MODERN PROCESSOR
DESIGN 5/ Frocessors

T
SN hen
=5 John Paul S
\) <= Mikko H. Lipasti

MODERN PROCESSOR
D ES I G N Fundamentals of Superscalar Processors

"WAVELAND

n
|

ﬁ

|PRESS, INC,

Long Grove, Illinois

John Paul Shen

Intel Corporation

Mikko H. Lipasti

University of Wisconsin

To
Our parents:
Paul and Sue Shen
Tarja and Simo Lipasti

Our spouses:
Amy C. Shen
Erica Ann Lipasti

Our children:
Priscilla S. Shen, Rachael S. Shen, and Valentia C. Shen
Emma Kristiina Lipasti and Elias Joel Lipasti

For information about this book, contact:
Waveland Press, Inc.
4180 IL Route 83, Suite 101
Long Grove, IL 60047-9580
(847) 634-0081
info@waveland.com
www.waveland.com

Copyright © 2005 by John Paul Shen and Mikko H. Lipasti
2013 reissued by Waveland Press, Inc.

10-digit ISBN 1-4786-0783-1
13-digit ISBN 978-1-4786-0783-0

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without permission in writing
from the publisher.

Printed in the United States of America

7 6 5 4 3 2 1

Table of Contents

About the Authors
Preface

1 Processor Design
1.1 The Evolution of Microprocessors
1.2 Instruction Set Processor Design
1.2.1 Digital Systems Design
1.2.2 Architecture, Implementation, and
Realization
123 Instruction Set Architecture
1.2.4 Dynamic-Static Interface
1.3 Principles of Processor Performance
1.3.1 Processor Performance Equation
1.3.2 Processor Performance Optimizations
133 Performance Evaluation Method
1.4 Instruction-Level Parallel Processing
1.4.1 From Scalar to Superscalar
1.4.2 Limits of Instruction-Level Parallelism
143 Machines for Instruction-Level Parallelism
1.5 Summary

2 Pipelined Processors

2.1 Pipelining Fundamentals
2.1.1 Pipelined Design
2.1.2 Arithmetic Pipeline Example
2.1.3 Pipelining Idealism
2.14 Instruction Pipelining

2.2 Pipelined Processor Design
2.2.1 Balancing Pipeline Stages
2.2.2 Unifying Instruction Types
2.2.3 Minimizing Pipeline Stalls
224 Commercial Pipelined Processors

2.3 Deeply Pipelined Processors

2.4 Summary

3 Memory and I/O Systems
3.1 Introduction
3.2 Computer System Overview
3.3 Key Concepts: Latency and Bandwidth

10
10
11
13
16
16
24
27
32

39
40
40
44
48
51
54
55
61
71
87
94
97

105
105
106
107

e

iv

MODERN PROCESSOR DESIGN

34

35

3.6
3.7

3.8

Memory Hierarchy

34.1 Components of a Modern Memory Hierarchy
34.2 Temporal and Spatial Locality

3.43 Caching and Cache Memories

344 Main Memory

Virtual Memory Systems

3.5.1 Demand Paging

3.5.2 Memory Protection

3.5.3 Page Table Architectures

Memory Hierarchy Implementation

Input/Output Systems

3.7.1 Types of I/O Devices

3.7.2 Computer System Busses

3.7.3 Communication with I/O Devices

3.74 Interaction of I/O Devices and Memory Hierarchy
Summary

4 Superscalar Organization

4.1

4.2

4.3

4.4

Limitations of Scalar Pipelines

4.1.1 Upper Bound on Scalar Pipeline Throughput
4.1.2 Inefficient Unification into a Single Pipeline
4.1.3 Performance Lost Due to a Rigid Pipeline
From Scalar to Superscalar Pipelines

