXYZ is cyclic as desired.

Notice that we do not have to go through the full detail in explaining how to arrive at
the inverted image. In a contest, it is usually permissible to just state the inverted problem,
since deriving the inverted figure is a straightforward process.

Usually an inverted problem will not be this easy.‡ However, we often have good reason
to believe that the inverted problem is simpler than the original. In the above example, the
opportunity to get rid of all the circles motivated our inversion at E, and indeed we found
the resulting problem to be trivial.

8.4 Overlays and Orthogonal Circles
Consider two circles ω1 and ω2 with centers O1 and O2 intersecting at two points X and Y .
We say they are orthogonal if

∠O1XO2 = 90◦,

i.e., the lines O1X and O1Y are the tangents to the second circle. Of course, ω1 is orthogonal
to ω2 if and only if ω2 is orthogonal to ω1.

It is clear that if ω2 is a circle and O1 a point outside it, we can draw a unique circle
centered at O1 orthogonal to ω2: namely, the circle whose radius is equal to the length of
the tangent to ω2.

Orthogonal circles are nice because of the following lemma.

‡ But you can certainly find other examples. At the 2014 IMO, one of my teammates said that he was looking
for problems that were trivialized by inversion. Another friend responded that this was easy—just take a trivial
problem and invert it!
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O1

X

O2

Y

Figure 8.4A. Two orthogonal circles.

Lemma 8.13 (Inverting Orthogonal Circles). Let ω and γ be orthogonal circles. Then
γ inverts to itself under inversion with respect to ω.

Proof. This is a consequence of power of a point. Let ω and γ intersect at X and Y ,
and denote by O the center ω. Consider a line through O intersecting γ at A and B. Then

OX2 = OA · OB

but since OX is the radius ω, A inverts to B.

What’s the upshot? When a figure inverts to itself, we get to exploit what I call the
“inversion overlay principle”. Loosely, it goes as follows:

Problems that invert to themselves are usually really easy.

There are a few ways this can happen. Sometimes it is because we force a certain circle
to be orthogonal. Other times it is a good choice of radius that plays well with the problem.
In either case the point is that we gain information by overlaying the inverted diagram onto
the original.

Here is the most classical example of overlaying, called a Pappus chain embedded in
a shoemaker’s knife. See Figure 8.4B.

Example 8.14 (Shoemaker’s Knife). Let A, B, C be three collinear points (in that
order) and construct three semicircles �AC , �AB , ω0, on the same side of AC, with diameters
AC, AB, BC, respectively. For each positive integer k, let ωk be the circle tangent to �AC

and �AB as well as ωk−1.
Let n be a positive integer. Prove that the distance from the center of ωn to AC is n

times its diameter.

The point of inverting is to handle the abominable tangency conditions. Note that each
ωi is tangent to both �AB and �AC , so it makes sense to force both of these circles into lines.
This suggests inverting about A. As an added bonus, these two lines become parallel.

It is perhaps not clear yet what to use as the radius, or even if we need to pick a radius.
However, we want to ensure that the diameter of ωn remains a meaningful quantity after
the inversion. This suggests keeping ωn fixed.
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A B C

Figure 8.4B. The Shoemaker’s Knife.

This motivates us to invert around A with radius r in such a way that ωn is orthogonal
to our circle of inversion. What effect does this have?

� ωn stays put, by construction.
� The semicircles �AB and �AC pass through A, so their images �∗

AB and �∗
AC are lines

perpendicular to line AC.
� All the other ωi are now circles tangent to these two lines.

A B C

Γ∗
AC Γ∗

AB

Figure 8.4C. Inverting with ω3 fixed (so n = 3). We invert around the dashed circle centered at A,
orthogonal to ω3.

Figure 8.4C shows the inverted image, overlaid on the original image. The two semi-
circles have become convenient parallel lines, and the circles of the Pappus chain line up
obediently between them. Because the circles are all congruent, the conclusion is now
obvious.
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8.5 More Overlays
An example of the second type of overlay is the short inversive proof of Lemma 4.33 we
promised.

T

M

K
B C

Figure 8.5A. Revisiting Lemma 4.33.

Example 8.15. Let BC be a chord of a circle �. Let ω be a circle tangent to chord BC

at T and internally tangent to ω at T . Then ray T K passes through the midpoint M of the
arc B̂C not containing T . Moreover, MC2 is the power of M with respect to ω.

Proof. Let � be the circle centered at M passing through B and C. What happens when
we invert around �?

Firstly, � is a circle through M , so it gets sent to a line. Because B and C lie on � and
are fixed by this inversion, it must be precisely the line BC. In particular, this implies line
BC gets sent to �. In other words, the inversion simply swaps line BC and �.

Perhaps the ending is already obvious. We claim that ω just gets sent to itself. Because
BC and � trade places, ω∗ is also a circle tangent to both. Also, the centers of ω∗ and ω

are collinear with M . This is enough to force ω = ω∗. (Why?)
Now K is the tangency point of ω with BC, so K∗ is the tangency point of ω∗ = ω

with (MB∗C∗) = �. But this is T ; hence K and T are inverses.
In particular, M , K , T are collinear and MK · MT = MC2.

Here is a nice general trick that can force overlays when dealing with a triangle ABC.

Lemma 8.16 (Force-Overlaid Inversion). Let ABC be a triangle. Consider the transfor-
mation consisting of an inversion about A with radius

√
AB · AC, followed by a reflection

around the angle bisector of ∠BAC. This transformation fixes B and C.

The above demonstration applies the lemma with A = M . Because �BMC was isosce-
les, there was no need to use the additional reflection.

Fixing a triangle ABC is often very powerful since problems often build themselves
around ABC. In particular, tangency to (ABC) is involved (as it becomes tangency to line
BC). This led to the solution in the above example.
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Problem for this Section

Problem 8.17. Work out the details in the proof of Lemma 8.16.

8.6 The Inversion Distance Formula
The inversion distance formula gives us a way to handle lengths in inversion. It is completely
multiplicative, making it nice for use with ratios but more painful if addition is necessary.

Theorem 8.18 (Inversion Distance Formula). Let A and B be points other than O and
consider an inversion about O with radius r . Then

A∗B∗ = r2

OA · OB
· AB.

Equivalently,

AB = r2

OA∗ · OB∗ A∗B∗.

This first relation follows from the similar triangles we used in Figure 8.1B, and is left as
an exercise. The second is a direct consequence of the first (why?).

The inversion distance formula is useful when you need to deal with a bunch of lengths.
See Problem 8.20.

Problems for this Section

Problem 8.19. Prove the inversion distance formula.

Problem 8.20 (Ptolemy’s Inequality). For any four distinct points A, B, C, and D in a
plane, no three collinear, prove that

AB · CD + BC · DA ≥ AC · BD.

Moreover, show that equality holds if and only if A, B, C, D lie on a circle in that order.
Hints: 118 136 539 130

8.7 More Example Problems
The first problem is taken from the Chinese Western Mathematical Olympiad.

Example 8.21 (Chinese Olympiad 2006). Let ADBE be a quadrilateral inscribed in
a circle with diameter AB whose diagonals meet at C. Let γ be the circumcircle of �BOD,
where O is the midpoint of AB. Let F be on γ such that OF is a diameter of γ , and let
ray FC meet γ again at G. Prove that A, O, G, E are concyclic.

We are motivated to consider inversion by the two circles passing through O, as well
as the fact that O itself is a center of a circle through many points. Inversion through O

also preserves the diameter AB, which is of course important.
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OA B

D

E

C

F

G

Figure 8.7A. Show that OAEG is concyclic.

Before inverting, though, let us rewrite the problem with phantom point G1 as the
intersection of (OFB) and (OAE), and attempt to prove instead that F , C, G1 are collinear.
This lets us define G∗

1 as the intersection of two lines.

OA B

D

E

C∗

F ∗

G∗
1

Figure 8.7B. In the inverted image, we wish to show that points O, F ∗, C∗, G∗
1 are cyclic.

We now invert around the circle with diameter AB. We figure out where each point
goes.

1. Points D, B, A, E stay put, because they lie on the circle we are inverting around. So
D∗ = D, etc.
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2. C was the intersection of AB and DE. Hence C∗ is a point on line AB so that C∗DOE

is cyclic.
3. F is the point diametrically opposite O on (BOD). That means that ∠ODF = 90◦. So,

∠OF ∗D∗ = 90◦. Similarly, ∠OF ∗B∗ = 90◦. Hence, F ∗ is just the midpoint of DB!
4. G1 is defined as the intersection of (OFB) and (OAE), so G∗

1 is the intersection of lines
F ∗B and AE.

5. We wish to show that O, F ∗, C∗, and G1 are concyclic.

Okay. Well, OF ∗ ⊥ BD; thus to prove O, F ∗, C∗, G∗
1 are concyclic, it suffices to show

that G∗
1C

∗ ⊥ AC∗. Now look once more at circle (OEDC∗). Notice something?
Because AD ⊥ BG∗

1, BE ⊥ AG∗
1, and O is the midpoint of AB, we discover this is

the nine-point circle of �ABG∗
1. We are done.

Solution to Example 8.21. Let G1 be the intersection of (ODB) and (OAE) and invert
around the circle with diameter AB. In the inverted image, F ∗ is the midpoint of BD, C∗

lies on line AB and (DOE), and G∗ is the intersection of lines DB and AE. We wish to
show O, F ∗, C∗, G∗

1 are cyclic.
Because (OED) is the nine-point circle of �ABG∗

1, we see C∗ is the foot of G∗
1 onto

line AB. On the other hand, ∠OF ∗B = 90◦ as well so we are done.

Let us conclude by examining the fifth problem from the 2009 USA olympiad.

Example 8.22 (USAMO 2009/5). Trapezoid ABCD, with AB ‖ CD, is inscribed in
circle ω and point G lies inside triangle BCD. Rays AG and BG meet ω again at points P

and Q, respectively. Let the line through G parallel to AB intersect BD and BC at points
R and S, respectively. Prove that quadrilateral PQRS is cyclic if and only if BG bisects
∠CBD.

A B

CD

Q

G

R S

P

Figure 8.7C. USAMO 2009/5.
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The main reason we might want to attempt inversion is that there are not just four, or
even five, but six points all lying on one circle. It would be great if we could make that
circle into a line.

So if we are going to invert, we should do so around a point on the circle ω. Because we
have a bisector at ∠CBD, it makes sense to invert around B in order to keep this condition
nice. Also, the parallel lines become tangent circles at B. More plainly, there are just a lot
of lines passing through B.

Again we work out what happens in steps.

1. Cyclic quadrilateral ABCD becomes a point B and three points A∗, C∗, D∗ on a line in
that order. Because AB ‖ CD, we actually see that A∗B is tangent to (BC∗D∗).

2. G is an arbitrary point inside triangle BCD. That means G∗ is some point inside
∠C∗BD∗, but outside triangle BC∗D∗.

3. R and S are the intersections of a parallel line through G with BD and BC. Therefore
R∗ is the intersection of a circle tangent to (BC∗D∗) at B (this is the image of parallel
lines) with ray BD∗. S∗ is the intersection of this same circle with ray BS∗.

4. Q was the intersection of (ABCD) with ray BG, so now Q∗ is the intersection of BG∗

with the line through A∗, C∗, and D∗.
5. P was the intersection of (ABCD) with line AG. Hence P ∗ is the point on line A∗C∗

such that BA∗G∗P ∗ is cyclic.
6. We wish to show that P ∗Q∗R∗S∗ is cyclic if and only if BG∗ bisects ∠R∗BS∗.

The inverted diagram is shown in Figure 8.7D.

B

R∗ S∗

G∗

C∗ D∗
Q∗

A∗
P ∗

Figure 8.7D. Inverting the USAMO. . . again!

Now it appears that P ∗Q∗ is parallel to S∗R∗. Actually, this is obvious, because there
is a homothety at B taking C∗D∗ to S∗R∗. This is good for us, because now P ∗Q∗R∗S∗ is
cyclic if and only if it is isosceles.

We can also basically ignore (BC∗D∗) now; it is just there to give us these parallel lines.
For that matter, we can more or less ignore C∗ and D∗ now too.

Let us eliminate the point A∗. We have

�Q∗P ∗G∗ = �A∗P ∗G∗ = �A∗BG∗ = �BS∗G∗.
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Seeing this, we extend line G∗P ∗ to meet (BS∗R∗) at X, as in Figure 8.7E. This way,

�Q∗P ∗G∗ = �BS∗G∗ = �BX∗G∗.

Therefore, P ∗Q∗ ‖ BX holds unconditionally. This lets us get rid of P ∗ in the sense that
it is just a simple intersection of G∗X and the parallel line; we can anchor the problem
around (BXR∗S∗).

B

R∗S∗

G∗

Q∗

X

P ∗

Figure 8.7E. Cleaning up the inverted diagram.

Thus, we have reduced the problem to the following.

Let BXS∗R∗ be an isosceles trapezoid and 	 a fixed line parallel to its bases. Let G∗

be a point on its circumcircle and denote the intersections of 	 with BG∗ and XG∗ by
Q∗ and P ∗. Prove that P ∗S∗ = Q∗R∗ if and only if G∗ is the midpoint of arc R∗S∗.

This is actually straightforward symmetry. See the solution below.

Solution to Example 8.22. Perform an inversion around B with arbitrary radius, and
denote the inverse of a point Z with Z∗.

After inversion, we obtain a cyclic quadrilateral BS∗G∗R∗ and points C∗, D∗ on BS∗,
BR∗, such that (BC∗D∗) is tangent to (BS∗G∗R∗)—in other words, so that C∗D∗ is parallel
to S∗R∗. Point A∗ lies on line C∗D∗ so that A∗B is tangent to (BS∗G∗R∗). Points P ∗ and
Q∗ are the intersections of (A∗BG∗) and BG∗ with line C∗D∗.

Observe that P ∗Q∗R∗S∗ is a trapezoid, so it is cyclic if and only if it isosceles.
Let X be the second intersection of line G∗P ∗ with (BS∗R∗). Because �Q∗P ∗G∗ =

�A∗BG∗ = �BXG∗, we find that BXS∗R∗ is an isosceles trapezoid.
If G∗ is indeed the midpoint of the arc then everything is clear by symmetry now.

Conversely, if P ∗R∗ = Q∗S∗ then that means P ∗Q∗R∗S∗ is a cyclic trapezoid, and hence
that the perpendicular bisectors of P ∗Q∗ and R∗S∗ are the same. Hence B, X, P ∗, Q∗ are
symmetric around this line. This forces G∗ to be the midpoint of arc R∗S∗ as desired.

These two examples demonstrate inversion as a means of transforming one problem
into another (as opposed to some of the overlaying examples, which used both at once). It is
almost like you are given a choice—which of these two problems looks easier, the inverted
one or the original one? Which would you like to solve?



8.9. Problems 165

8.8 When to Invert
As a reminder, here are things inversion with a center O handles well. Hopefully these were
clear from the examples.

� Clines tangent to each other. In particular, we can take a tangent pair of circles to two
parallel lines.

� Several circles pass through O. Inverting around O eliminates the circles.
� Diagrams that invert to themselves! Overlaying an inverted diagram is frequently fruitful.

Here are things that inversion does not handle well.

� Scattered angles. Theorem 8.2 gives us control over angles that have a ray passing through
a center O, but we do not have much control over general angles.

� Problems that mostly involve lines and not circles.

Finally, here is a reminder of what inversion through a circle ω with center O preserves
(and what it does not).

� Points on ω are fixed.
� Clines are sent to clines. Moreover,

� If a circle γ is mapped to a line 	, then 	 is perpendicular to the line joining O to the
center of γ .

� If a circle γ is mapped to γ ∗, the center of γ is not in general the center of γ ∗. It is
true, however, that the centers of γ and γ ∗ are collinear with the center of inversion.

� Tangency and intersections are preserved.

8.9 Problems
Problem 8.23. Let ABC be a right triangle with ∠C = 90◦ and let X and Y be points in the
interiors of CA and CB, respectively. Construct four circles passing through C, centered
at A, B, X, Y . Prove that the four points lying on at exactly two of these four circles are
concyclic. (See Figure 8.9A.) Hints: 198 626 178 577

C

Figure 8.9A. The four intersections are concyclic (dashed circle).
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Problem 8.24. Let ω1, ω2, ω3, ω4 be circles with consecutive pairs tangent at A, B, C, D,
as shown in Figure 8.9B. Prove that quadrilateral ABCD is cyclic. Hints: 294 677 172 Sol:

p.272

A

B

C

D

Figure 8.9B. Is there a connection between this and Theorem 2.25?

Problem 8.25. Let A, B, C be three collinear points and P be a point not on this line. Prove
that the circumcenters of �PAB, �PBC, and �PCA lie on a circle passing through P .
Hints: 465 536 496

Problem 8.26 (BAMO 2008/6). A point D lies inside triangle ABC. Let A1, B1, C1 be the
second intersection points of the lines AD, BD, and CD with the circumcircles of BDC,
CDA, and ADB, respectively. Prove that

AD

AA1
+ BD

BB1
+ CD

CC1
= 1.

Hints: 439 170 256

Problem 8.27 (Iran Olympiad 1996). Consider a semicircle with center O and diameter
AB. A line intersects line AB at M and the semicircle at C and D such that MC > MD

and MB < MA. Suppose (AOC) and (BOD) meet at a point K other than O. Prove that
∠MKO = 90◦. Hints: 403 27 Sol: p.272

Problem 8.28 (Shortlist 2003/G4). Let �1, �2, �3, �4 be distinct circles such that �1, �3

are externally tangent at P , and �2, �4 are externally tangent at the same point P . Suppose
that �1 and �2, �2 and �3, �3 and �4, �4 and �1 meet at A, B, C, D, respectively, and that
all these points are different from P . Prove that

AB · BC

AD · DC
= PB2

PD2
.

Hints: 120 247 22

Problem 8.29. Let ABC be a triangle with incenter I and circumcenter O. Prove that line
IO passes through the centroid G1 of the contact triangle. Hints: 532 323 579

Problem 8.30 (NIMO 2014). Let ABC be a triangle and let Q be a point such that
AB ⊥ QB and AC ⊥ QC. A circle with center I is inscribed in �ABC, and is tangent to
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BC, CA, and AB at points D, E, and F , respectively. If ray QI intersects EF at P , prove
that DP ⊥ EF . Hints: 362 125 578 663 Sol: p.273

Problem 8.31 (EGMO 2013/5). Let � be the circumcircle of the triangle ABC. The circle
ω is tangent to the sides AC and BC, and it is internally tangent to the circle � at the point
P . A line parallel to AB intersecting the interior of triangle ABC is tangent to ω at Q.
Prove that ∠ACP = ∠QCB. Hints: 282 449 255 143 Sol: p.273

Problem 8.32 (Russian Olympiad 2009). In triangle ABC with circumcircle �, the
internal angle bisector of ∠A intersects BC at D and � again at E. The circle with
diameter DE meets � again at F . Prove that AF is a symmedian of triangle ABC. Hints:

594 648 321

Problem 8.33 (Shortlist 1997). Let A1A2A3 be a non-isosceles triangle with incenter I .
Let Ci , i = 1, 2, 3, be the smaller circle through I tangent to AiAi+1 and AiAi+2 (indices
taken mod 3). Let Bi , i = 1, 2, 3, be the second point of intersection of Ci+1 and Ci+2.
Prove that the circumcenters of the triangles A1B1I , A2B2I , A3B3I are collinear. Hints: 76

242 620 561

Problem 8.34 (IMO 1993/2). Let A, B, C, D be four points in the plane, with C and D on
the same side of the line AB, such that AC · BD = AD · BC and ∠ADB = 90◦ + ∠ACB.
Find the ratio AB·CD

AC·BD
, and prove that the circumcircles of the triangles ACD and BCD are

orthogonal. Hints: 7 384 322 3

Problem 8.35 (IMO 1996/2). Let P be a point inside a triangle ABC such that

∠APB − ∠ACB = ∠APC − ∠ABC.

Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP ,
BD, CE concur. Hints: 581 638 338 341

Problem 8.36 (IMO 2015/3). Let ABC be an acute triangle with AB > AC. Let � be its
cirumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint
of BC. Let Q be the point on � such that ∠HQA = 90◦ and let K be the point on � such
that ∠HKQ = 90◦. Assume that the points A, B, C, K , and Q are all different and lie on
� in this order. Prove that the circumcircles of triangles KQH and FKM are tangent to
each other. Hints: 402 673 324 400 155 Sol: p.274

Problem 8.37 (ELMO Shortlist 2013). Let ω1 and ω2 be two orthogonal circles, and let
the center of ω1 be O. Diameter AB of ω1 is selected so that B lies strictly inside ω2.
The two circles tangent to ω2 through both O and A touch ω2 at F and G. Prove that
quadrilateral FOGB is cyclic. Hints: 96 353 112 Sol: p.274





C H A P T E R 9
Projective Geometry

Projective geometry is all geometry. Arthur Cayley

In the previous chapter we studied inversion, a transformation that deals with circles. It also
happened to nicely preserve incidence, i.e., inversion preserves intersections. Projective
geometry features a powerful set of tools that this time focus primarily on analyzing
incidence. Problems that mostly deal with intersections, parallel lines, tangent circles, and
so on, often succumb to projective geometry.

9.1 Completing the Plane
First, we set up the projective plane with points at infinity.

Imagine we are walking down the infinitely long corridor in Figure 9.1A and take a
moment to look around us.

Figure 9.1A. A long hallway with a few doors.

There are some parallel lines in the figure, say the two lines that mark the floor. But
they are not actually parallel in the picture: the two lines are converging towards a point. In
fact, all the parallel lines are converging towards the same point on the horizon. So it does

169
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seem like parallel lines intersect infinitely far away, even in a plane (for example, consider
the left wall or the right wall).

Figure 9.1B. Are the parallel lines really parallel?

The real projective plane uses precisely this idea. In addition to the standard points
of Euclidean plane (which we call Euclidean points), it also includes a point at infinity
for each class of parallel lines (one can think of this as adding a point at infinity for
each direction). To be more precise, we partition all the lines of the Euclidean plane into
equivalence classes (called pencils of parallel lines) where two distinct lines are in the same
class if they are parallel. Then we add a point at infinity for each pencil. We also add one
extra line, the line at infinity, comprising exactly of all the points at infinity.

With this modification, any two lines do in fact intersect at exactly one point. The
intersection of two non-parallel lines is a Euclidean point, while two parallel lines meet
at the point at infinity. The use of this convention lets us replace the clumsy language of
“concurrent or all parallel” (as in Theorem 2.9).

Finally, throughout this chapter we use a special shorthand. For points A, B, C, D, let
AB ∩ CD denote the intersection of lines AB and CD, possibly at infinity.

9.2 Cross Ratios
The cross ratio is an important invariant in projective geometry. Given four collinear points
A, B, X, Y (which may be points at infinity), we define the cross ratio as

(A,B; X, Y ) = XA

XB
÷ YA

YB
.

Here the ratios are directed with the same convention as Menelaus’s theorem; in particular,
the cross ratio can be negative! If A, B, X, Y lie on a number line then this can be written
as

(A,B; X, Y ) = x − a

x − b
÷ y − a

y − b
.
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You can check that (A,B; X, Y ) > 0 precisely when segments AB and XY are disjoint
or one is contained inside the other. We also generally assume A �= X, B �= X, A �= Y ,
B �= Y .

We can also define the cross ratio for four lines a, b, x, y concurrent at some point P .
If ∠(	,m) is the angle between the two lines 	 and m, then we can write

(a, b; x, y) = ± sin∠(x, a)

sin∠(x, b)
÷ sin∠(y, a)

sin∠(y, b)
.

The sign is chosen in a similar manner as the procedure for four points: if one of the
four angles formed by line a and b contains neither x nor y, then (a, b; x, y) is positive;
otherwise it is negative.

If A, B, X, Y are collinear points on lines a, b, x, y (respectively) concurrent at P , we
write

P (A,B; X, Y ) = (a, b; x, y).

The structure P (A,B; X, Y ) is called a pencil of lines. See Figure 9.2A.

P

A
X

B Y

Figure 9.2A. Actually, P (A, B; X, Y ) = (A,B; X, Y ).

As you might have already guessed, the sign convention for the trigonometric form is
just contrived so that the following theorem holds.

Theorem 9.1 (Cross-Ratio Under Perspectivity). Suppose that P (A,B; X, Y ) is a pen-
cil of lines. If A, B, X, Y are collinear then

P (A,B; X, Y ) = (A,B; X, Y ).

Proof. This is just a computation with the law of sines on �XPA, �XPB, �YPA,
�YPB. There are multiple configurations to check, but they are not so different.

We can even define the cross ratio for four points on a circle, as follows:

Theorem 9.2 (Cross Ratios on Cyclic Quadrilaterals). Let A, B, X, Y be concyclic. If
P is any point on its circumcircle, then P (A,B; X, Y ) does not depend on P . Moreover,

P (A,B; X, Y ) = ±XA

XB
÷ YA

YB

where the sign is positive if AB and XY do not intersect, and negative otherwise.
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The invariance just follows from the fact that the angles are preserved as P varies
around the circle. Hence, we just define the cross ratio of four concyclic points to be the
value of P (A,B; X, Y ) for any particular P . The actual ratio XA

XB
: YA

YB
follows by applying

the law of sines and the details are left as an exercise.

P

A X B Y

A′
X ′

B′
Y ′

Figure 9.2B. Taking perspectivity at P .

Why do we care? Consider the situation in Figure 9.2B. Two lines 	 and m are given,
and points A, B, X, Y are on 	. We can pick any point P and consider the intersections of
lines PA, PB, PX, PY with m, say A′, B ′, X′, Y ′. Then

(A,B; X, Y ) = P (A,B; X, Y ) = P (A′, B ′; X′, Y ′) = (A′, B ′; X′, Y ′).

In effect, that means we have the power to project (A,B; X, Y ) from line 	 onto line m.
This is called taking perspectivity at P . We often denote this by

(A,B; X, Y )
P= (A′, B ′; X′, Y ′).

The same technique can be done if P , A, X, B, Y are concyclic, in which case we may
project onto a line. Conversely, given (A,B; X, Y ) on a line we may pull from P onto circle
through P , as in Figure 9.2C (and vice versa). The important thing is that these operations
all preserve the cross ratio (A,B; X, Y ).

P

A′

X ′
B′

Y ′

A
X

B
Y

Figure 9.2C. Projecting via P from a line onto a circle through P .

The fact that cross ratio is preserved under all of these is why it is well-suited for
problems that deal with lots of intersections. One can even think of chasing cross ratios
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around the diagram by repeatedly applying perspectives. We see more of this in later
examples.

In the next section we investigate the most important case of the cross ratio, the harmonic
bundle.

Problems for this Section

Problem 9.3. Check that

(A,B; X, Y ) = (B,A; X, Y )−1 = (A,B; Y,X)−1 = (X, Y ; A,B).

for any four distinct points A, B, X, Y .

Problem 9.4. Let A, B, X be distinct collinear points and k a real number. Prove that there
is exactly one point Y (possibly the point at infinity) such that (A,B; X, Y ) = k. Hint: 287

Problem 9.5. In Figure 9.2A, is P (A,B; X, Y ) positive or negative? Hint: 83

Problem 9.6. Let A, B, X be collinear points and P∞ a point at infinity along their common
line. What is (A,B; X,P∞)? Hint: 666

Problem 9.7. Give the proof of Theorem 9.2.

9.3 Harmonic Bundles
The most important case of our cross ratio is when (A,B; X, Y ) = −1. We say that
(A,B; X, Y ) is a harmonic bundle in this case, or just harmonic. Furthermore, a cyclic
quadrilateral AXBY is a harmonic quadrilateral if (A,B; X, Y ) = −1.

Observe that if (A,B; X, Y ) = −1, then (A,B; Y,X) = (B,A; X, Y ) = −1. We some-
times also say that Y is the harmonic conjugate of X with respect to AB; as the name
suggests, it is unique, and the harmonic conjugate of Y is X itself.

Harmonic bundles are important because they appear naturally in many configurations.
We present four configurations in which they arise.

The first lemma is trivial to prove, but gives us a new way to handle midpoints, particu-
larly if they appear along with parallel lines.

Lemma 9.8 (Midpoints and Parallel Lines). Given points A and B, let M be the
midpoint of AB and P∞ the point at infinity of line AB. Then (A,B; M,P∞) is a harmonic
bundle.

The next lemma (illustrated in Figure 9.3A) describes harmonic quadrilaterals in terms
of tangents to a circle.

Lemma 9.9 (Harmonic Quadrilaterals). Let ω be a circle and let P be a point outside
it. Let PX and PY be tangents to ω. Take a line through P intersecting ω again at A and
B. Then

(a) AXBY is a harmonic quadrilateral.
(b) If Q = AB ∩ XY , then (A,B; Q,P ) is a harmonic bundle.
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X

Y

P
B

A Q

Figure 9.3A. A harmonic quadrilateral. (A,B; P,Q) is also harmonic.

