NORDIC

SEMICONDUCTOR

>

Creating Bluetooth® Low Energy Applications
Using nRF51822

NAN-36

Application Note v1.1

This application note is intended for anyone who would like to begin programming Bluetooth low energy
(BLE) applications on nRF51822. It consists of a general overview of BLE functionality and is followed by a
description of a simple example program that implements a custom service, the LED Button service.

Copyright © 2014 Nordic Semiconductor ASA. All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

1 Introduction

The purpose of this application note is to show you the steps necessary for creating your own BLE
application, including a custom service, using the nRF51822 chip.

1.1 Minimum requirements

Experience in embedded C programming is needed to fully understand this application note.

1.1.1 Required tools

The nRF51822 Evaluation Kit is needed for this application note. Additionally, the following tools should be
downloaded and installed:

« S110 SoftDevice

+ nRFgo Studio

« nRF51 SDK

« Keil MDK-ARM

« SEGGER’s J-Link tools

Program the S110 SoftDevice onto the chip using the instructions in the nRF51822 Evaluation Kit User Guide.

Note: nRF51 SDK version 5.2.0 and S110 SoftDevice version 6.0.0 were the latest versions and the
ones used as reference when this document was written.

Page 2

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

1.2 Documentation

The following documentation is important reference material:

Document Description

Contains information about setting up and using the Evaluation Kit, including

nRF51822 Evaluation Kit User Guide setting up Keil and the SoftDevice.

This is available in the Documentation subfolder of the SDK installation folder,
nRF51 SDK documentation contains APl documentation for all functions in the SDK and also from the Nordic
Developer Zone.

Contains information about the S110 SoftDevice, including resource usage and

S110nRF51822 SoftDevice Specification high-level functionality.

Contains a description of the hardware, modules, and electrical specifications

nRF51822 Product Specification specific to the nRF51822 chip.

Contains a functional description of all the modules and peripherals supported

NRF51 Series Reference Manual for all the chips in the nRF51 series.

This application note contains information about using Keil pVision. It was
originally written for the nRF24LE1 chip, but Section 3.3 “Including files” and
Section 3.4 “Debug your project” are also relevant for the nRF51822 chip.

nAN-15: Creating Applications with the
Keil C51 Compiler

Bluetooth Core Specification, version 4.0, Provided by the Bluetooth SIG, this document contains information relating to
Volumes 1, 3,4,and 6 Bluetooth services and profiles.

1.3 Bluetooth resources

All Bluetooth SIG services, characteristics, and descriptors are defined on the Bluetooth Developer Portal
which can be used as a reference for finding UUIDs or data formats used by different parts of the
specification.

1.4 nRF51822 and the S110 SoftDevice

The S110 SoftDevice is a BLE Peripheral protocol stack solution. It integrates a low energy controller and
host, and provides a full and flexible API for building Bluetooth low energy System on Chip (SoC) solutions.
The S110 SoftDevice is provided as a precompiled HEX file that must be programmed onto the chip before
your application is loaded.

The SoftDevice uses a portion of the chip’s flash and RAM, but they are protected from your code, so that
you can't accidentally write to these areas. The SoftDevice also needs exclusive access to some peripherals
and registers.

For information on how to program the SoftDevice into the nRF51822 chip, see the nRF51822 Evaluation Kit
User Guide. For information on which resources the SoftDevice uses, see the nRF51822 S110 SoftDevice
Specification.

Page 3

https://developer.bluetooth.org/Pages/default.aspx
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://developer.bluetooth.org/Pages/default.aspx
https://developer.bluetooth.org/Pages/default.aspx
https://developer.bluetooth.org/Pages/default.aspx
https://developer.bluetooth.org/Pages/default.aspx
https://devzone.nordicsemi.com/
https://devzone.nordicsemi.com/

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

1.5 Application overview

The LED Button application example was created in order to give you an environment where you can learn
how to use Bluetooth low energy on the nRF51822 chip. It is a simple BLE application that demonstrates bi-
directional communication over BLE. When it is running, you will be able to toggle an LED output on the
nNRF51822 chip from the Central (see Section 2.1.1 “Roles” on page 5 for a definition of the Central), and
receive a notification when button input on nRF51822 is pressed.

The application is implemented in one service (see Section 2.2.2 “GATT hierarchy” on page 7 for a
description of a service and characteristics), with two characteristics: the LED characteristic, which can be
used to control the LED remotely through the write without response operation, and the Button
characteristic, which sends a notification when the button is pressed.

Page 4

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

2 Introduction to Bluetooth low energy

This chapter describes the different layers of the BLE protocol, the components within these layers, and their
concepts.

4 N\
w
3 2 = z
>s & 8 2 g § ¢
* 1 R R R R R
2 & 2 32 2 3 @
\§ J
4 N\
GATT GAP
T ATT SMP
4
L2CAP
J
4 N\
A Host Controller Interface (HCI)
S
'-'6* Link Layer (LL)
)
Physical Layer (PHY)
\§ J

Figure 1 Protocol stack components and layers

2.1 Generic Access Profile (GAP)

GAP is the lowest layer of the Bluetooth stack that an application interfaces with. It includes parameters that
govern advertising and connection among other things.

Note: GAP is covered in more detail in Volume 3, Part C of the Bluetooth Core Specification.

2.1.1 Roles

In creating and maintaining a BLE link, certain roles are involved. A BLE device is either a Central or a
Peripheral, with the definition depending on the initiator of the link. The Central is always the device that
initiates the connection, while the Peripheral is the device that is connected to. The terms Master and Slave
are the Link Layer roles equivalent to Central and Peripheral.

In the LED Button application, the nRF51822 chip programmed with the S110 SoftDevice will
be the Peripheral, and either a computer or phone will be the Central.

In addition to the Central and Peripheral roles, the Bluetooth Core Specification defines Observer and
Broadcaster roles. Observers listen to what's happening on the air and Broadcasters send but don't receive

Page 5

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

information. Both the Observer and Broadcaster roles only use advertising and never establish a connection.
These are not applicable for our use case.

Note: The device on the other end of a link is often called a peer device, even if the device in
question is a Central or Peripheral.

2.1.2 Advertising

For a Central to be able to connect to a Peripheral, the Peripheral must be advertising. It sends advertising
packets with a time interval, known as the advertising interval, that ranges between 20 ms and 10.24 s. The
advertising interval affects how long it takes to initiate a connection.

The Central must receive an advertising packet before it can send a connection request to initiate a
connection. The Peripheral only listens for connection requests for a short while after sending an
advertising packet.

An advertising packet can contain up to 31 bytes of data. It usually contains a user readable name,
information about the device sending packets, some flags used to know whether the device is discoverable
or not, and similar.

When a Central receives an advertising packet, it may send a request for more advertising data, called a Scan
Request, if it is configured as an Active Scanner. A Peripheral responds to the request by sending a Scan
Response that can contain an additional 31 bytes.

Advertising, including scan requests and responses, occurs on three frequencies spread over the 2.4 GHz
band to avoid WLAN interference.
2.1.3 Scanning

Scanning is used by the Central to listen for advertising packets and to send scan requests. There are two
timing parameters you need to be aware of in this context: scan window and scan interval.

For each scan interval, the Central scans for a time equal to the scan window, meaning that if the scan
window is equal to the scan interval, the Central will do a continuous scan. The scan window divided by the
scan interval is known as the scan duty cycle.

2.1.4 Initiating

When the Central wants to enter a connection, it will use the same procedure as when scanning to listen for
advertising packets. When initiating, the Central will send a connection request to the Peripheral when it
receives an advertising packet.

Page 6

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

2.1.5 Connection

By definition the Central and Peripheral are in a connection from the first data exchange. Whenin a
connection, the Central will request data from the Peripheral at specifically defined intervals. This interval is
called the connection interval. It is decided and applied to the link by the Central, but a Peripheral can send
Connection Parameter Update Requests to the Central. The connection interval must be between 7.5 ms
and 4 s according to the Bluetooth Core Specification.

If the Peripheral doesn’t respond to packages from the Central within the time frame, called connection
supervision timeout, the link is considered lost.

Itis possible to achieve higher data throughput by transmitting multiple packets in each connection
interval. Each packet transferred can contain up to 20 bytes of usable application data. However, if current
consumption is important and a Peripheral has no data to send, it can choose to ignore a certain number of
intervals. The number of ignored intervals is called the slave latency.

While in a connection, the devices will hop through all the channels in the frequency band, except for the
advertising channels, in a way that is completely transparent to the application.

2.2 Generic Attribute profile (GATT)

GATT is the layer where the data values are actually transferred.

2.2.1 Roles

In addition to the roles in GAP, BLE also defines two roles, a GATT Server and a GATT Client, that are
completely independent of the GAP roles. The device holding data is the GATT Server, while the device
accessing it is the GATT Client.

For the LED Button example, the Peripheral device (with its LED and button) is in the role of
Server and the Central is in the role of Client.

Note: Itis possible for a device to be both a GATT Server and GATT Client simultaneously.

