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Preface   
Brain computer interface, popularly known as BCI, is an emerging field of 
research, finding its use in many societal and medical applications. BCI 
comprises of four distinct steps: (1) neuro-imaging for acquisition of the 
digital data from the brain, (2) processing of the neuro-image data for 
isolating various characteristic features of the brain, (3) classification and 
mapping of the features to understand the intended motif and actions, and 
(4) interfacing the action to the device or computer to perform the intended 
actions. There is more than one method to perform each of these steps. Also, 
there is directed research to innovate and optimize these methods to make these 
steps efficient and autonomous in achieving BCI. 

In this book, we choose electroencephalography (EEG) as the neuro-imaging 
technique for performing the data acquisition for BCI. In the rest of the steps the 
algorithms, computing techniques, visualization, and interpretation of features 
extracted from EEG were discussed. Therefore, this is the name of the book Brain 
Computer Interface: EEG Signal Processing. EEG has many spatio-temporal 
variations and has different ways to acquire an EEG signal. Matching computing 
techniques and interpretation methods are being researched upon so as to make use 
of these spatio-temporal variations. The features extracted from EEG are exploited 
in actuation of devices and computers so as to realize the BCI. Another aspect of 
neuro-imaging signature of the brain is observed to be fairly similar when a subject 
performs a similar task but differs in the level for different activities. 

We believe that EEG signals, if processed using the right methodology, will 
help in determining the cognitive behavior of a subject. One aspect of the 
cognitive behavior is intelligence. As mentioned earlier, the EEG signals are the 
signature of the brain activity of different regions of the subject. 

This book gives a basic introduction to various neuro-imaging techniques, 
with a special emphasis to EEG and its advantages. Further, the basic 
classification criteria for different components present in EEG are discussed. It 
gives varying perspectives as how to understand the scope of processing the EEG 
signal and its association with popular applications. 

The signal processing methods that are useful in processing and identifying 
EEG artifacts to detect the blinks, saccadic movements, and fixes in the EEG 
data are discussed. Classification of EEG signals for detection of target or non- 
target objects was determined based on the presence of P300 signal while 
acquiring the EEG while the subject is exposed to a corresponding scenario or 
probe. The saccadic movement fixes and the blinks determine the focus and way 
in which the subject scan through the scene or the scenario placed in his/her 
view. 

In a recent development, EEG has proven to bring out new insights related to 
the activity of the brain in a non-invasive manner. It is used in different 
applications to measure the intended effect of any activity that the subject 
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performs or any stimuli that is given to the subject. With the help of artificial 
intelligence, analysis of EEG has reached a new level as it allows us to perform 
intractable operations that were otherwise not possible using classical 
techniques. In the area of neuro-marketing, it has given a deeper insight so as 
to how consumers react to certain products. In the medical field, prior prediction 
of seizures in epileptic patients is progressing rapidly. In military applications, 
the EEG is used to measure the responsiveness of the candidate under 
examinations. The most popular area of application of EEG is brain controlled 
interface (BCI), where devices are being controlled with the help of the brain 
signals. 

In this book, we have discussed selected signal processing methods to extract 
the blink, saccade, and fix artifacts from the EEG signal obtained from different 
subjects. 

Further, this book discusses and proposes a design to build a low-cost yet 
robust EEG acquisition system that has all the elements from acquisition of the 
EEG to its processing and visualization. The students will benefit immensely to 
build and experiment with such a system ab-initio. Some of the interesting 
applications derived by processing the EEG and electrooculography (EOG) 
signal were discussed to make the reading more interesting. 

Processing and analyzing the P300 signal using odd-ball experiments makes 
this book more interesting. The basis of EEG being the key elements of BCI 
(brain computer interface) is discussed. Further, how to detect and classify 
abnormal EEG signals such as epileptic seizure is discussed for students perusing 
research in the field of IoMT (Internet of medical things). 

For a quick benefit to the students and research community, we append some 
of the MATLAB® codes illustrating how to process, analyze, and visualize the 
EEG signal and the artifacts present in EEG. A quick run of these MATLAB® 
codes will help the reader to consolidate some of the key concepts explained in 
this book. 

Narayan Panigrahi and Saraju P. Mohanty 

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. 
The MathWorks does not warrant the accuracy of the text or exercises in this 
book. This book’s use or discussion of MATLAB® software or related products 
does not constitute endorsement or sponsorship by The MathWorks of a 
particular pedagogical approach or particular use of the MATLAB® software.  
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1 Introduction    

OVERVIEW 

Electroencephalography, or EEG, is one of the best and oldest non-invasive 
neuro-scanning methods. The EEG is also the most preferred one of the foremost 
choices for doctors and surgeons for diagnosis of neuro- or brain-related ail-
ments. With the advent of modern computing algorithms, the traditional EEG is 
under metamorphosis. Many novel systems are being devised using EEG and 
computing methods innovating different systems. Some of the prominent ap-
plications of EEG are brain computer interface (BCI), neuro-marketing, gaming, 
and pre-detection and diagnosis of seizures are widely used. This chapter in-
troduces the EEG to the first-time reader of this book with a general definition of 
EEG. It analyzes the systemic and functional perspective of a human brain. 
Further, it gives a survey of prominent neuro-scanning systems comparing and 
contrasting these systems with EEG. The normal characteristic of the EEG signal 
acquired from the human brain is discussed and analyzed. Based on the signal 
characteristic, the physical interpretation of the state of the subject is classified. 
To motivate the first-time reader of this book, some popular medical and com-
mercial applications are also discussed in this chapter. Some of the basic 
questions regarding EEG are answered in this introductory chapter, including 
“What is an EEG?” and “Why is an EEG performed?” 

1.1 THE HUMAN BRAIN 

Since this book deals with characterization of the human brain through the EEG 
signal acquired from the brain for the purpose of BCI (brain computer interface), 
therefore, it is pertinent to understand the anatomy, structure, and functioning of 
the human brain. 

The brain is the vital organ that controls all functions of the body, it interprets 
information from the outside world, and embodies the essence of the mind and 
soul. Intelligence, creativity, emotion, and memory are a few of the many 
functions governed by the brain. Protected within the skull, the brain is com-
posed of the cerebrum, cerebellum, and brain stem. 

The brain receives information through our five senses: sight, smell, touch, 
taste, and hearing – often simultaneously. It collates and stores this information 
in our memory the messages in a way that has a lasting meaning for us. The brain 
controls our thoughts, memory, and speech; movement of the arms and legs; and 
the function of many organs within our body. It performs some directed or 
voluntary functions and some involuntary functions of the body. 
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The brain consists of trillions (approx ~218 for a healthy adult) of cells, half 
of which are neurons and the other half of which help and facilitate conducting 
the signal among neurons and the rest are controlling the activity of neurons. The 
neurons are densely interconnected via synapses, which act as gateways of in-
hibitory or excitatory activities of the brain. 

1.2 ANATOMY OF HUMAN BRAIN 

The human brain is one of the most complex and specialized parts of the human 
body. It has many parts and each of these parts is associated with different 
functions performed by human. Therefore, to characterize the brain and analyze 
its structural, functional, and control behavior, it is necessary to study its 
anatomy. An anatomically human brain is organized into four parts: (1) fore-
brain, (2) midbrain, (3) hindbrain, and  (4) the skull, which is also known as 
the cranium or the brain box. 

Systematically the brain can be categorized into three subparts. Each subpart 
has different sub-subparts and performs specific functions, as depicted in 
Figure 1.1. Further, the lateral view (Figure 1.2(a)) and the systemic view 
(Figure 1.2(b)) give an overview of the anatomy of the human brain. 

The central nervous system (CNS) is composed of the brain and spinal cord. 
The peripheral nervous system (PNS) is composed of spinal nerves that branch 
from the spinal cord and cranial nerves that branch from the brain. The three 
main parts of the central nervous system are the (1) cerebrum, (2) cerebellum, 
and (3) brain stem.   

1. Cerebrum is the largest part of the brain and is composed of right and 
left hemispheres. It performs all cognitive functions like interpreting 
touch, vision and hearing, as well as speech, reasoning, emotions, 
learning, and fine control of movement. Also it retains the experiences 
in the form of memory. 

Human Brain

Middle Brain Hind BrainFore Brain

Medulla
Oblongata

Cerebrum !alamus Hypo-
!alamus

Cerebellum Pons
Varali

FIGURE 1.1 Hierarchical view of the functional parts and sub-parts of the brain.    
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2. Cerebellum is located under the cerebrum. Its function is to coordinate 
muscle movements, maintain posture, and balance (Apps & Garwicz 2005).  

3. Brain stem acts as a relay center as well as the manager of the brain. It 
connects the cerebrum and cerebellum to the spinal cord. It performs 
many automatic functions such as breathing, heart rate, body tem-
perature, wake and sleep cycles, digestion, sneezing, coughing, vo-
miting, and swallowing. 

Further, the cerebrum is divided into two halves: the left cerebrum and right 
cerebrum are often loosely referred as the right brain and left brain or the right 
and left hemispheres (Figure 1.2(b)). They are joined by a bundle of fibers called 
the corpus callosum that transmits messages from one side to the other. Each 
hemisphere controls the opposite side of the body. If a stroke occurs on the right 
side of the brain, the left arm or leg may be weak or will be paralyzed. 

Not all functions of the hemispheres are shared. In general, the left hemi-
sphere controls speech, comprehension, arithmetic, and writing. The right 
hemisphere controls creativity, spatial ability, artistic, and musical skills. 
Generally, the left hemisphere is dominant in hand use and the right hemisphere 
controls use language in about 92% of people. 

1.3 DIFFERENT BRAIN LOBES AND THEIR FUNCTIONS 

Further the brain is subdivided into various clusters known as lobes housing 
various glands and ventricles. The cerebral hemispheres have distinct fissures, 
which divide the brain into lobes. Each hemisphere has four lobes: frontal, tem-
poral, parietal, and occipital (Figure 1.2(a)). Each lobe may be further divided, into 

FIGURE 1.2 (a) The cerebrum is divided into four lobes: frontal, parietal, occipital, and 
temporal (b) The cortex contains neurons (grey matter), which are interconnected to other 
brain areas by axons (white matter). The cortex has a folded appearance. A fold is called a 
gyrus and the valley between is a sulcus.    
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areas that serve very specific functions. It’s important to understand that each lobe 
of the brain does not function alone. There are very complex relationships between 
the lobes of the brain and between the right and left hemispheres.   

a. Frontal Lobe  
• Personality, behavior, emotions  
• Judgment, planning, problem solving  
• Speech: speaking and writing (Broca’s area)  
• Body movement (motor strip)  
• Intelligence, concentration, self awareness      

b. Parietal Lobe  
• Interprets language, words  
• Sense of touch, pain, temperature (sensory strip)  
• Interprets signals from vision, hearing, motor, sensory, and memory  
• Spatial and visual perception      

c. Occipital Lobe  
• Interprets vision (color, light, movement)      

d. Temporal Lobe  
• Understanding language (Wernicke’s area)  
• Memory  
• Hearing  
• Sequencing and organization 

Therefore, while designing an EEG acquisition system, it is important to pro-
vision a proportionate number of electrodes to probe each of the functional lobes 
of the brain and designate the signals acquired. The corresponding signals can be 
processed to diagnose the ailments and functioning of that part of the brain. Also, 
it helps in segregating different signal characteristics for different commands 
intended from the brain. Therefore, a study of the EEG signals as per different 
brain lobes helps in designing an efficient brain-computer interface. 

1.4 FUNCTIONAL OVERVIEW OF BRAIN 

1.4.1 LANGUAGE AND MEMORY FUNCTIONS 

How the special functions and involuntary and voluntary functions are governed 
by the brain are well researched. Language, memory, and speech are some of the 
special functions that are governed by different parts of the brain. If these areas 
malfunction, then they result in aberrations such as aphasia and other speech- 
related difficulties. The left hemisphere of the brain is responsible for language 
and speech and is called the “dominant” hemisphere. The right hemisphere plays 
a large part in interpreting visual information and spatial processing. In about 
one-third of people who are left-handed, speech function may be located on the 
right side of the brain. Left-handed people may need special testing to determine 
if their speech center is on the left or right side prior to any surgery in that area. 
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Aphasia is a disturbance of language affecting speech production, compre-
hension, reading or writing, due to brain injury – most commonly from stroke or 
trauma. The type of aphasia depends on the brain area damaged.   

• Broca’s area: lies in the left frontal lobe (Figure 1.2(a)). If this area is 
damaged, one may have difficulty moving the tongue or facial muscles to 
produce the sounds of speech. The person can still read and understand 
spoken language, but has difficulty in speaking and writing (i.e., forming 
letters and words, doesn’t write within lines) – called Broca’s aphasia.  

• Wernicke’s area: lies in the left temporal lobe (Figure 1.2(a)). Damage 
to this area causes Wernicke’s aphasia. The individual may speak in long 
sentences that have no meaning, add unnecessary words, and even create 
new words. They can make speech sounds; however, they have difficulty 
understanding speech and are therefore unaware of their mistakes.  

• Cortex: is the surface of the cerebrum. It has a folded appearance with 
hills and valleys. The cortex contains 16 billion neurons (the cerebellum 
has 70 billion = 86 billion total) that are arranged in specific layers. The 
nerve cell bodies color the cortex grey-brown, giving it its name – gray 
matter (Figure 1.2(b)). Beneath the cortex are long nerve fibers (axons) 
that connect brain areas to each other, called white matter. 

The folding of the cortex increases the brain’s surface area, allowing 
more neurons to fit inside the skull and enabling higher functions. Each 
fold is called a gyrus, and each groove between the folds is called a 
sulcus (Figure 1.2(b)). There are names for the folds and grooves that 
help define specific brain regions. 

1.4.2 DEEP STRUCTURES IN THE BRAIN AND THEIR FUNCTIONS 

Pathways called white matter tracts connect areas of the cortex to each other. 
Messages can travel from one gyrus to another, from one lobe to another, from one 
side of the brain to the other, and to structures deep in the brain (Figure 1.2(b)).   

• Thalamus: Ref Figure 1.3(a), serves as a relay station for almost all 
information that comes and goes to the cortex. It plays a role in pain 
sensation, attention, alertness, and memory.  

• Pituitary gland: Ref Figure 1.3(a), lies in a small pocket of bone at the 
skull base called the sella turcica. The pituitary gland is connected to the 
hypothalamus of the brain by the pituitary stalk. Known as the “master 
gland,” it controls other endocrine glands in the body. It secretes hor-
mones that control sexual development, promote bone and muscle 
growth, and respond to stress.  

• Hypothalamus: Ref Figure 1.3(a), is located in the floor of the third 
ventricle and is the master control of the autonomic system. It plays a 
role in controlling behaviors such as hunger, thirst, sleep, and sexual 
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response. It also regulates body temperature, blood pressure, emotions, 
and secretion of hormones.  

• Pineal gland: is located behind the third ventricle. It helps regulate the 
body’s internal clock and circadian rhythms by secreting melatonin. It 
has some role in sexual development.  

• Basal ganglia: includes the caudate, putamen, and globus pallidus. 
These nuclei work with the cerebellum to coordinate fine motions, such 
as fingertip movements.  

• Limbic system: is the center of our emotions, learning, and memory. 
Included in this system are the cingulate gyri, hypothalamus, amygdala 
(emotional reactions), and hippocampus (memory). 

1.4.3 MEMORY 

Memory is a complex process that includes three phases viz. encoding (deciding 
what information is important), storing, and recalling. Different areas of the brain 
are involved in different types of memory functions. Your brain has to pay at-
tention and rehearse in order to port and move an event from short-term memory 
to long-term memory, which is called encoding.  

• Short-term memory, also called working memory, occurs in the pre-
frontal cortex. It stores information for about one minute and its ca-
pacity is limited to about seven items. For example, it enables you to 
dial a phone number someone just told you. It also intervenes during 

FIGURE 1.3 (a) Coronal cross-section showing the basal ganglia. (b) CSF is produced 
inside the ventricles deep within the brain. CSF fluid circulates inside the brain and spinal 
cord and then outside to the subarachnoid space.    
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reading, to memorize the sentence you have just read, so that the next 
one makes sense.  

• Long-term memory is processed in the hippocampus of the temporal 
lobe and is activated when you want to memorize something for a 
longer time. This memory has unlimited content and duration capacity. 
It contains personal memories as well as facts and figures.  

• Skill memory is processed in the cerebellum, which relays information 
to the basal ganglia. It stores automatic learned memories like tying a 
shoe, playing an instrument, or riding a bike. 

1.4.4 VENTRICLES AND CEREBROSPINAL FLUID 

The brain has hollow fluid-filled cavities called ventricles (Figure 1.3(b)). Inside 
the ventricles is a ribbon-like structure called the choroid plexus that makes clear 
colorless cerebrospinal fluid (CSF). CSF flows within and around the brain and 
spinal cord to help cushion it from injury. This circulating fluid is constantly 
being absorbed and replenished. 

There are two ventricles deep within the cerebral hemispheres called the 
lateral ventricles. They both connect with the third ventricle through a separate 
opening called the foramen of Monro. The third ventricle connects with the 
fourth ventricle through a long, narrow tube called the aqueduct of Sylvius. From 
the fourth ventricle, CSF flows into the subarachnoid space where it bathes and 
cushions the brain. CSF is recycled (or absorbed) by special structures in the 
superior sagittal sinus called arachnoid villi. 

A balance is maintained between the amount of CSF that is absorbed and the 
amount that is produced. A disruption or blockage in the system can cause a 
buildup of CSF, which can cause enlargement of the ventricles (hydrocephalus) 
or cause a collection of fluid in the spinal cord (syringomyelia). 

1.5 BRAIN CELLS AND THEIR COMMUNICATION MECHANISM 

The brain is made up of two types of cells: nerve cells (neurons) and glia cells. 
These cells are the basic mechanism of communication within the brain. 
Together with synapse they form a network that is known as a neural network. A 
neural network has been modeled mathematically and implemented as com-
puting algorithms in many different ways and form a major research area in 
computing science. 

1.5.1 NERVE CELLS 

There are many sizes and shapes of neurons, but all consist of a cell body, 
dendrites, and an axon. The neuron conveys information through electrical and 
chemical signals. Try to picture electrical wiring in your home. An electrical 
circuit is made up of numerous wires connected in such a way that when a light 
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switch is turned on, a lightbulb will beam. A neuron that is excited will transmit 
its energy to neurons within its vicinity. 

Neurons transmit their energy, or “talk,” to each other across a tiny gap called 
a synapse (Figure 1.4). A neuron has many arms called dendrites, which act like 
antennae picking up messages from other nerve cells. These messages are passed 
to the cell body, which determines if the message should be passed along. 
Important messages are passed to the end of the axon where sacs containing 
neurotransmitters open into the synapse. The neurotransmitter molecules cross 
the synapse and fit into special receptors on the receiving nerve cell, which 
stimulate that cell to pass on the message.   

• Glia cells: Glia (Greek word meaning “glue”) are the cells of the brain 
that provide neurons with nourishment, protection, and structural sup-
port. There are about 10 to 50 times more glia than nerve cells and are 
the most common type of cells involved in brain tumors. 

FIGURE 1.4 Nerve cells consist of a cell body, dendrites, and axon. Neurons com-
municate with each other by exchanging neurotransmitters across a tiny gap called a 
synapse.    
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• Astroglia or astrocytes are the caretakers – they regulate the blood 
brain barrier, allowing nutrients and molecules to interact with 
neurons. They control homeostasis, neuronal defense and repair, scar 
formation, and also affect electrical impulses.  

• Oligodendroglia cells create a fatty substance called myelin that 
insulates axons – allowing electrical messages to travel faster.  

• Ependymal cells line the ventricles and secrete cerebrospinal 
fluid (CSF). 

Microglia are the brain’s immune cells, protecting it from invaders and 
cleaning up debris. They also prune synapses. 

1.6 NEUROIMAGING TECHNIQUES 

Brain imaging techniques or neuroimaging techniques allow doctors and re-
searchers to view activity or problems within the human brain, without invasive 
neurosurgery. There are a number of accepted, safe imaging techniques in use 
today in research facilities and hospitals throughout the world. Prominent brain 
imaging techniques that are available to cognitive neuroscientists, including 
positron emission tomography (PET), near infrared spectroscopy (NIRS), mag-
netoencephalogram (MEG), electroencephalography (EEG), and functional 
magnetic resonance imaging (fMRI). We discuss most of the available neuroi-
maging techniques in this section but focus on EEG and fMRI because they are 
the most widely used techniques. 

1.6.1 ELECTROENCEPHALOGRAPHY (EEG) 

First discovered about a century ago, an EEG measures electrical activities of the 
brain from electrodes placed on the scalp. Usually, an EEG is collected from a 
number of electrodes positioned on different locations on the scalp. Most EEG 
systems used in cognitive neuroscience research today employ 64 to 256 elec-
trodes. A scalp EEG represents the aggregates of post-synaptic currents of 
millions of neurons. The recorded EEG signals usually reflect two types of brain 
activities: spontaneous and event-related activities. A spontaneous EEG reflects 
neuronal responses that occur unprovoked, i.e., in the absence of any identifiable 
stimulus, with or without behavioral manifestations. A spontaneous EEG has 
long been used in clinical settings to evaluate seizure disorders, and now has 
been used often in cognitive neuroscience research. 

1.6.2 FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

fMRI is one of the most recently developed forms of neuroimaging techniques. 
Since the early 1990s, fMRI has become the dominant method in cognitive 
neuroscience because of its low invasiveness, lack of radiation exposure, and 
relatively wide availability. In the brain, neural activities often lead to 
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metabolic activities such as increased blood flow and oxygen supply to the 
local vasculature. Several variants of fMRI are used to detect changes of 
metabolic activities following neural activities, including contrast fMRI, blood- 
oxygen-level dependent (BOLD) fMRI, and perfusion fMRI. Contrast fMRI 
requires injection of contrast agents, such as iron oxide coated with sugar or 
starch. The signals associated with contrast agents are proportional to the 
cerebral blood volume (CBV). Although this method can provide relatively 
strong signals, researchers are reluctant to use this semi-invasive method with 
healthy volunteers. Perfusion fMRI uses “arterial spin labeling” (ASL) to 
magnetically label hydrogen nuclei in the arterial blood and then images their 
distribution in the brain. This method is sensitive to cerebral blood flow (CBF), 
which is considered a good correlate of neuronal activity. This method does not 
require any contrast agents. Compared to the BOLD responses, the signal in 
perfusion fMRI is more stable and the noise is much whiter. However, the 
relatively weak signal and the length of image acquisition time have limited the 
use of perfusion fMRI in cognitive neuroscience. 

Currently, the most widely used fMRI method is BOLD imaging, which 
detects the difference in magnetic susceptibility between oxygenated he-
moglobin and deoxygenated hemoglobin. Hemoglobin is diamagnetic when 
oxygenated but paramagnetic when deoxygenated. The magnetic property of 
blood therefore depends on its oxygenation level. Although neuronal activities 
consume some oxygen, the increase in blood flow following neuronal activ-
ities supplies more oxygen than the neuronal consumption, resulting in an 
increase in oxygenated hemoglobin and therefore increased BOLD response. 
Although BOLD fMRI is an indirect measure of neuronal activities, there is 
strong empirical evidence that the BOLD signals are highly correlated with 
neuronal activities. Because the BOLD signals are usually stronger and require 
less time to acquire than perfusion signals, BOLD fMRI is more popular than 
perfusion fMRI. 

Other popular neuroimaging techniques practiced are as follows. 

1.6.3 COMPUTED TOMOGRAPHY (CT) 

Computed tomography (CT) scanning builds up a picture of the brain based on 
the differential absorption of X-rays. During a CT scan the subject lies on a table 
that slides in and out of a hollow, cylindrical apparatus. An X-ray source rides on 
a ring around the inside of the tube, with its beam aimed at the subject’s head. 
After passing through the head, the beam is sampled by one of the many de-
tectors that line the machine’s circumference. Images made using X-rays depend 
on the absorption of the beam by the tissue it passes through. Bone and hard 
tissue absorb X-rays well, air and water absorb very little, and soft tissue is 
somewhere in between. Thus, CT scans reveal the gross features of the brain but 
do not resolve its structure well. 
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1.6.4 POSITRON EMISSION TOMOGRAPHY (PET) 

Positron emission tomography (PET) uses trace amounts of short-lived radio-
active material to map functional processes in the brain. When the material 
undergoes radioactive decay, a positron is emitted, which can be picked up by 
the detector. Areas of high radioactivity are associated with brain activity. 

1.6.5 MAGNETOENCEPHALOGRAPHY (MEG) 

Magnetoencephalography (MEG) is an imaging technique used to measure the 
magnetic fields produced by electrical activity in the brain via extremely sen-
sitive devices known as SQUIDs. These measurements are commonly used in 
both research and clinical settings. There are many uses for the MEG, including 
assisting surgeons in localizing a pathology, assisting researchers in determining 
the function of various parts of the brain, neurofeedback, and others. 

1.6.6 NEAR INFRARED SPECTROSCOPY (NIRS) 

Near infrared spectroscopy is an optical technique for measuring blood oxyge-
nation in the brain. It works by shining light in the near infrared part of the 
spectrum (700–900 nm) through the skull and detecting how much the remerging 
light is attenuated. How much the light is attenuated depends on blood oxyge-
nation and thus NIRS can provide an indirect measure of brain activity. 

1.7 COMPARISON OF EEG AND FMRI 

EEG and fMRI have their respective strengths and weaknesses. Ideally, ex-
periments employing these methods must be carefully designed and conducted to 
maximize their strengths and minimize their weaknesses. The most salient fea-
ture of EEG is its high temporal resolution at a level of milliseconds. It is also a 
direct measure of neuronal response. Nevertheless, EEG has several limitations. 
First, EEG is only sensitive to post-synaptic potentials generated in the super-
ficial layers of the cortex. It is not sensitive to neuronal responses from structures 
that are deep in the brain, such as the striatum or hippocampus. In addition, 
currents that are tangential to the skull make little contribution to the EEG signal. 
Second, the spatial resolution of EEG is very low. Third, it is almost impossible 
to reconstruct a unique intracranial current source distribution for a given EEG 
signal, although substantial recent progress has been made in this area. 

In contrast, fMRI has high spatial resolution and a comprehensive coverage of 
the whole brain. Conventional BOLD fMRI has a typical spatial resolution of 
3–6 mm; high-resolution fMRI can reach about 1 mm spatial resolution at the 
expense of whole-brain coverage. fMRI is sensitive to the BOLD signals from 
both the cortical surface and deep brain structures. The only limiting factor for 
coverage is susceptibility artifacts in the ventromedial prefrontal cortex and 
temporal poles. This problem has been partly resolved by some newly developed 
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scanning sequences, or by using contrast fMRI and perfusion MRI. The major 
limitation of fMRI is its temporal resolution because the BOLD response is very 
slow. Moreover, the BOLD signal is only an indirect measure of neuronal ac-
tivity, and is therefore susceptible to influence by many physiological activities 
of the body that are unrelated to neuronal processes. 

1.8 ELECTROENCEPHALOGRAPHY (EEG) 

Any synaptic activity generates a subtle electrical impulse referred to as a 
postsynaptic potential. It is difficult to reliably detect the burst of a single neuron 
without direct contact with it. However, whenever thousands of neurons fire in 
sync, they generate an electrical field thatis strong enough to spread through 
tissue, bone, and skull. Eventually, it can be measured on the surface of the head. 
This electrical signal is called as electroencephalography (EEG) signal. 

Electroencephalography (EEG) is the physiological method to record the 
electrical activity generated by the brain. EEG is measured through electrodes 
placed on the surface of the scalp. For faster application, electrodes are mounted 
in elastic caps similar to bathing caps, ensuring that the data can be collected 
from identical scalp positions across all respondents. 

Figure 1.5(a) describes the placement of electrodes on the scalp for EEG 
recording; 10–20 electrode placements are used for the experiments and out of 
these recordings the data corresponding to four channels of EEG data are plotted, 
as depicted in Figure 1.5(b). 

The EEG signal is classified based on its frequency, amplitude, and phase. 
The physical characteristic of the EEG signal is classified as delta (δ), theta (Ө), 
alpha (α), beta (β), or gamma (γ). 

Yet another way of defining an EEG is that the EEG measures voltage 
fluctuations resulting from ionic current within the neurons of the brain. 
Clinically, an EEG refers to the recording of the brain’s spontaneous electrical 
activity over a period of time, as recorded from multiple electrodes placed on the 
scalp (Niedermeyer & da Silva 2004). 

1.9 CLASSIFICATION OF EEG SIGNALS BASED ON 
FREQUENCIES 

The frequency and voltage of an EEG signal generally varies from 1–50 Hz and 
10–100 µV when measured from the skull surface. The EEG signal is classified 
according to range of frequency and voltage. In order of lowest frequency to 
highest, the five brain waves are: delta (δ), theta (Ө), alpha (α), beta (β), and 
gamma (γ) (Figure 1.6). 

1.9.1 DELTA WAVES 

Delta waves are associated with deep levels of relaxation and restorative sleeps; 
to remember this, simply think of “delta” for “deep.” They are the slowest 
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recorded brain waves in humans and higher levels are more commonly found in 
young children. During the aging process, lower delta waves are produced. 
Research tells us that delta waves are attributed to many of our unconscious 
bodily functions such as regulating the cardiovascular and the digestive systems. 
Healthy levels of delta waves can contribute to a more restful sleep, allowing us 
to wake up refreshed; however, irregular delta wave activity has been linked to 
learning difficulties or issues maintaining awareness.   

• Frequency range: 0 Hz to 4 Hz  
• High levels: Brain injuries, learning problems, inability to think  
• Low levels: Inability to rejuvenate body, inability to revitalize the 

brain, poor sleep or sleep disorder  
• Optimal range: Healthy immune system, restorative REM sleep 

1.9.2 THETA WAVES 

Theta waves are known as the “suggestible waves,” because of their prevalence 
when one is in a trance or hypnotic state. In this state, a brain’s theta waves are 
optimal and the patient is more susceptible to hypnosis and associated therapy. 
The reasoning for this is that theta waves are commonly found when you day-
dream or are asleep, thus exhibiting a more relaxed, open mind state. Theta 
waves are also linked to us experiencing and feeling deep and raw emotions; 
therefore, too much theta activity may make people prone to bouts of depression. 
Theta does however have its benefits of helping improve our creativity, 

FIGURE 1.6 Classification of EEG waves.    
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wholeness, and intuition, making us feel more natural. It is also involved in 
restorative sleep and as long as theta isn’t produced in excess during our waking 
hours, it is a very helpful brainwave range.   

• Frequency range: 4 Hz to 8 Hz 
• High levels: ADHD or hyperactivity, depressive states, impulsive ac-

tivity or inattentiveness  
• Low levels: Anxiety symptoms, poor emotional awareness, higher 

stress levels  
• Optimal range: Maximum creativity, deep emotional connection with 

oneself and others, greater intuition, relaxation 

1.9.3 ALPHA WAVES 

Alpha waves are the “frequency bridge” between our conscious thinking (beta) and 
subconscious (theta) mind. They are known to help calm you down and promote 
feelings of deeper relaxation and content. Beta waves play an active role in net-
work coordination and communication and do not occur until three years of age in 
humans. In a state of stress, a phenomenon called “alpha blocking” can occur, 
which involves excessive beta activity and little alpha activity. In this scenario, the 
beta waves restrict the production of alpha because our body is reacting positively 
to the increased beta activity, usually in a state of heightened cognitive arousal.   

• Frequency range: 8 Hz to 12 Hz  
• High levels: Too much daydreaming, over-relaxed state or an inability 

to focus  
• Low levels: OCD, anxiety symptoms, higher stress levels  
• Optimal range: Ideal relaxation 

1.9.4 BETA WAVES 

Beta waves are the high-frequency waves most commonly found in the awake 
state of humans. They are channeled during conscious states such as cognitive 
reasoning, calculation, reading, speaking, or thinking. Higher levels of beta 
waves are found to channel a stimulating, arousing effect, which explains how 
the brain will limit the amount of alpha waves if heightened beta activity occurs. 
However, if you experience too much beta activity, this may lead to stress and 
anxiety. This leads you to feel overwhelmed and stressed during strenuous 
periods of work or school. Beta waves increased by drinking common stimulants 
such as caffeine or L-Theanine, or by consuming nootropics or cognitive en-
hancers such as lucid. Think of beta as the stressed state of mind.   

• Frequency range: 12 Hz to 40 Hz  
• High levels: Anxiety, inability to feel relaxed, high adrenaline levels, 

stress, cognitive actions 
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• Low levels: Depression, poor cognitive ability, lack of attention  
• Optimal range: Consistent focus, strong memory recall, high problem- 

solving ability 

1.9.5 GAMMA WAVES 

Gamma waves are a more recent discovery in the field of neuroscience; thus, the 
understanding of how they function is constantly evolving. To date, it’s known 
that gamma waves are involved in processing more complex tasks in addition to 
healthy cognitive function. Gamma waves are found to be important for learning, 
memory, and processing and they are used as a binding tool for our senses to 
process new information. In people with mental disabilities, much lower levels 
of gamma activity are recorded. More recently, people have found a strong link 
between meditation and gamma waves, a link attributed to the heightened state 
of being or “completeness” experienced when in a meditative state.   

• Frequency range: Above 40 Hz  
• High levels: Anxiety, stress  
• Low levels: Depression, learning issues, diagnosis of ADHD (brain 

scientists have found that deficiencies in specific neurotransmitters 
underlie many common disorders, including anxiety, mood disorders, 
anger-control problems, and obsessive-compulsive disorder). ADHD 
was the first disorder found to be the result of a deficiency of a specific 
neurotransmitter.  

• Optimal range: Information processing, cognition, learning, binding of 
senses. 

For ease of reading, the classification of different bands of EEG signals are 
shown in Table 1.1. 

TABLE 1.1 
EEG classification according to frequency      

Sl No. Type Frequency (Hz) State of Mind  

1 Delta 0–4 Healthy immune system, restorative REM sleep 

2 Theta 4–8 Maximum creativity, deep emotional connection with oneself 
and others, greater intuition, relaxation 

3 Alpha 8–12 Ideal relaxation 

4 Beta 12–40 Consistent focus, strong memory recall, high problem-solving 
ability 

5 Gamma Above 40 Information processing, cognition, learning, binding of senses    
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1.10 ELECTROOCULOGRAPHY (EOG) 

Electrooculography (EOG) is used to record eye movements during electro-
nystagmographic testing. It is based on the corneo-retinal potential (difference in 
electrical charge between the cornea and the retina), with the long axis of the eye 
acting as a dipole. This potential is thought to result from the metabolic activity 
of the retina. When the eye rotates in the orbit, the dipole also rotates. 
Silver–silver chloride electrodes placed near the orbit can be used to record this 
electrical difference. To measure eye movement, pairs of electrodes are typically 
placed either above and below the eye or to the left and right of the eye. If the 
eye moves from center position toward one of the two electrodes, this electrode 
“sees” the positive side of the retina and the opposite electrode “sees” the ne-
gative side of the retina. Consequently, a potential difference occurs between the 
electrodes. Assuming that the resting potential is constant, the recorded potential 
is a measure of the eye’s position. 

In other words, a record of the standing voltage between the front and back of 
the eye that is correlated with eyeball movement (as in REM sleep) and obtained 
by electrodes suitably placed on the skin near the eye is called EOG. 
Electrooculography was used by Robert Zemeckis and Jerome Chen, the visual 
effects supervisors in the movie Beowulf, to enhance the performance capture by 
correctly animating the eye movements of the actors. The result was an im-
provement over the technique used for the film The Polar Express. Some of the 
key applications of EOG are as follows:  

• EOG can be used to detect eye movement and related artifacts. Blink, 
saccade, and fix are three major artifacts that can be analyzed 
from EOG.  

• Blink artifacts are considered as noise to the signal; therefore, filtering 
those result in more accurate experimental information to analyze fur-
ther (Kong & Wilson 1998). Blink detection can also be used for 
drowsiness detection, attention analysis, etc.  

• Saccade are voltage deflection when the eye moves randomly from one 
fix to another. 

1.11 APPLICATIONS OF EEG 

The genesis of EEG is attributed to the diagnostic need in medical science for 
better understanding of the dynamics of the human brain. Because of its growing 
utility in different domains, EEG has emerged as a field of collaboration with 
many emerging sciences and technologies. Therefore, it is apt to describe this 
collaborative nature through a mapping of all the associated science, technology, 
system, and associated applications in the form of concept mapping of EEG. 
Figure 1.7 describes an approximate concept mapping of EEG and its emerging 
applications. 
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EEG has given way to many areas of new research and applications besides 
its traditional application in medicine. Some emerging applications are in the 
field of BCI, neuro-marketing, cognitive capacity building, and therapy, etc. 
Some of the key applications of EEG are described. 

1.11.1 MEDICAL APPLICATIONS   

• The EEG is used to evaluate several types of brain disorders. When 
epilepsy is present, seizure activity will appear as rapid spiking waves 
on the EEG.  

• People with lesions on their brain (i.e., brain lesions (lesions on the 
brain) refers to any type of abnormal tissue in or on the brain tissue). 
Major types of brain lesions are traumatic, infectious, malignant, be-
nign, vascular, genetic, immune, plaques, brain cell death or malfunc-
tion, and ionizing radiation, which can result from tumors or strokes, 
and may have unusually slow EEG waves, depending on the size and 
the location of the lesion.  

• The test can also be used to diagnose other disorders that influence brain 
activity, such as Alzheimer’s disease, certain psychoses, and a sleep 
disorder called narcolepsy (Farnsworth 2020). 

1.11.2 COMMERCIAL APPLICATIONS   

• In the field of neuro-marketing, economists use EEG research to detect 
brain processes that drive consumer decisions, brain areas that are ac-
tive when we purchase a product/service, and mental states that the 
respective person is in when exploring physical or virtual stores. 
(Electroencephalogram (EEG) 2020; Sebastian 2014). 