Proof. We use symmedians. We obtain XA
XB

= YA
YB

from Lemma 4.26, and (A,B; X, Y )
is negative by construction. This establishes that AXBY is harmonic.

To see that (A,B; Q,P ) is harmonic, just write

(A,B; X, Y )
X= (A,B; Q,P ).

Here we are projecting from the circle onto the line AB from X, noting that line XX in
this context is actually just the tangent to ω. (To see this, consider the behavior of line XX′

when X′ is very close to X on the circle.)

This also implies the tangents to A and B intersect on line XY . (Why?)
An important special case is when AB is selected as a diameter of ω. In that case, P

and Q are inverses when inverting around ω. In full detail, we have the following.

Proposition 9.10 (Inversion Induces Harmonic Bundles). Let P be a point on line AB,
and let P ∗ denote the image of P after inverting around the circle with diameter AB. Then
(A,B; P,P ∗) is harmonic.

The third and fourth lemmas involve no circles at all. Actually the fourth is really a
consequence of the third.

Lemma 9.11 (Cevians Induces Harmonic Bundles). Let ABC be a triangle with con-
current cevians AD, BE, CF (possibly on the extensions of the sides). Line EF meets BC

at X (possibly at a point at infinity). Then (X,D; B,C) is a harmonic bundle.

A

B C

P

D

E

F

X

Figure 9.3B. Ceva’s and Menelaus’s theorems produce (X,D; B, C) = −1.
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Proof. Use the directed form Ceva’s theorem and Menelaus’s theorem on Figure 9.3B.

Lemma 9.12 (Complete Quadrilaterals Induces Harmonic Bundles). Let ABCD be
a quadrilateral whose diagonals meet at K . Lines AD and BC meet at L, and line KL

meets AB and CD at M and N . Then (K,L; M,N ) is a harmonic bundle.

A

B

CD

K

L

M

N

P

Q

Figure 9.3C. You can modify Lemma 9.11 to get (K,L; M,N ) a harmonic bundle as well.

Proof. As in Figure 9.3C, let P = AB ∩ CD, and let Q = PK ∩ BC. By Lemma 9.11,
(Q,L; B,C) = −1. Projecting onto the desired line, we derive

−1 = (Q,L; B,C)
P= (K,L; M,N ).

Harmonic bundles let us move from one of these configurations to the others. As an
example, we revisit Problem 4.45.

A

B CD

E

F
H

P
Q

R

Figure 9.3D. The first problem from the USA TST 2011.

Example 9.13 (USA TST 2011/1). In an acute scalene triangle ABC, points D, E,
F lie on sides BC, CA, AB, respectively, such that AD ⊥ BC, BE ⊥ CA, CF ⊥ AB.
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Altitudes AD,BE,CF meet at orthocenter H . Points P and Q lie on segment EF such that
AP ⊥ EF and HQ ⊥ EF . Lines DP and QH intersect at point R. Compute HQ/HR.

We might readily dismiss this as an uninteresting problem. The answer is 1; the problem
is just Lemma 4.9 applied to triangle DEF . However, it turns out there is a quick projective
proof completely independent of this.

Remember Lemma 9.8? We indeed have both a midpoint (H of QR) and a line parallel
to it (AP ‖ QR). Hence we take perspectivity through P . More precisely, let P∞ be the
point at infinity for AP and QR. Then

(Q,R; H,P∞)
P= (QP ∩ AD,D; H,A).

If we can show the latter is a harmonic bundle, then we are done. But this is just Lemma 9.12!
Needless to say, we can go backwards, as in the proof below.

Solution. By Lemma 9.12, (A,H ; AD ∩ EF,D) = −1. Projecting through P , we find
(P∞,H ; Q,R) = −1, where P∞ is the point at infinity on parallel lines AP and QR. Hence
HQ

HR
= 1.

Problems for this Section

Problem 9.14. Check the details in the proofs of Lemma 9.11 and Lemma 9.18.

Problem 9.15. In the coordinate plane, the points A = (−1, 0), B = (1, 0), X = (
1

100 , 0
)

and Y = (m, 0) form a harmonic bundle (A,B; X, Y ) = −1. What is m? Hint: 334

Problem 9.16. Show that Problem 1.43 (see Figure 9.3E) is immediate from the tools
developed in this chapter. Hints: 107 687 607 451 520

B

D

P

C

A

E

Figure 9.3E. Solve JMO 2011/5 (Problem 1.43) using harmonic bundles.

Lemma 9.17 (Midpoint Lengths). Points A, X, B, P lie on a line in that order, and
(A,B; X,P ) = −1. Let M be the midpoint of AB. Show that MX · MP = (

1
2AB

)2
and

PX · PM = PA · PB. Hints: 41 557

9.4 Apollonian Circles
There is one additional configuration with naturally occurring harmonic bundles. First, we
need to state a lemma (see Figure 9.4A).
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Lemma 9.18 (Right Angles and Bisectors). Let X, A, Y , B be collinear points in that
order and let C be any point not on this line. Then any two of the following conditions
implies the third condition.

(i) (A,B; X, Y ) is a harmonic bundle.
(ii) ∠XCY = 90◦.

(iii) CY bisects ∠ACB.

C

A
BYX

P

Q

Figure 9.4A. CX and CY are external and internal angle bisectors.

Proof. There is a straightforward trigonometric proof, but here we present a synthetic
solution. Draw the line through Y parallel to CX and let it intersect rays CA and CB at P

and Q, respectively. Since �XAC ∼ �YAP and �XBC ∼ �YBQ, we derive

PY = AY

AX
· CX and QY = BY

BX
· CX.

Thus PY = QY if and only if (A,B; X, Y ) = −1. Now any two of the conditions imply
�CYP and �CYQ are congruent, which gives the third.

While this is useful in its own right, it leads directly to the so-called Apollonian circle,
which is a way of linking angles with ratios. The statement is as follows.

Theorem 9.19 (Apollonian Circles). Let AB be a segment and k �= 1 be a positive real.
The locus of points C satisfying CA

CB
= k is a circle whose diameter lies on AB.

A BYX

C1C2

C3

Figure 9.4B. Apollonian Circles
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This is really just a restatement of Lemma 9.18, with the congruent angles rewritten as
a ratio because of the angle bisector theorem. Here are the details; refer to Figure 9.4B.

Proof. First of all, let X and Y be the two points on line AB with

XA

XB
= YA

YB
= k.

Without loss of generality, Y lies on AB.
Now observe that for any other point C, CA

CB
= k is just equivalent to ∠CAY = ∠YBC

by the angle bisector theorem. That is equivalent to ∠XCY = 90◦ by Lemma 9.18, and
hence we discover the Apollonian circle.

Problems for this Section

Problem 9.20. In the notation of Figure 9.4B, what is the Apollonian circle of XY through
A? Hints: 411 70

Problem 9.21. Check that as k varies, the resulting set of circles are all coaxial∗. Hints: 315

147

Lemma 9.22 (Harmonic Bundles on the Bisector). Let ABC be a triangle with incenter
I and A-excenter IA. Prove that

(I, IA; A,AI ∩ BC) = −1.

9.5 Poles/Polars and Brocard’s Theorem
Projective and inversive techniques are actually closely related by the concepts of poles
and polars.

P ∗ P

Figure 9.5A. The polar of point P is the line shown.

Fix a circle ω with center O and a point P . Let P ∗ be the inverse of P with respect to
inversion around ω. The polar of point P (possibly at infinity and distinct from O) is the
line passing through P ∗ perpendicular to OP . As we have mentioned before, when P is
outside circle ω then its polar is the line through the two tangency points from P to ω. The
polar of O is just the line at infinity.

∗ Actually, it turns out any non-intersecting coaxial circles are Apollonian.
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Similarly, given a line 	 not through O, we define its pole† as the point P that has 	 as
its polar.

First, an obvious result that is nonetheless useful.

Theorem 9.23 (La Hire’s Theorem). A point X lies on the polar of a point Y if and only
if Y lies on the polar of X.

Proof. Left as an exercise. It is merely similar triangles.

La Hire’s theorem demonstrates a concept called duality: one can exchange points for
lines, lines for intersections, collinearity for concurrence. Simply swap every point with its
polar and every line with its pole.

We can now state an important result relating poles and polars to harmonic bundles.

Proposition 9.24. Let AB be a chord of a circle ω and select points P and Q on line AB.
Then (A,B; P,Q) = −1 if and only if P lies on the polar of Q.

X

Y

P
B

A Q

Figure 9.5B. Harmonic quadrilaterals again.

Proof. We consider only the case where P is outside ω and Q is inside it. Construct
the tangents PX and PY to ω. Lemma 9.9 gives

(A,B; P,XY ∩ AB) = −1,

so Q lies on the polar of P (namely line XY ) if and only if (A,B; P,Q) = −1.

We are now ready to state one of the most profound theorems about cyclic quadrilaterals.
It shows that any cyclic quadrilateral has hidden within it three pairs of poles and polars.

Theorem 9.25 (Brocard’s Theorem). Let ABCD be an arbitrary cyclic quadrilateral
inscribed in a circle with center O, and set P = AB ∩ CD, Q = BC ∩ DA, and R =
AC ∩ BD. Then P , Q, R are the poles of QR, RP , PQ, respectively.

In particular, O is the orthocenter of triangle PQR.

We say that triangle PQR is self-polar with respect to ω, because each of its sides is
the polar of the opposite vertex.

† Not the best choice of terms, as the two are easily confused. Mnemonic: “pole” is shorter than “polar”, and
points are much smaller than lines.
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A

B
C

D

P

Q

R

O

Figure 9.5C. The triangle PQR determined by completing a cyclic quadrilateral is self-polar.

Take a moment to appreciate the power of Brocard’s theorem. Nowhere do the words
“pole”, “polar”, “harmonic”, “projective”, or anything of that sort appear in the hypothesis.
We could have stated this theorem in Chapter 1—all we did was take a completely arbitrary
cyclic quadrilateral and intersect the sides and diagonals—and then suddenly, we have an
entire orthocenter! It seems too good to be true. This really highlights the type of problems
that projective geometry handles well: anything with lots of intersections and maybe a few
circles.

On to the proof of the theorem. The idea is that Brocard’s theorem looks a lot like
Lemma 9.11.

A

B
C

D

P

Q

R

O

X

Y

Figure 9.5D. Triangle PQR is self-polar.
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Proof. First, we show that Q is the pole of line PR. Define the points X = AD ∩ PR

and Y = BC ∩ PR, as in Figure 9.5D. By Lemma 9.11, both (A,D; Q,X) and (B,C; Q,Y )
are harmonic bundles.

Therefore, X and Y both lie on the polar of Q, by Proposition 9.24. Since the polar of
Q is a line, it must be precisely line XY , which is the same as line PR.

The same can be used to show that P is the pole of line QR and R is the pole of line
PQ; projective geometry is immune to configuration issues. (This is part of the reason we
like points at infinity.) This gives that PQR is indeed self-polar. Finally, the definition of a
polar implies that O is the orthocenter of triangle PQR, completing the proof.

Problems for this Section

Problem 9.26. Prove La Hire’s theorem (Theorem 9.23).

Lemma 9.27 (Self-Polar Orthogonality). Let ω be a circle and suppose P and Q are
points such that P lies on the pole of Q (and hence Q lies on the pole of P ). Prove that the
circle γ with diameter PQ is orthogonal to ω. Hint: 616

Problem 9.28. Let ABC be an acute scalene triangle, and let H be a point inside it such
that AH ⊥ BC. Rays BH and CH meet AC and AB at E, F . Prove that if quadrilateral
BFEC is cyclic then H is in fact the orthocenter of ABC. Hints: 492 52

9.6 Pascal’s Theorem
Pascal’s theorem is of a different flavor than the previous theorems, but is useful in similar
situations. It handles many points on a circle and their intersections. Here is the statement‡;
see Example 7.27 for a proof. Many other proofs exist, of course.

Theorem 9.29 (Pascal’s Theorem). Let ABCDEF be a cyclic hexagon, possibly self-
intersecting. Then the points AB ∩ DE, BC ∩ EF , and CD ∩ FA are collinear.

Note that Pascal’s theorem can look very different depending on what order the vertices
lie in. Figure 9.6A shows four different shapes that Pascal’s theorem can take on. It is often
useful to take two consecutive vertices of the hexagon to be the same point. The “side” AA

degenerates to a tangent to the circle at A.§ An example of this technique is in the solution
to Example 9.38.

For an example, we revisit the first part of Lemma 4.40, and give a short proof using
Pascal’s theorem.

Example 9.30. Let ABC be a triangle inscribed in a circle. The A-mixtilinear circle is
drawn, tangent to AB, AC at K , L. Then the incenter I is the midpoint of KL.

‡ The converse is also true if we replace “circle” with “conic”. See the next section on projective transformations.
§ Think of it this way: XY is the line intersecting the circle at points X and Y . So AA is a line intersecting the

circle at A and A, i.e., the tangent to A.
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A
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D
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F

Figure 9.6A. The many faces of Pascal’s theorem.

Proof. Obviously AI bisects KL (since AK = AL and ∠KAI = ∠IAL) so it suffices
to prove that K , I , L are collinear.

By Lemma 4.33, MC , K , T are collinear, where MC is the midpoint of arc AB not
containing C. In particular, C, I , MC are collinear. Similarly, the midpoint MB of arc
AC lies on both lines BI and LT . Now we just apply Pascal’s theorem on the hexagon
ABMBT MCC.

An even more striking illustration is Problem 9.32 below.

A

B C

T

MB

MC

K

LI

Figure 9.6B. Using Pascal’s theorem on the A-mixtilinear incircle.



9.7. Projective Transformations 183

Problems for this Section

Problem 9.31. Let ABC be a triangle with circumcircle �. Let X be the intersection of line
BC with the tangent to � at A. Define Y and Z similarly. Show that X, Y , Z are collinear.
Hint: 378

Problem 9.32. Let ABCD be a cyclic quadrilateral and apply Pascal’s theorem to
AABCCD and ABBCDD. What do we discover? Hints: 421 473 309

9.7 Projective Transformations
This is only a brief digression on what is otherwise a deep topic. See the last chapter of [7]
for further exposition.

Occasionally we run into a problem that we say is purely projective. Essentially this
means the problem statement involves only intersections, tangency, and perhaps a few
circles. This happens very rarely, but when it does, the problems can usually be eradicated
via projective transformations.

O

Figure 9.7A. An example of a projective transformation.

Projective transformations are essentially the most general type of transformation. Actu-
ally, they are defined as any map that sends lines to lines and conics to conics (but need not
preserve anything else). Loosely speaking, a conic is a second-degree curve in the plane
determined by five points. In more precise terms, a conic is a curve in the xy-plane of the
form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

extended to include points at infinity. This includes parabolas, hyperbolas, and ellipses (in
particular, circles). For our purposes, we only care that a circle is a conic. See Figure 9.7A.

Why would we consider a transformation that preserves so few things? The gain is
encapsulated in the following theorem, stated without proof, which exploits the generality
of the transformation.
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Theorem 9.33 (Projective Transformations). Each of the following is achievable with
a unique projective transformation.

(a) Taking four points A, B, C, D (no three collinear) to any other four points W , X, Y , Z
(no three collinear).

(b) Taking a circle to itself and a point P inside the circle to any other point Q inside the
circle.

(c) Taking a circle to itself and any given line outside the circle into the line at infinity.

Furthermore, projective transformations preserve the cross ratio of any four collinear
points. Moreover, if four concyclic points are sent to four concyclic points, then the cross
ratio of the quadrilaterals are the same.

The power of this technique is made most clear by example.

Example 9.34. Let ABCD be a quadrilateral. Define the points P = AD ∩ BC, Q =
AB ∩ CD, and R = AC ∩ BD. Let X1, X2, Y1, Y2 denote PR ∩ AD, PR ∩ BC, QR ∩
AB, QR ∩ CD.

Prove that lines X1Y1, X2Y2, and PQ are concurrent.

This problem looks like a nightmare until we realize that it is purely projective. That
means we can make some very convenient assumptions—we simply use a projective map
taking ABCD to a square A′B ′C ′D′.

A′ B′

C ′D′

R′
P ′

Q′

X ′
1

X ′
2

Y ′
1

Y ′
2

Figure 9.7B. We can take ABCD to a square, trivializing the problem.

Solution. By Theorem 9.33, we can use a projective transformation to send ABCD

to the vertices of a square A′B ′C ′D′. Then P ′ is the intersection of lines A′D′ and B ′C ′,
since projective transformations preserve intersections. We can define the remaining points
similarly.

The problem is now trivial: just look at Figure 9.7B! P ′ and Q′ become the points at
infinity, and we find that X′

1, X′
2, Y ′

1, Y ′
2 are just midpoints of the respective sides. Hence
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the intersection of lines X′
1Y

′
1 and X′

2Y
′
2 is yet another point at infinity (as they are parallel).

This implies P ′, Q′, and X′
1Y

′
1 ∩ X′

2Y
′
2 are collinear along the line at infinity.

We can even extend this technique to tackle problems that do not look purely projective
when the condition can be re-written with cross ratios. For example, consider the famous
butterfly theorem.

Theorem 9.35 (Butterfly Theorem). Let AB, CD, PQ be chords of a circle concurrent
at M . Put X = PQ ∩ AD and Y = PQ ∩ BC. If MP = MQ then MX = MY .

P Q
M

A

B

C

D

X Y

Figure 9.7C. The butterfly theorem.

Proof. This problem looks completely projective except for the midpoint condition.
We can handle this by adding the point at infinity P∞ to line PQ. The condition becomes
(P,Q; P∞,M) = −1, and we wish to show that (X, Y ; P∞,M) = −1.

By rewriting the givens as cross ratios, the problem becomes purely projective! We
therefore take the projective transformation sending M to the center of the circle, say M ′.
Then P ′Q′ is a diameter. Because we must have the cross ratio (P ′,Q′, P ′

∞,M ′) = −1 is
preserved, we find that P ′

∞ is still the point at infinity. Hence it simply suffices to prove
that M ′ is the midpoint of X′Y ′.

On the other hand, proving the butterfly theorem when M is the center of the circle
is not very hard. Actually, it is obvious by symmetry. Therefore (X′, Y ′, P ′

∞,M ′) = −1.
Consequently (X, Y ; P∞,M) = −1 as well and we are done.

Problems for this Section

Problem 9.36. Give a short proof of Lemma 9.9 using projective transformations. Hints:

183 218 231

Problem 9.37. Give a short proof of Lemma 9.11 using projective transformations. Hints:

333 595

9.8 Examples
We present two example problems. First, let us consider the following problem from the
51st IMO.
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Example 9.38 (IMO 2010/2). Let I be the incenter of a triangle ABC and let � be its
circumcircle. Let line AI intersect � again at D. Let E be a point on arc B̂DC and F a
point on side BC such that ∠BAF = ∠CAE < 1

2∠BAC. Finally, let G be the midpoint
of IF . Prove that DG and EI intersect on �.

A

B C

I

D

E

F

G

Figure 9.8A. Example 9.38.

We begin by extending AF to meet � again at a point F1; evidently F1E ‖ BC. We also
let K denote the second intersection of EI with �. Our goal is to prove that DK bisects
IF .

Seeing so many points and intersections on a circle motivates us to try Pascal’s theo-
rem in the hopes of finding something interesting. Specifically, we have I = AD ∩ KE,
DD ∩ EF1 is the point at infinity, and F = AF1 ∩ BC. Trying to string two of these into
one application of Pascal’s theorem, we find with some trial and error that the hexagon
AF1EKDD is useful.

A

B C

I

D

EF1

F

G

K

P

Figure 9.8B. Applying Pascal’s theorem on Example 9.38.

Pascal’s theorem now implies that AF1 ∩ KD, the point at infinity F1E ∩ DD, and the
incenter I = DA ∩ KE are collinear. In other words, if we set P = AF1 ∩ KD, then we
find that IP ‖ EF1 ‖ BC.
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Once the point P is introduced, we can effectively ignore the points E, F1, and K now.
In other words, we have the convenient recasting of the problem as follows.

Let AF be a cevian of the triangle ABC and let P be a point on AF with IP ‖ BC.
If D is the midpoint of arc B̂C not containing A, then DP bisects IF .

This is much simpler, and you can actually finish using barycentric coordinates. At least
this indicates that we are probably on the right track. So what do we do next?

A

B C

I

D

F

G

IA

P
Z

Figure 9.8C. The finishing touch using harmonic bundles.

Seeing the midpoint, we consider a homothety at I with ratio 2, which conveniently
grabs the excenter IA. That means it suffices to prove that if Z = IAF ∩ IP , then P is the
midpoint of IZ. Seeing midpoints and parallel lines once again, we take harmonic bundles
(in light of Lemma 9.8). And indeed, the first decent choice of a point on BC works;
perspectivity at F solves the problem.

Solution to Example 9.38. Let EI meet � again at K and AF meet � again at F1. Set
P = DK ∩ AF and Z = IP ∩ IAF . By Pascal’s theorem on AF1EKDD, we see that
IP ‖ BC.

Setting IA as the A-excenter and recalling Lemma 9.22 gives

−1 = (
I, IA; A,AI ∩ BC

) F= (
I, Z; P,BC ∩ IP

)
.

Since IP ‖ BC, we conclude that P is the midpoint of IZ. Then we simply take a homothety
at I .

Our other example is the final problem from an Asian-Pacific olympiad; it yields many
different projective solutions. We present three of them.

Example 9.39 (APMO 2013/5). Let ABCD be a quadrilateral inscribed in a circle ω,
and let P be a point on the extension of AC such that PB and PD are tangent to ω. The
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tangent at C intersects PD at Q and the line AD at R. Let E be the second point of
intersection between AQ and ω. Prove that B, E, R are collinear.

A

B D

P

C
Q

R

E

Figure 9.8D. Problem 5 from APMO 2013.

We immediately recognize Lemma 9.9 twice: ACED and ABCD are both harmonic
quadrilaterals. This motivates us to try projective geometry in the first place, since there are
a lot of intersections and the conditions are natural in the language of harmonic bundles.

A

B
D

P

C
Q

R

E

T

Z

K

Figure 9.8E. A solution to Example 9.39 that involves only harmonic bundles.

In order to place things more in the frame of our projective tools, we let E′ be the second
intersection of line BR and ω. Then it would just suffice to prove ACE′D is harmonic
(rather than prove three points are collinear). How might we do that? We wish to prove
that (A,E′; C,D) = −1. Are there any points that look good for projecting through on ω?
After some trial we find that B looks like a good choice, because it handles the other points
somewhat nicely, but more importantly it lets us deal with the point E′.
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Because we again want to focus on making point E′ behave well, we choose to project
onto line CR.

So we find that

(A,E′; C,D)
B= (AB ∩ CR,R; C,BD ∩ CR).

Taking advantage of the fact that ABCD is harmonic, we put T = BD ∩ CR as the
intersection of the tangents at A and C (hence on line BD). The point T seems nice
because it is pretty closely tied to ABCD.

On the other hand we should probably clean up AB ∩ CR in the next projection.
Since we already took perspectivity from B, we try taking perspectivity from A this time
(otherwise we are back where we started). Now the most logical choice for the line to
project onto is BD. Letting Z = AB ∩ CR for brevity, we find

(Z,R; C, T )
A= (B,D; AC ∩ BD, T ).

But this is harmonic by Lemma 9.9. Hence with just two projections we are done.

Solution 1. Set T = BD ∩ CR, K = AC ∩ BD, Z = AB ∩ CR and let E′ be the
second intersection of BR with ω. Since ABCD is harmonic, we have T , K , B, D

collinear and therefore

−1 = (T ,K; B,D)
A= (T ,C; Z,R)

B= (D,C; A,E′).

But DACE is harmonic, so E = E′.

A second solution involves interpreting the problem from the context of symmedians
(see Lemma 4.26). We can view DB and AE as the symmedians of triangle ACD. Suddenly
we can ignore the points P and Q completely! On the other hand we should probably add
in the symmedian point K of triangle ACD, which is the intersection of AE and BD.

A

B D

P

C
Q

R

E

K

F

Figure 9.8F. Solving Example 9.39 using symmedians.

Now what of the point R? It is the intersection of the tangent at C with line AD. Trying
to complete Lemma 9.9 again, we let F be the other point on ω other than C such that RF
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is a tangent. Hence ACDF is harmonic. So CF is a symmedian as well. This completes
the picture of the symmedian point. In particular, K lies on CF .

Now for the finish. By Brocard’s theorem, BE ∩ AD is the point on AD that lies on
the polar of K = BD ∩ AE. This is none other than the point R.

Solution 2. Let K = AE ∩ BD be the symmedian point of triangle ACD. Let F be
the second intersection of ray CK with (ACD). Noticing the symmedians, we find three
harmonic quadrilaterals ACED, ABCD, and ACDF .

In harmonic quadrilateral ACDF , we notice (by Lemma 9.9, say), that R is the pole of
CF . Because CF contains K , point R lies on the polar of K . Now by Brocard’s theorem,
the intersection of line BE with AD lies on the polar of K as well, implying that B, E, R

are collinear.

Finally, one last solution—note this problem is purely projective!

A

B C

D

Q

R

E

Figure 9.8G. Projective transformations trivialize Example 9.39, because they allow us to assume
ABCD is a square.

Take a projective transformation that fixes ω and sends the point AC ∩ BD to the center
of the circle. Thus ABCD is a rectangle. Because ABCD is harmonic, it must in fact be
a square. Thus P is the point at infinity along AB ‖ CD and the problem is not very hard
now.

9.9 Problems
Lemma 9.40 (Incircle Polars). Let ABC be a triangle with contact triangle DEF and
incenter I . Lines EF and BC meet at K . Prove that IK ⊥ AD. Hints: 351 689 Sol: p.275

Theorem 9.41 (Desargues’ Theorem). Let ABC and XYZ be triangles in the projective
plane. We say that the two triangles are perspective from a point if lines AX, BY , and
CZ concur (possibly at infinity), and we say they are perspective from a line if the
points AB ∩ XY , BC ∩ YZ, CA ∩ ZX are collinear. Prove that these two conditions are
equivalent. Hints: 253 456

Problem 9.42 (USA TSTST 2012/4). In scalene triangle ABC, let the feet of the perpen-
diculars from A to BC, B to CA, C to AB be A1, B1, C1, respectively. Denote by A2 the
intersection of lines BC and B1C1. Define B2 and C2 analogously. Let D, E, F be the
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respective midpoints of sides BC, CA, AB. Show that the perpendiculars from D to AA2,
E to BB2, and F to CC2 are concurrent. Hints: 308 233

Problem 9.43 (Singapore TST). Let ω and O be the circumcircle and circumcenter of
right triangle ABC with ∠B = 90◦. Let P be any point on the tangent to ω at A other
than A, and suppose ray PB intersects ω again at D. Point E lies on line CD such that
AE ‖ BC. Prove that P , O, and E are collinear. Hints: 587 675

Problem 9.44 (Canada 1994/5). Let ABC be an acute triangle. Let AD be the altitude on
BC, and let H be any interior point on AD. Lines BH and CH , when extended, intersect
AC, AB at E and F respectively. Prove that ∠EDH = ∠FDH . Hints: 20 164 80 Sol: p.275

Problem 9.45 (Bulgarian Olympiad 2001). Let ABC be a triangle and let k be a circle
through C tangent to AB at B. Side AC and the C-median of �ABC intersect k again at
D and E, respectively. Prove that if the intersecting point of the tangents to k through C

and E lies on the line BD then ∠ABC = 90◦. Hints: 111 318 571

Problem 9.46 (ELMO Shortlist 2012). Let ABC be a triangle with incenter I . The foot
of the perpendicular from I to BC is D, and the foot of the perpendicular from I to AD is
P . Prove that ∠BPD = ∠DPC. Hints: 240 354 347 Sol: p.276

Problem 9.47 (IMO 2014/4). Let P and Q be on segment BC of an acute triangle ABC

such that ∠PAB = ∠BCA and ∠CAQ = ∠ABC. Let M and N be the points on AP and
AQ, respectively, such that P is the midpoint of AM and Q is the midpoint of AN . Prove
that the intersection of BM and CN is on the circumference of triangle ABC. Hints: 145 216

286 Sol: p.276

Problem 9.48 (Shortlist 2004/G8). Given a cyclic quadrilateral ABCD, let M be the
midpoint of the side CD, and let N be a point on the circumcircle of triangle ABM .
Assume that the point N is different from the point M and satisfies AN

BN
= AM

BM
. Prove that

the points E, F , N are collinear, where E = AC ∩ BD and F = BC ∩ DA. Hints: 58 503

632

Problem 9.49 (Sharygin 2013). The incircle of triangle ABC touches BC, CA, and AB

at points A′, B ′, and C ′ respectively. The perpendicular from the incenter I to the C-median
meets the line A′B ′ in point K . Prove that CK ‖ AB. Hint: 55 Sol: p.277

Problem 9.50 (Shortlist 2004/G2). Let � be a circle and let d be a line such that � and
d have no common points. Further, let AB be a diameter of the circle �; assume that this
diameter AB is perpendicular to the line d, and the point B is nearer to the line d than
the point A. Let C be an arbitrary point on the circle �, different from the points A and
B. Let D be the point of intersection of the lines AC and d. One of the two tangents from
the point D to the circle � touches this circle � at a point E; hereby, we assume that the
points B and E lie in the same half-plane with respect to the line AC. Denote by F the
point of intersection of the lines BE and d. Let the line AF intersect the circle � at a point
G, different from A.
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Prove that the reflection of the point G in the line AB lies on the line CF . Hints: 25 285

406 497 Sol: p.277

A B

DC

E

F

G

G′

Figure 9.9A. Problem 9.50 is a mouthful.