4.2.1 Parallel Pipelines

422 Diversified Pipelines

4.2.3 Dynamic Pipelines

Superscalar Pipeline Overview

4.3.1 Instruction Fetching

4.3.2 Instruction Decoding

4.3.3 Instruction Dispatching

434 Instruction Execution

4.3.5 Instruction Completion and Retiring
Summary

5 Superscalar Techniques

5.1

5.2

Instruction Flow Techniques

5.1.1 Program Control Flow and Control Dependences
5.1.2 Performance Degradation Due to Branches

5.1.3 Branch Prediction Techniques

5.1.4 Branch Misprediction Recovery

5.1.5 Advanced Branch Prediction Techniques

5.1.6 Other Instruction Flow Techniques

Register Data Flow Techniques

5.2.1 Register Reuse and False Data Dependences
5.2.2 Register Renaming Techniques

5.2.3 True Data Dependences and the Data Flow Limit

110
111
113
115
127
136
138
141
142
145
153
154
161
165
168
170

177
178
178
179
179
181
181
184
186
190
191
195
199
203
206
209

217
218
218
219
223
228
231
236
237
237
239
244

7

53

524
525
5.2.6
527
5.2.8

The Classic Tomasulo Algorithm
Dynamic Execution Core

Reservation Stations and Reorder Buffer
Dynamic Instruction Scheduler

Other Register Data Flow Techniques

Memory Data Flow Techniques

5.3.1
532
533
53.4

Memory Accessing Instructions
Ordering of Memory Accesses

Load Bypassing and Load Forwarding
Other Memory Data Flow Techniques

5.4 Summary

6 ThePowerPC620

Introduction
Experimental Framework
Instruction Fetching

6.1
6.2
6.3

6.4

6.5

6.6

6.7
6.8
6.9

6.3.1
6.3.2

Branch Prediction
Fetching and Speculation

Instruction Dispatching

6.4.1
6.4.2
6.4.3

Instruction Buffer
Dispatch Stalls
Dispatch Effectiveness

Instruction Execution

6.5.1
6.5.2
6.5.3

Issue Stalls
Execution Parallelism
Execution Latency

Instruction Completion

6.6.1
6.6.2

Completion Parallelism
Cache Effects

Conclusions and Observations

Bridging to the IBM POWER3 and POWER4

Summary

Intel’s P6 Microarchitecture

7.1

1.2

7.3

Introduction

7.1.1 Basics of the P6 Microarchitecture
Pipelining

7.2.1 In-Order Front-End Pipeline
7.2.2 Out-of-Order Core Pipeline
7.2.3 Retirement Pipeline

The In-Order Front End

7.3.1 Instruction Cache and ITLB
7.3.2 Branch Prediction

733 Instruction Decoder

7.3.4 Register Alias Table

7.3.5 Allocator

TABLE OF CONTENTS

246
254
256
260
261
262
263
266
267
273
279

301
302
305
307
307
309
311
311
311
313
316
316
317
317
318
318
318
320
322
324

329
330
332
334
334
336
337
338
338
341
343
346
353

\"

vi

MODERN PROCESSOR DESIGN

74

7.5

7.6

7.7
7.8

The Out-of-Order Core

7.4.1 Reservation Station
Retirement

7.5.1 The Reorder Buffer

Memory Subsystem

7.6.1 Memory Access Ordering
7.6.2 Load Memory Operations
7.6.3 Basic Store Memory Operations
7.6.4 Deferring Memory Operations
7.6.5 Page Faults

Summary

Acknowledgments

8 Survey of Superscalar Processors

8.1

8.2

8.3

Development of Superscalar Processors

8.1.1 Early Advances in Uniprocessor Parallelism:
The IBM Stretch

8.1.2 First Superscalar Design: The IBM Advanced
Computer System

8.1.3 Instruction-Level Parallelism Studies

8.14 By-Products of DAE: The First
Multiple-Decoding Implementations

8.1.5 IBM Cheetah, Panther, and America

8.1.6 Decoupled Microarchitectures

8.1.7 Other Efforts in the 1980s

8.1.8 Wide Acceptance of Superscalar

A Classification of Recent Designs

8.2.1 RISC and CISC Retrofits

8.2.2 Speed Demons: Emphasis on Clock Cycle Time

8.2.3 Brainiacs: Emphasis on IPC

Processor Descriptions

8.3.1 Compaq/DEC Alpha

8.3.2 Hewlett-Packard PA-RISC Version 1.0

8.3.3 Hewlett-Packard PA-RISC Version 2.0

8.3.4 IBM POWER

8.3.5 Intel 1960

8.3.6 Intel IA32—Native Approaches

8.3.7 Intel IA32—Decoupled Approaches

8.3.8 x86-64

839 MIPS

8.3.10 Motorola

8.3.11 PowerPC—32-bit Architecture

8.3.12 PowerPC—o64-bit Architecture

8.3.13 PowerPC-AS

8.3.14 SPARC Version 8

8.3.15 SPARC Version 9

355
355
357
357
361
362
363
363
363
364
364
365

369
369

369

372
377

378
380
380
382
382
384
384
386
386
387
387
392
395
397
402
405
409
417
417
422
424
429
431
432
435