2.2.2 GATT hierarchy

A GATT Server organizes data in what is called an attribute table and it is the attributes that contain the
actual data.

Handle uuID Permissions Value
(i Service 0x0001 SERVICE READ HRS)
Characteristic 0x0002 CHAR READ HRM
0x0003 HRM READ/NOTIF 80 bpm
Descriptor 0x0004 DESC READ NOTIFY
NS J

Figure 2 GATT overview

Page 7

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

2.2.2.1 Attribute

An attribute has a handle, a UUID, and a value. A handle is the index in the GATT table for the attribute and is
unique for each attribute in a device. The UUID contains information on the type of data within the attribute,
which is key information for understanding the bytes that are contained in the value of the attribute. There
may be many attributes in a GATT table with the same UUID.

2.2.2.2 Characteristic

A characteristic consists of at least two attributes: a characteristic declaration and an attribute that holds the
value for the characteristic.

All data that will be transferred through a GATT Service must be mapped to a set of characteristics. Itis a
good idea to consider bundling the data up so that each characteristic is a self-contained, single instance
data point. For example, if some pieces of data always change together, it will often make sense to collect
them in one characteristic.

In the LED Button service there is no relation between the LED and the button, and they can
change independently from each other. Therefore, it makes sense to keep them as separate
characteristics, so that we use one characteristic for the current button state and one character-
istic for the current LED state.

2.2.2.3 Descriptors

Any attribute within a characteristic definition that is not the characteristic value, is by definition a
descriptor. A descriptor is an additional attribute that provides more information about a characteristic, for
instance a human-readable description of the characteristic.

However, there is one special descriptor that is worth mentioning in particular: the Client Characteristic
Configuration Descriptor (CCCD). This descriptor is added for any characteristic that supports the Notify or
Indicate properties, see Section 2.2.5 “On-air operations and properties” on page 10.

Writing a ‘1’ to the CCCD enables notifications, while writing a ‘2" enables indications. Writing a ‘0’ disables
both notifications and indications.

For the S110 SoftDevice, this descriptor is added automatically for any characteristic where the Notify or
Indicate properties are set.

2224 Service
A service consists of one or more characteristics, and is a logical collection of related characteristics.

GATT services typically include pieces of related functionality - such as a particular sensor’s readings and
settings or the inputs and outputs of a Human Interface Device. Organizing related characteristics into
services is both useful and practical, since it promotes a clearer separation based on logical and use-case
defined boundaries and helps code reuse across different applications. The GATT-based SIG profiles and
services make good use of this approach, and it is recommended to follow their strategy for user-defined
profiles.

For the LED Button example, there isn't any reuse concerns, so both the LED and the button
characteristics are grouped into one service.

Page 8

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

2.2.2.5 Profile

A profile can be defined to collect one or more services into a use case description. A profile document
includes information on services that are required or optional for that particular profile as well as how the
peers will interact with each other. This includes both which GAP and GATT Roles the devices will be in
during data exchange. Therefore, this document will often contain information on what kind of advertising
and connection intervals should be used, whether security is required, and similar.

It should be noted that a profile does not have an attribute in the attribute table.

For the LED Button example, a profile is not formally described.

2.2.3 Standard versus custom services and characteristics

The Bluetooth SIG has defined a number of profiles, services, characteristics, and attributes based on the
GATT layer of the stack. However, with Bluetooth low energy all service implementations are part of the

application and not the stack, meaning it is possible for an application to support whichever profiles or

services it wants to, as long as the stack supports GATT.

Because support for profiles and services is in the application, it is possible to create custom services in the
application.

For the LED Button example, there is no Bluetooth SIG service that covers this use case, so it will
be implemented as a custom service, with two custom characteristics.

224 UUIDs

As stated in Section 2.2.2 “GATT hierarchy” on page 7, all attributes have a UUID. A UUID is a 128-bit number
that is globally unique and is used to identify an attribute type.

2.2.4.1 Bluetooth SIG UUIDs

The Bluetooth Core Specification makes a distinction between a base UUID and a 16-bit UUID, which
completes the base UUID.

All Bluetooth SIG defined UUIDs use a common base UUID, and more specifically the following one:
0x0000xxxx-0000-1000-8000-00805F9B34FB

To further refine this base UUID, each Bluetooth SIG defined attribute has a unique 16-bit UUID that replaces
the x’s in the common base UUID described above. The Heart Rate Measurement Characteristic, for example,
has 0x2A37 as a 16-bit UUID, and therefore the full 128-bit UUID for the Heart Rate Measurement
characteristic is:

0x00002A37-0000-1000-8000-00805F9B34FB

Since all Bluetooth SIG UUIDs use the same base UUID, the 16-bit UUID is sufficient to uniquely identify a
Bluetooth SIG defined attribute.

The Bluetooth SIG base UUID cannot be used for any custom attributes, services, or characteristics. For all
custom attributes, a full 128-bit UUID should be used.

Page 9

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

2.24.2 Vendor specific UUIDs

The SoftDevice organizes UUIDs in a similar way to how the Bluetooth Core Specification defines the
Bluetooth SIG UUIDS, that is, you add a custom base UUID and then define 16-bit numbers, similar to the
aliases, to be used on top of this base. It's easiest to use one base UUID for all custom attributes, at least
within the same service.

A base UUID is easily generated using nRFgo Studio to create new UUIDs, see Section 4.4.3 “Service
Initialization” on page 21.

For the LED Button example, 0x0000xxxx-1212-EFDE-1523-785FEABCD123 will be used as the
base.

The Bluetooth Core Specification does not include any rules or recommendations for how to assign the
unique 16-bit UUIDs that are added to the base UUID, so you can use any scheme you want for this.

For the LED Button example, 0x1523 is used for the service, 0x1524 for the LED characteristic,
and 0x1525 for the button state characteristic.

2.2.5 On-air operations and properties
Most on-air operations happen by using the handle, since this uniquely identifies each attribute.
Use of the characteristic is dependent on its properties. Characteristic properties include:

« Write

« Write without response

+ Read

« Notify
« Indicate

More properties are defined in the Bluetooth specification, but these are the most commonly used.

2.2.5.1 Write and Write without response

Write and Write without response allow the GATT Client to write a value to a characteristic in a GATT Server.
The difference between them is that Write without response happens without any application level
acknowledgment or response.

2.2.5.2 Read

The Read property makes it possible for the GATT Client to read the value of a characteristic in a GATT Server.

Page 10

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

2253 Notify and Indicate

Notify and Indicate allow a GATT Server to make the GATT Client aware of changes to a characteristic. The
difference between Notify and Indicate is that Indicate has application level acknowledgment, while Notify

does not.

For the LED Button example, the characteristic to control the LED and the characteristic for the
current button state are the two custom characteristics used in the LED Button service.

For the LED characteristic, the Central needs to be able to set its value, and possibly read it
back. Since the application level acknowledgments aren’t needed, you can use the Write with-
out response and Read properties.

For the button characteristic, the Client needs to be notified when the button changes state,
but application level acknowledgment isn’'t needed. Only the Notify property is needed for this.

Note: GATT and its underlying ATT protocol are described in the Bluetooth Core Specification, Volume
3, parts F and G.

Page 11

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

3 Minimal BLE application overview

This chapter provides an overview of the minimum requirements for a BLE application on the nRF51822
device using the S110 SoftDevice.

3.1 Overview of initialization

There are several initialization calls that are commonly performed as part of a BLE application. A list of
initialization calls is provided in the tables below with some explained in more detail later in the document.

Initialization call Ways to achieve this In LED Button demo app
Enable + Use SDK wrapper macro ble_stack_init(Q in
SOFTDEVICE_HANDLER_INIT from main.c

softdevice_handler.h
. sd_softdevice_enable() innrf_sdm.h

Add event handler « Function passed to SOFTDEVICE_HANDLER_INIT ple_evt_di spatch() in
main.c

Table 1 SoftDevice initialization calls

Initialization call Ways to achieve this In LED Button demo app

Set device name - sd_ble_gap_device_name_set() in gap_params_init() in
ble_gap.h main.c

Set up advertising - ble_advdata_set() inble_advdata.h advertising_init() in

data - sd_ble_gap_adv_data_setinble_gap.h main.c

Connection + ble_conn_params_init() in conn_params_init() in

parameters ble_conn_params.h main.c

« sd_ble_gap_ppcp_set()inble_gap.h

Table 2 GAP initialization calls

Initialization call Ways to achieve this In LED Button demo app
Add one or more - sd_ble_gatts_service_add() in ble_1bs_init() in
services ble_gatts.h ble_Tbs.c.

(Most often not done by application itself, only by services.)
Add one or more . sd_ble_gatts_characteristic_add() in ble_lbs_init() in
characteristics ble_gatts.h ble_1bs.c.

(Most often not done by application itself, only by services.)

Table 3 GATT initialization calls

Initialization call Ways to achieve this In LED Button demo app
Start advertising - sd_ble_gap_adv_start()inble_gap.h advertising_start()
in main.c

Table 4 App initialization calls

Page 12

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

Most of the methods described above use structures as input parameters. The structures specify a set of
configurations or options and the comments in the code provide a better understanding of them.