Problem 9.51 (USA January TST for IMO 2013). Let ABC be an acute triangle. Circle
ω1, with diameter AC, intersects side BC at F (other than C). Circle ω2, with diameter BC,
intersects side AC at E (other than C). Ray AF intersects ω2 at K and M with AK < AM .
Ray BE intersects ω1 at L and N with BL < BN . Prove that lines AB, ML, NK are
concurrent. Hints: 168 374 239

Problem 9.52 (Brazilian Olympiad 2011/5). Let ABC be an acute triangle with ortho-
center H and altitudes BD, CE. The circumcircle of ADE cuts the circumcircle of ABC

at F �= A. Prove that the angle bisectors of ∠BFC and ∠BHC concur at a point on BC.
Hints: 405 221 366

Problem 9.53 (ELMO Shortlist 2013). In �ABC, a point D lies on line BC. The
circumcircle of ABD meets AC at F (other than A), and the circumcircle of ADC meets
AB at E (other than A). Prove that as D varies, the circumcircle of AEF always passes
through a fixed point other than A, and that this point lies on the median from A to BC.
Hints: 511 34 270

Problem 9.54 (APMO 2008/3). Let � be the circumcircle of a triangle ABC. A circle
passing through points A and C meets the sides BC and BA at D and E, respectively. The
lines AD and CE meet � again at G and H , respectively. The tangent lines to � at A and
C meet the line DE at L and M , respectively.

Prove that the lines LH and MG meet at �. Hints: 156 444 352 572 Sol: p.277

Theorem 9.55 (Brianchon’s Theorem). Let ABCDEF be a hexagon circumscribed
about a circle ω. Prove that AD, BE, CF are concurrent. Hints: 241 35

Problem 9.56 (ELMO Shortlist 2014). Suppose ABCD is a cyclic quadrilateral inscribed
in the circle ω. Let E = AB ∩ CD and F = AD ∩ BC. Let ω1, ω2 be the circumcircles of
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triangles AEF , CEF , respectively. Let G and H be the intersections of ω and ω1, ω and
ω2, respectively, with G �= A and H �= C. Show that AC, BD, and GH are concurrent.
Hints: 404 590 443 Sol: p.278

Problem 9.57 (ELMO Shortlist 2014). Let ABCD be a cyclic quadrilateral inscribed in
circle ω. The tangent to ω at A intersects lines CD and BC at E and F . Lines BE and DF

meet ω again G and I , and H = BE ∩ AD, J = DF ∩ AB. Prove that GI , HJ , and the
B-symmedian of �ABC are concurrent. Hints: 667 234

Problem 9.58 (Shortlist 2005/G6). Let ABC be a triangle, and M the midpoint of its side
BC. Let γ be the incircle of triangle ABC. The median AM of triangle ABC intersects the
incircle γ at two points K and L. Let the lines passing through K and L, parallel to BC,
intersect the incircle γ again in two points X and Y . Let the lines AX and AY intersect BC

again at the points P and Q. Prove that BP = CQ. Hints: 682 543 328 104 563





C H A P T E R 10
Complete Quadrilaterals

Geometry is the art of correct reasoning from incorrectly drawn figures.
Henri Poincaré

This chapter relies on both inversive and projective geometry (Chapters 8 and 9).
We study complete quadrilaterals, a frequently recurring configuration in olympiad
geometry.

A complete quadrilateral consists of four lines, no three concurrent and no two parallel,
as well as the six points of intersection they determine. Any quadrilateral (possibly non-
convex) with non-parallel sides gives rise to a complete quadrilateral by just extending
its sides, and so throughout this chapter we refer to a complete quadrilateral ABCD with
P = AD ∩ BC and Q = AB ∩ CD,∗ as in Figure 10.0A.

P

Q

A

B

CD

Figure 10.0A. A complete quadrilateral.

This should be reminiscent of Lemma 9.11 and Brocard’s theorem (Theorem 9.25).
Indeed, the special case where ABCD is cyclic is discussed in Section 10.5.

∗ Recall from the Chapter 9, page 170, that AB ∩ XY is shorthand for the intersection of lines AB and XY .

195
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10.1 Spiral Similarity
Before proceeding, we first need to discuss the concept of a spiral similarity. A spiral
similarity with a center O combines a rotation about O with a dilation. Figure 10.1A gives
an example of a spiral similarity.

O

A

B

C

A′

B′

C ′

Figure 10.1A. A spiral similarity taking �ABC to �A′B ′C ′.

The most commonly occurring case of a spiral similarity is between two segments.
Consider a spiral similarity at O mapping a segment AB to CD, as in Figure 10.1B.

O

A

B

C
D

Figure 10.1B. A spiral similarity taking AB to CD.

Of course, �OAB is similar to �OCD.
We now determine O in terms of A, B, C, D via complex numbers. It is easy to check

that

c − o

a − o
= d − o

b − o
.

That implies

o = ad − bc

a + d − b − c
.

So O is uniquely determined by A, B, C, D. That implies in general there is exactly one
spiral similarity taking any segment to any other segment. The exception is if ABDC is a
parallelogram, since then a + d = b + c and the spiral similarity fails to exist.
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This is all fine and well, but where do spiral similarities arise in nature? In fact, they
are actually hidden whenever two circles intersect.

Lemma 10.1 (Spiral Centers). Let AB and CD be segments, and suppose X = AC ∩
BD. If (ABX) and (CDX) intersect again at O, then O is the center of the unique spiral
similarity taking AB into CD.

O

A

B

C
D

X

Figure 10.1C. O is the spiral center.

We say “the spiral similarity” instead of “a spiral similarity”, because we know already that
it is unique.

Proof. This is actually just a matter of angle chasing. We have

�OAB = �OXB = �OXD = �OCD

and similarly

�OBA = �ODC.

That implies �OAB ∼ �OCD, which is sufficient.

Do not forget this configuration! Whenever all six points in Figure 10.1C appear, we
automatically have a pair of similar triangles.

By now, an observant reader may have realized that there is more than one set of
similar triangles in Figure 10.1C. We see that in fact, �OAC ∼ �OBD as well. After all,
∠AOC = ∠BOD and AO

CO
= BO

DO
(the ratios arising from the original spiral similarity).

What this means is that spiral similarities occur in pairs. More precisely, we get the
following proposition.

Proposition 10.2. The center of the spiral similarity taking AB to CD is also the center
of the spiral similarity taking AC to BD.

Thus we have a second spiral similarity, but this time we know its center. What happens
if Lemma 10.1 is applied again, this time in the other direction? Does this really mean
that AB ∩ CD lies on (AOC) and (BOD) as well? Oh, yes. That is precisely Miquel’s
theorem, discussed in the next section.
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10.2 Miquel’s Theorem
With these results, we return to our complete quadrilateral ABCD with P = AD ∩ BC

and Q = AB ∩ CD. We now state one of the most basic results on complete quadrilaterals,
namely Miquel’s theorem. It is really just the re-interpretation of the spiral similarity in a
more natural setting.

Theorem 10.3 (Miquel’s Theorem). The four circles (PAB), (PDC), (QAD), (QBC)
concur at the Miquel point M . Furthermore, M is the center of the spiral similarity sending
AB to DC and BC to AD. (In particular, �MAB ∼ �MDC and �MBC ∼ �MAD.)

P

Q

A
B

CD

M

Figure 10.2A. The Miquel point M of a complete quadrilateral.

The point M is called the Miquel point of ABCD. This is the same Miquel point as in
Lemma 1.27; consider triangle PCD with Q, A, B on its sides.

Proof. Define M to be the second intersection of (PAB) and (PDC). By Lemma 10.1,
M is the center of the spiral similarity taking AB to DC. Hence, it is also the center of the
spiral similarity taking BC to DA. Invoking Lemma 10.1 again, this time in the reverse
direction, we see that M lies on (QBC) and (QAD).

What this means is that spiral similarity and complete quadrilaterals go hand in hand.
Each gives rise to the other. This gives a powerful way to relate similarities, circles, and
intersections to one another.

Problem for this Section

Problem 10.4. Prove that the four circles in Theorem 10.3 concur without appealing to
Lemma 10.1. (This is just angle chasing.)

10.3 The Gauss-Bodenmiller Theorem
Consider the three diagonals of a complete quadrilateral, namely AC, BD, PQ. It turns out
their midpoints are collinear. The line through them is called the Gauss line (sometimes
also called the Newton-Gauss line).
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P

Q

A
B

CD

Figure 10.3A. The Gauss line.

Actually, this is a simple corollary of an even more general theorem. Recall that three
circles are coaxial if each pair has the same radical axis (see Section 2.4).

Theorem 10.5 (Gauss-Bodenmiller Theorem). The circles with diameters AC, BD,
PQ are coaxial. Their radical axis is a line passing through each of the four orthocenters
of the triangles PAB, PCD, QAD, QBC.

The radical axis is sometimes called the Steiner line (or sometimes Aubert line). The
figure is shown in Figure 10.3B.

P

Q

A

B

CD

H1

Figure 10.3B. The full form of the Gauss-Bodenmiller theorem.
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The proof is surprisingly simple. The idea is to take any orthocenter and show that it
has the same power with respect to all three circles. Hence all four orthocenters lie on all
the radical axes. This implies the conclusion.

Proof. Let ω1, ω2, ω3 denote the circles with diameters PQ, AC, BD, respectively.
Let H1 denote the orthocenter of triangle BCQ. Check that it is the radical center ω1,

ω2, and the circle with diameter QC (Theorem 2.9). That implies that H1 lies on the radical
axis of the circles ω1 and ω2. Doing similar work, we see that H1 lies on the radical axes of
ω1 and ω2, ω2 and ω3, ω3 and ω1.

Similarly, the orthocenters of the other three triangles each lie on all three radical axes.
This is only possible if the radical axes of ω1 and ω2, ω2 and ω3, ω3 and ω1 all coincide, as
desired. Thus all four orthocenters lie on the desired Steiner line. In particular, the centers
of ω1, ω2, ω3 all lie on the prescribed Gauss line; this is the line perpendicular to the Steiner
line through the centers.

10.4 More Properties of General Miquel Points
Just for fun, we present two more interesting properties of Miquel points. First, we look
more closely at the circles in Miquel’s theorem.

Lemma 10.6 (Centers are Concyclic with the Miquel Point). The four centers of
(PAB), (PDC), (QAD), (QBC) lie on a circle passing through the Miquel point.

P

Q

A

B

CD

M

Figure 10.4A. Concyclic centers.

Problem 10.7. If O1 is the center of (PAB) and O2 is the center of (PDC), show that
�MO1O2 ∼ �MAD. Hints: 487 580

Problem 10.8. Establish the main result. Hint: 489

Here is one other fun fact. What happens when we drop the perpendiculars from M

onto the sides of a complete quadrilateral?
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Lemma 10.9 (Altitudes from the Miquel Point). The feet of the perpendiculars from M

to lines AB, BC, CD, DA are collinear. Furthermore, the line though these four points is
perpendicular to the Gauss line.

P

Q

A

B

CD

M

Figure 10.4B. The feet of the altitudes from M are collinear.

Problem 10.10. Prove that the four points are indeed collinear. Hints: 385 681

Problem 10.11. Prove that this line is perpendicular to the Gauss line. Hints: 90 412 519

10.5 Miquel Points of Cyclic Quadrilaterals
One of the most powerful configurations in olympiad geometry is the Miquel point when
complete quadrilateral ABCD is cyclic. In that case, the Miquel point gains several addi-
tional properties. All are shadows of the following theorem.

Theorem 10.12 (Miquel Point of a Cyclic Quadrilateral). Let ABCD be a cyclic
quadrilateral inscribed in circle ω with diagonals meeting at R. Then the Miquel point of
ABCD is the inverse of R with respect to inversion around ω.

Proof. Let O be the circumcenter of ABCD, and let R∗ be the image of R. It suffices
to show R∗ = M . Angle chasing (left as an exercise) lets us establish �AR∗B = �APB,
so that R∗ lies on (PAB). Similarly, R∗ lies on (PCD), (QBC), and (QDA). Hence R∗ is
indeed the Miquel point.

Brocard’s theorem, anyone? A simple corollary is that the Miquel point M also lies on
PQ. Moreover, if O is the center of ω, then OM ⊥ PQ. Inversion gives some additional
properties, deferred to the exercises.
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P

Q

A

B

CD

R

M

O

Figure 10.5A. The Miquel point of a cyclic quadrilateral.

Combining these results, we see that the magical Miquel point M has the following
properties.

(a) It is the common point of the six circles (OAC), (OBD), (PAD), (PBC), (QAB),
(QCD).

(b) It is the center of a spiral similarity taking AB to CD, as well as the spiral similarity
taking BC to DA.

(c) It is the inverse of R = AC ∩ BD with respect to an inversion around (ABCD). By
Brocard’s theorem, M is the foot of O onto PQ.

Impressive, no? Below we present a few additional properties of the Miquel point M .

Problems for this Section

Problem 10.13. Finish the directed angle chase in the proof of Theorem 10.12. Hints: 310

329

Proposition 10.14. Let M be the Miquel point of cyclic quadrilateral ABCD with circum-
center O. Show that the M is the second intersection of circles (OAC) and (OBD). Hint:

63

Proposition 10.15. Let M be the Miquel point of cyclic quadrilateral ABCD with circum-
center O. Prove that MO bisects ∠AMC and ∠BMD. Hint: 398

10.6 Example Problems
To illustrate the results of the Miquel point, we provide as an example a problem appearing
on a USA TST for the 54th IMO.

Example 10.16 (USA December TST for IMO 2013). Let ABC be a scalene triangle
with ∠BCA = 90◦, and let D be the foot of the altitude from C. Let X be a point in the
interior of the segment CD. Let K be the point on the segment AX such that BK = BC.
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Similarly, let L be the point on the segment BX such that AL = AC. The circumcircle of
triangle DKL intersects segment AB at a second point T (other than D).

Prove that ∠ACT = ∠BCT .

This is based on the fifth problem from the 2012 IMO, which asked to show that if AL

and BK meet at M , then ML = MK .

A B

C

D

X
K

L

T

Figure 10.6A. A variation on IMO 2012/5.

The first thing we do is add in the circles ωA and ωB centered at A and B passing through
C; this lets us cleanly interpret the length condition. Now we have a nice interpretation of
the angle condition—the two circles are orthogonal.

Seeing the orthogonal circles, we construct K∗ the second intersection of line AK with
ωB . The key observation is that K∗ is the image of K under inversion at ωA, implying that

AK · AK∗ = AC2 = AL2.

Similarly, let us construct L∗ with BL · BL∗ = BC2 = BK2.
But now something interesting happens. Since X lies on the radical axis of ωA and

ωB , we find that points K , L, K∗, L∗ are concyclic, say on circle ω. Now the above side
relations imply that AL, AL∗, BK , BK∗ are in fact tangents to ω. At this point, if we
let AL and BK intersect at a point M , then ML and MK are equal tangents; this remark
completes the original IMO problem.

Now how can we handle the cyclic quadrilateral KLT D? Here Theorem 10.12 comes
into play. We recognize D as the Miquel point of cyclic quadrilateral KLK∗L∗. So the
point T is none other than the intersection of KL∗ and LK∗. This frees us from having to
consider (KLD) at all; we simply view T as the intersection of these two sides, lying on
AB (which is the polar of X).

We focus on ω now. In projective terms, the quadrilateral KLK∗L∗ is harmonic, and
A and B are the poles of LL∗ and KK∗. Let us see if projection gives us any harmonic
bundles. If we use our information about tangents, we find

−1 = (K,K∗; L,L∗)
L= (S, T ; A,B).

where S = KL ∩ K∗L∗ (this lies on AB by Brocard’s theorem).
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A B

C

D

X

K
L

T

K∗

L∗

O

Figure 10.6B. Finding a hidden cyclic quadrilateral.

This is good, since we can apply our Lemma 9.18 now. Unfortunately, this does not
finish off the problem. We know that ∠ACB = 90◦ and CA is a bisector of ∠SCT , but we
actually want CT to bisect ∠ACB, or equivalently ∠SCT = 90◦.

The trick now is to consider radical axes. Since triangles XST and XAB are self-polar,
by Lemma 9.27 we find that O has the same power with respect to the circles with diameter

A B

C

D

X

K
L

T

K∗

L∗

S

O

Figure 10.6C. Completing the diagram for Example 10.16.
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ST and AB. Hence the radical axis of the circles with diameter ST and AB contains the
point O. Moreover, the radical axis is perpendicular to the line through the centers, namely
AB. This implies it passes through C. Yet C lies on the circle with diameter AB. Hence it
lies on the circle with diameter ST as well, as desired.

Solution to Example 10.16. Let ωA and ωB be the circles through C centered at A and
B; extend rays AK and BL to hit ωB and ωA again at K∗, L∗. Evidently KLK∗L∗ is cyclic,
say with circumcircle ω. Moreover, by orthogonality we observe that AL, AL∗, BK , BK∗

are tangents to ω (in particular, KLK∗L∗ is harmonic).
This means that AB is the polar of X. Then D is the Miquel point of cyclic quadrilateral

KLK∗L∗, and it follows that T = KL∗ ∩ LK∗. This implies −1 = (K,K∗; L,L∗)
L=

(S, T ; A,B) where S = KL ∩ K∗L∗. Hence it suffices to prove ∠SCT = 90◦.
As triangles XST and XAB are self-polar to ω, it follows that O has the same power

to the circles with diameter ST and AB. Hence the radical axis of these two circles is line
OC; this means C lies on the circle with diameter ST and we are done.

10.7 Problems
Problem 10.17 (NIMO 2014). Let ABC be an acute triangle with orthocenter H and let
M be the midpoint of BC. Denote by ωB the circle passing through B, H , and M , and
denote by ωC the circle passing through C, H , and M . Lines AB and AC meet ωB and
ωC again at P and Q, respectively. Rays PH and QH meet ωC and ωB again at R and S,
respectively. Show that �BRS and �CRS have the same area. Hints: 268 633 556

Problem 10.18 (USAMO 2013/1). In triangle ABC, points P , Q, R lie on sides BC,
CA, AB, respectively. Let ωA, ωB , ωC denote the circumcircles of triangles AQR, BRP ,
CPQ, respectively. Given the fact that segment AP intersects ωA, ωB , ωC again at X, Y ,
Z respectively, prove that YX/XZ = BP/PC. Hints: 59 92 382 686

Problem 10.19 (Shortlist 1995/G8). Suppose that ABCD is a cyclic quadrilateral. Let
E = AC ∩ BD and F = AB ∩ CD. Prove that F lies on the line joining the orthocenters
of triangles EAD and EBC. Hints: 428 416 Sol: p.278

Problem 10.20 (USA TST 2007/1). Circles ω1 and ω2 meet at P and Q. Segments AC

and BD are chords of ω1 and ω2 respectively, such that segment AB and ray CD meet at
P . Ray BD and segment AC meet at X. Point Y lies on ω1 such that PY ‖ BD. Point Z

lies on ω2 such that PZ ‖ AC. Prove that points Q, X, Y , Z are collinear. Hints: 277 615 525

Sol: p.279

Problem 10.21 (USAMO 2013/6). Let ABC be a triangle. Find all points P on segment
BC satisfying the following property: If X and Y are the intersections of line PA with the
common external tangent lines of the circumcircles of triangles PAB and PAC, then(

PA

XY

)2

+ PB · PC

AB · AC
= 1.

Hints: 196 68 42 327

Problem 10.22 (USA TST 2007/5). Acute triangle ABC is inscribed in circle ω. The
tangent lines to ω at B and C meet at T . Point S lies on ray BC such that AS ⊥ AT . Points
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B1 and C1 lie on ray ST (with C1 in between B1 and S) such that B1T = BT = C1T . Prove
that triangles ABC and AB1C1 are similar. Hints: 199 375 293 377 Sol: p.280

Problem 10.23 (IMO 2005/2). Let ABCD be a fixed convex quadrilateral with BC = DA

and BC ∦ DA. Let two variable points E and F lie of the sides BC and DA, respectively,
and satisfy BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q,
the lines EF and AC meet at R. Prove that the circumcircles of the triangles PQR, as E

and F vary, have a common point other than P . Hints: 562 436 481 499 Sol: p.280

Problem 10.24 (USAMO 2006/6). Let ABCD be a quadrilateral, and let E and F be
points on sides AD and BC, respectively, such that AE

ED
= BF

FC
. Ray FE meets rays BA and

CD at S and T , respectively. Prove that the circumcircles of triangles SAE, SBF , T CF ,
and T DE pass through a common point. Hints: 617 319 493

Problem 10.25 (Balkan Olympiad 2009/2). Let MN be a line parallel to the side BC of
a triangle ABC, with M on the side AB and N on the side AC. The lines BN and CM

meet at point P . The circumcircles of triangles BMP and CNP intersect at a point Q �= P .
Prove that ∠BAQ = ∠CAP . Hints: 636 358 208 399

Problem 10.26 (USA TSTST 2012/7). Triangle ABC is inscribed in circle �. The interior
angle bisector of angle A intersects side BC and � at D and L (other than A), respectively.
Let M be the midpoint of BC. The circumcircle of triangle ADM intersects sides AB and
AC again at Q and P (other than A), respectively. Let N be the midpoint of PQ, and let
H be the foot of the perpendicular from L to line ND.

Prove that line ML is tangent to the circumcircle of triangle HMN . Hints: 494 517 193

604 Sol: p.281

Problem 10.27 (USA TSTST 2012/2). Let ABCD be a quadrilateral with AC = BD.
Diagonals AC and BD meet at P . Let ω1 and O1 denote the circumcircle and the circum-
center of triangle ABP . Let ω2 and O2 denote the circumcircle and circumcenter of triangle
CDP . Segment BC meets ω1 and ω2 again at S and T (other than B and C), respectively.
Let M and N be the midpoints of minor arcs ŜP (not including B) and T̂ P (not including
C). Prove that MN ‖ O1O2. Hints: 81 261 312

Problem 10.28 (USA TST 2009/2). Let ABC be an acute triangle. Point D lies on side
BC. Let OB,OC be the circumcenters of triangles ABD and ACD, respectively. Suppose
that the points B,C,OB,OC lie on a circle centered at X. Let H be the orthocenter of
triangle ABC. Prove that ∠DAX = ∠DAH . Hints: 95 163

Problem 10.29 (Shortlist 2009/G4). Given a cyclic quadrilateral ABCD, let the diagonals
AC and BD meet at E and the lines AD and BC meet at F . The midpoints of AB and CD

are G and H , respectively. Show that EF is tangent at E to the circle through the points E,
G, and H . Hints: 222 56 413 627 Sol: p.281

Problem 10.30 (Shortlist 2006/G9). Points A1, B1, C1 are chosen on the sides BC,
CA, AB of a triangle ABC respectively. The circumcircles of triangles AB1C1, BC1A1,
CA1B1 intersect the circumcircle of triangle ABC again at points A2, B2, C2 respectively
(A2 �= A,B2 �= B,C2 �= C). Points A3, B3, C3 are symmetric to A1, B1, C1 with respect to
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the midpoints of the sides BC, CA, AB respectively. Prove that the triangles A2B2C2 and
A3B3C3 are similar. Hints: 10 606 680 14 Sol: p.282

Problem 10.31 (Shortlist 2005/G5). Let �ABC be an acute-angled triangle with AB �=
AC. Let H be the orthocenter of triangle ABC, and let M be the midpoint of the side BC.
Let D be a point on the side AB and E a point on the side AC such that AE = AD and
the points D, H , E are on the same line. Prove that the line HM is perpendicular to the
common chord of the circumcircles of �ABC and �ADE. Hints: 585 254 99 625 640 98 53 250





C H A P T E R 11
Personal Favorites

Graders received some elegant solutions, some not-so-elegant solutions, and some
so-not-elegant solutions. MOP 2012

Here are some fairly nice problems taken from various sources. Full solutions to all problems
can be found in Appendix C.4.

Problem 11.0. Find as many typos in this book as you can.

Problem 11.1 (Canada 2000/4). Let ABCD be a convex quadrilateral with ∠CBD =
2∠ADB, ∠ABD = 2∠CDB and AB = CB. Prove that AD = CD. Hints: 573 534 612

Problem 11.2 (EGMO 2012/1). Let ABC be a triangle with circumcenter O. The points D,
E, F lie in the interiors of the sides BC, CA, AB respectively, such that DE is perpendicular
to CO and DF is perpendicular to BO. Let K be the circumcenter of triangle AFE. Prove
that the lines DK and BC are perpendicular. Hints: 305 541

Problem 11.3 (ELMO 2013/4). Triangle ABC is inscribed in circle ω. A circle with chord
BC intersects segments AB and AC again at S and R, respectively. Segments BR and CS

meet at L, and rays LR and LS intersect ω at D and E, respectively. The internal angle
bisector of ∠BDE meets line ER at K . Prove that if BE = BR, then ∠ELK = 1

2∠BCD.
Hints: 213 568 44 538

Problem 11.4 (Sharygin 2012). Let BM be the median of right-angled triangle ABC with
∠B = 90◦. The incircle of triangle ABM touches sides AB and AM in points A1 and A2;
points C1, C2 are defined similarly. Prove that lines A1A2 and C1C2 meet on the bisector
of angle ABC. Hints: 658 340

Problem 11.5 (USAMTS). In quadrilateral ABCD,∠DAB = ∠ABC = 110◦,∠BCD =
35◦, ∠CDA = 105◦, and AC bisects ∠DAB. Find ∠ABD. Hints: 559 397 423 259

Problem 11.6 (MOP 2012). Let ABC be an acute triangle with circumcenter ω and
altitudes AD, BE, CF . Circle γ is the image of ω when reflected across AB. Ray EF

meets ω at P , and ray DF meets γ at Q. Prove that the points B, P , Q are collinear. Hints:

262 679 337 694

209
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Problem 11.7 (Sharygin 2013). Chords BC and DE of circle ω meet at point A. The line
through D parallel to BC meets ω again at F , and FA meets ω again at T . Let M denote
the intersection of ET and BC, and let N be the reflection of A over M . Show that the
circumcircle of �DEN passes through the midpoint of BC. Hints: 600 127 209 37

Problem 11.8 (ELMO 2012/1). In acute triangle ABC, let D, E, F denote the feet of the
altitudes from A,B,C, respectively, and let ω be the circumcircle of �AEF . Let ω1 and
ω2 be the circles through D tangent to ω at E and F , respectively. Show that ω1 and ω2

meet at a point P on line BC other than D. Hints: 289 131 298 510

Problem 11.9 (Sharygin 2013). In trapezoid ABCD, ∠A = ∠D = 90◦. Let M and N be
the midpoints of diagonals AC and BD, respectively. Line BC meets (ABN ) and (CDM)
again at Q and R. If K is the midpoint of MN , show that KQ = KR. Hints: 669 232 146

Problem 11.10 (Bulgarian Olympiad 2012). Let ABC be a triangle with circumcircle �

and let P be a variable point in its interior. The rays PA, PB, PC meet � again at A1, B1,
C1. Let A2 denote the reflection of A1 over BC, and define B2 and C2 similarly. Prove that
the circumcircle of triangle A2B2C2 passes through a fixed point independent of P . Hints:

464 427 430 311 631

Problem 11.11 (Sharygin 2013). Points A1, B1, C1, A2, B2, C2 lie inside a triangle ABC

so that A1 is on AB1, B1 is on BC1, C1 is on CA1, A2 is on AC2, B2 is on BA2, C2 is
on CB2. Suppose the angles BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 are equal. Prove
that �A1B1C1 and �A2B2C2 are congruent. Hints: 388 637 485 88

Problem 11.12 (Sharygin 2013). Let ABC be a triangle, and let AD denote the bisector
of ∠A (with D on BC). Points M and N are the projections of B and C respectively to
AD. The circle with diameter MN intersects BC at points X and Y .