1.12 BRAIN COMPUTER INTERFACE (BCI) 

A brain computer interface (BCI) is a computer-based system that requires brain 
signals, analyzes them, and translates them into commands that are relayed to an 
output device to carry out a desired action. In principle, any brain signal could be 
used to control the BCI, but an EEG signal is used in most of the BCI systems 
because the EEG is an non-invasive signal acquisition method. The EEG signal 
corresponding to any spatial portion of the brain identified by its corresponding 
electrode can be analyzed, leading a direct functional interpretation of the brain 
signal. Also, the cost of EEG acquisition is substantially less in comparison to 
other brain-signal acquisition techniques. Classification of BCI systems based on 
prevailing neuroimaging systems is given in Figure 1.8. Some of the popular 
applications of BCI are as follows: 
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• Analyze EEG signals of paralyzed patients and provide them a degree 
of independence for certain tasks like home-based application control 
(Bastiaansen et al 2018), wheelchair control (Srivastava et al 2015), etc.  

• EEG-based assistive mobile robots (Maksud et al 2017; Chae et al 
2012).  

• Measure a person’s cognitive ability and improvement in cognitive 
functions (Akhanda et al 2014; Mora Sanchez et al 2015). 

1.13 SUMMARY 

This chapter first gives an overview of the anatomy of the human brain, with a 
perspective to look into its various functions. An overview of different neuroi-
maging techniques were discussed with an emphasis on the most popular neuroi-
maging methods: EEG and fMRI. The applications of various neuroimaging 
techniques in research were looked into. The EEG signal can be very useful for BCI 
applications because of its high spatial and temporal resolution, capturing the de-
tails of neuroimaging functions. That is why EEG processing is finding favor 
among different domains such as health care, IOT, virtual reality, and psychological 
study. It can also be used for driver/pilot assistance by performing drowsiness and 
consciousness detection. A classification of various components present in EEG 
signals, their signal and voltage characteristics, along with possible physical in-
terpretation of the state of the brain was discussed. The main constraint with an 
EEG signal is that it is low in signal strength and low on signal frequency as well. A 
lot of pre-processing is required to boost the signal, which may include noise. In 
later chapters, we discuss about various pre-processing and post-processing tech-
niques suitable for bringing out different features from the EEG signal. 

Exercises  

1. What are different functional parts of the human brain?  
2. Give a diagrammatic representation of a nerve cell and list its 

functions. 

EEG

BCI TYPES

Based on
Signal

Based on
Location

Non
invasive

Semi
invasive

Invasive FMRIFNRIMEG

FIGURE 1.8 Different types of brain computer interface BCI.    
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3. Give a brief mapping of different functional lobes present in the brain. 
Give a brief mapping of different functions governed by these lobes.  

4. List different neuroimaging techniques and their research applications.  
5. What is an EEG? What are different characteristic signals present in 

an EEG?  
6. Write a short note on EEG and fMRI and compare and contrast EEG 

and fMRI. 
7. What are the different types of EEG signals? List their signal char-

acteristic and physical manifestations.  
8. What is EOG? How is EOG useful?  
9. Give different configurations of EEG acquisition systems.  

10. List some of medical and diagnostic applications of EEG.  
11. Give a classification of various neuroimaging techniques.  
12. What is a brain computer interface? List five popular applications 

of BCI. 
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2 Fundamentals of EEG 
Signals    

2.1 INTRODUCTION 

The EEG represents the electrical activity of the cerebral cortex originating from 
the sum of excitatory and inhibitory postsynaptic activity in the brain. The EEG 
is regulated by the sub-cortical thalamic nuclei. This electrical signal has direct 
relevance to physical activities controlled by different parts of the brain. Cerebral 
blood flow and brain metabolism are directly related to the degree or magnitude 
of the EEG signal. When patients are unconscious and unresponsive, the EEG is 
a non-invasive indicator of brain function. Recording an unprocessed raw EEG 
involves accumulation of large amounts of EEG records and storage in a com-
puter memory. Different computing techniques have been devised to analyze and 
map these EEG signals to extract meaningful information. Also, various func-
tions of the brain can be correlated to different physical manifestations through 
study and analysis of EEG signals. 

Recently, several signal processing techniques have been devised to better 
analyze different fundamental patterns in the EEG. The purpose of these tech-
niques and signal processing technologies is to simplify and analyze the EEG for 
use in various fields such as diagnosis of dyslexia, neurological disease, seizure, 
and to devise a brain computer interface. Many statistical properties associated 
with the EEG signal can be correlated to different functional and diagnostic 
aspects. 

The EEG is a complex signal that represents the electrical activity of the 
brain. Like other signals, the EEG can also be split into a series of sinusoids. In 
some analyses, the EEG parameters are processed based on power spectral 
analysis. Power spectral analysis considers the amplitude of sinusoids as a 
function of frequency. However, power spectral analysis does not quantify the 
possible relationships between sinusoids. Such relationships between these ele-
ments typically appear in signals generated in nonlinear systems such as the 
brain. Power spectral analysis of the EEG clearly ignores the relationship be-
tween sinusoids. Almost all biological systems and EEGs show considerably 
nonlinear behavior. Because of the nonlinear characteristics of neuronal activity, 
the EEG signal has very complex dynamics. An analytical technique that can 
detect and quantify any aspect of this nonlinear change may better reflect the 
dynamic structure of the EEG. Here, the basic elements and terminology of 
signal processing, followed by Fourier analysis and power spectrum analysis, 
were briefly discussed. 
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2.2 MODELING OF EEG SIGNALS 

One of the earliest physical models of an EEG signal was proposed by Hodgkin 
and Huxley, who eventually were awarded a Nobel Prize. Most of the current 
neural network simulations and computational neuroscience findings are based 
on Hodgkin and Huxley’s physical model. Therefore, it is worthwhile to discuss 
and understand this model. This model was for the squid axon published in 1952 
(Hodgkin & Huxley 1952a, 1952b, 1952c, 1952d; Hodgkin et al 1952). As per 
this theory, a nerve axon may be stimulated and activated by sodium (Na+) and 
potassium (K+) channels produced in the vicinity of the cell membrane that lead 
to the electrical excitation of the nerve axon. The excitation arises from the effect 
of the membrane potential on the movement of ions, and from interactions of the 
membrane potential with the opening and closing of voltage-activated membrane 
channels. The membrane potential increases when the membrane is polarized 
with a net negative charge lining on the inner surface and an equal but opposite 
net positive charge on the outer surface. This potential can be related to the 
amount of electrical charge Q, which is described using Equation 2.1: 

E Q C= / m (2.1)  

where Q is in terms of coulombs/cm2, Cm is the measure of the capacity of the 
membrane in units of farads/cm2, and E is in units of volts. 

In practice, in order to model the action potentials (APs), the amount of charge 
Q+ on the inner surface and Q− on the outer surface of the cell membrane has to be 
mathematically related to the stimulating current Istim flowing into the cell through 
the stimulating electrodes. The electrical potential (often called the electrical force) E 
is then calculated using Equation 2.1. Hodgkin and Huxley’s model is illustrated in 
Figure 2.1. In this figure, Imemb is the result of positive charges flowing out of the 
cell. This current consists of three currents: Na, K, and leak currents. The leak 
current is due to the fact that the inner and outer Na and K ions are not exactly equal. 

Hodgkin and Huxley estimated the activation and inactivation functions for 
the Na and K currents and derived a mathematical model to describe an AP 
similar to that of a giant squid. The model is a neuron model that uses voltage- 
gated channels. The space-clamped version of the Hodgkin–Huxley model can 
be well described using four ordinary differential equations (Hodgkin et al 1952). 
This model describes the change in the membrane potential (E) with respect to 
time (Hodgkin & Huxley 1952d). The overall membrane current is the sum of 
capacity current and ionic current, as described in Equation 2.2: 

I C
E

t
I=

d
d

+memb m i (2.2)  

where Ii is the ionic current and, as indicated in Figure 2.1. It can be considered 
as the sum of three individual components, Na, K, and leak currents, as given by 
Equation 2.3: 
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I I I I= + +i Na K leak (2.3)  

Further, the individual components in Equation 2.3, such as INa, can be related to 
the maximal conductance ḡNa, activation variable aNa, inactivation variable hNa, 
and a driving force (E − ENa) which is modeled in Equation 2.4: 

I g a h E E= ¯ ( )Na Na Na
3

Na Na (2.4)  

Similarly, IK can be related to the maximal conductance ḡK, activation variable 
aNa, inactivation variable aK, and a driving force (E − EK), which is modeled in 
Equation 2.5: 

I g a E E= ¯ ( )K K K K (2.5)  

and Ileak is related to the maximal conductance ḡ1 and a driving force (E − E1), 
which is given by Equation 2.6: 

I g E E= ¯ ( )1 1 1 (2.6)  

The changes in the variables, aNa, aK, and hNa, vary from 0−1 and are modeled as 
per Equations 2.7, 2.8, and 2.9, given below: 

FIGURE 2.1 The Hodgkin–Huxley excitation model for the generation of action po-
tentials.    
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d
= ( )(1 ) ( )t

Na
Na Na Na Na (2.7) 

h

t
E h E h

d

d
= ( )(1 ) ( )t

Na
h Na h Na (2.8) 

a

t
E a E a

d

d
= ( )(1 ) ( )t

K
K K K K (2.9)  

where α(E) and β(E) are respectively forward and backward rate functions and λt 

is a temperature-dependent factor. The forward and backward parameters depend 
on voltage and were empirically estimated by Hodgkin and Huxley through 
Equations 2.10–2.15: 

E
E

( ) =
3.5 + 0.1

1 e ENa (3.5+0.1 )
(2.10) 

E( ) = 4e E
Na

( +60)/18 (2.11) 

E( ) = 0.07e E
h

( +60)/20 (2.12) 

E( ) =
1

1 + e Eh (3+0.1 )
(2.13) 

E
E

e
( ) =

0.5 + 0.01
1 EK (5+0.1 )

(2.14) 

E( ) = 0.125e E
K

( +60)/80 (2.15)  

As stated in the simulator for neural networks and action potentials (SNNAP) 
literature (Hodgkin & Huxley 1952d), the α(E) and β(E) parameters have been 
converted from the original Hodgkin–Huxley version to agree with the present 
physiological practice, where depolarization of the membrane is taken to be 
positive. In addition, the resting potential has been shifted to –60 mV (from the 
original 0 mV). These equations are used in the model described in the SNNAP. 
In Figure 2.2, an AP has been simulated. For this model, the parameters are set to 
Cm = 1.1 µF/cm2, ḡK = 100 ms/cm2, ḡK = 35 ms/cm2, ḡ1 = 0.35 ms/cm2, and ENa 

= 60 mV. 
A simpler model than that due to Hodgkin–Huxley for simulating spiking 

neurons is the Morris–Lecar model (Forrest 2014). This model is a minimal 
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biophysical model, which generally exhibits a single action potential. This model 
considers that the oscillation of a slow calcium wave that depolarizes the 
membrane leads to a bursting state. The Morris–Lecar model was initially de-
veloped to describe the behavior of barnacle muscle cells. 

The plot of the EEG signal is (amplitude of EEG signal vs time) modeled 
using the Hodgkin–Huxley model, which is illustrated in Figure 2.2. 

2.3 THE GENERAL CHARACTERISTICS OF EEG SIGNALS 

Having discussed the modeling of EEG signal, this section discusses the char-
acteristics of an EEG electrical signals (Figure 2.3), including how this analog 
signal is digitized and converted to a digital signal and how the digital EEG 
signal is formed from different known patterns or constituent signals. The 
electroencephalogram (EEG) is a recording of the electrical activity of the brain 
from the scalp. The recorded waveforms reflect the cortical electrical activity. 
The fundamental characteristics of human EEG signals include the following:   

• Signal Intensity: EEG activity is quite small, measured in microvolts 
(1~100 µV).  

• Signal Frequency: the main frequencies of the human EEG waves 
include the following:  
• Delta: has a frequency of 3 Hz or below. It tends to be the highest in 

amplitude and the slowest waves. It is normal as the dominant 

FIGURE 2.2 The voltage vs time plot of the EEG Hodgkin–Huxley oscillatory model.    
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rhythm in infants up to one year and in stages 3 and 4 of sleep. It 
may occur focally with subcortical lesions and in general distribu-
tion with diffuse lesions, metabolic encephalopathy hydrocephalus, 
or deep midline lesions. It is usually most prominent frontally in 
adults (e.g., FIRDA – Frontal Intermittent Rhythmic Delta) and 
posteriorly in children e.g., OIRDA – Occipital Intermittent 
Rhythmic Delta).  

• Theta: has a frequency of 3.5 to 7.5 Hz and is classified as “slow” 
activity. It is perfectly normal in children up to 13 years and in sleep 
but abnormal in awake adults. It can be seen as a manifestation of 
focal subcortical lesions; it can also be seen in generalized dis-
tribution in diffuse disorders such as metabolic encephalopathy or 
some instances of hydrocephalus.  

• Alpha: has a frequency between 7.5 and 13 Hz. It is usually best 
seen in the posterior regions of the head on each side, being higher in 
amplitude on the dominant side. It appears when closing the eyes 
and relaxing, and disappears when opening the eyes or alerted by 
any mechanism (thinking, calculating). It is the major rhythm seen in 
normal relaxed adults. It is present during most life, especially after 
the 13th year.  

• Beta: beta activity is “fast” activity. It has a frequency of 14 and 
greater Hz. It is usually seen on both sides in symmetrical dis-
tribution and is most evident frontally. It is accentuated by sedative- 
hypnotic drugs, especially the benzodiazepines and the barbiturates. 
It may be absent or reduced in areas of cortical damage. It is gen-
erally regarded as a normal rhythm. It is the dominant rhythm in 
patients who are alert or anxious or have their eyes open. 

2.4 ATTRIBUTES USED IN THE CLASSIFICATION  
OF EEG SIGNALS 

Five fundamental attributes of EEG signals that are useful to completely describe 
the characteristics of EEG signal are (1) frequency, (2) voltage, (3) morphology, 
(4) synchrony, and (5) periodicity. One or a combination of the fundamental 
attributes are used to classify the EEG signal into the fundamental EEG waves of 

FIGURE 2.3 Patterns of different types of EEG signals.    
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delta, theta, alpha, beta, and gamma types of activities. The EEG attributes are 
discussed below. 

2.4.1 FREQUENCY 

EEG frequency refers to rhythmic, repetitive activity (in Hz). The frequency of 
EEG activity can have different properties including:  

• Rhythmic: EEG activity consisting of waves of approximately constant 
frequency.  

• Arrhythmic: EEG activity in which no stable rhythms are present. 
• Dysrhythmic: Rhythms and/or patterns of EEG activity that char-

acteristically appear in patient groups or are rarely seen in healthy 
subjects. 

2.4.2 VOLTAGE 

Voltage refers to the average voltage or peak voltage of EEG activity. Values are 
dependent, in part, on the recording technique. Descriptive terms associated with 
EEG voltage include: 

1. Attenuation (synonyms: suppression, depression). Reduction of am-
plitude of EEG activity resulting from decreased voltage. When activity 
is attenuated by stimulation, it is said to have been “blocked” or to show 
“blocking.”  

2. Hypersynchrony. Seen as an increase in voltage and regularity of 
rhythmic activity, or within the alpha, beta, or theta range. The term 
implies an increase in the number of neural elements contributing to the 
rhythm. (Note: Term is used in an interpretative sense but as a de-
scriptor of change in the EEG.)  

3. Paroxysmal. Activity that emerges from background with a rapid 
onset, reaching (usually) quite high voltage and ending with an abrupt 
return to lower voltage activity. Though the term does not directly 
imply abnormality, much abnormal activity is paroxysmal. 

2.4.3 MORPHOLOGY 

Morphology refers to the shape of the waveform. The shape of a wave or an EEG 
pattern is determined by the frequencies that combine to make up the waveform 
and by their phase and voltage relationships. Wave patterns can be described as 
being:  

• Monomorphic. Distinct EEG activity appearing to be composed of one 
dominant activity. 
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• Polymorphic. Distinct EEG activity composed of multiple frequencies 
that combine to form a complex waveform. 

• Sinusoidal. Waves resembling sine waves; which represents mono-
morphic activity usually is sinusoidal.  

• Transient. An isolated wave or pattern that is distinctly different from 
background activity.  
a. Spike: a transient with a pointed peak and a duration from 20 to 

under 70 msec.  
b. Sharp wave: a transient with a pointed peak and duration of 70–200 

msec. 

2.4.4 SYNCHRONY 

Synchrony refers to the simultaneous appearance of rhythmic or morphologically 
distinct patterns over different regions of the head, either on the same side 
(unilateral) or both sides (bilateral). 

2.4.5 PERIODICITY 

Periodicity refers to the distribution of patterns or elements in time (e.g., the 
appearance of a particular EEG activity at more or less regular intervals). The 
activity may be generalized, focal, or lateralized. 

2.5 EEG SIGNALS AND SAMPLING 

An EEG is a series of continuous analog electrical signals in time x(t). The 
process of converting an analog signal to a digital signal is called sampling or 
digitization of the signal. For example, if the time interval between samples is Δt 
and the number of samples in a particular segment in the collected data is M, 
then successive samples of the EEG signal x(t) can be denoted by x(k·Δt), where 
k = 0, 1, 2, …, M−1. These sample values of the EEG signal x(t) in time in-
stances 0·Δt, 1·Δt, 2·Δt, … (M−1)·Δt are called the digitized value of the sample. 
The entire sampled EEG data can be represented by x(k), and x(k) can be divided 
into a series of sequential epochs (same time segments). These epochs may 
overlap each other or be contiguous. 

If the statistical characteristics of the signal do not change with time, the 
signal is called stationary. The stationary signal can be represented by the sum of 
simple mathematical functions (elements) and all information of the signal can 
be stored here, as shown in Equation 2.16: 

x k an n k( ) = ( )n
n

=0
1 (2.16)  

wherek = 0, 1, 2, …, M−1, x(k): signal, φn(k) is the nth element among all N 
elements, and an is the coefficient associated with the nth element. 
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A number of functions can be used as elements. However, the most com-
monly used are sine and cosine waveforms, or sinusoids. The Fourier series is the 
representation of a signal as a sum of sinusoids. 

2.6 SINUSOIDS IN EEGS 

Sinusoids are defined by three basic elements: amplitude, frequency, and phase 
angle. For an EEG, the unit of amplitude is most commonly used in µV. The phase 
angle θ indicates the extent to which the start time of the sinusoids compares to 
time zero. θ represents the duration to which the sinusoids have shifted relative to 
the starting point and is expressed as a fraction of the total period. The unit of the 
phase angle is the °, which is between 0°–360°. Phase angle 360° means that one 
cycle is fully turned. In reality, the phase angle is expressed in radians. Consider a 
sinusoid with amplitude A (µV), frequency f (Hz, 1/s), and phase angle θ (rad). 
Angular velocity or angular frequency ω = 2πf (rad/s). 

Then, the time-dependent sine function is given by Equation 2.17: 

f t A t A f t( ) = sin( + ) = sin(2 + ) (2.17)  

Here, the unit of time is in seconds (s). The parentheses in the sine function are 
all in radians; 360° = 2π rad, 180° = π rad, 90° = π/2 rad, and 0° = 0 rad. 
Figure 2.4 shows a sinusoid with A = 1 µV, f = 1 Hz, θ = 0° (0 rad), and 90° (π/2 rad). 
Also Figure 2.5 and Figure 2.6 shows sinusoids with varying A, f, θ and their 
resulting addition respectively. 

x k k
k

k
k

k

( ) = [1 sin(2 1 · + 0.5 )
+ 1.5 sin(2 2 + 1.5 )
+ 1 sin(2 3 + 1.7 )
+ 2 sin(2 4 )
+ 1.5 sin(2 5 + 0.5 )]

t

t

t

t

t

FIGURE 2.4 Sinusoids with amplitude 1, frequency 1, phase angle 0°, and 90° (π/2 rad); 
f(t) = sin(2π · t): solid line; and sin(2π · t + π/2): dotted line.    
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the above summetation of equation can be expressed through Equation 2.18 

x k An fn k t n( ) = sin(2 + )n
n

=0
=3 (2.18)  

k = 0, 1, 2, 3, …, M−1: represents discrete time of steps 0·Δt, 1·Δt, 2·Δt, …, 
(M−1)·Δt 

n = 0, 1, 2, 3: element 
The frequency of the sinusoid of each element is (fn) = 1, 2, 3, 5 Hz of the 

sinusoid of each element; the amplitude of the sinusoid of each element is (An) = 
1, 0.8, 1.5, 0.5 µV; and the phase angle of the sinusoid of each element is (θn) = 
90° (0.5π rad), 270° (1.5π rad), 315° (1.75π rad), and 90° (0.5π rad). 

A generalization of the signal x(k) is the form of the sum of sinusoid elements 
given by Equation 2.19. 

x k k k

k k

( ) = [1 sin(2 1 + 0.5 ) + 0.8· sin(2 ·2· · + 1.5 )

+ 1.5· sin(2 3 + 1.75 ) + 0.5 sin(2 5 + 0.5 )]

t t

t t (2.19)  

where k = 0, 1, 2, 3, …, M−1. 

FIGURE 2.5 (a) Sinusoid with frequency 1 Hz, Amplitude 1 and phase angle 90°, 
(b) Sinusoid with frequency 2 Hz, Amplitude 0.8 and phase angle 270°, (c) Sinusoid with 
frequency 3 Hz, Amplitude 1.5 and phase angle 315°, (d) Sinusoid with frequency 5 Hz, 
Amplitude 0.5 and phase angle 90°.    
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2.7 FOURIER TRANSFORM AND POWER SPECTRAL ANALYSIS 
OF EEG SIGNALS 

By converting the signal to a Fourier series, each sinusoid element can be stu-
died. This is a common concept in quantitative EEG analysis. EEGs often exhibit 
delta (δ, 1–4 Hz) theta (θ, 5–8 Hz), alpha (α, 8–13 Hz), and gamma (γ, 30–80 Hz) 
bands. In general, the conversion of the signal to the amplitude and frequency of 
the sinusoids of the Fourier series is called the Fourier transform. The Fourier 
transform converts a time series signal x(t), whose amplitude or power is a 
function of time, into a frequency series signal X(f), whose amplitude or power is 
a function of frequency. The Fourier transform of the sampled signal x(k) is 
given by Equation 2.20. The Fourier transform is also a type of integral trans-
form and uses e-ik2πf as a kernel function: 

f M eX( ) = 2 x(k)
k

m
ik f

=0

1
2 (2.20)  

As a result, the Fourier transform X(f) consists of a series of discrete values, each 
corresponding to a particular signal frequency element f. The frequency range of 
X(f) is 0 –fs/2 Hz. fs is the sampling frequency in samples per second. The 
Fourier transform computed in Equation 2.4 has both positive and negative 
frequencies, but only positive frequencies are taken for convenience. The fre-
quency resolution of X(f) is denoted by fs/N Hz, where X(f) is a few Hz apart, 
and N is the total number of samples of signal x(k). For example, if x(k) is data 
for 4 s and fs = 100 samples/s, N becomes 400, the frequency range of X(f) is 
0–50 Hz, and the frequency resolution is 0.25 Hz. Therefore, the order of each 
value of X(f) is X(0.00), X(0.25), X(0.50), …, X(50.00). The limitation of the 
Fourier transformed signal X(f) to this frequency range is unavoidable because 
the sampling rate is not fast enough. To find sinusoids, it is necessary to have at 
least two sample points within one cycle (reciprocal of the signal frequency, 1/f). 
If at least two sample points cannot be found in one cycle due to slow sampling 
rate, it appears to be slower than the original analog signal. That is, if the 

FIGURE 2.6 Addition of the four sinusoids in  Figure 2.5 resulted in  Figure 2.6.    
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sampling rate is low, a fast analog signal is converted to a slow digital signal. 
The frequency range should be limited to less than fs/2 to prevent this aliasing 
error (the high-frequency sinusoids component in the Fourier transform being 
mistaken for low-frequency sinusoids) while obtaining a signal. If the frequency 
range is limited to 0 –fs/2 Hz, the Fourier transformed signal X(f) will have all 
the information of the original sampled signal x(k). Therefore, by inverse Fourier 
transform of X(f), the original signal x(k) can be obtained from X(f). In other 
words, when acquiring the signal, the sampling frequency (fs) should be at least 
twice the signal frequency (f). 

The power of each sinusoid element in the Fourier series can be found by 
calculating the power spectrum P(f), as given by Equation 2.21: 

P f X f( ) = ( ) 2 (2.21)  

EEG data can be generally divided into epochs and the power spectrum of the 
total EEG data is calculated by averaging the power spectrum of all epochs. This 
reduces the variance of the power spectrum as the frequency resolution becomes 
low enough to be acceptable. There is only power and frequency information in 
the power spectrum and no information about the phase angle. The power 
spectrum can be used to examine how the absolute value and distribution of 
power changes in response to changes in the central nervous system, and is 
therefore useful for monitoring and evaluating changes in the central nervous 
system. For example, in awake normal subjects, most of the power in the EEG is 
in the alpha and beta bands, but when hypnotic agents are administered, the 
power distribution shifts to a lower frequency band. 

2.8 PHASE COUPLING 

Nonlinear systems often have dependent sinusoids in response to sinusoidal 
input signals. For example, suppose there is a simple nonlinear system where the 
output γ(k) is the square of the input x(k) as given by Equation 2.22: 

k k( ) = X ( )2 (2.22)  

If the input signal has sinusoids with frequencies f1, f2, respectively, and the 
phase angles are θ1, θ2 (the phase angles are random and independent of each 
other), Equation 2.23 shows: 

x k f k f kInput Signal: ( ) = cos(2 + ) + cos(2 + )t t1 1 2 2 (2.23)  

Using the formula: 
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A B A B A B A

B

(cos( ) + cos( )) = 1 + cos( + ) + cos( ) + cos (2 )

+ cos (2 )

2 2

2

The output signal is given in Equation 2.24: 

k f f k t f f k

t
f k t f k t

( ) = [1 + cos[2 ( 1 + 2) + ( 1 + 2)]+ cos[2 ( 1 2)

+ ( 1 2)]
+ 12 cos(2 2 1 + 2 1) + 12 cos(2 2 2 + 2 2)]

(2.24)  

Let γ1(k) be the output for the input signal x1(k) to the system, and γ2(k) be the 
output for the input signal x2(k). Here, this system is defined as linear only if the 
output for the input signal a·x1(k) + b·x2(k) is a·γ1(k) + b·γ2(k). 

One can observe the output signal has components with frequencies of f1 + f2, 
f1 − f2, 2·f1, 2·f2 in γ(k), which are dependent on f1, f2 of the input signal. The 
sinusoids element of the output signal resulting from multiplying the input signal 
sinusoids element (excluding addition or subtraction) is called the inter- 
modulation product (IMP). The non-multiple output signal sinusoids elements 
are called fundamental, and there is no such basic form in this example. If a 
sinusoid element is in the form of an IMP, it is phase-coupled. This process is 
called quadratic or second-order phase coupling. Phase coupling is a typical 
feature of nonlinear systems. The ability to analyze the degree of phase coupling 
within the EEG signal to the external stimulus enables a deeper understanding of 
the system. For analyzing the central nervous system, correlation analysis be-
tween phase coupling of various EEG components can be done. The degree of 
phase coupling cannot be quantified by power spectral analysis or other quan-
titative EEG parameters. For example, a signal γ1(k) with the same power 
spectrum as γ(k) of Equation 2.8 can be made by adding frequency f1 + f2, f1 − f2, 
2·f1, 2·f2 to the independent frequency elements, as shown in Equation 2.25: 

k fa k t a fb k t b fc k

t c fd k t d

1( ) = [1 + cos(2 + ) + cos(2 + ) + 12 cos(2

+ ) + 12 cos(2 + )] (2.25) 

f f f f f f f f f f= + , = , = 2· , = 2·a b c d1 2 1 2 1 2

θa, θb, θc, θd are random and independent. 
The signal γ1(k) has a phase structure completely different from that of the 

phase-correlated signal γ(k). However, the power spectrum is the same as the 
phase-coupled signal. Although these two signals originate from fundamentally 
different processes, they cannot be distinguished by the power spectrum because 
the phase information is ignored. Here, all the phase interlocking information is 
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suppressed. The bi-spectral analysis should be used to characterize the degree of 
phase coupling in the signal. 

2.9 PROCESSING OF EEG SIGNALS USING POWER SPECTRAL 
ANALYSIS 

The process of conversion from a raw EEG to a spectrogram is briefly described 
in Figure 2.7. First, a raw EEG can be separated by sinusoids. This converts the 
time domain to frequency domain, usually using Fourier transforms. At this time, 
the unit of the x-axis is the frequency, and the unit of the y-axis is the power. The 
power of a signal is often expressed as a decibel concept, defined as the am-
plitude of a given EEG frequency component squared, taken as a log of base 10, 
and then multiplied by 10, as given in Equation 2.26: 

Power = 10 × log (amplitude)10
2 (2.26)  

This can be summarized as follows: 

Power = 10 × log (amplitude)10
2

This is the two-dimensional representation and can be expressed as a three- 
dimensional spectrogram if considering time (Figure 2.7(d)). This can be ex-
pressed in two dimensions, which is called a density spectral array 
(Figure 2.7(d)). This figure shows at a glance whether the power of a certain 
frequency increases or decreases with time. 

2.10 SUMMARY 

In this chapter, we started with the physical modeling of the EEG signal. The 
Nobel Prize–winning Hodgkin and Huxley’s EEG model was discussed along 
with its mathematical equations. The fundamental concepts and definitions for 
and understanding of EEG properties and characterizing the signals are related to 
this model. Further, this chapter discussed the digital signal aspect of the EEG 
signal, such as digitization of the analog signal to digital signal and fundamental 
components of the digital EEG signals. Further, the signal was treated partly as 
stationary and partly non-stationary components. The non-stationary signals can 
be quantified by measuring some statistics of the signals at different time lags 
with time. The signals can be deemed stationary if there is no considerable 
variation in these statistics. Often it is necessary to label the EEG signals into 
segments of similar characteristics. 

The classification of an EEG based on the band of frequency and voltage is 
particularly meaningful to clinicians and for assessment by neurophysiologists. 
Within each segment, the signals are considered statistically stationary, usually 
with similar time and frequency statistics. 
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The fundamental quantities associated with the EEG signal are its amplitude, 
frequency, and phase. A study of the properties of these quantities can be per-
formed through analysis of the EEG using various signal processing methods, 
such as FT and PSD. An EEG signal can be analyzed using many techniques, 
such as power spectral analysis and Fourier transformation. The physical inter-
pretation of the behavior of these fundamental quantities associated with EEG 
reveals many different functional properties of the brain. 

Exercises  

1. What is Hodgkin and Huxley’s EEG model? What are the components 
of the EEG current as per Hodgkin and Huxley’s EEG model?  

2. Give an analogy of Hodgkin and Huxley’s EEG model with that of an 
ANN (artificial neural network).  

3. What are the fundamental characteristics of an EEG signal?  
4. How does an analog signal digitized to a digital signal? What is 

sampling?  
5. What are the fundamental attributes of a digital EEG signal?  
6. Describe FT. What information does the Fourier transform of a digital 

signal generate? 
7. What is the power spectral density analysis of a signal? What in-

formation does a PDA get from an EEG? 
8. What is phase coupling? What information about an EEG can be ob-

tained from phase coupling?  
9. What is an IMP (inter-modulation product)? 
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3 Signal Processing 
for EEGs   

This chapter discusses the prominent signal pre-processing and processing 
techniques used for EEG signal processing. Also discussed are some of the 
feature extraction techniques and feature classification techniques, which are the 
end objectives of different applications such as medical diagnostics, brain 
computer interface (BCI), Internet of Things (IoT), and Internet of Medical 
Things (IoMT), etc. 

The mathematical aspects of each of the processing and transformation are 
discussed to make the reader understand how the signal is transformed to obtain 
the physical characteristic such as the voltage, amplitude, frequency, and the 
power spectra of the EEG signal. 

3.1 INTRODUCTION 

EEG signals are a measure of the electrical activity of the brain recorded in space 
and time. The cortical nerve cell inhibitory and excitatory postsynaptic potentials 
generate the EEG signals. These postsynaptic potentials summate in the cortex 
and extend to the scalp surface where they are recorded as an EEG. A typical 
EEG signal, measured from the scalp, will have an amplitude of about 10 μV to 
100 μV and a frequency in the range of 1 Hz to about 100 Hz. While recording 
the signal, it encounters a number of interferences and/or artifacts that get added 
as noise, such as eye blinks and power line interferences to name a few. Thus, 
EEG signals are highly non-Gaussian, non-stationary, and have a nonlinear 
nature (Subha et al 2010). The brain signals are highly complex and random in 
nature. Their characteristics strongly depend on the age and mental state of the 
subject. The occurrence of symptoms is also random on a time scale. Hence, 
understanding the behavior and dynamics of billions of interconnected neurons 
involves several linear and nonlinear signal processing techniques and their 
correlation to the physiological events. 

The pre-processing techniques, if implemented correctly, will help us give 
better information about the activity in the brain and also enable us to use it to 
control/detect/remove certain points of interest e.g., blink artifact removal. 

A block diagram describing EEG signal processing, which depicts the sec-
tions of this review, is shown in Figure 3.1. 

DOI: 10.1201/9781003241386-3                                                                39 

https://doi.org/10.1201/9781003241386-3


EE
G

 s
ig

na
l P

os
tp

ro
ce

ss
in

g 
an

d 
C

la
ss

ifi
ca

tio
n

Su
pp

or
t V

ec
to

r
M

ac
hi

ne
K

-N
ea

re
st

 N
ei

gh
bo

ur
A

rt
ifi

ci
al

 N
eu

ra
l

N
et

w
or

k
!

re
sh

ol
di

ng

EE
G

 S
ig

na
l p

ro
ce

ss
in

g 
an

d 
Fe

at
ur

e 
Ex

tr
ac

tio
n

C
on

tin
uo

us
W

av
el

et
T

ra
ns

fo
rm

at
io

n

Fo
ur

ie
r

T
ra

ns
fo

rm
at

io
n

G
ra

di
en

t
Pr

in
ci

pa
l

C
om

po
ne

nt
A

na
ly

si
s

In
de

pe
nd

en
t

C
om

po
ne

nt
A

na
ly

si
s

EE
G

 s
ig

na
l P

re
pr

oc
es

in
g

N
ot

ch
 F

ilt
er

B
an

d 
Pa

ss
Fi

lte
r

B
as

el
in

e 
D

ri
ft

R
em

ov
al

W
av

el
et

D
en

oi
si

ng
M

ed
ia

n
Fi

lte
ri

ng
M

ov
in

g
A

ve
ra

ge

FI
G

U
R

E 
3.

1 
B

lo
ck

 d
ia

gr
am

 f
or

 E
E

G
 s

ig
na

l 
pr

oc
es

si
ng

 t
ec

hn
iq

ue
s.

   
 

40                                                                     Brain Computer Interface 



The processing of EEG can be segregated into three different phases: pre- 
processing, processing, and post-processing. Various signal processing techni-
ques generally used in these phases are surveyed and gathered from different 
research literature available. 

3.2 FILTERS FOR PROCESSING EEG SIGNALS 

Processing of the EEG signal involves a careful analysis of the signal and differs 
depending on the application or the type of information required for its inter-
pretation. Following are a few of the processing techniques that are commonly 
used to extract useful information or remove the unwanted noise from it. 

3.2.1 BAND-PASS FILTERING 

The most ideal filter design would be one that removes all of the electrical noise 
or artifact from the EEG and only allows true cerebral activity to pass through. 
Unfortunately, no such “smart” filter exists; filters can only remove waves ac-
cording to rigid mathematical rules. Luckily, there are good rationales for fil-
tering out certain components of EEG signals using fairly simple mathematical 
assumptions. These assumptions are based on the idea that the brain only gen-
erates EEG waves within a certain range of frequencies and that any activity 
outside that range (unusually slow activity and unusually fast activity) is not 
likely to have originated from the activity of the cerebral origin. Indeed, one of 
the general assumptions of EEG filter designs is that activities well below 1 Hz 
and well above 35 Hz do not arise from the brain and likely represent electrical 
noise or artifact. 

EEG filters are typically set up so that one filter rejects the majority of very 
high-frequency activity and another filter rejects the majority of very low- 
frequency activity. The range of frequencies between these unwanted high and 
low frequencies that is allowed to pass through the filter setup is referred to as 
the band-pass. Figure 3.2 describes the frequency characteristics of the band-pass 
filter. 

3.2.2 NOTCH FILTER 

Notch filters are certain filters that can stop signals of a certain frequency to be 
filtered out. After recording raw EEG signal, one of the most apparent noises that 
will be present in the signal is the power line signal frequency. A notch filter at 
60 Hz/50 Hz is used to filter out power line noise with minimal disruption to the 
rest of the signal. As explained in the Figure 3.3, fc (characteristic frequency) 
should be 60 Hz. 
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3.2.3 CONTINUOUS WAVELET TRANSFORM (CWT) 

A wavelet is a wave-like oscillation with an amplitude that starts out at zero, 
increases, and then decreases back to zero. Unlike the sines used in a Fourier 
transform for decomposition of a signal, wavelets are generally much more 
concentrated in time. They usually provide an analysis of the signal, which is 
localized in both time and frequency, whereas a Fourier transform is localized 
only in frequency. Examples for wavelets are given in Figure 3.4. 

FIGURE 3.2 Frequency characteristics of band-pass filter.    

FIGURE 3.3 Notch filter frequency response.    
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The original signal is transformed using predefined wavelets in a wavelet 
transform. The wavelet transform is classified into a discrete wavelet transform 
and a continuous wavelet transform. 