You can enter the main loop after advertising has started.

3.2 S110 SoftDevice

You must enable the S110 SoftDevice in order to use it, which gives exclusive access to the radio peripheral.
See the S110 nRF51822 SoftDevice Specification for details on hardware resource use.

3.3 Advertising

The structure types used for advertising are bTe_gap_conn_sec_mode_t fromthe ble_gap. h header
file,and ble_advdata_t fromble_advdata.h.

err_code = sd_ble_gap_device_name_set(&device_name_sec_mode, DEVICE_NAME
strlen(DEVICE_NAME));
err_code = sd_ble_gap_appearance_set (BLE_APPEARANCE_UNKNOWN) ;

err_code = ble_advdata_set(&advdata);

Note: The security mode passed to sd_b1le_gap_device_name_set () applies only to the
device name itself.

Advertising parameters (b1e_gap_adv_params_t) need to be passed to
sd_bTle_gap_adv_start():

err_code = sd_ble_gap_adv_start(&m_adv_params);

3.4 Connection parameters

The SDK comes with a module called b1e_conn_params that manages connection parameter updates as
needed. It wraps the SoftDevice APIs for handling this, including handling the timing of requests and
sending new request if the first ones are rejected.

In the initialization structure b1e_conn_params_init_t, different parameters for the update
procedure can be set. For example, whether it should start on connection, start when writing to a specific
CCCD, which connection parameters should be used, delays before requests are sent, and more.

The bTe_conn_params_init() function then takesable_conn_params_in1it_t structure which
wraps the initial connection parameters (b1e_gap_conn_params_t) to be requested.

err_code = ble_conn_params_init(&cp_init);

The b1le_conn_params SDK module ensures that the connection parameters decided by the Master are
acceptable. If they are not, it asks to change them. After a set number of attempts to change them without
success, it disconnects or gives an event back to the application depending on the configuration.

Page 13

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

3.5 Services

Services can be added with sd_bTle_gatts_service_add(). You should not do this in application
code but instead build services as separate files. A service can either be primary or secondary, but in practice
mostly primary services are used in common applications. The service_uu1id variable is the UUID you
want to use for the service. The service_hand1e variable is an output variable, which will be filled with a
unique handle for the service that is created. The handle can be used later to identify the service.

err_code = sd_ble_gatts_service_add(BLE_GATTS_SVC_TYPE_PRIMARY,
&p_lbs->service_uuid,
&p_lbs->service_handle);

3.6 Characteristics

Characteristics are added with sd_ble_gatts_characteristic_add(), which takes four
arguments. For code clarity, this call should happen only in service files, not in the application itself.

The first argument is the handle of the service the characteristic should be added to. The second argument
is a metadata structure for the characteristic, which has information about what properties are available
(read, write, notification, and so on). The third argument is a description of the value attribute, which
contains its UUID, length, and initial value. The final argument is filled with a unique set of handles for the
characteristic and potential descriptors. The handles can be used later to identify the characteristic, for
example, to identify which characteristic was written in a write event.

err_code = sd_ble_gatts_characteristic_add(p_lbs->service_handle, &char_md,

&attr_char_value,
&p_lbs->1ed_char_handles);

Page 14

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4 LED Button application example

The LED Button application example was created in order to give you an environment where you can learn
how to use Bluetooth low energy on the nRF51822 chip. It is a simple BLE application that demonstrates bi-
directional communication over BLE. When it is running, you will be able to toggle an LED output on the
NRF51822 chip from the Central, and receive a notification when button input on nRF51822 is pressed.

The application is implemented in one service, with two characteristics—the LED characteristic, which can
be used to control the LED remotely through the write without response operation, and the Button
characteristic, which sends a notification when the button is pressed or released.

4.1 Code overview

An overview of how the application works is provided in the following sections to help you understand and
use the code.

4.1.1 Code separation

The example code is divided into three files:

emain.c
eble_Tbs.c
eble_Tbs.h

The structure is the same as in other SDK examples, with main. c implementing application behavior and
the separate service files implementing the service and its behavior. All I/0 handling is left to the
application.

An application running on nRF51822 can interface with the following parts:

- Hardware registers
Typically done through writes to registers defined in nrf51.h with values contained in
nrf51_bitfields.h. There are no examples of this in the LED Button application.

« SDK modules
SDK modules can be anything, from basic header file wrappers around the hardware
registers, like nrf_gpio.h, to more complex modules that give useful functionality to the
application, like app_timer or ble_conn_params.

- Softdevice functions

These are used to configure or trigger actions in the softdevice. All softdevice function calls
are prefixed with sd_.

Page 15

Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

> . SEMICONDUCTOR

(& D
5 D !
@ S
5 2
. . g B
s N < €
(=1
! ..Im | - ,oid6 pu
g i = uonoessqe Old9 [1 - Old9
1 ® I
P8 |
13 | / “uoyng dd \
| @ 1 f » uopng dde .
” a ” = uonesauab Juans uoyng = 3101dO
= !
I
| A v
| ! + Je|npayos dde - 101y
| ! AKreiqy) Janpayos
I
| I
! ! — > 0014
| | . Jown dde
W ! Aeaqy sowi
! | P ONINIL
=
| I
” ” o/ .+ 90IASPYOS \
! m Lent I9|puey 80IASPYOS "A SR v
|
| | (222 R N 0
i . ! $8%3
| < i . . elepApE alq | 8¢z
” m m 7\ Japoous ejep JuswasiuaApY M M 2
I T X
! ! N\ J 2%
| | (2
! !
|
W W + 90IASPYOS™ pS
| I J1eBeuew 801A9QYOS
| I
| I
| I
| I
| I
| | oo
| | . . deb g ps
I 1 o dvo
| I
| I
| |
I
I [—
! | (@19 ps j0u) ,"ps
I | BRI DOS
| I
| I
| I
I
| ;|
o [,
| 2 | « speba|q ps
i ™ i JoNBS 11V
| o W
I
| |
I
I P —
i ! . 7alaps
! T suoljoun; 37g dUaus
| I
| I
\ \, -
Ny 7

Figure 3 LED Button application interfaces with the nRF51 SDK, S110 SoftDevice, and nRF51822 chip
Page 16

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4.1.2 Code flow

The basic flow of a typical BLE application running on the nRF51822 chip is to initialize all needed parts, start
advertising, and possibly enter a power-saving mode and wait for a BLE event. When an event is received, it
is passed to all BLE services and modules. An event can be, but is not restricted to, one of the following:

« When a peer device connects to nRF51822.
- When a peer device writes to a characteristic.
+ Anindication that advertising has timed out.

This flow makes the application very modular and a service can usually be added to an application by
initializing it and ensuring its event handler is called when an event comes in.

4.1.3 Inspecting and navigating in the Keil project

We recommend that you compile the example code before you start looking through it. After it is compiled
you can right-click on any function, variable, type, or define and go to its point of definition by selecting Go
To Definition Of or Go To Reference To.

Go To Definition Of brings you to the actual implementation of the method (that is, the source code file),
while Go To Reference To brings you to its header file declaration. This means you can never jump to the
definition of functions in the SoftDevice API, since these are not available as source code. You can however,
jump to their reference, which will also show you the documentation available for the method in question.
This is a powerful tool you can use to become familiar with the APl and the example projects.

1ua DL OAD LU oL FIULL JRL W MLLLEJD | EVELUWE GLLL M. WLLLT prTiiug .

leé

167 value_attr.p uwuid = &p_lbs->led char uuid;

168

169 // add characteristic

170 return ble gatts characteristic addifchar md

171 Split Window horizontally

172) ;
173 Insert ‘#include <core.h="

174 |} 5o to Headerfile “ble_srv_lbs.h"

175

176 - & Insert/Remove Breakpoint F9
i:‘;; El‘{lmtsz—t ple_srv_1bs Init(Ple S o goopie/Disable Breakpoint Ctri+F9
175 wint32_t error code;

QT Go To Definition OFf 'ble_gatts_characteristic_add’

181 // Initialize service strud Go To Reference To "ble_gatts_characteristic_add’
i82 p_lbs->conn_ handle
183 p_lbs-»is notifying '&l:i Insert/Remove Bookmark Ctrl+F2
184 lbs—> t _butt tat

p_lbs->current button_state — —
185
186 // initialize service and g Redo Ctri=Y

Figure 4 Finding definitions and references for methods and variables in Keil.

4.2 Codedelivery

This application note explains all the steps needed to build the LED Button application. Additionally, a complete
example is provided and available on GitHub as a Git repository. This enables you to inspect the history of the
code and see how it was developed. Each section has its own tag, showing how the code should look at the end
of the section.

The project can be found on GitHub at: https://github.com/NordicSemiconductor/nrf51-ble-app-lbs

Page 17

https://github.com/NordicSemiconductor/nrf51-ble-app-lbs

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

43 Setup

The nRF51822 Evaluation Kit is needed for this application example. However, it is possible to modify the
project to also work with the Development Kit.