Prove that ∠BAX = ∠CAY . Hints: 300 75 471 583

Problem 11.13 (USA December TST for IMO 2015). Let ABC be a scalene triangle
with incenter I whose incircle is tangent to BC, CA, AB at D, E, F , respectively. Denote
by M the midpoint of BC and let P be a point in the interior of �ABC so that MD = MP

and ∠PAB = ∠PAC. Let Q be a point on the incircle such that ∠AQD = 90◦. Prove that
either ∠PQE = 90◦ or ∠PQF = 90◦. Hints: 415 263 368 504

Problem 11.14 (EGMO 2014/2). Let D and E be points in the interiors of sides AB and
AC, respectively, of triangle ABC, such that DB = BC = CE. Lines CD and BE meet
at F . Prove that the incenter I of triangle ABC, the orthocenter H of triangle DEF , and
the midpoint M of arc BAC of the circumcircle of triangle ABC are collinear. Hints: 392

108 692 512 630

Problem 11.15 (Online Math Open Winter 2013). In �ABC, CA = 1960
√

2, CB =
6720, and ∠C = 45◦. Let K , L, M lie on lines BC, CA, and AB such that AK ⊥ BC,
BL ⊥ CA, and AM = BM . Let N , O, P lie on KL, BA, and BL such that AN = KN ,
BO = CO, and A lies on line NP .

If H is the orthocenter of �MOP , compute HK2. Hints: 629 527 33 433 516 330 105
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Problem 11.16 (USAMO 2007/6). Let ABC be an acute triangle with ω, S, and R being
its incircle, circumcircle, and circumradius, respectively. Circle ωA is tangent internally to
S at A and tangent externally to ω. Circle SA is tangent internally to S at A and tangent
internally to ω.

Let PA and QA denote the centers of ωA and SA, respectively. Define points
PB,QB, PC,QC analogously. Prove that

8PAQA · PBQB · PCQC ≤ R3

with equality if and only if triangle ABC is equilateral. Hints: 292 391 235

Problem 11.17 (Sharygin 2013). Let ABC be a triangle with angle bisector AL (where
L is on BC). Points O1 and O2 are the circumcenters of �ABL and �ACL respectively,
and points B1 and C1 are the projections of C and B to the bisectors of angles B and
C respectively. The incircle of a triangle ABC touches AC and AB at points B0 and C0

respectively, and the bisectors of angles B and C meet the perpendicular bisector of AL at
points Q and P respectively.

Prove that the five lines PC0, QB0, O1C1, O2B1 and BC are all concurrent. Hints: 331

484 158 142

Problem 11.18 (January TST for IMO 2015). Let ABC be a non-equilateral triangle and
let MA, MB , MC be the midpoints of the sides BC, CA, AB, respectively. Let S be a point
lying on the Euler line. Denote by X, Y , Z the second intersections of MAS, MBS, MCS

with the nine-point circle. Prove that AX, BY , CZ are concurrent. Hints: 176 182 369 546

Problem 11.19 (Iran TST 2009/9). Let ABC be a triangle with incenter I and contact
triangle DEF . Let M be the foot of the perpendicular from D to EF and let P be the
midpoint of DM . If H is the orthocenter of triangle BIC, prove that PH bisects EF . Hints:

223 288 434 269 609 215 505 438

Problem 11.20 (IMO 2011/6). Let ABC be an acute triangle with circumcircle �. Let 	

be a tangent line to �, and let 	a , 	b, 	c be the lines obtained by reflecting 	 in the lines
BC, CA, and AB, respectively. Show that the circumcircle of the triangle determined by
the lines 	a , 	b, and 	c is tangent to the circle �. Hints: 685 227 39 387 363 113 531

Problem 11.21 (Taiwan TST 2014). Let ABC be a triangle with circumcircle � and let M

be an arbitrary point on �. Suppose the tangents from M to the incircle of ABC intersect
BC at two distinct points X1 and X2. Prove that the circumcircle of triangle MX1X2 passes
through the tangency point of the A-mixtilinear incircle with �. Hints: 422 306 498 566 389 624

Problem 11.22 (Taiwan TST 2015). In scalene triangle ABC with incenter I , the incircle
is tangent to sides CA and AB at points E and F . The tangents to the circumcircle of
�AEF at E and F meet at S. Lines EF and BC intersect at T . Prove that the circle with
diameter ST is orthogonal to the nine-point circle of �BIC. Hints: 150 189 507 582 135 264
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A P P E N D I X A
An Ounce of Linear Algebra

Many of the computational techniques invoke properties of determinants and vectors. We
describe in detail the relevant parts of the technology here.

A.1 Matrices and Determinants
A matrix (plural matrices) is a rectangular array of numbers, for example⎡⎣ 1 2 3

4 5 6
7 8 9

⎤⎦ .

Throughout this text, we will be mostly concerned with 2 × 2 and 3 × 3 matrices.
A determinant of a matrix A, denoted det A or |A|, is a special value associated with

the matrix A. (When the matrix is written in full, we replace the brackets with bars.)
Determinants feature prominently in Chapter 7 and also in Chapters 5 and 6.

We define only the determinant of a 2 × 2 matrix and a 3 × 3 matrix. We have∣∣∣∣a b

c d

∣∣∣∣ = ad − bc

for a 2 × 2 matrix. For a 3 × 3 matrix we have∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ + b1

∣∣∣∣ c2 c3

a2 a3

∣∣∣∣ + c1

∣∣∣∣a2 a3

b2 b3

∣∣∣∣
or equivalently

a1

∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ + a2

∣∣∣∣b3 b1

c3 c1

∣∣∣∣ + a3

∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ .
In the definition, the 2 × 2 sub-matrices are called minors.

Determinants are nice because there are clean ways to evaluate them. For example, we
have the following properties, which we state without proof.

Proposition A.1 (Swapping Rows or Columns). Let A be a matrix, and B be a matrix
formed by swapping either a pair of rows or a pair of columns in A. Then det A = − det B.
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Proposition A.2 (Factoring). We have∣∣∣∣∣∣
ka1 a2 a3

kb1 b2 b3

kc1 c2 c3

∣∣∣∣∣∣ = k ·
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ .
Similar statements hold for the other rows and columns.

Most surprisingly, we can actually add and subtract rows and columns from each other!

Theorem A.3 (Elementary Row Operations). For any real number k, we have∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a1 + kb1 a2 + kb2 a3 + kb3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ .
Analogous operations can be performed on the other rows and columns.

In other words, we can add and subtract multiples of rows or columns from each other
without affecting the determinant. This often lets us eliminate terms that recur frequently
across the determinant.

Here is an example. Suppose we wish to evaluate the determinant∣∣∣∣∣∣∣∣∣
1
2

(
p + a + c − ac

p

)
1
2

(
1
p

+ 1
a

+ 1
c

− p

ca

)
1

1
2

(
p + a + b − ab

p

)
1
2

(
1
p

+ 1
a

+ 1
b

− p

ba

)
1

1
2 (p + a + b + c) 1

2

(
1
p

+ 1
a

+ 1
b

+ 1
c

)
1

∣∣∣∣∣∣∣∣∣ .
Straight multiplication would be rather horrible. Fortunately, we can eliminate a lot of
common terms. First, we can pull out all the factors of 1

2 to get

1

4

∣∣∣∣∣∣∣
p + a + c − ac

p
1
p

+ 1
a

+ 1
c

− p

ca
1

p + a + b − ab
p

1
p

+ 1
a

+ 1
b

− p

ba
1

p + a + b + c 1
p

+ 1
a

+ 1
b

+ 1
c

1

∣∣∣∣∣∣∣ .
Now noticing the plethora of common terms, we decide to subtract p + a + b + c times
the third column from the first column. This gives

1

4

∣∣∣∣∣∣∣
−b − ac

p
1
p

+ 1
a

+ 1
c

− p

ca
1

−c − ab
p

1
p

+ 1
a

+ 1
b

− p

ba
1

0 1
p

+ 1
a

+ 1
b

+ 1
c

1

∣∣∣∣∣∣∣ .
Similarly, we can knock out 1

p
+ 1

a
+ 1

b
+ 1

c
times the third column from the first. We obtain

1

4

∣∣∣∣∣∣∣
−b − ac

p
− 1

b
− p

ca
1

−c − ab
p

− 1
c

− p

ba
1

0 0 1

∣∣∣∣∣∣∣ = 1

4

∣∣∣∣∣∣∣
b + ac

p
1
b

+ p

ca
1

c + ab
p

1
c

+ p

ba
1

0 0 1

∣∣∣∣∣∣∣ .
Here we have also taken the liberty of factoring out the two minus signs. Now this determi-
nant looks much tamer, and we can evaluate by minors. Because of the 0s in the last row,
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we use minors on the last row: we find

1

4

(
0

∣∣∣∣∣ 1
b

+ p

ca
1

1
c

+ p

ba
1

∣∣∣∣∣ + 0

∣∣∣∣∣ 1 b + ac
p

1 c + ab
p

∣∣∣∣∣ + 1

∣∣∣∣∣ b + ac
p

1
b

+ p

ca

c + ab
p

1
c

+ p

ba

∣∣∣∣∣
)

.

Now we have only one determinant to compute! We can just expand it as

1

4

[(
b + ac

p

)(
1

c
+ p

ba

)
−

(
1

b
+ p

ca

)(
c + ab

p

)]
.

Conveniently enough, this expands to zero! If you have read Chapter 6, then you might
realize that this actually establishes Lemma 4.4 using complex numbers. (Why?)

A.2 Cramer’s Rule
Cramer’s rule is a method for converting a system of equations into a determinant. It also
is a good illustration of row and column operations, so we present it below.

Theorem A.4 (Cramer’s Rule). Consider a system of equations

axx + ayy + azz = a

bxx + byy + bzz = b

cxx + cyy + czz = c.

Then the solution for x is

x =
∣∣∣∣∣∣
a ay az

b by bz

c cy cz

∣∣∣∣∣∣ ÷
∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
provided the denominator is nonzero. Analogous equations hold for y and z.

Proof. The numerator is∣∣∣∣∣∣
axx + ayy + azz ay az

bxx + byy + bzz by bz

cxx + cyy + czz cy cz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
axx ay az

bxx by bz

cxx cy cz

∣∣∣∣∣∣ .
Here we have subtracted y times the second column and z times the third column from the
first. Factoring, the numerator equals

x

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣ .

A.3 Vectors and the Dot Product
Vectors provide the most basic notion of addition in the plane, and thus form the foundation
for our analytic tools.

In the linear algebra realm, a vector is just an arrow with both a magnitude (length)
and a direction. A vector pointing from a point A to a point B is denoted

−→
AB. In order to
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A

B

Figure A1. A vector pointing from A to B.

associate points to vectors, we usually define a single point O as the origin, or zero vector.
Then we associate every point P with the vector

−→
OP , abbreviated as just �P . This is much

like complex numbers; indeed, the two concepts are ofter used interchangeably.
Vectors thus can be represented coordinate-wise: in the plane, the vector pointing to

(x, y) in the Cartesian plane (from (0, 0)) is denoted 〈x, y〉. The zero vector is then 〈0, 0〉.
The magnitude of a vector �v is written |�v|.

O

�u

�v

�u + �v

Figure A2. Adding two vectors.

Vectors add exactly as one would expect: the sum of 〈x1, y1〉 and 〈x2, y2〉 is
〈x1 + y1, x2 + y2〉. A second interpretation of this addition is the parallelogram law, illus-
trated in Figure A2.

Vectors can also be scaled by real numbers by simply adjusting their magnitude.

�v
1
2�v

2�v

−�v

Figure A3. Vectors can also be scaled by constants.

It is important to note that with this scaling, we can take weighted averages of vectors
and get the expected results. For example, given segment AB with midpoint M , we have
�M = 1

2

(
�A + �B

)
.

Vanilla vectors are not used too often in olympiad problems: rather, we use one of our
well-established systems built on top of them (for example, Cartesian coordinates, complex
numbers, or barycentric coordinates). However, there is one concept from vectors that can
be useful: the dot product.
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The dot product of two vectors v and w is given by

�v · �w = |�v| | �w| cos θ

where θ is the angle made between the two vectors. Surprisingly, it turns out that

〈a, b〉 · 〈x, y〉 = ax + by.

The dot product provides a way to multiply vectors, different from the multiplication
of complex numbers. It has the following properties:

� The dot product is distributive, commutative, and associative, so you can treat it like
multiplication.

� We can express the magnitude of �v in terms of the dot product by |�v|2 = �v · �v.
� Two (nonzero) vectors �v and �w are perpendicular if and only if �v · �w = 0.

To see an application of this, consider a triangle ABC with circumcenter O. If we set
�O as the zero vector �0, then we have the nice property that∣∣∣ �A

∣∣∣ =
∣∣∣ �B

∣∣∣ =
∣∣∣ �C

∣∣∣ = R

where R is of course the circumradius. So that means �A · �A = R2, and so on.

O

A

B C

Figure A4. Tossing �ABC into a vector system.

Now what of �A · �B? By definition, this is R2 cos 2C. But cos 2C = 1 − 2 sin2 C =
1 − 2

(
c

2R

)2
, and accordingly we discover

�A · �B = R2 − 1

2
c2.

Similarly, �B · �C = R2 − 1
2a2 and �C · �A = R2 − 1

2b2.
Now in Chapter 6 we show that the orthocenter H of ABC is actually given by the

simple formula �H = �A + �B + �C. That means, for example, that we can compute OH ! It
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is just a matter of evaluating the dot product.

OH 2 =
∣∣∣−−→OH

∣∣∣2
=

∣∣∣ �H
∣∣∣2

= �H · �H

=
(

�A + �B + �C
)

·
(

�A + �B + �C
)

= �A · �A + �B · �B + �C · �C

+ 2
(

�A · �B + �B · �C + �C · �A
)

= 3R2 + 2

(
3R2 − 1

2

(
a2 + b2 + c2))

= 9R2 − a2 − b2 − c2.

We will use these properties again to prove theorems in Chapter 7, when we construct
a distance formula and a perpendicularity criterion for barycentric coordinates.
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Hints

1. Try angle chasing; you might see it.
2. Construct circles.
3. The ratio is just

√
2.

4. Something is concurrent. Draw a good diagram.
5. We can compute the angles that BJ makes with ∠B.
6. It is enough to take P = (0, s, t) with s + t = 1 and do some computation.
7. Pick a point to handle the weird angle condition.
8. You cannot take half of directed angles! How you can get around this?
9. Trigonometric form of Ceva’s theorem.

10. Spiral similarity, of course, but also length ratios.
11. Find the homothety.
12. Let A0 be the intersection of lines B1C1 and BC.
13. This is very hard for a G1, which is why there was no easy geometry at the IMO

2011.
14. Prove that �A2BC ∼ �AC3B3.
15. Do you see a pair of perpendicular lines?
16. Look at triangle BPC.
17. Remember Lemma 2.11.
18. Which quadrilateral is cyclic?
19. Use angle chasing to show that APOQ is cyclic, thus we’re done.
20. There is a right angle and we want an angle bisector. Which configuration does this

remind you of?
21. Directed angles will fail here because the condition that X and A are on different arcs

is necessary.
22. Do some computation with the inversive distance formula. The answer should pop

right out.
23. Radical axis.
24. First recall that ME = MF = MB = MC.
25. This can be solved in a lot of ways, but there is a short solution using two applications

of Pascal’s theorem.
26. H is the incenter of triangle DEF .

221
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27. Find a nine-point circle.
28. What does the condition AB

AC
= BF

FC
mean?

29. You can get away with applying Lemma 6.24 because aa = 1.
30. Put ABC at the unit circle and compute points D, E directly.
31. Similarity generates some ratios.
32. How could we use the quantities 1 + ri?
33. Construct the circumcenter of ABC and the midpoint of AC. Do you see the three

circles now?
34. Invert around A.
35. Combine Pascal’s and La Hire’s theorems.
36. Let T be the point on AB such that AD = AT .
37. Now we can just angle chase. Find the new cyclic quadrilateral.
38. Use some similar triangles to reduce this to Heron’s formula.
39. Draw a very good diagram. You can construct A2 as the second intersection of T A1

with �.
40. It equivalent to prove �CZM ∼ �EZP . Hence all we want is ∠CZE = ∠PZM .
41. Construct the circle with diameter AB.
42. Use a spiral similarity and do some computations.
43. Let x = ∠ABQ and use trigonometry. Here 0◦ < x < 60◦.
44. BE = BR = BC.
45. What is the fixed point?
46. Show that PD : AD = [PBC] : [ABC]. Why are we done?
47. How can you map O to H using a homothety centered at G?
48. Ratios of the radii are sufficient.
49. What is the concurrency equivalent to?
50. Find some synthetic observations first. Parallel lines.
51. How do we handle the angle condition?
52. Deduce that the center of cyclic quadrilateral BFEC must lie on BC.
53. Add in the altitudes of ABC and compute a ratio.
54. Lemma 4.40 is likely to be very helpful.
55. Midpoints and parallel lines!
56. Intersect line EF with AB and CD to get tons of harmonic bundles.
57. This is pure angle chasing.
58. There is a very convenient point not marked that leads to a solution. Draw a good

diagram.
59. Introduce the Miquel point M of the three circles.
60. Use the fact that ∠B ′OC ′ > ∠BOC to get ∠A ≤ 60◦.
61. Focus on triangle ACD.
62. Can you get rid of the points F and H in the expressions?
63. This follows since R is the intersection of AC and BD.
64. Simson lines! Although angle chasing works as well.
65. Use both (e) and (f).
66. Note that B1 is the intersection of lines C1A0 and AC, and the cyclic quadrilateral.
67. If x = BD, y = AC, and z is a third diagonal, one should obtain xy = ac + bd,

yz = ad + bc, and zx = ab + cd.
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68. The quantity PA
XY

does not depend on P .
69. Prove that �T LK = �T CM .
70. It is the circle with diameter AB.
71. If all goes well, you should get something to the effect of 1 + 1/2

sin(150◦−2x) = sin x+sin 60◦
sin(120◦−x) .

72. The condition is equivalent to the quadrilateral formed by lines KL, PQ, AB, AC

being cyclic.
73. The two circles with diameter AB and AC hit the foot from A to BC.
74. Look at triangle EBD. Notice anything familiar?
75. If AB < AC, show that M is an incenter.
76. Coaxial circles—show they have a second common point instead.
77. Show that �CMN = �BMN first. (Another solution, perhaps more natural, begins

by letting N ′ be the intersection of AD and BC, and showing that N ′ lies on each of
the circles.)

78. The strange part of the problem is the final condition OP = OQ, as the circumcenter
is not related to anything in the problem. How might you encode this using something
from this chapter?

79. Try point H .
80. Use Lemma 9.11 or Lemma 9.12.
81. Spiral similarity.
82. First show that B1, B2, C1, C2 are concyclic. What is their circumcenter?
83. It is negative since AB and XY are not disjoint.
84. Which quadrilateral is cyclic?
85. How can we get the orthocenter of AHE? We can do better than intersecting perpen-

dicular lines.
86. Just expand p−a

p−b
∈ R directly.

87. It suffices to prove OL ≥ 1
2R. Can you think of some nice estimates for OL?

88. What do we know about the distance from O to all the sides?
89. The incenter/excenter lemma, see Lemma 1.18.
90. Show that the line is parallel to the Steiner line.
91. Exactly three of them have H as a vertex.
92. Spiral similarity is helpful here.
93. It is enough to show that the distance from O to BC is at least 1

2R.
94. It suffices to show the circles are coaxial; equivalently, that they share the same radical

axis. Use Lemma 7.24.
95. Find a Miquel point; then just angle chase.
96. We want to prove that ∠OFB = ∠OGB = 90◦. Invert around ω1.
97. Add and subtract lengths to obtain LH = XP .
98. K is the Miquel point of a cyclic quadrilateral.
99. How else can we interpret the ray MH?

100. Show that BQOP is cyclic.
101. Apply Lemma 1.18.
102. Use Menelaus’s theorem.
103. Because A, I , IA are collinear, just check that AIA ⊥ IBIC .
104. The problem can now be solved with just two projections of harmonic bundles.
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105. We obtain that H is the intersection of line AC and the line through B and the
circumcenter of triangle ABC. Finish with the law of cosines.

106. Add a Miquel point.
107. Remember that you can project bundles on circles onto lines via points also on the

circle.
108. Complete quadrilaterals.
109. �ABC = �AA1C.
110. Shift O to O ′ and obtain a cyclic quadrilateral.
111. What does the tangency condition mean?
112. Invert again around ω2!
113. First, show that A1B1 ‖ A2B2. Then show that A1A2, B1B1, C1C2 concur on �.
114. Rewrite the proof that a quadrilateral has angle sum 360◦ using directed angles.
115. Show that ABOE is cyclic.
116. Power of a point.
117. Normally angle conditions are horrible. Why is this one okay?
118. Invert around D. The radius r can be anything.
119. Reflecting the orthocenter again.
120. I am sure you can guess which point to invert around.
121. You can shift M , N , H by a + b + c before applying the circumcenter formula.
122. We have equal tangents at A.
123. First take the homotheties sending the squares outside the triangle.
124. You need two configurations. Use a good diagram to figure out what HQ

HR
should be.

125. AXFEI is cyclic.
126. Let D1 = (u : m : n) and A = (v : m : n), where D1 is the second intersection of ω1

and ω2. This encodes all conditions.
127. Push the factor of 2 somewhere else.
128. The three concur at the symmedian point.
129. Now AE and DB are symmedians, so one can compute B, E. In addition, one can

compute R as the intersection of the tangent at C and (the extension of) side AD.
130. A∗B∗ + B∗C∗ ≥ A∗C∗ with equality if and only if A∗, B∗, C∗ are collinear in that

order. Now apply the inversion distance formula.
131. What must be true about the radical center?
132. Use the unit circle to get the orthocenter. 1

2 (a + b + c + d).
133. First consider X = P and X = Q; this gives four possible pairs (S, T ).
134. Radical axes again.
135. Introduce the midpoint of EF to create a harmonic bundle involving S.
136. What is the equality case we are looking for?
137. The fixed point is the orthocenter.
138. Use a homothety.
139. It is also possible to compute the heights of the triangles.
140. This follows from the homothety used in the proof of Lemma 4.33.
141. Just compute all the points directly using (ABC) as the unit circle.
142. Try to show the contact triangle of ABC is homothetic to �PQL.
143. Lemma 8.16 to clean up.
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144. Use trigonometry to express the lengths BD and CE, which give the coordinates of
D and E.

145. Midpoints and parallel lines.
146. Put AB = 2x, CD = 2y, BC = 2	 and compute some lengths.
147. Use Lemma 9.17 to compute the power of the midpoint. Then recall that all the centers

are collinear.
148. Radical axes.
149. One should get x = p + a + b + c − bcp.
150. Projective geometry.
151. Check that �YXP = �AKP .
152. You can replace line OH with any line through the centroid G.
153. Can you find a nice interpretation for the two given conditions?
154. Use a circle of radius zero.
155. Construct a rectangle. Show that the line through K∗ perpendicular to AQ passes

through the center of �.
156. There is something unnecessary in this problem.
157. Show that X, H , P are collinear, where P is said Miquel point.
158. Try homothety now.
159. Which quadrilateral is cyclic?
160. Recall Lemma 4.9.
161. The areas should come out to be 1

8ab tan 1
2C.

162. Show that [AOE] = [BOD] directly.
163. A is the Miquel point of BOBOCC.
164. Let X = BE ∩ DF ; by Lemma 9.18 we need (X,H ; E,F ) = −1.
165. What is the ratio of the homothety?
166. The given condition can be rewritten as a2 + c2 − ac = b2 + bd + d2.
167. We get a2 = bb1−cc1

b+b1−c−c1
, and then compute the determinant in Theorem 6.16.

168. Which quadrilateral is cyclic?
169. Show that the points lie on the circle with diameter OP .
170. Inversion through D with radius 1.
171. Isogonal conjugates.
172. Invert around A.
173. Why does it suffice to consider the case d = a, e = b, f = c?
174. Prove also that �EAB ∼= �MAB.
175. Consider triangles XED and XAK .
176. Ignore �ABC, and focus on �MAMBMC instead. See if you can eliminate A, B, C

from the picture entirely.
177. Try using power of a point.
178. The resulting four points should invert to something nice.
179. Find the fixed point first! A nice diagram helps here.
180. One can compute the numerical DF . Letting M be the midpoint of DF , it suffices to

show that ME = 1
2DF .

181. We will be using AA similarity. Which angles are equal?
182. Begin by using cevian nest (Theorem 3.23).
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183. Take a transformation that fixes (ABCD) and sends Q to the center of the circle.
184. Use the law of sines.
185. First compute ∠WXY = 40◦.
186. Let O be the center of ω.
187. Use homothety.
188. Apply Theorem 7.14 directly to AD = BE with reference triangle ABC.
189. Lemma 9.27 applies.
190. Begin by letting N be the point on AK so that BN is isogonal to BC.
191. Rewrite the end condition without circles.
192. Show that line DT passes through the reflection of A over the perpendicular bisector

of BC.
193. The two circles intersect at the midpoint of major arc BC.
194. Use property (b) twice.
195. Show that ∠AZY = 1

2B and ∠ZAX = 1
2 (A + C).

196. This problem is pretty silly.
197. A clean way to do this is by computing

[(a − b)(c − d)(e − f ) + (b − c)(d − e)(f − a)] minus
[(a − b)(c − e)(d − f ) + (d − e)(f − b)(a − c)].

198. An inversion can get rid of almost all the circles.
199. Where has this configuration appeared before?
200. If OB and OC are the centers, show that OBOC = BC.
201. Which quadrilateral is cyclic?
202. Law of cosines.
203. One should get o1 = c(a+c−2b)

c−b
and o2 = b(a+b−2c)

b−c
. Now what is 1

2 (o1 + o2)?
204. Show with computation that A, B1, and C1 are collinear. Then �C1QP = �ACP =

�AB1P = �C1B1P .
205. Which configurations come to mind?
206. Pick reference triangle DEF . Here we pick a = EF , b = FD, c = DE.
207. A is the centroid of EBD, so ray DA bisects BE.
208. Show that the ratio of the distance from Q to AB and AC is AB : AC. This will imply

AQ is a symmedian.
209. Construct an isosceles trapezoid. Power of a point.
210. Use Lemma 6.18 in order to compute the points A2, etc.
211. Prove that line PZ passes through the centers of ω and ω1.
212. Find a good way to interpret the angle condition. Put another way, what are the

possible locations of P ?
213. Incenters.
214. ADOO ′ and BCOO ′ are also parallelograms.
215. Try erasing the points E, F , and A.
216. Show more strongly that if the intersection point is X, then ABXC is harmonic.
217. The argument of b−a

c−a
is �BAC, and the argument of b−d

c−d
is �BDC.

218. Now AB and CD are diameters.
219. The two sides can be found to equal BG·CE

BE·CG
.

220. Which quadrilateral is cyclic?
221. Why does it suffice to show FBH ′C is harmonic?
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222. Consider the Gauss line of quadrilateral ADBC, and let M denote the midpoint of
EF .

223. This is one of my favorite tests of configuration recognition. You will need three of
the lesser-used configurations.

224. One choice of reference triangle is A1A2A3, with A4 = (p, q, r).
225. Use the law of sines.
226. You should get

cos

(
3

2
x + 30◦

)
= cos

(
5

2
x + 30◦

)
+ cos

(
1

2
x + 30◦

)
or some variant. One can guess the value of x now with some persistence (try multiples
of 10◦). Finish with sum-product on the right.

227. One standard trick for doing so: try to construct �A2B2C2 on � homothetic to
�A1B1C1. Then show the center of homothety lies on � (implying it is T ).

228. Using the fact that ∠MEA = 90◦, angle chase to show that AF is a symmedian.
229. Where does the isogonal conjugate of P lie?
230. You can explicitly find K .
231. Moreover, P is a point at infinity, so P , C, D collinear implies ABCD is a square.
232. Let P be the midpoint of QR and L the midpoint of MN . Show that PK ⊥ QR.
233. Brocard’s theorem destroys this.
234. Take ABCD to a rectangle; the problem becomes trivial.
235. Inversion at A with radius s − a makes this much easier to compute. Overlays.
236. Just check that �MIT = −�MKI .
237. It is equal to oA−c

b−c
.

238. Consider the reflection of X, Y over BC.
239. Now use Brocard’s theorem.
240. Right angles and bisectors again.
241. This looks a lot like Pascal’s theorem.
242. Show that A∗

1A
∗
2A

∗
3 and B∗

1 B∗
2 B∗

3 are homothetic (all sides parallel). Why is this
enough?