8.4
8.5

Verification of Superscalar Processors
Acknowledgments

9 Advanced Instruction Flow Techniques

9.1
9.2

9.3

9.4

9.5

9.6

Introduction

Static Branch Prediction Techniques
9.2.1 Single-Direction Prediction

9.2.2 Backwards Taken/Forwards Not-Taken
9.2.3 Ball/Larus Heuristics

9.24 Profiling

Dynamic Branch Prediction Techniques
9.3.1 Basic Algorithms

9.3.2 Interference-Reducing Predictors
9.3.3 Predicting with Alternative Contexts
Hybrid Branch Predictors

9.4.1 The Tournament Predictor

9.42 Static Predictor Selection

9.4.3 Branch Classification

944 The Multihybrid Predictor

9.4.5 Prediction Fusion

Other Instruction Flow Issues and Techniques
9.5.1 Target Prediction

9.5.2 Branch Confidence Prediction

9.53 High-Bandwidth Fetch Mechanisms
9.54 High-Frequency Fetch Mechanisms
Summary

10 Advanced Register Data Flow Techniques

10.1
10.2

10.3

10.4

10.5

Introduction

Value Locality and Redundant Execution
10.2.1 Causes of Value Locality

10.2.2 Quantifying Value Locality

Exploiting Value Locality without Speculation
10.3.1 Memoization

10.3.2 Instruction Reuse

10.3.3 Basic Block and Trace Reuse

10.3.4 Data Flow Region Reuse

10.3.5 Concluding Remarks

Exploiting Value Locality with Speculation
10.4.1 The Weak Dependence Model

10.4.2 Value Prediction

10.4.3 The Value Prediction Unit

10.4.4 Speculative Execution Using Predicted Values
10.4.5 Performance of Value Prediction

10.4.6 Concluding Remarks

Summary

TABLE OF CONTENTS

439
440

453
453
454
455
456
456
457
458
459
472
482
491
491
493
494
495
496
497
497
501
504
509
512

519
519
523
523
525
527
527
529
533
534
535
535
535
536
537
542
551
553
554

vii

viii

MODERN PROCESSOR DESIGN

11 Executing Multiple Threads

Introduction

Synchronizing Shared-Memory Threads
Introduction to Multiprocessor Systems

11.1
11.2
11.3

11.4

11.5

11.6

11.7

Index

11.3.1

11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.8

Fully Shared Memory, Unit Latency,

and Lack of Contention

Instantaneous Propagation of Writes

Coherent Shared Memory

Implementing Cache Coherence

Multilevel Caches, Inclusion, and Virtual Memory
Memory Consistency

The Coherent Memory Interface

Concluding Remarks

Explicitly Multithreaded Processors

114.1
1142
11.4.3
1144

Chip Multiprocessors
Fine-Grained Multithreading
Coarse-Grained Multithreading
Simultaneous Multithreading

Implicitly Multithreaded Processors

11.5.1
11.5.2
11.5.3
11.54

Resolving Control Dependences
Resolving Register Data Dependences
Resolving Memory Data Dependences
Concluding Remarks

Executing the Same Thread

11.6.1
11.6.2
11.6.3
11.6.4

Summary

Fault Detection
Prefetching

Branch Resolution
Concluding Remarks

559
559
562
565

566
567
567
571
574
576
581
583
584
584
588
589
592
600
601
605
607
610
610
611
613
614
615
616

623

is the Director of Intel’s Microarchitecture Research
J 0 hn P aul S he n Lab (MRL), providing leadership to about two-dozen
highly skilled researchers located in Santa Clara, CA; Hillsboro, OR; and Austin, TX.
MRL is responsible for developing innovative microarchitecture techniques that can
potentially be used in future microprocessor products from Intel. MRL researchers col-
laborate closely with microarchitects from product teams in joint advanced-develop-
| mentefforts. MRL frequently hosts visiting faculty and Ph.D. interns and conducts joint

| rescarch projects with academic research groups.

: & Prior to joining Intel in 2000, John was a professor in the electrical and computer
engineering department of Carnegie Mellon University, where he headed up the CMU Microarchitecture
Research Team (CMuART). He has supervised a total of 16 Ph.D. students during his years at CMU.
Seven are currently with Intel, and five have faculty positions in academia. He won multiple teaching
awards at CMU. He was an NSF Presidential Young Investigator. He is an 1EEE Fellow and has served
on the program commiittees of 1ISCA, MICRO, HPCA, ASPLOS, PACT, 1CCD, ITC, and FTCS.

He has published over 100 research papers in diverse areas, including fault-tolerant computing,
built-in self-test, process defect and fault analysis, concurrent error detection, application-specific proces-
sors, performance evaluation, compilation for instruction-level parallelism, value locality and prediction,
analytical modeling of superscalar processors, systematic microarchitecture test generation, performance
simulator validation, precomputation-based prefetching, database workload analysis, and user-level
helper threads.

John received his M.S. and Ph.D. degrees from the University of Southern California, and his B.S.
degree from the University of Michigan, all in electrical engineering. He attended Kimball High School
in Royal Oak, Michigan. He is happily married and has three daughters. His family enjoys camping, road
trips, and reading The Lord of the Rings.

by * * has been an assistant professor at the University of Wiscon-
M lkkO Llp aS t sin-Madison since 1999, where he is actively pursuing vari-
ous research topics in the realms of processor, system, and memory architecture. He
has advised a total of 17 graduate students, including two completed Ph.D. theses and
numerous M.S. projects, and has published more than 30 papers in top computer archi-
tecture conferences and journals. He is most well known for his seminal Ph.D. work in
value prediction. His research program has received in excess of $2 million in support
through multiple grants from the National Science Foundation as well as financial sup-
port and equipment donations from 1BM, Intel, AMD, and Sun Microsystems.