4.3.1 Setting up the Evaluation board

Since the nRF51822 Evaluation Kit has an onboard SEGGER chip, you can connect the Evaluation board
through a USB cable and immediately start working on it.

4.3.2 Setting up the application

A lot of boilerplate code is needed to get started creating an application and a service, so the first step is to
copy code from the SDK:

1. Go to Board\nrf6310\s110\ble_app_template folder.

2. Copy this folder to Board\pca10001\s110\ and rename it to ble_app_Ibs.

3. Inside the arm subfolder of ble_app_lbs change the name of the project files from
ble_app_template to ble_app_Ibs.

433 Setting up the service

The SDK doesn’t have a template service. But, it has an implementation of the battery service, that is the
simplest of the pre-implemented services, and is a good starting point for custom services. To get started
follow these steps:

Copy bTe_bas. c from Source/ble/ble_services to Board/pca10001/ble/ble_app_Ibs/.
Copy bTe_bas.h from Include/ble/ble_services to Board/pca10001/ble/ble_app_lbs/.
Renameble_bas.c to ble_lbs.c and ble_bas.h to ble_lbs.h.

Double-click the Services folder in the Project pane to the left and select the newly created
ble_1bs.c.Thisadds the ble_1bs. cfile to your Keil project.

HwnN =

Since this is an application specific service, it is better that it is placed in the application folder instead of the
SDK'’s service folder.

44 Implementing the service

The service is implemented generically so that it is easier to reuse for other applications. The goal is to
enable the application to use the service by initializing it, handling events, and providing the I/0
implementation. This is similar to the way predefined services are implemented.

4.4.1 Designing the API

The ble_lbs.h header file implements various structures, an event handler that the application needs to
implement, and three API methods:

uint32_t ble_bas_init(ble_bas_t * p_bas, const ble_bas_init_t * p_bas_init);
void ble_bas_on_ble_evt(ble_bas_t * p_bas, ble_evt_t * p_ble_evt);
uint32_t ble_bas_battery_level_update(ble_bas_t * p_bas, uint8_t battery_level);

Note: Comments have been removed from the code snippets in this document.

Page 18

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

In the code above, b1e_bas_t is used for referencing this instance of the service while
bTe_bas_init_tincludes initialization parameters that are not useful later. All APl methods take a
pointer to the service instance as their first parameter.

To design a similar API for the LED Button service, do the following:

1. Perform a Find and Replace All to replace all occurrences of ble_bas with bTe_Tbs, all
occurrences of BLE_BAS with BLE_LBS, and all occurrences of p_bas with p_1bs, both in
the header file and the source file.

2. Removetheble_lbs_battery_Tlevel_update() function from both the header file and
source file.

3. Comment out all other methods in the bTe_Tbs. c file by using an #if 0 before the first method
and an #endif immediately above the init function. Do not completely remove them, because
some of them will be built on later.

4. Remove the battery_level_update function, from both header file and source code.

5. Remove the callto battery_level_char_add() from the end of the init function, and
instead just return NRF_SUCCESS.

6. Consider what the service needs from the application. The LED Button service needs to know
when the button state has changed, which is sent to the central device. So, you need to add a
method that the application can call when the button state changes:

uint32_t ble_lbs_init(ble_lbs_t * p_lbs, const ble_lbs_init_t * p_lbs_init);

void ble_Tlbs_on_ble_evt(ble_lbs_t * p_lbs, ble_evt_t * p_ble_evt);
uint32_t ble_lbs_on_button_change(ble_lbs_t * p_lbs, uint8_t button_state);

There are also two data structures there that need to be implemented here: bTe_Tbs_t and
ble_Tbs_init_t.

4.4.2 Implementing data structures

In the APl from Section 4.4.1 “Designing the API” on page 18, some data structures that have not been
implemented yet are used: bTe_Tbs_t and bTe_Tbs_init_t. We can base these on similar structures
from the battery service, which look like the following:

typedef struct

{
ble_bas_evt_handler_t evt_handler;
bool support_notification;
ble_report_ref_t * p_report_ref;
uint8_t initial_batt_level;
ble_cccd_security_mode_t battery_level_char_attr_md;
ble_gap_conn_sec_mode_t battery_level_report_read_perm;

} ble_bas_init_t;

typedef struct ble_bas_s

{
ble_bas_evt_handler_t evt_handler;
uintlé_t service_handle;
ble_gatts_char_handles_t battery_level_handles;
uintl6_t report_ref_handle;
uint8_t battery_level_last;
uintl6_t conn_handle;
bool is_notification_supported;
} ble_bas_t;

Page 19

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

The initialization structure from the code above contains an event handler, some optional parameters, initial
value, and security modes for the information contained in the service. The service structure on the other
hand contains the state of the service, such as handles, current battery level, whether notifications are
enabled, and similar.

The battery service uses a general event handler to let the application know when to start and stop periodic
battery level readings. The LED Button service doesn’t rely on anything starting or stopping, so a single
method being called when the LED characteristic is written to is enough.

This handler is the only thing that is applicable for initialization, and it becomes the lone member of the
initialization structure:

typedef struct
{

ble_lbs_led_write_handler_t lTed_write_handler;
} ble_Tbs_init_t;

The signature used for this function is defined like this (and must be added to the header file above the
declaration of the ble_lbs_init_t, replacing the existing event handler definition):

typedef void (*ble_lbs_led_write_handler_t) (ble_lbs_t * p_lbs, uint8_t new_state);

However, the following parameters are needed to keep track of the state:

The handle for the service.
« Characteristics handles.

« Connection handles.

« The UUID type.

« The handler for LED writes.

These parameters give the following service structure:

typedef struct ble_lbs_s

{
uintl6_t service_handle;
ble_gatts_char_handles_t led_char_handles;
ble_gatts_char_handles_t button_char_handles;
uint8_t uuid_type;
uintlée_t conn_handle;
ble_lbs_Tled_write_handler_t Tled_write_handler;

} ble_Tbs_t;

The battery service event declarations on top of bTe_Tbs . h can be removed.

Page 20

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4.4.3 Service Initialization

Start by looking at the init function, which is now called bT1e_Tbs_in1it. The parameters you don't have
need to be removed:

1. Remove evt_handler,is_notification_supported, andbattery_level_last
2. Rename the evt_handler field to Ted_write_handler, both in the init structure and the
service structure:

p_lbs->led_write_handler = p_lbs_init->Ted_write_handler;

The UUID handling needs to be reworked because the service being implemented uses a custom UUID
instead of a Bluetooth SIG defined UUID.

First, define a custom Base UUID. One way to do this is in nRFgo Studio:

1. Open nRFgo Studio.
2. Inthe nRF8001 Setup menu, select Edit 128-bit UUIDs and click Add new.

This creates a new, random UUID that you can use for custom services.

The newly created Base UUID must be included in the source code as an array of bytes, but is only needed in
one place:

1. For readability, include it as a macro definition in the header file b1e_1bs . h, along with the
shortened 16-bit versions used for the service and characteristics:

#define LBS_UUID_BASE {0x23, OxDl, OxBC, OxXEA, Ox5F, 0x78, 0x23, Ox15, OxDE, OXEF,
0x12, 0x12, 0x00, 0x00, 0x00, O0x00}

#define LBS_UUID_SERVICE 0x1523

#define LBS_UUID_LED_CHAR 0x1525

#define LBS_UUID_BUTTON_CHAR 0x1524

In the service initialization:

2. Add the following base UUID to the stack’s list, and then set up the service to use it. Here it is
added first, in ble_Ibs_init():

ble_uuidl28_t base_uuid = LBS_UUID_BASE;

err_code = sd_ble_uuid_vs_add(&base_uuid, &p_lbs->uuid_type);
if (err_code != NRF_SUCCESS)

{

return err_code;

}

The above code snippet will add the custom Base UUID to the stack, and store the type returned by
sd_ble_uuid_vs_add() in the service structure:

Page 21

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

3. Use this type when setting up the UUID for the LED Button service, stillinble_1bs:init():

ble_uuid. type
ble_uuid.uuid

p_lbs->uuid_type;
LBS_UUID_SERVICE;

err_code = sd_ble_gatts_service_add(BLE_GATTS_SRVC_TYPE_PRIMARY, &ble_uuid,
&p_lbs->service_handle);

if (err_code != NRF_SUCCESS)

{

}

return err_code;

The above code only adds an empty service, so the characteristics need to be added. The following section
explains how to add the characteristics.

4431 Implementing the button characteristic

The service will have two characteristics, one that controls the LED state and one that reflects the button
state. Two static methods need to be created to add the characteristics to bT1e_Tbs . c starting with the
button state.

The button characteristic notifies on button state change, but also allows the peer device to read the button
state. This is very similar to the behavior of the battery level characteristic in the Battery Service, so you can
base your implementation on this:

1. Find the method called battery_Tlevel_char_addand renameitto button_char_add.If
Find and Replace worked properly earlier, the parameter names should be correct as is.

The button_char_add method expects to find a parameter stating whether or not notifications are supported, but
in this case only notification support is wanted.

