Окончание. Начало в № 11 `2008

Программа схемотехнического моделирования SwitcherCAD III

Михаил ПУШКАРЕВ

В данной части статьи — продолжение описания моделей компонентов на языке LTS pice.

МОП-транзистор

Имена компонента: NMOS, NMOS3, PMOS, PMOS3, VDMOS.

В LTSpice есть две существенно отличающиеся модели МОП-транзисторов: модель интегрального МОП-транзистора и новая модель силового вертикального МОП-транзистора с двойной диффузией.

Интегральный МОП-транзистор

Синтаксис: Мххх <порт стока> <порт затвора> <порт истока> <порт подложки> <имя модели> [m=<значение>] [L=<значение>] [W=<значение>] [AD=<значение>] [AS=<значение>] [PD=<значение>] [NRD=<значение>] [NRS=<значение>] [NRS=<значение>] [NRS=<значение>] [NRS=<значение>] [Off] [Ic=<Vds, Vgs, Vbs>] [temp=<температура>].

Например:

M1 Nd Ng Ns 0 MyMOSFET .model MyMOSFET NMOS(KP=.001)

M1 Nd Ng Ns Nb MypMOSFET .model MypMOSFET PMOS(KP=.001)

Мощный вертикальный МОП-транзистор с двойной диффузией

Синтаксис: Мххх <порт стока> <порт затвора> <порт истока> <имя модели> [L=<значение>] [W=<значение>] [m=<значение>] [IC=<Vds, Vgs, Vbs>] [temp=<температура>]. Например:

M1 Nd Ng Ns Si4410DY .model Si4410DY VDMOS(Rd=3m Rs=3m Vto=2.6 Kp=60 Cgdmax=1.9n Cgdmin=50p Cgs=3.1n Cjo=1n Is=5.5p Rb=5.7m)

Описание модели МОП-транзистора определяет рассматриваемый тип транзистора. Ключевые слова модели NMOS и PMOS определяют интегральный *n*-или *p*-канальный МОП-транзистор. Ключевое слово модели VDMOS определяет мощный вертикальный МОП-транзистор с двойной диффузией.

Интегральные МОП-транзисторы — устройства с четырьмя выводами Nd, Ng, NS и Nb, соответственно, это выводы стока, затвора, истока и подложки. L и W — длина и ширина канала в метрах. AD и AS — площади диффузионных областей стока и истока в квадратных метрах. Отметим, что суф-

фикс **u** определяет мкм, а **p** — мкм². Если какой-либо из параметров L, W, AD или AS не определен, используется значение по умолчанию. По умолчанию PD и PS равны нулю, а NRD и NRS равны единице. Ключевое слово off указывает на наличие начальных условий при DC.-анализе. Начальные условия Ic = VDS, VGS, VBS предназначены для .TRANанализа с модификатором UIC, когда анализ переходного процесса желательно начать в отличной от статической рабочей точке. Дополнительная величина ТЕМР задает рабочую температуру конкретного устройства и аннулирует для него задание температуры в управляющей строке .OPTION. Указать температуру можно только для МОП-транзисторов уровней 1, 2, 3 и 6, но не для устройств BSIM уровней 4, 5 или 8.

Физические параметры МОП-транзисторов перечислены в таблице 28.

Таблица 28. Физические параметры МОП-транзистора

Обозна- чение	Параметр	Единица измерения
L	Длина канала	М
W	Ширина канала	М
AD	Площадь диффузионной области стока	M ²
AS	Площадь диффузионной области истока	M ²
PD	Периметр диффузионной области стока	М
PS	Периметр диффузионной области истока	М
NRD	Удельное поверхностное сопротивление стока	-
NRS	Удельное поверхностное сопротивление истока	-

LTSpice поддерживает семь различных моделей интегральных МОП-транзисторов и одну модель мощного вертикального с двойной диффузией МОП-транзистора. Для интегральных МОП-транзисторов параметр модели LEVEL указывает на используемую модель. По умолчанию этот параметр равен единице.

Характеристики постоянного тока МОПтранзисторов уровней с 1-го по 3-й определены параметрами VTO, KP, LAMBDA, PHI и GAMMA. Эти параметры рассчитываются по известным параметрам процесса (NSUB, TOX, ...), при этом пользовательские значения всегда аннулируются. VTO положительно (отрицательно) для обогащенных и отрицательно (положительно) для обедненных *п*-канальных (*p*-канальных) приборов.

Накопление заряда моделируется тремя постоянными емкостями CGSO, CGDO и CGBO, которые представляют собой емкости перекрытия, тонкопленочные нелинейные конденсаторы, распределенные над затвором, истоком, стоком, и нелинейные емкости обедненного слоя обоих переходов с подложкой. Они, в свою очередь, подразделяются на основные и периферические, которые изменяются с приложенным к переходам напряжением с коэффициентами MJ и MJSW соответственно и определены параметрами СВD, CBS, CJ, CJSW, MJ, MJSW и PB. Эффект накопления заряда описывается моделью емкости, линейно зависящей от напряжения, предложенной Мейером. Эффекты накопления заряда в тонком окисле отличаются для модели Level = 1. Эти зависящие от напряжения емкости подключаются, только если задана Тох.

Параметры, описывающие переходы, несколько перекрываются, например, обратный ток может быть специфицирован либо через Is (A) либо через Js (A/м²). Поскольку первое — абсолютная величина второго, умноженного на AD и AS, то имеем обратные токи переходов стока и истока соответственно. Это относится и к емкостям переходов при нулевом смещении CBD и CBS (Φ) в одном варианте и CJ (Φ /м²) в другом. Паразитные последовательные сопротивления стока и истока могут быть выражены как RD и RS (Ом) или RSH (Ом/кв.), последнее умножается на количество квадратов NRD и NRS, приходящихся на длину элемента прибора.