Given a mother wavelet ψ(t) (which can be considered simply as a basis 
function of L2), the continuous wavelet transform (CWT) of a function x(t) 
(assuming that x2 ∈ L2) is defined as (Equation 3.1): 

X a b
a

t b

a
x t dt( , ) =

1
( ) (3.1)  

3.2.3.1 Mallat’s Algorithm 
In the case of DWT, assuming that the length of the signal satisfies N = 2J for 
some positive J, the transform can be computed efficiently, using Mallat’s al-
gorithm (Moghim & Corne 2014), which has a complexity of O(N). Essentially 
the algorithm is a fast hierarchical scheme for deriving the required inner pro-
ducts (which appear in [3.1], as a function of a and b) using a set of consecutive 
low- and high-pass filters, followed by a decimation. This results in a decom-
position of the signal into different scales that can be considered different fre-
quency bands. The low-pass (LP) and high-pass (HP) filters used in this 
algorithm are determined according to the mother wavelet in use. The outputs of 
the LP filters are referred to as approximation coefficients and the outputs of the 

FIGURE 3.4 Different wavelets used for a wavelet transform.    
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HP filters are referred to as detail coefficients. A demonstration of the process of 
three-level decomposition of a signal can be seen in Figure 3.5. 

There are many types of wavelets. Daubechies wavelet is described by a 
maximal number of vanishing moments for some given support. A Haar wavelet 
is an order of rescaled square-shaped function that together form a wavelet fa-
mily. Symlet wavelets are an improved version of Daubechies wavelets with 
increased symmetry. Coiflets wavelets have scaling functions with vanishing 
moments. Signal reconstruction means reconstructing the original sequence from 
the thresholded wavelet detail coefficients that leads to a denoised version of the 
original signal. Inverse discrete wavelet transform (IDWT) is used to reconstruct 
the original signal. Therefore, wavelet transform is a reliable and better tech-
nique than the Fourier transform technique. 

3.2.3.2 Wavelet Families   
• Daubachies: Daubechies family wavelets are signed dbN (N is the 

order). This wavelet belongs to orthogonal wavelets.  
• Coiflets: Discrete wavelets designed by Ingrid Daubechies to have a 

scaling function with vanishing moments. The scaling function and the 
wavelet function must be normalized by a common factor.  

• Symlet: The symlet family wavelets are signed symN (N is the order). 
The symlets are nearly symmetrical, orthogonal, and bi-orthogonal 
wavelets suggested by Daubechies as modifications to the db family. 
The properties of the two wavelet families are similar. 

• Biorthogonal: Biorthogonal filters state a superset of orthogonal wa-
velet filters. The bi-orthogonal family wavelets are signed as bior. Bi- 
orthogonal wavelet transform has frequently been used in numerous 
image processing applications because it makes possible multi- 
resolution analysis and does not produce redundant information. 

FIGURE 3.5 Wavelet decomposition at level 3.    
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3.2.4 BASELINE DRIFT REMOVAL 

Baseline correction belongs to one of the standard procedures in ERP research 
(Alday 2019). The sources of baseline wander may be different, but it always 
appears as a low-frequency artifact that introduces slow oscillations in the re-
corded signal. Baseline is due to brain activity, muscle tension, sweating, eye and 
head movements, electrode movement (in the case of EEGs), or other noise 
sources (Fasano & Villani 2014) (Figure 3.6). 

Although baseline noise may be reduced by properly preparing skin and using 
suitable electrodes and an electrode–gel combination, a pre-processing step for 
its removal is still required. In an EOG, de-trending is achieved using a technique 
devised for ECG signals, which is based on wavelet decomposition. As observed 
in Figure 3.6 the baseline is seen to drift up due to the increase in the DC offset 
value. The change in the DC offset that makes a gradual rise/fall of the signal is 
known as baseline drift. 

3.2.5 WAVELET DENOISING 

Wavelets localize features in your data to different scales; you can preserve 
important signals or image features while removing noise. The basic idea behind 
wavelet denoising, or wavelet thresholding, is that the wavelet transform leads to 
a sparse representation for many real-world signals and images. What this means 
is that the wavelet transform concentrates signal and image features in a few 
large-magnitude wavelet coefficients. Wavelet coefficients that are small in value 
are typically noise and you can “shrink” those coefficients or remove them 
without affecting the signal or image quality. After you threshold the coeffi-
cients, you reconstruct the data using the inverse wavelet transform. 

The most general model for the noisy signal has the following form 
(Equation 3.2): 

s n f n e n( ) = ( ) + ( ) (3.2)  

where time n is equally spaced. In the simplest model, suppose that e(n) is a 
Gaussian white noise N (0,1), and the noise level σ is equal to 1. The denoising 
objective is to suppress the noise part of the signal s and to recover f. 

FIGURE 3.6 Baseline drift.    
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The denoising procedure has three steps:  

1. Decomposition: Choose a wavelet, and choose a level N. Compute the 
wavelet decomposition of the signal s at level N.  

2. Detail coefficients thresholding: For each level from 1 to N, select a 
threshold and apply soft thresholding to the detail coefficients.  

3. Reconstruction: Compute wavelet reconstruction based on the original 
approximation coefficients of level N and the modified detail coeffi-
cients of levels from 1 to N. 

3.2.6 MEDIAN FILTERING 

Median filtering (Paranjape 2009) is a common nonlinear method for noise 
suppression that has unique characteristics. It does not use convolution to process 
the image with a kernel of coefficients. Rather, in each position of the kernel 
frame, a pixel of the input image contained in the frame is selected to become the 
output pixel located at the coordinates of the kernel center. The kernel frame is 
centered on each pixel (m, n) of the original image, and the median value of 
pixels within the kernel frame is computed. The pixel at the coordinates (m, n) of 
the output image is set to this median value. In general, median filters do not 
have the same smoothing characteristics as the mean filter (Gonzalez & Wintz 
1987). Features that are smaller than half the size of the median filter kernel are 
completely removed by the filter. Large discontinuities such as edges and large 
changes in image intensity are not affected in terms of gray-level intensity by the 
median filter, although their positions may be shifted by a few pixels. This 
nonlinear operation of the median filter allows significant reduction of specific 
types of noise. For example, “pepper-and-salt noise” may be removed com-
pletely from an image without attenuation of significant edges or image char-
acteristics. Figure 3.7 presents typical results of median filtering. 

FIGURE 3.7 Comparison between median-filtered signal and the original signal.    
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3.2.7 MOVING AVERAGE 

In statistics, a moving average (rolling average or running average) is a calcu-
lation to analyze data points by creating a series of averages of different subsets 
of the full data set. It is also called a moving mean (MM) or rolling mean and is a 
type of finite impulse response filter. Variations include simple and cumulative, 
or weighted, forms. 

Given a series of numbers and a fixed subset size, the first element of the 
moving average is obtained by taking the average of the initial fixed subset of the 
number series. Then the subset is modified by “shifting forward”; that is, ex-
cluding the first number of the series and including the next value in the subset. 

A moving average is commonly used with time series data to smooth out 
short-term fluctuations and highlight longer-term trends or cycles. The threshold 
between short-term and long-term depends on the application, and the para-
meters of the moving average will be set accordingly. For example, it is often 
used in technical analysis of financial data, like stock prices, returns, or trading 
volumes. It is also used in economics to examine gross domestic product, em-
ployment, or other macroeconomic time series. Mathematically, a moving 
average is a type of convolution and so it can be viewed as an example of a low- 
pass filter used in signal processing. When used with non-time series data, a 
moving average filters higher-frequency components without any specific con-
nection to time, although typically some kind of ordering is implied. Viewed 
simplistically, it can be regarded as smoothing the data. Figure 3.8 demonstrates 
the comparison of the two processes. 

3.3 TRANSFORMATION METHODS USED IN EEG SIGNAL 
PROCESSING 

In the nonparametric approach of extraction of features from EEG signals, both a 
global Fourier transform (FT) and wavelet transformation can be used for the 
spectral analysis. The biofeatures extracted from each of these transformations 
are very useful in discriminating the EEG signal between epileptic and normal. 
Generally the FT gives an average spectral plot over the time period considered. 
On the other hand, wavelets are mathematical functions that divide the data into 
different frequency components and then analyze each component with a re-
solution matched to their scale. Thus, instead of working on a single time or 
frequency scale, they work on a multi-scale basis (Konstantinidis et al 2015). 
Wavelets offer a trade-off between time and frequency resolution and they are 
superior to traditional fast Fourier transform (FFT) methods when it comes to 
analyzing data that contains discontinuities and sharp spikes. In addition, the 
time-windowed version of the wavelets offer a scheme that allows for further 
refinement of the method in cases where time-locked events might be important. 
When wavelets were compared to the STFT technique (Konstantinidis et al 
2015), the results showed that the STFT is computationally faster but wavelets 
give more accurate results, especially in the detection of epileptic seizures and in 
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EEG signal classification. For these reasons, the wavelets are opted for analysis 
of EEG in addition to the application of a global FT to extract power spectral 
features within predefined frequency bands like that of EEG signals. Therefore, a 
wavelet is used for the presence of the particular EEG rhythms in the EEG 
signal, which are then used for classification purposes. 

3.3.1 FOURIER TRANSFORMATION 

The FT transforms an EEG signal in the time domain into its frequency domain 
representation. By definition, a signal has a discrete Fourier transform. The 
power spectral density for such a signal is then estimated . This spectrum is then 
used to extract biomarkers, which are then fed to a classifier to distinguish be-
tween the two populations. Biomarkers are found by calculating the total energy 
for each of six predefined frequency bands: delta (0–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz), beta (13–30 Hz), gamma1 (30–45 Hz), and gamma2 (45–90 Hz), 
where the biomarker is at the frequency band and is the sampling frequency. 

3.3.2 WAVELET TRANSFORM (WT) 

Over the past decade, the WT has been developed into an important tool for 
analysis of time series data that contains non-stationary power at many different 
frequencies, such as the EEG signal, seismic data, and other biosignals. WT has 
proven to be a powerful feature extraction method for EEG signals because of 
the frequency range, such as delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 
beta (13–30 Hz), gamma1 (30–45 Hz), and gamma2 (45–90 Hz). In particular, 
WT is very useful in isolating and observing the epileptic signal characteristic 
during seizure development and can describe it in terms of the relative wavelet 
energies. The WT is more suitable for analyzing transient signals because both 
frequency (scales) and time information can be obtained in good resolution. 

The continuous wavelet transform (CWT) was preferred in analyzing EEG 
signals, so that the time and scale parameters can be considered as continuous 
variables. In the CWT, the notion of scale is introduced as an alternative to 
frequency, leading to the so-called time-scale representation. The CWT of a 
discrete sequence is given by Equation 3.1. 

3.3.3 DISCRETE COSINE TRANSFORMATION (DCT) 

DCT is a transformation method for converting a time series signal into basic 
frequency components. Low-frequency components are concentrated in first 
coefficients, while high-frequency components are in the last ones. The DCT 
input X(t) is a set of N data values (EEG samples, audio samples, or other data) 
and the output Y(u) is a set of N discrete cosine transform coefficients. The one- 
dimensional DCT for a list of N real numbers is expressed by Equation 3.3: 
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(2 + 1).

2t o

N

=
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where u
U

U
( ) =
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2

The coefficient Y(u) is called the DC coefficient and the rest are referred to as 
AC coefficients (AL-Quraishi et al 2018). The DC coefficient contains a mean 
value of the original signal. Inverse DCT takes transform coefficients Y(u) as 
input and converts them back into time series f(x). For a list of N DCT coeffi-
cients, an inverse transform is expressed by the following formula 
(Equation 3.4): 

X t u
x u

N
( ) =

2

N
( ) Y(u) Cos

(2 + 1).

2u o

N

=

1

(3.4)  

In this formula, notations are the same as in Equation 3.3. DCT exhibits good 
energy compaction for correlated signals. If the input data consists of correlated 
quantities, most of the N transform coefficients produced by the DCT are zeros 
or small numbers, and only a few coefficients are large. These small numbers can 
be quantized coarsely, usually down to zero. Since an EEG has low-frequency 
oscillations, most of the relevant information is compressed into the first coef-
ficients, while the last ones usually contain noise. 

During the implementation of the transform, small values of N, such as 3, 4, 
or 6, result in many small sets of data items and small sets of coefficients where 
the energy of the original signal is concentrated in a few coefficients, but there 
are not enough small coefficients to quantize. Large values of N result in a few 
large sets of data. The problem in this case is that individual data items of a large 
set are normally not correlated and therefore result in a set of transform coef-
ficients where all the coefficients are large. Most data compression methods that 
employ the DCT use the value of N = 8. 

3.3.4 CONTINUOUS WAVELET TRANSFORMATION (CWT) 

The question “Can wavelet transform be used for feature extraction from EEG 
signal?” has been answered positively through many experiments and reported 
by many research literature. In this section, we discuss the usefulness of wavelet 
transform as a feature extraction method from EEG signal for both seizure pa-
tients and non-seizure patients. Experiments have suggested that wavelet trans-
form in combination with non-negative matrix factorization methods have 
promising result for feature extraction of EEG signal. 

Human body movements can be reflected in brain signals and collected 
noninvasively with electroencephalography (EEG). Motor-related signals 
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include sensory motor rhythms (also known as the Mu wave) in the upper-alpha 
band of 8–13 Hz and slow cortical potentials (SCPs) in the low frequency range 
of 0.1–5 Hz. This study compares the two signals for decoding finger move-
ments. Human subjects were asked to individually lift each of the five digits of 
their right hand, at the rate of one every 10 s. EEG was recorded using a bipolar 
montage between ipsilateral and contralateral motorcortices. Electromyograms 
were obtained for identifying movement onsets. Linear discriminant analysis 
(LDA) generated significant performance with SCPs but not with Mu. 
Meanwhile, continuous wavelet transform (CWT) was applied to SCPs or Mu to 
create a spectrogram for each finger, showing distinctive amplitude and phase 
patterns. A dprime-based weighting algorithm was used to extract time- 
frequency features. With a template-matching paradigm, both SCP and Mu 
spectrograms yielded significant classification accuracies for multiple subjects, 
with the highest being >50% (chance = 20%). Interestingly, the index finger was 
better distinguished with Mu for most of the subjects, whereas the ring finger 
was better distinguished with SCPs. The CWT algorithm outperformed LDA by 
better decoding the thumb. This study suggests that the time-frequency char-
acteristics of a single-channel EEG, when phase is preserved, contain critical 
information on finger movements. SCPs and Mu seem to work in an independent 
but complementary manner. 

3.3.5 DISCRETE WAVELET TRANSFORMATION (DWT) 

In this section, we discuss the usefulness of DWT to transform and analyze the 
EEG signal is discussed. The coefficients derived from EEG signal using DWT 
as features for emotion recognition from EEG signals is highly applied in dif-
ferent applications. Other feature extraction methods used power spectra density 
values derived from Fourier transform or sub-band energy and entropy derived 
from Wavelet Transform for analysis of EEG. These feature extraction methods 
eliminate temporal information present in the signal, which are essential for 
analyzing EEG signals. The DWT coefficients obtained from EEG represent the 
degree of correlation between the analyzed signal and the wavelet function at 
different instances of time; therefore, DWT coefficients contain temporal in-
formation of the analyzed signal. The feature extracted from EEG using DWT 
method fully utilizes the simultaneous time-frequency analysis by preserving the 
temporal information in the DWT coefficients. Therefore coefficient obtained 
from DWT applied on EEG is highly useful for emotion recognition of the 
subject. In an experiment the input EEG signals obtained from two electrodes 
according to 10–20 system: F(p1) and F(p2). Visual stimuli from International 
Affective Picture System (IAPS) were used to induce two emotions: happy and 
sad. Two classifiers were used: extreme learning machine (ELM) and support 
vector machine (SVM). Experimental results confirmed that the DWT coeffi-
cients obtained from the EEG signal captured in the experiment showed im-
proved performance in detecting emotion of the subject compared to other 
features and methods. 
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3.4 FEATURE EXTRACTION 

There are different feature extraction techniques used (Al‐Fahoum & Al‐Fraihat 
2014) for extracting significant features from the transformed EEG signal. Some 
of the prominent techniques discussed in this section are (a) principal component 
analysis (b) independent component analysis and (c) Hjorth parameters. 

3.4.1 PRINCIPAL COMPONENT ANALYSIS (PCA) 

Principal component analysis (PCA) is the most widely used method for pattern 
recognition and feature extraction. It is used as the variable reduction procedure. 
PCA is used when there are a large number of variables and some redundancy 
occurs in the variables. Redundancy means that some of the variables are cor-
related with one another. Due to this redundancy, it is possible to reduce the 
observed variables into a smaller number of principal components that will ac-
count for most of the variance in the observed variables. A principal component 
can be defined as a linear combination of optimally weighted observed variables. 
PCA is used for analyzing data and finding the patterns. It is a dominant tool for 
data compression and it projects higher-dimensional data to lower-dimensional 
data. 

3.4.2 INDEPENDENT COMPONENT ANALYSIS (ICA) 

The blind source separation has been widely used in many practical areas of 
modern signal processing. Based on the blind source separation, the independent 
source signals can be recovered after the signals are linearly mixed with an 
unknown medium and recorded at N sensors. The concept of independent 
component analysis (ICA) was described as maximizing the degree of statistical 
independence among outputs using contrast functions approximated with the 
Edge worth expansion of the Kullback-Leibler divergence. This is in contrast 
with de-correlation techniques such as PCA, which ensure that the output pairs 
are uncorrelated. ICA imposes the much stronger criterion that the multivariate 
probability density function of output variables factorizes. To find such a fac-
torization, it is required that the mutual information between all variable pairs 
becomes zero. The de-correlation only takes account of second-order statistics, 
but the mutual information depends on all higher-order cumulants of the output 
variables (Sun et al 2005). 

To deal with the problem of EEG signal preprocessing, artifact cancellation, 
and source localization, it is always difficult due to the fact that the determination 
of a brain electrical source from patterns collected from the scalp is mathema-
tically underdetermined. Recent efforts to identify EEG sources have focused 
mostly on performing spatial segregation and localization of source activity. 
Using the ICA algorithm, the problem of both source identification and source 
localization have been investigated. The ICA algorithm derives independent 
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sources from highly correlated EEG signals statistically and does not regard the 
physical location or configuration of the source generators of EEG signals. 

3.4.3 HJORTH PARAMETERS 

Hjorth parameters of EEG signals describe the general characteristics of an EEG 
trace in a few quantitative terms. Its descriptive parameters are entirely based on 
time, but they can be derived also from the statistical moments of the power 
spectrum. Thus, the method provides a bridge between a physical time domain 
interpretation and the conventional frequency domain description. Further, the 
parameters are based on the concept of variance, giving them an additive 
property so that the measured values pertain also to any basic elements from 
which a complex curve may be composed by superposition. 

Hjorth parameters are indicators of statistical properties used in signal 
processing in the time domain introduced by Bo Hjorth (1970). The parameters 
are activity, mobility, and complexity. They are commonly used in the analysis 
of electroencephalography signals for feature extraction.   

a. Hjorth Activity: The activity parameter represents the signal power, 
the variance of a time function. This can indicate the surface of a power 
spectrum in the frequency domain given by Equation 3.5: 

Activity = Var(x[t]) (3.5)  

where x[t] is the EEG signal. 
b. Hjorth Mobility: The mobility parameter represents the mean fre-

quency or the proportion of standard deviation of the power spectrum. 
This is defined as the square root of variance of the first derivative of 
the signal X[t] divided by variance of the signal x[t] given by 
Equation 3.6: 

( )
Mobility

Var

Var x t
=

( [ })

x t

t

( )

(3.6)  

c. Hjorth Complexity: Similarly, the Hjorth complexity parameter re-
presents the change in frequency (Equation 3.7). The parameter com-
pares the signal’s similarity to a pure sine wave, where the value 
converges to 1 if the signal is more similar. 

( )
Complexity

Mobility

Mobility x t
=

( [ })

x t

t

( )

(3.7)  
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3.5 EEG SIGNAL CLASSIFICATION TECHNIQUES 

Classifying the EEG signal into its characteristic features or signal type helps in 
interpretation of the state of the human mind. Also the classified signal are used 
for interpretation in the state of the subject and are mapped to different intended 
commands in driving different devices.Therefore, quick and accurate classifi-
cation of EEG signal is an important prerequisite towards driving IoT, IoMT and 
BCI. In this section three techniques viz. SVM, KNN and ANN often used in 
EEG signal classificationare discussed. 

3.5.1 SUPPORT VECTOR MACHINES (SVMS) 

A support vector machine (Figure 3.9) is a machine learning model used for 
classification and regression analysis. When a SVM is used for classification, it 
separates a given set of binary labeled training data and a hyperplane that is 
maximally distance from them. Assume the input data is xj = (x1j … xnj) by the 
realization of the random vector xj while φ is the map mapping the feature space 
to a label space y, where label space contains many vectors, mathematically 
labeled as {(x1, y1), … (xm, ym)}. The SVM learning algorithm finds a hyper-
plane (w, b) such that the quantity: 

min y bw x= {< , ( ) > }t
i i (3.8)  

is maximized. In Equation 3.8, the dimension of φ is the same as the dimension 
of the label y and < w, f (xi) > −b corresponds to the distance between point xi 

and the decision boundary. γ is the margin and b is a real number. The kernel of 
this function is Ki, j = < φ(xi), φ(xj) >. Given a new data x to classify, a label is 
assigned according to its relationship to the decision boundary, and the corre-
sponding decision function is expressed as the following (Equation 3.9): 

FIGURE 3.9 Illustration of trained hyperplane.    
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f (x) = sign(<w, (x) > b) (3.9)  

3.5.2 K-NEAREST NEIGHBOR (KNN) 

K-NN classification is a non-parametric model that is described as instance- 
based learning, in which the model is characterized by memorizing the training 
data set (Isa et al 2017). KNN is also a typical example of a lazy learner. It is 
called lazy not because of its apparent simplicity, but because it does not learn a 
discriminative function from the training data but memorized the training data 
set instead. Lazy learning is a special case of instance-based learning that is 
associated with zero cost during the learning process. The K-NN algorithm is 
suitable to classify EEG data as it is a robust technique for large, noisy data. The 
sample is the data classified by the majority vote of its neighbor’s class. In order 
to determine the class, this algorithm requires training data and a predefined k 
value as it will search through the training sample space for the k-most similar 
samples based on a similarity measure of a distance function. The value of k and 
distance metric will affect the result of classification. Figure 3.10 illustrates the 
concept of a K-NN algorithm when applied to the distance metric to determine 
the appropriate class of new data with k = 9. The data to be classified is at point 
(0.6, 0.45), which is shown with “X.” The big circle with dotted line represents 
the distance metric using Euclidean distance computation. It has two possible 
classes: circle class with six instances and triangle class with three instances. The 
algorithm will classify mark “X” to the circle class as the circle class has the 
majority of data within the radius. 

3.5.3 ARTIFICIAL NEURAL NETWORK (ANN) 

Artificial neural network (ANN) is a paradigm that is related to biological net-
works and tries to mimic the structure of the human brain (Lekshmi et al 2014). 

FIGURE 3.10 KNN applied with k = 9.    
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A neural network is a massively equivalent distributed process, made up of 
simple processing units, which have a property for storing knowledge and 
making it available for use. One of the most important properties of neural 
networks is their ability to learn from examples; that is, learn to produce a certain 
output when fed with a certain input. The learning process involves modification 
of the connection weights, to make its overall performance correspond to a 
desired performance defined by the set of training examples (Figure 3.11). 

For each example in the training set, there exists an input pattern and a desired 
output pattern. To train the network, an example from the training set is chosen 
and fed to the network to see what output it produces. If the expected output is 
not obtained, the internal weights of the network are modified according to a 
training algorithm, so as to minimize the difference between the desired and the 
actual output. The training is then continued with another training example and 
so on, until the network has reached steady state. Here, a fully connected net-
work is employed and the standard backpropagation algorithm can be used for 
training. 

FIGURE 3.11 (a) Operation of one neural unit of the neural network. Here, “f” is a 
predefined function known as an activation function. (b) Three-layer neural network.    
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3.6 SUMMARY 

An EEG has a wide range of techniques through which analysis is possible to 
delete the unwanted noise and bring out the useful information before classifying 
it. Firstly, analysis of the signal is required. Fourier transform and wavelet 
transform are such techniques that give us an in-depth view of the content of the 
signal. Secondly, depending on the application, noise removal and removal of 
unimportant signals are implemented to take out the useful information for 
further processing. The techniques involved in this are wavelet denoising, band- 
pass filtering, median filtering, etc. Different applications require different fea-
ture extraction methods. PCA, ICA, eigenvector, and power of signal are good 
examples of feature extraction methods. The features that are extracted can be 
used for classification. Some of the popular classification techniques involved are 
traditional method-based classification, SVM, ANN, KNN, CNN, etc. There are 
other techniques that are an ongoing in the field of research. EEG signal pre- 
processing is one of the areas where research is being done in order to increase 
consistency of the signal. 

Exercises  

1. What different signal filtering techniques are used for processing EEG 
signals?  

2. What is a continuous wavelet transform (CWT)? What is the output of 
CWT applied on an EEG signal?  

3. What is Mallat’s algorithm?  
4. What are baseline drift phenomena in EEG signals? Explain the 

baseline drift removal method for EEG signals.  
5. List the families of wavelet transforms.  
6. What is a moving average? How does it improve the quality of EEG 

signals?  
7. What is wavelet denoising of EEG signals? How does it improve the 

quality of EEG signals?  
8. What are the parameters generated from FFT of EEG signals?  
9. What are the parameters generated from CWT of EEG signals?  

10. What are the parameters generated from discrete cosine transform of 
EEG signals?  

11. How does ICA (independent component transform) help in source 
segregation of the EEG signals?  

12. Discuss two prominent feature extraction techniques used for EEG 
signals.  

13. List some of the feature classification techniques.  
14. What is a SVM (support vector machine)? How does it classify EEG 

signals?  
15. What are Hjorth parameters? How are they useful in analyzing EEG 

signals? 
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4 Software and Hardware 
for EEG for Capturing 
and Analysis    

OVERVIEW 

This chapter analyzes the system architecture of a EEG acquisition system, 
which contains the hardware components, software components, and the inter-
connection among them. Various options for sensing the EEG signal, filtering 
noise, boosting the signal, aggregating the signal, and finally visualizing the EEG 
data are discussed. The software-specific toolboxes available for analysis of EEG 
data are discussed. The toolkits for visualization and analysis of EEG data 
available in MATLAB®, Python, and EEG lab are discussed so that a student or 
researcher can immediately benefit from choosing and using one of the available 
options for processing of EEG data for their research and experimentation. 

4.1 INTRODUCTION 

A typical adult human EEG signal is about 10 µV to 100 µV in amplitude when 
measured from the scalp and is about 10–20 µV when measured from subdural 
electrodes. An EEG has a very high temporal resolution, on the order of milli-
seconds rather than seconds. EEGs are commonly recorded at sampling rates 
between 250 and 2,000 Hz in clinical and research settings, but modern EEG 
data collection systems are capable of recording at sampling rates above 20,000 
Hz if desired. Therefore, sophisticated hardware is required to acquire, amplify, 
denoise, and analyze the EEG signal. On searching the Internet, we found 
OPENBCI (https://openbci.com) is the most popular and readily available design 
that can be printed with 3D printers and there is also an option to buy it. Next in 
the list is Emotivepoc+ (https://www.emotiv.com). It comes with a wireless 
transaction facility and multiple channel supports. With this setup, one needs to 
subscribe to the interfacing software package for its operation. Next, we found an 
Indian manufacturer who is making medical grade EEG systems as RMSIndia 
(http://www.rmsindia.com/neurology.html) and Axxonet Pvt. Ltd. and used their 
32-channel EEG acquisition system for our obtaining the EEG data during our 
experiment on various subjects (https://www.axxonet.com/medical/13-medical/ 
27-brain-electro-scan-system-bess-eeg-erp-systems). They have 16–256-channel 
EEG acquisition systems. There are several open source and COTS (commercial 
off the shelf) EEG analysis software tools readily available for researchers and 
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the student community for processing analysis of EEG data. A couple prominent 
toolbox are (1) the EEGLab tool box of MATLAB and (2) the EDFLIB of 
Python. Some of the functions which are developed and tested for analysis of the 
EEG data are listed in the appendix of this book for the benefit of the students 
and researchers to start with. 

4.2 OVERVIEW OF AN EEG SIGNAL ACQUISITION SYSTEM 

Let us discuss the system with components from head electrodes to a display 
with the steps and processes and how the signal is amplified. 

A generic block diagram depicting various components required to compose a 
EEG acquisition system is depicted (Figure 4.1). The various subsystems/com-
ponents of the system are (a) the electrodes that are placed directly in-situ with 
the scalp to sense and collect the EEG signal emanating from the brain, (b) the 
instrumentation amplifier that amplifies the acquired EEG signal, (c) active high- 
pass filter and active low-pass filters that can be manifested as hardware or 
software components, (d) notch filter, (e) adder or aggregator (f) DAQ card, and 
finally (g) the subsystem for storage and display. 

There are different options in component level with respect to each of these 
subsystems. An EEG system can have a set of compatible subsystems to com-
pose an overall EEG acquisition system. There are many criteria for compat-
ibility of these subsystems to acquire, process, visualize, and classify the EEG 
signal. The criteria and their comparison is listed in the next session. 

The overall accuracy of the system depends upon the accuracy of each and 
every component used and their accuracy level. The optimum value of the 
system parameter like lead-off detection, input referred noise, CMRR, SNR, 
precision, etc. can be achieved with careful choice of subsystem accuracy. 

A comparison of research-grade EEG acquisition systems with respect to 
sampling rate (Hz), number of channels, accuracy, CPU used, type of electrodes, 
and method of input/output (I/O), CMRR, and cost is listed in Table 4.1.  

• CMMR: The CMRR (common mode rejection ratio) is the most im-
portant specification and it indicates how much of the common mode 
signals will be present to measure. The value of the CMMR frequently 
depends on the signal frequency and the function should be specified. 
(For a research-grade EEG acquisition system, the CMRR should be in 
the range of 90 dB–110 dB.)  

• SNR: The best explanation of SNR is that it is the ratio of “everything 
you want to measure in the EEG signal” to “everything else picked up 
by the EEG signal.” This noise is a problem because there are two 
major sources of noise inEEG signals. 

The SNR is further defined for each source location (dipole or ex-
tended patch) in decibel units computed as the signal-to-noise ratio 
(SNR) as a standard method to assess the signal quality. The SNR 
values were calculated using Equation 4.1: 
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SNR = 10 log ( / )[dB]x e10
2 2 (4.1)  

where σ2
x is the variance of the signal and σ2

e is the variance of the noise. For 
zero mean EEG signals, the SNR is computed using Equation 4.2: 

SNR
x

s x
= 10 log

( )
i
N

i

i
N

i i
10

=1
2

=1
2

(4.2)  

where N is the number of sample points, xi is the noise reduced signal at time i, 
and si is the band-pass filtered signal at time i. Practically, EEG SNR ranged 
from less than 1 dB to more than 10 dB. 

4.2.1 EEG SIGNAL ENHANCEMENT TECHNIQUES 

The appropriate choice of EEG signal enhancement technique plays a crucial 
role in designing a EEG acquisition system. The various signal processing 
techniques used for enhancing the quality of the EEG signal for further pro-
cessing are listed in Table 4.2. The detail processing methods are discussed in 
Chapter 3. In this table, we discuss the advantages and disadvantages of each of 
these signal enhancement techniques with respect to their capability to enhance 
the EEG signal so that appropriate and informed decisions can be made while 
choosing the processing of the acquired EEG signal. 

4.2.2 COMPARISON OF FEATURE EXTRACTION METHODS 

Having acquired the EEG signal with appropriate signal acquisition technique, 
signal enhancement, signal denoising, and filtering, the EEG signal is ready for 
processing to extract appropriate features from the signal so that subsequent 
classification based on the signal feature can be taken. Table 4.3 lists and 
compares and contrasts various EEG feature extraction techniques. 

FIGURE 4.1 Generic block diagram of EEG acquisition system.    
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4.2.3 EEG SIGNAL CLASSIFICATION METHODS 

Having extracted the features from the acquired EEG, an appropriate signal 
classification method is required for classification of the features of the acquired 
EEG signal. In Table 4.4, some of the important classification methods used 
frequently are listed. Also, we discuss the advantages and disadvantages of these 
EEG signal classification methods so that an appropriate decision can be made 
for composition of the overall EEG acquisition system. 

TABLE 4.2 
Comparison of signal enhancement methods      

Sl No. Method Advantages Disadvantages  

1 ICA  • Computationally efficient .  
• Shows high performance for large-sized 

data.  
• Decomposes signals into temporal 

independent and spatial fixed 
components.  

• Can’t be applicable for under- 
determined cases.  

• Requires more computations for 
decomposition. 

2 PCA  • A powerful tool for analyzing and 
reducing the dimensionality of data 
without important loss of information.  

• Assumes data is linear and 
continuous.  

• For complicated manifold, PCA 
fails to process data. 

3 WT  • Able to analyze signal with 
discontinuities through variable window 
size.  

• It can analyze signals both in time and 
frequency domains.  

• Can extract energy, distance, or 
clusters, etc.  

• Lack of specific methodology to 
apply WT to the pervasive 
noise.  

• Performance limited by 
Heisenberg uncertainty. 

4 AR  • Requires only shorter duration of data 
records.  

• Reduces spectral loss problems and 
gives better frequency resolution.  

• Difficulties exist in establishing 
the model properties for EEG 
signals.  

• Not applicable to non-stationary 
signal. 

5 WPD  • Can analyze the non-stationary signals.  • Increased computation time. 

6 FFT  • Powerful method of frequency analysis.  • Applicable only to stationary 
signals and linear random 
processes.  

• Suffers from large noise 
sensitivity.  

• Poor time localization makes it 
not suitable to all kinds of 
applications.    
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4.3 EEG ACQUISITION: AXXONET’S BRAIN ELECTRO SCAN 
SYSTEM (BESS) 

Having been developed for research purposes, BESS is equipped with a 
user-friendly stimulus presentation package, capable of presenting stimuli in 
visual and auditory modality, with unique provisions for customizing its stimulus 
presentation properties (https://www.axxonet.com/medical/13-medical/27-brain- 
electro-scan-system-bess-eeg-erp-systems),(https://www.youtube.com/watch?v= 
BX3MG2yFBuY).  

TABLE 4.3 
Comparison of feature extraction methods      

Sl No. Method Advantages Disadvantages  

1 ICA  • Computationally efficient.  
• Shows high performance for 

large-sized data.  
• Decomposes signals into temporal 

independent and spatial fixed 
components.  

• Can’t be appliable for under- 
determined cases.  

• Require more computations for 
decomposition. 

2 CAR  • Outperforms all the reference 
methods.  

• Yields improved SNR.  

• Finite sample density and 
incomplete head coverage cause 
problems in calculating averages. 

3 SL  • Robust against the artifacts 
generated at regions that are not 
covered by electrode cap.  

• It solves electrode reference 
problem.  

• Sensitive to artifacts.  
• Sensitive to spline patterns. 

4 PCA  • Helps in reduction of feature 
dimensions.  

• Ranking will be done and helps in 
classification of data.  

• Not as well as ICA. 

5 CSP  • Doesn’t require a priori selection 
of subspecific bands and 
knowledge of these bands.  

• Requires use of many electrodes.  
• Change in position of electrode 

may affect classification 
accuracies. 

6 Adaptive 
filtering  

• Ability to modify the signal 
features according to signals is 
being analyzed.  

• Works well for the signals and 
artifacts with overlapping spectra 
nature.     
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• BESS provides a comprehensive stimulus presentation package that 
automates functions related to ERP presentation from presentation to 
analysis, the first of its kind. In addition, BESS interfaces with tools 
such as E-Prime and Open Sesame. 

• The xAmp series of amplifiers have 8 to 128 channels and 24-bit re-
solution with simultaneous sampling of 20 KHz per channel in select 
models. With a low noise floor of <1 µV, the xAmp series ensures high- 
quality recordings.  

• xAmp can interface with third-party headsets and headgear including 
active electrodes. 

TABLE 4.4 
EEG signal classification methods      

Sl No. Method Advantages Disadvantages  

1 LDA  • It has low computational 
requirements.  

• Simple to use.  
• It provides good results.  

• It fails when the discriminatory 
function not in mean but in 
variance of the features.  

• For non-Gaussian distributions it 
may not preserve the complex 
structures. 

2 SVM  • It provides good generalization.  
• Performance is more than other linear 

classifier.  

• Has high computational 
complexity. 

3 ANN  • Ease of use and implementation.  
• Robust in nature.  
• Simple computations are involved.  
• Small training set requirements are 

required.  
• Small training set requirements are 

required.  

• Difficult to build.  
• Performance depends on the 

number of neutrons in hidden 
layer. 

4 NBC  • Requires only a small amount of 
training data to estimate parameters.  

• Only variance of class variables is to 
be computed and no need to compute 
the entire covariance matrix.  

• Fails to produce a good estimate 
for the correct class probabilities. 

5 K-NN  • Very simple to understand.  
• Easy to implement and debug.  

• Poor runtime performance if 
training set is large.  

• Sensitive to irrelevant and 
redundant features.  

• On difficult classification tasks, 
outperformed by other 
classification methods.    
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• xAmp has direct interfaces with Axxonet’s innovative Rapid Cap, the 
new ultra-fast deployment multi-contact EEG cap that supports saline 
and gel recordings.  

• BESS has built-in digital EEG data processing capabilities that are 
complex, yet accurate and only found in solutions like Octave or 
MATLAB.  

• Its advanced analysis package makes BESS a complete and one of the 
finest ERP tools for research in the area of neuroscience, be it cognitive 
science, neuropsychology, or electrophysiology.  

• BESS is a highly sophisticated, user-friendly system developed for 
acquisition and analysis of bioelectrical brain activity.  

• It is employed in research under neuroscience, cognitive psychology, 
cognitive science, and psycho-physiology. It is available in auditory and 
visual modalities.  

• The systems are highly accurate with complex data processing and 
analysis capabilities. The systems are built over years of research and 
development in the field of electroencephalography.  

• BESS is available in desktop and laptop versions for mobile recordings.  
• BESS models are available in 16-, 32-, 64-, 128-, and 256-channel 

configurations and can be built customized per requirements.  
• Provisions are available to customize it as per the requirement for 

clinical application and diagnosis as well (Figure 4.2).   