The Eta Kappa Nu Electrical Engineering Honor Society selected Mikko as the country’s Out-
standing Young Electrical Engineer for 2002. He is also a member of the IEEE and the Tau Beta Pi
engineering honor society. He received his B.S. in computer engineering from Valparaiso University in
1991, and M.S. (1992) and Ph.D. (1997) degrees in electrical and computer engineering from Carnegie
Mellon University. Prior to beginning his academic career, he worked for IBM Corporation in both soft-
ware and future processor and system performance analysis and design guidance, as well as operating
system kernel implementation. While at IBM he contributed to system and microarchitectural definition
of future IBM server computer systems. He has served on numerous conference and workshop program
committees and is co-organizer of the annual Workshop on Duplicating, Deconstructing, and Debunking
(WDDD). He has filed seven patent applications, six of which are issued U.S. patents; won the Best Paper
Award at MICRO-29; and has received 1BM Invention Achievement, Patent Issuance, and Technical
Recognition Awards.

Mikko has been happily married since 1991 and has a nine-year-old daughter and a six-year old
son. In his spare time, he enjoys regular exercise, family bike rides, reading, and volunteering his time
at his local church and on campus as an English-language discussion group leader at the International
Friendship Center.

—

Preface

This book emerged from the course Superscalar Processor Design, which has been
taught at Carnegie Mellon University since 1995. Superscalar Processor Design is a
mezzanine course targeting seniors and first-year graduate students. Quite a few of
the more aggressive juniors have taken the course in the spring semester of their jun-
ior year. The prerequisite to this course is the Introduction to Computer Architecture
course. The objectives for the Superscalar Processor Design course include: (1) to
teach modern processor design skills at the microarchitecture level of abstraction;
(2) to cover current microarchitecture techniques for achieving high performance via
the exploitation of instruction-level parallelism (ILP); and (3) to impart insights and
hands-on experience for the effective design of contemporary high-performance
microprocessors for mobile, desktop, and server markets. In addition to covering the
contents of this book, the course contains a project component that involves the
microarchitectural design of a future-generation superscalar microprocessor.

During the decade of the 1990s many microarchitectural techniques for increas-
ing clock frequency and harvesting more ILP to achieve better processor perfor-
mance have been proposed and implemented in real machines. This book is an
attempt to codify this large body of knowledge in a systematic way. These techniques
include deep pipelining, aggressive branch prediction, dynamic register renaming,
multiple instruction dispatching and issuing, out-of-order execution, and speculative
load/store processing. Hundreds of research papers have been published since the
early 1990s, and many of the research ideas have become reality in commercial
superscalar microprocessors. In this book, the numerous techniques are organized
and presented within a clear framework that facilitates ease of comprehension. The
foundational principles that underlie the plethora of techniques are highlighted.

While the contents of this book would generally be viewed as graduate-level
material, the book is intentionally written in a way that would be very accessible to
undergraduate students. Significant effort has been spent in making seemingly
complex techniques to appear as quite straightforward through appropriate abstrac-
tion and hiding of details. The priority is to convey clearly the key concepts and
fundamental principles, giving just enough details to ensure understanding of im-
plementation issues without massive dumping of information and quantitative data.
The hope is that this body of knowledge can become widely possessed by not just
microarchitects and processor designers but by most B.S. and M.S. students with
interests in computer systems and microprocessor design.

Here is a brief summary of the chapters.

Chapter 1: Processor Design

This chapter introduces the art of processor design, the instruction set architecture
(ISA) as the specification of the processor, and the microarchitecture as the imple-
mentation of the processor. The dynamic/static interface that separates compile-time

software and run-time hardware is defined and discussed. The goal of this chapter
is not to revisit in depth the traditional issues regarding ISA design, but to erect the
proper framework for understanding modern processor design.

Chapter 2: Pipelined Processors

This chapter focuses on the concept of pipelining, discusses instruction pipeline
design, and presents the performance benefits of pipelining. Pipelining is usually in-
troduced in the first computer architecture course. Pipelining provides the foundation
for modern superscalar techniques and is presented in this chapter in a fresh and
unique way. We intentionally avoid the massive dumping of bar charts and graphs;
instead, we focus on distilling the foundational principles of instruction pipelining.

Chapter 3: Memory and 1/O Systems

This chapter provides a larger context for the remainder of the book by including a
thorough grounding in the principles and mechanisms of modern memory and I/O
systems. Topics covered include memory hierarchies, caching, main memory de-
sign, virtual memory architecture, common input/output devices, processor-1/0 in-
teraction, and bus design and organization.

Chapter 4: Superscalar Organization

This chapter introduces the main concepts and the overall organization of superscalar
processors. It provides a “big picture” view for the reader that leads smoothly into the
detailed discussions in the next chapters on specific superscalar techniques for achiev-
ing performance. This chapter highlights only the key features of superscalar processor
organizations. Chapter 7 provides a detailed survey of features found in real machines.