Параметры моделей МОП-транзисторов уровней 1, 2 и 3 перечислены в таблице 29.

Дискретный вертикальный МОП-транзистор с двойной диффузией (ДМОП), обычно используемый в ИИП, ведет себя качественно по-другому, чем вышеупомянутые модели интегральных МОП-транзисторов. В частности, встроенный диод ДМОП-транзистора подключен к внешним выводам иначе, чем диод подложки интегрального МОП-транзистора, а нелинейная емкость затвор—сток (Cgd) не может быть смоделирована простым масштабированием емкостей моделей интегральных МОП-транзисторов. В ДМОП-транзисторе Cgd резко изменяется в окрестности нулевого напряжения затвор—исток (Vgd). Когда напряжение Vgd отрицательно, Cgd физиче-

Таблица 29. Параметры модели интегрального МОП-транзистора

Обозна- чение	Параметр	Единица измерения	Значение по умолчанию	Пример
Af	Показатель степени фликкер-шума	-	1	1,2
Cbd	Емкость перехода сток—подложка при нулевом смещении	фФ	0	20
Cbs	Емкость перехода исток—подложка при нулевом смещении	фФ	0	20
Cgbo	Удельная емкость перекрытия затвор-подложка	Ф/м	0	2×10 ⁻¹⁰
Cgdo	Удельная емкость перекрытия затвор—сток	Ф/м	0	4×10 ⁻¹¹
Cgso	Удельная емкость перекрытия затвор-исток	Ф/м	0	4×10 ⁻¹¹
Cj	Удельная емкость переходов сток (исток) — подложка	Ф/м²	0	2×10 ⁻⁴
Cjsw	Удельная емкость боковой поверхности переходов сток (исток) — подложка при нулевом смещении	пФ/м	0	1
Delta	Коэффициент влияния ширины канала на пороговое напряжение (уровни 2 и 3)	-	0	1
Eta	Коэффициент влияния напряжения сток—исток на пороговое напряжение (только уровень 3)	-	0	1
Fc	Коэффициент нелинейности барьерной емкости прямосмещенного перехода	-	0,5	
Gamma	Коэффициент влияния потенциала подложки на пороговое напряжение	B ^{1/2}	0	0,37
ls	Ток насыщения переходов сток (исток) — подложка	A	1×10 ⁻¹⁴	1×10 ⁻¹⁵
Js	Плотность тока насыщения переходов сток (исток) — подложка	A/m²	0	1×10 ⁻⁸
Карра	Параметр модуляции длины канала напряжением сток—исток (только уровень 3)	-	0,2	0,5
Kf	Коэффициент фликкер-шума	-	0	1×10 ⁻²⁶
Кр	Крутизна	A/B ²	2×10 ⁻⁵	3×10⁻6
Lambda	Параметр модуляции длины канала (только для уровней 1 и 2)	1/B	0	0,02
Ld	Боковая диффузия	мкм	0	0,8
Mj	Коэффициент плавности переходов сток (исток) — подложка	-	0,5	0,5
Mjsw	Коэффициент наклона боковой поверхности переходов сток (исток) — подложка	-	0,50 уровень 1 0,33 уровни 2, 3	
N	Коэффициент неидеальности перехода сток-подложка	-	1	
Neff	Коэффициент коррекции концентрации примеси в канале (только уровень 2)	-	1	5
Nfs	Плотность быстрых поверхностных состояний	1/cm²	0	1×10 ⁻¹⁰
Nss	Плотность медленных поверхностных состояний	1/cm²	0	1×10 ⁻¹⁰
Nsub	Уровень легирования подложки	1/см³	0	4×10 ¹⁵
Pb Phi	Потенциал инверсии приповерхностного слоя подложки	В	0,8	0,87
Rd	Поверхностный потенциал инверсии Объемное сопротивление стока	В	0,6	0,65
Rs	Объемное сопротивление стока	Ом	0	1
Rsh	Сопротивление диффузионных областей стока и истока	Ом	0	10
Theta	Коэффициент модуляции подвижности (только уровень 3)	- OM	0	0,1
Tnom	Рабочая температура	°C	27	50
Tox	Толщина окисла	М	1×10 ⁻⁷	1×10 ⁻⁷
	Тип легирования затвора:			
TPG	+1 (примесью того же типа, как и подложки)	_	1	
176	1 (примесью противоположного типа)	_	'	
	0 (алюминиевый затвор)			
Ucrit	Критическая напряженность поля (только уровень 2)	В/см	1×10 ⁴	1×10 ⁴
Uexp	Эмпирическая константа подвижности носителей (только уровень 2)	-	0	0,1
Uo	Подвижность носителей в поверхностном слое	см²/В-с	600	700
Utra	Коэффициент поперечного поля (только уровень 2)	_	0	0,3
Vmax	Максимальная скорость дрейфа носителей (только уровни 2 и 3)	м/с	0	5×10 ⁴
Vto	Пороговое напряжение	В	0	1
Xj	Глубина металлургического перехода	мкм	0	1

ски базируется на конденсаторе с затвором в качестве первого электрода и стока, а в конечном итоге — подложки, в качестве второго электрода. Эта емкость весьма мала вследствие большой толщины непроводящей подложки. Когда же Vgd положительно, подложка в проводящем состоянии, и Cgd физически основана на конденсаторе с толщиной затворного окисла.

Традиционно для имитации поведения мощных МОП-транзисторов используются сложные макромодели. Новое встроенное SPICE-устройство было создано с целью ускорения расчетов, надежности преобразования и упрощения записи моделей. Эквивалентная схема устройства представлена на рис. 55.