• EEG – ERP Recordings  
• Ability to treat each stimulus as an event with additional keyboard 

events  
• Ability to mark beginnings and end of stimulus, pre-stimulus duration  
• Group batch of stimulus into bins  
• Edit event makers and save as a new file 

The BESS clinical models are available in 16-, 32-, 64-, 128-, and 256-channel 
configurations and can be built customized per requirements. The systems are 
available in desktop versions and laptop versions. 

4.4 SOFTWARE REQUIREMENT FOR ANALYZING EEGS 

4.4.1 MATLAB 

MATLAB® (https://in.mathworks.com/help/matlab/release-notes-R2014a.html) 
is the high-level language and interactive environment used by millions of en-
gineers and scientists worldwide. It lets one explore and visualize ideas and 
collaborate across disciplines including signal and image processing, commu-
nications, control systems, and computational finance. MATLAB can be used to 
run millions of simulations to pinpoint optimal dosing for antibiotics. 
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MATLAB is a high-performance language for technical computing. It in-
tegrates computation, visualization, and programming in an easy-to-use en-
vironment where problems and solutions are expressed in familiar mathematical 
notation. Typical uses include math and computation and signal processing. In 
the context of EEG signal processing, the signal processing toolbox provided by 
MATLAB is of special importance to build different filters and feature extraction 
tools. 

The Signal Processing Toolbox™ provides functions and apps to analyze, 
pre-process, and extract features from uniformly and non-uniformly sampled 
signals. With the filter designer app, one can design and analyze digital filters by 
choosing from a variety of algorithms and responses. 

4.4.1.1 Key Features of MATLAB  
• High-level language for numerical computation, visualization, and ap-

plication development  
• Interactive environment for iterative exploration, design, and problem 

solving  
• Mathematical functions for linear algebra, statistics, Fourier analysis, 

filtering, optimization, numerical integration, and solving ordinary 
differential equations  

• Built-in graphics for visualizing data and tools for creating custom plots  
• Development tools for improving code quality and maintainability and 

maximizing performance 

FIGURE 4.2 EEG acquisition in real time using BESS.    
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• Tools for building applications with custom graphical interfaces  
• Functions for integrating MATLAB-based algorithms with external 

applications and languages such as C, Java, NET, and Microsoft® Excel 
for further computing, analysis, and visualization of the EEG artifacts. 

4.4.1.2 Functions 
Numeric computation MATLAB provides a range of numerical computation 
methods for analyzing data, developing algorithms, and creating models. The 
MATLAB language includes mathematical functions that support common en-
gineering and science operations. Core math functions use processor-optimized 
libraries to provide fast execution of vector and matrix calculations.   

• Available Methods Include:  
1. Interpolation and regression  
2. Differentiation and integration  
3. Linear systems of equations  
4. Fourier analysis  
5. Eigen values and singular values  
6. Ordinary differential equations (ODEs)  
7. Sparse matrices  
8. Wavelet analysis 

4.4.1.3 Data Analysis and Visualization 
MATLAB provides tools to acquire, analyze, and visualize data, enabling one to 
gain insight into the data in a fraction of the time it would take using spread-
sheets or traditional programming languages. One can also document and share 
the results through plots and reports or as published MATLAB code. 

4.4.1.4 Acquiring Data 
MATLAB lets one access data from files, other applications, databases, and 
external devices. One can read data from popular file formats such as Microsoft 
Excel; text or binary files; image, sound, and video files; and scientific files such 
as net, CDF, and HDF. File I/O functions let one work with data files in any 
format. Using MATLAB with add-on products, one can acquire data from 
hardware devices, such as your computer’s serial port or sound card, as well as 
stream live, measured data directly into MATLAB for analysis and visualization. 
One can also communicate with instruments such as oscilloscopes, function 
generators, and signal analyzers. 

4.4.1.5 Analyzing Data 
MATLAB lets one manage, filter, and pre-process the data. One can perform 
exploratory data analysis to uncover trends, test assumptions, and build de-
scriptive models. MATLAB provides functions for filtering and smoothing, in-
terpolation, convolution, and fast Fourier transforms (FFTs). Add-on products 
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provide capabilities for curve and surface fitting, multivariate statistics, spectral 
analysis, image analysis, system identification, and other analysis tasks. 

4.4.1.6 Visualizing Data 
MATLAB provides built-in 2D and 3D plotting functions, as well as volume 
visualization functions. One can use these functions to visualize and understand 
data and communicate results. Plots can be customized either interactively or 
programmatically. The MATLAB plot gallery provides examples of many ways 
to display data graphically in MATLAB. For each example, one can view and 
download source code to use in the MATLAB application. 

4.4.1.7 Documenting and Sharing Results 
One can share results as plots or complete reports. MATLAB plots can be 
customized to meet publication specifications and saved to common graphical 
and data file formats. One can automatically generate a report when one executes 
a MATLAB program. The report contains the code, comments, and program 
results, including plots. Reports can be published in a variety of formats, such as 
HTML, PDF, Word, or LaTeX. 

4.4.1.8 Programming and Algorithm Development 
MATLAB provides high-level language and development tools that let one 
quickly develop and analyze algorithms and applications. 

4.4.1.9 Application Development and Deployment 
MATLAB tools and add-on products provide a range of options to develop and 
deploy applications. One can share individual algorithms and applications with 
other MATLAB users or deploy them royalty-free to others who do not have 
MATLAB. 

4.4.1.10 Designing Graphic User Interface 
Using GUIDE (Graphical User Interface Development Environment), one can 
lay out, design, and edit custom graphical user interfaces. One can include 
common controls such as list boxes, pull-down menus, and push buttons, as well 
as MATLAB plots. Graphical user interfaces can also be created program-
matically using MATLAB functions. 

4.4.1.11 Generating C Code 
One can use MATLAB Coder to generate stand-alone C code from MATLAB 
code. MATLAB Coder supports a subset of the MATLAB language typically 
used by design engineers for developing algorithms as components of larger 
systems. This code can be used for stand-alone execution, for integration with 
other software applications, or as part of an embedded application. 

4.4.1.12 Development Tools 
MATLAB includes a variety of tools for efficient algorithm development, including: 
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1. Command Window: Lets you interactively enter data, execute com-
mands and programs, and display results.  

2. MATLAB Editor: Provides editing and debugging features, such as 
setting break points and stepping through individual lines of code. 

3. Code Analyzer: Automatically checks code for problems and re-
commends modifications to maximize performance and maintainability.  

4. MATLAB Profiler: Measures performance of MATLAB programs and 
identifies areas of code to modify for improvement. 

4.4.1.13 Syntax 
The MATLAB application is built around the MATLAB language, and most of 
MATLAB involves typing MATLAB code into the Command Window (as an 
interactive mathematical shell), or executing text files containing MATLAB 
code, including scripts and/or functions. 

4.4.1.14 Variables 
Variables are defined using the assignment operator, “=” in MATLAB is a 
weekly typed programming language because types are implicitly converted. It is 
an inferred typed language because variables can be assigned without declaring 
their type, except if they are to be treated as symbolic objects, and their type can 
change. Values can come from constants, from computation involving values of 
other variables, or from the output of a function. 

4.4.1.15 Matrices 
Matrices can be defined by separating the elements of a row with a blank space 
or comma and using a semicolon to terminate each row. The list of elements 
should be surrounded by square brackets: []. Parentheses () are used to access 
elements and sub-arrays (they are also used to denote a function argument list). 

4.4.1.16 Structures 
MATLAB has structure data types. Since all variables in MATLAB are arrays, a 
more adequate name is “structure array,” where each element of the array has the 
same field names. In addition, MATLAB supports dynamic field names (field 
look-ups by name, field manipulations, etc.). Unfortunately, MATLAB JIT does 
not support MATLAB structures; therefore, just a simple bundling of various 
variables into a structure will come at a cost. 

4.4.1.17 GUI Programming 
MATLAB supports developing applications with graphical user interface fea-
tures. MATLAB includes GUIDE (GUI development environment) for graphi-
cally designing GUIs. It also has tightly integrated graph-plotting features. 

4.4.1.18 Applications   
1. Data exploration, acquisition, analyzing, and visualization  
2. Engineering drawing and scientific graphics 
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3. Analyzing algorithmic designing and development  
4. Mathematical functions and computational functions  
5. Simulating problems, prototyping, and modeling  
6. Application development programming using GUI building environment 

4.5 EEGLAB TOOLBOX 

An EEG signal is saved in European Data Format (.edf), which cannot be opened 
directly in MATLAB. The EEGLAB (https://sccn.ucsd.edu/eeglab/index.php) 
toolbox provides support for reading different formats of EEG files and plots 
them by analyzing different useful in-built functions. EEGLAB is an interactive 
MATLAB toolbox for processing continuous and event-related EEG, MEG, and 
other electrophysiological data incorporating independent component analysis 
(ICA), time/frequency analysis, artifact rejection, event-related statistics, and 
several useful modes of visualization of the averaged and single-trial data. 
EEGLAB runs under Linux, Unix, Windows, and Mac OS. 

EEGLAB provides an interactive graphic user interface (GUI), allowing users 
to flexibly and interactively process their high-density EEG and other dynamic 
brain data using independent component analysis (ICA) and/or time/frequency 
analysis (TFA), as well as standard averaging methods. It also incorporates 
extensive tutorial and help windows, plus a command history function that eases 
users’ transition from GUI-based data exploration to building and running batch 
or custom data analysis scripts. EEGLAB offers a wealth of methods for vi-
sualizing and modeling event-related brain dynamics, both at the level of in-
dividual EEGLAB “data sets” and/or across a collection of data sets brought 
together in an EEGLAB “study set.” 

For experienced MATLAB users, EEGLAB offers a structured programming 
environment for storing, accessing, measuring, manipulating, and visualizing event- 
related EEG data. For creative research programmers and methods developers, 
EEGLAB offers an extensible, open-source platform through which they can share 
new methods with the world research community by publishing EEGLAB “plug-in” 
functions that appear automatically in the EEGLAB menu of users who download 
them. For example, novel EEGLAB plug-ins might be built and released to “pick 
peaks” in ERP or time/frequency results, or to perform specialized import/export, 
data visualization, or inverse source modeling of EEG, MEG, and/or ECOG data. 
Figure 4.3 demonstrates the EEGLAB GUI window opened in MATLAB. 

4.5.1 EEGLAB FEATURES   

• Graphic user interface  
• Multi-format data importing  
• High-density data scrolling  
• Interactive plotting functions  
• Semi-automated artifact removal  
• ICA and time/frequency transforms 
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• Event and channel location handling  
• Forward/inverse head/source modeling  
• Defined EEG data structure  
• Many advanced plug-in/extension toolboxes 

4.5.2 EEGLAB SYSTEM REQUIREMENTS   

• MATLAB version: The latest version of EEGLAB runs on MATLAB 
7.6 (2008b) or later under any operating system (Linux/Unix, Windows, 
Mac OSX). For earlier MATLAB versions, download the legacy ver-
sion EEGLAB v4.3, which will run on MATLAB 5.3. EEGLAB ex-
tensions (in particular BCILAB and SIFT) also require MATLAB 7.6 or 
later. Note that all EEGLAB signal processing functions also run on the 
free MATLAB clone Octave, although graphics cannot be displayed 
(this is useful for high-performance computing applications – see the 
EEGLAB wiki for more details).  

• Memory requirements: Using multi-core 64-bit processors with large 
amounts of RAM may be essential for analyzing large data sets – 8 Gb 
or more RAM is recommended (also see the EEGLAB wiki tutorial for 
tips on minimizing memory usage). Linux is preferred as an environ-
ment for processing EEG data using EEGLAB, mostly because of better 
memory management of MATLAB under Linux (if using Linux, choose 
Fedora over Ubuntu as there are sometimes minor graphics problem 
with how MATLAB handles OpenGL under Ubuntu).  

• Additional MATLAB toolboxes: EEGLAB requires no additional 
toolboxes. However, some toolboxes are recommended. By order of 
importance: 

FIGURE 4.3 EEG LAB GUI window in MATLAB.    

72                                                                     Brain Computer Interface 



• Signal processing toolbox: Although EEGLAB incorporates func-
tions to replace functions it uses from this toolbox when necessary 
(e.g., for filtering and power spectra computation), they are not as 
efficient as the toolbox MATLAB functions. This toolbox is also 
required by some EEGLAB extensions such as SIFT. This is prob-
ably the most important toolbox to have. 

• Statistics toolbox: This toolbox is required by some EEGLAB ex-
tensions (such as Fieldtrip and SIFT). This toolbox also contains a 
large number of functions useful for the advanced programmer to 
compute statistics and cross-validation.  

• Optimization toolbox: This is another recommended toolbox used 
by some EEGLAB extensions. This toolbox contains the powerful 
fminsearch function and derivative. Although MATLAB now has 
this function by default in its core distribution, the optimization 
toolbox allows performing finer tuning of its parameters.  

• Image processing toolbox: This toolbox is required by some 
EEGLAB extensions (such as Fieldtrip).   

• Post-processing: After figures are exported in the postscript vector 
format from MATLAB/EEGLAB, a postscript editor is usually neces-
sary to fine-tune them for publication. 

4.6 EDF BROWSER 

EDF browser is a free, open-source, multiplatform, universal viewer and toolbox 
intended for, but not limited to, time series storage files like EEG, EMG, ECG, 
Bio-Impedance, etc. (https://www.teuniz.net/edfbrowser). EDF browser is a very 
helpful tool to visualize events in EEG recordings with the option to play video 
recorded during the session (Figure 4.4). It combines with a VLC player to do 
the previously mentioned options. 

4.6.1 EDF BROWSER FEATURES   

• Easy to install, just one executable, no special requirements, no Octave 
or MATLAB needed  

• EDF browser is one of the fastest, if not the fastest, EDF viewer 
available (Figure 4.4)  

• Supported file formats: EDF, EDF+, BDF, BDF+  
• Nihon Kohden (*.eeg) to EDF+ converter (including annotations)  
• Unisens to EDF+ converter  
• MIT to EDF+ converter (including annotations) for Physiobank  
• ManscanMicroamps (*.mbi/*.mb2) to EDF+ converter (including 

annotations)  
• SCP-ECG (*.scp, EN 1064) to EDF+ converter  
• Synchronous video playback 
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• Emsa (*.PLG) to EDF+ converter (including annotations)  
• ASCII to EDF/BDF converter  
• Finometer (Beatscope) to EDF converter  
• Bmeye Nexfin (FrameInspector) to EDF converter  
• WAV to EDF converter  
• Mortara XML ECG to EDF converter  
• Reads Biosemi’s trigger inputs from the BDF “Status” signal  
• Annotation editor  
• Header editor, fixes also lots of different format errors  
• 1st to 8th order Butterworth, Chebyshev, Bessel, and “moving average” 

filters  
• Notch filter with adjustable Q-factor  
• Customizable FIR filter  
• Spike filter removes spikes, glitches, fast transients, or pacemaker 

impulses  
• Power spectrum (FFT)  
• ECG heart rate detection (raw ECG waveform -> beats per minute)  
• With possibility to export the RR-intervals (beat to beat)  
• FM modulated (transtelephonic) ECG recording to EDF converter  
• Z-EEG measurement  
• Averaging using triggers, events, or annotations  
• Supports montages  
• Annotations/events export  
• Annotations/events import  
• File reducer/cropper/decimator  
• Down sampling signals  
• Precise measurements by using crosshairs 

FIGURE 4.4 Visualizing a recording session with EDF browser.    

74                                                                     Brain Computer Interface 



• Zoom function by drawing a rectangle with the mouse  
• Shows signals from different files at the same time  
• EDF/EDF+/BDF/BDF+ to ASCII converter  
• EDF/EDF+/BDF/BDF+ compatibility checker  
• EDF+D to EDF+C converter  
• BDF (+) to EDF (+) converter  
• Prints to a printer, image, or PDF  
• Combines several files and exports it to one new EDF file  
• Exports part of a file to a new file  
• Reads from a streaming file (monitor)  
• Available for Linux and Windows (the source can be compiled on Mac 

OS X) 

4.7 PYTHON 

Python is a general-purpose interpreted, interactive, object-oriented, and high- 
level programming language. It was created by Guido van Rossum during 1985– 
1990. Like Perl, Python source code is also available under the GNU General 
Public License (GPL). Python’s design philosophy emphasizes code readability 
with its notable use of significant white space. Its language constructs and object- 
oriented approach aims to help programmers write clear, logical code for small 
and large-scale projects (Kuhlman 2012). Van Rossum shouldered sole re-
sponsibility for the project until July 2018, but now shares his leadership as a 
member of a five-person steering council. Figure 4.5 shows a Python terminal 
window. 

4.7.1 PYTHON FEATURES 

Python’s features include:  

• Easy to learn: Python has few keywords, simple structure, and a clearly 
defined syntax. This allows the student to pick up the language quickly. 

FIGURE 4.5 Python shell terminal.    
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• Easy to read: Python code is more clearly defined and visible to the 
eyes.  

• Easy to maintain: Python’s source code is fairly easy to maintain.  
• A broad standard library: Python’s bulk of the library is very portable 

and cross-platform compatible on UNIX, Windows, and Macintosh.  
• Interactive mode: Python has support for an interactive mode that 

allows interactive testing and debugging of snippets of code.  
• Portable: Python can run on a wide variety of hardware platforms and 

has the same interface on all platforms.  
• Extendable: One can add low-level modules to the Python interpreter. 

These modules enable programmers to add to or customize their tools to 
be more efficient.  

• Databases: Python provides interfaces to all major commercial 
databases.  

• GUI programming: Python supports GUI applications that can be created 
and ported to many system calls, libraries, and windows systems, such as 
Windows MFC, Macintosh, and the X Window system of Unix.  

• Scalable: Python provides a better structure and support for large 
programs than shell scripting. 

Apart from the above-mentioned features, Python has a big list of good features, 
a few of which are listed below:  

• It supports functional and structured programming methods as well 
as OOP.  

• It can be used as a scripting language or can be compiled to byte-code 
for building large applications.  

• It provides very high-level dynamic data types and supports dynamic 
type checking.  

• It supports automatic garbage collection.  
• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and 

Java. 

4.7.2 RELEVANT LIBRARIES IN PYTHON 

4.7.2.1 pyEDFlib 
pyEDFlib is a Python library to read/write EDF+/BDF+ files based on EDFlib 
(https://pypi.org/project/pyEDFlib/). EDF means European Data Format and was 
firstly published by Kemp (1992). In 2003, an improved version of the file 
protocol named EDF+ has been published and (Kemp 2003). 

European Data Format (EDF) is a standard file format designed for exchange 
and storage of medical time series. Being an open and non-proprietary format, 
EDF(+) is commonly used to archive, exchange, and analyze data from com-
mercial devices in a format that is independent of the acquisition system. 
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The EDF/EDF+ format saves all data with 16 bits. A version that saves all 
data with 24 bits, was introduced by the company BioSemi. 

The definition of the EDF/EDF+/BDF/BDF+ format can be found under 
edfplus.info. 

This Python toolbox is a fork of the toolbox from Christopher Lee-Messer and 
uses the EDFlib from Teunis van Beelen. The EDFlib is able to read and write 
EDF/EDF+/BDF/BDF+ files. 

4.7.2.1.1 Documentation 
Documentation is available online at http://pyedflib.readthedocs.org 

Process to install pyEDFlibation 
pyEDFlib can be used with Python version 2.7.x or >=3.4. It depends on the 

NumPy package. To use the newest source code from git, you have to download 
the source code. One needs a C compiler and a recent version of Cython. Go to 
the source directory and type: 

python setup.py build 
python setup.py install  

There are binary wheels that can be installed by: 

pip install pyEDFlib  

Users of the Anaconda Python distribution can directly obtain pre-built 
Windows, Intel Linux, or macOS/OSX binaries from the conda-forge channel. 
This can be done via: 

conda install -c conda-forge pyedflib  

The most recent development version can be found on GitHub at https://github. 
com/holgern/pyedflib.The latest release, including source and binary packages 
for Linux, macOS, and Windows, is available for download from the Python 
Package Index. One can find source releases on the Releases page. pyEDFlib is 
free, open-source software released under the BSD 2-clause license. 

4.7.2.2 NumPy 
NumPy is the fundamental package for scientific computing with Python (https:// 
www.numpy.or). It contains among other things:  

• A powerful N-dimensional array object  
• Sophisticated (broadcasting) functions  
• Tools for integrating C/C++ and Fortran code  
• Useful linear algebra, Fourier transform, and random number capabilities 
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Besides its obvious scientific uses, NumPy can also be used as an efficient 
multidimensional container of generic data. Arbitrary data types can be defined. 
This allows NumPy to seamlessly and speedily integrate with a wide variety of 
databases. NumPy is licensed under the BSD license, enabling reuse with few 
restrictions. 

4.7.2.2.1 Getting Started 
To install NumPy, we strongly recommend using a scientific Python distribution. 
See Installing the SciPy Stack for details. Many high-quality online tutorials, 
courses, and books are available to get started with NumPy. We also recommend 
the SciPy Lecture Notes for a broader introduction to the scientific Python 
ecosystem. For more information on the SciPy Stack (for which NumPy provides 
the fundamental array data structure), see scipy.org. 

4.7.2.2.2 Documentation 
The most up-to-date NumPy documentation can be found in the latest (devel-
opment) version. It includes a user guide, full reference documentation, a de-
veloper guide, meta information, and “NumPy Enhancement Proposals” (which 
include the NumPy Roadmap and detailed plans for major new features). 

A complete archive of documentation for all NumPy releases (minor versions; 
bug fix releases don’t contain significant documentation changes) since 2009 can 
be found at https://docs.scipy.org. 

4.8 SUMMARY 

The previously mentioned tools are highly sophisticated and recommended for 
EEG-related studies. Although there are a lot of resources available over the 
Internet, Biosig, Bio-electromagnetism, Fieldtrip, Brainstorm, Brain Vision 
Analyzer, etc. are preferable tools for analyzing EEG data using MATLAB; 
whereas in Python one can use PYEEG, MNE tools, Neuropy, etc. Most of these 
tools are open source. The MNE tools website has a lot of experimental EEG 
data available to download to give a head start. 

Exercises  

1. Give a block diagram describing the overall architecture of the EEG 
acquisition system. Give a brief note on each of its subsystems and 
their permissible metric measures.  

2. What are the overall good metric measures of a subsystem required for 
building an EEG acquisition system?  

3. What is CMRR? Give its permissible value for an EEG system.  
4. What is SNR? Give its practical limits for an EEG system. 
5. List various EEG signal enhancement techniques. Compare and con-

trast these techniques, describing their advantages and disadvantages.  
6. List various EEG denoising techniques. 
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7. List various EEG feature extraction techniques. 
8. List various EEG classification techniques, and discuss their ad-

vantages and disadvantages.  
9. List different storage formats for EEG signals.  

10. List some of the popular tools for visualization of EEG signals. Also, 
discuss their main functions. 
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5 Protocol and Process of 
EEG Data Acquisition    

OVERVIEW 

This chapter discusses different topologies or the placement system of EEG 
electrodes on the scalp. The various standards for placement of electrodes and 
their indexing to refer and correlate EEG signals with the functional part of the 
brain are discussed. Further, the clinical protocol followed to prepare a human 
subject for acquisition of EEG data is discussed. The process of affixing the EEG 
sensor to the skull of the subject along with the EEG acquisition setup is de-
scribed in a step-wise manner. Also discussed is the experimental setup so as to 
elicit various EEG signal artifacts for study of different behaviors of the subject. 

5.1 INTRODUCTION 

The first recording of the electric field of the human brain was made by the 
German psychiatrist Hans Berger in 1924 in Jena. He gave this recording the 
name electroencephalogram (EEG) (Berger 1929). (From 1929 to 1938, he 
published 20 scientific papers on the EEG under the same title “Über das 
Elektroenkephalogram des Menschen.”). Since then, the EEG data can be ac-
quired for different diagnosis purposes. Following are the main types of EEG 
signals acquired:  

1. Spontaneous activity  
2. Evoked potentials  
3. Bioelectric events produced by individual neurons 

Spontaneous activity is measured on the scalp or on the brain and is called the 
electroencephalogram. The amplitude of the EEG is about 100 µV when mea-
sured on the scalp, and about 1–2 µV when measured on the surface of the brain. 
The frequency bandwidth of this signal is in the range of 1 Hz to about 50 Hz. 

As depicted in Figure 5.1, the phase and amplitude of the EEG signal varies 
continuously, implying “spontaneous and continuous activity,” in the living 
individual. 

Evoked potentials are those components of the EEG that arise in response to a 
stimulus (which may be electric, auditory, visual, etc.). Such signals are usually 
below the noise level and thus not readily distinguished. One must use a train of 
stimuli to the subject and perform signal processing such as signal averaging to 
improve the signal-to-noise ratio before analysis of the evoke potential. 
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Single-neuron behavior can be examined through the use of microelectrodes 
that impale the cells of interest. Through studies of the single cell, one hopes to 
build models of neural networks or network of neurons that can reveal the actual 
tissue properties and brain paths among various functional parts of the brain. 

Further, the behavior of the EEG signals can be differentiated as alpha (α), 
beta (β), delta (δ), and theta (Θ) waves as well as spikes associated with epilepsy 
or any neural disorder. The waveform of each class of EEG signal is depicted in 
Figure 5.1. 

The alpha waves have the frequency spectrum of 8–13 Hz and can be mea-
sured from the occipital region in an awake state of a person when the eyes are 
closed. The frequency band of the beta waves is 13–30 Hz; these are detectable 
over the parietal and frontal lobes. The delta waves have the frequency range of 
0.5–4 Hz and are detectable in infants and sleeping adults. The theta waves have 
the frequency range of 4–8 Hz and are obtained from children and sleeping 
adults. 

FIGURE 5.1 Different waveforms of EEG signal.    
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5.2 THE BASIC PRINCIPLES OF EEG DIAGNOSIS 

The EEG signal is closely related to the level of consciousness of the person. As 
the activity increases, the EEG shifts to a higher dominating frequency and lower 
amplitude. When the eyes are closed, the alpha waves begin to dominate the 
EEG. When the person falls asleep, the dominant EEG frequency decreases. In a 
certain phase of sleep, rapid eye movement (REM), the person dreams and has 
active movements of the eyes, which can be seen as a characteristic EEG signal. 
In deep sleep, the EEG has large and slow deflections called delta waves. No 
cerebral activity can be detected from a patient with complete cerebral death. An 
example of each of the mentioned waveforms is depicted in Figure 5.2. 

5.3 THE EEG ELECTRODE PLACEMENT SYSTEMS 

Quality of diagnosis from the EEG data depends upon proper acquisition of EEG 
data from the subject. This calls for choice of appropriate EEG acquisition 
system with standard electrode configuration and spatial placement on the scalp 
i.e., its spatial positioning and density. Following are the different EEG electrode 
placement systems and their alpha-numeric naming convention. 

The international 10–20 electrode placement system uses 21 electrodes, as 
depicted in Figure 5.3a, b. It is an internationally recognized method to describe 
and apply the location of scalp electrodes in the context of an EEG acquisition 
from the subject. The EEG signal can be analyzed for the polysomnograph sleep 
study, or voluntary lab research such as detection of lie or for interfacing with 
any device. This method was developed to maintain standardized testing 
methods, ensuring that a subject’s study outcomes (clinical or research) could be 
compiled, reproduced, and effectively analyzed and compared using the scien-
tific method. The system is based on the relationship between the location of an 
electrode and the underlying area of the brain, specifically the cerebral cortex. 

During sleep and wake cycles, the brain produces different, but objectively 
recognized and distinguishable electrical patterns. This can be can be detected by 
electrodes on the scalp. (These patterns might vary, and can be affected by 
multiple extrinsic factors, i.e., age, prescription drugs, somatic diagnoses, result 
of neurologic insults/injury/trauma, and substance abuse.) 

The “10” and “20” refer to the fact that the actual distances between adjacent 
electrodes are either 10% or 20% of the total front–back or right–left distance of 
the skull. For example, a measurement is taken across the top of the head, from 
the nasion to inion. Most other common measurements (“landmarking methods”) 
start at one ear and end at the other, normally over the top of the head. Specific 
anatomical locations of the ear used include the tragus, the auricle, and the 
mastoid. 

Designating the electrodes through an alpha-numeric indexing is important so 
that the signals acquired can be mapped to various regions of the brain. This will 
make it easy to directly map the signal behavior to different regions of the brain. 
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Each electrode placement site has a letter to identify the brain lobe, or area of 
the brain it is reading the signal from: pre-frontal (Fp), frontal (F), temporal (T), 
parietal (P), occipital (O), and central (C). Note that there is no “central lobe”; 
due to their placement, and depending on the individual, the “C” electrodes can 
exhibit/represent EEG activity more typical of frontal, temporal, and some 
parietal-occipital activity, and are always utilized in polysomnography sleep 
studies for the purpose of determining stages of sleep. 

There are also (Z) sites: A “Z” (zero) refers to an electrode placed on the 
midline sagittal plane of the skull (FpZ, Fz, Cz, Oz) and is present mostly for 
reference/measurement points. These electrodes will not necessarily reflect or 
amplify lateral hemispheric cortical activity as they are placed over the corpus 
callosum, and do not represent either hemisphere adequately. “Z” electrodes are 
often utilized as “grounds” or “references,” especially in polysomnography sleep 
studies, and diagnostic/clinical EEG montages meant to represent/diagnose 
epileptiform seizure activity, or possible clinical brain death. Note that the re-
quired number of EEG electrodes, and their careful, measured placement, in-
creases with each clinical requirement and modality. 

FIGURE 5.2 Waveforms of EEG signals at different levels of consciousness.    
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Conventionally, the even-numbered electrodes (2, 4, 6, 8) refer to electrode 
placement on the right side of the head, whereas odd numbers (1, 3, 5, 7) refer to 
those on the left; this applies to both EEG and EOG (electrooculogram mea-
surements of the eye) electrodes, as well as ECG (electrocardiography mea-
surements of the heart) electrode placement. Chin, or EMG (electromyogram) 
electrodes are more commonly just referred to with “right,” “left,” and “re-
ference,” or “common,” as there are usually only three placed, and they can be 
differentially referenced from the EEG and EOG reference sites. 

The “A” (sometimes referred to as “M” for mastoid process) refers to the pro-
minent bone process usually found just behind the outer ear (less prominent in 
children and some adults). In basic polysomnography, F3, F4, Fz, Cz, C3, C4, O1, 
O2, A1, and A2 (M1, M2), are used. Cz and Fz are “ground” or “common” reference 
points for all EEG and EOG electrodes, and A1–A2 are used for contralateral re-
ferencing of all EEG electrodes. This EEG montage may be extended to utilize 
T3–T4, P3–P4, as well as others, if an extended or “seizure montage” is called for. 

5.4 MEASUREMENT 

Specific anatomical landmarks are used for the essential measuring and posi-
tioning of the EEG electrodes. These are found with a tape measure, and often 
marked with a grease pencil, or “China marker.”  

• Nasion to inion: the nasion is the distinctly depressed area between the 
eyes, just above the bridge of the nose, and the inion is the crest point of 

FIGURE 5.3 The international 10–20 system seen from (a) left and (b) above the head. 
A = ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal 
polar, O = occipital, T= Temporal.    
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the back of the skull, often indicated by a bump (the prominent occipital 
ridge, can usually be located with mild palpation). Marks for the Z 
electrodes are made between these points along the midline, at intervals 
of 10%, 20%, 20%, 20%, 20%, and 10%.  

• Preauricular to preauricular (or tragus to tragus: the tragus refers to the 
small portion of cartilage projecting anteriorly to the pinna). The pre-
auricural point is in front of each ear, and can be more easily located 
with mild palpation and, if necessary, requesting the patient to open 
their mouth slightly. The T3, C3, Cz, C4, and T4 electrodes are placed 
at marks made at intervals of 10%, 20%, 20%, 20%, 20%, and 10%, 
respectively, measured across the top of the head.  

• Skull circumference is measured just above the ears (T3 and T4), just 
above the bridge of the nose (at Fpz), and just above the occipital point (at 
Oz). The Fp2, F8, T4, T6, and O2 electrodes are placed at intervals of 5%, 
10%, 10%, 10%, 10%, and 5%, respectively, measured above the right ear, 
from front (Fpz) to back (Oz). The same is done for the odd-numbered 
electrodes on the left side, to complete the full circumference.  

• Measurement methods for placement of the F3, F4, P3, and P4 points 
differ. If measured front-to-back (Fp1-F3-C3-P3-O1 and Fp2-F4-C4- 
P4-O2 montages), they can be 25% “up” from the front and back points 
(Fp1, Fp2, O1, and O2). If measured side to side (F7-F3-Fz-F4-F8 and 
T5-P3-Pz-P4-T6 montages), they can be 25% “up” from the side points 
(F7, F8, T5, and T6). If measured diagonally, from nasion to inion 
through the C3 and C4 points, they will be 20% in front of and behind 
the C3 and C4 points. Each of these measurement methods results in 
different nominal electrode placements. 

When placing the A (or M) electrodes, palpation is often necessary to determine the 
most pronounced point of the mastoid process behind either ear; failure to do so, and 
to place the reference electrodes too low (posterior to the ear pinna, proximal to the 
throat) may result in “EKG artifact” in the EEGs and EOGs, due to artifact from the 
carotid arteries. EKG artifact can be reduced with post-filtering of signals, or by 
“jumping” (co-referencing) of A/M reference electrodes, if replacement of reference 
electrodes is not possible, ameliorative, or if other clinical considerations prevent 
otherwise good placement (such as congenital malformation, or post-surgical con-
siderations such as cochlear implants) (Figure 5.4). 

5.5 PLACEMENT OF THE EEG ELECTRODES FOR  
HIGHER-SPATIAL RESOLUTION 

When recording a more detailed EEG with more electrodes, extra electrodes are 
added using the 10% division, which fills in intermediate sites halfway between 
those of the existing 10–20 system. This new electrode-naming-system is more 
complicated, giving rise to the modified combinatorial nomenclature (MCN). 
This MCN system uses 1, 3, 5, 7, 9 for the left hemisphere, which represents 
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10%, 20%, 30%, 40%, and 50% of the inion-to-nasion distance, respectively. 
The introduction of extra letter codes allows the naming of intermediate elec-
trode sites. Note that these new letter codes do not necessarily refer to an area on 
the underlying cerebral cortex. (Figure 5.5) 

The new letter codes for indexing of the MCN for intermediate electrode 
places are:  

• AF – between Fp and F  
• FC – between F and C  
• FT – between F and T  
• CP – between C and P  
• TP – between T and P  
• PO – between P and O 

Also, the MCN system renames four electrodes of the 10–20 system:  

• T3 is now T7  
• T4 is now T8  
• T5 is now P7  
• T6 is now P8 

A higher-resolution nomenclature has been suggested and called the “5% 
system” or the “10–5 system.” 

5.5.1 PROTOCOL FOR EEG DATA ACQUISITION 

EEG data acquisition is one of the vital steps of the entire chain of processing, 
inferring, and taking appropriate decision based on the behavior of EEG signal. 
Research analysts say “there is no substitute for clean data”; therefore, acquiring 

FIGURE 5.4 (a) Bipolar and (b) unipolar measurements. Note that the waveform of the 
EEG depends on the measurement location.    
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clean EEG data devoid of noise is important. In order to acquire clean EEG data 
from a human subject, there are certain protocols followed both in the medical 
and research community. It is quite evident that the EEG is susceptible to noise 
as there are multiple sources of it. If proper measures are taken, then some of the 
noise sources can be prevented from affecting the signal of interest. 

The resolution of the EEG data varies and it is dependent upon the number of 
electrodes in the EEG device and how the EEG probes are placed on the sub-
jects’ head for measurement. It can range from as low as 2 channels to as high as 
256 channels (Figure 5.6). More channels give us a richer information and 
deeper insight into the activity of the brain. The electrodes used for recording can 
be varied based on the precision. As the raw EEG signal has a wide range of 
frequencies, the choice of frequency is also important. The frequency range of 
EEG is from 1 to 50 Hz. Thus, based on the application, the frequency needs to 
be filtered. 

FIGURE 5.5 Location and nomenclature of the intermediate 10% electrodes, as stan-
dardized by the American Electroencephalographic Society.    
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5.5.2 BASIC PROTOCOL: PREPARATION OF HUMAN SUBJECTS FOR EEG 
ACQUISITION 

Before we advertise the experiment and gather participants, we have to decide on 
the subject criteria. Selected subjects have to meet all pre-determined require-
ments, that are designed to match the hypotheses, laws, and ethical regulations. 
The requirements that match the hypotheses differ from experiment to experi-
ment. The requirements that match laws and regulations are common for all EEG 
experiments. This ensures the safety of all participants. 

Common criteria for selection of the subject for EEG acquisition:  

• General good health  
• No pregnancy  
• No claustrophobia  
• No drug addiction  
• No neurological diseases 

Specific selection criteria that differs from experiment to experiment to take into 
account:  

• Range of age  
• One or both genders 

FIGURE 5.6 A 256-channel EEG cap.    
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• Academic level 
• Specific type of disease or the absence of it (in case of studies on de-

mentia or other diseases)  
• Visual acuity and/or hearing acuity (depending on the type of stimuli 

which subjects are exposed to during the experiment)  
• If the person is left handed or right handed 

5.5.3 SUBJECTS’ DATA SELECTION 

Often the data acquired from a subject is clear enough to process it for further 
investigation. Therefore, the data can be rejected. Some of the reasons to reject 
the recorded data of a subject are:  

• Lack of signal for a specific time window  
• External sudden electrical noises that interfere and ruin the signal  
• Electrodes shifting or falling due to discomfort of the subject that cause 

the signal to drop  
• Improper gelling of the contact between the scalp and the electrodes 

It is recommended to check the data before starting the processing. In the case of 
missing data, the subject can be rejected or brought in again for additional tests 
or minor adjustments can be made to restore proper collection of the data. 

5.5.4 EEG ACQUISITION SETUP BLOCK 

Figure 5.7 shows the general block for acquiring the signal during an experiment 
using visual or auditory evoked potentials. 

The amplifier amplifies the signal to ensure the signal is in the range of uV 
readable to the user and it also performs frequency filtering if asked.   