243. Show that N = (s − a : s − b : s − c). Normalize coordinates to check that NG =
2GI .

244. Homothety again.
245. Which quadrilateral is cyclic?
246. It is equivalent to show that PC < PO.
247. A∗B∗C∗D∗ is a parallelogram.
248. Add in the medial triangle.
249. You should be laughing.
250. Try to show the spiral similarity at K sends D to E as well; this implies the conclusion.
251. One should find that the resulting intersection is (−a2 : 2b2 : 2c2).
252. O is the reflection of C across A∗B∗.
253. This is purely projective.
254. Let ray MH meet (ABC) again at K . It suffices to prove that AKDE is cyclic.
255. What happens now if we invert about A?
256. Use area ratios on the inverted picture.
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257. H and F swap places, as do A and E, as do C and F .
258. Now use Lemma 4.17.
259. Pick I the incenter of triangle BAD. Show that IBCD is cyclic. Why does this solve

the problem?
260. Which configuration is this?
261. Consider the second intersection of ω1 and ω2.
262. Try inverting.
263. Pin down Q by invoking Lemma 4.9.
264. The last ingredient is Lemma 4.17.
265. Now just angle chase.
266. Isogonal conjugates.
267. What is line QS?
268. It suffices to prove R, M , S are collinear.
269. Can you rephrase “PH bisects EF ” more naturally?
270. Brocard’s theorem. Symmedians for the second part.
271. Try to compute N directly.
272. Do we want to deal with reflections? If not, what can we do?
273. It is equivalent to show that arcs T̂ K and T̂ M have the same measure.
274. Note that CI ⊥ A′B ′ and CM ⊥ IK . What is the conclusion equivalent to?
275. Evaluate BE2 in terms of a, b, c, using cos BAE = − cos BAC. Do the same for AD

and then show a2 = b2 + c2.
276. You can compute KN using IAN · IAK = IAI 2 − r2.
277. Which quadrilateral is complete?
278. Show that �ZYP = �XYP .
279. Do not forget to preserve intersections of clines. For example, the circle tangent to ω

should invert to a line tangent to ω at the same point.
280. One can compute MS = MT explicitly. Just compute all the points directly.
281. You should obtain

J =
(

a cos

(
A + 1

2
B

)
: b cos

(
A + 1

2
B

)
: −c cos

(
A − 1

2
B

))

or something similar.
282. First use homothety to make Q into something nicer.
283. Compute directly now; use A, S, T as free variables.
284. Use Ceva’s theorem twice.
285. First show that BC ∩ GE lies on d.
286. The tangent at B is parallel to AP by angle chasing. Take perspectivity.
287. This just follows by taking the number line definition and solving x−a

x−b
: y−a

y−b
= k.

288. Draw a very good diagram. Can you say anything about the altitudes of �BHC? (The
next hint gives this away.)

289. We only care about the radical axis.
290. Let M be the midpoint of BE. Show that MA = ME = MB.
291. One can also compute CR, say, by evaluating AR = BR and applying Ptolemy’s

theorem.
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292. It will reduce down to (−a + b + c)(a − b + c)(a + b − c) ≤ abc, called Schur’s
inequality.

293. Prove that A is the Miquel point of B1BCC1.
294. Try to get rid of a few circles.
295. We can find J by intersecting rays BJ and CJ .
296. Specifically, if HA = a + b + d is the orthocenter of �ABD, then W is the midpoint

of AHA.
297. Look at Lemma 1.44.
298. Show that the tangents to ω1 and ω2 meet on BC.
299. You should get ∠CXY = ∠AXP one way or another (good diagrams may suggest

this as well). Use cyclic quadrilateral APZX to prove this.
300. Find a harmonic bundle.
301. Look at all those circles. Can you get them to pass through more vertices?
302. Find a pair of similar triangles.
303. Now observe that X and Y are “±√

de”; that is, x + y = 0 and xy = −de. Moreover,
show that p2 = de.

304. The fixed point is K = (2SB, 2SA : −c2).
305. Which quadrilateral is cyclic?
306. You only need the fact that line T I passes through the midpoint of arc B̂C, say L.
307. Anything special on the median EC?
308. First find the point of concurrency.
309. This yields Brocard’s theorem.
310. Use Lemma 1.30 to handle the directed angles.
311. Find the diameter of the fixed circle.
312. The similarity is actually a congruence because AC = BD!
313. Are there some other reflections in this problem?
314. What is the orthocenter of the medial triangle?
315. If the problem is true, then the common radical axis must be the perpendicular

bisector.
316. The key observation is that the circle is the midpoint of AO.
317. Do you see an incenter?
318. The condition implies DEBC is harmonic. What next?
319. Let X = AD ∩ BC and use Miquel points.
320. Do you recognize where the point D2 has to be?
321. Use Lemma 8.16 applies directly.
322. The conditions should translate to ∠D∗B∗C∗ = 90◦ and B∗D∗ = B∗C∗.
323. Lemma 8.11.
324. In an overlaid picture, it suffices to show MK∗ is tangent to the circumcircle of

�K∗AQ.
325. Draw a good diagram. Which three points look collinear?
326. What is ∠AZY ?
327. �AOBOC ∼ �ABC.
328. Letting E and F denote the tangency points of the incircle, we have EF , KL, XY

concurrent now (due to the isosceles trapezoid).
329. Go via �AR∗B = �AR∗O + �OR∗B = · · · = �APB.
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330. Apply Brocard’s theorem to locate H .
331. First identify B1 and C1.
332. Specifically, find the κ ∈ R such that κ(a + b + c) lies on the Euler line of AIB

(where a = x2 and so on). Check that κ is symmetric in x, y, z.
333. Suppose the cevians meet at P . Where can we send A, B, C, P ?
334. m = 100.
335. Then �FEM = �FEB + �BEM = �FEB + . . . ?
336. This is essentially the same as the previous exercise.
337. Overlays are helpful here.
338. One should find that ∠C∗B∗P ∗ = ∠B∗C∗P ∗. How to handle the incenters?
339. Areas.
340. Show that ∠AA1C1 is bisected by A1A2. Thus P is the excenter of triangle A1BC1.
341. Why does ∠AD∗B∗ = 1

2∠AP ∗B∗?
342. Since ∠MCT A = ∠ST MB , this is straight angle chasing now.
343. Why does it suffice to prove that b

c

(
c−a
b−a

)2
is real?

344. One can also get rid of A quickly. In other words, you can view the entire problem in
terms of the quantities in quadrilateral BGCE.

345. Angle chasing can get rid of H and L completely.
346. By angle chasing, show that triangles MKL and APQ are similar. Why is this

enough?
347. If E and F are the tangency points of the incircle and X is the second intersection of

AD with the incircle, show that DEXF is harmonic.
348. Just note that the side length of MBMC is half that of BC, so the ratio is −2.
349. For the setup, put A = (au : bv : cw) and C = (avw : bwu : cuv) and show that

PA = PC if and only if there is a common circle.
350. Homothety. Show that OBOC = 2

(
1
2BC

) = BC.
351. Prove that AD is the polar of K .
352. Take a projective transformation, keeping � a circle. Many such transformations lead

to a solution.
353. After the first inversion, we want to show that F ∗G∗ passes through B.
354. Extend ray IP to hit line BC at K . It suffices to show (K,D; B,C) = −1.
355. How do we use the condition that AD = 1

2AC?
356. Let K ′ denote the intersection of the circumcircle and the angle bisector.
357. This is equivalent to a−b

p−q
: k−	

a−c
∈ R. Use Lemma 6.30 and expand.

358. Q is a Miquel point.
359. Borrow some ideas from the HMMT problem.
360. There is a homothety taking the medial triangle (the triangle whose vertices are

the midpoints of ABC) to ABC itself. This follows from the opposite sides being
parallel.

361. Identify the center of the circle first.
362. First get rid of Q by considering the point X diametrically opposite it on (ABC).
363. Note that A2A = PA, where P is the tangency point of 	.
364. Show that the radical axis bisects ∠PBC.
365. Use IE = x sin C = cx

2R
alongside Ptolemy’s theorem to finish.

366. Radical axes give you a concurrence.
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367. Consider the circles with diameters BC, CA, and AB.
368. Find Lemma 1.45 hidden in the picture.
369. Use isotomic conjugates and reflecting X, Y , Z, one can eliminate A, B, C altogether.
370. It is not hard to get tan∠ZEP = tan∠ZCE = EZ

ZC
. So we just want to show EZ

CZ
=

PE
MC

.
371. First compute d and e using Theorem 6.17. The hard part is computing o1. You want

a similar triangle.
372. Of course recall Lemma 1.18.
373. Show that both are equal to 90◦ − A.
374. What is its center?
375. Find a Miquel point by using angle chasing.
376. Which quadrilateral is cyclic?
377. If K = BB1 ∩ CC1, prove B, K , A, C are concyclic.
378. Pascal’s theorem on AABBCC.
379. There are symmedians in this problem.
380. Why might the quantity 1√

3
(cos 30◦ + sin 30◦) be useful?

381. The condition “ML tangent to (HMN )” is an abomination; perform some simplifying
transformations.

382. M is the spiral center sending YZ to BC.
383. Finish with the trigonemetric form of Ceva’s theorem and the law of sines.
384. Invert around A.
385. Come on now, what configuration has that many perpendiculars?
386. Cut and paste!
387. Try to guess explicitly what A2, B2, C2 are.
388. Because the triangles are easily similar (by angle chasing), focus on finding something

shared by the two triangles.
389. Show that T ∗ and L∗ are actually diametrically opposite on �∗.
390. This is just angle chasing.
391. You can compute PAQA in terms of ABC. Focus on just that.
392. I is the orthocenter of triangle BFC.
393. One should find K = (a2 : b2 : c2), M = (0 : 1 : 1), and L = (a2 : SC : SB).
394. Dilate K and L and drop into a determinant.
395. Use Lemma 6.19 and do some calculations.
396. The use of “reflection” in this problem is kind of a misnomer. Draw a good diagram

and you will see why.
397. Add a point to construct a cyclic quadrilateral.
398. Again just invert.
399. �BQM ∼ �NQC, then use BM : NC = AB : AC.
400. Since K∗M ‖ AQ, it suffices to prove that K∗A = K∗Q.
401. This uses an idea similar to that of Problem 1.40.
402. Notice the duality between the nine-point circle and the circumcircle.
403. Inversion through the circle with diameter AB is most of the problem.
404. Construct a radical center.
405. Reflect the orthocenter.
406. Pascal’s theorem on AGEEBC first.
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407. Law of sines.
408. What is the argument of (1 + xi)(1 + yi)(1 + zi)? Answer this in two ways.
409. H is a radical center.
410. Reflect the orthocenters.
411. (A,B; X, Y ) = −1 ⇒ (X, Y ; A,B) = −1.
412. More Simson line properties.
413. Reap the harmonic bundles using Lemma 9.17. You will want to use power of a point

a lot.
414. Recall Theorem 2.25, the Pitot theorem.
415. Assume that AB < AC, and show that ∠PQE = 90◦.
416. Consider the radical axis of the circles with diameters AB and CD.
417. Use the law of sines on �ABD and �ACD.
418. Finish by taking a homothety to the centroid of �AST , and finally to M .
419. The first part follows from Theorem 4.22.
420. Simson lines. Lemma 4.4 kills this.
421. After Pascal’s theorem on AABCCD, we find that AA ∩ CC is collinear with P =

AB ∩ CD and Q = BC ∩ DA.
422. To handle the point T , use Lemma 4.40.
423. Add an incenter I .
424. Simson lines.
425. This is equivalent to showing A, E, S are collinear, where S and E are the reflection

of T and D. Why does this follow from Lemma 4.40?
426. You want a homothety sending one of the points to another.
427. What to do with reflections?
428. Reuse the proof of Steiner lines.
429. Use the law of cosines to show the quadrilateral is cyclic, and then apply

Theorem 5.10.
430. The fixed point is the orthocenter. Try reflecting the entire triangle.
431. Show that p−(o1+o3)

p−(o1+o3) is symmetric in a, b, c, d. It is easiest to evaluate the denominator
first.

432. A, I , X are collinear. Hence we just want to show that YZ ⊥ AX and the analogous
equations.

433. Show that line NP passes through the circumcenter of triangle ABC.
434. Lemma 1.45.
435. How do we interpret the angle condition?
436. The condition BC = DA, BE = DF can be weakened to just BE

BC
= DF

DA
.

437. Actually, you do not even need ID, IE. The answer is no.
438. Finish off with Lemma 4.14.
439. All circles pass through one point.
440. Show that P is the desired incenter.
441. You can simplify sin x + sin 60◦ to cancel with something in the denominator.
442. First get rid of the midpoints of the altitudes using Lemma 4.14. Who uses midpoints

of altitudes?
443. Brocard’s theorem on ABCD, AGCH , with K the radical center of the three

circles.
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444. The condition that AEDC is cyclic is actually extraneous! What does this allow us
to do?

445. One should compute the circumcenter as (a+b+c)(b2+c2)
b2+bc+c2 .

446. Ceva’s theorem with a quick angle chase.
447. One can compute the points K , G, T first, then use symmetry.
448. Use law of sines on the five triangles. Vertical angles cancel.
449. Take the tangency point of the A-excircle as Q1. Ignore Q now.
450. Let KIA (with IA the A-excenter) meet the perpendicular bisector of BC at T . Show

that BNCT is cyclic.
451. Project it through E.
452. Repeatedly use law of sines and power of a point.
453. Which quadrilateral is cyclic?
454. Note that Lemma 1.17 helps involve HM .
455. How can one obtain angle information from midpoints?
456. Try sending the points AB ∩ XY , BC ∩ YZ infinitely far away.
457. First compute PK and QL.
458. In Figure 4.2A, consider the midpoint of IIA.
459. Which quadrilateral is cyclic?
460. Let I be the incenter.
461. Use Theorem 7.25 now to handle the circumcenter.
462. Write this as [ABC] = [AIB] + [BIC] + [CIA], with I the incenter.
463. Answer is (c2 : b2 : c2), up to scaling.
464. See if you can guess the fixed point. (Pick a convenient P .)
465. Use Lemma 8.10.
466. Now use Conway’s formula (Theorem 7.22).
467. Sum equal tangents.
468. Power of a point.
469. Symmedians.
470. Note that AI bisects ∠B ′AC ′.
471. Prove (A,D; M,N ) = −1.
472. This is pure angle chasing.
473. After both applications, we find that AA ∩ CC, BB ∩ DD, P , Q are collinear.
474. Let T be the intersection of the tangents at A and K . Show that AT KM is cyclic and

recall T K = T A.
475. Several forms of computation work, but there is a very clean solution.
476. First compute∠CYX in terms of angles at X. What you get depends on what variables

you selected.
477. Ptolemy’s theorem.
478. Use Ceva’s theorem to show that ray AP bisects the opposite side.
479. Answers are 30◦ and 150◦.
480. It just gives a pair of similar triangles.
481. The common point is the Miquel point M of ADBC.
482. The perpendicular bisectors are actually just giving you a circumcenter.
483. Some lengths in the figure are computable. Let AC = 3 and compute some lengths.
484. Lemma 1.45.
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485. Try adding the circumcenter O.
486. Compute the lengths BP , CP , BQ, CQ using similar triangles, and then compute all

points directly.
487. M is the center of the spiral similarity sending AB to CD, so it also sends O1 to

O2.
488. The determinant can be rewritten so that all terms are degree 2.
489. Just some angle chasing with the above.
490. Show without barycentrics that the cevians concur. Name the concurrency point.
491. Homothety with ratio 1

2 .
492. By Brocard’s theorem, EF ∩ BC has polar AH .
493. Spiral similarity sending AD to BC also sends E to F .
494. It suffices to prove that MN ‖ AD. (Why?)
495. There is a radical axis.
496. Just use Lemma 1.48 now.
497. Then Pascal’s theorem on CG′GEBB, where G′ is the reflection.
498. What technique does this lemma open up that was not feasible before?
499. What is the Miquel point of complete quadrilateral FARM?
500. This is true whenever A ≤ 60◦. Prove this.
501. Add a nine-point circle!
502. There are three cyclic quadrilaterals due to all the right angles, as well as ABPC

itself. Use these to your advantage.
503. Let T be the intersection of line EF with CD. Show that T lies on (ABM).
504. Show that D, P , E are collinear, and angle chase.
505. I is the orthocenter of �BHC. Use Lemma 4.6.
506. Suppose we wish to show ∠BOC = 2∠BAC. Put A, B, C on the unit circle.
507. Use Lemma 1.45 to handle the nine-point circle.
508. This just follows from the homothety between ABC and AB ′C ′ sending E to X.
509. How can we compute A2 nicely?
510. Use Lemma 1.44.
511. There are three circles through one point. What might this motivate you to do?
512. Let X, Y denote the midpoints of BD and CE. Show that IM is the line through I

perpendicular to the Gauss line XY .
513. At this point s = b + c − abc and so on. Apply Theorem 6.15.
514. There is a homothety between triangles IAIBIC and DEF .
515. One should get a2 − ac + c2 = (ab+cd)(ad+bc)

ac+bd
.

516. Where is H?
517. Look for spiral similarities with (ADM) and (ABC).
518. Use reference triangle PBC.
519. Apply Lemma 4.4 directly, using a homothety with ratio 2.
520. Note that ABCD is harmonic, so (A,C; B,D) = −1; projecting through E gives that

(A,C; BE ∩ AC,P∞) = −1, where P∞ is the point at infinity along line AC.
521. This is obvious by Lemma 1.17.
522. Use the law of cosines now and some trigonometry. PO can be found by the law of

cosines on �PCO.
523. Take WXYZ with WX = a, XY = c, YZ = b, ZW = d. Find WY .
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524. Use triangle ACD as the reference triangle.
525. Q is a Miquel point of quadrilateral DXAP .
526. Consider the four tangency points W , X, Y , Z and solve the problem in terms of

them.
527. The radical center is N .
528. Isogonal conjugates.
529. Hidden symmetry.
530. Let A1 be the point diametrically opposite A on the circle.
531. The first part is relatively easy angle chasing, the second part is fairly short complex

numbers.
532. What is the line G1 and I?
533. Focus on �AST ; points P and Q are not especially important.
534. Specifically: construct AB ∩ CD and BC ∩ DA. Do you notice anything?
535. A solution to this exercise appears as a linear algebra example in Appendix A.1.
536. After a homothety on the inverted picture, does this look familiar?
537. If the four points are not concyclic, what point must the radical axis of (PRS) and

(QRS) pass through?
538. K is the incenter of �LED.
539. What do A∗, B∗, C∗ look like at the equality case when ABCD is cyclic?
540. Work with each center individually.
541. You can just angle chase this one.
542. Take a homothety.
543. First recall Lemma 4.17.
544. The condition OP = OQ is equivalent R2 − OP 2 = R2 − OQ2.
545. Use the fact that AG = 2GM .
546. Apply barycentric coordinates to the resulting problem.
547. What is the best way to characterize the Euler lines of the other triangles?
548. The point of concurrency is yet another radical center.
549. Avoid intersecting quadratics. Find a better way.
550. What is OA1 · OA2 in terms of the circumradius R?
551. What is the orthocenter of �CIK?
552. You can compute everything.
553. Show the circles are coaxial by finding a second point with the same power to all the

circles. Why does this imply the conclusion?
554. Use �AOD ∼ �DCO1 to get o1−d

c−d
= o−d

a−d
, and then compute o1.

555. Construct a quadrilateral.
556. �HSR = �HBC by spiral similarity, but �HBC = �HSM as well.
557. The tangents from P to this circle lie on a line through X. Now just apply similar

triangles and/or power of a point.
558. The center of �OAOBOC is oA+oB+oC

3 . Note that we do not need the unit circle at all
in this problem.

559. Trigonometry will work, but there is an elegant synthetic solution.
560. Simply verify that each of A∗, B∗, C∗ lies on the nine-point circle.
561. A∗

1 is the midpoint of EF , etc. The three circles are congruent, so C∗
1 is parallel to

EF .
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562. Focus on the conditions BC = DA and BE = DF . (These can actually be weak-
ened.)

563. Start from (A,Z; K,L) = −1; end with M the midpoint of PQ. Here Z is the
concurrency point of EF , KL, XY .

564. This is just angle chasing.
565. Express BC2 in two ways.
566. Try inverting through the incircle.
567. There are still degrees of freedom left. How might we handle them?
568. Find a hidden circle.
569. Try using Example 1.4.
570. Show that HM · HP = HN · HQ.
571. Take perspectivity at C onto k.
572. Here is one finish: let T = AD ∩ CE and send BT ∩ AC to the center of �.
573. Complete the quadrilateral. (Trigonometry also works.)
574. Points M and N can be computed by normalizing coordinates and then using �M =

2 �P − �A.
575. Add in the center O. Which quadrilateral is cyclic?
576. It suffices to show MN ‖ AD.
577. The inverted image should be a rectangle.
578. Inversion around (DEF ) once more. Use Lemma 8.11 again.
579. We do not know where O∗ goes, but we only care that the center of (A∗B∗C∗) lies on

the Euler line of the contact triangle, since this center is collinear with I and O. Why
is this obvious?

580. Spiral similarities come in pairs.
581. Again, inversion to eliminate the strange angle condition.
582. Look for harmonic bundles involving T and lines XY and BC.
583. Reflect B over M in order.
584. Combine this with (d) to show that N is a midpoint.
585. Draw a good diagram. Something should appear readily.
586. Line through circumcenter and centroid of AIB.
587. Complete the quadrilateral.
588. Now use Lemma 7.23.
589. Just consider (1 + x1i)(1 + x2i) . . . (1 + xni).
590. Apply Brocard’s theorem repeatedly.
591. What is sin∠BAD

sin∠CAD
?

592. You have a cyclic trapezoid; hence it is isosceles.
593. Which quadrilateral is cyclic?
594. The symmedian is isogonal to the midpoint.
595. Make ABC an equilateral triangle and with center P . Use Lemma 9.8.
596. How do we handle the bisector condition?
597. Which radical axis passes through A?
598. Without loss of generality, B, C lie on the same side of the line. Let M be the midpoint

of BC.
599. This is just a statement about distances to line OH ; ignore the areas.
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600. How do we handle the reflection?
601. Observe that AB is a tangent to (PRS).
602. The desired concurrency point is the isogonal conjugate of the Nagel point. The

calculations can be made very clean.
603. Use the law of cosines.
604. Use the spiral similarity at X to handle the midpoints. Push N to M . Then angle chase

to compute �NMX.
605. The area of triangle BIC is 1

2ar .
606. Use the ratio BC1

CB1
as a proxy.

607. Note ABCD is a harmonic quadrilateral.
608. Compute |p − x| |p − y| directly. The answer is BC2.
609. You want PH to pass through the foot from I to EF . Several of the points are

extraneous now.
610. Letting x = ID = BD = CD, what is IE?
611. Again radical centers.
612. Isosceles triangles should appear.
613. We want to use the trigonometric form of Ceva’s theorem to show the conclusion,

since the intersection AD ∩ BC seems fairly random.
614. Show that ABCD is cyclic.
615. Q is a Miquel point.
616. If O is the center of ω, let OP meet ω again at X. Power of a point now.
617. First get rid of S and T .
618. Those squares inside the triangle are weird. Can we make them nicer?
619. What happens in the limiting case ∠A + ∠COP = 90◦? Do you notice anything?
620. The inverses of the sides of A1A2A3 are the circles with diameter ID, IE, IF , where

D, E, F are the tangency points.
621. Put T = a2qr + b2rp + c2pq to simplify calculations.
622. This is asking for trigonometry. The extended law of sines is helpful because every-

thing is in a central circle, and right angles are everywhere. There are two degrees of
freedom.

623. ( 1
2 , 1

2 , 0), or equivalently (1 : 1 : 0). The latter is usually easier to work with for
computations.

624. Just apply a couple homotheties now.
625. Consider the circle with diameter BC.
626. Try inverting around C.
627. Show that the quadrilateral formed by lines EF , GH , AB, CD is cyclic (power of a

point at AB ∩ CD).
628. Prove a more general version of (b).
629. There are three circles with a useful radical center.
630. Prove that the center of the spiral similarity taking BD to CE is M .
631. Trignometric form of Ceva’s theorem.
632. Complete the Brocard configuration. Note OM ⊥ CD.
633. Spiral similarity at H .
634. Begin with Lemma 4.14 and Lemma 4.33.
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635. What is the conclusion equivalent to?
636. Note if you haven’t already that AP is a median, so we wish to show AQ is a

symmedian.
637. Can you find a way to use the isosceles triangles?
638. Invert around A.
639. Show that the nine-point center moves on a circle centered at A.
640. What is K?
641. Just use reference triangle PBD to handle the conjugates.
642. M is the reflection of B across CH .
643. Where has this point O come up before?
644. This is just column operations in the determinant.
645. �DAB = �DAC + �CAB and �BCD = �BCA + �ACD.
646. Begin by using part (d) of Lemma 4.40.
647. The condition ∠BAG = ∠CAX just means the fixed point has the form (k : b2 : c2)

(symmedians). Use this to your advantage.
648. What happens under inversion at A?
649. It should be 1. Now show that (a − b)(c − e)(d − f ) + (d − e)(f − b)(a − c) = 0.
650. A complex number 1 + i tan(θ ) has argument θ .
651. Pick a reference triangle that makes the circles nice.
652. All the points have decent closed forms. Just compute the determinant.
653. You are asked to show the fixed point has form (m : 1 : 1). Use this to your advantage

by computing m and showing it does not depend on u or v

654. What point has equal power to both circles?
655. Add in the circumcenter O.
656. The rest is computation. One working setup is α = ∠CXY = ∠AXB, β = ∠BXY .
657. Let D = (0 : u : v) with u + v = a and compute the circles directly.
658. Find some more bisected angles.
659. Which quadrilateral is cyclic?
660. Show that PEDQ, QFER, PFDR are all cyclic.
661. Simson lines from Y might help (but the problem can be solved without them). For

the other solution, begin by noting the desired angle is ∠PQY + ∠SRY − ∠QYR.
662. Translate the condition MB · MD = MC2.
663. Nine-point circles.
664. Look for an angle bisector, and prove it using barycentrics. Finish from there.
665. Take a homothety which sends the square outside.
666. It is simply XB

XA
(directed). This follows from P∞B

P∞A
= 1.

667. This problem is purely projective.
668. Compute b−a

f −a
· d−c

b−c
· f −e

d−e
.

669. Length chasing and similar triangles work.
670. After finding the cyclic quadrilateral, apply Lemma 1.18.
671. The centroid G is the weird guy. How do we handle it?
672. Recall Lemma 4.33. How is ZM related to the circles?
673. Do a negative inversion through H mapping the nine-point circle to the circumcircle.
674. Notice first that HBYC is a parallelogram (because of the midpoints).
675. After adding in the point diametrically opposite B, use Pascal’s theorem.
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676. Complement Lemma 4.33 by extending AO to meet � again.
677. Try to get parallel lines instead of tangency.
678. Just use the 1

2ab sin C formula.
679. Inversion around B seems nicest (many lines through B).
680. Get another pair of similar triangles and then angle chase to finish.
681. Simson lines.
682. A certain configuration is quite helpful here.
683. Ceva’s theorem combined with Lemma 2.15.
684. You will need to halve angles. Do not use directed angles; the problem is false if A,

C, B, D lie in that order.
685. Let A1B1C1 be the determined triangle, and let T be the tangency point. How might

you show tangency of two circles?
686. It suffices to show that this spiral similarity also sends X to P . Just show �MXY =

�MPB.
687. Midpoints and parallel lines!
688. Plug in A = (1, 0, 0), to get u = 0, then do the same with B and C.
689. Let AD meet the incircle again at X. Can you find a harmonic quadrilateral?
690. Try to show that E lies on a circle with diameter DF .
691. Draw a good diagram. What is the relation of A2, B, C to (ABC)?
692. Steiner line of complete quadrilateral BEDC.
693. Let O be the circumcenter of ABD. Show that ODCF is a parallelogram. Then note

OA = OB = OD = 1.
694. Show that when inverting with radius

√
BH · BE, P and Q are inverses.
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Selected Solutions

C.1 Solutions to Chapters 1–4

Solution 1.36

O

B

C D

E

A

Observe that ∠BAE = 90◦ and ∠BOE = 90◦. It follows that ABOE is cyclic.
So ∠OAE = ∠OBE = 45◦ and ∠BAO = ∠BEO = 45◦. It follows that ∠OAE =
∠BAO = 45◦, as needed.

The condition that ABCDE is convex ensures that A lies on the opposite side of BE as
O, so there is no need to worry about configuration issues and it is fine to just use standard
angles.

Solution 1.39

A

B C

I
D

E

O

241
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By Lemma 1.18, O lies on line AI . Now AI is an angle bisector and AD = AE, so it
follows that �ADO ∼= �AEO, so ∠ADO = ∠AEO and hence ∠BDO = ∠OEC.

Solution 1.43

O

B

D

P

C

A

E

M

Let M be the intersection point of BE and AC. We wish to show that OM ⊥ AC. Since
�PBO = �PDO = 90◦, points P , B, D, O are concyclic.

We claim that M lies on this circle too. Indeed, since DE ‖ AC we have

�BMP = �BMA = �BED = �PBD = �BDP.

Consequently, �OMP = �OBP = 90◦ as desired.