2. Remove the if-sentence checking the is_not1ification_supported parameter, but leave
the code inside.

3. Make sure that the char_md fields are set to support notifications.

4. Remove the entire code path for report reference, the p_report_ref parameter (everything
from the if-sentence that checks if p_report_ref is set).

There is a flag in the initialization of the battery service that sets the security mode for the CCCD, and is
stored asa ble_gap_conn_sec_mode_t structure. Such structures are most easily set by using one of
the macros that start with BLE_GAP_CONN_SEC_MODE from b1e_gap . h.There are different macros to
use depending on the security level you want to require for this attribute.

1. Use BLE_GAP_CONN_SEC_MODE_SET_OPEN to make the CCCD readable and writable over any
link, encrypted or not.

2. For the button state characteristic we want reading to be possible over any link, but not writing.
For this, BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS can be used. Replace

Page 22

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

BLE_GAP_CONN_SEC_MODE_SET_OPEN with BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS for
the last write perm.

BLE_GAP_CONN_SEC_MODE_SET_OPEN(&cccd_md.read_perm);
BLE_GAP_CONN_SEC_MODE_SET_OPEN(&cccd_md.write_perm) ;

memset (&attr_md, 0, sizeof(attr_md));
BLE_GAP_CONN_SEC_MODE_SET_OPEN(&attr_md.read_perm);
BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS(&attr_md.write_perm);

3. Make sure you don’t remove the setting of the vloc field, which decides whether the variable is
placed in stack memory or in the application memory.
4. Set the type and value for the UUID.

ble_uuid.type = p_lbs->uuid_type;
ble_uuid.uuid = LBS_UUID_BUTTON_CHAR;

U

The initial value is not important, so you can pass a NULL for the p_initial_value.
6. Make sure to store the handles to the characteristic in the correct place, so modify the final call of
the method to look like this:

return ble_gatts_characteristic_add(p_lbs->service_handle, &char_md,

&attr_char_value,
&p_1lbs->button_char_handles);

By moving the #endif above this method you can compile the application and remove any unused variables
shown as compilation warnings (initial_battery_level, encoded_report_ref, init_len, err_code).

443.2 Implementing the LED characteristic

The LED state characteristic needs to be writable and readable, without any notification:

1. Copy the method to add the button characteristic, renaming it to led_char_add.
2. Remove the references to the cccd_md.
3. Add the write property instead of the notify property (to enable writing to this characteristic).

char_md.char_props.write = 1;
4. Change the UUID to LBS_UUID_LED_CHAR.

ble_uuid. type
ble_uuid.uuid

p_lbs->uuid_type;
LBS_UUID_LED_CHAR;

The handle should be stored in the variable Ted_char_handTes instead of in the
button_char_handles, where the final call in the method looks like this:

return ble_gatts_characteristic_add(p_lbs->service_handle, &char_md,
&attr_char_value,
&p_lbs->1ed_char_handles);

After compilation, you can see which parameters are now unused, and remove them.

Page 23

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4433 Adding the characteristics

After creating the methods to add to the characteristics, you need to call them at the end of the services
initialization method. Here is an example of how to do this:

// Add characteristics

err_code = button_char_add(p_1bs, p_lbs_init);
if (err_code != NRF_SUCCESS)

{

}

err_code = led_char_add(p_lbs, p_lbs_init);
if (err_code != NRF_SUCCESS)

{

}

return err_code;

return err_code;

return NRF_SUCCESS;

Because any errors would have forced the function to return early, you can assume success if you reach the
end of this function.

If you want to test this now, you can jump to Section 4.5.1 “Modifying the template for the evaluation kit” on
page 26 and Section 4.5.3 “Including the service” on page 28, and finish them before testing as explained in
Chapter 5 “Testing the Application” on page 32. After testing you should be able to connect to the device
and discover all the services, but any further action will not work. Handling stack events and button presses
still needs to be implemented in the service.

444 Handling stack events

A stack event occurs whenever the stack needs to notify the application of something that is relevant to it,
such as when writing to a characteristic or descriptor. For this application, the write to the LED characteristic
is what you will need. For notifications to work properly, you also need to store the connection handle,
which you can do on the connect and disconnect events.

As part of the API, you defined a method called ble_Ibs_on_ble_evt to be used to process stack events. This
is split into different methods to handle the different events based on a simple switch-case.

4.4.4.1 Storing the connection handle

The battery service already stored the connection handle, and the Find and Replace from earlier should have
taken care of the rest without any further changes.

444.2 Removing handling of CCCD writes

The existing event handler listens for write operations to the CCCD and passes them on to the application’s
battery service event handler. However, in this application, this is not required.

The documentation for the method to send notifications, sd_ble_gatts_hvx () states that it won't
allow notifications to be sent if the CCCD is not enabled, so you don’t need to check this in the application in
addition to the check done inside the SoftDevice.

You can remove the entire current content of the on_write method.

Page 24

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4443 Handling LED characteristic writes

The function pointer you added to the data structures enables the application to be notified when the LED
characteristic is written to. This should be handled in the on_write method.

The basic tasks when a write event is received is to verify that the write happened on the correct
characteristic, verify that it was the correct size, and that a handler is set. If all of this is correct, the handler
can be called with whatever value was written. Therefore, the content of on_write becomes like this:

*

ble_gatts_evt_write_t p_evt_write = &p_ble_evt->evt.gatts_evt.params.write;

if ((p_evt_write->handle == p_lbs->1ed_char_handles.value_handle) &&
(p_evt_write->len == 1) &&
(p_Tbs->led_write_handler != NULL))

p_lbs->led_write_handler(p_lbs, p_evt_write->datal[0]);

The actual toggling of the LED is left to the application, making the service easy to reuse as-is, even if a
different pinout is used for LEDs and buttons.

445 Handling button press

You have already added an APl method that lets the service know when a button is pressed. This has not
been implemented yet, so you need to add it by copying the definition from the header file. When handling
a button press, you want to send a notification to the peer device with the new button state. The SoftDevice
APl method for doing this is called sd_ble_gatts_hvx, and takes a connection handle and a
ble_gatts_hvx_params_t structure as parameters. It then manages the process when a value is to be
notified.

In the ble_gatts_hvx_params_t structure, you set whether you want a notification or indication, which
attribute handle to be notified, the new data, and the new data length. The method will look as follows:

uint32_t ble_lbs_on_button_change(ble_lbs_t * p_1lbs, uint8_t button_state)
{

ble_gatts_hvx_params_t params;

uintle_t Ten = sizeof(button_state);

memset(¶ms, 0, sizeof(params));

params.type = BLE_GATT_HVX_NOTIFICATION;

params.handle p_lbs->button_char_handles.value_handle;
params.p_data = &button_state;

params.p_len = &len;

return sd_bTle_gatts_hvx(p_lbs->conn_handle, ¶ms);

It would also be possible to first set the value for the characteristic by using
sd_ble_gatts_value_set(), and then notify by calling sd_bTle_gatts_hvx() without setting a
value or length. However, using sd_b1e_gatts_hvx () does everything that’s necessary, and is a cleaner
solution. Use the method sd_ble_gatts_value_set () toupdate areadable (but not notifiable) value,
since this function will not send any packets over the air.

This concludes the service, and the rest of the example should be implemented in the application.

Page 25

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4,5 Application implementation

4.5.1 Modifying the template for the evaluation kit

Some modifications are needed to use the template application with the evaluation kit instead of the

Development Kit.

First, you need to change the board definition macros:

1. Open the project folder and go to Target options and the C/C++ tab.
2. Replace BOARD_NRF6310 with BOARD_PCA10001, as shown in the figure below.

Note: If you want to use the development kit instead of the evaluation kit, skip steps 4 and 5 above,

and copy ble_app template into the same folder so that you get

Board\nrf6310\s110\ble_app_lbs project.

Options for Target 'nrf51822_oa_s110 (256K)"

Devicel Target I Output I Listing I User C/Ce+ |A5n1 I Unkerl Debugl Ltilties I

— Preprocessor Symbols
Define: INHF51 DEBUG_WNRF_USER ELE_STACK_SUPPORT_REQD BOARD_PCA10001
Undefine: I
— Language / Code Generation
I~ Stict ANSIC L
Optimization: ILEVE| 0{00) vl ¥ Enum Container always int I‘o‘" Wamings]'
[~ Optimize for Time [™ Plain Charis Signed [T Thumb Mode
[~ Split Load and Store Multiple [~ Read-Only Position Independent [~ No Auto Includes
[™ One ELF Section per Function [Read-Wiite Position Independent

Paths

Include I..;..‘\..\..\..\..\Include;..\..\..\..\..\Include\app_cornmon;..\..\..\..\..\Include\ble;..\..\..\..\..\Include\b E'

Misc
Controls I_CBB

string

Compiler |-c —cpu Cortex-M0 i -g -00 -apcs=interwork —enum_is_int - 1% 5% 0 Nnclude -5 S0
contral |\ncludetapp_common -5 5 Mncludetble -1 5 N nclude’ble'ble_services -1.h W N

[ok || cancel || Defaurs |

You also need to remove a few pin definitions from main.c. On the evaluation kit you cannot have a separate

LED to show ASSERTSs.