Модель для постоянного тока аналогична модели уровня 1 интегрального МОП-транзистора, за исключением того, что длина и ширина канала опускаются, а крутизна задается непосредственно, без вычислений. Модель для переменного тока следующая. Емкость затвор—исток принята постоянной. Как установлено опытным пу-

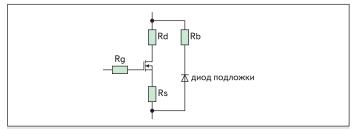


Рис. 55. Эквивалентная схема мощного МОП-транзистора

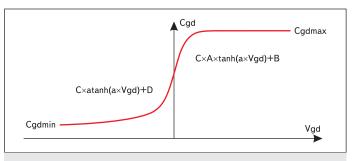


Рис. 56. Зависимость емкости затвор—сток

тем, это хорошее приближение для мощного МОП-транзистора, если напряжение затвор—исток не становится отрицательным. Емкость затвор—сток определяется эмпирической зависимостью, изображенной на рис. 56.

Емкость затвор-сток Cgd изменяется как гиперболический тангенс напряжения затвор-сток Vgd для положительного напряжения и как арктангенс для отрицательного напряжения. Параметры модели Cgdmax и Cgdmax определяют емкость затвор-сток. Емкость исток-сток представлена емкостью встроенного диода, подключенного непосредственно к электродам истока и стока для исключения влияния сопротивлений истока и стока.

Параметры модели вертикального ДМОП-транзистора в таблице 30.

Таблица 30. Параметры модели ДМОП-транзистора

Обозна- чение	Параметр	Единица измерения	Значение по умолчанию	Пример
Α	Параметр нелинейности емкости затвор—сток	_	1	0,5
Af	Показатель степени фликкер-шума	-	1	
Cgdmax	Максимум нелинейной емкости затвор-сток	пФ	0	1000
Cgdmin	Минимум нелинейной емкости затвор—сток	пФ	0	300
Cgs	Емкость затвор—исток	пФ	0	500
Cjo	Емкость перехода диода подложки при нулевом смещении	нФ	0	1
Eg	Ширина запрещенной зоны для диода подложки	эВ	1×10 ⁻¹¹	
Fc	Коэффициент нелинейности барьерной емкости прямосмещенного диода подложки	_	0,5	
ls	Ток насыщения диода подложки	Α	1×10 ⁻¹⁴	1×10 ⁻¹⁵
Kf	Коэффициент фликкер-шума	-	0	
Кр	Параметр крутизны	A/B ²	1	0,5
L	Коэффициент для длины канала	-	1	
Lambda	Параметр модуляции длины канала	1/B	0	0,02
М	Коэффициент плавности перехода диода подложки	-	0,5	0,5
N	Коэффициент эмиссии диода подложки	-	1	
nchan[*]	<i>n</i> -канальный вертикальный ДМОП	-	(true)	
Phi	Поверхностный потенциал инверсии	В	0,6	0,65
pchan[*]	<i>p</i> -канальный вертикальный ДМОП	-	(false)	-
Rb	Омическое сопротивление диода подложки	Ом	0	0,5
Rd	Омическое сопротивление стока	Ом	0	1
Rds	Сопротивление утечки сток—исток	МОм	∞	10
Rg	Омическое сопротивление затвора	Ом	0	2
Rs	Омическое сопротивление истока	Ом	0	1
Tnom	Температура	°C	27	50
tt	Время переноса заряда для диода подложки	HC	0	10
Vj	Пороговый потенциал диода подложки	В	1	0,8
Vto	Пороговое напряжение	В	0	1
Xti	Температурный коэффициент тока насыщения диода подложки	_	3	
W	Коэффициент для ширины канала	-	1	

Имя модели VDMOS используется как для n-канальных, так и для p-канальных транзисторов. По умолчанию устанавливается n-проводимость. Для того чтобы определить p-канал, следует дополнить модель ключевым словом **pchan**, например, "model xyz VDMOS(Kp=3 pchan)" определяет p-канальный транзистор.

Линия передачи с потерями

Имя символа: LTLIN.

Синтаксис: Оххх <узел порта L+> <узел порта L-> <узел порта R+> <узел порта R-> <имя модели>.

Например:

O1 in 0 out 0 MyLossyTline .model MyLossyTline LTRA(len=1 R=10 L=1u C=10n)

Это однопроводная линия передачи с потерями. L+ и L— узлы одного порта. R+ и R— узлы другого порта. Электрические характеристики определяются строкой .MODEL.

Параметры модели линии передачи с потерями приведены в таблице 31.

Таблица 31. Параметры линии передачи с потерями

Обозначение	Параметр	Единица измерения	Значение по умолчанию
R	Погонное сопротивление	Ом/ед. длины	0
L	Погонная индуктивность	Гн/ед. длины	0
G	Погонная проводимость	1/Ом/ед. длины	0
С	Погонная емкость	Ф/ед. длины	0
Len	Количество единиц длины	-	0

Биполярный транзистор

Имя символа: NPN, PNP, NPN2, PNP2.

Синтаксис: Qxxx <узел коллектора> <узел базы> <узел эмиттера> [узел подложки] <имя модели> [коэффициент кратности] [проводимость] [IC=<Vbe, Vce>] [temp=<T>].

Например:

Q1 C B E MyNPNmodel .model MyNPNmodel NPN(Bf=75)

Чтобы задать характеристики биполярных транзисторов, используется описание модели. Ключевые слова в строке модели NPN и PNP указывают на проводимость транзистора. Множитель **area** определяет количество эквивалентных устройств соответствующей модели, включенных параллельно.