• The stimulus presenter is used to show the presentation of the task the 
user is given. The response box is a set of keys that the user can press if 
the task requires the subject to do so.  

• A camera is used to record the subject’s behavior and, if possible, to 
perform the eye tracking if required. 

5.5.5 EXPERIMENTAL PROCEDURE 

5.5.5.1 Recruiting Subjects   
• Advertise the experiments and the subjects’ requirements within fellow 

research groups, hospitals, and medical centers.  
• Screen possible choices and arrange appointment for testing.  
• Instruct the subject to come to the test with just washed hair and no hair 

products, and to be on their best physical and mental conditions. 
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5.5.5.2 Before the Experiment   
• Prepare information notice, instruction paper, and consent paper  
• Verify and test the setup, the stimulation system and routine, and the 

hardware in the workspace  
• Check connection with recording system  
• Prepare your gel syringes if you are using wet electrodes 

5.5.5.3 During the Experiment   
• Welcome the subject into the lab and make them feel comfortable  
• Explain the experiment and make sure the subject is clear on any aspect 

of it  
• Have subject sign the consent paper  
• Adjust the stimulation setup to the subject’s comfort (adjust chair 

height, screen distance, or check sound)  
• Prepare head and secure selected cap  
• Perform impedance measurement  
• Perform testing  
• Verify the obtained signal is properly electrophysiological  
• Keep the subject attentive and motivated; allow for breaks 

Camera
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EEG
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EEG
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FIGURE 5.7 Schematics of an EEG acquisition setup.    
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In our experiment, Axxonet’s Brain Electro Scan System (BESS), which is a 32- 
channel EEG system, was used to record the EEG data of the subjects. The 
system has a maximum sampling rate per channel of 30 kbps and runs on 5 V AC 
supply. Gold-plated silver electrodes soaked in saline water were used. The 
detection of beta waves (16–31 Hz), which are responsible for cognitive actions 
like thinking, planning, focusing, high alert etc., are profoundly observed over 
the recorded data. Initially, a notch filter of 0.5 to 75 Hz was applied. T8, CP6, 
A1, and A2 channels were used to record EOG data and 10–20 electrode pla-
cement system was used to record the EEG data. Depicted in Figure 5.8 is the 
cross-sectional view of the electrode placement to capture the EEG. 

5.6 EOG DATA ACQUISITION 

Before starting the recording session for acquisition of the EEG, the subject was 
asked to stay as calm as possible during the test (see Figure 6.3 in Chapter 6). First, 
a scene containing the picture of an object was shown to the subject, followed 
by a different scene containing several instances of the same object in different 
locations in the scenes. The subject was instructed to read the scene and identify 
the objects in the scene. During this process, the EEG of the subject is acquired 
and recorded. This experiment can be conducted on different subjects and for the 
same scene. 

While recording the EEG, the distance from the monitor to the subject is kept 
at a distance of 93 cm. The monitor size is (30 × 60 cm2). The distance from the 
camera to the subject is 27 cm. The camera feed is used for gaze estimation and 
provide approximate coordinates of the eye-fix on the monitor screen. 

FIGURE 5.8 Cross-sectional view of 10–20 electrode placement diagram.    
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5.7 SUMMARY 

EEG acquisition is a vital step in the process of the entire experiment. The 
isolation of the noise is of high priority in order to get a pure EEG signal. In 
this way, one would be required to employ noise removal techniques in the 
first place. Subject selection and subject awareness play the most important 
role while performing this experiment. Without proper precautionary mea-
sures, there is every possibility of the signal being corrupted and mixed with 
noise. 

Exercises  

1. What is the standard topology for placement of electrodes on the 
scalp? Discuss the international standard followed.  

2. Discuss the alternate electrode placement and indexing method 
adopted for placement of electrodes for normal EEG data acquisition 
and for high-resolution data acquisition.  

3. What are unipolar and bipolar EEG data accquisition?  
4. What are 10–20, 10–10, and 10–5 electrode placement systems?  
5. What are the common criteria for selection of the subject for EEG 

accquisition?  
6. List some of the specific criteria for selecting subjects for EEG 

acquisition.  
7. Give a generic protocol followed before EEG acquisition.  
8. Present a block diagram describing the entire process of EEG 

acquisition.  
9. Describe the EEG acquisition setup through a schematic diagram. 

10. Draw a cross-sectional view of a 10–20 electrode placement and de-
scribe its significance. 
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6 Methods to Detect 
Blink from the EEG 
Signal    

OVERVIEW 

This chapter discusses the method to detect the blink artifacts from the EEG 
signal. It discusses the applications and use of the presence of blinks in the EEG 
data. The process of acquisition of EOG data and its algorithm to process and 
extract blinks from EOG are explained. The algorithm is applied on the data 
acquired from different subjects and the output is discussed. 

6.1 INTRODUCTION 

An electroencephalogram (EEG) is a measure of the electrical signals of the brain of 
a human being. It is a readily available test that provides the evidence of how the 
brain functions over time. Brain computer interface (BCI) is a collaboration be-
tween a brain and a device that enables EEG signals from the brain to control some 
external activity, such as control of a cursor or a prosthetic limb (Roy et al 2011). 
The interface enables a direct communication pathway between the brain and the 
object to be controlled. Electrooculography (EOG) is a technique for measuring the 
corneo-retinal standing potential that exists between the front and the back of the 
human eye. The resulting signal is called the electrooculogram. Tracking the 
movement of the eye through sensors enables us to compute and fix the position 
where one’s eyes are focused (Panigrahi et al 2019). Study of the EOG can de-
termine presence, attention, focus, drowsiness, consciousness, or other mental states 
of the subject (TejeroGimeno et al 2006; Liu et al 2013; Lin et al 2005). Event 
related potential (ERP) is a small voltage generated in the brain due to the occur-
rence of a specific event or stimuli. ERPs can be reliably measured from an EEG. 

In this research, we characterize the EEG signal and propose a method to 
detect and process the EOG signal. When active, i.e., not in the state of sleep, the 
external functioning of human eye is characterized by three distinct functions: 
saccadic, fix, and blink. Saccadic and fix are voluntary actions or actions con-
trolled by humans, whereas the blink is an involuntary action that is associated 
with randomness and high fluctuation of EEG voltage (Landau et al 2007). We 
discuss how to capture the EEG and EOG signals and how to filter the EEG 
channel to delineate the EOG and related signals from other channels. Then we 
discuss the process to characterize and delineate the blinks from the rest of the 
EEG signals so that saccadic and fix are delineated. 
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6.2 PROCESS OF EEG DATA ACQUISITION 

In our experiment, Axxonet’s Brain Electro Scan System (BESS), which is a 32- 
channel EEG system, was used to record the EEG data of the subjects. The 
system has a maximum sampling rate per channel of 30 kps and runs on 5 V AC 
supply. Gold-plated silver electrodes soaked in saline water were used. The 
detection of beta waves (16–31 Hz), which are responsible for cognitive actions 
like thinking, planning, focusing, high alert etc., are profoundly observed over 
the recorded data. Initially, a notch filter of 0.5 to 75 Hz was applied. T8, CP6, 
A1, and A2 channels were used to record EOG data. The 10–20 electrode pla-
cement system is used to record EEG data. Depicted in Figure 6.1 and Figure 6.2 
is the cross-sectional view of the electrode placement to capture the EEG and one 
of the subject while capturing the EEG data, respectively. 

FIGURE 6.2 EOG electrode placement on subject. (Courtesy Axxonet Pvt. Ltd., 
Bangalore, India.)    

FIGURE 6.1 Cross sectional view of 10-20 electrode placement diagram.    
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6.3 EOG DATA ACQUISITION 

Before starting the recording session for acquisition of the EEG, the subject was 
asked to stay as calm as possible during the test. First, a scene containing the picture 
of an object was shown to the user. Then, five slides containing several instances of 
the object in different locations of the scene were displayed. The subject was in-
structed to read the scene and identify the objects in the scene. During this process, 
the EEG of the subject was acquired and recorded. This experiment was conducted 
on different subjects and on the same scene. The process is depicted in Figure 6.3. 
The EEG acquired from the subject is plotted in Figure 6.4. 

While recording EEG, the distance from monitor to the subject is kept at a 
distance of 93 cm. The monitor size is (30 × 60 cm2). The distance from the 
camera to the subject is 27 cm. The camera feed is used for gaze estimation and it 
provides approximate coordinates of the eye-fix on the monitor screen. 

FIGURE 6.3 Subject wearing EEG cap while recording of EEG and EOG signal. 
(Courtesy Axxonet Pvt. Ltd., Bangalore, India.)    
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6.4 BLINK DETECTION 

The EEG signal has the characteristic that it has highly varying in voltage and 
frequency. Also, the baseband of the signal varies frequently in time. Therefore, 
the EEG truly represents the variation of mind in space and time. 

Blinks in EEG and EOG signals are considered artifacts in the EEG. To filter and 
detect the blink from the EEG, we propose a novel technique of blink detection.   

Step 1. EEG data acquired in .edf format is loaded in MATLAB® using 
the EEGLAB toolbox (version 14.1.2b).  

Step 2. Plot the EEG acquired in step 1 to visualize the recorded data for 
all channels. Sampling rate was set to 1,024 Hz.  

Step 3. The application was mostly concerned with frequencies in the range 
of 0–30 Hz. We filtered the overall channel signals into 1–30 Hz 
frequency using a standard filtering technique available in the 
EEGLAB toolbox. After visual analysis of the plot obtained, it is 
found that the impact of the blinks was mostly affecting the signal 
obtained from FP1, FP2, A1(EOG1), and A2(EOG2). Hence, the 
signal obtained from these four channels was used for further 
processing of blink artifact.      

Step 4. After filtering, the signal contained too many fluctuations over a very 
short time period. In order to get rid of unwanted fluctuations and 
make the signals smoother, the signals were subjected to a moving 

FIGURE 6.5 Overlapped Plot of 29 blink samples.    

average technique. Figure 6.5 illustrates the results obtained for two 
individual blink occurrences.    
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As shown in Figure 6.6, the DC value for each individual blink sample 
is highly variant; therefore, the standard threshold technique will produce 
very poor results if applied. Thus, calculation of the gradient for the signal 
will result in better detection of the activity of the peaks caused by blinks.      

Step 5. Blinks were detected using the following method:     

• The signal from channel EOG1 was selected and the moving average 
technique was applied on it with a lead parameter value 10 and lag 
parameter value 20. The result is shown in Figure 6.7, first subplot.  

• The gradient of the signal was obtained and shown in the second subplot.  

Step 6. A modified threshold technique was applied on the gradient to 
obtain the duration of each individual blink. The threshold func-
tion is defined as below: 

f x

T x T
T x T

T x T
T x T

( ) =

2 ,
, 0 <

, 0 > >
2 ,

Where, 

T C argmax x
C
= ( )

= 0.3

C is a constant that needs to be adjusted for proper blink detection, 
generally in the range (0.1 to 0.5).     

Step 7. After applying the threshold function, in the resultant starting and 
ending points of the blink are highlighted on the original signal and 
shown in the fourth subplot. Hence, this technique of blink detection 
was applied on the whole signal and for all selected channels. 

6.5 RESULTS 

The algorithm was tested on two subjects’ recordings and the corresponding 
results are shown in Table 6.1. 

Due to the lengthy size of the data, we divided the data into a range of 30,000 data 
points (29.3 s as sampling rate is 1,024 Hz) and analyzed them one by one. The 
constant C was adjusted for each data point range, but it was observed to be the same 
throughout the course of the experiment. Similarly, the lag and the lead for the moving 
average applied on the signal was also found to be same. These parameters were 
found to be the best for detection. Too high values of lead and lag led to omission of 
the blinks and too low values of the lead and lag led to noisy blink signatures. 

Taking the data of subject 1 into consideration, it was observed that subject 1 
blinked frequently during the course of the experiment. A total of 130 blinks 
were recorded manually, out of which 85 were correctly detected, which gives an 
accuracy of 65%. The subject was tired while performing this experiment with 
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signs of drowsiness. Consecutively, such a high blink rate was observed as it was 
difficult to concentrate on the task. 

On the other hand, subject 2 was well rested and relaxed throughout the 
experiment a total of ten blinks were recorded manually out of which nine were 
detected successfully. Thus, the detection accuracy was 90%. Subjects 1 and 2 
were given the same set of tasks to perform. As subject 2 was well rested, it can 
be concluded easily that the subject performed the task with a very low blink rate 
as the concentration level was high. 

6.6 APPLICATIONS 

Applications of blink detection are many (the source code for detection of blink 
artifact is listed in the Appendix). One of them is the determination of one’s 
concentration level and drowsiness. It was found according to the latest research 
(Bentivoglio et al 1997) that the mean blink rate at rest was 17 blinks per minute 
and during conversation it increased to 26 and it was as low as 4.5 while reading. 
Based on the statistics, we can infer that a subject’s concentration level is high if 
they have a blink rate of at most 6 per minute. Otherwise, the subject is either 
low in their concentration level or distracted. However, if it is observed that the 
blink duration of the subject is above a certain level, then the subject is feeling 
drowsy. Blink is considered an artifact during EEG analysis. Therefore, detection 
of blinks is used to remove them from the original signal for further analysis. 

6.7 SUMMARY 

The methodology used in the experiment includes gradient calculation and a 
modified threshold function to detect the blinks in EEG signals. As a result, this 

TABLE 6.1 
Algorithm accuracy verified for EEG data obtained from two subjects   

method for detecting blinks is computationally cost effective compared to other 
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traditional methods (Sawant & Jalali 2010, HafeezUllah et al 2017, Lotte et al 
2007). Blinks can also be used to measure alertness, drowsiness, and other cog-
nitive states. In the future research can be extended towards future research can be 
extended towards detection of different mind states by using the blink detection 
technique. Further pattern recognition techniques using deep neural networks with 
a multiclass classifier can be implemented to recognize cognitive states. 

Exercises  
1. What is EOG and how do you acquire EOG data?  
2. What is a blink and which part of the brain or neural segment regulates 

a blink?  
3. What is the use of a blink and which psychological and philological 

states of a human can be detected from a blink?  
4. Discuss the step-wise processing to extract blinks from EOG signals.  
5. Discuss the modified threshold technique to extract blinks from an EEG. 
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7 Saccade and Fix 
Detection from  
EOG Signals    

OVERVIEW 

This chapter discusses different methods employed to detect and segregate the 
saccade and fixation from the EOG data. The entire process of saccade and 
fixation detection from EOG data is elucidated through a block diagram. The 
varying baseline of the EEG data is characterized. A baseline drift removal 
algorithm is proposed and discussed in this chapter. 

7.1 INTRODUCTION 

The physical activities of human eye constitute of three repetitive activities: 
saccade, fix, and blink. Blinking is an involuntary action; the saccades and fix 
correspond to different cognitive actions of human beings (Panigrahi et al 
2019a). Often these actions are guided with active correlation of actions of 
neurological activities of the brain. A saccade is defined by the movement of the 
eyeball from one viewpoint to another. A saccade action can be captured through 
the EOG signal that is characterized by sudden deflection of the voltage fluc-
tuation in the EOG. Study and analysis of saccadic movement and its pattern has 
many applications that can lead to the understanding of cognitive capabilities of 
human beings (Panigrahi et al. 2019b). 

The advancement of an EEG acquisition system and development of so-
phisticated computing methods to process EOG signals has led to its widespread 
applications. Artifacts of EEG signals are being used to control IoT devices, to 
compute cognitive capabilities and agility of the mind, to forecast any epileptic 
activity, etc. 

Here, we propose a method to compute and delineate the EEG signal. We 
apply a wavelet decomposition transform followed by a median filter to segre-
gate the EEG signal corresponding to the saccadic movement. In this process, 
first we apply the wavelet denoising transform (Patil & Chavan 2012) to remove 
the local fluctuations from the signal. Then, CWT is applied to find the coeffi-
cients required to detect the saccades and eventually the fixes. 

Finally, we design a function that uses positive and negative thresholds to 
detect the saccadic movements in the signal. It is observed that fixations are 
interleaved by way of two saccades of the eye (Henderson & Andrew 2003;  
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Henn & Cohen 1973). This process of saccade detection in the EOG signal is 
performed after removing the baseline DC value. This process is depicted in the 
block diagram given in Figure 7.1. 

7.2 METHODS 

7.2.1 BLOCK DIAGRAM 

The overall block diagram depicting the process of delineating saccade and 
fixation from EOG data is given in Figure 7.1. The process uses the baseline 
removal algorithm, which is a new technique implemented and experimented. 
The result of the baseline-removed EEG signal along with the original signal is 
plotted in Figure 7.2 for comparison. The two distinct approaches experimented 
to detect the saccade from the EEG signal are  

a. EEG Signal → Baseline Removal → Median Filtering → Thresholding 
of Signal for Saccade → Saccade Detection  

b. EEG Signal → Base ine Removal → Wavelet Denoising → 
Thresholding for Saccade → Saccade Detection 

7.2.2 BASELINE DRIFT REMOVAL 

Baseline drift is the short time variation of the baseline from a straight line 
caused by electric signal fluctuations. Baseline drift can occur due to breathing, 
loose contact between electrode and skin, or body movement. It compromises the 
information content in the signal. In order to remove this, we performed mul-
tilevel 1D wavelet decomposition at level 12 using a reverse bi-orthogonal 
wavelet “rbio6.8” (Gupta & Singh 1996). Reverse bi-orthogonal wavelets are 
obtained by bi-orthogonal wavelet pairs that exhibit linear properties that are 
advantageous for our experiment. 

Figure 7.2 represents the comparison between the original signal and signal 
after baseline drift removal. Baseline drift removal results in proper analysis of 
the signal as described above. As discussed in Chapter 3, the sources of baseline 
wander maybe different, but it always appears as a low-frequency artifact that 
introduces slow oscillations in the recorded signal. 

FIGURE 7.1 Block diagram for Saccade detection system.    
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7.2.3 NOISE REMOVAL 

We observed that the information contained in the EOG signal had noise, which 
affected the process of detection of the saccades. This was due to bad placement 
of the electrodes, muscle twitches, random head movements, and local electrical 
interferences. The removal of this noise required careful selection of the filtering 
technique to be applied. Based on our research, median filtering and wavelet 
denoising appeared to be best suited for our problem. 

7.2.4 MEDIAN FILTERING 

Median filtering is a window-based noise removal technique where the window 
takes the median of its values and replaces them with it. For our problem, it was 
particularly helpful as it preserved the steep nature of the saccades. However, the 
window size of the median filter was a matter of concern as large windows 
distorted the edge and shape of the saccades and also possibly removed the small 
saccades. As a result, it was a trade-off between precision versus noise. 

For our application, the order of the filter was varied between 10 and 40 and it 
was visually observed and concluded that the best possible parameter was a 
median filter of 19 order and window size of 74 ms. This filter not only prevented 
the removal of small saccades of interests but also successfully removed the 
noise that was present.  Figure 7.3 describes the comparison of the process. 

FIGURE 7.3 Illustration of filtering techniques applied on the signal.    

110                                                                   Brain Computer Interface 



7.2.5 WAVELET DENOISING 

Wavelet denoising is a noise removal technique where the mother wavelet is 
passed through the signal and the correlation coefficients are obtained (Gao et al 
2010). After that, a soft/hard thresholding is applied that removes the low am-
plitude noise from the signal. 

For our application, the built-in MATLAB® function “wden” was used to 
perform the denoising. The signal was denoised using the “Symlet” wavelet of 
level 1 and soft thresholding was applied on the coefficients with a universal 
threshold th = lnlnN , where N is the length of the time series. 

The results of the noise removal obtained independently were taken and were 
averaged out and the resulting signal obtained was devoid of noise of higher 
frequency. 

7.2.6 SACCADE DETECTION 

Saccades are observed as abrupt changes in voltage (similar to step functions). 
Continuous wavelet transform (CWT) (Du et al 2006; Nenadic & Burdick 2005) 
is very sensitive to this kind of change. We applied the “Haar” mother wavelet 
with a scale of 20 at level 12 to the signal after baseline removal and denoising 
(Bulling et al 2011). The Haar wavelet is a sequence of rescaled “square-shaped” 
functions that together form a wavelet. Therefore, due to similarity with the 
saccade’s shape, the Haar wavelet was chosen to carry on the experiment. 

A threshold of ±25 was applied on the resulting CWT coefficients. Positive 
and negative peaks above the thresholds were marked to represent the occurrence 
of the saccades. Corresponding points were also marked in the original signal 
and the result is given in Figure 7.4. 

7.2.7 FIXATION 

A subject maintaining constant visual gaze on any particular location is known as 
fixation. The term “fixation” can either be used to refer to the point in time and 
space of focus or the act of fixating. Gaze points show what the eyes are looking 
at. If a series of gaze points is very close – in time and/or space – this gaze 
cluster constitutes a fixation, denoting a period where the eyes are locked to-
wards an object. In our experiment, the subject was asked to concentrate on the 
image in front and therefore we can conclude that in between two saccades there 
is a fix. After detection of saccades, the time interval between two saccades are 
marked as fix, as shown in Figure 7.5. 

7.3 SUMMARY 

In this experiment, saccades and fixes were successfully segregated after ap-
plying appropriate noise removal and baseline drift removal techniques 
(Figure 7.5). Our future workproposal is to determine the direction of the eye 
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movement using detected saccades and plot a graph for further analysis. With the 
detected fixes, we also propose to detect the presence of P300 event-related 
potentials. This will relate to whether the subject is looking at an object of in-
terest or not. 

Exercises  

1. What are saccade and fix artifacts in EOG signals? Give some physical 
significances of saccade and fixed in EOG data.  

2. What are baseline drifting phenomena in EEG signals?  
3. List different noise removal techniques for EEG signals.  
4. Describe median filtering.  
5. Describe wavelet denoising techniques in the context of EEG signals.  
6. Describe the process of detection of saccade and fixation from EEG 

data.  
7. Characterize fixation and how it manifests in time and space. 
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8 Detection of P300  
and Its Applications    

8.1 INTRODUCTION 

The human brain is the most complex organ of the body and it is at the center of 
the driving block of the human nervous system. In fact, more than 100 billion 
nerve cells are interconnected to build the functionality of the human brain. Such 
a complicated architecture allows the brain to control the body as well as carry 
out the executive functions, such as reasoning, processing thoughts, and planning 
for next tasks. Interestingly, electrophysiology and hemodynamic response are 
the two techniques that have been used to study this complex organ to understand 
the mechanism the brain applies to finish work. Typically, electrophysiological 
measurements are performed by placing electrodes or sensors on the biological 
tissue (Donchin et al 2000). In neuroscience and neuroengineering, the elec-
trophysiological techniques are used for studying electrical properties by mea-
suring the electrical activities of neurons in the form of an electroencephalogram 
(EEG). An EEG may be measured by two different approaches: invasive and 
non-invasive. Invasive procedures need a surgery to place the EEG sensor deep 
under the scalp. In comparison, non-invasive procedures place the electrodes on 
the scalp. One of the ways to study the brain is to stimulate it by presenting a 
paradigm. 

The event-related potential (ERP) was first reported by Sutton (Klobassa et al 
2009). An ERP is an electro-physiological response or electro-cortical potentials 
triggered by a stimulation and firing of neurons. A specific psychological event 
or a sensor can be employed to generate the stimulation. In general, visual, 
auditory, and tactile are three major sources of ERP stimulation. For instance, an 
ERP can be elicited by a surprise appearance of a character on a visual screen, or 
a “novel” tone presented over earphones, or by suddenly pressing a button by the 
subject, including myriad other events. The presented stimulus generates a de-
tectable but time-delayed electrical wave in an EEG. An EEG is recorded 
starting from the time of presenting the stimulus to the time when the EEG 
settles down. Depending on the necessity, a simple detection method such as 
ensemble averaging or advanced processes such as linear discriminate analysis 
or support vector machine algorithms are applied on an EEG to measure the 
ERP. This chapter discusses the application of an ERP in the brain computer 
interface (BCI), where a P300 wave from the EEG is of particular interest. An 
ERP is time-locked to an event and appears as a series of positive and negative 
voltage fluctuation in the EEG, which are referred to as P300 components. 
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The secondary purpose of this chapter is to discuss various utilities and ap-
plications of P300 event-related potentials (ERPs). Also, we discuss how P300 
has emerged as the artifact for a brain computer interface (BCI). Researchers and 
students will find this chapter interesting, with a preliminary description of a 
P300 ERP. 

8.2 WHAT IS A P300 ARTIFACT IN AN EEG? 

Sutton et al. in 1965 discovered the P300 signal. Since then, researchers in the 
field of ERP have analyzed it thoroughly. A P300 signal is an endogenous ERP. 
For most adults, in between the ages of 20 and 70, the latency range is 250–400 
ms for auditory stimuli. The latency is defined as the speed of stimulus classi-
fication that results from discrimination of one event from another. Shorter la-
tencies indicate superior mental performance compared to longer latencies. A P3 
amplitude reflects stimulus information. It indicates that greater attention pro-
duces larger P3 waves. 

The P300 is an event-related potential (ERP) endogenous component that has 
a positive deflection that occurs in the electroencephalogram (EEG) recorded 
from the scalp and typically elicited approximately 300 ms after the presentation 
of an infrequent stimulus (such as a visual, auditory, or somatosensory event) 
(Donchin et al 2000). The specific set of circumstances for eliciting a P300 is 
known as the oddball paradigm, which consists of presenting a target stimulus 
amid more frequent standard background stimuli. Under this paradigm, a P300, 
among other ERPs, is unconsciously elicited every time a subject’s brain detects 
the target stimulus (the rare event). In fact, the P300 is a reasonable input signal, 
with desirable properties and stability to control brain computer interfaces 
(BCIs) (Klobassa et al 2009), applications requiring precise real-time detection 
as well as memory and computation optimization (Hoffmann et al 2008; Pires 
et al 2011). The feature vector dimensionality reduction has been a popular 
choice to achieve these goals within the BCI community because it decreases the 
complexity of classifiers (Krusienski et al 2008). A reduced P300 amplitude is an 
indication of the broad neurobiological vulnerability that determines disorders 
within the externalizing spectrum. 

The features of a P300 have been represented in time, frequency, time- 
frequency, and shape domains by using, among others, wavelet transform 
(Bostanov 2004), genetic algorithms (Atum et al 2010), and common spatial 
patterns (Krusienski et al 2007). Additionally, the approaches more commonly 
used for P300 classification are linear discriminate analysis (LDA), step-wise 
linear discriminate analysis (Krusienski et al 2006), and support vector machines 
(Kaper et al 2004). 

8.3 CHARACTERISTICS OF P300 WAVEFORMS 

A P300 is a form of visually evoked potential (VEP) and a P300 ERP 
(Figure 8.1) is embedded within the EEG signal recordable from the scalp of the 
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human brain. The P300 positive deflection occurs in the EEG about 300 ms after 
an eliciting stimulus is delivered, which is the major reason it is termed a P300. 
Depending on the components’ appearance following the eliciting event, the 
P300 can be divided into two parts: exogenous and endogenous. Out of the 300 
ms duration of the waveform, early (exogenous) components are distributed over 
the first 150 ms. The longer latency (endogenous) components elicit after 150 
ms. The latency of the P300 wave can be within the range from 250 to 750 ms. 
Research has established that a P300 is elicited by the decision making or 
learning that a rare event has registered by the brain. Some things appear to be 
learned by the brain if and only if they are surprising. The variable latency is 
associated with the difficulty of the decision making. In addition, the largest 
P300 responses are obtained over the parietal zone of the human head while it is 
attenuated with the electrodes that are gradually placed farther from this area. 

8.4 HOW TO GENERATE OR INDUCE A P300 

To generate the P300 ERP, three different types of paradigms are used: 
(1) single-stimulus, (2) oddball, and (3) three-stimulus paradigms. In each case, 
the subject is instructed to follow the occurrence of the target by pressing a 
button or mentally counting. Figure 8.2 presents these paradigms. The single- 
stimulus paradigm irregularly presents just one type of stimuli or target with zero 
occurrence of any other type of target. A typical oddball paradigm can be pre-
sented to the subject with a computer screen, a group of light-emitting diodes 
(LEDs), or other medium to generate a sequence of events that can be cate-
gorized into two classes: frequently presented standard (non target or irrelevant) 
and rarely presented target stimuli. In an oddball paradigm, two events are 
presented with different probabilities in a random order, but only the irregular 

FIGURE 8.1 P300 signal with high peaks in the EEG.    
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and rare event (the oddball event) embosses the P300 peak into the EEG about 
300 ms after the stimulus onset. The three-stimulus paradigm is a modified 
oddball task that includes a non-target distracter (infrequent non-target) stimuli 
in addition to target and standard stimuli. The distractor elicits a P3a that is large 
over the frontal/central area. In contrast, a target elicits a P3b (P300), which is 
maximum over the parietal electrode sites. Though P3a and P3b are sub-
components of P300, P3a is dominant in the frontal/central lobe with a shorter 
latency. 

8.5 P300 DETECTION 

Detection of a P300 requires the subject to properly recognize the stimulus event 
to generate a strong and perceivable P300 ERP. A noticeable P300 amplitude is 
also critical for information transfer, which might not be possible if the stimu-
lation is presented too fast or the targets appear too frequently (Kaper et al 2004). 
It is important to design a BCI paradigm with easily discriminable stimuli. A 
BCI should be adjustable to the users’ adaptability of signal detection by con-
trolling the stimulus presentation at a slower rate, brighter intensity, or with 
otherwise increasing perceptibility. Studies also show that target-to-target 

FIGURE 8.2 Schematic account of three paradigms: single-stimulus (top), oddball 
(middle), and three-stimulus (bottom). Elicited ERP is presented at the right.    
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interval (TTI) plays an important role in evoking a larger P300 ERP. If the 
overall BCI paradigm presents the stimulation at a constant rate, targets with low 
probability result in longer TTI, which is also a useful means to obtain percei-
vable P300 amplitude. In sum, for a stronger P300 ERP, the BCI system should 
maintain a minimum probability or maximum TTI. Unfortunately, such an action 
reduces the frequency of the target stimulation and, thereby, reduces the overall 
system speed. This trade-off has been explored in several early BCI studies. It is 
evident that due to the nature of P300 ERP generation, a P300 amplitude can be 
increased by incorporating high temporal uncertainty. In this case, subjects are 
completely unaware of the exact time when the stimulation occurs. A few arti-
cles reported that a P300 amplitude becomes larger for familiar or learned items. 
For example, if a list of characters is presented to a subject repeatedly, P300 
amplitudes for repeated characters (which are recalled by the subject) are higher 
than the characters that are forgotten by the user. 

In addition, there are several other factors which should be considered for 
P300 detection. Among these are attentional blink, which occurs in case the 
intervals between two different targets become less than 500 ms; repetition 
blindness, which leaves the second target unnoticed if two identical targets flash 
at intervals between 100 and 500 ms; and habituation, which makes a faint P300 
amplitude due to the repeated presentation of the same stimulus. Apart from this, 
human factors such as motivation, fatigue, and user comfort ability affect the 
performance and accuracy of the P300 BCI, which should be considered in the 
design of paradigms. 

8.6 SIGNAL PROCESSING METHODS 

A P300-based BCI measures EEG signals from the human scalp and processes 
them in real time to detect a P300 ERP that reflects the subject’s intent. As noted 
earlier, P300-evoked potential is elicited as positive EEG peaks in reaction to 
infrequent or irregular appearance of stimuli. As the EEG signals are typically in 
the order of 100 μV, an appropriate signal processing strategy is critical in re-
vealing the electrical information and relevant complex issues in relation to the 
distinctive cognitive functions. Moreover, optimization of accuracy in a P300 
detection and enhancement of the system speed heavily depends on a suitable 
signal processing scheme. 

An EEG-based BCI system can have three stages to process signals: pre-
processing, feature extraction, and detection and classification of a P300. Pre- 
processing is accomplished after data acquisition but before extracting any 
feature. Pre-processing is an important step that leaves the significant informa-
tion intact while amplifying EEG signals and simplifying subsequent processing 
operations. It is also important to note that the classifier performance depends 
greatly on an efficient data pre-processing stage. Signal strengthening ensures 
signal quality by improving the so-called signal-to-noise ratio (SNR). The pre-
sence of background noise may bury the interesting brain patterns into the rest of 
the signal, making it difficult to detect a P300 response, resulting in a bad or 
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small SNR. On the other hand, a P300 detection and classification becomes 
easier when the input EEG signal has a high SNR. After acquiring the EEG 
signal from microelectrodes or macroelectrodes, the electrical information is 
amplified by a factor as high as 5,000–10,000 and converted from an analog to a 
digital signal. Though analog to digital A/D conversion can be done at a rate of a 
few GHz, the human brain does not operate that fast to justify such a high 
sampling frequency. EEG data is typically sampled at 256 Hz, which satisfies the 
Nyquist sampling theorem as this rate is larger than two times the maximum 
frequency generated by cognitive actions, yet low enough to avoid irrelevant 
data. To realize the high SNR, band-pass filtering is utilized to remove the DC 
bias and high-frequency noise. Sometimes researchers also combine transfor-
mation and filtering techniques and apply them to remove or abate signal 
components that are not of interest for the application. As AC current is usually 
of 50–60 Hz, depending on the particular living zone of the globe, a notch filter 
at either 50–60 Hz is used to remove the powerline effect on an EEG. During the 
filter setup, it should be kept in mind that certain types of artifacts occur at 
known frequencies and cognitive activity usually limits itself in the 3–40 Hz 
range. 

Once the EEG is preprocessed, a variety of approaches can be applied to 
extract the features and classify the P300 ERP. A calibration session is exploited 
to develop these feature vectors. Before the classification test and actual use of 
the P300 BCI, the classifier is trained and supervised using a classification al-
gorithm and the feature vectors are labeled as “target” and “non-target.” On the 
other hand, during the classification task, the feature vectors corresponding to 
known stimuli are submitted to a trained classifier. The trained classifier dis-
criminates the brain response best resembling a target stimulus from a non-target 
stimulus. In the case of a P300 Speller, the classifier detects the letter with a 
maximum probability. 

Different methods have been employed for feature extraction, such as discrete 
wavelet transform, independent component analysis, and principal component 
analysis. As stated earlier, extracted features are given as input to the EEG 
classifiers for P300 ERP identification and classification applying different 
classification methods. Linear discriminate analysis (LDA) is a popular pattern 
classification technique used by Guger et al. Step-wise linear discriminate ana-
lysis (SWDA) has evolved from the LDA classification method that uses only 
selective features. Farwell and Donchin used SWDA to classify the ERP using 
individual averages for rows and columns of a 6 × 6 row/column paradigm. 
Some classification methods apply machine learning techniques for the P300 
detection, such as support vector machines (SVMs). A SVM takes advantage of 
small data size to give high throughput at a high transfer rate. However, LDA 
outperforms SVM classifiers for the P300 detection if the input data is com-
paratively larger in size. Moreover, many BCI groups have exercised their study 
with other classifiers such as Bayesian linear discriminate analysis (BLDA), 
Pearson’s correlation method (PCM), linear support vector machine (LSVM), 
and Gaussian support vector machine (GSVM). Although different features and 
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classifiers have been compared, there has not been a comprehensive comparison 
of all different feature extractions and classification methods applied to the same 
data set. The most frequently used signal processing methods have been de-
scribed in Table 8.1 with reference to the relevant study. 

8.7 APPLICATIONS OF P300 SYSTEMS 

A P300 BCI is particularly suitable for select applications. For instance, the most 
typical application of a P300 BCI is a P300 speller. In such an arrangement, the 
visual paradigm is made up of a matrix consisting of letters of the alphabet. 
Depending on the requirement, a speller can be optimized for quick selection or 
accuracy of the spelled letters. Similarly, other P300 BCI investigations have 
made extensive progress to develop other attractive applications such as painting 
artwork, controlling a smart home, designing games, stroke rehabilitation, lie 
detection, and furnishing Internet tasks. However, recognizing the importance of 
a P300 speller, a detailed description of a P300 speller is presented in the fol-
lowing sections. An overview of some popular applications of a P300 is depicted 
in Figure 8.3. 

TABLE 8.1 
Summary of the signal processing methods used to detect a P300 from an 
EEG signal    

Methods System Performance  

Discrete wavelet transform (DWT) Accuracy >90%, 6 × 6 targets on the menu; 36 
feature vectors; feature vectors were continually 
ranked and either a correlation/threshold was used 
to select a cell 

Genetic algorithm (GA) Variable accuracy, 34%~90% high resource 
consumption; possible premature convergence 

Bayesian analysis, Bayesian linear 
discriminant analysis (BLDA) 

Feature vector is labeled to the class to which it has 
the highest probability with 95% false positive 
classification accuracy 

Linear discriminant analysis (LDA); simple, 
low computation 

Accuracy for the able-bodied subjects was on 
average close to 100% and the best classification 
accuracy for disabled subjects 

Support vector machine (SVM); linear and 
nonlinear (Gaussian) modalities, faster 
processing 

96.5% accuracy 

Maximum likelihood (ML) Feature detection using a priori knowledge; 
accuracy 90% with a communication rate of 4.19 
symbols/min    
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8.7.1 SMART HOME 

A smart home populates different electronic devices that can be controlled using 
a P300 BCI. A virtual reality–based smart home was the test-bed of such a BCI 
application. This BCI system was allowed to execute a group of modest con-
trolling commands such as moving the cart or wheelchair, receiving or making 
phone calls, operating a television, switching the light on and off, playing a song 
in a multimedia player, or controlling doors and windows. 

8.7.2 INTERNET USE 

A P300 BCI can be used to select the Internet keys to provide assistance to 
amyotrophic lateral sclerosis (ALS) patients browsing websites. Subjects can 
surf through Internet pages and select the desired links to browse the Internet or 
read the news using the P300 activation. 

P300 based
Applications

Smart Home

Internet use

Painting 
Task

BCI Gaming

Stroke
Rehabilition

Lie
Detection

P300 Speller

Row Column
Paradigm

Single
Column

Paradigm

FIGURE 8.3 Popular applications of a P300.    
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8.7.3 PAINTING TASKS 

It was observed by researchers that performing natural tasks brings a better 
quality to life in ALS patients. A P300 BCI application known as “brain 
painting” (BP) offers a medium of entertainment for patients by improving their 
playful mood. 