1. Remove all references to ASSERT_LED_PIN_NO from main.c (macro definitions, use in

app_error_handler() and setting as output in leds_init()).

2. Instead of the assert LED, you need an LED to use for the LED Button service, so add a define for

the LED pin at the top of main.c:

#define LEDBUTTON_LED_PIN_NO LED_O

3. Inleds_init(), configure it as an LED:

nrf_gpio_cfg_output (LEDBUTTON_LED_PIN_NO);

Page 26

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4. In SDK4.1.0 and later, the default application error handler does a reset when an error happens,
but for development, it is much more useful to use the debug module provided. You should make
sure to uncomment the debug assert handler, and comment out the reset:

*

void app_error_handler(uint32_t error_code, uint32_t Tine_num, const uint8_t
p_file_name)

{
// [Comment removed from snippet for brevity]
ble_debug_assert_handler(error_code, Tine_num, p_file_name);

// On assert, the system can only recover with a reset.
//NVIC_SystemReset();

This enables you to run the application with the debugger, and if an error occurs you can halt the chip and
find out on what line file the error occurred. This is one of the reasons you should always check error codes
returned by the SoftDevice with APP_ERROR_CHECK() macro. See Figure 5 for an example.

B o itoris pp 10, 10ble_app_| :_app_lbs.uvproj - WYision [E=sER ==
File Edit View Project Flash Debug Peripherals Jools SVCS Window Help
NSWd|s: sB[2c]--|mnn 15 1| B reos it Fae@e o el
wEel e |[DEEERR - - W -
Registers 1 Disassembly k
Regiter [value | 501 for (i) Il
e 0x0001703R BEOD NOP m
o SRO000000C £50x0001703C ETFE E 020001703C
0x0001703E 000D DCcw 0x0000
0200017040 26BC DCw 0x265C
0200017042 2000 DCw 0x2000
0200017044 20BC DCw 0x208C
nennni11nas 2nnn nrw Avannn =
L3
main.c ble_debug_assert_handler.c - X
Comrrssss 22 // WARNING - DO NCT USE THIS FUNCTION IN END FRCDUCT. - WARNING =
Comrrssss 23 // WARNING - FOR DEBUG PURFCSES ONLY. - HARNING
000017364 24 void ble debug assert handler (uint32 t error code, uwint32 t line num, const wint® t * p file name)
00017364 25 ¢ - - - - - - - - -
OcFFFFFFFF 26 // Copying parameters to static variables because parameters may not be accessible in debuggerz.
020003740 27 static volatile uint® t s file name[MAX LENGTH FILENAME];
BO0017175 28 static volatile uintlé t s line num;
LILIEED 28 static volatile uint32_t s_error_code;
01000000 e - - -
B Banked 31 stzncpy((char *)s_file name, (const char *)p_file name, MAX LENGTH_FILENAME - 1):
[# - System 32 s_file name[MAX_LENGTH FILENAME - 1] = *\0';
1 Intemal 33 s_line_num = line_num; I
i Mode Thread 32 s_ezzoz_code = error_code;
Stack Msp 35 UNUSED_VARIABLE (s_file name);
36 UNUSED_VARIABLE (s_line_num) ;
37 UNUSED_VARIABLE (s_error_code) ;
38
38 // WARNING: The PRIMASK register is set to disable ALL interrups during writing the srror log.
20 /7
41 // Do not use _ disable_irq() in normal operation. =
a2 _ disable izq();
43
44 // This function will write error code, filename, and line number to the flash.
45 // In addition, the Cortex-M0 stack memory will alsc be written to the flash.
46 //(veid) ble error_log write(srror_code, p_file name, line_num);
a7
48 // For debug purposes, this function never returns. B
49 // Attach a debugger for tracing the error cause.
> s0 for (:7)
51 ¢
52 // Do nothing. S
[Erroject | = Registers < m r
Command n Call Stack = Locals o (8]
Device: nRF51822 Bk 2 Name Location/Value Type
WTarget = 3.3007 B
State of Pins: TCK: 0, TDI: 0, TDO: 1, TMS: 1, TRES: 1, TRST: 1 e ble_debug_ass... | 0x0001703C void f(unsigned int,un...
Hardware-Breakpoints: 4 ## errorcode <notin scoper param - unsigned int
Software-Sreakpoints: 8192 #% line.num <notin scope> param - unsigned int
farchpoints: 2 L ## pfile name | <notin scope> param - unsigned cha...
JTAG speed: 2000 kHz
= @ s_file_name | 0x200026BC ".\main.c" | static - unsigned char...
Load "C:\\Locall\\Repositories\\techsupp\\firmyare\\nrf51823-sdk\\branches\\5.1.0.3l BT ST :ttic - unsigned short
‘ | Z @ s_error_code (IR static - unsigned int
< 1 I3
@ 000017174
> El
ASSIGH BreakDisable BreakEnable BreakKill Breaklist BreakSet Breakhccess COVERAGE | @Gl Stack - Locals Ememaml
J-LINK /)-Trace Cortex t1:0,00000000 sec L50 GL CAP| NUM SCRL OVR R /W

Figure 5 Application is halted with the debugger in the assert handler, showing an error with error code 12

In actual production, a reset is usually the only recovery option, but for development, the logger is more
useful.

Page 27

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

Itis also recommended to change the Bluetooth name used by the project, by changing the DEVICE_NAME
macro definition in main.c to something like “LedButtonDemo”.

45.2 Using the scheduler

The SDK contains a scheduler module which provides a mechanism for moving the handling of events and
interrupts from the interrupt handlers to main context. This ensures that all interrupt handlers execute
quickly.

In the template application we started with, the scheduler is enabled by default. If you do not want to use it,
you can remove its initialization and the main loop call to it (scheduler_init(), app_sched_execute()), and set
the last argument to most of the SDK modules' init functions to false (softdevice_handler, app_timer,
app_button)."

For more details on the scheduler, please see the nRF51 SDK documentation.

453 Including the service
To use the service you've created, you need to add some code to the template application.

In the main.c file, there is a method called services_init where the initialization of the LED Button service
must occur:

1. Add the inclusion of the ble_lbs.h file at top of main.c as the last include:

#include "ble_lbs.h"

2. If not already done, add the source file of the service to the project. Right-click the Services folder
in the Project explorer to the left, click Add file and select the ble_lbs.c file.
3. Add the data structure for the service as a static global variable in main.c:

static ble_lbs_t m_1bs;
Note: Even though this is stored as a static variable in the main.c file, m_lbs, it will often appear as a
pointer to this variable, and therefore be called p_lbs.

4. Now you are ready to initialize your service:

static void services_init(void)

{
uint32_t err_code;
ble_lbs_init_t init;
init.led_write_handler = Ted_write_handler;
err_code = ble_lbs_init(&n_Tlbs, &init);
APP_ERROR_CHECK(err_code) ;

}

In Section 4.4.4.3 “Handling LED characteristic writes” on page 25, we made the service call the
led_write_handler in the service structure when the LED characteristic is written. The function we pass
through the init structure above is the one that will be called, but this function has not yet been defined in
the application.

Page 28

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

5. Add afunction called led_write_handler with the signature shown in the code below immediately
above services_init.
6. Setthe LED output to the state given as a function parameter, like this:

Static void led_write_handler(ble_Tbs_t * p_lbs, uint8_t led_state)

{
if (led_state)

{
nrf_gpio_pin_set (LEDBUTTON_LED_PIN_NO) ;
}
else
{
nrf_gpio_pin_clear (LEDBUTTON_LED_PIN_NO) ;
}

7. Finally, add the service’s event handler to the application’s event dispatcher:

static void ble_evt_dispatch(ble_evt_t * p_ble_evt)

{
on_ble_evt(p_ble_evt);
ble_conn_params_on_ble_evt(p_ble_evt);
ble_Tbs_on_ble_evt(&m_1lbs, p_ble_evt);
}

45.4 Test it

Now is a good time to run a quick test, as shown in Chapter 5 “Testing the Application” on page 32. By using
the Master Control Panel, you should be able to turn on the LED by writing a ‘1’ to the LED characteristic.

45.5 Button handling

To finish the application, you need to define how to handle button presses. Use the app_button module
that is part of the SDK for this. This module will give a callback on both the press and the release of the
button.

In buttons_init, set up the button you want to use, in this case button 1 on the evaluation kit.

1. Add a new macro definition, just to make the code more readable:

#define LEDBUTTON_BUTTON_PIN_NO BUTTON_1

2. To set up the pin in buttons_init, add the button configuration array like this:

static app_button_cfg_t buttons[] =

{
{WAKEUP_BUTTON_PIN, false, NRF_GPIO_PIN_PULLUP, NULL},
{LEDBUTTON_BUTTON_PIN_NO, false, NRF_GPIO_PIN_PULLUP, button_event_handler},

i

APP_BUTTON_INIT(buttons, sizeof(buttons) / sizeof(buttons[0]),
BUTTON_DETECTION_DELAY, true);

Page 29

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

The buttons on the evaluation kit are active low, which is the reason for the false, but they don’t have an
external pull-up. You will have to turn on the internal pull-up by using NRF_GPIO_PIN_PULLUP. The wakeup-
button is of no significance, so the handler is set to NULL. After this, you will initialize the module.