Модель биполярного транзистора — это адаптированная модель Гуммеля-Пуна. Модификация расширила модель, чтобы учесть некоторые эффекты при больших уровнях смещения, в режиме квазинасыщения, и проводимость подложки. Модель автоматически упрощается до модели Эберса-Молла, когда опущены некоторые параметры. На постоянном токе модель задана параметрами Is, Bf, Nf, Ise, Ikf, Ne, определяющими характеристики в прямом включении, Is, Br, Nr, Isc, Ikr, Nc, определяющими характеристики в обратном включении, и Vaf, Var, определяющими выходную проводимость для прямого и обратного включения. Модель включает в себя три омических сопротивления Rb, Rc и Re, при этом Rb может зависеть от величины протекающего тока. Накопление заряда в базе моделируется временами переноса заряда в прямом и обратном включении (Tf и Tr), причем Tf можно сделать зависящим от уровня смещения, и нелинейными емкостями обедненного слоя, заданными параметрами Сје, Vје, Мје для перехода база-эмиттер, Сјс, Vјс, Мјс для перехода база-коллектор и Cjs, Vjs, Mjs для перехода коллектор-подложка. Температурная зависимость тока насыщения Is определяется шириной запрещенной зоны полупроводника Ед и экспоненциальным температурным коэффициентом Xti. Температурная зависимость коэффициента передачи в новой модели моделируется экспоненциальным температурным коэффициентом Xtb. Значение температуры

Таблица 32. Параметры модифицированой модели Гуммеля-Пуна биполярного транзистора