Solution 1.46

BA

O

O′

D C

Let O ′ be a point such that DAO ′O is a parallelogram. Since OO ′ = DA = BC and
all three lines are parallel, it follows that CBO ′O is a parallelogram as well. Moreover,
we have ∠AO ′B = ∠DOC, since AO ′ ‖ DO and BO ′ ‖ CO. Consequently, ∠AO ′B +
∠AOB = 180◦ and AO ′BO is cyclic (note that O ′ must lie outside the parallelogram since
O is given to lie inside it). Actually, one can even check that �O ′AB ∼= �OBC.

Consequently, ∠CBO = ∠O ′OB = ∠O ′AB = ∠ODC as needed.



C.1. Solutions to Chapters 1–4 243

Solution 1.48

A

B C

P

X

Y

Z

The main observation is that all the altitudes produce cyclic quadrilaterals: P lies on the
circumcircle of all three triangles YZA, ZXB, and XYC. Hence we can directly compute

�PYZ = �PAZ = �PAB = �PCB = �PCX = �PYX.

This implies X, Y , Z are collinear.

Solution 1.50

A

B C

H

W

M

N

X

Y

P

Let P be the second intersection of ω1 and ω2. By Lemma 1.27, we have that P also lies
on the circumcircle of triangle AMN . But recall by Lemma 1.14 that this is the circle with
diameter AH . It follows that ∠APH = 90◦.

Now, observe that ∠XPW = 90◦ by construction. We find that X, H , P are collinear.
Similarly, Y , H , P are collinear. Therefore, X, Y , H are collinear.
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Solution 2.26

A

B CA′

B′

C ′

M

N

P

Q

H

Let A′ be the foot of the altitude from A to BC, and notice that A′ lies on both the circles in
the problem. Now we can apply Theorem 2.9 directly. The radical center is the orthocenter
H of the triangle.

Solution 2.29

A

B CD

EF

H

X

B1

B2

C1

C2

Let D, E, F be the centers of �A, �B , �C .
We first show that B1, B2, C1, C2 are concyclic. By Theorem 2.9, it suffices to prove

that A lies on the radical axis of the circles �B and �C .
Let X be the second intersection of �B and �C . Clearly XH is perpendicular to the

line joining the centers of the circles, namely EF . But EF ‖ BC, so XH ⊥ BC. Since
AH ⊥ BC as well, we find that A, X, H are collinear, as needed.

Thus, B1, B2, C1, C2 are concyclic. Now their circumcenter is the intersection of the
perpendicular bisectors of C1C2 and B1B2, which is none other than the circumcenter O of
ABC. Hence what we have proved is that OB1 = OB2 = OC1 = OC2. Similarly we can
prove OA1 = OA2 = OB1 = OB2 and the proof is complete.
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Solution 2.34

A

B

CD

P

W X

Y

Z

Since�AWP = �AZP = 90◦, we have that AWPZ is cyclic. Similarly, so is BWPX.
Hence,

�ZWP = �ZAP = �DAC = �DBC = �PBX = �PWX.

Therefore, P lies on the angle bisector of ∠XWZ. Similarly, it also lies on the angle
bisectors of ∠WZY , ∠ZYX, and ∠YXW . Hence the distance from P to each side of
WXYZ is the same, and we can draw a circle centered at P tangent to all four sides. The
conclusion of the problem then follows from Theorem 2.25.

Solution 2.36

A

B
C

O

D

E
F

H
X

Let H be the orthocenter of ABC. Let ωA, ωB , ωC denote the circumcircles of triangles
AOD, BOE, COF , respectively. Let X be the second intersection of ωA and ωB . Evidently
the radical axis of ωA and ωB is line XO.

By considering the circles with diameters BC, CA, AB, we find AH · HD = BH ·
HE = CH · HF . So H has equal power with respect to all three circles. Since H and O

are distinct, that means H lies on line XO, It also implies that line HO is the radical axis
of ωB and ωC .
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Since X, O, H are collinear, we find X lies on the radical axis of ωB and ωC . But X

has power zero with respect to ωB . Hence it also has power zero with respect to ωC . So X

lies on ωC as well.

Solution 2.38

A

B CM

E

F
K

L

T

Let ω denote the circumcircle of �AEF . Recall by Lemma 1.44 that T A, MF , ME

are all tangents to the circumcircle of ω. Now consider the circle ω as well as the circle
γ0 centered at M with radius zero. Notice that K lies on the radical axis of ω and γ0,
since Powω(K) = KE2 = KM2 = Powγ0 (K). Similarly, L lies on the radical axis as well.
Hence, KL is the radical axis of these two circles.

Then T A2 = Powω(T ) = Powγ0 (T ) = T M2, so T A = T M .

Solution 3.17

A

B C

D

X
Y

X ′
Y ′

Let the reflections of X and Y over BC be X′ and Y ′. As we have reflected the
orthocenters over the sides, by Lemma 1.17 we find that X′ and Y ′ lie on the circumcircle
ω of ABCD.

Thus we find that X′Y ′ = XY . It is also clear that AX′ ‖ DY ′. Therefore, we have a
cyclic trapezoid AX′Y ′D, meaning X′Y ′ = AD as well. Consequently, AD = XY .

Therefore, we have AX ‖ DY and AD = XY . Hence AXYD is either a parallelogram
or a trapezoid. Actually, since AD is the reflection of X1Y1 across the diameter of ω

parallel to BC, while XY is the reflection of X1Y1 over BC, it follows that we must be in
the parallelogram case.
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Solution 3.19

A

C D

B

E

X Y

P

M

Let X denote the intersection of diagonals AC and BD. Let Y denote the intersection
of diagonals AD and CE.

The given conditions imply that �ABC ∼ �ACD ∼ �ADE. From this it follows that
quadrilaterals ABCD and ACDE are similar. In particular, we have that AX

XC
= AY

YD
.

Now let ray AP meet CD at M . Then Ceva’s theorem applied to triangle ACD implies
that AX

XC
· CM

MD
· DY

YA
= 1, so CM = MD.

Solution 3.22

X

Y

Z

A

B C

Let the centers of the circles be A, B, C and denote the radii by ra , rb, rc. Let the
tangents for the circles centered at B and C meet at X. Define Y and Z analogously.

It is not hard to check that X lies outside BC. Consider the similar right triangles
exhibited below.

X B C

TB

TC
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We see that ∣∣∣∣XB

XC

∣∣∣∣ = rb

rc

.

Hence, in the notation of Menelaus’s theorem, we have

BX

XC
= − rb

rc

.

Analogously, we have CY
YA

= − rc

ra
and AZ

ZB
= − ra

rb
. So

BX

XC
· CY

YA
· AZ

ZB
= −1

as needed.

Solution 3.23

Refer to Figure 3.7B. By the law of sines, we have

sin∠BAD

sin∠CAD
=

ZD
ZA

sin∠ADZ

YD
YA

sin∠ADY
= ZD

YD
· YA

ZA
.

So by Ceva’s theorem in trigonometric form, it suffices to prove that(
ZD

YD
· YA

ZA

)(
XE

ZE
· ZB

XB

) (
YF

XF
· XC

YC

)
= 1.

But this follows by noting that Ceva’s theorem on �XYZ and �ABC gives us

ZD

YD
· YF

XF
· XE

ZE
= ZB

ZA
· YA

YC
· XC

XB
= 1.

Solution 3.26

A

B C
D

E

M

Let ray DA meet BE at M . Consider the triangle EBD. Since the point lies on median
EC, and EA = 2AC, it follows that A is the centroid of �EBD. So M is the midpoint of
BE. Moreover MA = 1

2AD = 1
2BE; so MA = MB = ME and hence �ABE is inscribed

in a circle with diameter BE. Thus ∠BAE = 90◦, so ∠BAC = 90◦.
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Solution 3.29

A

B C

O

H

M N

X Y

P

Q

The main point of the problem is actually to prove that M , N , P , Q are concyclic. Then
we can apply radical axis to the circles (AMN ), (ABC), and (MNPQ) to deduce that their
radical center is the point R described in the problem (not shown in the figure).

Suppose the homothety taking the nine-point circle of ABC to the circumcircle of
ABC itself sends M and N to points X and Y on the circumcircle of ABC. Put another
way, let X and Y denote the reflections of H over M and N . By power of a point, we
know that XH · HP = YH · HQ. Since MH = 1

2XH and NH = 1
2YH , it follows that

MH · HP = NH · HQ, and the problem is solved.

Solution 4.42

Let ω be the circumcircle of ABC. By Lemma 1.18, the circumcenter of �IAB lies on ω.
So do the circumcenters of �IBC and �ICA. Hence ω is the requested circle.

Solution 4.44

A

B C

X

PQ

R

H

We claim the fixed point is the orthocenter H of �ABC.
We know that BH ‖ XP . Moreover, RP bisects XH by Lemma 4.4. This is enough to

deduce that HRXP is a parallelogram. Hence 	 is precisely line PH , as needed.
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Solution 4.45

A

B CD

E

F
H

P
Q

R

The answer is 1; we prove H is the midpoint of QR. By Lemma 4.6, H is the incenter
of �DEF and A is the D-excenter. Hence by applying Lemma 4.9 we are done.

Solution 4.50

Let IA, IB , IC denote the excenters. By Lemma 4.14, line A0D is just line IAD, and similarly
for the others.

IA

IB ICA

B

C

I

D

E F
X

O O′

Hence there is a homothety taking �DEF to �IAIBIC . This implies already that lines
A0D, B0E, C0F concur at some point X.

Let O ′ be the circumcenter of triangle IAIBIC . Because IO is the Euler line of IAIBIC

(with nine-point center O), it passes through O ′. The homothety maps the circumcircle I

of �DEF to the circumcenter O ′ of �IAIBIC . It follows that X lies on IO ′, so we are
done.
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Solution 4.52

A

B CDM

H

L

E

F

We claim that AF is a symmedian, from which everything else follows. Let L be
the reflection of H over M; by Lemma 1.17, we obtain ∠MEA = ∠LEA = 90◦. Hence
MDEA is cyclic.

Now, we compute

�MAC + �CAE = �MAE = �MDE = �BDE

but

�BDE = �BED + �BDE = �BEF + �CBE = �BAF + �CAE

hence �BAF = �MAC as required.

C.2 Solutions to Chapters 5–7

Solution 5.16

A1

A2

A3

A4

A5

X1

X2

X3

X4

X5

By the law of sines on �AiAi+1Xi+3, we find that

AiXi+3

Ai+1Xi+3
= sin∠AiAi+1Xi+3

sin∠Ai+1AiXi+3
.
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But we have ∠Ai+1AiXi+3 = ∠Ai−1AiXi+2, so in fact

AiXi+3

Ai+1Xi+3
= sin∠AiAi+1Xi+3

sin∠Ai−1AiXi+2
.

Hence we obtain

5∏
i=1

AiXi+3

Ai+1Xi+3
=

5∏
i=1

sin∠AiAi+1Xi+3

sin∠Ai−1AiXi+2
= 1

which is what we wanted to prove.

Solution 5.21

The answer is no. We prove that it is not even possible that AB, AC, CI , IB are all integers.

B

A C

I

D

E

It is easy to see, say by Example 1.4, that ∠BIC = 135◦. Thus

BC2 = BI 2 + CI 2 − 2BI · CI cos∠BIC

= BI 2 + CI 2 − BI · CI ·
√

2

by the law of cosines. Yet BC2 = AB2 + AC2. So we derive

√
2 = BI 2 + CI 2 − AB2 − AC2

BI · CI
.

Since
√

2 is irrational, it is impossible that BI , CI , AB, AC are all integers.

Solution 5.22

A

B C

D

I

E
F
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Let x = DB = DI = DC (again using Lemma 1.18). In that case, since ∠IDE =
∠ADB = ∠ACB we have

IE = ID · sin∠IDE = x sin C = x · c

2R
.

Similarly, IF = x · b
2R

. On the other hand, AD · a = x · (b + c) by Ptolemy’s theorem on
ABDC, so AD = x(b+c)

a
. Putting this all together, we find that

1

2

x(b + c)

a
= IE + IF = x

2R
(b + c).

Consequently we find a = R.
Therefore, sin A = a

2R
= 1

2 is necessary and sufficient. So the acceptable values are
∠A = 30◦ and ∠A = 150◦.

Solution 5.27

Let M be the midpoint of BC.

A

B C

O

L

B′
C ′

M

First, we are going to prove that ∠A < 60◦. Let α = ∠A. Then

∠BOC = 2∠BAC = 2α.

Also,

∠B ′OC ′ = 1

2

(
360◦ − ∠B ′LC ′)

= 180◦ − 1

2

(
180◦ − ∠B ′AC ′)

= 90◦ + 1

2
α.

We know ∠B ′OC ′ > ∠BOC; therefore 90◦ + 1
2α > 2α, which implies α < 60◦ as

needed.
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Now for the finish. It suffices to prove that OL > 1
2R, where R is the circumradius of

ABC. But

OL ≥ OM = R · cos(α) > R cos(60◦) = 1

2
R

and we are done.

Solution 5.29

The answer is ∠B = 80◦ and ∠C = 40◦. Set x = ∠ABQ = ∠QBC, so that ∠QCB =
120◦ − 2x. We observe ∠AQB = 120◦ − x and ∠APB = 150◦ − 2x.

A

B CP

Q30◦ 30◦

120 ◦− 2xx
x

Now by the law of sines, we may compute

BP = AB · sin 30◦

sin(150◦ − 2x)

AQ = AB · sin x

sin(120◦ − x)

QB = AB · sin 60◦

sin(120◦ − x)
.

So, the relation AB + BP = AQ + QB is exactly

1 + sin 30◦

sin(150◦ − 2x)
= sin x + sin 60◦

sin(120◦ − x)
.

At this point, we have completely transformed our geometry problem into a direct algebra
equation, hardly worthy of its place as Problem 5 at the IMO. Many solutions are possible
at this point, and we present only one of them.

First of all, we can write

sin x + sin 60◦ = 2 sin

(
1

2
(x + 60◦)

)
cos

(
1

2
(x − 60◦)

)
.

On the other hand, sin(120◦ − x) = sin(x + 60◦) and

sin(x + 60◦) = 2 sin

(
1

2
(x + 60◦)

)
cos

(
1

2
(x + 60◦)

)
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so

sin x + sin 60◦

sin(120◦ − x)
= cos

(
1
2x − 30◦)

cos
(

1
2x + 30◦) .

Let y = 1
2x for brevity now. Then

cos(y − 30◦)

cos(y + 30◦)
− 1 = cos(y − 30◦) − cos(y + 30◦)

cos(y + 30◦)

= 2 sin(30◦) sin y

cos(y + 30◦)

= sin y

cos(y + 30◦)
.

Hence the problem is just

sin 30◦

sin(150◦ − 4y)
= sin y

cos(y + 30◦)
.

Equivalently,

cos(y + 30◦) = 2 sin y sin(150◦ − 4y)

= cos(5y − 150◦) − cos(150◦ − 3y)

= − cos(5y + 30◦) + cos(3y + 30◦).

Now we are home free, because 3y + 30◦ is the average of y + 30◦ and 5y + 30◦. That
means we can write

cos(y + 30◦) + cos(5y + 30◦)

2
= cos(3y + 30◦) cos(2y).

Hence

cos(3y + 30◦) (2 cos(2y) − 1) = 0.

Recall that

y = 1

2
x = 1

4
∠B <

1

4
(180◦ − ∠A) = 30◦.

Hence it is not possible that cos(2y) = 1
2 , since the smallest positive value of y that satisfies

this is y = 30◦. So cos(3y + 30◦) = 0. The only permissible value of y is then y = 20◦,
giving ∠B = 80◦ and ∠C = 40◦.

Solution 5.30

The problem condition is equivalent to

ac + bd = (b + d)2 − (a − c)2

or

a2 − ac + c2 = b2 + bd + d2.
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Let us construct a quadrilateral WXYZ such that WX = a, XY = c, YZ = b, ZW = d,
and

WY =
√

a2 − ac + c2 =
√

b2 + bd + d2.

Then by the law of cosines, we obtain ∠WXY = 60◦ and ∠WZY = 120◦. Hence this
quadrilateral is cyclic.

X

W Y

Z

a

b

c

d

√
a2 − ac + c2

=
√
b2 + bd + d2

By Theorem 5.10, we find that

WY 2 = (ab + cd)(ad + bc)

ac + bd
.

Now assume for contradiction that that ab + cd is a prime p. Recall that we assumed
a > b > c > d. It follows, e.g. by the so-called rearrangement inequality, that

p = ab + cd > ac + bd > ad + bc.

Let y = ac + bd and x = ad + bc now. The point is that

p · x

y

can never be an integer if p is prime and x < y < p (why?). But WY 2 = a2 − ac + c2 is
clearly an integer, and this is a contradiction.

Hence ab + cd cannot be prime.

Solution 6.30

We have that P lies on AB if and only if

p − a

p − b
=

(
p − a

p − b

)
.

Because a = 1
a

and b = 1
b
, the right-hand side equals

p − a

p − b
= p − 1

a

p − 1
b

.
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Clearing the denominators, we find that the condition is equivalent to

0 = (p − a)

(
p − 1

b

)
− (p − b)

(
p − 1

a

)
= (b − a)p −

(
1

b
− 1

a

)
p + a

b
− b

a

= (b − a)p − a − b

ab
p + a2 − b2

ab

= b − a

ab
(abp + p − (a + b)) .

Since a �= b, we find the condition is exactly abp + p − (a + b) = 0, which is what we
wanted to prove.

Solution 6.32

Let W , X, Y , Z denote the tangency points of the incircle of ABCD to the sides AB, BC,
CD, DA. Let M be the midpoint of AC and N the midpoint of BD.

W

X

Y

Z

A

B

C

D

I
M

N

We apply complex numbers with the circumcircle of WXYZ as the unit circle; our free
variables will be w, x, y, z. Using Lemma 6.19, we find

a = 2zw

z + w
, b = 2wx

w + x
, c = 2xy

x + y
, d = 2yz

y + z
.
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Thus

m = a + c

2

= 1

2

(
2zw

z + w
+ 2xy

x + y

)
= zw(x + y) + xy(z + w)

(z + w)(x + y)

= wxy + xyz + yzw + zwx

(z + w)(x + y)
.

Similarly,

n = b + d

2
= wxy + xyz + zyw + zwx

(w + x)(y + z)
.

To show that these are collinear with the incenter I , which has coordinate 0, we only have
to show that the quotient m−0

n−0 is a real number. But the quotient is just

m

n
= (w + x)(y + z)

(z + w)(x + y)
.

Its conjugate is

(m

n

)
=

(
1
w

+ 1
x

) (
1
y

+ 1
z

)
(

1
z

+ 1
w

) (
1
x

+ 1
y

) =
w+x
wx

· y+z

yz

z+w
zw

· x+y

xy

= (w + x)(y + z)

(z + w)(x + y)
.

Hence m
n

is equal to its conjugate, so it is real. Therefore we are done.

Solution 6.35

Toss on the complex unit circle with a = −1, b = 1, z = − 1
2 . Let s and t be on the unit

circle. We claim Z is the center.

A B
O

P

Q

X

S

T

MZ

By, Lemma 6.11

x = 1

2
(s + t − 1 + s/t) .

Then

4 Re x + 2 = s + t + 1

s
+ 1

t
+ s

t
+ t

s
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depends only on P and Q, and not on X. But

4

∣∣∣∣z − s + t

2

∣∣∣∣2

= |s + t + 1|2 = 3 + (4 Re x + 2)

which implies that 1
2 (s + t) has a fixed distance from z, as desired.

Solution 6.36

We of course set (ABC) as the unit circle, but moreover, by a suitable rotation we let AD,
BE, CF lie perpendicular to the real axis. This will cause d = a and so on.

A

B

C

H

D

E

F

S

T

U

By Lemma 6.11, it is easy to see that

s = b + c − bcd = b + c − abc.

Similarly,

t = c + a − abc and u = a + b − abc.

We now wish to apply Theorem 6.15 to deduce the points S, T , U , H are concyclic.
Compute

u − h

t − h
:

u − s

t − s
= −c − abc

−b − abc
:

a − c

a − b
= c(a − b)(ab − 1)

b(a − c)(ac − 1)
.

We are done once we check that this expression is a real number. The conjugate of this
expression is

1
c

(
1
a

− 1
b

) (
1
ab

− 1
)

1
b

(
1
a

− 1
c

) (
1
ac

− 1
) =

1
c

· b−a
ab

· 1−ab
ab

1
b

· c−a
ac

· 1−ac
ac

= c(b − a)(1 − ab)

b(c − a)(1 − ac)

= c(a − b)(ab − 1)

b(a − c)(ac − 1)

as needed.
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Solution 6.38

We apply complex numbers with (ABC) the unit circle. Observe that x + y = 0 and
xy + bc = 0 (one way to see the latter expression is by Example 6.10). Moreover, the
condition �DPO ∼ �PEO is just

d − p

p − 0
= p − e

e − 0
⇔ p2 − pe = de − pe ⇔ p2 = de.

Now we can compute

(PX · PY )2 = |p − x|2 |p − y|2

= (p − x) (p − x) (p − y) (p − y)

= (
p2 − (x + y)p + xy

) (
p2 − (x + y) p + xy

)
= (p2 + xy)

(
p2 + xy

)
= (de − bc)

(
de − bc

)
= |de − bc|2 .

Thus PX · PY = |de − bc|. Now we can also compute, using Lemma 6.11, that d =
a + c − ac

b
and e = a + b − ab

c
. Therefore,

de =
(
a + c − ac

b

) (
a + b − ab

c

)
= a2 + ab + ac + bc − a2c

b
− ac − a2b

c
− ab + a2

= 2a2 − a2c

b
− a2b

c
+ bc.

Hence

PX · PY = |de − bc|

=
∣∣∣∣2a2 − a2c

b
− a2b

c

∣∣∣∣
=

∣∣∣∣−a2

bc
(b − c)2

∣∣∣∣
=

∣∣∣∣−a2

bc

∣∣∣∣ |b − c|2

= BC2.

From tan A = 3
4 we can derive cos A = 4

5 , so the law of cosines gives

BC2 = 132 + 252 − 2 · 13 · 25 · 4

5
= 274

which is the final answer.
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Solution 6.39

First, observe that in general, if z = a + bi, then tan(arg z) = b
a

, with the quantity being
undefined when a = 0. This just follows from the geometric interpretation of complex
numbers.

Let α = 1 + xi, β = 1 + yi, γ = 1 + zi. Then arg α = A, arg β = B, arg γ = C. Thus
arg (αβγ ) equals A + B + C (again all arguments are taken modulo 360◦). But you can
check that

αβγ = 1 + (x + y + z)i + (xy + yz + zx)i2 + xyzi3

= (1 − (xy + yz + zx)) + (x + y + z − xyz) i.

Hence
x + y + z − xyz

1 − (xy + yz + zx)
= tan arg (αβγ ) = tan(A + B + C)

as required.
By generalizing to multiple variables and repeating the same calculation, one can obtain

the following: given xi = tan θi for i = 1, 2, . . . , n, we have

tan (θ1 + · · · + θn) = e1 − e3 + e5 − e7 + . . .

1 − e2 + e4 − e6 + . . .

where em is the sum of the
(

n

m

)
possible products of m of the xi . The above result was the

special case n = 3.

Solution 6.42

Let BE and CF be altitudes of �ABC.

A

B C

O

H

E

F

M

N

X

First, we claim that M is the reflection of B over F . Indeed, we have that

�BMH = �AMH = �ACH = �ECF = �EBF = �HBM

implying that �MHB is isosceles. As HF ⊥ MB, the conclusion follows. Similarly, we
can see that N is the reflection of C over E.
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Now we can apply complex numbers with (ABC) as the unit circle. Hence we have
f = 1

2 (a + b + c − abc) (via Lemma 6.11), and hence

m = 2f − b = a + c − abc.

Similarly,

n = a + b − acb.

Now we wish to compute the circumcenter X of �HMN , where h = a + b + c. Let
M ′ be the point corresponding to m − h = −b − abc and N ′ be the point corresponding
to n − h = −c − acb, noting that O corresponds to h − h = 0. Then the circumcenter
of �M ′N ′O corresponds to the point x − h. But we can compute the circumcenter of
�M ′N ′O using Lemma 6.24; it is

x − h = (m − h)(n − h)
(
(m − h) − (n − h)

)
(m − h)(n − h) − (m − h)(n − h)

=
(−b − ab

c

) (−c − ac
b

) ((− 1
b

− c
ab

) − (− 1
c

− b
ac

))(− 1
b

− c
ab

) (−c − ac
b

) − (−b − ab
c

) (− 1
c

− b
ac

)
=

(
b + ab

c

) (
c + ac

b

) ((
1
b

+ c
ab

) − (
1
c

+ b
ac

))(
1
b

+ c
ab

) (
c + ac

b

) − (
b + ab

c

) (
1
c

+ b
ac

) .

Multiplying the numerator and denominator by ab2c2,

x − h = bc (a + b) (a + c) (c(a + c) − b(a + b))

c3(a + b)(a + c) − b3(a + b)(a + c)

= bc
(
c2 − b2 + a(c − b)

)
c3 − b3

= bc(c − b)(a + b + c)

(c − b)(b2 + bc + c2)

= bc(a + b + c)

b2 + bc + c2
.

So

x = h + bc(a + b + c)

b2 + bc + c2
= h

[
1 + bc

b2 + bc + c2

]
.

Finally, to show X, H , O are collinear, we only need to prove x
h

= bc
b2+bc+c2 + 1 is real. It

is equivalent to show bc
b2+bc+c2 is real, but its conjugate is(

bc

b2 + bc + c2

)
=

1
bc

1
b2 + 1

bc
+ 1

c2

= bc

b2 + bc + c2

and the proof is complete.
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Solution 6.44

We apply complex numbers with (ABCD) as the unit circle. The problem is equivalent to
proving that

1
2p − 1

2 (o1 + o3)
1
2p − 1

2 (o1 + o3)
=

1
2p − 1

2 (o2 + o4)
1
2p − 1

2 (o2 + o4)
.

First, we compute

o1 =
∣∣∣∣∣∣
a aa 1
b bb 1
p pp 1

∣∣∣∣∣∣ ÷
∣∣∣∣∣∣
a a 1
b b 1
p p 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
a 1 1

b 1 1

p pp 1

∣∣∣∣∣∣∣ ÷

∣∣∣∣∣∣∣
a 1

a
1

b 1
b

1

p p 1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
a 0 1

b 0 1

p pp − 1 1

∣∣∣∣∣∣∣ ÷

∣∣∣∣∣∣∣
a 1

a
1

b 1
b

1

p p 1

∣∣∣∣∣∣∣
= (pp − 1) (b − a)

a
b

− b
a

+ p( 1
a

− 1
b
) + p(b − a)

= pp − 1
p

ab
+ p − a+b

ab

.

The conjugate of this expression is easier to work with; we have

o1 = pp − 1

abp + p − (a + b)
.

Similarly,

o3 = pp − 1

cdp + p − (c + d)
.

In what follows, we let s1 = a + b + c + d, s2 = ab + bc + cd + da + ac + bd, s3 =
abc + bcd + cda + dab, and s4 = abcd for brevity. Then,

o1 + o3 − p

= (pp − 1)

(
1

abp + p − (a + b)
+ 1

cdp + p − (c + d)

)
− p

= (pp − 1) (2p + (ab + cd)p − s1)

(abp + p − (a + b)) (cdp + p − (c + d))
− p.

Consider the fraction in the above expansion. One can check that the denominator expands
as

D = s4p
2 + (ab + cd) pp + p2 − s3p − s1p + (ac + ad + bc + bd).
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On the other hand, the numerator is equal to

N = (2p − s1)(pp − 1) + (ab + cd)p(pp − 1).

Thus,

o1 + o3 − p = N − pD
D .

We claim that the expression N − pD is symmetric in a, b, c, d. To see this, we need
only look at the terms of N and D that are not symmetric in a, b, c, d. These are
(ab + cd)p(pp − 1) and (ab + cd)pp + (ac + ad + bd + bc), respectively. Subtracting
p times the latter from the former yields −s2p. Hence N − pD is symmetric in a, b, c, d,
as claimed.∗ Now we may set S = N − pD.

Thus

o1 + o3 − p

o1 + o3 − p
= S/D

S/D

= S
S · D

D

= S
S · (abp + p − (a + b))(cdp + p − (c + d))

( 1
ab

p + p − 1
a

− 1
b
)( 1

cd
p + p − 1

c
− 1

d
)

= S
S · abcd.

Hence, we deduce

o1 + o3 − p

o1 + o3 − p

is in fact symmetric in a, b, c, d. Hence if we repeat the same calculation with o2+o4−p

o2+o4−p
, we

must obtain exactly the same result. This completes the solution.

Solution 6.45

We use complex numbers, since the condition in its given form is an abomination. Let a

denote the number in the complex plane corresponding to A, et cetera, and consider the
quantity

b − a

f − a
· d − c

b − c
· f − e

d − e
.