3. Uncomment the function button_event_handler. The app_button module will pass a parameter
showing the current state of the button, so we can just pass this directly on to the LED Button
service APl method:

static void button_event_handler(uint8_t pin_no, uint8_t button action)
{

uint32_t err_code;

switch(pin_no)

{
case LEDBUTTON_BUTTON_PIN_NO:
err_code = ble_lbs_on_button_change(&m_1bs, button_action);
if (err_code != NRF_SUCCESS &&
err_code != BLE_ERROR_INVALID_CONN_HANDLE &&
err_code != NRF_ERROR_INVALID_STATE)
{
APP_ERROR_CHECK (err_code);
}
break;
default:
APP_ERROR_HANDLER(pin_no);
break;
}

In the above code we ignore any errors that may come if the CCCD has not yet been written to by the client,
or if we are not currently in a connection.

In addition to defining the method, you need to make sure the button module is enabled. By default, the
template application suggests the connect and disconnect events for this, which is OK for the use case here
as well. Uncomment the calls to app_button_enable() and app_button_disable():

switch (p_ble_evt->header.evt_id)

{
case BLE_GAP_EVT_CONNECTED:
/-.": :':/
err_code = app_button_enable();
break;

case BLE_GAP_EVT_DISCONNECTED:

7:‘: :':/
err_code = app_button_disable(Q);
if (err_code == NRF_SUCCESS)

{

advertising_start();
}
break;

Page 30

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

You are now ready to test the required functionality application, as described in Chapter 5 “Testing the
Application” on page 32. However, to be able to easily distinguish devices when Centrals are scanning, it’s
useful to add the service UUID to the advertising packet.

4.5.6 Adding the service UUID to the advertising packet

Having the service UUID in the advertising packet enables a Central to use this information to decide
whether it will connect. As mentioned in Section 2.1.2 “Advertising” on page 6, an advertising packet can
contain 31 bytes, but if additional data is needed, a scan response can be sent.

You will need to add the custom UUID, which is 16 bytes, to the scan response packet because there is no
room for it in the advertising packet.

Advertising data is set up in the advertising_init() function in main.c, which sets up data structures and calls
ble_advdata_set(). This method then takes two parameters of the same type, one for the advertising packet
and one for the scan response. You must add a structure to pass as the scan response parameter.

The UUID can then be set to LBS_UUID_SERVICE, and type as the uuid_type field in the ble_lbs_t structure.
The advertising_init() should like this:

static void advertising_init(void)

{
uint32_t err_code;
ble_advdata_t advdata;
ble_advdata_t scanrsp;
uint8_t flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
// YOUR_JOB: Use UUIDs for service(s) used in your application.
ble_uuid_t adv_uuids[] = {{LBS_UUID_SERVICE, m_lbs.uuid_type}};
// Build and set advertising data
memset(&advdata, 0, sizeof(advdata));
advdata.name_type = BLE_ADVDATA_FULL_NAME;
advdata.include_appearance = true;
advdata.flags.size = sizeof(flags);
advdata.flags.p_data = &flags;
memset (&scanrsp, 0, sizeof(scanrsp));
scanrsp.uuids_complete.uuid_cnt = sizeof(adv_uuids) / sizeof(adv_uuids[0]);
scanrsp.uuids_complete.p_uuids = adv_uuids;
err_code = ble_advdata_set(&advdata, &scanrsp);
APP_ERROR_CHECK(err_code);

}

Since the uuid_type of the m_lbs structure is used here, make sure that services_init(), in which this is set, is
called before advertising_init() in main:

int main(void)

{
services_init();

advertising_init(Q);

Now the application is fully complete.

Page 31

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

5 Testing the Application

A USB dongle is supplied with the evaluation kit that, when combined with the Master Control Panel
software, can be used to test BLE applications. The initial set up for this is described in the Quick Start
section of the nRF51822 Evaluation Kit User Guide. Once you have opened the Master Control Panel, you can
test the LED Button application by following these steps:

1. Open the Master Control Panel.
I:H]MasterContml Panel = &3 Bl

File Help
Master emulator

COM3E - 430102532 v| 480102532 connected

Scan for devices

Start discovery

Discovered devices

Delete bond info

Log

[13:07:38.3] More than one compatible master emulstor devices were found. Please select a device.
[13:07:42.8] Loading

[13:07:43.4] Device address: IxEATFFEI4A94F

[13:07:43.4] Master emulator fimware version: MEFW_nRF51822_0.8.0.5879

[13:07:45.3] Ready

[13:07:45.5) SERVER: Server has started

Figure 6 Master Control Panel

2. When the Master Control Panel has started, click Start Discovery. The LED Button device should
appear shortly in the Discovered devices window. If it doesn't, it probably means it has hit the
advertising timeout; press button 0 on the Evaluation Kit board or reset the device to start
advertising again.

3. When the device appears, select it and click Select Device.

Page 32

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

-
@Masﬁerﬁontml Panel P - - -_— — Eléu

File Help
Master emulator

COM38 - 480102532 - | 480102532 connected

Scan for devices

Discovered devices
=8 LedButton Demo (IxE5056ESC!

Address Type: Random
Advertising Type: Connectable il
i Bonded: False il
(=~ Advertising Data
-CompleteLocalMame: LedButtonDemo |
Appearance: (1234
- Flags: LimitedDiscoverable, BrEdrMot Supported il
[=)- Scan Response Data

f ServicesCompleteList Uuid128: (a000015231212EFDE1523785FEABCD123

Delete bond info

Log

[13:44:41.5] More than one compatible master emulator devices were found. Please select a device.
[13:44:45.5] Loading

[13:44:46.0] Device address: IxEATFFEI4A94F

[13:44:46.0] Master emulator fimware version: MEFW_nRF51822_0.8.0.5879

[13:44:48.3] Ready

[13:44:48 4] SERVER: Server has started

[13:44:49.1] Device discovery started

Figure 7 Master Control Panel after the device has been discovered, showing the scan response data.

Page 33

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

r — - g‘
|E)| Master Control Panel =B

File Help
Master emulator

ez vt

Device info
Device address: ES056E5CE304 Bonded: False
Actions
[Service discovery H Bond H Connect H Enable services]

Service Discovery

Attribute value

uuID (@9 Handis (C:
Value @ hex ©) text Send update:

Log

[13:12:35.8] SERVER: Received Link Loss -
[13:12:43 3] Loading

[13:12:43 8] Device address: IxEATFFES4AS4F

[13:12:43 5] Master emulator firmware version: MEFW_nRF51822_0.8.0. 5875

[13:12:43 9] Ready

[13:12:44 0] SERVER: Server has started

[13-12:44 4] Device discovery started H

[13:12:47 3] Device discovery stopped

Figure 8 Master Control Panel when the LED Button device has been selected.

Page 34

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

4. Click Service discovery. This will first connect to the device, and then do a service discovery.

" B
|EJ| Master Control Panel E@g

File Help
Master emulator

COM32 - 430102532 +| 480102532 connected

Device info
Device address: ESO56E5C6304 Bonded: False

Actions
Service discovery] [Bond] [Discannect] [Enable services

Service Discovery
[=)- Pimary Service, Generic Access (a1800)

(- CharacteristicDeclaration, Properties: Read. Wiite, Characteristic UUID: &2A00

;i DeviceName, DeviceName: LedButtonDemo

E| Characternistic Declaration, Properties: Read, Charactenistic UUID: k2401
l i - Appeamnce, Appearance: 1234

=-Ch isticDeclaration, Properties: Read, CF istic UUID: (2A04

i.. SlavePrefemredConnectionParameters, MinConnlnterval: &c0190, MaxConnlnterval: (0320, SlaveLatency: Bx0000, Supervisic|

=3 P!imarySenrice. (Generic Attribute (x1801)

= G i eclaration, Properties: Indicate, Ch istic UUID: Bc2AD5
i ServiceChanged, (No values read)
b ClientCH isticConfiguration, C isticConfigurationBits: None (0000)

=) PrimaryService, (b00001523-1212-EFDE-1523-785FEABCD123
E| Charactenstic Declaration, Properties: Read, Notify, Charactenstic UUID: (x00001524-1212-EFDE-1523-785FEABCD23
i b UUID: 00001524-1212-EFDE-1523-785FEABCD 123, Value: 00
- ClientCh isticConfiguration, Ck isticConfigurationBits: None (0000)
(=] Characternistic Declaration, Properties: Read, Write, Charactenistic UUID: (1525
- ULID: 1525, Value: 00

<[T | 3

Attribute value

UUID (e Handle (Cx): Read
Ve ® hex © tet
Log

[13:13:05.5] Received Read Response, handle: (x000B, value (Ix): 00-00 -

[13:13:05.5] Received Read Response, handle: (<000C, value (T): 23-D1-BC-EA-5F-76-23-15-DE-EF-12-12-23-15-00-00
[13:13:05.6] Received Read Response, handle: B<000D, value {(<): 12-0E-00-23-D1-BC-EA-5F-78-23-15-DE-EF-12-12-24-15-00-00
[13:13:05.6] Received Read Response, handle: ixD00E, value ((x): 00

[13:13:05.7] Received Read Response, handle: &cD00F, value (&x): 00-00

[13:13:05.8] Received Read Response, handle: Bc0010, value (&¢): 0A-11-00-25-15

[13:13:05.8] Received Read Response, handle: BxD011, value (&¢): 00

[13:13:05.5] Service Discavery complete L1

Figure 9 Master Control Panel after service discovery

You will see that the device has three services, even though only one was added. You can find the LED
Button service at the bottom. The other two are the GAP Service (0x1800), which contains GAP data,
including some of the parameters set earlier; and GATT Service (0x1801), which can contain a characteristic
to be used if any services are changed after initialization. All BLE devices must have these services, and the
SoftDevice adds them automatically.