Обозна- чение	Параметр	Единица измерения	Значение по умолчанию
Af	Показаталь сталоны фликуор шума	измерения	1
	Показатель степени фликкер-шума Идеальный максимальный коэффициент передачи	_	
Bf	в нормальном режиме	-	100
Br	Идеальный максимальный коэффициент передачи в инверсном режиме	_	1
BVcbo	Пробивное напряжение перехода база—коллектор	В	?
Cjc	Емкость перехода база—коллектор при нулевом смещении	Ф	0
Cje	Емкость перехода база—эмиттер при нулевом смещении	Ф	0
Cjs	Емкость перехода коллектор-подложка при нулевом смещении	Ф 2,42 NPN	0
Cn	Температурный коэффициент квазинасыщения подвижности неосновных носителей	2,42 NPN 2,2 PNP	
	Температурный коэффициент квазинасыщения скорости	0,87 NPN	
D	рассасывания неосновных носителей	0,52 PNP	
Eg	Ширина запрещенной зоны	эВ	1,11
Fc	Коэффициент нелинейности барьерных емкостей при прямом смещении	_	0,5
Gamma	Коэффициент легирования эпитаксиальной области		1×10 ⁻¹¹
lkf	Ток начала спада коэффициента передачи в нормальном режиме	Α	œ
lkr	Ток начала спада коэффициента передачи в инверсном режиме	Α	œ
Irb	Ток базы, при котором сопротивление базы уменьшается на величину, равную половине разности между максимальным	A	00
	и минимальным значениями		
Is	Ток насыщения	A	1×10 ⁻¹⁶
Isc	Обратный ток перехода база-коллектор	A	0
Ise	Обратный ток перехода база—эмиттер Обратный ток перехода коллектор—подложка	A	0
Itf	Параметр, определяющий зависимость Тf при больших токах	A	0
Kf	Коэффициент спектральной плотности фликкер-шума	-	0
Мјс	Коэффициент плавности перехода база-коллектор	-	0,33
Mje	Коэффициент плавности перехода база—эмиттер	-	0,33
Mjs	Коэффициент плавности перехода коллектор-подложка	-	0
nBVcbo	Коэффициент неидеальности в режиме пробоя перехода база—коллектор	_	1
Nc	Коффициент неидеальности перехода база—коллектор	-	2
Ne	Коэффициент неидеальности перехода база—эмиттер	-	1,5
Nf	Коэффициент неидеальности в нормальном режиме	-	1
Nr Ns	Коэффициент неидеальности в инверсном режиме Коэффициент неидеальности перехода коллектор—подложка	-	1
Ptf	Фазовый сдвиг на граничной частоте f = 1/(Tf×2×PI)		0
Qco	Множитель, определяющий заряд в эпитаксиальной области	К	0
Qco Quasimod	Множитель, определяющий заряд в эпитаксиальной области Флаг квазинасыщения температурной зависимости	K -	-
Quasimod Rb	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении	— Ом	0 не установлен 0
Quasimod Rb Rbm	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах	— Ом Ом	0 не установлен 0 Rb
Quasimod Rb Rbm Rc	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора	— Ом Ом	0 не установлен 0 Rb
Quasimod Rb Rbm Rc Rc	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области	— Ом Ом Ом Ом	0 не установлен 0 Rb 0
Quasimod Rb Rbm Rc	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора	— Ом Ом	0 не установлен 0 Rb
Quasimod Rb Rbm Rc Rc Rco	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера	— Ом Ом Ом Ом Ом	0 не установлен 0 Rb 0
Quasimod Rb Rbm Rc Rco Re Tf Tnom	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме	- OM OM OM C °C C	0 не установлен 0 Rb 0 0 0 0 0 27
Quasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb		0 не установлен 0 Rb 0 0 0 0 0 27
Quasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1 Trb2	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rb		0 не установлен 0 Rb 0 0 0 0 0 27 0 0
Quasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc		0 не установлен 0 Rb 0 0 0 0 0 27
Quasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rb		0 не установлен 0 Rb 0 0 0 0 0 27 0 0 0
Ouasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc		0 не установлен 0 Rb 0 0 0 0 27 0 0 0
Quasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Re Квадратичный температурный коэффициент Re Квадратичный температурный коэффициент Re		0 не установлен 0 0 0 0 0 0 0 27 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc2 Tre1 Tre2	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Re Квадратичный температурный коэффициент Rmb		0 не установлен 0 Rb 0 0 0 0 0 27 0 0 0 0
Quasimod Rb Rbm Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Re Квадратичный температурный коэффициент Re Квадратичный температурный коэффициент Re		0 не установлен 0 0 0 0 0 0 0 27 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Re Линейный температурный коэффициент Re Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Rmb Линейный температурный коэффициент Tmb Линейный температурный коэффициент Tmb Квадратичный температурный коэффициент Tmb		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 Trm1 Trm2 TBVcbo1	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Re Линейный температурный коэффициент Re Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Rec Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 Trm2 TBVcbo1	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Re Линейный температурный коэффициент Re Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Rmb Линейный температурный коэффициент Tmb Линейный температурный коэффициент Tmb Квадратичный температурный коэффициент Tmb		0 не установлен 0 Rb 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление элитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Re Линейный температурный коэффициент Re Квадратичный температурный коэффициент RR Линейный температурный коэффициент RR Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Напряжение Эрли в нормальном режиме Напряжение Шрины запрещенной зоны,		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Tre1 Trm2 TBVcbo1 TBVcbo2 Vaf Var	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Re Квадратичный температурный коэффициент Re Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Анаряжение пературный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Напряжение Эрли в нормальном режиме Напряжение Эрли в инверсном режиме Напряжение ширины запрещенной зоны, экстраполированное для 0 К		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Rec Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var Vg	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Инейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Напряжение Эрли в инверсном режиме Напряжение ширины запрещенной зоны, экстраполированное для 0 К Контактная разность потенциалов перехода база—коллектор		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Tre1 Trm2 TBVcbo1 TBVcbo2 Vaf Var	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Re Квадратичный температурный коэффициент Re Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Анаряжение пературный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Напряжение Эрли в нормальном режиме Напряжение Эрли в инверсном режиме Напряжение ширины запрещенной зоны, экстраполированное для 0 К		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Rec Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var Vg Vjc Vje Vjs	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Re Квадратичный температурный коэффициент Rmb Аннейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Анаряжение Вари в нормальном режиме Напряжение Эрли в нормальном режиме Напряжение ширины запрещенной зоны, экстраполированное для 0 К Контактная разность потенциалов перехода база—коллектор Контактная разность потенциалов перехода база—змиттер Контактная разность потенциалов перехода боллектор—подложка Напряжение, определяющее перегиб зависимости тока		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Re Tf Trom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var Vg Vjc Vje Vjs Vo	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Напряжение Эрли в инверсном режиме Напряжение Эрли в инверсном режиме Напряжение ирины запрещенной зонь, экстраполированное для 0 К Контактная разность потенциалов перехода база—коллектор Контактная разность потенциалов перехода база—життер Контактная разность потенциалов перехода баласти тока эпитаксиальной области		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Rec Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var Vg Vjc Vje Vjs	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Re Квадратичный температурный коэффициент Rmb Аннейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Анаряжение Вари в нормальном режиме Напряжение Эрли в нормальном режиме Напряжение ширины запрещенной зоны, экстраполированное для 0 К Контактная разность потенциалов перехода база—коллектор Контактная разность потенциалов перехода база—змиттер Контактная разность потенциалов перехода боллектор—подложка Напряжение, определяющее перегиб зависимости тока		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Re Tf Trom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var Vg Vjc Vje Vjs Vo Vtf Xcjc	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Tmp Квадратичный температурный коэффициент Rmb Анаряжение переатурный коэффициент Rmb Анаряжение Эрли в нормальном режиме Напряжение Эрли в нормальном режиме Напряжение ширины запрещенной зоны, экстраполированное для 0 К Контактная разность потенциалов перехода база—коллектор Контактная разность потенциалов перехода база—життер Контактная разность потенциалов перехода база—життер Контактная разность потенциалов перехода боллектор—подложка Напряжение, определяющее перегиб зависимости тока эпитаксиальной области Коэффициент расщепления емкости база—коллектор		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var Vg Vjc Vje Vjs Vo	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Напряжение Эрли в инверсном режиме Напряжение Эрли в инверсном режиме Напряжение ирины запрещенной зоны, экстраполированное для 0 К Контактная разность потенциалов перехода база—коллектор Контактная разность потенциалов перехода база—мотлектор Контактная разность потенциалов перехода база—мотлектор Контактная разность потенциалов перехода база—мотлектор Контактная разность потенциалов перехода коллектор—подложка Напряжение, определяющее перегиб зависимости тока зпитаксиальной области Коэффициент, описывающий зависимость Тf от напряжения коллектор—база Коэффициент прасщепления емкости база—коллектор Температурный коэффициент Вf и Вг		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rco Re Tf Trom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 TBVcbo2 Vaf Var Vg Vjc Vje Vjs Vo Vtf Xcjc	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление элитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Линейный температурный коэффициент Rmb Линейный температурный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжение Эрли в нормальном режиме Напряжение Эрли в инверсном режиме Напряжение Эрли в инверсном режиме Напряжение Эрли в инверсном режиме Напряжение эрли в нормальном режиме Напряжения раность потенциалов перехода база—коллектор Контактная разность потенциалов перехода база—коллектор Контактная разн		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Quasimod Rb Rbm Rc Rc Rco Re Tf Tnom Tr Trb1 Trb2 Trc1 Trc2 Tre1 Tre2 Trm1 Trm2 TBVcbo1 Vaf Var Vg Vjc Vje Vjs Vo Vtf Xcjc Xtb	Флаг квазинасыщения температурной зависимости Объемное сопротивление базы при нулевом смещении Сопротивление базы при больших токах Объемное сопротивление коллектора Сопротивление эпитаксиальной области Объемное сопротивление эмиттера Идеальное время переноса в нормальном режиме Температура измерений Идеальное время переноса в инверсном режиме Линейный температурный коэффициент Rb Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Квадратичный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rc Линейный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент Rmb Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Квадратичный температурный коэффициент пробивного напряжения перехода коллектор—база Напряжение Эрли в инверсном режиме Напряжение Эрли в инверсном режиме Напряжение ирины запрещенной зоны, экстраполированное для 0 К Контактная разность потенциалов перехода база—коллектор Контактная разность потенциалов перехода база—мотлектор Контактная разность потенциалов перехода база—мотлектор Контактная разность потенциалов перехода база—мотлектор Контактная разность потенциалов перехода коллектор—подложка Напряжение, определяющее перегиб зависимости тока зпитаксиальной области Коэффициент, описывающий зависимость Тf от напряжения коллектор—база Коэффициент прасщепления емкости база—коллектор Температурный коэффициент Вf и Вг		0 не установлен 0 Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ${\bf T}$ пот может быть задано директивой . ОРТIONS или отвергнуто приоритетной записью в строке . МОDEL.