Chapter 5: Superscalar Techniques

This chapter is the heart of this book and presents all the major microarchitecture tech-
niques for designing contemporary superscalar processors for achieving high perfor-
mance. It classifies and presents specific techniques for enhancing instruction flow,
register data flow, and memory data flow. This chapter attempts to organize a plethora
of techniques into a systematic framework that facilitates ease of comprehension.

Chapter 6: The PowerPC 620

This chapter presents a detailed analysis of the PowerPC 620 microarchitecture and
uses it as a case study to examine many of the issues and design tradeoffs intro-
duced in the previous chapters. This chapter contains extensive performance data
of an aggressive out-of-order design.

Chapter 7: Intel’s P6 Microarchitecture

This is a case study chapter on probably the most commercially successful contempo-
rary superscalar microarchitecture. It is written by the Intel P6 design team led by Bob
Colwell and presents in depth the P6 microarchitecture that facilitated the implemen-
tation of the Pentium Pro, Pentium II, and Pentium III microprocessors. This chapter
offers the readers an opportunity to peek into the mindset of a top-notch design team.

PREFACE

xi

xii

MODERN PROCESSOR DESIGN

Chapter 8: Survey of Superscalar Processors

This chapter, compiled by Prof. Mark Smotherman of Clemson University, pro-
vides a historical chronicle on the development of superscalar machines and a
survey of existing superscalar microprocessors. The chapter was first completed in
1998 and has been continuously revised and updated since then. It contains fasci-
nating information that can’t be found elsewhere.

Chapter 9: Advanced Instruction Flow Techniques

This chapter provides a thorough overview of issues related to high-performance
instruction fetching. The topics covered include historical, currently used, and pro-
posed advanced future techniques for branch prediction, as well as high-bandwidth
and high-frequency fetch architectures like trace caches. Though not all such tech-
niques have yet been adopted in real machines, future designs are likely to incorpo-
rate at least some form of them.

Chapter 10: Advanced Register Data Flow Techniques

This chapter highlights emerging microarchitectural techniques for increasing per-
formance by exploiting the program characteristic of value locality. This program
characteristic was discovered recently, and techniques ranging from software
memoization, instruction reuse, and various forms of value prediction are described
in this chapter. Though such techniques have not yet been adopted in real machines,
future designs are likely to incorporate at least some form of them.

Chapter 11: Executing Multiple Threads

This chapter provides an introduction to thread-level parallelism (TLP), and pro-
vides a basic introduction to multiprocessing, cache coherence, and high-perfor-
mance implementations that guarantee either sequential or relaxed memory
ordering across multiple processors. It discusses single-chip techniques like multi-
threading and on-chip multiprocessing that also exploit thread-level parallelism.
Finally, it visits two emerging technologies—implicit multithreading and
preexecution—that attempt to extract thread-level parallelism automatically from
single-threaded programs.

In summary, Chapters 1 through 5 cover fundamental concepts and foundation-
al techniques. Chapters 6 through 8 present case studies and an extensive survey of
actual commercial superscalar processors. Chapter 9 provides a thorough overview
of advanced instruction flow techniques, including recent developments in ad-
vanced branch predictors. Chapters 10 and 11 should be viewed as advanced topics
chapters that highlight some emerging techniques and provide an introduction to
multiprocessor systems.

This is the first edition of the book. An earlier beta edition was published in 2002
with the intent of collecting feedback to help shape and hone the contents and presen-
tation of this first edition. Through the course of the development of the book, a large
set of homework and exam problems have been created. A subset of these problems
are included at the end of each chapter. Several problems suggest the use of the

PREFACE xiii

Simplescalar simulation suite available from the Simplescalar website at http://www
.simplescalar.com. A companion website for the book contains additional support mate-
rial for the instructor, including a complete set of lecture slides (www.mhhe.com/shen).

Acknowledgments

Many people have generously contributed their time, energy, and support toward
the completion of this book. In particular, we are grateful to Bob Colwell, who is
the lead author of Chapter 7, Intel’s P6 Microarchitecture. We also acknowledge
his coauthors, Dave Papworth, Glenn Hinton, Mike Fetterman, and Andy Glew,
who were all key members of the historic P6 team. This chapter helps ground this
textbook in practical, real-world considerations. We are also grateful to Professor
Mark Smotherman of Clemson University, who meticulously compiled and au-
thored Chapter 8, Survey of Superscalar Processors. This chapter documents the rich
and varied history of superscalar processor design over the last 40 years. The guest
authors of these two chapters added a certain radiance to this textbook that we could
not possibly have produced on our own. The PowerPC 620 case study in Chapter 6
is based on Trung Diep’s Ph.D. thesis at Carnegie Mellon University. Finally, the
thorough survey of advanced instruction flow techniques in Chapter 9 was authored
by Gabriel Loh, largely based on his Ph.D. thesis at Yale University.