8.7.4 BCI GAMING 

A P300 BCI has been used to design a paradigm to control simple games that do 
not require strong time constraints, such as playing chess. Other popular games 
using a P300 BCI are MindGame, Bacteria Hunt, Brain Invaders, etc. In 
MindGame, the user’s move depends on the brain response; if a P300 ERP is 
stronger, the game character can move a larger distance. In Bacteria Hunt, users 
can change the color of the image, or enlarge or rotate it. Similarly, in Brain 
Invaders, the user needs to select an appropriate target arm to destroy the aliens, 
which makes the game interesting to the video game players. As no training is 
required to start playing simple P300 BCI games as mentioned here, it can be 
useful to familiarize individuals to the BCI tools. In fact, proper design to utilize 
the P300 wave’s strong dependence on attention would allow the scientists to 
study attention training and effects of engaging in a particular task. 

8.7.5 STROKE REHABILITATION 

One of the sufferings of post-stroke patients is that they would like to say what 
they want but the trouble of cortical circuits will not allow them to express it 
through natural motor pathways. A P300 BCI paradigm was used to provide a 
communication channel to the participants diagnosed with post-stroke aphasia. A 
P300 BCI not only allowed them to activate their language circuits, but also 
made their post-stroke recovery faster. 

8.7.6 LIE DETECTION 

Different brain regions work together and generate activities to process deceptive 
information that elicits a P300 ERP in the brain signal. The concealed in-
formation can be identified through the concealed information test (CIT). Most 
of the earlier experiments with lie detectors used just a few channels, limiting the 
number of EEG features to classify these two types of information. These studies 
mostly used an oddball paradigm using three different types of stimuli: target, 
probe, and irrelevant. Like a typical P300-based system, the targets are presented 
rarel,y though they are usually made of irrelevant items that are presented in the 
paradigm to ensure participants’ cooperation in discriminating the target items 
from others. On the contrary, the irrelevant items are presented frequently, but 
they are neither related to the criminal act nor related to the experimental task. 
The underlying principle of the item is that subjects will have different responses 
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to stimuli according to their crime-relevant status. The probes are the critical 
detail stimuli under investigation that appear infrequently. Probes elicit a P300 
only for subjects who are knowledgeable or are deceiving the information. 
Otherwise, they act similarly as irrelevant for the subject. However, to ensure 
reliable differences between liars and truth-tellers, it is important to engage 
multiple channels, resulting in ERP features from different brain areas. One 
study investigated the functional connectivity of the brain network under a de-
ception condition. They found the correlation between different EEG signals 
from multiple channels to understand the interactions between the brain regions 
and functional connectivity. Their results suggest that incorporation of additional 
features helps separate the innocent group from the liars with about 90% 
accuracy. 

8.7.7 P300 SPELLER 

Perhaps the most important and popular use of a P300 BCI is a P300 speller. A 
BCI speller has been utilized as a communication tool for the last two decades by 
people suffering from various neuromuscular disorders such as ALS, brainstem 
stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophy, multiple 
sclerosis, and other impaired patients who are unable to use the normal neuronal 
pathways. Persistent research in a BCI to improve the accuracy and speed of a 
P300 speller has resulted in numerous P300 stimuli presentation paradigms. 
They are discussed in detail in the following sections. 

8.7.7.1 Row/Column (RC) Paradigm 
The Farwell and Donchin matrix speller paradigm was the first BCI row-column 
speller (Figure 8.4). They used an alphabetical square matrix interface to produce 
a P300 in an EEG. Rows and columns of this 6 × 6 matrix were constructed with 
alphanumeric characters. These characters are flashed randomly following either 
a row or a column and the subject is asked to mentally count the number of times 
that the attended character is flashed. During the brain signal measurement in the 
parietal area, the P300 ERP appears in an EEG as an evoked response. However, 
the non-flashing rows and columns do not generate a P300. Due to the nature of 
the stimulation mechanism and to increase the accuracy of detection, the P300 
system requires multiple trials to reach an acceptable accuracy. In practice, the 
non-target rows also generate a P300 for a very short amount of time but 
the amplitude is too faint to detect. The computational device can determine the 
target row and column after averaging several P300 ERP responses. Due to the 
averaging task, it may take a longer time to detect a character. In general, re-
ducing the number of characters would eliminate the longer detection time but 
not without a loss in spelling character options. So far, this is the most used and 
discussed P300 speller in the BCI community. 
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8.7.7.2 Single Character (SC) Paradigm 
This is possibly one of the simplest spellers designed so far. It randomly flashes 
one character at a time with very short interflash interval (Figure 8.5). This 
paradigm also uses a 6 × 6 alphanumeric matrix like the RC paradigm. It was 
reported that the RC paradigm takes less time than the SC paradigm to flash all 
the characters at least once. Nevertheless, it was noticed that if the number of 
flashes is constant, the SC speller produces a stronger P300 ERP than the RC 
speller. 

8.8 SUMMARY 

An ERP is a change in voltage that is time-locked to a specific sensory, motor, or 
cognitive event. An ERP provides a distinctive pattern as an indication of how 
the stimulus is processed. Many BCI applications have been developed based on 
an ERP as a response to a stimulus. Among these, a P300-based BCI is the most 
prominent ERP BCI. Over the last two decades, countless P300 BCI works have 

FIGURE 8.4 The row-column (RC) paradigm. One row (MNOPQR) is flashing.    

FIGURE 8.5 Single character (SC) paradigm: single character (M) is flashed.    
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exploded beyond laboratory experiments with the help of modern high-speed 
computational and sensor technologies. 

P300 applications range from the potential improvement of lifestyle to fi-
nancial benefits. In fact, fundamental research on recording hardware, signal 
processing methods, stimulus presentation parameters, supporting interaction 
paradigm, and neurophysiology will further refine the P300-based BCI design. 
Though a BCI design is accomplished by keeping a specific application in mind, 
further insightful study and research can revive opportunities toward exploring 
other usable areas that are still not unearthed. This chapter has covered several 
aspects and applications of P300 ERPs in BCI research. The interfacing para-
digm of a P300 BCI can be designed to capture the ERP-evoked potentials in a 
manner so that many human factors are properly taken care of to diminish their 
overall negative impact. Many new applications are also emerging with an ef-
ficient design of the control interface and associated signal processing scheme. 

Exercises  

1. What are P300 artifacts in an EEG? What are the characteristics of a 
P300 signal?  

2. What are the applications of a P300 signal?  
3. What is an ERP (event-related potential) and how is an ERP manifested 

in an EEG?  
4. How do you induce a P300 or generate a P300 in a subject?  
5. What is a different feature extraction method used to extract features 

from a P300 signal?  
6. What is a P300 speller and what is it used for?  
7. What is a row-column paradigm? 
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9 Brain Computer 
Interface Using P300   

Advances in cognitive neuroscience and brain imaging technologies have en-
abled the brain to directly interface with the computer. This technique is called a 
brain computer interface (BCI). This ability is made possible through the use of 
sensors that can monitor some of the physical processes that occur inside the 
brain. Researchers have used these kinds of technologies to build brain computer 
interfaces (BCIs). Computers or communication devices can be controlled by 
using the signals produced in the brain. This is very useful for all those who are 
not able to communicate with the outside world directly. They can easily forecast 
their emotions or feelings using this technology. In a BCI, we use oddball 
paradigms to generate event-related potentials (ERPs), like the P300 wave, on 
targets that have been selected by the user. 

The basic principle of a BCI is to detect the presence of a P300 in the 
electroencephalogram (EEG). Then, to classify the combination of different 
P300 signals for determining the right kind of task. In this chapter, both parts i.e., 
the classification as well as characterization part, are presented in a simple and 
lucid way. The raw data was processed through MATLAB® software and the 
corresponding feature matrices were obtained. Several techniques such as nor-
malization, feature extraction, and feature reduction were carried out. 

9.1 INTRODUCTION 

Brain computer interfaces (BCIs) are tools for controlling computers and other 
devices without using muscular activity, but employing user-controlled varia-
tions in signals recorded from the user’s brain. One of the most efficient non- 
invasive BCIs is based on the P300 wave of the brain’s response to stimuli and is 
therefore referred to as the P300 BCI. Many modifications of this BCI have been 
proposed to further improve the BCI’s characteristics or to better adapt the BCI 
to various applications. However, in the original P300 BCI and in all of its 
modifications, the spatial positions of stimuli were fixed relative to each other, 
which can impose constraints on designing applications controlled by this BCI. 
We designed and tested a P300 BCI with stimuli presented on objects that were 
freely and randomly presented on a screen. The process of a P300 BCI is de-
picted in Figure 9.1. 
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9.2 THE P300 BCI AND MOVEMENT 

A brain computer interface (BCI) is a communication system that provides the 
user with the ability to send messages or commands to the external world without 
using the brain’s normal output pathways, i.e., without using peripheral nerves 
and muscles (Wolpaw et al 2002). BCIs are primarily developed as an assistive 
technology to help people with severe paralysis, but this technology is also in-
creasingly used by healthy people, especially in video games (Plass-Oude Bos 
et al 2010). Within BCI technology, fundamentally new aspects of interaction 
between the brain and computers emerge because this technology provides 
completely new “output pathways” for the brain (Wolpaw 2007). The operation 
of these pathways typically requires conscious control, but interestingly, un-
conscious BCI control is also possible (Kaplan et al 2005). 

Currently, the most commonly used BCI is likely the P300-based BCI (the 
P300 BCI) (Mak et al 2011). In this BCI, available commands are coded by 
stimuli presented at different locations and times. The user attends the stimuli 
presented at a location associated with a desired command and ignores the sti-
muli presented at all other locations, which are associated with different com-
mands. The BCI analyzes the user’s electroencephalogram (EEG), which is 
typically recorded non-invasively (from the scalp), and can recognize which 
stimuli are attended because this behavior results in a specific pattern in his or 
her EEG. As soon as the BCI recognizes one of the stimuli as attended, the 
system executes the command that corresponds to this stimulus (Figure 9.2). 

All existing variations of the visual P300 BCI design share a common feature: 
the positions at which stimuli are presented are spatially fixed. The original 
version of the P300 BCI (Farwell & Donchin 1988) was developed for spelling, 
and for this purpose, it was convenient to organize the stimulus positions in a 
matrix (see Figure 9.3(b)). Most of the current P300 BCIs are also spellers, and it 
is surprising that the matrix design still prevails. Additionally, various new ap-
plications of the P300 BCI in which the matrix is used as a “control panel” for 
entering commands, e.g., for robots or wheelchairs, are common. However, the 
matrix design is not always appropriate because more freedom is often needed in 
positioning the locations to be attended for entering commands. Moreover, at 
least in several applications, moving stimulus positions may be useful. 

Consider, for example, a user of an assistive or telepresence mobile robot 
controlled with a P300 BCI. To enter a command, the user must concentrate for a 
considerable time on stimuli presented on a control panel. After recognition of 
the command by the BCI, the user’s attention must switch to a remotely located 
robot to check how the command is executed. The attention then must return to 
the control panel to enter the next command. These multiple attention shifts not 
only pose an unnecessary burden on the attention system (already heavily loaded 
with the task of attending the stimuli) but also make more dynamic control 
difficult, e.g., in such situations that require fast canceling of the current op-
eration if an error occurs. Placing the control panel on robotic devices or even 
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placing several of the panel’s elements on separate moving parts of such devices 
might be a more efficient solution, at least in certain cases. 

Video games are another prospective application to which the standard P300 
BCI is not well suited due to this BCI’s static design. At least several of the P300 
BCI’s characteristics are certainly suited to gaming applications: the BCI does 
not require prior training for the user to start operating it, and a very high per-
centage of people are able to use it (Guger et al 2009). Surprisingly, among the 
many BCI games already proposed (see, e.g., Plass-Oude Bos et al 2010 for a 
review), only few are based on the P300 BCI technology (Kaplan et al 2013). 
The shortcomings of the P300 BCI in its application in gaming are currently 
being successfully overcome by various means (Kaplan et al 2013). One of the 
possible answers to the question of why BCI game developers are reluctant to 
use the P300 BCI is its static design; games without movement on the screen are 
relatively rare and often not very engaging. 

FIGURE 9.2 Four-session single-trial and Triple-Trial tests with a Game-like task.    
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Stimuli are essential to the P300 BCI. To avoid the division of spatial at-
tention between an important game element and a stimulus, the element and the 
stimulus should have the same or at least overlapping spatial locations (Kaplan 
et al 2013). Further integration of the BCI into a game and further support for 
maintaining attention to the same location can be ensured if the result of the 
command entered through the BCI acts upon the elements (e.g., enlarges, 
transforms, multiplies, or destroys the elements) (Kaplan et al 2013). 

A P300 BCI design that is vivid and flexible compared with standard matrix- 
based approaches appears to have already been achieved by BCI developers, who 
proposed presenting stimuli on freely placed virtual objects (e.g., Bayliss 2003;  
Donnerer & Steed 2010; Yuksel et al 2011) or even highlighting real objects as 
stimuli (Mak et al 2011; Yuksel et al 2010, 2011). However, even in these BCIs, 
the stimulus objects were static, as in all P300 BCI-controlled games described 
in the literature to date. This feature is a serious drawback of the P300 BCI 
games compared with games based on other BCIs, such as motor imagery BCI, 
in which the movement of an attended object is relatively common. 

In most popular video games, the visual elements on which attention is fo-
cused are typically not static, but moving, and that movement plays an important 
role in making these games engaging. It is difficult to create an attractive game 
on the basis of the static control panel of the standard P300 BCI. 

FIGURE 9.3 Spatial organization of stimulus in the P300 BCI compared with the 
oddball paradigm. (a) Visual oddball paradigm. (b) Matrix (“classical”) P300 BCI layout 
with stimuli grouped into rows and columns. (c) P300 BCI layout with fixed arbitrary 
stimulus positions and single-cell presentation mode (without grouping). (d) P300 BCI 
layout with moving stimulus positions and single-cell presentation mode (a design used in 
this study). S, standards (non-target stimuli). T, targets (target stimuli). In these examples, 
a flashing letter B is the target stimulus. Note that the content at the location that should be 
attended (marked with a grey circle) significantly varies with sequential presentations in 
the oddball paradigm (a) (both targets and standards are presented there), whereas in the 
P300 BCI (b, c, d), the attended location can be in one of two states only (target stimulus 
on/off; the standards are presented at other locations).    
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However, the P300 BCI can be used without prior training by a very high 
percentage of people (Guger et al 2009), unlike nearly all other BCIs. This 
feature appears to be particularly important in such a potentially highly mar-
ketable application as video games. 

It therefore seems logical to combine the P300 BCI with the free movement of 
key visual elements in games by attaching the stimuli to these elements. 
However, such a step has not been made to date. 

Movement of the P300 BCI stimulus matrix was studied in several cases: in 
our experiment, targeting the possible influence of movement on an event-related 
potential (ERP) and BCI accuracy (Shishkin et al 2011); in a P300 BCI game 
(Congedo et al 2011); and in BCI-controlled wheelchairs, in which the matrix 
position was not fixed relative to the environment in which the wheelchair 
moved (e.g., Rebsamen et al 2010). However, in all of these studies, the stimulus 
positions were fixed relative to each other, which seems to be a serious constraint 
for game designers and, in certain cases, for designers of BCI control for robotic 
assistive devices. 

Modifications of the P300 BCI with moving stimuli have been proposed 
(Guan, Chen et al 2005; Guo, Hong et al 2008; Hong et al 2009; Liu et al 2010,. 
In all of these cases, the initiation of movement and/or the appearance of a 
moving stimulus were used as stimuli or as a part of a complex stimulus. 
However, all of these studies described paradigms in which each stimulus moved 
within a small area, and most importantly, the spatial positions at which the 
stimuli were presented did not change significantly from trial to trial. Thus, the 
basic static spatial design of the P300 BCI was unchanged. 

To the best of our knowledge, no journal publications to date have explored 
the feasibility of a P300 BCI in which the stimuli are presented at positions that 
move significantly relative to each other. 

In the following sections, we will introduce the P300 BCI in more detail and 
provide arguments showing that existing knowledge was not sufficient to predict 
whether the P300 BCI would work efficiently when the stimulus positions move 
relative to each other. Therefore, an experimental study was needed to test the 
P300 BCI under this condition. We then explain additional goals of our study, 
i.e., testing the possible effects of multisession practice with such a BCI under 
other conditions and in single-trial and triple-trial stimulation modes. 

9.2.1 FUNCTIONING OF THE P300 BCI 

The P300 BCI was designed by Farwell and Donchin (Farwell & Donchin 1988) 
to send commands from the brain to a computer using the P300 wave. This wave, 
which is also referred to as the P3 wave, is a large positive wave observed in 
human ERPs approximately 300 ms or longer after the beginning of a stimulus. 
The wave is elicited when the stimulus is unpredictable or not fully predictable 
and automatically attracts attention or is voluntarily attended because it requires 
a certain response, whether overt (motor) or covert (purely mental). In a BCI, 
such a response can only be covert and has the form of silent counting or just 
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“mental noting” of the stimulus. Later, other ERP components were also shown 
to be useful in the framework of a BCI. The standard task used in psychophy-
siology to elicit the P300 is referred to as the “oddball paradigm.” In this task, 
different events are sequentially presented to a participant. In the most standard 
design of the oddball paradigm, several of these events (the targets) are less 
frequent and require a motor or mental response, whereas the more frequent 
events (the standards) require no action and can be ignored. 

The process of a BCI (brain computer interface) as a system to control IoT- 
based devices and generate decisions that will drive the device is given in the 
block diagram (Figure 9.4). The main steps describe how the P300 signal is 
elicited in the brain of the subject by presenting an external stimuli. The stimuli 
is based on a oddball experiment, which is a row-column syndrome. The EEG 
signal from the parietal zone of the scalp is collected, corresponding to the sti-
muli. The signal collected is passed through a notch filter to remove the signal 
error. Further, the signal is boosted to a higher power spectrum for convenience 
of processing. The α, β, ϒ, δ, and P300 EEG waves were segregated from the 

A B C D

Notch
Filter

Signal
Boster

Collection
and Storage

EEG

Segregate and
Plot α, β, γ , δ and
P300 EEG waves

Compute Power
Spectral density
(PSD) for each

EEG component

Segment P300
wave form to
construct a

feature vector e

Compute a feature vector of P300 signal
and train the system for known cases
and known data and known stimuli

Classify the P300 feature vector
obtained for new subjects using SVM

Map the features to a
decision to drive the IoT

based system

Decision can be brainy
cardinal or ordinal

Pass corresponding
electrical control to IoT

S
T
T
S
S

External Stimuli
Row column
syndrome
presented as
external stimuli to
the subject to elicit
P300, P300a, P300b

P300 feature vector
     Decision

FIGURE 9.4 Process of BCI as a system to control IoT-based devices.    
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EEG and further subjected to PSD (power spectral density) analysis. Various 
unique combinations of the PSD and the characteristic vector obtained by 
quantizing the P300 wave are codified as feature vectors. 

The feature vector is further classified and mapped to some intended physical 
action by the subject. The processes of classification and mapping is repeated for 
a sufficient amount of time to develop confidence. How some of the decisions are 
made based on the feature vector are listed for various scenarios. 

9.3 P300 CLASSIFIER 

No specific artifact correction or rejection procedure preceded classifier training 
and online classification because it was found that pursuing similar moving 
targets did not lead to strong EOG contamination of the data in pilot 
experiments. 

For both classifier training and online classification, the EEG was filtered in a 
1–10 Hz band with an FIR filter and decimated down to 20 Hz, and 1 s epochs 
starting from the stimulus onset were extracted. The amplitude values con-
catenated for all six EEG channels formed a feature vector. The number of target 
and non-target epochs for classifier training was 120 and 960, respectively. 
Classifier weights were obtained by Fisher discriminate analysis. During the 
main part of the experiment, the weights were applied to each epoch separately. 
In the single-trial mode, the attended ball was determined by the highest value of 
the classifier output. The same rule was used in the triple-trial mode and the test 
mode, with the only difference being that the classifier outputs were first aver-
aged for each ball separately across the three and five trials, respectively. A block 
diagram depicting collection of a P300 and its segregation process from EEG 
data is given in Figure 9.5. 

Examples of some of the feature vectors mapped to common decisions:   

1. Binary Decision – On/off for lights, fans, or any electrical appliance. If 
the feature vector is mapped to an ordinal (0, 1, 2, 3…8) set, then based 
on the ordinal value, the degree of intensity of the appliance is set such 
as the intensity of light as per the ordinal value (Figure 9.6).  

2. Ordinal value can be mapped to directional movement of the cursor, or 
wheelchair: (0, 1, 2, 3…8) → (N, NE, E, SE, S, SW,W, NW, N).  

3. According to the ordinal mapping, the cursor on the screen can be 
modeled to any cardinal direction or the image on the screen can be 
panned in one of the cardinal directions or movements of the wheelchair 
in the cardinal direction.  

4. Brainy Decisions → Alive or Awake. Based on the ratio of power 
spectral density, the condition of a patient or subject can be decided in 
terms of awake (non-anesthesia) or under the influence of anesthesia.  

5. (P300 high and T) in oddball stimuli → Truth else lie. This is used in lie 
detection testing of any subject. 
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9.3.1 ERP ANALYSIS 

Offline analysis was performed with MATLAB® (MathWorks, USA). The EEG 
and EOG channels were re-referenced to the average of the two earlobes and 
band-pass filtered using a second-order Butterworth filter in the forward and 
backward directions (for zero phase shift) in the range of 0.5–20 Hz, and epochs 
–0.2…0.6 s relative to the stimuli were extracted. Epochs with an amplitude 
exceeding ±50 µV in any channel were excluded from the analysis. The per-
centage of rejected epochs per participant and session never exceeded 11%. 
Visual screening of epochs extracted from non-filtered EEG confirmed that no 
significant artifacts escaped this procedure. Notably, strong artifacts from sac-
cades were not common in our data, likely because pursuing the moving balls 
required only smooth-pursuit eye movement and small saccades. Blinking arti-
facts were also rare, likely because the stimulation periods were short. 

The epochs were averaged separately for target and non-target stimuli per 
subject and session. For accuracy, in the case of the fourth session, the average 
values were computed separately for the first and second halves of the session, 
i.e., for the single-trial or triple-trial mode and for the test mode, respectively. 

For the analysis of the N1 component, the PO7, PO8, O1, and O2 channels were 
averaged together. The N1 peak amplitude was estimated using this averaged 
signal as the maximum value in a 120–250 ms interval. The amplitude of the P300 
peak was estimated as the maximum in the 250–500 ms interval at Pz. No baseline 
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correction was used because filtering removed most of the slow variations in the 
signal. A slow negativity remained, however, in the beginning of the ERP wa-
veforms. Averaging of longer epochs separately for different target positions 
within a stimulus sequence showed that this negativity started approximately 0.5 s 
before the first stimulus in the sequence and tended to grow if the target appeared 
later in the sequence (i.e., if the target-to-target interval was long). Therefore, the 
negativity may correspond to expectations of the target stimulus. No measures 
were taken to remove this component from the signal because the negativity 
seemed to disappear before the P300 wave reached its maximum. 

9.4 P300 AS BCI 

The ability of the human to communicate with each other plays a critical role in 
building a relationship with society and others. With the advent of modern lo-
gistics and necessities, communication between people has become richer and 
more complex than any other time of human history. Furthermore, as brain 
science and computer technologies mature, it is critical to have an ultimate in-
teraction interface that will develop a direct communication between the user’s 
brain and a computer; in other words, a BCI system that facilitates to build a real- 
time communication between a user and a computer system. The core purpose of 
a BCI is to detect brain activity in an EEG and communicate that activity to a 
computer or electronic device. A BCI allows a user to voluntarily send messages 
or control commands, bypassing the brain’s natural output pathways. There have 
been different approaches for BCIs. A P300 BCI is a safe and non-invasive 
system, which requires the user to wear a small head cap carrying a set of 
electrical probes to detect brain P300 ERP. The P300 BCI has many potential 
advantages over many other input modes (Bayliss 2003). 

9.5 ADVANTAGES OF A P300 FOR BCIS 

There are some properties of a P300 that make it attractive for BCIs. Many ap-
plications include daily life uses: (1) the typical P300 BCI can be controlled with 
high accuracy; (2) the P300 BCI classifier offers fast response; (3) it may be used in 
gaming applications where an even shorter calibration can be used if classifier 
accuracy is not critical; (4) almost all healthy people and many severely paralyzed 
patients are able to use the P300 BCI; (5) unlike other BCIs such as the motor 
imagery-based BCI, no special training is needed to operate this BCI; and (6) a 
P300 BCI is non-invasive, calibration time is limited to few minutes, and it is 
effective for most users and more than 90% users feel comfortable with this system. 

9.6 FUTURE USES OF A P300 BCI 

There exist many future directions to improve the information throughput in 
P300 BCIs, which is also equally true for many other types of BCI systems. To 
uncover the applications of a P300 ERP to other modalities, an underlying 
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physiological mechanism and brain response in each of the particular applica-
tions need to be carefully investigated. For example, a study to unfold more 
insight of the cognitive process showed that neurofeedback can be applied to 
augment the cognitive diagnosis. In order to increase the BCI accuracy, error 
correction mechanisms can be incorporated into the BCI system. It will also 
increase the user acceptability of a P300 BCI. Although improving information 
throughput of a BCI is of paramount importance, many other aspects of BCIs 
also demand substantial consideration. For example, future BCIs need to be 
faster, inexpensive, and easy to use. Fortunately, the BCI community comprises 
many other disciplines, such as engineering, cognitive and neuroscience, se-
mantics, mathematics, psychology, clinical science, and software writing. 
Eventually, scientists and researchers from various avenues continuously help to 
find a universal platform for BCI development, utilizing available resources free 
for academic research. In particular, future expansion of BCI applications de-
pends a lot on the thorough investigation of users’ comfort in using BCIs. So 
different conditions should be well explored to find reasons behind why most 
users may or may not like a BCI system or paradigm. Many articles have in-
troduced questionnaires and surveys to learn the comfort zone of the P300 BCI 
users. To promote the use of BCIs to the target users with new applications, 
records and studies of the human factors should be employed. 

9.7 SUMMARY 

This study investigated whether a P300 BCI stimuli can be presented on moving 
objects without a dramatic loss of classification accuracy. Participants success-
fully operated a game-like interface despite the attention and perceptional 
challenges raised by the movement of the stimulus positions. Moreover, the 
participants from both groups, practicing in either triple-trial (n = 6) or single- 
trial (n = 6) mode, maintained interest in their task across four sessions run on 
different days. The proposed BCI stimulus design, therefore, can be considered 
as a prospective basis for BCI games and might become a useful model for 
studying the effects of long-term BCI use in healthy people who are not moti-
vated to use a BCI for communication or for control of robotics. The results also 
suggest that different stimulus items in the P300 BCI can be placed on separately 
moving parts of robotic devices. 

Exercises  

1. What is a brain computer interface (BCI)?  
2. Draw a detailed diagram describing the functioning of a BCI using a 

P300 and label each of the components.  
3. Draw a block diagram depicting various stages of signal processing 

used in a BCI.  
4. How do you control an IoT device using a BCI? 
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5. Draw a process diagram of collection and delineation of a P300 from an 
EEG signal.  

6. Give some examples of mapping of feature vectors extracted from an 
EEG signal to common decisions or operations.  

7. What are the advantages of using a P300 for a BCI?  
8. What are possible future uses of a P300 BCI? 
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10 Designing an EEG 
Acquisition System   

With the advent of VLSI technology, the ability to acquire, filter, and analyze 
low power and highly random signals has increased. Signal acquisition systems 
have become smaller, more accurate, portable, and more reliable. An EEG is a 
highly sought after signal acquisition system with a range of applications in 
neurological and psychiatry treatments. Yet this system is costly and often be-
yond the availability of a common patient. Therefore, designing an EEG system 
that is low in manufacturing cost and making it affordable for common patients 
yet robust enough to acquire EEG signals for critical study of neuropsychiatric 
analysis is important. This chapter gives a brief review of the current state of 
research in the field of EEG acquisition systems and signal processing of EEG 
signals and their applications to design a low-cost EEG system. 

10.1 INTRODUCTION 

According to scientific simulation and theoretical prediction, an adult human 
brain has 100 billion neurons and over 100 trillion neural connections or sy-
napses that communicate with each other through electrical impulses. The sys-
tematic study of these electrical impulses passing through the synaptic 
connection between the neurons is known as electroencephalography (EEG). An 
EEG is a system that acquires and records the electrical activity of the brain 
(Matthews et al 2017). 

The brain wave or EEG signal is the transient differential electrical potential 
between any two points on the scalp or between an electrode placed on the scalp 
and a reference electrode located elsewhere on the head. This potential difference 
oscillates rapidly at a frequency ranging from 0.1 to 50 Hz and gives rise to the 
characteristic “squiggly lines” that are referred to as “brain waves.” Brain waves 
reflect change by becoming faster or slower in frequency or lower or higher in 
voltage, or perhaps some combination of these two responses (Kaplan & 
Sadock’s 2015; Khan et al 2017). 

Since the potential difference itself is extremely low in amplitude (10–100 
μV), the electrodes used for acquiring the EEG signal must be sensitive enough 
to pick up and transmit the signal with minimum distortion. Krishnan et al. 
(2017) have compared EEG acquisition systems available in the market, while  
Pinegger et al. (2016) have compared different electrodes (gel-, water-, and dry- 
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based) available; both have independently concluded that different types of 
sensors and systems are suitable for different applications; there is no “one size 
fits all” EEG system available on the market that will be useful for different EEG 
applications. 

Therefore, we propose the design of a versatile EEG acquisition system that is 
as accurate as a medical-grade system and at the same time, user friendly, robust, 
and cost effective compared to the available medical-grade EEG systems. 

In the next section, we delve into the history of EEG systems and their evolution 
along with their increasing applications. Sections 10.2–10.4 discuss and puts for-
ward the problem statement as a design challenge. In sections 10.5–10.7 we pro-
pose our indigenous design solution for a low-cost and robust EEG system. 

10.2 REVIEW OF EEG APPLICATIONS 

Since its inception in 1924, EEG systems have been used as tool for acquiring 
electrical brain waves for study of psychology, neuroscience, clinical, and psy-
chiatric behavior. Due to extensive research in the field over the past decade or 
two, EEG acquisition is now more accurate and user friendly. As a result, its 
application has expanded to cover areas of research like neuromarketing, human 
factors, and social interactions. 

In its initial stages, the application of an EEG was limited to psychiatrists and 
doctors who used it for detection of mental disorders like the study of epilepsy 
(Ullah et al 2018; Gajic et al 2014), psychiatric disorders (Mantri et al 2012; Al- 
Shargie et al 2016; Khosrowabadi 2017), sleep disorder analysis, learning dis-
orders (Rogers et al 2018; Nami et al 2017), etc. 

With the advancement of signal acquisition, electronic and signal processing 
EEG became more accessible to the general public along with its utilization in a 
wide variety of applications, all of which can be loosely categorized as brain 
machine interfaces (BMIs) or brain computer interfaces (BCIs). These applica-
tions begin with advanced, more accurate, and portable EEG acquisition systems 
(Uktveris & Jusas 2018; Luan et al 2014; Bhagawati & Chutia 2016; Jaganathan 
et al 2015; Xu et al 2004; Tian & Song 2016; Lakshmi et al 2014; Patil & Patil 
2018), and then simple entertainment tasks like video games, media art, and 
music follow. We then come to applications based on control of computers (Lin 
et al 2014; Gomez-Gil et al 2011), prosthetics, wheelchairs (Jenita et al 2015), 
etc. Of late, an EEG is used for home automation (Sujatha & Ambica 2015;  
Alshbatat et al 2014; Anu et al 2016; Alhalaseh et al 2018; Alomari et al 2013) 
and other IoT-based services (Panigrahi et al 2020). 

Lin et al. (Lin et al 2014), look at how commercially available EEG headsets 
compare to standardized tests and conclude that the data coming from the 
consumer headset is not only reliable but can also be used in everyday conditions 
and not just in controlled laboratory experimental conditions. The accuracy of 
such experiments is further supported by Gomez-Gill et al (2011). These re-
searchers prove that not only EEG-based BCI and HMI applications are possible 
but also practical. 
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To implement any BCI application, the first and the most important thing to 
do is to acquire the EEG data accurately. Both Uktveris and Jusas (Uktveris & 
Jusas 2018) and Luan et al. (Luan et al 2014) propose a low-power, portable 
EEG acquisition system, but due to hardware filtering and constrictive EEG cap, 
their systems have inherent noise due to more hardware components, making it 
susceptible to EMI and EMC interference. 

10.3 RESEARCH PROBLEMS 

Following are some of the important problems encountered while designing an 
EEG acquisition system:  

• Pickup, transmission, and amplification of EEG signal from scalp 
without introducing minimum noise in the system  

• Reconstruction of EEG signal in the digital domain using ample number 
of samples from input analog signal  

• Processing and feature extraction of digital data for further analysis and 
actuation-based applications  

• Designing low-cost EEG acquisition systems with abundant channels 
capable of capturing accurate and reliable data 

The gaps in research and design are clearly evident in research trends discussed 
in the next section. To address these problems, we aim to build the EEG 
acquisition-system using COTS (commercial off the shelf) hardware and in- 
house software to analyze and process the acquired data. 

10.4 RESEARCH TRENDS 

We carry out an explicit review of existing research literature to study the research 
trends. The manuscripts published between 2011 to date are considered for this review. 
The research papers published are categorized according to various problems they 
address and the number of papers are plotted in bar graph 1 (Figure 10.1). In bar graph 
2 (Figure 10.2), the type of technology they adapt to design an EEG system is plotted. 

10.5 PROPOSED SOLUTION 

To design an EEG acquisition system, we will acquire the data using non- 
invasive, gold-plated Cu, and cup-shaped electrodes. The signal from the elec-
trodes is fed to the instrumentation amplifier, and from there it goes to the mi-
crocontroller. Using the built-in ADC of the microcontroller, the signal is 
converted to a digital domain. The microcontroller is directly interfaced with 
MATLAB® for further digital filtration and feature extraction and analysis. 

The problems encountered during our experiments and proposed improve-
ments to overcome these issues are also discussed to achieve the final goal of 
making a versatile EEG acquisition system. 
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10.6 SYSTEM DESIGN 

After careful examination of EEG signals and other medical-grade systems 
available on the market, the following design constraints to design the EEG 
acquisition system have been arrived at. 

Design constraints:  

• EEG voltage range: 10 μV to 100 μV  
• EEG frequency range: 0.3 Hz to 60 Hz  
• Max variation of input signal per unit time: 50 μV  
• Sampling rate: 256 to 1k SPS 
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The subsequent sections talk about the step-by-step design of each component in 
the acquisition system. 

10.6.1 BLOCK DIAGRAM 

The block diagram (Figure 10.3) gives an overview of the proposed system to 
acquire an EEG signal. The signal acquired is first pre-processed. The processing 
of an EEG signal and its subsequent visualization and interpretation is performed 
through MATLAB programs developed to identify different artifacts present in 
the EEG signal. 

10.6.2 ELECTRODES 

The electrodes used for our system are a dry, non-invasive type that are applied 
with the help of a conductive paste of saline solution. The electrodes have the 
following specifications:  

• Gold-plated copper  
• Dimensions – Diameter of cup: 10 mm  
• Height of cup: 3.5 mm  
• 2-mm hole in the center  
• 1.5-mm DIN42802 female touch-proof connector  
• Form factor: cup shaped 

10.6.3 ELECTRODE PLACEMENT 

The electrodes are placed based on the international 10–20 system, which 
measures the distance between identifiable landmarks on the head and then lo-
cates electrode positions at 10% or 20% of that distance in an anterior–posterior 
or transverse direction. Electrodes are then designated by an uppercase letter 
denoting the brain region beneath that electrode and a number, with odd numbers 
used for the left hemisphere and even numbers signifying the right hemisphere 
(the subscript Z denotes midline electrodes). For example, the O2 electrode is 
placed over the right occipital region, and the P3 lead is found over the left 
parietal area (Figure 10.4). 

10.6.4 ELECTRODE CAP 

The electrode cap selected is of standard size made of an elastic material (as 
opposed to a 3D-printed cap) to ensure a snug fit on heads of all shapes and sizes 
to maintain proper contact between the electrodes and the scalp. 

The cap further has cups to hold up to 32 electrodes, giving the user the 
freedom to place electrodes where most significant data is picked up based on the 
application when using less than 32 electrodes (Figure 10.5). 
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10.6.5 INSTRUMENTATION AMPLIFIER 

The instrumentation amplifier best suited for this application is an INA333 due to its 
low-input offset voltage (25 μV), high CMRR (100 dB), and high gain (1,000). 

INA118 was a viable alternative, but was rejected due to its high-input offset 
voltage (50 μV), which is comparable to the EEG signal itself. 

10.6.6 MICROCONTROLLER 

The microcontroller used for this application is Arduino Mega. With a clock 
speed of 16 MHz, operating voltage of 5 V, and a 10-bit in-built ADC, the Mega 
can directly take analog input from the instrumentation amplifier and give digital 
data to the host computer. Arduino also provides a direct interface with 
MATLAB, which makes signal filtration and further processing much easier. 

The Arduino Due has better specifications but was rejected because of its low 
operating voltage of 3.3 V and lack of online support libraries. 

Raspberry Pie was rejected due to lack of GPIO ports and interface cap-
abilities with the future use of an analog front end. 

10.6.7 BILL OF MATERIALS REQUIRED TO ASSEMBLE A EEG  
ACQUISITION SYSTEM 

A bill of materials (BOM) is a list of the raw materials, sub-assemblies, inter-
mediate assemblies, sub-components, parts, and the quantities of each needed to 

FIGURE 10.5 Electrode cap.    
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manufacture an end product. A BOM may be used for communication between 
manufacturing partners or confined to a single manufacturing plant. A bill of 
materials is often tied to a production order whose issuance may generate re-
servations for components in the bill of materials that are in stock and requisi-
tions for components that are not in stock. 