Параметры биполярного транзистора, использованные в модифицированной модели Гуммеля-Пуна, приведены в таблице 32.

Установив параметр модели Level = 9, в LTSpice можно воспользоваться другой моделью биполярного транзистора, VBIC, являющейся расширенной модификацией стандарной модели Гуммеля-Пуна, ориентированной на интегральные биполярные транзисторы современных полупроводниковых технологий.

Дополнительные возможности, которые дает модель VBIC в сравнении со стандартной моделью Гуммеля-Пуна:

- интегрированный паразитный транзистор подложки для интегральных схем;
- модель лавинного пробоя база-эмиттер;
- улучшенное моделирование эффекта Эрли;
- физическое разделение Ic и Ib;
- улучшенная модель барьерной емкости;
- улучшенное температурное моделирование;
- моделирование саморазогрева (в LTSpice отсутствует).

Резистор

Имя символа: RES, RES2.

Синтаксис: Rxxx <yзел 1> <yзел 2> <coпротивление> [tc=линейный температурный коэффициент, квадратичный температурный коэффициент, ...] [temp=<значение>].

Резистор представляется простым линейным сопротивлением между узлами n1 и n2. Температурная зависимость может быть определена для каждого резистора встроенным параметром **tc**. Сопротивление R равно:

$$R=R0\times \times (1+dt\times tc1+dt\times 2\times tc2+dt\times 3\times tc3+...),$$

где R0 — сопротивление при номинальной температуре, а dt — разница между температурой резистора и номинальной температурой.

Ключ,

управляемый напряжением

Имя символа: SW.

Синтаксис: Sxxx <yзел 1> <yзел 2> <yправляющий узел+> <управляющий узел-> <имя модели> [on,off].

Таблица 33. Параметры модели ключа, управляемого напряжением

Обозна-	Параметр	Единица измерения	Значение по умол- чанию
Vt	Пороговое напряжение	В	0
Vh	Напряжение гистерезиса	В	0
Ron	Сопротивление замкнутого ключа	Ом	1
Roff	Сопротивление разомкнутого ключа	Ом	1/Gmin
Lser	Последовательная индуктивность	Гн	0
Vser	Последовательное напряжение	В	0
llimit	Ограничение тока	Α	œ

Например:

S1 out 0 in 0 MySwitch .model MySwitch SW(Ron=.1 Roff=1Meg Vt=0 Vh=-.5 Lser=10n Vser=.6)

Напряжение между узлами <управляющий узел+> <управляющий узел-> управляет полным сопротивлением ключа между узлами <узел 1> и <узел 2>. Требуется определить поведение ключа в директиве .МОDEL. В файле .\examples\Educational\Vswitch.asc показан пример с размещением директивы .МОDEL непосредственно в схеме.

Параметры модели ключа, управляемого напряжением, приведены в таблице 33.

Ключ имеет три различных способа управления напряжением, в зависимости от величины напряжения гистерезиза Vh. Если Vh равно нулю, ключ всегда полностью замкнут или разомкнут в зависимости от того, выше или ниже порога входное напряжение. Если Vh положительно, ключ имеет гистерезис, как будто он управляется триггером Шмитта с точками переключения Vt-Vh и Vt+Vh. Vh равно половине напряжения между точками переключения, и в этом отличие от других известных моделей. Если Vh отрицательно, ключ плавно переключается между замкнутым и разомкнутым состояниями. Переключение происходит между управляющими напряжениями Vt-Vh и Vt+Vh.

Есть модель ключа, управляемого напряжением, уровня 2, являющаяся более совер-

шенной версией ключа уровня 1 с отрицательным гистерезисом. Ключ уровня 2 никогда полностью ни замкнут, ни разомкнут. Проводимость в функции управляющего напряжения Vc:

$$g(Vc) = \exp(A \times atn((Vc-Vt)/Vh) + B),$$

где $A = pi \times (log(1/Ron) - log(1/Roff));$

 $B = (\log(1/Ron) + \log(1/Roff)).$

Переключение ключа уровня 2 до ограничения тока плавное, а не внезапное. При фиксированном управляющем напряжении вольтамперная характеристика описывается уравнением:

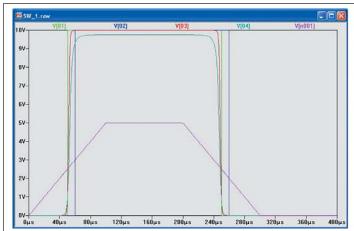
$$I(V) = Ilimit \times tanh(g(Vc) \times V).$$

Ключ уровня 2 поддерживает режим проводимости только в одном направлении, если установлен флаг **oneway** или задано падение напряжения параметром **Vser**. Плавность переключения из проводящего состояния в запертое может быть задана установкой параметра **epsilon** не равным нулю.

На рис. 57 показаны результаты моделирования различных вариантов ключа.

Линия передачи без потерь

Имя символа: TLINE.


Синтаксис: Тххх <узел порта L+> <узел порта L-> <узел порта R+> <узел порта R-> Zо=<значение> Td=<значение>. L+ и L- — узлы одного порта. R+ и R- — узлы другого порта. Zo — полное характеристическое сопротивление. Длина линии определяется временем задержки сигнала Td.

Распределенная *RC*-цепь

Имя символа: URC.