In addition, we want to thank the following professors for their detailed, in-
sightful, and thorough review of the original manuscript. The inputs from these
reviews have significantly improved the first edition of this book.

David Andrews, University of Arkansas
Angelos Bilas, University of Toronto

Fred H. Carlin, University of California at
Santa Barbara

Yinong Chen, Arizona State University

Lynn Choi, University of California at Irvine
Dan Connors, University of Colorado

Karel Driesen, McGill University

Alan D. George, University of Florida
Arthur Glaser, New Jersey Institute of
Technology

Rajiv Gupta, University of Arizona

Vincent Hayward, McGill University
James Hoe, Carnegie Mellon University
Lizy Kurian John, University of Texas at Austin
Peter M. Kogge, University of Notre Dame
Angkul Kongmunvattana, University of
Nevada at Reno

Israel Koren, University of Massachusetts at
Ambherst

Ben Lee, Oregon State University

Francis Leung, lllinois Institute of Technology

Walid Najjar, University of California
Riverside

Vojin G. Oklabdzija, University of California
at Davis

Soner Onder, Michigan Technological
University

Parimal Patel, University of Texas at San
Antonio

Jih-Kwon Peir, University of Florida
Gregory D. Peterson, University of
Tennessee

Amir Roth, University of Pennsylvania
Kevin Skadron, University of Virginia
Mark Smotherman, Clemson University
Miroslav N. Velev, Georgia Institute of
Technology

Bin Wei, Rutgers University

Anthony S. Wojcik, Michigan State University
Ali Zaringhalam, Stevens Institute of
Technology

Xiaobo Zhou, University of Colorado at
Colorado Springs

Xxiv MODERN PROCESSOR DESIGN

This book grew out of the course Superscalar Processor Design at Carnegie Mellon
University. This course has been taught at CMU since 1995. Many teaching assis-
tants of this course have left their indelible touch in the contents of this book. They
include Bryan Black, Scott Cape, Yuan Chou, Alex Dean, Trung Diep, John Faistl,
Andrew Huang, Deepak Limaye, Chris Nelson, Chris Newburn, Derek Noonburg,
Kyle Oppenheim, Ryan Rakvic, and Bob Rychlik. Hundreds of students have taken
this course at CMU; many of them provided inputs that also helped shape this book.
Since 2000, Professor James Hoe at CMU has taken this course even further. We
both are indebted to the nurturing we experienced while at CMU, and we hope that
this book will help perpetuate CMU’s historical reputation of producing some of
the best computer architects and processor designers.

A draft version of this textbook has also been used at the University of
Wisconsin since 2000. Some of the problems at the end of each chapter were actu-
ally contributed by students at the University of Wisconsin. We appreciate their test
driving of this book.

John Paul Shen, Director,
Microarchitecture Research, Intel Labs, Adjunct Professor,
ECE Department, Carnegie Mellon University

Mikko H. Lipasti, Assistant Professor,
ECE Department, University of Wisconsin

June 2004
Soli Deo Gloria

Processor Design

CHAPTER OUTLINE

1.1 The Evolution of Microprocessors
1.2 Instruction Set Processor Design

13 Principles of Processor Performance
14 Instruction-Level Parallel Processing

15 Summary

References
Homework Problems

Welcome to contemporary microprocessor design. In its relatively brief lifetime of
30+ years, the microprocessor has undergone phenomenal advances. Its performance
has improved at the astounding rate of doubling every 18 months. In the past three
decades, microprocessors have been responsible for inspiring and facilitating some
of the major innovations in computer systems. These innovations include embedded
microcontrollers, personal computers, advanced workstations, handheld and mobile
devices, application and file servers, web servers for the Internet, low-cost super-
computers, and large-scale computing clusters. Currently more than 100 million
microprocessors are sold each year for the mobile, desktop, and server markets.
Including embedded microprocessors and microcontrollers, the total number of
microprocessors shipped each year is well over one billion units.

Microprocessors are instruction set processors (ISPs). An ISP executes in-
structions from a predefined instruction set. A microprocessor’s functionality is
fully characterized by the instruction set that it is capable of executing. All the pro-
grams that run on a microprocessor are encoded in that instruction set. This pre-
defined instruction set is also called the instruction set architecture (ISA). An ISA
serves as an interface between software and hardware, or between programs and
processors. In terms of processor design methodology, an ISA is the specification

CHAPTER

1

2 MODERN PROCESSOR DESIGN

Table 1.1

of a design while a microprocessor or ISP is the implementation of a design. As
with all forms of engineering design, microprocessor design is inherently a creative
process that involves subtle tradeoffs and requires good intuition and clever
insights.

This book focuses on contemporary superscalar microprocessor design at the
microarchitecture level. It presents existing and proposed microarchitecture tech-
niques in a systematic way and imparts foundational principles and insights, with
the hope of training new microarchitects who can contribute to the effective design
of future-generation microprocessors.