In electronics, the BOM represents the list of components used on the printed 
wiring board or printed circuit board. Once the design of the circuit is completed, the 
BOM list is passed on to the PCB layout engineer as well as the component en-
gineer, who will procure the components required for the design. Given below is the 
BOM (Table 10.1) for the design and assembly of an EEG acquisition system. 

10.7 TESTING AND OBSERVATIONS 

The Arduino IDE is neither capable of proper reconstruction and representation 
of the incoming signal nor is it capable of further processing; hence, Arduino is 
interfaced to MATLAB, which is then used to plot a real-time frequency domain 
and time domain spectrum of the incoming EEG signal. 

Figure 10.7 shows the same experiment performed as in Figure 10.6. Subplot 
1 shows the real-time RAW EEG signal amplified 101 times, whereas subplot 2 
shows the real-time frequency plot (FFT). In FFT, the peaks show a con-
centration of a signal at that particular frequency. 

It is clearly observed and inferred that acquiring data in MATLAB is the 
better option. 

Figure 10.9 shows the comparison of saccade, fix, and blink data. Subplot 1 
shows the data from our system, while subplot 2 shows the data from the 
medical-grade system. This is similar for subplots 3 and 4. 

TABLE 10.1 
Bill of materials      

Sl No. Component Amount Cost (INR)  

1 EEG cap 1 2,500 

2 EEG electrodes 9 3,009 

3 EEG paste 228 g 1,500 

4 Instrumentation amplifier INA333 9 4,613 

5 Active and passive elements + amplifiers 
for filter design 

Requirement based 500 

6 Arduino Mega 2560 REV3 1 699 

7 Fabrication cost of PCB Need based 10,000 

Total INR 12,821 (components) + 10,000 (fabrication) 
= INR 22,821    
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It is evident from the figure that our proposed system captures the correct data, as 
all peaks match between both signals. The drawback here is the low sampling rate 
because the reconstructed signal does not have as much detail as is required for 
complex analysis – this can be seen when comparing subplots 3 and 4. 

The maximum rate at which the data is captured is about 5 Hz. 
To overcome the drawback, we tried to increase the baud rate of Arduino. 
Figure 10.10 clearly sees an improvement in the reconstruction of the ac-

quired signal when compared to the output seen in Figure 10.6 at a lower baud 
rate. 

Trying to achieve such high baud rates in the interface with MATLAB is 
difficult due to the constraints of the Arduino toolbox. As a result, the next 
experiment is carried out with the help of serial transmission of data from 
Arduino to MATLAB. 

As observed in Figure 10.10, the reconstruction of data is much better when 
compared to the data acquired in Figure 10.6. But even after taking the baud rate 
up to 115,200, the rate at which data is captured is still about 10 Hz. 

10.8 RESULTS AND DISCUSSION 

As observed in the previous section, the use of MATLAB over Arduino IDE is 
justified because of better data representation and the availability of tools to 
further process and filter the incoming data. 

Arduino Mega is used instead of Arduino Due because the output waveforms 
start getting clipped off due to the limited power supplied by Due because of the 
instrumentation amplifier. 

FIGURE 10.8 Power spectral density of data acquired from a single sensor coming from 
an instrumentation amplifier with a gain of 101.    
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The power spectral density in Figure 10.8 shows peaks in the EEG data that 
correspond to alpha, beta, gamma, theta, and delta waves, which in addition to 
the comparison in Figure 10.9, proves the accuracy of our proposed system. 

The only drawback in the current system is the low sampling rate because the 
signal is not being reconstructed properly, which in turn results in the loss of 
information . According to the Nyquist sampling theorem, considering a prac-
tical system with a maximum usable frequency of 50 Hz, the minimum sampling 
rate should be 125 Hz. This can only be achieved using an analog front end 
(suggested ADS1299) chip. 

10.9 CONCLUSION 

From the above design, the following can be concluded: 
The proposed system captures accurate EEG signal despite using low cost 

electronic systems in designing the overall system, making it a low cost in-
strument for capturing EEG. In order to improve the robustness of the signal 
captured, an ADC (preferably ADS1299) must be introduced between the in-
strumentation amplifier and the microcontroller. To increase the number of EEG 
signal channels to be captured through the proposed system more ADS1299 to be 
daisy-chained.It will also make the system modular and robust where more input 
channels can be added on demand based on the needs of the user (Figure 10.11). 

Exercises  

1. What are the important design criteria encountered in designing an 
EEG acquisition system? 

FIGURE 10.11 Serial transmission of data from Arduino IDE to MATLAB at 115,200 
baud rate.    
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2. State some of the design constraints in designing an EEG acquisition 
system.  

3. Give a block diagram with various components used in the design of 
an EEG system. 

4. What are different electrode placement schemes used in an EEG ac-
quisition system?  

5. Describe different active, passive, and software components required 
in designing an EEG system.  

6. Give a brief review of research applications of EEGs.  
7. Give a brief note on some of the research problems in EEG system designs.  
8. Give a brief note on different research uses of EEGs.  
9. Compare and contrast the specification of EEG data, acquisition 

system, and processing and requirements between a research grade and 
medical-grade EEG system.  

10. Give a bill of materials required to assemble an EEG acquisition system. 
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11 A Method to Localize 
the Pupil of the Eye  
for Point of Gaze 
Estimation    

OVERVIEW 

Estimating a gaze point through localization of the pupil in the image of the eye 
through optical eye-tracking during opto-ocular motion of the eye possesses 
many challenges. This chapter discusses a method to estimate the point of gaze 
on a digital screen using a non-intrusive eye tracking technique. In this method, a 
modified web camera is used to obtain the center of the pupil and is processed 
further to obtain the point of gaze. 

11.1 INTRODUCTION 

The estimation of the point of a gaze in a scene presented in a digital screen has 
many applications, such as fatigue detection and attention tracking. Some pop-
ular applications of eye tracking through gaze estimation are depicted in 
Figure 11.1. For estimation of point of gaze, it is required to identify the visual 
focus of a person within a scene. This is known as eye fix or point of fixation. 
Finding the point of gaze involves tracking different features of human eyes. 
Various methods are available for eye tracking. Some of them use special contact 
lenses (Robinson 1963) and some others use electrical potential measurement 
(Bulling 2011). The optical tracking of eyes is a non-intrusive tracking technique 
that uses a sequence of image frames of eyes recorded using video capturing 
devices. This technique is popularly known as video oculography (VOG). 
Different techniques used in VOG for the purpose of eye tracking are pupil- 
corneal reflection vectors or Purkinje images (Crane & Steele 1985) and pupil- 
eye corner vectors (Zhu & Yang 2012). 

All of these techniques successfully work only if two or more features of the 
eyes are detected accurately. This increases the computational complexity, 
thereby limiting the speed of eye tracking systems. Some commercial eye 
tracking equipment available on the market are Eyelink-1000, SMI, and Tobii 
glasses. The cost of these systems is quite high and therefore can be used only for 
research purposes. In this article, a low-cost system is proposed that uses a 
modified web camera to obtain fixation points of subjects within a scene using 
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the center of the pupil. The system is capable of generating 25–30 frames per 
second, which is sufficient to compute the position and size of the pupil in the 
pixels. Eye tracking and gaze position estimation have many applications. 

11.2 PREVIOUS RESEARCH ON GAZE ESTIMATION 

In 1981, Levine (1981), in his research article, first reported the application of 
eye tracking for an eye-controlled computer. Hutchinson and White (Duchowski 
2002) have reported eye gaze as an input for human-computer interaction. A 
survey of research literature on eye-tracking applications was reported by 
Duchowski (Wang & Sung 2002) and Wang (Yoo & Chung 2005) in 2002. 
Different eye-tracking algorithms, applications, and methods were reported 
(Sugioka et al 1996; Lee et al 2010). Corcoran et al. (2012) have reported many 
interesting applications of real-time eye gaze tracking for gaming designs and 
consumer electronics systems. 

Eye tracking can be done using methods such as 2D regression and 3D 
modeling of the eye. The 3D modeling methods implement a geometric model of 
the eye to estimate the point of intersection of visual axis and the scene. These 
systems typically use a single camera and were studied by Meyer et al. (2006), 
Guestrin and Eizenman (Guestrin & Eizenman 2006), and Henessey et al. 
(Hennessey et al 2006). Guestrin and Eizenman (Guestrin & Eizenman 2006) 
proposed that the number of cameras and light sources be increased, to reduce 
the number of parameters to be determined during calibration. This proposal was 
validated by the works of Shih (Lai et al 2015), Ohno (Ohno & Mukawa 2004), 
Beymer (Beymer & Flickner 2003), and Zhu (Zhu & Ji 2007), whose models 
utilize two or more cameras. However, these models might require multiple 
cameras or complex mathematical models for estimation of the center of the 
cornea and to estimate the visual axis. The other popular method is a 2D 

FIGURE 11.1 Applications of gaze point estimation.    
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regression technique. In this method, the pupil – glint vector is mapped to the 
gaze coordinates by using a mapping function. This mapping function can be 
resolved using polynomial regression or artificial neural networks. Blignaut 
(2013) and Cherif et al. (2002) describe various methods used for calibration and 
deducing mapping functions using a regression technique. Chuang (Jian-nan et al 
2009) propose systems that implement artificial neural networks for determining 
the mapping function used for translating pupil – glint vector to gaze points. All 
of these regression techniques depend on accurate detection of two or more 
features of the eye for accurate tracking. Corcoran et al. (2012) proposed a 
system that detects human face in an image followed by detection of eyes and 
estimate the center of the pupil from the image. Due to this, the image of the eye 
should be processed multiple times to detect all the required features. The ac-
curacy of the system depends on accurate identification of these features. This 
uses a considerable amount of computational effort, leading to slow performance 
of the system. Through this, we propose a system that uses only a single feature, 
the center of the pupil, to estimate the point of gaze. 

The first step of obtaining the point of gaze is to obtain coordinates of the 
center of the pupil from snapshots of the eye of a subject. There are two popular 
ways of performing that in the snapshots: (1) passive imaging and (2) active 
imaging (Hansen & Dan 2010; Lifeng & Yuyanchao 2009). 

Passive imaging uses visible light available in the surroundings to capture 
images of the eyes, as depicted in Figure 11.2. These images are processed to 
detect various features of the eyes such as eye corners and pupil. However, the 
pupil cannot be identified accurately as there is little contrast between the pupil 
and the iris. This imaging is also affected by external lighting conditions, leading 
to errors in detection of features. Moreover, in the passive imaging process, 
various objects in the surroundings are also reflected on the surface of the eye, 
which adds additional artifacts. These reflections are to be eliminated during the 
processing stages of the image. 

Active imaging uses an illumination source along with the imaging device. If 
the illumination source emits light in the visible spectrum, it causes discomfort to 
the user and limits the duration for which the experiment can be conducted. Also, 
there will be no contrast between the pupil and iris, leading to less accuracy in 
the detection of the center of the pupil. 

FIGURE 11.2 Image of eye captured using passive imaging.    
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The other type of active imaging source uses IR illumination. IR light is 
invisible to human eyes and hence does not cause any discomfort to the user. 
Another advantage is that it produces a high contrast between the iris and the 
pupil. This is because of the presence of melanin in the iris. Melanin is a 
chromophore that is responsible for the dark color of the iris. Melanin absorbs 
visible light and hence appears dark in visible light. However, absorption of light 
that falls in the near IR wavelength by melanin is negligible. Hence, it appears as 
a gray color in IR light. The pupil, however, is a lens made up of transparent 
liquid and will let IR light pass through it. The pupil might appear in two dif-
ferent ways in IR light based on the position of the illumination source. If the 
source is coaxial to the optical axis of the eye, the IR light gets reflected from the 
retina and illuminates the pupil, leading to a bright pupil effect as depicted in 
Figure 11.3(a). If the illumination source is offset from the optical path, the retro 
reflection from the retina is directed away from the camera, causing a dark pupil 
effect as depicted in Figure 11.3(b). The bright pupil effect is difficult to obtain 
due to the requirement that the illumination source has to be coaxial to the 
optical path. This requires a specialized IR illumination source. On the other 
hand, the dark pupil effect can be produced easily and hence it is a widely used 
technique for eye tracking. 

11.2.1 DETECTION OF THE PUPIL 

The main feature required for any eye tracker is to detect the (x, y) coordinates of 
the center of the pupil. However, to identify the relative motion of the pupil, at 
least one other feature that stays fixed during eye movements is required. This 
feature can be an eye corner or a glint formed by the IR illumination source. The 
vector of pupil-glint or pupil-eye corner can be used to obtain the point of regard 
on a screen, allowing slight freedom in movement of the user’s head. However, 
if the head pose of the viewer is stabilized, (x, y) coordinates of the center of the 
pupil alone is sufficient to obtain the eye fix. This reduces the computational 
complexity required to identify other features of the eye, such as glints and eye 
corners. 

FIGURE 11.3 (a) Bright pupil effect; (b) Dark pupil effect.    
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The detection of the location of the pupil is a key feature of any eye-tracking 
mechanism. The accuracy of the system largely depends on accurate detection of 
the center of the pupil for all positions of the eyes. The detection of the pupil is 
easier when using a bright or dark pupil effect (refer Figure 11.3(b)). For sim-
plicity, the discussion is limited to the dark pupil effect. The first step is to 
acquire an image of the eye using an IR camera. The dark regions in this frame 
consist of eyelashes, a part of eyebrow, and the pupil. Of all these dark regions, 
the pupil has a well-defined shape and is the largest connected component in the 
entire image. The second step is to obtain a binary image that consists of dark 
regions only. This can be achieved by applying an intensity threshold transfor-
mation to the image. A threshold value is chosen that represents the value of 
intensity of color in each pixel that is to be considered as dark. If all three values 
of any pixel i.e., R, G, and B, are less than the threshold value, then that pixel is 
considered as dark. Thus, all the pixels with RGB values above the threshold are 
painted in white and all the pixels with RGB values less than or equal to the 
threshold are painted in black. Now, the binary image contains the pupil and a 
few other dark spots from lashes and eyebrows. 

The next step is to find the largest connected component i.e., the pupil in this 
image. One way is to process the entire image to detect the largest connected 
component. This method is suitable when the head pose is not fixed. However, if 
the head pose is stable, a small region can be chosen within which the pupil can 
be located and process that region only in every frame. This reduces a significant 
amount of computational effort and time required to detect the pupil. To find the 
largest connected component, the scan plus array based union find (SAUF) al-
gorithm (Lifeng & Yuyanchao 2009) is used. Once the pupil is detected, the 
centroid of the pupil will give the (x, y) coordinate of the center of the pupil. The 
bright pupil effect follows the same principle except for the fact that the pupil 
appears bright and hence the threshold effect is to be applied in such a way that 
only the bright regions remain. The rest of the procedure is the same as that of 
the dark pupil effect. The proposed method is depicted in the flowchart in 
Figure 11.4. 

11.2.2 OBTAINING A POINT OF GAZE FROM A PUPIL COORDINATE 

The pupil coordinate will provide the information on the location of the pupil in 
any captured frame. However, the goal of detecting the pupil coordinate is to 
calculate a point of gaze from it. For this purpose, a personal calibration routine 
is run for every session. A calibration routine typically displays a few points or 
dots in a particular order or in a random manner. The users are instructed to 
fixate on those points and while doing so, the corresponding pupil coordinate for 
each point is recorded. This data is used to obtain a modeling function that gives 
the relation between pupil coordinates and actual screen coordinates. If (Sx, Sy) 
are the screen coordinates and (ex, ey) are the pupil center coordinates, then two 
separate functions can be used to relate screen coordinates to pupil coordinates 
(Equations 11.1 and 11.2): 
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fS = (e , e )xx x y (11.1) 

fS = (e , e )yy x y (11.2)  

The functions fx and fy are modeled as polynomials in ex, ey and are represented 
in Equations 11.3 and 11.4 (Panigrahi & Tripathy 2002): 

a a a aS = + e + e + e e0 1 2 3x x y x y (11.3) 

b b b bS = + e + e + e e0 1 2 3y x y x y (11.4)  

To compute the actual coordinates (Sx, Sy) for corresponding pupil coordinates 
(ex, ey), we have computed the value of the polynomial coefficients (a0,…a3) and 
(b0,…b3) using regression techniques. The two most popular regression 
techniques are polynomial affine transformation (Panigrahi & Tripathy 2002) 
using matrix inversion and the least squares technique. In polynomial affine 
transformation, four equations are obtained by substituting the recorded data by 

FIGURE 11.4 The proposed method for pupil detection.    
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displaying four different points on the screen and the corresponding pupil 
coordinates. These equations are solved using the matrix inversion method to 
obtain unknowns i.e., (a0,…a3) and (b0,…b3). The other method is to display any 
number of screen coordinates and pupil coordinates and obtain the values of 
coefficients (a0,a3) and (b0,b3) using the least squares method. The values of 
computed coefficients are used to estimate a new point of gaze on the screen 
(Sx, Sy), corresponding to any pupil coordinate (ex, ey). A detailed implementa-
tion and mathematical rigor of PAT (polynomial affine transformation) for 
registration of satellite images with a map by removing geometric errors is 
discussed by Panigrahi and Tripathy (2002). 

11.3 CALIBRATION SEQUENCE 

The experimental setup consists of a screen displaying the scene in which a 
fixation graph is to be identified. A customized web camera was mounted on a 
chin rest to obtain snapshots of the eyes. The camera was modified to detect 
infrared light by removing the IR blocking filter from its lens assembly. The chin 
rest acts as a support to stabilize head movement of the subject. 

As depicted in Figure 11.5, the screen is placed at a distance of 50 cm from 
the subject’s eye. The overall display resolution for the scene is 800 × 600 pixels. 
The scene is 22 cm in height and 35 cm wide. This provides a visual cone with 
25° vertical and 39° horizontal field of view and hence the resolution of the 
visual angle is 26 pixels per degree vertically and 21 pixels per degree hor-
izontally. IR LEDs were used to illuminate the eyes of the subject. 

The first step in calibration was to match the coordinate system of the eye 
with the coordinate system of the screen. In order to achieve this, a crosshair is 
displayed on the screen. The subject is instructed to fixate on the center of the 
crosshair and the camera is adjusted such that the center of the pupil is exactly at 

FIGURE 11.5 Experimental setup for gaze estimation.    
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the center of the crosshair displayed on the screen. Then, calibration is done by 
repeating the fixate process using a set of 17 random points on the screen in two 
phases. During the first phase, these points are displayed on the screen as light 
grey dots. The subject is instructed to fixate on these points and whenever a 
fixation is detected, the corresponding pupil position is recorded. The light grey 
dots in Figure 11.6 represent actual screen coordinates and the dark grey dots 
represent their corresponding pupil coordinates. 

These coordinate pairs recorded in the first phase are used to establish the 
PAT by computing the coefficients of the polynomial. These polynomial coef-
ficients are used to estimate a point of gaze on the screen using Equations 11.3 
and 11.4. The second phase is added to improve the accuracy of this estimation. 
During this phase, the estimated points of gaze and the actual screen coordinates 
computed using the PAT are used in polynomial regression to obtain a function 
to optimize the estimated point of gaze. The light grey dots in Figure 11.6 re-
present the actual screen coordinates and the dark grey dots represent the esti-
mated points of gaze. 

11.4 CASE STUDY AND ANALYSIS 

The screen was placed 50 cm away from the subject’s eye. The overall display 
resolution for displaying the scene was 800 × 600 pixels. The scene was 22 cm 
high and 35 cm wide. The angles subtended by the eye vertically and horizon-
tally with the scene were measured (Figure 11.7). The vertical angle was 25° and 
the horizontal angle was 39°. This provides a visual cone with a resolution of 24 
pixels per degree vertically and 21 pixels per degree horizontally. 

To test the system, five random points were displayed and their corresponding 
points of gaze were calculated. The average error for each session was calculated 
using Equation 11.5: 

xs xc ys ycE = ( ) + ( )2 2 (11.5)  

where xs and ys are actual screen coordinates displayed on the screen and xc and 
yc are calculated points of gaze by the software. The experiment was performed 
using a matrix inversion technique and least squares method to deduce the 
mapping function (Panigrahi & Tripathy 2002). The average error in both cases 
is presented in Table 11.1. The average error was found to be 48 pixels. This 
corresponds to a 2.105° of visual angle. A sample of the experimental data can 
be seen in Figure 11.8. 

11.5 COMPARISON OF GAZE ESTIMATION METHOD 

The performance of the proposed method is compared with state-of-the-art 
methods presented in Table 11.2. In this section, various methods proposed for 
the estimation of eye gaze are described and compared. Meyer et al. (2006) used 
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a high-resolution camera with two infrared light sources and the gaze angle was 
measured from the offset between corneal reflection and the center of the pupil 
using bilinear or biquadratic interpolation. The system was tested on simulated 
data. The method proposed by Hennessey (Hennessey et al 2006) uses a single 
camera and multiple IR illumination sources. 

Shih (Lai et al 2015) uses a hybrid approach in which a glint feature-based 
model and contour feature-based models are integrated to leverage strengths of 
both models. Ohno (Ohno & Mukawa 2004) describes a tracking system that 
allows free head movement by using two cameras for detection of the position of 
the head in 3D and an IR camera mounted on a pan and tilt mechanism to follow 
movements of the head. Beymer (Beymer & Flickner 2003) uses four cameras in 
which two cameras identify head pose and steer the other two cameras for 
tracking eyes. Zhu (Zhu & Ji 2007) uses two cameras to track eye gaze and 

FIGURE 11.7 (a) Vertical visual cone; (b) Horizontal visual cone.    

TABLE 11.1 
Error analysis of the pupil localization      

Matrix Inversion Least Squares  

Horizontal Error 2.8° (59 pixels) 1.81° (38 pixels) 

Vertical Error 3.2° (77 pixels) 2.4° (58 pixels) 

Mean Error 3.0° (68 pixels) 2.10° (48 pixels)    
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dynamically compensate for free head movement. Blignaut (2013) uses a system 
of a single camera with one IR illumination source and evaluates the system for 
various degrees of polynomial function for regression. Cherif (Cherif et al 2002) 
introduces a new way in which photo transistors are used instead of a camera. Ji 
(Lai et al 2015) uses a generalized regression neural network for calibration. 
Chuang (Jian-nan et al 2009) uses a nonlinear polynomial regression for gaze 
estimation and generalized regression neural networks for head movement 
compensation. Table 11.2 represents the overview of comparisons of various eye 
tracking algorithms and the method proposed. 

11.6 SUMMARY 

The presented system uses only one feature of the eye i.e., the center of the 
pupil of the eye of the subject to obtain the point of gaze on a digital screen. 
This reduces computational effort required for detecting other features such 
as eye corners, corneal reflections, and glints, enabling high-speed gaze 
tracking. Also, noise in detection of these additional features is eliminated, 
thereby increasing the confidence and reliability of the data acquired from our 
system. As the proposed system uses a simple web camera, the cost of the 
system is lower than many other eye trackers while achieving accuracies 
similar to that of expensive methods. The future directions of this research 
can be multi-front (Kar & Corcoran 2017). Specifically, the future research 
includes integration of the proposed system in a smart healthcare framework 
(Sundaravadivel et al 2018). 

FIGURE 11.8 Test case for gaze estimation.    
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Exercises  

1. What are the applications of point gaze estimation?  
2. What are EOG and VOG and EEG? Give differences between EOG 

and EEG. 

TABLE 11.2 
Comparison of various eye tracking algorithms      

Method Used and 
Reference Literature 

Hardware Setup Features Required Accuracy  

3D Geometrical 
model ( Meyer et al 
2006) 

Two IR LEDs and one 
camera 

Glints and pupil center About 1° (on 
simulated data) 

3D Geometrical 
model ( Hennessey et 
al 2006) 

Multiple IR illumination 
sources, one camera 

Pupil contour using 
bright pupil effect and 
glints using dark pupil 
effect 

0.90° 

3D Geometrical 
model ( Lai et al 
2015) 

Two cameras and four IR 
LEDs 

Pupil contour and glints 1.18°–1.43° 

3D Geometrical 
model ( Ohno & 
Mukawa 2004) 

Two cameras for face 
detection and one camera 
on pan and tilt mechanism 

3D facial orientation, 
glints, and pupil contour 

About 1° 

3D Geometrical 
model ( Beymer & 
Flickner 2003) 

One camera for face 
detection and two cameras 
with mirrors on pan and tilt 
mechanism 

3D facial orientation, 
glints, and pupil contour 

0.6° 

3D Geometrical 
model ( Zhu & Ji 
2007) 

Two cameras with multiple 
IR illumination sources 

Pupil and glints 1.6° 

2D Regression 
( Blignaut 2013) 

One camera, one IR LED Pupil and glints 1.17° 

2D Regression 
( Cherif et al 2002) 

Photo transistors, pulsed IR 
illumination 

No image is used 2.5° 

2D Regression ( Jian- 
nan et al 2009) 

Two concentric rings of IR 
LEDs, one camera 

Pupil and glints 5°–8° 

2D Regression 
( Hansen & Dan 
2010) 

Two loops of IR LEDs and 
one camera 

Pupil and glints 20 pixels 

2D Regression, the 
proposed method 

Modified web camera with 
built in IR LEDs and IR 
blocking filter removed 

Pupil center only 2.10°    
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3. What is active imaging and passive imaging in the context of pupil 
imaging?  

4. What is a dark pupil and bright pupil effect in occulography?  
5. Draw a flowchart elucidating the flow of extracting the pupil from an 

image.  
6. What is PAT (polynomial affine transformation)?  
7. How do you calibrate and plot the point of gaze fixation with that of the 

screen coordinate?  
8. Give a brief comparison of the prevailing state of gaze estimation 

method or algorithm. 
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12 Detection of Epileptic 
Seizures from EEG Data    

OVERVIEW 

Epilepsy is a neurological disorder emanating from within the central nervous 
system or parietal zone of the human brain. In epilepsy, the activity of the brain 
becomes abnormal, causing seizures or periods of unusual behavior, sensations, 
and sometimes loss of awareness. Therefore, detection of epileptic seizures is 
very important for a proper diagnosis of epilepsy. Some of the causes of epilepsy 
are (a) low oxygen during birth, (b) head injuries that occur during birth or due to 
injury to the brain, (c) brain tumors, (d) genetic conditions that result in brain 
injury, and (e) infections such as meningitis or encephalitis, etc. 

Some generic symptoms and signs of epilepsy seizures are (a) temporary 
confusion, (b) a staring spell, (c) uncontrollable jerking movements of the arms 
and legs, (d) loss of consciousness or awareness, (e) cognitive or emotional 
symptoms, such as fear, anxiety, or feelings of deja vu, etc. 

A sizable population are epileptic patients and undergo the trauma of un-
predictable seizures. The study of an EEG of a patient by a trained doctor to 
diagnose the abnormal pattern from the EEG forms the basis of diagnosis of 
epilepsy. This chapter discusses the current state of the art in identification and 
diagnosis of epilepsy, features generally found in the EEG signal, or the derived 
properties that together form a feature vector to classify and identify epilepsy 
from a normal EEG. Methods and tools are required to make an epilepsy clas-
sification and identification system. 

12.1 INTRODUCTION 

Epilepsy is a common brain disorder that, according to an estimate of the World 
Health Organization, affects almost 60 million people around the world. 
Epilepsy is characterized by the recurrent and sudden incidence of epileptic 
seizures that can lead to dangerous and possibly life-threatening situations 
(Iasemidis 2003; Buck et al 1997). The seizures are the result of a transient and 
unexpected electrical disturbance of the brain and excessive neuronal discharge 
that is evident in the electroencephalogram (EEG) signal. Consequently, the 
EEG signal has been the most utilized signal in clinical assessments of the state 
of the brain and detection of epileptic seizures, and is very important for a proper 
diagnosis of epilepsy. The detection of epileptic seizures by visual scanning 
of a patient’s EEG data usually collected over a few days is a tedious and 
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time-consuming process. In addition, it requires a domain expert to analyze the 
entire length of the EEG recordings in order to detect epileptic activity. 

Therefore, devising a reliable automatic classification and EEG detection 
system is of significant importance, which would ensure a reliable diagnosis of 
epilepsy. It will significantly improve the diagnosis of epilepsy as well as long- 
term monitoring and treatment of patients. For example, long-term treatment with 
anti-epileptic drugs, which may cause cognitive or other neurological side effects, 
could be reduced to a targeted short-acting intervention (Elger 2001). Therefore, 
there is a strong demand for the development of such automated systems, due to 
increased use of long-term EEG recordings for proper valuation and treatment of 
neurological diseases, including epilepsy. Also, it will significantly reduce the cost 
of diagnosis, lessening the financial burden to the patient. The possibility of the 
expert misreading the data and failing to make a proper decision would also be 
narrowed down (Guler & Ubeyli 2005; Webber et al 1993). 

12.2 PRESENT STATE OF THE ART 

The detection of epileptic seizures by visual scanning of a patient’s EEG data 
usually collected over a few days is a tedious and time-consuming process. In 
addition, it requires an expert to analyze the entire length of the EEG recordings, 
in order to detect epileptic activity. A reliable automatic classification and de-
tection system would ensure a timely treatment. Often long-term monitoring and 
diagnosis of epilepsy as well as its treatment significantly improves the condition 
of the patients. For example, the long-term treatment with anti-epileptic drugs, 
which may cause cognitive or other neurological side effects, could be reduced 
to a targeted short-acting intervention (Elger 2001). Therefore, there is a strong 
demand for the development of automated systems to diagnose, classify, and 
detect elliptic seizures. The automatic scanning, classification, and detection of 
epileptic seizures will help in proper evaluation and treatment of epilepsy, in-
cluding other neurological diseases. It will eliminate and minimize the possibility 
of the expert misreading the data and failing to make a proper decision; also, it 
can reduce the financial burden of treatment. 

Automatic classification and detection of seizures from EEG data has been 
studied by many researchers using many different approaches. Significant among 
such developments are by Gotman (Gotman 1982), who presented a computerized 
system for detecting a variety of seizures, while Qu and Gotman (Qu & Gotman 
1997) proposed the use of the nearest-neighbor classifier on EEG features ex-
tracted in both time and frequency domains to detect the onset of epileptic sei-
zures. Artificial neural network–based detection systems for diagnosis of epilepsy 
have been proposed by several researchers (Ubeyli 2006; Tzallas et al 2007). 

The method uses the feature vector containing values, average EEG ampli-
tude, average EEG duration, variation coefficient, dominant frequency, and 
average power spectrum, as inputs to an adaptive neural network. The method 
uses a raw EEG signal as an input to extract the learning vector through quan-
tization and processing of the EEG signal acquired from the subject. In a new 
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neural network model called LAMSTAR (large memory storage and retrieval), 
the network and two time-domain attributes of EEG; namely, relative spike 
amplitude and spike rhythmicity as inputs for the purpose of detecting seizures. 
The algorithm proposed by Kiymik et al. [18] uses a backpropagation neural 
network with periodogram and autoregressive (AR) features as input for auto-
matic detection of epileptic seizures. A classification methodology based on 
wavelet analysis and both radial basis function and Levenberg-Marquardt 
backpropagation neural network is used for learning and classification. 
Wavelet analysis and mixture of experts, in addition to the artificial neural 
network, are used to classify EEG signals and detect seizures. The methods 
clearly establish the fact that the approaches used in classification and identifi-
cation of epilepsy from EEG data follow a pattern of analysis that is depicted in 
the block diagram (Figure 12.1). 

12.3 CLASSIFICATION OF EEG DATA 

From the perspective of epilepsy in particular and abnormality in general, the 
EEG data can be classified into three subject groups: a) healthy subjects (normal 
EEG), b) epileptic subjects during a seizure-free interval (interictal EEG), and c) 
epileptic subjects during a seizure (ictal EEG). The EEG signal classification and 
seizure detection problem is modeled as a three-group classification problem that 
is of great clinical significance. An automated system able to accurately differ-
entiate between normal and interictal EEG signals can be used to diagnose 
epilepsy, while a system that can accurately differentiate between interictal and 
ictal EEG signals can be used to detect seizures in a clinical setting. Therefore, 
the classification algorithm must be able to classify all three groups accurately 
and at the same time be robust with respect to EEG signal variations across 
various mental states and subjects. The improvement of the classification ac-
curacy is mainly based on the design of both an appropriate feature space, by 
identifying combinations of all extracted features that increase the inter-class 
separation, and classifiers that can accurately classify all three groups of EEG 
signals based on the selected and reduced feature space. Real EEG recordings 
were applied to test algorithm performance and the results indicated that the 
algorithm has a special potential to be applied within an automatic epilepsy 
diagnosis system. 

The hierarchical tree depicting classification of EEG signals into various 
classes and subclasses is depicted (Figure 12.2). An EEG classifier capable of 
classifying all of these classes and subclasses needs to be trained for different 
feature sets. The feature sets need to be obtained from the EEG database auto-
matically and sanitized or reduced in such a manner that they portray a high 
intra-class variance and low inter-class/subclass variance. A possible set of 
features for the best classification is average frequency, average EEG amplitude, 
average EEG duration, variation coefficient, dominant frequency, and average 
power spectrum. 
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12.4 DESIGNING AN AUTOMATIC EPILEPTIC SEIZURE 
DETECTION SYSTEM 

In this section, we discuss the design of an automatic seizure detection system. 
The material and the methods required to realize such a system has many options 
to choose from. The tools require classifying and isolating the EEG data cor-
responding to the seizure. 

12.4.1 MATERIALS 

To design a classifier, the first ingredient that is necessary is a large amount of 
tagged data. The EEG data used for designing our system constitutes EEG data 
corresponding to both normal and epileptic subjects, made available by 
Axxonate Networks, Bangalore. A mix of three types of EEG data sets from 
three different types, healthy subjects with normal EEG data, epileptic subjects 
during a seizure-free interval with interictal EEG data, and epileptic subjects 
during a seizure with ictal (epileptic) EEG data, are considered. Each data set is 
recorded with a 64-channel EEG acquisition system with a 25 s duration. These 
segments were selected and cut out from the continuous multi-channel EEG 
recordings after visual inspection for artifacts (e.g., saccade, fix, and blink due to 
muscle activity or eye movement). The first EEG data set corresponds to healthy 
subjects, who were relaxed in an awakened state, using the standardized elec-
trode placement technique. The second and third data sets were obtained from 
five different epileptic subjects during a seizure-free and seizure interval, 
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FIGURE 12.1 Pattern of EEG data analysis using signal classification and machine 
learning.    
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respectively, were taken from the intracranial EEG recordings during pre- 
surgical diagnosis. 

Epilepsy is considered as a phenomena emanating from the temporal lobe of 
the brain and is diagnosed as temporal lobe epilepsy as the epileptogenic focus 
being hippocampal formation. A schematic of an intracranial electrode place-
ment is shown in Figure 12.3(b). The depth electrode was implanted symme-
trically into the hippocampal formations and the strip electrodes were implanted 
onto the lateral and basal regions of the neocortex (Figure 12.3(b)). The EEG 
segments selected from all the recording sites exhibit ictal activity. Each EEG 
segment is considered as a separate EEG signal, resulting in a sizable number of 
EEG data segments. 

There are five broad spectral sub-bands of the EEG signal that are generally of 
clinical interest: delta (0–4 Hz), theta (4–8 Hz), alpha (8–16 Hz), beta (16–32 
Hz), and gamma waves (32–64 Hz). Higher frequencies are often more common 
in abnormal brain states such as epilepsy (i.e., there is a shift of EEG signal 
energy from lower- to higher-frequency bands before and during a seizure). 
These five frequency sub-bands provide more accurate information about neu-
ronal activities underlying the problem and, consequently, some changes in the 
EEG signal that are not so obvious in the original full-spectrum signal, can be 
amplified when each sub-band is considered independently. That is the basic 
premise of seizure classification of an EEG signal. Most of the features were 
extracted from each sub-band separately, after wavelet decomposition of the 
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full-spectrum EEG signal, as well as reconstructed in all five sub-bands using the 
inverse wavelet transform. 

For example, the difference between normal and interictal EEG data is more 
apparent in Figure 12.3(b), where only theta sub-bands are presented, than in 
Figure 12.2, where the same but full-spectrum signals are shown. On the other 
hand, ictal EEG data are easier to distinguish, mainly due to higher amplitudes. 

As an example, the first 5 s of all three different EEG data segments are 
magnified and shown in Figure 12.3(a). Interictal EEG data can contain only 
occasional transient waveforms, as isolated spikes, spike trains, sharp waves, or 
spike-wave complexes, while ictal EEG date are composed of a continuous 
discharge of polymorphic waveforms of variable amplitude and frequency, spike 
and sharp wave complexes, rhythmic hypersynchrony, or electrocerebral 

FIGURE 12.3 (a) Time domain analysis of an epileptic seizure; (b) Implanted in-
tracranial electrodes for detection of epilepsy.    
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inactivity observed over a duration longer than the average duration of these 
abnormalities during interictal periods, as shown in Figure 12.3(a). 

12.4.2 METHODS 

In this section, an automated classification of EEG signals for the detection of 
epileptic seizures based on wavelet transform and statistical pattern recognition 
is discussed. The method is depicted in in the flowchart in Figure 12.4. 

EEG data AcqAuisition   X = [ , ] 

Wavelet transform

Feature extraction   Y = [ ] 

Dimension Reduction   Z = ATY  = [ ]

!e first quadratic classifier, h1 (Z) = ZT Q1Z + V1
TZ

+ vo1 > 0    

Normal EEG

No

Yes

!e second quadratic classifier   h2(Z) = ZTQ2Z + V2
TZ +

vo2  > 0     

Interictal EEG
Yes

No

Ictal (epileptic) EEG

FIGURE 12.4 Process flow of classification algorithm.    

Detection of Epileptic Seizures                                                            181 



Step 1. The first step of this method is to obtain a set of features after 
wavelet transform of EEG data, including energy, entropy, and 
standard deviation of both wavelet coefficients and the EEG signal 
in different frequency bands of clinical interest.  

Step 2. The second step is to perform dimension reduction of the feature 
space using scatter matrices.  