Синтаксис: Uxx <yзел 1> <yзел 2> <yзел общий> <имя модели> L=<len> [N=<lumps>].

N1 и N2 — два узла подключения к RC-цепи, Ncom — узел, в которым связаны емкости. LEN — длина RC-цепи в метрах. Lumps, если задано, — количество RC-сегментов, используемых в моделировании RC-цепи. Если

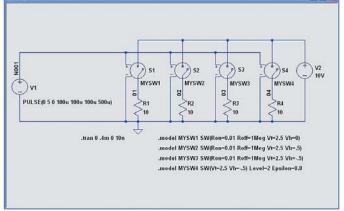


Рис. 57. Результаты моделирования ключа, управляемого напряжением

количество сегментов не задано, подбирается их полхоляшее количество.

Модель выполнена в макровиде. Сегменты RC находятся в геометрической пропорции, с возрастающим отношением к середине цепи с коэффициентом пропорциональности **K**.

Цепь URC создается из сегментов, состоящих из резистора и конденсатора, если же задана не нулевая величина параметра ISPERL, конденсаторы заменяются обратносмещенными диодами с эквивалентной емкостью, током насыщения ISPERL и дополнительным последовательным эквивалентным сопротивлением RSPERL.

Параметры распределенной RC-цепи приведены в таблице 34.

Таблица 34. Параметры модели распределенной RC-цепи

Обозна- чение	Параметр	Единица измерения	Значение по умол- чанию
K	Постоянная распространения	-	2
Fmax	Максимальная интересуемая частота	ГГц/м	1
Rperl	Погонное сопротивление	кОм/м	1
Cperl	Погонная емкость	Ф/м	1×10 ⁻¹⁵
Isperl	Ток насыщения на единицу длины	А/м	0
Rsperl	Сопротивление диода на единицу длины	Ом/м	0

Источник напряжения

Имя символа: VOLTAGE, BATTERY.

Синтаксис: Vxxx <yзел+> <yзел-> <напряжение> [AC=<амплитуда>] [Rser=<значение>] [Сраг=<значение>]. Это источник постоянного напряжения между узлами узел+ и узел-. Для АС-анализа как амплитуда источника на частоте анализа используется значение АС. Могут быть заданы последовательное сопротивление Rser и параллельная емкость Сраг.

Эквивалентная схема источника напряжения показана на рис. 58.

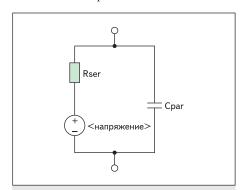


Рис. 58. Эквивалентная схема источника напряжения

Источники напряжения исторически используются в SPICE для измерения тока в цепи и как датчики тока для управляемых током элементов, для чего в ветвь электрической цепи намеренно включается источник напряжения с нулевым значением напряжения. Если задано последовательное сопротив-

ление, источник напряжения не может быть использован как датчик тока для F, H или W элементов. Тем не менее, ток любого элемента ветви цепи, включая источник напряжения, можно отобразить.

Синтаксис: Vxxx <yзел+> <yзел-> PULSE(V1 V2 Tdelay Trise Tfall Ton Tperiod Ncycles). Так описывается источник импульсного напряжения, параметры модели которого приведены в таблице 35.

Таблица 35. Параметры модели источника импульсного напряжения

Обозна- чение	Параметр	Единица измерения
Vof	Начальное значение напряжения	В
Von	Значение напряжения в импульсе	В
Tdelay	Задержка	С
Tr	Время нарастания	С
Tf	Время спада	С
Ton	Длительность импульса	С
Tperiod	Период следования импульсов	С
Ncycles	Количество циклов (опускается для источника с неограниченным количеством импульсов)	число

Синтаксис: Vxxx <yзел+> <yзел-> SINE(Voffset Vamp Freq Td Theta Phi Ncycles). Это форма записи источника синусоидального напряжения, параметры его модели приведены в таблице 36.

Таблица 36. Параметры модели источника синусоидального напряжения

Обозна- чение	Параметр	Единица измерения
Voffset	Постоянное смещение	В
Vamp	Амплитуда напряжения	В
Freg	Частота	Гц
Td	Задержка	С
Theta	Коэффициент демпфирования	1/c
Phi	Фаза синусоиды	0
Ncycles	Количество периодов (опускается для источника с неограниченным количеством периодов)	число

В течение времени, меньшего Td, или времени после завершения Ncycles выходное напряжение равно:

Voffset+Vamp×sin (pi×phi/180).

В иное время напряжение равно:

Voffset+Vamp×exp(-(time-Td)×Theta)× ×sin(2×pi×Freq×(time-Td)+pi×phi/180).

Коэффициент демпфирования, **Theta**, является аналогом постоянной времени спада.

Синтаксис: Vxxx <yзел+> <yзел-> EXP(V1 V2 Td1 Tau1 Td2 Tau2). Это — источник экспоненциального напряжения с параметрами модели, приведенными в таблице 37.

В течение времени, меньшего Td1, выходное напряжение — V1. Для времени между Td1 и Td2 напряжение равно:

 $V1+(V2-V1)\times \times (1-\exp(-(time-Td1)/Tau1)).$

Таблица 37. Параметры модели источника экспоненциального напряжения

Обозна- чение	Параметр	Единица измерения
V1	Начальное значение напряжения	В
V2	Импульсное значение напряжения	В
Td1	Время задержки нарастания	С
Tau1	Постоянная времени нарастания	С
Td2	Время задержки спада	С
Tau2	Постоянная времени спада	С

В течение времени после Td2 напряжение равно:

$$V1+(V2-V1)\times \\ \times (1-\exp(-(time-Td1)/Tau1))+(I1-I2)\times \\ \times (1-\exp(-(time-Td2)/Tau2)).$$

Синтаксис: Vxxx n+ n— SFFM(Voff Vamp Fcar MDI Fsig). Так описывается источник синусоидального напряжения с частотной модуляцией с параметрами модели, приведенными в таблице 38.