By the first condition, the argument of this complex number is 360◦, which means it is a
positive real. However, the second condition implies that it has norm 1. We deduce that it
is actually equal to 1.

So, we are given that

0 = (a − b)(c − d)(e − f ) + (b − c)(d − e)(f − a)

∗ In fact, if you really want to do the computation you can check that N − pD = −s4p
3 + p2p + s3p

2 −
s2p + p + 2p + s − 1. But we will not need to do anything with this expression other than notice that it is
symmetric.
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and wish to show that

|(a − b)(c − e)(d − f )| = |(d − e)(f − b)(a − c)| .
But now observe that

[(a − b)(c − d)(e − f ) + (b − c)(d − e)(f − a)]

− [(a − b)(c − e)(d − f ) + (d − e)(f − b)(a − c)]

= ((c − d)(e − f ) − (c − e)(d − f )) (a − b)

+ ((b − c)(f − a) − (f − b)(a − c)) (d − e)

= (f − c)(d − e)(a − b) + (f − c)(b − a)(d − e)

= 0.

So in fact (a − b)(c − e)(d − f ) = −(d − e)(f − b)(a − c) and the result is obvious.

Solution 7.33

It is easy to see by similar triangles that we have PB = c2/a. Hence, P =
(

0, 1 − c2

a2 ,
c2

a2

)
.

Therefore, we derive

M =
(

−1, 2 − 2c2

a2
,

2c2

a2

)
= (−a2 : 2a2 − 2c2 : 2c2

)
.

Similarly, N = (−a2 : 2b2 : 2a2 − 2b2
)
. Therefore, BM and CN meet at (−a2 : 2b2 : 2c2)

which clearly lies on the circumcircle.

Solution 7.34

A

B C
D

E

It is easy to compute D = (0,−1, 2) and E = (3, 0,−2). Hence
−→
AD = (−1,−1, 2) and

−→
BE = (3,−1,−2).

Applying the distance formula, the condition AD = BE become

− a2(−1)(2) − b2(2)(−1) − c2(−1)(−1)

= − a2(−1)(−2) − b2(−2)(3) − c2(3)(−1)

which is

2a2 + 2b2 − c2 = −2a2 + 6b2 + 3c2.

Rearranging gives a2 = b2 + c2, as needed.
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Solution 7.36

A

B C

J

M

K

L

F G

S T

As usual we use reference triangle ABC, and remind the reader that s = 1
2 (a + b + c).

Since AK = s gives BK = s − c, we have K = (−(s − c) : s : 0). Also, J = (−a : b :
c) and M = (0 : s − b : s − c). The point G lies on CJ , so we put G = (−a : b : t) and
compute the determinant indicating that G, M , K are collinear, namely

0 =
∣∣∣∣∣∣

−a b t

0 s − b s − c

c − s s 0

∣∣∣∣∣∣ .
Expanding the determinant yields

0 = −a(−s(s − c)) − (s − c)(b(s − c) − t(s − b))

from which it follows that t = b(s−c)−as

s−b
. Consequently,

G = (−a(s − b) : b(s − b) : b(s − c) − as) .

So

T = (0 : b(s − b) : b(s − c) − as) .

But b(s − b) + b(s − c) − as = ba − as = −a(s − b), so we realize that

T =
(

0,−b

a
, 1 + b

a

)
.

Hence CT = b.
Similarly, BS = c. From here it is trivial to check that MT = MS.

Solution 7.38

Let P = (0, s, t) where s + t = 1. One can check that Q = (s, 0, t). Indeed, the normal-
ized z-coordinates must coincide since [AQB] = [APB]. Similarly, R = (t, s, 0). So the
circumcircle of �AQR is given by

−a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz) = 0

where u, v, w are some real numbers. Plugging in the point A gives u = 0. Plugging in the
point Q gives wt = b2st , so w = b2s. Plugging in the point R gives vs = c2st , so v = c2t .
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A

B C

G

P

Q

R

X

Thus the circumcircle has equation

−a2yz − b2zx − c2xy + (x + y + z)
(
c2ty + b2sz

) = 0.

Now let us consider the intersection of the A-symmedian with this circumcircle. Let
the intersection be X = (k : b2 : c2). We aim to show the value of k does not depend on s

or t . But this is obvious, as substitution gives

−a2b2c2 − 2b2c2k + (k + b2 + c2)(b2c2)(s + t) = 0.

Since s + t = 1 and the equation is linear in k, we have exactly one solution for k. The
proof ends here; there is no need to compute the value of k explicitly. (For the curious, the
actual value of k is k = −a2 + b2 + c2.)

Solution 7.42

Let XA be the contact point of the A-excircle with BC. Then XA = (0 : s − b : s − c) and
Lemma 4.40 implies that AXA and ATA are isogonal. Since AXA, BXB , CXC concur at
the Nagel point (s − a : s − b : s − c), the cevians ATA, BTB , CTC concur at the isogonal

conjugate of the Nagel point with coordinates
(

a2

s−a
: b2

s−b
: c2

s−c

)
.

We wish to show that this point lies on line IO. Using I = (a : b : c) and O = (a2SA :
b2SB : c2SC) it is equivalent to show that

0 =

∣∣∣∣∣∣∣
a2

s−a
b2

s−b
c2

s−c

a2SA b2SB c2SC

a b c

∣∣∣∣∣∣∣ .
Directly expanding this looks quite painful. Instead, we can factor it as

(abc)2

K2/s

∣∣∣∣∣∣
(s − b)(s − c) (s − c)(s − a) (s − a)(s − b)

SA SB SC
1
a

1
b

1
c

∣∣∣∣∣∣
or

abc

16K2/s

∣∣∣∣∣∣
4(s − b)(s − c) 4(s − c)(s − a) 4(s − a)(s − b)

2SA 2SB 2SC

2bc 2ca 2ab

∣∣∣∣∣∣
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where K2/s abbreviates (s − a)(s − b)(s − c). Now

4(s − b)(s − c) = a2 − (b − c)2 = a2 + 2bc − b2 − c2 = 2SA + 2bc.

So it immediately follows that the determinant is zero (as the first row is the sum of the
other two) and we are done.

Solution 7.44

We use barycentric coordinates. Let A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1). Denote
a = BC, b = CA, and c = AB. We claim that the common point is

K = (
a2 − b2 + c2 : b2 − a2 + c2 : −c2

)
.

Let C1 = (u : v : 0). Let A0 be the intersection of C1B1 and BC, and observe that
AC1A0C is cyclic. Define B0 analogously.

A B

C

C1

B0
A0

A1

B1

C2

By power of a point, we observe that BA0 = uc
a

. Therefore, we obtain that

A0 =
(

0 : a − uc

a
: uc

)
= (

0 : a2 − uc : uc
)
.

Combining with C1 = (u : v : 0) we therefore observe that

B1 = AC ∩ C1A0 = (a2 − uc : 0 : −vc).

Similarly,

A1 = (
0 : b2 − vc : −uc

)
.

Therefore,

C2 = (
u(a2 − uc) : v(b2 − vc) : −uvc

)
.
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Now we show that C1, C2, and K are collinear. Expand

−1

c
·
∣∣∣∣∣∣

u(a2 − uc) v(b2 − vc) −uvc

u v 0
a2 − b2 + c2 b2 − a2 + c2 −c2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a2 − uc b2 − vc 1

1 1 0
v(a2 − b2 + c2) u(b2 − a2 + c2) c

∣∣∣∣∣∣
= (

u(b2 − a2 + c2) − v(a2 − b2 + c2)
)

+ c
(
(a2 − uc) − (b2 − vc)

)
= (u + v)(b2 − a2) + (u − v)c2

+ c(a2 − b2) − (u − v)c2

= 0

which implies that C1, C2, and K are collinear, as desired.

Solution 7.47

Let ωi be the circle with center Oi and radius ri . Set A1 = (1, 0, 0), A2 = (0, 1, 0), A3 =
(0, 0, 1), and as usual let a = A2A3 and so on. Let A4 = (p, q, r), where p + q + r = 1.
Let T = a2qr + b2rp + c2pq for brevity.

The circumcircle of �A2A3A4 can be seen to have equation

−a2yz − b2zx − c2xy + (x + y + z)

(
T

p
x

)
= 0.

By Lemma 7.23, we thus have that

O1A
2
1 − r2

1 = (1 + 0 + 0) · T

p
· 1 = T

p
.

Similarly,

O2A
2
2 − r2

2 = T

q
and O3A

2
3 − r2

3 = T

r
.

Finally, we obtain O4A
2
4 − r2

4 by plugging in A4 into (A1A2A3), which gives a value of
−T . Hence the left-hand side of our expression is

p

T
+ q

T
+ r

T
− 1

T
= 0

since p + q + r = 1.
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Solution 7.49

A

B CED

P
Q

Suppose that D = (0 : 1 : t) and E = (0 : t : 1). Let Q be the isogonal conjugate of P ;

evidently Q lies on AE, so Q = (k : t : 1) for some k. Moreover, P =
(

a2

k
: b2

t
: c2

)
. So

the condition that PD ‖ AE implies that P and D are collinear with the point at infinity
(−(1 + t) : t : 1) along line AE, so we find

0 =
∣∣∣∣∣∣

a2/k b2/t c2

0 1 t

−(1 + t) t 1

∣∣∣∣∣∣
which can be rewritten as

0 = det

∣∣∣∣∣∣
a2/k b2/t c2

0 1 t

−(1 + t) 1 + t 1 + t

∣∣∣∣∣∣ = (1 + t)

∣∣∣∣∣∣
a2/k b2/t c2

0 1 t

−1 1 1

∣∣∣∣∣∣ .
Expanding the determinant, we derive that

0 = a2(1 − t) + k(c2 − b2)

and applying Lemma 7.19 we derive that BQ = QC. So ∠QBC = ∠QCB, implying
∠PBA = ∠PCA.

Solution 7.52

We are going to use barycentric coordinates on �PBD. Let P = (1, 0, 0), B = (0, 1, 0),
D = (0, 0, 1). Let A = (au : bv : cw). Since C is the isogonal conjugate of A with respect
to �PBD by the angle condition, it follows that C = (

a
u

: b
v

: c
w

)
.

For brevity, we now let S = au + bv + cw and T = au−1 + bw−1 + c−1. This way,

A = (
au
S

, bv
S

, cw
S

)
and C =

(
au−1

T
, bv−1

T
, cw−1

T

)
. Therefore, we have

−→
AP =

(
1 − au

S
,−bv

S
,−cw

S

)
=

(
bv + cw

S
,−bv

S
,−cw

S

)
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A

D C

B

P

and thus one can compute

PA2 = 1

S2

(−a2(bv)(cw) + b2(cw)(bv + cw) + c2(bv)(bv + cw)
)

= bc

S2

[−a2vw + (bw + cv)(bv + cw)
]
.

Performing similar calculations with C gives

PC2 = bc

T 2

[−a2(vw)−1
(
bw−1 + cv−1

) (
bv−1 + cw−1

)]
= bc

T 2(vw)2

[−a2vw + (bw + cv)(bv + cw)
]
.

We would like to cancel the factor of −a2vw + (bw + cv)(bv + cw) from both sides
of PA2 = PC2, but we have to check first that this factor is not zero. This follows from
the fact that PA �= 0 and PC �= 0, since P lies in the interior of ABCD. Thus the division
is safe, and hence PA2 = PC2 holds if and only if S2 = T 2(vw)2.

On the other hand, the quadrilateral ABCD is cyclic if and only if there is some γ such
that

−a2yz − b2zx − c2xy + (x + y + z)(γ x) = 0

passes through both A and C (indeed, this is the family of circles passing through B and
D). Substituting the values of A = (au : bv : cw) and C = (au−1 : bv−1 : cw−1), we see
that the condition is equivalent to

γ = −a2(bv)(cw) − b2(cw)(au) − c2(au)(bv)

au · S

= −a2(bv−1)(cw−1) − b2(cw−1)(au−1) − c2(au−1)(bv−1)

au−1T
.

This can be rewritten as

−abc
uvwT

auS
= −abc · (uvw)−1S

au−1T

which is clearly equivalent to S2 = T 2(vw)2.
Hence PA = PC if and only if ABCD is cyclic.
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C.3 Solutions to Chapters 8–10

Solution 8.24

Consider an inversion around the point A. We wish to show that B∗, C∗, D∗ are collinear.
Our inversion gives the following image, consisting of two parallel lines and two tangent
circles.

O1

O2

B∗

D∗

C∗

A

Let O1, O2 be the centers of the two circles in the image, such that B∗ lies on the
circle with center O1 and D∗ lies on the circle with center O2. We know that O1, C∗,
O2 are collinear. Moreover, we have B∗O1 = C∗O1 and D∗O2 = C∗O2. Finally, since
B∗O1 ‖ D∗O2 we have that ∠B∗O1C

∗ = ∠C∗O2D
∗. Therefore, triangles B∗O1C

∗ and
C∗O2D

∗ are similar. It follows that B∗, C∗, D∗ are collinear, as desired.

Solution 8.27

A BO

K∗

C

D

M
M∗

K

Let us consider the inversion around the semicircle. It fixes the points A, B, C, D.
Moreover, the image K∗ is the intersection of lines AC and BD. Finally, the image
M∗ is the intersection of AB with the circumcircle of triangle OCD. We wish to prove
∠K∗M∗O = 90◦. This follows from the fact that the circumcircle of triangle OCD is in
fact the nine-point circle of triangle K∗AB.
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Solution 8.30

A

B C

Q

I

D

E
F

X

PA∗

B∗ C∗

Let ray QP meet the circumcircle again at X. We have �IXA = �QXA = 90◦ so it
follows that X lies on the circumcircle of quadrilateral AFIE.

Consider an inversion through the incircle. Then A∗, B∗, C∗ are the midpoints of the
sides of the contact triangle, and their circumcircle is the nine-point circle of triangle DEF .
Moreover, since X∗ lies on lines EF and XI , we derive that P = X∗, so P lies on the
nine-point circle (A∗B∗C∗) as well. Thus P is the foot of the D-altitude as required.

Solution 8.31

A

B C

P

IA

Q1

Q

First, let us extend AQ to meet BC at Q1. By homothety, we see that Q1 is just the
contact point of the A-excircle with BC.

Now let us perform an inversion around A with radius
√

AB · AC followed by an
reflection around the angle bisector; call this map �. By Lemma 8.16, � fixes B and
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C. Moreover it swaps BC and (ABC). Hence, this map swaps the A-excircle with the
A-mixtilinear incircle ω. Hence � swaps P and Q1. It follows that AP and AQ1 are
isogonal with respect to ∠BAC, meaning ∠BAP = ∠CAQ1. Since ∠CAQ = ∠CAQ1

we are done.

Solution 8.36

A

B C

O

H

Q

N

T

M F
L

K

Let N and T be midpoints of HQ and AH , and call O the center of �. Let L be on
the nine-point circle with ∠HML = 90◦. The negative inversion at H swapping � and
nine-point circle maps A to F , K to L, and Q to M . As LM ‖ AQ we just need to prove
LA = LQ. But MT is a diameter, hence LT NM is a rectangle, so LT passes through O

(because the nine-point center is the midpoint of OH ).

Solution 8.37

Let P denote the center of ω2. We are going to show that ∠OFB = ∠OGB = 90◦.

A

O B
P

F ∗

G∗

F

G
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First, consider an inversion around ω1 sending F to F ∗ and G to G∗. As this inversion
fixes ω2, we find that AF ∗ and AG∗ are now the tangents to ω2. Now it suffices to prove B

lies on F ∗G∗, as it will then follow that ∠OBF ∗ = ∠OBG∗ = 90◦.
Because ω1 is orthogonal to ω2, it follows B and A are inverses under a second inversion

around ω2. Since A is the intersection of the tangents at F ∗ and G∗, we also know the image
of A under this second inversion is the midpoint of F ∗G∗. Thus it follows that B is the
midpoint of F ∗G∗ as desired.

Solution 9.40

Let X denote the second intersection of AD with the incircle.

A

B C

I

D

E

F

K

X

Since AF and AE are tangents to the incircle, we discover that XFDE is a harmonic
quadrilateral (by Lemma 9.9). Now K is the intersection of line EF and the tangent to
D, so the fact that XFDE is harmonic implies that KX is tangent to the incircle as well.
Consequently KI ⊥ XD; in fact, K is the pole of line XD.

Solution 9.44

Let line EF meet BC again at X. Moreover, let line AH meet line EF at Y .

A

B CD

H

E

F

X

Y

By Lemma 9.11 on �ABC, we derive that (X,D; B,C) = −1; perspectivity at A gives
(X, Y ; E,F ) = −1. (Alternatively, apply Lemma 9.11 on �AEF .) In any case, since we
know ∠XDY = 90◦, applying Lemma 9.18 shows that DH bisects ∠FDE.
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Solution 9.46

This is just an extension of Lemma 9.40. Again denote by K the intersection of ray IP

with BC.

A

B C

I

D

E

F

K

P

In Lemma 9.40 we showed that (K,D; B,C) = −1 (this also follows from directly
applying Lemma 9.11 to the cevians AD, BE, CF , where E and F are the tangency points
of the incircle to the opposite sides). Now observe that ∠KPD = 90◦, so Lemma 9.18
implies that PD bisects ∠BPC.

Solution 9.47

Let BM intersect the circumcircle again at X.

A

B CPQ

MN

X

The angle conditions imply that the tangent to (ABC) at B is parallel to AP . Let P∞
be the point at infinity along line AP . Then

−1 = (A,M; P,P∞)
B= (A,X; B,C).

Similarly, if CN meets the circumcircle at Y then (A, Y ; B,C) = −1 as well. Hence X = Y ,
which implies the problem condition.
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Solution 9.49

Let M be the midpoint of AB. Let Z be the foot of the perpendicular from I to CM , and
note that the points C, B ′, I , Z, A′ all lie on a circle with diameter CI . Let K ′ be on line
A′B ′ so that K ′C ‖ AB. We prove that ∠K ′ZL is right, because this implies K ′ = K .

C

A B

I

A′

B′

C ′ M

Z

K ′

L

Notice that (A,B; M,P∞) is harmonic, where P∞ is the point at infinity along AB.
Taking perspectivity from C onto line A′B ′ we observe that (B ′, A′; L,K ′) is harmonic.

Now consider point Z. We know that �CZB ′ = �CIB ′ = �A′IC = �A′ZC, so ZC

bisects ∠A′ZB ′. Thus Lemma 9.18 applies and we conclude ∠LZK ′ = 90◦ as needed.

Solution 9.50

Refer to Figure 9.9A. Pascal’s theorem on AGEEBC shows that BC ∩ GE lies on d. Let
G′ be the reflection of G over AB. Then applying Pascal’s theorem to CG′GEBB forces
CG ∩ BE to lie on d, so the intersection must be the point F .

Solution 9.54

Set T = AD ∩ CE, O = BT ∩ AC, and K = LH ∩ GM . We are going to ignore the
condition that A, D, E, C is cyclic.

A C

B

T

O

DE

G

H
ML

K

Now we can take a projective transformation that preserves the circumcircle of ABC

and sends O to the center of the circle. In that case, AC is a diameter, and moreover T lies
on the B-median of �ABC, meaning that DE ‖ AC.
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From this we deduce that ALMC is a rectangle. Now we see that ALHE and DGMC

are cyclic. From this we can use angle chasing to compute �HKG as

�HKG = �LKM = −�KML − �MLK

= −�GMD − �ELH

= −�GCD − �EAH = −�GCB − �BAH

= −�GAB − �BAH = −�GAH = −�GBH

= �HBG.

Hence H , B, K , G are concyclic and we are done.

Solution 9.56

Let K be the radical center of ω, ω1, ω2, so that K is the intersection of AG, CH , and
EF . Let R = AC ∩ GH . The problem is to prove that R lies on BD. Hence by Brocard’s
theorem on ABCD, it suffices to check that the polar of R is line EF .

A

B

CDE

F

RG

H

K

By applying Brocard’s theorem on quadrilateral ACGH , we find that the polar of R is a
line passing through the pole of AC and the point K = AG ∩ CH . But the pole of AC lies
on EF by Brocard’s theorem on ABCD. Moreover, so does the point K by construction.
Thus the pole of AC and the point K both lie on EF . Hence the polar of R really is EF ,
and we are done.

Solution 10.19

Consider the circle ω1 with diameter AB and the circle ω2 with diameter CD. Moreover,
let ω be the circumcircle of ABCD.

We saw already in the proof of Theorem 10.5 that the two orthocenters lie on the radical
axis of ω1 and ω2 (i.e., the Steiner line of ADBC). Hence the problem is solved if we can
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A
D

B C

F

E

prove that F also lies on this radical axis. But this follows from the fact that F is actually
the radical center of circles ω1, ω2 and ω.

Solution 10.20

Let Y ′ be the second intersection of ray QX with ω1. We prove that PY ′ ‖ BD, which
implies that Q, X, Y are collinear. (The point Z is handled similarly.)

D

X

AP

Q

C

B

Y ′

The given conditions imply that Q is the Miquel point of complete quadrilateral DXAP .
Hence quadrilaterals CQDX and BQXA are cyclic. Therefore,

�QY ′P = �QCP = �QCD = �QXD = �QXB

which implies PY ′ ‖ BX.
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Solution 10.22

B1 C1T

B

C

K

S

A

Let K denote the intersection of BB1 and CC1. By angle chasing, we can check that

∠BKC = 1

2
(180◦ − ∠BT C) = ∠BAC.

So B, K , A, C are concyclic.
Consider Theorem 10.12 on quadrilateral B1BCC1. We know that

� A lies on (KBC)
� ∠T AS = 90◦
� ∠BAC < 90◦ since �ABC is given to be acute, so A lies outside of B1BCC1.

If we fix B1BCC1, it is easy to see that these conditions uniquely determine the point A.
But the Miquel point of B1BCC1 also satisfies all three conditions. It follows that A must
be the Miquel point, and it is now immediate that triangles ABC and AB1C1 are similar.

Solution 10.23

Let M be the Miquel point of complete quadrilateral ADBC; in other words, let M be the
second intersection point of the circumcircles of �APD and �BPC.

A

D C

B

E

F

P

Q

R

M

Since AF
AD

= CE
CB

, M is also the center of a spiral similarity which takes FA to EC,
thus it is the Miquel point of complete quadrilateral FACE. As R = FE ∩ AC we deduce
FARM is a cyclic quadrilateral.
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Now look at complete quadrilateral AFQP . Since M lies on (DFQ) and (RAF ), it
follows that M is in fact the Miquel point of AFQP as well. So M lies on (PQR).

Thus M is the fixed point that we wanted.

Solution 10.26

The main point of the problem is to prove that MN ‖ AD. First, denote by X the point
diametrically opposite L on (ABC).

A

B C

L

D M

Q

P

N

H

X

Since �XAD = �XMD = 90◦, it follows that A, M , D, X are concyclic. Thus X is
the Miquel point of complete quadrilateral PQBC, and the center of the spiral similarity
taking QP to BC. Thus it is also the center of the spiral similarity taking NP to MC.
Equivalently, X is the center of the spiral similarity taking NM to PC.

That implies �XNM and �XPC are similar with the same orientation, whence

�NMX = �PCX = �ACX = �ALX

implying that MN ‖ AL. Thus, �HMN = �HDL = �HML and we win.

Solution 10.29

Let M be the midpoint of EF . Then M , G, H lie on the Gauss line of complete quadri-
lateral ADBC. Let P = AB ∩ CD and let line EF meet AB and CD at X and Y ,
respectively.
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A

D

C

B

F

P

E

G

H

X

Y

M

We have harmonic bundles

(X, Y ; E,F ) = (P,X; A,B) = (P, Y ; D,C) = −1.

Using Lemma 9.17, we find

PX · PG = PA · PB = PD · PC = PY · PH.

Hence X, Y , G, H are concyclic.
Now, using Lemma 9.17 again on (P,E; X, Y ) = −1 gives

ME2 = MX · MY = MG · MH

which gives the desired conclusion.

Solution 10.30

We are going to prove that

�AC3B3 = �A2BC.

This solves the problem, because the analogous calculation �BC3A3 = �B2AC implies
�A3C3B3 = �A3C3A + �AC3B3 = �A3C3B + �AC3B3, which gives �CAB2 +
�A2BC = �A2C2C + �CC2B2 = �A2C2B2.
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A

B CA1

B1

C1

A3

B3

C3

A2

B2

C2

By spiral similarity at A2, we deduce that �A2C1B ∼ �A2B1C. Hence

A2B

A2C
= A2C1

A2B1
= C1B

B1C
= AC3

AB3
.

Moreover, �BA2C = �BAC = �C3AB3. We can check that A2 lies on the same side
of A as BC since B1 and C1 are constrained to lie on the sides of the triangle. So we
can deduce ∠C3AB3 = ∠BA2C. That implies �A2BC ∼ �AC3B3. Thus �AC3B3 =
�A2BC, completing the proof.

C.4 Solutions to Chapter 11

Solution 11.0

Have fun!

Solution 11.1

B
PQ

D

AC
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Let P = AD ∩ BC, Q = AB ∩ CD. Now 2∠ADB = ∠CBD = ∠BPD + ∠PDB,
meaning ∠BPD = ∠BDP and BP = BD. Similarly, BQ = BD. Now BP = BQ and
BC = BA give �QBC ∼= �PBA; from here the solution follows readily.

Solution 11.2

A

B C

O

D

F

E

K

First, note �EDF = 180◦ − �BOC = 180◦ − 2A, so �FDE = 2A. Observe that
�FKE = 2A as well; hence KFDE is cyclic. Hence

�KDB = �KDF + �FDB

= �KEF + (90◦ − �DBO)

= (90◦ − A) + (90◦ − (90◦ − A))

= 90◦.

and the proof ends here.

Solution 11.3

B C

S
R

A

D

E

L

K
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Solution 1. Angle chasing reveals ∠DCA = ∠ACE = ∠DBA = ∠ABE.
First, we claim that BE = BR = BC. Indeed, construct a circle with radius BE = BR

centered at B, and notice that ∠ECR = 1
2∠EBR, implying that it lies on the circle.

Now, CA bisects ∠ECD and DB bisects ∠EDC, so R is the incenter of �CDE. Then,
K is the incenter of �LED, so

∠ELK = 1

2
∠ELD = 1

2

(
ÊD + B̂C

2

)
= 1

2

B̂ED

2
= 1

2
∠BCD.

Solution 2. Because

�EBA = �ECA = �SCR = �SBR = �ABR,

BA bisects ∠EBR. Then by symmetry ∠BEA = ∠BRA, so

�BCR = �BCA = �BEA = −�BRA = −�BRC

and hence it follows that BE = BR = BC. Now we proceed as in the first solution.

Solution 11.4

A

B
C

MA1

A2

C1

C2

Because MA = MB = MC, A1 and C1 are merely the midpoints of AB and BC; in
particular, A1C1 ‖ AC. Moreover, ∠AA1A2 = ∠AA2A1 = ∠C1A1A2 and so A1A2 is the
external angle bisector of ∠A1 in triangle A1BC1. Similarly, C1C2 is the external angle
bisector of ∠C1. Hence they intersect at the excenter, which lies on the B-bisector of this
triangle.
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Solution 11.5

The following diagram is not drawn to scale.

A

B D

I

C

Let I denote the incenter of �ABD. Then quadrilateral IBCD is cyclic since ∠DIB =
90◦ + 1

2∠DAB = 145◦. Hence we obtain∠IBD = ∠ICD = 180◦ − (55◦ + 105◦) = 20◦

and ∠ABD = 40◦.

Solution 11.6

A

CB D

E

F

HP

Q

Of course H lies on γ (for example, by Lemma 1.17). Now consider an inversion at B with
power

√
BH · BE = √

BF · BA = √
BD · BC. It swaps the three pairs F and A, D and

C, and H and E. That means it swaps the circle γ with the line EF and the circle ω with
line DF . It follows that P and Q map to each other and we are done.
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Solution 11.7

B

D

CK

E

F

A

T

MN A1

Let K be the midpoint of BC and let A1 be the reflection of A over K . Because F is the
reflection of D over the perpendicular bisector of BC, we find that DFA1A is an isosceles
trapezoid. Then,

�MED = �T ED = �T FD = �AFD = �AA1D = �MA1D.

Therefore, MDA1E is cyclic. Now, by power of a point, we see that

AD · AE = AM · AA1 = 2AM · AK = AN · AK.

Therefore, DKEN is cyclic, as desired.

Solution 11.8

Let M denote the midpoint of BC.

A

B CD

E

F

MP

By Lemma 1.44, ME and MF are tangents to ω (and hence to ω1, ω2), so M is the radical
center of ω, ω1, ω2. Now consider the radical axis of ω1 and ω2. It passes through D and
M , so it is line BC, and we are done.
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Solution 11.9

A B

CD

M
N

Q

R

K
L

T

P

Let AB = 2x, CD = 2y, and assume without loss of generality that x < y. Let L be the
midpoint of BC and denote BC = 2	. Let P be the midpoint of QR. Let T be the foot of
B on DC.