Step 3. Finally, two quadratic classifiers are designed that are able to 
distinguish all three groups of EEG signals of interest from each 
other. The entire flow of the algorithm is shown in Figure 12.4. 

12.4.3 WAVELET TRANSFORM 

Abnormalities in EEG data during serious neurological diseases such as epilepsy 
are too subtle to be detected using conventional techniques that usually transform 
mostly qualitative diagnostic criteria into a more objective quantitative signal 
feature classification problem. The techniques that have been applied to address 
this problem include the analysis of EEG signals for the detection of epileptic 
seizures using the autocorrelation function, time domain features, frequency 
domain features, time-frequency analysis, nonlinear time series analysis, and 
wavelet transform. However, the results of various studies have demonstrated 
that the wavelet transform is the most promising method for extracting features 
from EEG signals (Guler & Ubeyli 2005; Adeli et al 2004). As such, the wavelet 
transform is used to extract features from EEG signals. 

The wavelet transform, as a liner time-frequency transform, represents an 
efficient analytical tool in signal processing, pattern recognition and classifica-
tion, and is suitable for analysis of transient and non-stationary phenomena as 
well as noise reduction. As a class of functions, it has the ability to localize 
information in both time and frequency. Therefore, the wavelet transform has 
been utilized widely in biomedical signal processing. Using discrete wavelet 
analysis, a multi-resolution description is used to decompose a given signal x(t) 
into increasingly finer detail based on two sets of basis functions, the wavelets 
and the scaling functions, given by Equation 12.1: 

x t a k t k d k t k( ) = 2 ( ) (2 ) + 2 ( ) (2 )k
j

j
j

j j k
j

j
j/2

0
0 /20

0
(12.1)  

where functions φ(t) and ψ(t) are the basic scaling and mother wavelet, re-
spectively. In the expansion, the first summation represents an approximation of 
x(t) based on the scale index of j0, while the second term adds more detail using 
larger j (finer scales). The coefficients in this wavelet expansion are called the 
discrete wavelet transform (DWT) of the signal (t). When the wavelets are or-
thogonal, these coefficients can be calculated by (Equation 12.2): 

d k x t t k dt( ) = 2 ( ) (2 )j
j j/2 (12.2) 
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where aj(k) and dj(k) are the wavelet approximation and detail coefficients, 
respectively. 

In the DWT, the frequency axis is divided into dyadic intervals towards the 
lower frequencies, while the bandwidth length decreases exponentially. The 
wavelet packet (WP) transform is a generalization of the DWT in which de-
composition is undertaken in both directions (lower and higher frequencies). 
This general decomposition offers a greater range of possibilities for signal 
analysis than the discrete wavelet decomposition. In the WP tree, each node is 
recognized by the decomposition level (scale) l with respect to the WP tree root 
and the frequency band f. The ability of the wavelet transform in adaptive time- 
scale representation and decomposition of a signal into different frequency 
sub-bands presents an efficient signal analysis method without introducing a 
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calculation burden. Based on wavelet coefficients obtained after the wavelet 
transform, the signal can be reconstructed in each of the previously derived sub- 
bands and its time-domain features in different sub-bands can be studied 
separately. 

A generic flowchart for the classification of EEG data is depicted in 
Figure 12.5. The flowchart has three distinct sub-sections: (1) EEG data pro-
cessing, (2) extraction of features from processed EEG data, and (3) learning of 
the classifier and classification of EEG signals for the detection of seizures. 

12.5 SUMMARY 

This chapter discussed the generic classification of EEG data from the point of 
view of detection of seizures due to epilepsy. The contents of a feature vector 
that specify a seizure from that of the normal EEG signal were discussed. The 
methods and tools that are useful in designing a seizure detector were reviewed. 
Further, how a wavelet transformation and a neural network are used to train and 
detect seizures from time-varying EEG signals of the subject were discussed. 
Also, how the coefficients obtained from a discrete wavelet transform were used 
as the signature vector after reduction was discussed. This vector is used by 
quadratic classifiers for the classification of the EEG signal into three important 
clasess normal, interictal, and ictal. 

Exercise  

1. What is epilepsy? How it is characterized with respect to the EEG 
signal?  

2. What are the prevailing techniques to detect epilepsy from an EEG 
signal of a subject?  

3. Describe various stages of analysis of an EEG signal leading to the 
classification of EEG data.  

4. Give a block diagram and describe the process of pattern analysis of 
EEG signal classification.  

5. Give a generic classification of an EEG signal based on its frequency, 
amplitude, average power spectrum, average frequency, average EEG 
amplitude, and dominant frequency.  

6. What are the requirements to design an automatic epileptic seizure 
detection system? 

7. Give a step-by-step algorithm for an automatic EEG signal classifica-
tion leading to the detection of seizures. 
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Appendix    

A1 METHOD TO LOAD THE EEG DATA INTO THE EEGLAB 
TOOLBOX 

To load the data in .edf format to MATLAB®, we have used the EEGLAB 
toolbox. The source for the toolbox is provided in Software Requirement section. 
The steps for loading data are as follows:  

Step 1. Change current directory to the EEGLAB folder. Add this path 
and in the MATLAB terminal type: “EEGLAB.”  

Step 2. A pop-up window will appear; follow the path: 

“File » Import data » Using EEGLAB functions and plugins » From EDF/EDF+/ 
GDF files(Biosig toolbox).”  

Now locate the .edf file in file explorer and click open to import. 
Figure A1 Demonstrates the above path.   

Step 3. After the import is complete, load the data as a .mat file. 

for use in MATLAB, type: 

“A= ALLEEG.data;”  

This stores the data in A (as MATLAB array) and lets the user access each 
channel by slicing the array. For our case, it was 37-channel data, where each 
row in an array represents one channel data. Note the data is in single format, so 
double conversion is required. Figure A2 demonstrates this process. 
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A2 THIS MATLAB CODE TO PLOTS THE EEG SIGNAL, TO 
COMPUTE THE WAVELET COEFFICIENT OF GAMMA, BETA, 
ALPHA, BETA AND DELTA WAVES ARTEFACTS FROM THE 
EEG SIGNAL. IT PLOTS THE EEG COMPONENTS SEPARATELY. 
ALSO IT COMPUTES THE OCCURRENCE OF THE MAXIMUM 
FREQUENCY OF THESE COMPONENTS 

load eegdata.mat; 
s=eegdata; 
figure;p=plot(s); 
title(‘EEG Signal’) 
fs = 500; 
% Sampling frequency 
N=length(s); 
waveletFunction = ‘db8’; 
[C,L] = wavedec(s,8,waveletFunction); 
cD1 = detcoef(C,L,1); 
cD2 = detcoef(C,L,2); 
cD3 = detcoef(C,L,3); 
cD4 = detcoef(C,L,4); 
cD5 = detcoef(C,L,5); %GAMA 
cD6 = detcoef(C,L,6); %BETA 
cD7 = detcoef(C,L,7); %ALPHA 
cD8 = detcoef(C,L,8); %THETA 
cA8 = appcoef(C,L,waveletFunction,8); %DELTA 
D1 = wrcoef(‘d’,C,L,waveletFunction,1); 
D2 = wrcoef(‘d’,C,L,waveletFunction,2); 
D3 = wrcoef(‘d’,C,L,waveletFunction,3); 
D4 = wrcoef(‘d’,C,L,waveletFunction,4); 
D5 = wrcoef(‘d’,C,L,waveletFunction,5); %GAMMA 
D6 = wrcoef(‘d’,C,L,waveletFunction,6); %BETA 
D7 = wrcoef(‘d’,C,L,waveletFunction,7); %ALPHA 
D8 = wrcoef(‘d’,C,L,waveletFunction,8); %THETA 
A8 = wrcoef(‘a’,C,L,waveletFunction,8); %DELTA 
Gamma = D5; 
figure; subplot(5,1,1); plot(1:1:length(Gamma),Gamma);title(‘GAMMA’); 
Beta = D6; 
subplot(5,1,2); plot(1:1:length(Beta), Beta); title(‘BETA’); 
Alpha = D7; 
subplot(5,1,3); plot(1:1:length(Alpha),Alpha); title(‘ALPHA’); 
Theta = D8; 
subplot(5,1,4); plot(1:1:length(Theta),Theta);title(‘THETA’); 
D8 = detrend(D8,0); 
Delta = A8; 
%figure, plot(0:1/fs:1,Delta); 

190                                                                                         Appendix 



subplot(5,1,5);plot(1:1:length(Delta),Delta);title(‘DELTA’); 
D5 = detrend(D5,0); 
xdft = fft(D5); 
freq = 0:N/length(D5):N/2; 
xdft = xdft(1:length(D5)/2+1); 
figure;subplot(511);plot(freq,abs(xdft));title(‘GAMMA-FREQUENCY’); 
[~,I] = max(abs(xdft)); 
fprintf(‘Gamma:Maximum occurs at %3.2fHz.\n’,freq(I)); 
D6 = detrend(D6,0); 
xdft2 = fft(D6); 
freq2 = 0:N/length(D6):N/2; 
xdft2 = xdft2(1:length(D6)/2+1); 
% figure; 
subplot(512);plot(freq2,abs(xdft2));title(‘BETA’); 
[~,I] = max(abs(xdft2)); 
fprintf(‘Beta:Maximum occurs at %3.2fHz.\n’,freq2(I)); 
D7 = detrend(D7,0); 
xdft3 = fft(D7); 
freq3 = 0:N/length(D7):N/2; 
xdft3 = xdft3(1:length(D7)/2+1); 
% figure; 
subplot(513);plot(freq3,abs(xdft3));title(‘ALPHA’); 
[~,I] = max(abs(xdft3)); 
fprintf(‘Alpha:Maximum occurs at %f Hz.\n’,freq3(I)); 
xdft4 = fft(D8); 
freq4 = 0:N/length(D8):N/2; 
xdft4 = xdft4(1:length(D8)/2+1); 
% figure; 
subplot(514);plot(freq4,abs(xdft4));title(‘THETA’); 
[~,I] = max(abs(xdft4)); 
fprintf(‘Theta:Maximum occurs at %f Hz.\n’,freq4(I)); 
A8 = detrend(A8,0); 
xdft5 = fft(A8); 
freq5 = 0:N/length(A8):N/2; 
xdft5 = xdft5(1:length(A8)/2+1); 
% figure; 
subplot(515);plot(freq3,abs(xdft5));title(‘DELTA’); 
[~,I] = max(abs(xdft5)); 
fprintf(‘Delta:Maximum occurs at %f Hz.\n’,freq5(I)); 
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A3 PURPOSE OF THIS CODE IS TO DETECT THE STATE OF THE 
MIND OF A PATIENT USING THE EEG DATA COLLECTED 
FROM THE PATENT. THIS MATLAB PROGRAM DETECTS THE 
PATIENT’S STATE OF MIND AND CLASSIFIES IT INTO TWO 
STATES I.E. EITHER IT IS IN THE STATE OF ANAESTHESIA OR 
WAKE-UP STATE BY ANALYZING THE FREQUENCY, 
AMPLITUDE, POWER SPECTRAL DENSITY AVERAGE POWER 
OF THE COMPONENTS GAMMA, BETA, ALPHA, THETA, AND 
DELTA WAVES OBTAINED FROM THE EEG OF THE PATENT 

clear all 
close all 
clc 
%part 1 
Fs=128; %sampling frequency as we are using just 128 samplesper second 
fileID = fopen(‘Subject_1.txt’,’r’); %open Subject_1.txt file in read mode 
this_line=0; 
var1={}; %initilization of array 
while this_line ~=-1%read till end of line of array 
this_line=fgetl(fileID); %returns the next line of the specified file, removing the 
newline characters 
if this_line ~=-1%when end of line occure 
var1=[var1;this_line]; %concatenate of new line with all the pervious lines and 
loading into MATLAB array this will result all the text file in into arrays indexes 
each line make one index 
end 
end 
var2=var1(220); %slect the specfied line whose spectrum you wanted to observe. 
this will select specfied index of 129*1 array 
dlmwrite(‘myFile.txt’,var2,’delimiter’,’’,’roffset’,1); %this will write the spec-
fied index of array into a text file 
fileID = fopen(‘myFile.txt’,’r’); %again we open the created file in read mode 
commas = char(44); %as our text file is separated by commas so we need the 
ACII of commas to delete them from text 
sizeA = [1 Inf]; %give the size of array 
[A] = fscanf(fileID,[’%d’ commas], sizeA); %make array of decimal data type 
with specified size and remove commas from text 
% %%%filters 
%part 3%%power spectrum of delta 
fp1=0; %pass band frequecy of delta 
fs1=3.75; %stop band frequency of delta 
Rs1=.0001; %stop band ripples of delta 
Rp1=0.057501127785; %pass band ripples of delta 
wn1=[fp1 fs1]/(Fs/2); %retrun the normalize frequency 
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[N1, F1, A1, W1] = firpmord(wn1, [0 1], [Rp1,Rs1]); %see the description of 
fuction 
b1 = firpm(N1, F1, A1, W1); %return coefficients of fir filter 
Hd1 = dfilt.dffir(b1); %design a filter for the coefficients 
x1=filter(Hd1,A); %filter data with the designed filter 
L=10; 
Q1 = 2^nextpow2(L); %number of fft points 
j1 = fft(x1,Q1)/L; %take Fourier transform 
Sam1=j1(1:Q1/2); %take Q/2 samples of J 
N1=128; %number of samples to find avreage power 
PSD1=periodogram(Sam1); %power spectrum density 
avg1=sum(PSD1)/N1%average power of delta 
f1 = (0:length(PSD1)-1)/(Fs/length(PSD1)); %frequency vector 
subplot(221) 
plot(f1,PSD1) 
title(‘delta power spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%theta 
Fs21=3.75; 
Fp21=4; 
Fp22=7; 
Fs22=7.75; 
Rs21=.001; 
Rs22=.0001; 
Rp21=0.057501127785; 
wn2=[Fs21 Fp21 Fp22 Fs22]/(Fs/2); 
[N2, F2, A2, W2] = firpmord(wn2, [0 1 0], [Rs21, Rp21,Rs22]); 
b2 = firpm(N2, F2, A2, W2); 
Hd2 = dfilt.dffir(b2); 
x2=filter(Hd2,A); 
L=10; 
Q2 = 2^nextpow2(L); 
j2 = fft(x2,Q2)/L; 
Sam2=j2(1:Q2/2); 
PSD2=periodogram(Sam2); %power spectrum density 
avg2=sum(PSD2)/N1%average power of theta 
f2 = (0:length(PSD2)-1)/(Fs/length(PSD2)); 
subplot(222) 
plot(f2,PSD2) 
title(‘theta power spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude-->’) 
%alpha 
Fs31=7.75; 
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fp31=8; 
fp32=13; 
fs32=13.5; 
Rs31=.001; 
Rs32=.0001; 
Rp3=0.057501127785; 
wn3=[Fs31 fp31 fp32 fs32]/(Fs/2); 
[N3, F3, A3, W3] = firpmord(wn3, [0 1 0], [Rs31, Rp3,Rs32]); 
b3 = firpm(N3, F3, A3, W3); 
Hd3 = dfilt.dffir(b3); 
x3=filter(Hd3,A); 
L=10; 
Q3 = 2^nextpow2(L); % Next power of 2 from length of x3 
j3 = fft(x3,Q3)/L; 
Sam3=j3(1:Q3/2); 
PSD3=periodogram(Sam3); %power spectrum density 
avg3=sum(PSD3)/N1%average power of alpha 
f3 = (0:length(PSD3)-1)/(Fs/length(PSD3)); 
subplot(223) 
plot(f3,PSD3) 
title(‘Alpha power spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
% % % %beta 
Fs41=13.5; 
fp41=14; 
fp42=29.5; 
fs42=30; 
Rs41=.001; 
Rs42=.0001; 
Rp4=0.057501127785; 
wn4=[Fs41 fp41 fp42 fs42]/(Fs/2); 
[N4, F4, A4, W4] = firpmord(wn4, [0 1 0], [Rs41, Rp4,Rs42]); 
b4 = firpm(N4, F4, A4, W4); 
Hd4 = dfilt.dffir(b4); 
x4=filter(Hd4,A); 
L=10; 
Q4= 2^nextpow2(L); 
j4 = fft(x4,Q4)/L; 
Sam4=j4(1:Q4/2); 
PSD4=periodogram(Sam4); %power spectrum density 
avg4=sum(PSD4)/N1%average power of beta 
f4 = (0:length(PSD4)-1)/(Fs/length(PSD4)); 
subplot(224) 
plot(f4,PSD4) 
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title(‘beta power spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
if(avg1>41.0777)&&(avg2>.5779)&&(avg3>.2715)&&(avg4>1.8993) 
fprintf(‘patent is awake’) 
else 
fprintf(‘Patent is Anesthetized\n’) 
end 

clear all 
close all 
clc 
%part 1 
fileID = fopen(‘Subject_1.txt’,’r’); 
this_line=0; 
var1={}; 
while this_line ~=-1 
this_line=fgetl(fileID); 
if this_line ~=-1 
var1=[var1;this_line]; 
end 
end 
var2=var1(420); %enter row number you want to analyze 
dlmwrite(‘myFile.txt’,var2,’delimiter’,’’,’roffset’,1); 
fileID = fopen(‘myFile.txt’,’r’); 
commas = char(44); 
sizeA = [1 Inf]; 
[A] = fscanf(fileID,[’%d’ commas],sizeA); 
fs=500; 
A=A’; 
Z=A(129,1); 
if Z==0 
fprintf(‘patient wake\n’) 
else 
fprintf(‘patient is in Anesthetized\n’) 
end 
%part 2 
j=fft(A,1024); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(331) 
plot(L,20*log((j))) 
title(‘spectrum of original data’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
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%%%filters 
%part 3%%delta 
Fp=.5; 
Fs=3.75; 
Rp=0.057501127785; 
wn=[Fp, Fs]/(fs/2); 
fs=500; 
Rs=0.0001; 
[Or,F,po,w] = firpmord(wn, [1 0], [Rp, Rs]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(332) 
ts=1; 
t=0:ts:128; 
plot(t,x1,’r’) 
title(‘delta time domain’) 
xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
j=fft(x1,1024); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(333) 
plot(L,20*log((j))); 
title(‘delta spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%theta 
Fs1=3.75; 
fp1=4; 
fp2=7; 
fs2=7.75; 
Rs1=.001; 
Rs2=.0001; 
Rp=0.057501127785; 
wn=[Fs1 fp1 fp2 fs2]/(fs/2); 
[Or, F, po, w] = firpmord(wn, [0 1 0], [Rs1, Rp,Rs2]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(334) 
ts=1; 
t=0:ts:128; 
plot(t,x1,’r’) 
title(‘theta in time domain’) 
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xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
j=fft(x1,1024); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(335) 
plot(L,20*log((j))) 
title(‘theta spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%alpha 
Fs1=7.75; 
fp1=8; 
fp2=13; 
fs2=13.5; 
Rs1=.001; 
Rs2=.0001; 
Rp=0.057501127785; 
wn=[Fs1 fp1 fp2 fs2]/(fs/2); 
[Or, F, po, w] = firpmord(wn, [0 1 0], [Rs1, Rp,Rs2]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(336) 
ts=1; 
t=0:ts:128; 
plot(t,x1,’r’) 
title(‘Alpha in time domain’) 
xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
j=fft(x1,1024); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(337) 
plot(L,20*log((j))) 
title(‘Alpha spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%beta 
Fs1=13.5; 
fp1=14; 
fp2=29.5; 
fs2=30; 
Rs1=.001; 
Rs2=.0001; 
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Rp=0.057501127785; 
wn=[Fs1 fp1 fp2 fs2]/(fs/2); 
[Or, F, po, w] = firpmord(wn, [0 1 0], [Rs1, Rp,Rs2]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(338) 
ts=1; 
t=0:ts:128; 
plot(t,x1,’r’) 
title(‘beta in time domain’) 
xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
j=fft(x1,1024); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(339) 
plot(L,20*log((j))) 
title(‘beta spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 

clear all 
close all 
clc 
%part 1 
fileID = fopen(‘Subject_2.txt’,’r’); 
this_line=0; 
var1={}; 
while this_line ~=-1 
this_line=fgetl(fileID); 
if this_line ~=-1 
var1=[var1;this_line]; 
end 
end 
var2=var1(250); %enter row number you want to analyze 
dlmwrite(‘myFile.txt’,var2,’delimiter’,’’,’roffset’,1); 
fileID = fopen(‘myFile.txt’,’r’); 
commas = char(44); 
sizeA = [1 Inf]; 
[A] = fscanf(fileID,[’%d’ commas],sizeA); 
fs=500; 
A=A’; 
Z=A(129,1); 
if Z==0 
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fprintf(‘patient wake\n’) 
else 
fprintf(‘patient is in Anesthetized\n’) 
end 
%part 2 
j=fft(A); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(331) 
stem(L,20*log((j))) 
title(‘spectrum of original data’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%%%filters 
%part 3%%delta 
Fp=.5; 
Fs=3.75; 
Rp=0.057501127785; 
wn=[Fp, Fs]/(fs/2); 
fs=500; 
Rs=0.0001; 
[Or,F,po,w] = firpmord(wn, [1 0], [Rp, Rs]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(332) 
ts=1; 
t=0:ts:128; 
stem(t,x1,’r’) 
title(‘delta time domain’) 
xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
j=fft(x1); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(333) 
stem(L,20*log((j))); 
title(‘delta spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%theta 
Fs1=3.75; 
fp1=4; 
fp2=7; 
fs2=7.75; 
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Rs1=.001; 
Rs2=.0001; 
Rp=0.057501127785; 
wn=[Fs1 fp1 fp2 fs2]/(fs/2); 
[Or, F, po, w] = firpmord(wn, [0 1 0], [Rs1, Rp,Rs2]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(334) 
ts=1; 
t=0:ts:128; 
stem(t,x1,’r’) 
title(‘theta in time domain’) 
xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
j=fft(x1); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(335) 
stem(L,20*log((j))) 
title(‘theta spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%alpha 
Fs1=7.75; 
fp1=8; 
fp2=13; 
fs2=13.5; 
Rs1=.001; 
Rs2=.0001; 
Rp=0.057501127785; 
wn=[Fs1 fp1 fp2 fs2]/(fs/2); 
[Or, F, po, w] = firpmord(wn, [0 1 0], [Rs1, Rp,Rs2]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(336) 
ts=1; 
t=0:ts:128; 
stem(t,x1,’r’) 
title(‘Alpha in time domain’) 
xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
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j=fft(x1); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(337) 
stem(L,20*log((j))) 
title(‘Alpha spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 
%beta 
Fs1=13.5; 
fp1=14; 
fp2=29.5; 
fs2=30; 
Rs1=.001; 
Rs2=.0001; 
Rp=0.057501127785; 
wn=[Fs1 fp1 fp2 fs2]/(fs/2); 
[Or, F, po, w] = firpmord(wn, [0 1 0], [Rs1, Rp,Rs2]); 
b1 = firpm(Or, F, po, w); 
F1 = dfilt.dffir(b1); 
x1=filter(F1,A); 
subplot(338) 
ts=1; 
t=0:ts:128; 
stem(t,x1,’r’) 
title(‘beta in time domain’) 
xlabel(‘time(S)-->’) 
ylabel(‘amplitude(db)-->’) 
j=fft(x1); 
oo=length(j); 
L=(0:oo-1)*(fs/oo); 
subplot(339) 
stem(L,20*log((j))) 
title(‘beta spectrum’) 
xlabel(‘frequacy(Hz)-->’) 
ylabel(‘amplitude(db)-->’) 

A4 MATLAB CODE FOR DETECTION OF BLINKS FROM  
EEG DATA 

A4.1 MAIN FUNCTION 

%{ 
========================================================= 
Title:A Method to Detect Blink from the EEG Signal 
Author: Narayan Panigrahi, Center for AI and Robotics(CAIR), Bangalore, 
India, email: npanigrahi7@gmail.com 
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Amarnath De, student, Jadavpur University, amarnathde1992work@gmail.com 
Somnath Roy, student, Jadavpur University, somroymail@gmail.com 
========================================================= 
%} 
%% 
%EEG Signal aquired using EEGLAB Toolbox v14.1.2b 
%A1 channel No 31 is taken for blink detection 
channel1 = sangeeta(31,:); 
t = 1:size(channel1,2); 
%Moving average taken with Lead = 10, Lag = 20, alpha = 1%  
This is done to remove the local variations in the signal 
[modified_long,modified_short] = movavg(channel1,10,20,1); 
%% 
%Takeing the differential of the signal to obtain the gradient 
steps = 1; 
grad = zeros(int32(size(modified_short,2)/steps)); 
fori = 1:(size(modified_short,1))/steps-1 

grad(i) = (modified_short(i+steps) - modified_short(i))/steps; 
end 
%% 
%Calculating the parameters of the Modified threshold function 
mod_val = abs(grad); 
max_mod = max(mod_val); 
c = 0.3; 
thresh = max_mod*c; 
%apply moving averge using the same parameters 
[ None,smooth_grad] = movavg(grad,10,20,1); 
%calling the Threshold function 
[squared,blinks,count_blinks] = thresh_sign(transpose(smooth_grad),… 

-thresh,thresh); 
%Function to highlight the blinks in the original signal 
plot_blinks(blinks,count_blinks, channel1) 
%% 
%plot the result 
subplot(4,1,1) 
grid on 
plot(modified_short, ’LineWidth’,1.5) 
title(‘Signal after applying moving average of Lead = 10 Lag = 20Alpha= 1’) 
xlabel(‘Time’) 
ylabel(‘Amplitude(uV)’) 
subplot(4,1,2) 
plot(grad,’LineWidth’,1.5) 
title(‘Gradient change of the above signal using 1st order derivative’) 
xlabel(‘Time’) 
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ylabel(‘Gradient’) 
subplot(4,1,3) 
plot(squared,’LineWidth’,1.5) 
title(‘Result After Thresholding ’) 
xlabel(‘Time’) 
ylabel(‘Amplitude’) 

A4.2 THRESHOLD FUNCTION 

%{======================================================= 
Title:A Method to Detect Blink from the EEG Signal 
Author: Narayan Panigrahi, Center for AI and Robotics(CAIR), Bangalore, 
India, email: npanigrahi7@gmail.com 
Amarnath De, student, Jadavpur University, amarnathde1992work@gmail.com 
Somnath Roy, student, Jadavpur University, somroymail@gmail.com 
=======================================================%} 
function [ y, blinks,count_blinks] = thresh_sign( x, lower_thresh,… 
high_thresh) 
%thresh_sign: This function determines the blinks. 
%This function determines the blink if the the gradient crosses the higher 
%and lower threshold in quick successions otherwise it won’t. 
%Input:gradient signal, lower threshold and higher threshold 
%Output: squared signal, array containing the start and end of blinks 
%and number of blinks 
y = zeros(size(x)); 
plot(x) 
pause 
start=0; 
ending=0; 
flag = 0; 
blinks = zeros(2,1); 
count_blinks = 1; 
fori = 2:size(x,2) 
if( x(i)>high_thresh) 

y(i) = 2*high_thresh; 
if(x(i-1)<=high_thresh&& x(i-1)>0) 
if(flag == 1) % not a blink so set flag to 0 

flag = 0; 
elseif(flag==0) 

start = i-1; %record the time of blink start 
flag = 1; %set flag to signify the start of blink 

end 
end 
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elseif(x(i)<=high_thresh&& x(i)>0) 
y(i) = high_thresh; 

elseif(x(i)<0 && x(i)>lower_thresh) 
y(i) = lower_thresh; 

if(x(i-1)<=lower_thresh) 
if(flag == 1) 

ending = i-1; %record the time of blink ends 
flag = 0; %set flag to signify the end of blink 
blinks(:,count_blinks) = [start;ending]; 

count_blinks = count_blinks+1; 
end 
end 
elseif(x(i)<=lower_thresh) 

y(i) = 2*lower_thresh; 
end 
end 
end 

A4.3 PLOT BLINK FUNCTION 

%{======================================================= 
Title:A Method to Detect Blink from the EEG Signal 
Author: Narayan Panigrahi, Center for AI and Robotics(CAIR), Bangalore, 
India, email: npanigrahi7@gmail.com 
Amarnath De, student, Jadavpur University, amarnathde1992work@gmail.com 
Somnath Roy, student, Jadavpur University, somroymail@gmail.com 
=======================================================%} 
function [] = plot_blinks( blinks, count_blinks, channel1) 
%plot_blinks: Highlights the blinks in the original signal 
count = 1; 
start = blinks(1,1); 
ending = blinks(2,1); 
subplot(4,1,4) 
for t = 2:size(channel1,2) 
if(t>=start && t <= ending) 

plot(t-1:t,channel1(t-1:t),’r’,’LineWidth’,1.5) 
hold on 

else 
plot(t-1:t,channel1(t-1:t),’LineWidth’,1.5) 
hold on 

end 
if (t>ending && count<count_blinks-1)%if plot completes one blink 

count = count +1; 
start = blinks(1,count); 
ending = blinks(2,count); 
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end 

end 
title(‘Original Signals with Highlighted Blinks’) 
xlabel(‘Time’) 
ylabel(‘Amplitude(uV)’) 

A5 MATLAB CODE FOR DETECTION OF SACCADE AND FIX 

A5.1 MAIN FUNCTION 

X1=115712; 
X2=116712; 
%=========================Wavelet Decomposition============= 

A1_raw=double(A(32,X1:X2)); % Selecting EOG1 channel from raw data. 
t=(1:(X2-X1)+1); 
A1=wavdecomp( A1_raw); % Wavelet Decomposition to remove baseline. 
%A1 = A1_raw; % Level=12 IDFT upto level 8. 
subplot(211) 
plot(t,A1_raw,’LineWidth’,1.5) 
xlabel(‘Time[ms]’) 
ylabel(‘Original Signal Amplitude’) 
grid on 
title(‘Raw EEG Signal’,’FontSize’,16) 
subplot(212) 
plot(t,A1,’LineWidth’,1.5) 
xlabel(‘Time[ms]’) 
ylabel(‘Amplitude’) 
grid on 
title(‘Baseline Removed Signal’,’FontSize’,16) %Comparison Plot of baseline 
%removed signal. 

%=================Median Filter and Wavelet Denoising============ 

A1_medfilt=medfilt1(A1,19,74); % Applying Median filter of 19th order with 
% window of 74ms. 

[A1_wden] = wden(A1,’sqtwolog’,’s’,’one’,1,’sym1’); % Applying symlet 
%wavelet denoising to remove noise 
A1_final=(A1_medfilt+A1_wden)/2; % Averaging both to get final signal. 

figure,plot(t,A1,t,A1_medfilt,t,A1_wden,t,A1_final,’LineWidth’,1.5) 
xlabel(‘Time[ms]’) 
ylabel(‘Amplitude’) 
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title(‘Baseline Removed Signal vs Median Filter Applied Signal Vs Wavelet 
Denoised Signal vs Resultant Signal’,’FontSize’,16) 
legend(‘Baseline Removed Signal’,’Median Filter Applied Signal’,… 
’Wavelet Denoised Signal’,’Resultant Signal’, ’FontSize’,18) 

figure,plot(t,A1,t,A1_final,’LineWidth’,2) 
title(‘A1 vs A1_final’,’FontSize’,14) 
xlabel(‘Time[ms]’) 
ylabel(‘Amplitude’) 
legend(‘Baseline Removed Signal’,’ Median Filter Applied Signal’) 

%============================Continuous Wavelet Transform===== 
subplot(211) 
A1_cwt=cwt(A1_final,20,’haar’); % Continuous ’Haar’ Wavelet Transform to 
% find abrupt change in voltage 
% (saccades and blinks) 
plot(A1_cwt,’LineWidth’,2) 
title(‘Cwt Coefficients’,’FontSize’,16) 
xlabel(‘Time[ms]’) 
ylabel(‘Coefficients Amplitude’) 

subplot(212) 
plot(t,A1_final,’LineWidth’,2) 
title(‘Resulting Signal’,’FontSize’,16) 
xlabel(‘Time[ms]’) 
ylabel(‘Amplitude’) 

%======================saccad Detection===================== 

threshold = 25; 
[start_pos,ending_pos, start_neg, ending_neg] = plot_thresh(A1_cwt,… 

A1_final,threshold); %Applying threshold on A_cwt to find abrupt changes in 
%the signal 
pos_points = [start_pos; ending_pos]; 
neg_points = [start_neg; ending_neg]; 
%max peaks 
pos = find_max(pos_points, A1_cwt); % Detecting the +ve peak coefficients 
neg = find_max(neg_points, -A1_cwt);% Detecting the -ve peak coefficients 

figure,subplot(211) 
plot(t,A1_cwt,pos,A1_cwt(pos),’*g’,neg,A1_cwt(neg),’*r’,… 

t,threshold,’--m’,t,-threshold,’:k’,’LineWidth’,2) 
xlabel(‘Time[ms]’) 
ylabel(‘Coefficient Amplitude’) 
title(… 
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’Positive and Negetive Peaks of CWT Coefficients After Thresholding’,… 
’FontSize’,16) 
%legend(‘CWT Coefficients’, ’Positive Peaks’,’Negative Peaks’,… 
% ’Upper Threshold’,’Lower Threshold’) 

subplot(212) 
plot(t,A1_raw,pos,A1_raw(pos),’*g’,neg,A1_raw(neg),’*r’,’LineWidth’,2) 
xlabel(‘Time[ms]’) 
ylabel(‘Original Signal Amplitude’) 
title(‘Detected Saccads’,’FontSize’,16) 

A6 WAVELET DECOMPOSITION FOR REMOVAL OF BASELINE 
DRIFT IN EEG SIGNALS 

function [baseline_remove] = wavdecomp( signal) 
%Wavelet decomposition for baseline drift removal 
wave = ’rbio6.8’; 
t1 = 1:size(signal,2); 
level = 12; 
[c0,i0] = wavedec(signal,level,wave); 
cD1 = detcoef(c0,i0,1); 
cD2 = detcoef(c0,i0,2); 
cD3 = detcoef(c0,i0,3); 
cD4 = detcoef(c0,i0,4); 
cD5 = detcoef(c0,i0,5); 
cA5 =appcoef(c0,i0,wave,5); 
D1 = wrcoef(‘d’,c0,i0,wave,1); 
D2 = wrcoef(‘d’,c0,i0,wave,2); 
D3 = wrcoef(‘d’,c0,i0,wave,3); 
D4 = wrcoef(‘d’,c0,i0,wave,4); 
D5 = wrcoef(‘d’,c0,i0,wave,5); 
D6 = wrcoef(‘d’,c0,i0,wave,6); 
D7 = wrcoef(‘d’,c0,i0,wave,7); 
D8 = wrcoef(‘d’,c0,i0,wave,8); 
D9 = wrcoef(‘d’,c0,i0,wave,9); 
D10 = wrcoef(‘d’,c0,i0,wave,10); 
D11 = wrcoef(‘d’,c0,i0,wave,11); 
D12 = wrcoef(‘d’,c0,i0,wave,12); 
A12 = wrcoef(‘a’,c0,i0,wave,12); 

baseline_remove = D1+D2+D3+D4+D5+D6+D7+D8+D9; 

figure,plot(t1,signal,t1,baseline_remove,’LineWidth’,1) 
xlabel(‘Time[ms]’) 
ylabel(‘Amplitude’) 
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title(‘Flitered Data After Baseline Removal’,’FontSize’,14) 
legend(‘Original’,’Baseline Removed’) 

end 

A6.1 PLOTTING THE THRESHOLD ON A CWT TRANSFORMED FUNCTION 

function [start_pos ,ending_pos, start_neg, ending_neg ] = plot_thresh( X_cwt, 
X_final ,thresh ) 
%Ploting The threshold on CWT transformed Function 
start_pos=[]; 
ending_pos =[]; 
start_neg=[]; 
ending_neg =[]; 
size(X_cwt,2); 
flag_p = 0; 
flag_n = 0; 
for j = 2 : size(X_cwt,2)-1 

if(X_cwt(j)>=thresh) 

if(X_cwt(j-1)<thresh) 

start_pos =cat(2,start_pos, j); 
s_prev_p = j; 
flag_p =1; 

end 

if(X_cwt(j+1)<thresh) 

if(flag_p == 1 && ((j-s_prev_p)>1) ) 
ending_pos = cat(2,ending_pos,j); 
flag_p = 0; 

else 
start_pos = start_pos(1:size(start_pos,2)-1); 

end 
end 
end 
if(X_cwt(j)<=-thresh) 

if(X_cwt(j-1)>-thresh) 

start_neg =cat(2,start_neg, j); 
s_prev_n = j; 
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flag_n =1; 
end 
if(X_cwt(j+1)>-thresh) 

if(flag_n == 1 && ((j-s_prev_n)>1) ) 
ending_neg = cat(2,ending_neg,j); 
flag_n = 0; 

else 
start_neg = start_neg(1:size(start_neg,2)-1); 

end 
end 

end 
end 

t = 1:size(X_final,2); 

figure,plot(t,X_cwt,’LineWidth’,2) ; hold on 
plot(start_pos,X_cwt(start_pos),’r*’) ; hold on 
plot(ending_pos,X_cwt(ending_pos),’g*’) ; hold on 
plot(ending_neg,X_cwt(ending_neg),’b*’) ; hold on 
plot(start_neg,X_cwt(start_neg),’y*’) ; hold on 
plot(t,thresh,’--m’,t,-thresh,’--k’); title(‘Thresholding on CWT Coefficients 
’,’FontSize’,14) 
end 

A6.2 FINDING THE POSITIVE AND NEGATIVE PEAKS OF A CWT TRANSFORMED 

SIGNAL 

function [ peak_indices ] = find_max( points, x_cwt) 
%Finding the positive and Negative peaks of CWT transformed Signal 
peak_indices = zeros(1,size(points,2)); 
for i=1:size(points,2) 

start = points(1,i); 
ending = points(2,i); 

if(ending-start>1) 
[C,I] = max(x_cwt(start:ending)); 
peak_indices(1,i) = start+I; 

end 
end 
%t = 1:size(x_cwt,2); 
%figure,plot(t,x_cwt,peak_indices,x_cwt(peak_indices),’*r’) 
end  
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