1.1 The Evolution of Microprocessors

The first microprocessor, the Intel 4004, was introduced in 1971. The 4004 was a
4-bit processor consisting of approximately 2300 transistors with a clock fre-
quency of just over 100 kilohertz (kHz). Its primary application was for building
calculators. The year 2001 marks the thirtieth anniversary of the birth of micropro-
cessors. High-end microprocessors, containing up to 100 million transistors with
a clock frequency reaching 2 gigahertz (GHz), are now the building blocks for
supercomputer systems and powerful client and server systems that populate the
Internet. Within a few years microprocessors will be clocked at close to 10 GHz
and each will contain several hundred million transistors.

The three decades of the history of microprocessors tell a truly remarkable
story of technological advances in the computer industry; see Table 1.1. The evo-
lution of the microprocessor has pretty much followed the famed Moore’s law,
observed by Gordon Moore in 1965, that the number of devices that can be inte-
grated on a single piece of silicon will double roughly every 18 to 24 months. In a
little more than 30 years, the number of transistors in a microprocessor chip has
increased by more than four orders of magnitude. In that same period, micropro-
cessor performance has increased by more than five orders of magnitude. In the
past two decades, microprocessor performance has been doubling every 18 months,
or an increase by a factor of 100 in each decade. Such phenomenal performance
improvement is unmatched by that in any other industry.

In each of the three decades of its existence, the microprocessor has played
major roles in the most critical advances in the computer industry. During the first
decade, the advent of the 4-bit microprocessor quickly led to the introduction of the

The amazing decades of the evolution of microprocessors

Transistor count

Clock frequency

1970-1980 1980-1990 1990-2000 2000-2010
2K-100K 100K-1M TM-100M 100M-28B
0.1-3 MHz 3-30 MHz 30 MHz-1 GHz 1-15GHz

Instructions/cycle 0.1 0.1-09 0.9-19 1.9-29

PROCESSOR DESIGN

8-bit microprocessor. These narrow bit-width microprocessors evolved into self-
contained microcontrollers that were produced in huge volumes and deployed in
numerous embedded applications ranging from washing machines, to elevators, to
jet engines. The 8-bit microprocessor also became the heart of a new popular com-
puting platform called the personal computer (PC) and ushered in the PC era of
computing.

The decade of the 1980s witnessed major advances in the architecture and
microarchitecture of 32-bit microprocessors. Instruction set design issues became
the focus of both academic and industrial researchers. The importance of having
an instruction set architecture that facilitates efficient hardware implementation
and that can leverage compiler optimizations was recognized. Instruction pipelin-
ing and fast cache memories became standard microarchitecture techniques. Pow-
erful scientific and engineering workstations based on 32-bit microprocessors
were introduced. These workstations in turn became the workhorses for the design
of subsequent generations of even more powerful microprocessors.

During the decade of the 1990s, microprocessors became the most powerful
and most popular form of computers. The clock frequency of the fastest micropro-
cessors exceeded that of the fastest supercomputers. Personal computers and work-
stations became ubiquitous and essential tools for productivity and communication.
Extremely aggressive microarchitecture techniques were devised to achieve un-
precedented levels of microprocessor performance. Deeply pipelined machines
capable of achieving extremely high clock frequencies and sustaining multiple
instructions executed per cycle became popular. Out-of-order execution of instruc-
tions and aggressive branch prediction techniques were introduced to avoid or
reduce the number of pipeline stalls. By the end of the third decade of microproces-
sors, almost all forms of computing platforms ranging from personal handheld
devices to mainstream desktop and server computers to the most powerful parallel
and clustered computers are based on the building blocks of microprocessors.

We are now heading into the fourth decade of microprocessors, and the
momentum shows no sign of abating. Most technologists agree that Moore’s law
will continue to rule for at least 10 to 15 years more. By 2010, we can expect
microprocessors to contain more than 1 billion transistors with clocking frequen-
cies greater than 10 GHz. We can also expect new innovations in a number of
areas. The current focus on instruction-level parallelism (ILP) will expand to
include thread-level parallelism (TLP) as well as memory-level parallelism
(MLP). Architectural features that historically belong to large systems, for exam-
ple, multiprocessors and memory hierarchies, will be implemented on a single
chip. Many traditional “macroarchitecture” issues will now become microarchi-
tecture issues. Power consumption will become a dominant performance impedi-
ment and will require new solutions at all levels of the design hierarchy, including
fabrication process, circuit design, logic design, microarchitecture design, and
software run-time environment, in order to sustain the same rate of performance
improvements that we have witnessed in the past three decades.