Таблица 38. Параметры модели источника синусоидального напряжения с частотной модуляцией

Обозначение	Параметр	Единица измерения
Voff	Постоянное смещение	В
Vamp	Амплитуда напряжения	В
Fcar	Несущая частота	Гц
MDI	Индекс модуляции	-
Fsig	Частота сигнала	Гц

Напряжение равно:

 $Voff+Vamp*sin((2.\times pi\times Fcar\times time)+ +MDI\times sin(2.\times pi\times Fsig\times time)).$

Синтаксис: Vxxx n+n-PWL(t1 v1 t2 v2 t3 v3...). Это источник напряжения с кусочнолинейным сигналом, задаваемым координатами точек излома (ti, vi).

В течение времени до t1 напряжение равно v1. В течение времени между t1 и t2 напряжение изменяется линейно от v1 до v2. Допускается любое количество точек время—напряжение. Для времени после последнего значения напряжение равно последнему значению.

Синтаксис: Vxxx n+ n- wavefile=<имя файла> [chan=<nnn>]. Такая модель позволяет использовать файл .wav в качестве входного для LTSpice. <Имя файла> — это либо полный, абсолютный путь к файлу .wav, либо относительный путь, определяемый каталогом, содержащим моделируемую схему или список соединений. Двойные кавычки могут использоваться для определения пути. Файл .wav может содержать до 65 536 каналов, пронумерованных от 0 до 65 535. Следует определить используемый канал. По умолчанию используется первый канал под номером 0. Файл .wav интерпретируется как имеющий полную шкалу от -1 до 1 В. Этот источник имеет применение только в .TRAN-анализе.

Ключ, управляемый током

Имя символа: CSW. Синтаксис: Wxxx <узел 1> <узел 2> <имя управляющего источника напряжения> <имя модели> [on,off]. Например:

W1 out 0 Vsense MySwitch
Vsense ab 0.
.model MySwitch CSW(Ron=.1 Roff=1Meg It=0 Ih=-.5)

Ток через источник напряжения Vsense управляет сопротивлением ключа. Требуется определить поведение ключа в строке .МОDEL.

Параметры модели ключа, управляемого током, приведены в таблице 39.

Таблица 39. Параметры модели ключа, управляемого током

Обозна- чение	Параметр	Единица измерения	Значение по умолчанию
It	Пороговый ток	Α	0
lh	Ток гистерезиса	Α	0
Ron	Сопротивление замкнутого ключа	Ом	1
Roff	Сопротивление разомкнутого ключа	Ом	1/Gmin

Ключ имеет три различных способа управления, в зависимости от величины тока гистерезиса **Ih**. Если **Ih** равен нулю, ключ всегда полностью замкнут или разомкнут, в зависимости от того, выше или ниже порога управляющий ток. Если Ih положителен, ключ имеет гистерезис с точками переключения It—Ih и It+Ih. Если Ih отрицателен, ключ плавно переключается между замкнутым и разомкнутым состояниями. Переключение про-

исходит между управляющими токами It—Ih и It+Ih.

Макромодель

Синтаксис: Xxxx < yзел 1 > < yзел 2 > < yзел $3 > \dots <$ симя макромодели> [<parameter> = <выражение>].

Макромодели позволяют определить и сохранить схему в библиотеке для позднейшего поиска по имени. Пример описания в виде макромодели делителя:

* calling a subcircuit

* This is the circuit
X1 in out 0 divider top=9K bot=1K
V1 in 0 pulse(0 1 0.5m.5m 0 1m)

* This is the subcircuit
subckt divider A B C
R1 A B {top}
R2 B C {bot}
ends divider
tran 3m

Полевой транзистор с затвором Шоттки (MESFET)

Имя символа: MESFET. Синтаксис: Zxxx <yзел стока> <yзел затвора> <yзел истока> <имя модели> [area] [проводимость] [IC=<Vds, Vgs>] [temp=<значение>].

Для MESFET-транзистора необходима строка модели, определяющая характеристики. Ключевые слова NMF и PMF в строке модели определяют проводимость транзистора.

Параметры модели полевого транзистора с затвором Шоттки приведены в таблице 40.

Стоит отметить, что часть моделей компонентов отличается по обозначению и описа-

Таблица 40. Параметры модели полевого транзистора с затвором Шоттки

Обозна- чение	Параметр	Единица измерения	Значение по умол- чанию
AF	Экспоненциальный коэффициент фликкер-шума	-	1
Alpha	Параметр напряжения насыщения	1/B	2,0
В	Параметр легирования	_	0,3
Beta	Крутизна	A/B	1×10 ⁻⁴
Cgd	Емкость перехода затвор—сток при нулевом смещении	Ф	0
Cgs	Емкость перехода затвор—исток при нулевом смещении	Ф	0
Fc	Коэффициент нелинейности емкостей при прямом смещении	-	0,5
KF	Коэффициент фликкер-шума	-	0
Lambda	Параметр модуляции длины канала	1/B	0
Pb	Контактная разность потенциалов <i>p-п</i> -перехода затвора	В	1
Rd	Омическое сопротивление стока	Ом	0
Rs	Омическое сопротивление истока	Ом	0
Vto	Барьерный потенциал перехода Шоттки	В	-2,0

нию от широко используемых моделей в формате PSpice. При необходимости использования таких моделей в LTSpice следует внимательно проанализировать текст модели и внести необходимые изменения. Это весьма непростая задача, требующая соответствующей подготовки.

Этим материалом заканчивается цикл, посвященный программе схемотехнического моделирования Switcher CAD. Автор программы Майкл Энгельгарт (Mike Engelhardt) создал замечательный продукт, за который ему благодарны специалисты, работающие в различных областях электроники.