Since N is the midpoint of the hypotenuse of �ABD, it follows that AN = BN . Since
MN ‖ AB, we see that MN is tangent to (ABN ). Similarly, it is tangent to (BCM).

Noting that LM = 1
2AB via �ABC, we obtain

LR · LC = LM2 =
(

1

2
AB

)2

= x2 ⇒ LR = x2

	
.

Similarly, LQ = y2

	
. Then,

PL = LQ − LR

2
= y2 − x2

2	
and KL = ML + NL

2
= x + y.

But then we find that

KL

PL
=

y2−x2

2	

x + y
= y − x

2	
= T C

BC
.

Combined with ∠KLP = ∠BCT , we find that �KLP ∼ �BCT . Therefore, ∠KPL =
∠BT C = 90◦. But P is the midpoint of QR, so KQ = KR.

Solution 11.10

Construct parallelograms XCAB, YABC, and ZBCA. By Ceva’s theorem in trigonometric
form on triangle ABC and point P , we know that

sin∠BAP

sin∠PAC

sin∠CBP

sin∠PBA

sin∠ACP

sin∠PCB
= 1.
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A

B C

H P

X

YZ

A1

B1

C1

A2

B2

C2

Q

But ∠PAC = ∠A1AC = ∠CXA2, since minor arcs A1C and A2C are identical. So the
above rewrites as

sin∠BXA2

sin∠CXA2

sin∠CYB2

sin∠AYB2

sin∠AZC2

sin∠BZC2
= 1.

So rays XA2, YB2, ZC2 concur at some point, say Q.
Let H be the orthocenter of triangle ABC. We claim that H is the fixed point, and that

in fact, the three points lie on a circle with diameter HQ. Indeed, note that A2 lies on the
reflection of (ABC) over BC, which is a circle with diameter HX, whence

�HA2X = �HA2Q = 90◦

as desired.

Solution 11.11

Easy angle chasing gives

∠B2A2C2 = ∠ABA2 + ∠BAA2 = ∠BAC.

Similar calculations yield that �A1B1C1 ∼ �A2B2C2 ∼ �ABC.
Now, let O be the circumcenter of �ABC. Then O lies on the angle bisector of the

angle formed by lines B2C2 and B1C1; namely, the line through O perpendicular to BC.
(Note that ∠B1BC = ∠C2CB, giving an isosceles triangle.) Let da denote the common
distance from O to lines B2C2 and B1C1. Define db and dc analogously.
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A

B C

C1

A1

B1

C2

A2

B2

O

MA

MBMC

Then, since �A1B1C1 is similar to �A2B2C2, we observe that O must have the same
barycentric coordinates with respect to �A1B1C1 and �A2B2C2, namely

(da · B1C1 : db · C1A1 : dc · A1B1)

= (da · B2C2 : db · C2A2 : dc · A2B2) .

So O corresponds to the same point in both triangles. The congruence of the pedal
triangles is then enough to deduce that �A1B1C1 is congruent to �A2B2C2.

Solution 11.12

Assume without loss of generality that AB < AC.

A

B

C

DM

B1

N

X

Y
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Let B1 be the reflection of B over M (which is on AC) and let P∞ be the point at infinity
along BM ‖ CN . Evidently

−1 = (B1, B; M,P∞)
C= (A,D; M,N ).

But∠MYN = ∠MXN = 90◦, so by Lemma 9.18, we find that M is the incenter of �AXY ;
hence ∠XAM = ∠YAM , and hence ∠BAX = ∠CAY as desired.

Solution 11.13

Assume without loss of generality that AB < AC. We show that in this case,∠PQE = 90◦.

A

B C

I

D

E

F

M

P

Q

N

T

S

First, we claim that D, P , E are collinear. Let N be the midpoint of AB. Let P ′ be the
intersection of the MN , DE, and ray AI , as in Lemma 1.45. Then P ′ lies inside �ABC

and moreover �DP ′M ∼ �DEC, so MP ′ = MD. This is enough to imply that P ′ = P ,
proving the claim.

Let S be the point diametrically opposite D on the incircle, which is also the second
intersection of AQ with the incircle. Let T = AQ ∩ BC. Then T is the contact point of the
A-excircle (Lemma 4.9); consequently, MD = MP = MT , and we obtain a circle with
diameter DT . Since �DQT = �DQS = 90◦ we have Q on this circle as well.

As SD is tangent to the circle with diameter DT , we obtain �PQD = �PDS =
�EDS = �EQS. Since �DQS = 90◦, �PQE = 90◦ too.

Solution 11.14

Evidently D and E are the reflections of C and B over BI and CI , respectively. Denote
by X and Y the midpoints of BD and CE, and let P be the midpoint of BC. Because of
the reflections, we have that IX = IP = IY .

Next, consider the second intersection T of (ABC) and (ADE). It is the center of the
spiral similarity that maps BD to CE. But then the map must actually be a congruence
as BD = CE, so T B = T C. Since T is on (ABC), and because we require �T BD and
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A

B C

I

D
E

F

H

M

X Y

P

�T CE to be similarly oriented, this implies T = M . Hence MX = MY ; therefore MI is
the perpendicular bisector of XY .

Now XY is the Gauss line of complete quadrilateral BEDC. Since I is the orthocen-
ter of triangle FBC, line MI is the Steiner line (since the Steiner and Gauss lines are
perpendicular), which by definition passes through H .

Solution 11.15

A

B C

M M ′N

O′

L

K

P

O

H

Let M ′ be the midpoint of AC and let O ′ be the circumcenter of �ABC. Then
KMLM ′ is cyclic (nine-point circle), as is AMO ′M ′ (since ∠MOA = ∠MM ′A = 45◦).
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Also, ∠BO ′A = 90◦, so O ′ lies on the circle with diameter AB. Then N is the radical
center of these three circles; hence A, N , O ′ are collinear.

Now applying Brocard’s theorem to quadrilateral BLAO ′, we find that M is the ortho-
center of the OPH ′, where H ′ = LA ∩ BO ′. Hence H ′ is the orthocenter of �MOP ,
whence H = H ′ = AC ∩ BO ′.

Now we know that

AH

HC
= c2(a2 + b2 − c2)

a2(b2 + c2 − a2)

where the ratio is directed as in Menelaus’s theorem. Cancelling a factor of 2802 we can
compute:

AH

HC
= c2(a2 + b2 − c2)

a2(b2 + c2 − a2)
= 338(576 + 98 − 338)

576(98 + 338 − 576)
= −169

120
.

Therefore,

AC

HC
= 1 + AH

HC
= − 49

120

⇒ |HC| = 120

49
· 1960

√
2 = 4800

√
2.

Now applying the law of cosines to �KCH with ∠KCH = 135◦ yields

HK2 = KC2 + CH 2 − 2KC · CH · cos 135◦

= 19602 +
(

4800
√

2
)2

− 2(1960)
(

4800
√

2
) (

− 1√
2

)
= 402

(
492 + 2 · 1202 + 2 · 49 · 120

)
= 1600 · 42961

= 68737600.

Solution 11.16

It turns out we can compute PAQA explicitly. Let us invert around A with radius s − a

(hence fixing the incircle) and then compose this with a reflection around the angle bisector
of ∠BAC. We let this operation send a point X to X∗ then to X+. We overlay this inversion
with the original diagram.

Let PAQA meet ωA again at P and SA again at Q. Now observe that ω∗
A is a line parallel

to S∗; that is, it is perpendicular to PQ. Moreover, it is tangent to ω∗ = ω.
Now upon the reflection, we find that ω+ = ω∗ = ω, but line PQ gets mapped to the

altitude from A to BC, since PQ originally contained the circumcenter O (isogonal to the
orthocenter). But this means that ω∗

A is none other than the BC! Hence P + is actually the
foot of the altitude from A onto BC.

By similar work, we find that Q+ is the point on AP + such that P +Q+ = 2r .
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A

B CP+

PA
P

QA

Q

I
P ∗

Q+

Now we can compute all the lengths directly. We have that

APA = 1

2
AP = (s − a)2

2AP + = 1

2
(s − a)2 · 1

ha

and

AQA = 1

2
AQ = (s − a)2

2AQ+ = 1

2
(s − a)2 · 1

ha − 2r

where ha = 2K
a

is the length of the A-altitude, with K the area of ABC as usual. Now it
follows that

PAQA = 1

2
(s − a)2

(
2r

ha(ha − 2r)

)
.

This can be simplified, as

ha − 2r = 2K

a
− 2K

s
= 2K · s − a

as
.

Hence

PAQA = a2rs(s − a)

4K2
= a2(s − a)

4K
.

Hence, the problem is just asking us to show that

a2b2c2(s − a)(s − b)(s − c) ≤ 8(RK)3.

Using abc = 4RK and (s − a)(s − b)(s − c) = 1
s
K2 = rK , we find that this becomes

2(s − a)(s − b)(s − c) ≤ RK ⇔ 2r ≤ R
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which follows immediately from Lemma 2.22. Alternatively, one may rewrite this as Schur’s
Inequality in the form

abc ≥ (−a + b + c)(a − b + c)(a + b − c).

Solution 11.17

A

B C

I

B0

C0

L

Q

P

A0

O1

O2

C1

B1

K

Let the incircle touch BC at A0. First, note that B1 and C1 lie on B0C0 by Lemma 1.45.
Next, Q lies on (ABL), since BI is an internal angle bisector and we know that QA = QL

(this is Lemma 1.18). Similarly, P lies on (ACL).
We claim that �A0B0C0 and �LQP are homothetic (where A0 is the tangency point

of the incircle on BC). Since B0C0 and PQ are both perpendicular to AL, we have
B0C0 ‖ PQ. Also, ∠C0A0B = 180◦−B

2 , and

∠PLB = ∠PAC = ∠PAL + ∠LAC = 1

2
C + 1

2
A = 180◦ − B

2

which shows that C0A0 ‖ PL. Similarly, B0A0 ‖ LQ.
Hence �A0B0C0 and �LQP are homothetic. Let K be the center of homothety;

because K ∈ LA0 = BC, QB0 and BC are concurrent.
It remains to show KC1 passes through O1. Let O ′

1 be the intersection of PQ and C1K .
Then O ′

1 is the image of C1. Since B0C1 = A0C1, it follows that QO ′
1 = LO ′

1. But PQ

happens to be the perpendicular bisector of AL, so in fact O ′
1A = O ′

1Q = O ′
1L. Hence



296 C. Selected Solutions

O ′
1 is the circumcenter of (ABL); that is, O1 = O ′

1. Similarly O2 = O ′
2 and the proof is

complete.

Solution 11.18

MA

MB MC

A

S

X

Y

Z

D

E

F X ′

D′

E′

F ′

Let AX meet MBMC at D and let X reflected over the midpoint of MBMC be X′. Let Y ′,
Z′, E, F be similarly defined.

By cevian nest (Theorem 3.23) it suffices to prove that MAD, MBE, MCF are concurrent.
Taking the isotomic conjugate and recalling that MAMBAMC is a parallelogram, we see
that it suffices to prove MAX′, MBY ′, MCZ′ are concurrent.

We now use barycentric coordinates on �MAMBMC . Let

S = (
a2SA + t : b2SB + t : c2SC + t

)
(possibly t = ∞ if S is the centroid). Let v = b2SB + t , w = c2SC + t . Hence

X = (−a2vw : (b2w + c2v)v : (b2w + c2v)w
)
.

Consequently,

X′ = (
a2vw : −a2vw + (b2w + c2v)w : −a2vw + (b2w + c2v)v

)
.

We can compute

b2w + c2v = (bc)2(SB + SC) + (b2 + c2)t = (abc)2 + 2t
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so

−a2v + b2w + c2v = (b2 + c2) + (abc)2 − (ab)2SB − a2t = SA(ab + t).

Thus

X′ = (
a2vw : SA(b2SB + t)(ab + t) : SA(c2SC + t)(ac + t)

)
.

Similarly,

Y ′ = (
SB(a2SA + t)(ba + t) : b2wu : SB(c2SC + t)(bc + t)

)
Z′ = (

SC(a2SA + t)(ca + t) : SC(b2SB + t)(cb + t) : c2uv
)
.

Now we are done by Ceva’s theorem.

Solution 11.19

Let N be the midpoint of EF , and set B1 = EF ∩ HC, C1 = EF ∩ HB. Focus on triangle
DB1C1.

A

B C

I

D

E

F

H

B1

C1

N
M

P

By Lemma 1.45, �DBC1 is the orthic triangle of �HBC. Moreover, N is the tangency
point of its incircle with B1C1. In addition, H is the D-excenter (via Lemma 4.6). Then
Lemma 4.14 implies P , N , and H are collinear.
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Solution 11.20

A

B
C

P

A1

B1

C1

A2

B2

C2

T

This is a hard problem with many beautiful solutions. The following solution is not very
beautiful but not too hard to find during an olympiad, as the only major insight it requires
is the construction of A2, B2, and C2.

We apply complex numbers with ω the unit circle and p = 1. Let A1 = 	B ∩ 	C , and
let a2 = a2 (in other words, A2 is the reflection of P across the diameter of ω through A).
Define the points B1, C1, B2, C2 similarly.

We claim that A1A2, B1B2, C1C2 concur at a point on �.
We begin by finding A1. If we reflect the points 1 + i and 1 − i over AB, then we get

two points Z1, Z2 with

z1 = a + b − ab(1 − i) = a + b − ab + abi

z2 = a + b − ab(1 + i) = a + b − ab − abi.

Therefore,

z1 − z2 = 2abi

z1z2 − z2z1 = −2i

(
a + b + 1

a
+ 1

b
− 2

)
.
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Now 	C is the line Z1Z2, so with the analogous equation 	B we obtain (using the full
formula in Theorem 6.17):

a1 = −2i
(
a + b + 1

a
+ 1

b
− 2

)
(2aci) + 2i

(
a + c + 1

a
+ 1

c
− 2

)
(2abi)(− 2

ab
i
)

(2aci) − (− 2
ac

i
)

(2abi)

= [c − b] a2 + [
c
b

− b
c

− 2c + 2b
]
a + (c − b)

c
b

− b
c

= a + (c − b)
[
a2 − 2a + 1

]
(c − b)(c + b)/bc

= a + bc

b + c
(a − 1)2.

Then the second intersection of A1A2 with ω is given by

a1 − a2

1 − a2a1
= a + bc

b+c
(a − 1)2 − a2

1 − a − a2 · (1−1/a)2

b+c

= a + bc
b+c

(1 − a)

1 − 1
b+c

(1 − a)

= ab + bc + ca − abc

a + b + c − 1
.

Thus, the claim is proved.
Finally, it suffices to show A1B1 ‖ A2B2. Of course one can also do this with complex

numbers, but it is easier to just use directed angle chasing† Let BC meet 	 at K and B2C2

meet 	 at L. Evidently

−�B2LP = �LPB2 + �PB2L

= 2�KPB + �PB2C2

= 2�KPB + 2�PBC

= −2�PKB

= �PKB1

as required.

† One can also compute this more robustly using the notation �(	1, 	2) to mean the directed angle �X1OX2,
where O is the intersection of lines 	1 and 	2 and X1 and X2 are any other points on 	1, 	2, respectively.
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Solution 11.21

A

B C

L

T
M

D

E

F

A∗

B∗
C∗

M∗

L∗

T ∗

IH
K1

K2

X1X2

X∗
1

X∗
2

D′

H ′

We know from Lemma 4.40 that the line T I passes through the midpoint of arc B̂C

containing A; call this point L.
Set DEF as the contact triangle of ABC. Let K1 and K2 be the contact points of the

tangents from M (so that X1 lies on MK1 and X2 lies on MK2) and perform an inversion
around the incircle. As usual we denote the inverse with a star. Now A∗, B∗, C∗ are
respectively the midpoints of EF , FD, DE, and as usual �∗ = (A∗B∗C∗) is the nine-point
circle of �DEF .

Clearly M∗ is an arbitrary point on �∗; moreover, it is the midpoint of K1K2. Now let
us determine the location of T ∗. We see that L∗ is some point also on �∗. Moreover,

�IL∗A∗ = −�IAL = 90◦.

But because L, I , T are collinear it follows that L∗, I ∗, T ∗ are collinear, whence

�T L∗A∗ = �I ∗L∗A∗ = 90◦

so T ∗ is the point diametrically opposite A∗ on �∗. That means it is also the midpoint of
DH , where H is the orthocenter of triangle DEF .

It is now time to prove that M∗, X∗
1 , X∗

2 , T ∗ are concyclic. Dilating by a factor of 2 at
D, it is equivalent to prove that D′, K1, K2, and H are concyclic, where D′ is the reflection
of D over M∗. Reflecting around M∗ it is equivalent to prove that D, K2, K1, and H ′ are
concyclic.
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But the circumcircle of D, K2 and K1 is just �∗ itself. Moreover our usual homothety
between the nine-point circle �∗ and the incircle implies that H ′ lies on �∗ as well. So D,
K2, K1, H ′ are concyclic on �∗. Thus M , X1, X2, and T are concyclic, which is what we
wanted to show.

Solution 11.22

Let D be the foot from I to BC. Let X and Y denote the feet from B and C to CI and BI .
By Lemma 1.45, points X and Y lie on line EF . Let M be the midpoint of BC, and ω the
circumcircle of DMXY . By Lemma 9.27, the problem reduces to showing that T lies on
the polar of S to ω.

A

B C

I

MD

E

F

T

X

Y

K

S

N

L

Let K = AM ∩ EF . By Lemma 4.17, points K , I , D are collinear. Let N be the
midpoint of EF , and set L = KS ∩ BC. From

−1 = (A, I ; N, S)
K= (T ,L; M,D)

and

−1 = (T ,D; B,C)
I= (T ,K; Y,X)

we find that T = MD ∩ YX is the pole of KL with respect to ω, completing the proof.





A P P E N D I X D
List of Contests and Abbreviations

APMO Asian-Pacific Mathematical Olympiad. Started in 1989, the APMO is a regional
competition for countries in the Asian Pacific region, as well as the United States and
some other countries. The test consists of a single four-hour day with five problems.

BAMO Bay Area Mathematical Olympiad. The contest is taken by several hundred stu-
dents in the Bay Area annually. The format is identical to that of the APMO.

Canada Canadian Mathematical Olympiad, abbreviated CMO.

CGMO The China Girls Mathematical Olympiad. The contest began in 2002, and consists
of two days, each with four problems to be solved in four hours.

EGMO The European Girls’ Mathematical Olympiad, a new contest inspired by the
CGMO. The first EGMO was held in Cambridge in April 2012. Currently, the contest
format matches the IMO. Countries send teams of up to four female students to
compete at each event.

ELMO The ELMO is a contest held at MOP every year, produced by returning MOPpers
and taken by first-time MOPpers. In particular, all problems are created, compiled,
and selected by students.
The meaning of the acronym changes each year, originally standing for “Experimental
Lincoln Math Olympiad” but soon taking such names as “Exceeding Luck-Based Math
Olympiad”, “Ex-experimental Math Olympiad”, “elog Math Olympiad”, “End Letter
Missing”, “Entirely Legitimate (Junior) Math Olympiad”, “Earn Lots of MOney”,
“Easy Little Math Olympiad”, “Every Little Mistake ⇒ 0”, “Everybody Lives at Most
Once”, and “English Language Master’s Open”.

ELMO Shortlist Like the IMO Shortlist, the ELMO Shortlist consists of problems pro-
posed for the ELMO.

IMO The International Mathematical Olympiad, the supreme high school mathematics
contest. Started in 1959, it is the oldest of the international science olympiads. The
IMO draws in over 100 countries every July, and each country sends at most six
students. On each of two days of the contest, contestants face three problem over 4.5
hours—problems are scored out of 7 points, so the maximum score is 42.
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IMO Shortlist The IMO Shortlist, consisting of problems proposed for the IMO. About
30 problems are selected from all proposals (usually more than 100) to form the IMO
shortlist. Team leaders from each country then vote a few days in advance on which
problems from the shortlist will be selected to appear on the IMO. The IMO Shortlist
of year N is not public until after the IMO of year N + 1, as many countries use
shortlist problems in their national team selection tests.

JMO Short for USAJMO.

NIMO The National Internet Math Olympiad is an online contest written by a small
group of students. The winter olympiad (from which the problems here are taken) is
a one-hour exam for teams of up to four, and consists of eight problems.

OMO The Online Math Open. The Online Math Open is another online contest also
administered completely by some of the top students in the USA. Teams of up to four
students are given about a week to answer several short-answer problems, ranging
from very easy to extremely difficult.

MOP Mathematical Olympiad Summer Program. MOP is the training camp for the USA
team for the IMO; students are selected based on performance at the USA(J)MO. Until
2014, the camp was generally held in Lincoln, Nebraska during June for 3.5 weeks.
Four-hour tests are given regularly at MOP. Several problems from this text are taken
from such exams.

Sharygin The Russian Sharygin Geometry Olympiad is an international contest consisting
solely of geometry problems. All problems in this book are taken from the Sharygin
correspondence round, where students are given an extended period of time to submit
solutions to several problems. Winners of the correspondence round are invited to
Dubna, in Russia, for a final oral competition.

Shortlist See IMO Shortlist.

TST Abbreviation for Team Selection Test. Most countries use a TST as the final step in
the selection of their team for the IMO.

USAJMO The USA Junior Mathematical Olympiad. It is an easier contest given at the
same time as the USAMO for students in grades 10 and below. The format is identical
to the USAMO.

USAMO USA Mathematical Olympiad. The USAMO is given to approximately 250
students each year, and used as part of the selection process for the USA team at the
IMO, as well as for invitations to MOP. The format is identical to the IMO.

USA TST The Team Selection Test for the USA team. Up to 2011, the USA TST consisted
of three days, each matching a day of the IMO. Since 2011 the TST has become more
variable in its format, and is given only to the top eighteen students from the previous
year’s MOP.

USA TSTST The unfortunately-named “Team Selection Test for the Selection Team” is
given at the end of MOP. It selects 18 students (the “selection team”) to take further
tests throughout the upcoming school year. The TSTST consists of two or three days,
each matching the format of a day at the IMO.
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Index

altitude
midpoint of, 62, 143

altitudes, xiv
angle bisector theorem, 44
anticenter, see Euler point
Apollonian circle, 177
area

in barycentric coordinates, 119
areal coordinates, see barycentric coordinates
areas, 77
argument, 95
Aubert line, see Steiner line

barycentric coordinates, 119
area formula, 119
cevian, 122
circle formula, 127
circumcircle of a triangle, 128
collinearity, 123
concurrence, 125
distance, 126
homogenized, 121
isogonal conjugates, 122
isotomic conjugates, 122
perpendicularity, 127, 134
power of a point, 134
radical axis, 134
triangle centers, 122
unhomogenized, 121

Brianchon’s theorem, 192
Brocard’s theorem, 179
butterfly theorem, 185

Cartesian coordinates, 75
centroid, xiv, 48

in barycentrics, 122
in complex numbers, 102
lies on Euler line, 51

Ceva’s theorem, 44, 120
directed form, 48
trigonometric form, 45

via barycentric coordinates, 120
cevian, 44

in barycentrics, 122
cevian nest, 57
cevians

and harmonic bundles, 174
circle

in barycentrics, 127
circumcenter, xiv

in barycentrics, 122
in complex numbers, 102, 107
lies on Euler line, 51
under inversion, 153

circumcircle, xiv
in barycentrics, 128

circumradius, xiv, 36, 77
cline, 149
clines

under inversion, 152
coaxial circles, 30
collinearity, see Menelaus’s theorem

in barycentrics, 123
in complex numbers, 100
in directed angles, 12
under inversion, 152

complete quadrilateral, 195
complex conjugate, 96, 99
complex number

reflection, 98
complex numbers, 95

circumcenter, 107
collinearity, 100
concyclic points, 103
cross ratio, 103
foot of an altitude, 99, 101
incenter, 106
intersection of two lines, 104
perpendicularity, 100
rotation, 97
shoelace formula, 100
similar triangles, 104
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complex numbers (cont.)
translation, 97
triangle centers, 102

complex plane, 95
concurrence

in barycentrics, 125
of cevians, see Ceva’s theorem

concyclic points, 6
in complex numbers, 103
in directed angles, 12
under inversion, 152

conic, 183
conjugate, see complex conjugate
contact triangle, 32
Conway identities, 133
Conway’s formula, 133
Conway’s notation, 132
Cramer’s rule, 217
cross ratio, 170

in complex numbers, 103
of concyclic points, 172
of four collinear points, 170
of four concurrent lines, 171

curvilinear incircle, 67
cyclic quadrilateral, 6
cyclic sum notation, xv

degrees of freedom, 79
Desargues’ theorem, 190
determinant, 215
dilation, 49
directed angles, 11

collinearity, 12
concyclic points, 12
perpendicularity, 12
under inversion, 150

directed lengths, 46
directly similar, 23
displacement vector, 126, 133
distances

in barycentrics, 126
under inversion, 160

dot product, 219
duality, 179

Euclidean points, 170
Euler line, 51

via complex numbers, 102
Euler point, 113
Euler’s theorem, 36
excenter, 9, 32, 60

in barycentrics, 122
excircle, 32

tangents to, 33
exradius, 33

length of, 33
extended law of sines, 43, 79
external angle bisector, 32

Feuerbach point, 108
foot of an altitude

in complex numbers, 99, 101

Gauss line, 198
Gauss-Bodenmiller theorem, 199
generalized circle, see cline
Gergonne point, 56

harmonic, see harmonic bundle
harmonic bundle, 173

under inversion, 174
harmonic conjugate, 173
harmonic quadrilateral, 66, 173
Heron’s formula, 77
homogeneous coordinates, 137
homogenized barycentric coordinates, 122
homothety, 49

incenter, xiv, 31, 63
in barycentrics, 122
in complex numbers, 106
under inversion, 153

incircle, xiv, 63
polars on, 190
tangent to nine-point circle, 108
tangents to, 32

inradius, xiv, 36, 77
inscribed angle theorem, 4
intersection of two lines

in complex numbers, 104
inversion, 149

around a point, 151
inversion distance formula, 160
isogonal, 64
isogonal conjugate, 64
isogonal conjugates

in barycentrics, 122
isotomic conjugate, 64
isotomic conjugates

in barycentrics, 122

La Hire’s theorem, 179
law of cosines, 79
law of sines, 43
line at infinity, 170

magnitude, 95
matrix, 215
medial triangle, xiv, 48
medians, xiv
Menelaus’s theorem, 46
minors, 215
Miquel point, 13, 198

of a cyclic quadrilateral, 201
Miquel’s theorem, 197
mixtilinear incircle, 68, 144, 181
Monge’s theorem, 56
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Nagel point, 143
Napoleon’s theorem, 116
negative homothety, 49
nine-point center, 51

in complex numbers, 103
nine-point circle, 50

in complex numbers, 103
tangent to incircle, 108
under inversion, 153

oppositely oriented, 23
oppositely similar, 23
orthic triangle, xiv, 7
orthocenter, xiv, 7, 60

in barycentrics, 122
in complex numbers, 102
lies on Euler line, 51
under inversion, 153

orthogonal circles, 156
under inversion, 156
via polars, 181

Pappus chain, 157
Pascal’s theorem, 181

via barycentric coordinates, 135
pencil

of coaxial circles, 30
of lines, 171
of parallel lines, 170

perpendicularity
in barycentrics, 127, 134
in complex numbers, 100
in directed angles, 12

perspective from a line, 190
perspective from a point, 190
perspectivity, 172
phantom point, 15
Pitot theorem, 39
point at infinity, 149, 170
point-line distance formula, 76
points at infinity, 124
polar, 178
polar form, 95
pole, 179
power of a point, 25

in barycentrics, 134
product-to-sum, 80

projective transformations, 183
Ptolemy’s theorem, 81

strong form, 83
pure imaginary, 99

radical axis, 26
in barycentrics, 134

radical center, 28
real part, 95
real projective plane, 170
reference triangle, 119
reverse reconstruction, see phantom point
rotation

in complex numbers, 97

scale factor, 49
Schiffler point, 117
segment, 66
self-polar, 179
semiperimeter, xv, 77
shoelace Formula

in complex numbers, 100
shoelace formula, 75
shoemaker’s knife, 157
signed areas, 76, 119
similar triangles, 23

in complex numbers, 104
similarly oriented, 23
Simson line, 20, 59

in complex numbers, 106
spiral similarity, 98, 196
Steiner line, 199
Stewart’s theorem, 83
symmedian, 64
symmedian point, 64

in barycentrics, 122

tangents, 15
in directed angles, 15
to excircles, 33
to the incircle, 32

translation
in complex numbers, 97

unit circle, 100

zero vector, 218
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