Page 35

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

We can now turn on notifications and see if button presses show up.

5. Click Enable services to turn on notifications, and press Button 1 on the Evaluation Kit.

" B
|EJ| Master Control Panel E@g

File Help
Master emulator

TR p—

Device info
Device address: ES056E5CE6304 Bonded: False
Actions
Service discovery] [Bond] [Disnnnnact] [Disable services

Service Discovery
[=1- PimaryService, Generc Access ((x1800)
£ CF i eclaration, Properties: Read, Write, Ct istic UUID: e2A00
i - DeviceName, DeviceName: LedButtonDemo
Characternistic Declaration, Properties: Read, Characteristic UUID: kx2A01
: Appearance, Appearance: 1234
| Characteristic Declaration, Properties: Read, Characteristic UUID: k2A04
+. SlavePreferedConnection Parameters, MinConninterval: (0190, MaxConnlinterval: (0320, Slavelatency: (<0000, Supervisic
[=)- PrimaryService, Generic Attribute (Bc1801)
(2 Characteristic Declaration, Properties: Indicate, Charactenistic UUID: kx2A05
i ServiceChanged. (No values read)
... ClientCH isticConfiguration, CH isticConfigurationBits: Indication (0002)
[=)- PrimaryService, (x00001523-1212-EFDE-1523-785FEABCD123
Characternistic Declaration, Properties: Read, Notify, Characterstic UUID: G00001524-1212-EFDE-1523-785FEABCD23
i - UUID: 00001524-1212 EFDE-1523 785FEABCD 123, Value: 01
: ClientCr “onfiguration, Ct “onfiguration Bits: 1 (0001)
[=)- CharacteristicDeclaration, Properties: Read, Write, Characteristic UUID: (<1525
L ULID: 1525, Value: 00

o« n | 3

Agtribute value

UUID (@) 1524 Handle (&) 0O0E fiend
Valie: @ hex © text

Log

[13:14:03.1] Successfully updated the store value of CCCD -
[13:14:04.1] Updated handle DD0E with value [2. 0]

[13:14:04.1] Successfully updated the store value of CCCD

[13:14:12.1] Received a HandleValueNotification on handle 000E with value 01

[13:14:15.1] Received a HandleValueMotification on handle 000E with value 00

[13:14:29.6] Received a HandleValueNotification on handle 000E with value 01

[13:14:31.1] Received a HandleValueNotffication on handle 000E with value 00 |

[13:14:49.1] Received a HandleValueNotification on handle 000E with value 01 I

Figure 10 Master Control Panel. Notifications have been turned on and a button has been pressed.

You will see that the notification bit of the CCCD has been set to 1, and the value of the characteristic is
updated when the button is pressed.

Page 36

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

6. To test that the LED lights up, click the value of the LED characteristic. Under Attribute value, set
the Value to hex, type 01 into the field, and click Send update. This will send a write operation
over the air to the device, which will light the LED.

= B
|E]| Master Control Panel EIEIQ

File Help
Master emulator
e —
Device info
Device address: ES056E5CE6304 Bonded: False
Actions
Service discovery] [Bond] [Disnnnnact] [Disable services

Service Discovery
[=1- PimaryService, Generc Access ((x1800)
£} CharacteristicDeclaration, Properties: Read, Write, Characteristic UUID: (c2A00
{ i DeviceName, DeviceName: LedButtonDemo
- Characteristic Declaration, Properties: Read, Charactenistic IUID: (2401
L Appearance, Appearance: 1234
2 Characteristic Declaration, Properties: Read, Characteristic UUID: k2A04
+. SlavePreferedConnection Parameters, MinConninterval: (0190, MaxConnlinterval: (0320, Slavelatency: (<0000, Supervisic
[=)- PrimaryService, Generic Attribute (Bc1801)
(2 Characteristic Declaration, Properties: Indicate, Charactenistic UUID: kx2A05
i ServiceChanged. (No values read)
- ClientCh isticConfiguration, Ck isticConfigurationBits: Indication (0002)
[=)- PrimaryService, (x00001523-1212-EFDE-1523-785FEABCD123
[=)- CharacteristicDeclaration, Properties: Read, Notify, Characteristic UUID: (x00001524-1212-EFDE-1523-785FEABCD 123
UUID: 00001524-1212-EFDE-1523-785FEABCD123, Value: 00
& ClientCh “onfiguration, Ct “onfiguration Bits: 1 (0001)
[=- CharacteristicDeclaration, Properties: Read. Wiite. Characteristic UUID: (1525
L ULID: 1525, Value: 01

o« n | 3

Agtribute value

UUID (@ T | Hande (): 0011 fiend
Vaus: @ hex O tet 01

Log

[13:42:36.5] Connection Parameters Update sert. Connlinterval:500.0ms, Slavelatency 0, Supervision Timeout :4000.0ms -
[13.:42:36 6] PacketQueueSearch skipped event code 0D

[13:42:42.3] UpdateAttributeValue()

[13:42:42 3] WiiteRegquest sent to handle &<0011 with value [1]

[13:42:43.2] Updated handle 0011 with value [1]

[13.42:45.1] UpdateAttributeValue()

[13:42:45.1] WriteRequest sent to handle (0011 with value [1] i

[13:42:45.7] Updated handle 0071 with value [1] u

Figure 11 Master Control Panel. The value of the LED characteristic has been updated to 01.

Page 37

NORDIC

| 4 SEMICONDUCTOR Creating Bluetooth low energy applications using nRF51822 Application Note v1.1

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Life support applications

Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such
improper use or sale.

Contact details

For your nearest distributor, please visit http://www.nordicsemi.com.
Information regarding product updates, downloads, and technical support can be accessed through your
My Page account on our homepage.

Main office: Otto Nielsens veg 12 Mailing address: Nordic Semiconductor
7052 Trondheim P.O. Box 2336
Norway 7004 Trondheim
Phone: +47 72 89 89 00 Norway

Fax: +4772898989

B %

\Ta\$ /4 NORWEGIAN
D]M \Y/ ACCREDITATION
No. S03

NS-EN IS0 9001 CERTIFICATED&IRM

Revision History

Date Version Description

June 2014 1.1 Added content:
« Section 4.2 “Code delivery” on
page 17.
Updated content:
+ Section 2.2.4 “UUIDs” on page 9.

October 2013 1.0 First release.

Page 38

http://www.nordicsemi.no

	1 Introduction
	1.1 Minimum requirements
	1.1.1 Required tools

	1.2 Documentation
	1.3 Bluetooth resources
	1.4 nRF51822 and the S110 SoftDevice
	1.5 Application overview

	2 Introduction to Bluetooth low energy
	2.1 Generic Access Profile (GAP)
	2.1.1 Roles
	2.1.2 Advertising
	2.1.3 Scanning
	2.1.4 Initiating
	2.1.5 Connection

	2.2 Generic Attribute profile (GATT)
	2.2.1 Roles
	2.2.2 GATT hierarchy
	2.2.3 Standard versus custom services and characteristics
	2.2.4 UUIDs
	2.2.5 On-air operations and properties

	3 Minimal BLE application overview
	3.1 Overview of initialization
	3.2 S110 SoftDevice
	3.3 Advertising
	3.4 Connection parameters
	3.5 Services
	3.6 Characteristics

	4 LED Button application example
	4.1 Code overview
	4.1.1 Code separation
	4.1.2 Code flow
	4.1.3 Inspecting and navigating in the Keil project

	4.2 Code delivery
	4.3 Set up
	4.3.1 Setting up the Evaluation board
	4.3.2 Setting up the application
	4.3.3 Setting up the service

	4.4 Implementing the service
	4.4.1 Designing the API
	4.4.2 Implementing data structures
	4.4.3 Service Initialization
	4.4.4 Handling stack events
	4.4.5 Handling button press

	4.5 Application implementation
	4.5.1 Modifying the template for the evaluation kit
	4.5.2 Using the scheduler
	4.5.3 Including the service
	4.5.4 Test it
	4.5.5 Button handling
	4.5.6 Adding the service UUID to the advertising packet

	5 Testing the Application