The objective of this book is to introduce the fundamental principles of micro-
processor design at the microarchitecture level. Major techniques that have been

3

4

MODERN PROCESSOR DESIGN

developed and deployed in the past three decades are presented in a comprehensive
way. This book attempts to codify a large body of knowledge into a systematic
framework. Concepts and techniques that may appear quite complex and difficult
to decipher are distilled into a format that is intuitive and insightful. A number of
innovative techniques recently proposed by researchers are also highlighted. We
hope this book will play a role in producing a new generation of microprocessor
designers who will help write the history for the fourth decade of microprocessors.

1.2 Instruction Set Processor Design

The focus of this book is on designing instruction set processors. Critical to an
instruction set processor is the instruction set architecture, which specifies the
functionality that must be implemented by the instruction set processor. The ISA
plays several crucial roles in instruction set processor design.

1.2.1 Digital Systems Design

Any engineering design starts with a specification with the objective of obtaining a
good design or an implementation. Specification is a behavioral description of
what is desired and answers the question “What does it do?” while implementation
is a structural description of the resultant design and answers the question “How is
it constructed?” Typically the design process involves two fundamental tasks: syn-
thesis and analysis. Synthesis attempts to find an implementation based on the
specification. Analysis examines an implementation to determine whether and
how well it meets the specification. Synthesis is the more creative task that
searches for possible solutions and performs various tradeoffs and design optimi-
zations to arrive at the best solution. The critical task of analysis is essential in
determining the correctness and effectiveness of a design; it frequently employs
simulation tools to perform design validation and performance evaluation. A typi-
cal design process can require the traversing of the analysis-synthesis cycle
numerous times in order to arrive at the final best design; see Figure 1.1.

In digital systems design, specifications are quite rigorous and design optimi-
zations rely on the use of powerful software tools. Specification for a combina-
tional logic circuit takes the form of boolean functions that specify the relationship

Specification

Implementation

Figure 1.1
Engineering Design.

PROCESSOR DESIGN

between input and output variables. The implementation is typically an optimized
two-level AND-OR design or a multilevel network of logic gates. The optimiza-
tion attempts to reduce the number of logic gates and the number of levels of logic
used in the design. For sequential circuit design, the specification is in the form of
state machine descriptions that include the specification of the state variables as
well as the output and next state functions. Optimization objectives include the
reduction of the number of states and the complexity of the associated combina-
tional logic circuits. Logic minimization and state minimization software tools are
essential. Logic and state machine simulation tools are used to assist the analysis
task. These tools can verify the logic correctness of a design and determine the
critical delay path and hence the maximum clocking rate of the state machine.

The design process for a microprocessor is more complex and less straightfor-
ward. The specification of a microprocessor design is the instruction set architec-
ture, which specifies a set of instructions that the microprocessor must be able to
execute. The implementation is the actual hardware design described using a hard-
ware description language (HDL). The primitives of an HDL can range from logic
gates and flip-flops, to more complex modules, such as decoders and multiplexers,
to entire functional modules, such as adders and multipliers. A design is described
as a schematic, or interconnected organization, of these primitives.

The process of designing a modern high-end microprocessor typically involves
two major steps: microarchitecture design and logic design. Microarchitecture
design involves developing and defining the key techniques for achieving the tar-
geted performance. Usually a performance model is used as an analysis tool to
assess the effectiveness of these techniques. The performance model accurately
models the behavior of the machine at the clock cycle granularity and is able to
quantify the number of machine cycles required to execute a benchmark program.
The end result of microarchitecture design is a high-level description of the orga-
nization of the microprocessor. This description typically uses a register transfer
language (RTL) to specify all the major modules in the machine organization and
the interactions between these modules. During the logic design step, the RTL
description is successively refined by the incorporation of implementation details
to eventually yield the HDL description of the actual hardware design. Both the
RTL and the HDL descriptions can potentially use the same description language.
For example, Verilog is one such language. The primary focus of this book is on
microarchitecture design.

1.2.2 Architecture, Implementation, and Realization

In a classic textbook on computer architecture by Blaauw and Brooks [1997] the
authors defined three fundamental and distinct levels of abstraction: architecture,
implementation, and realization. Architecture specifies the functional behavior of a
processor. Implementation is the logical structure or organization that performs the
architecture. Realization is the physical structure that embodies the implementation.

Architecture is also referred to as the instruction set architecture. It specifies
an instruction set that characterizes the functional behavior of an instruction set
processor. All software must be mapped to or encoded in this instruction set in

5

6 MODERN PROCESSOR DESIGN

order to be executed by the processor. Every program is compiled into a sequence
of instructions in this instruction set. Examples of some well-known architectures
are IBM 360, DEC VAX, Motorola 68K, PowerPC, and Intel IA32. Attributes
associated with an architecture include the assembly language, instruction format,
addressing modes, and programming model. These attributes are all part of the
ISA and exposed to the software as perceived by the compiler or the programmer.

An implementation is a specific design of an architecture, and it is also
referred to as the microarchitecture. An architecture can have many implementa-
tions in the lifetime of that ISA. All implementations of an architecture can execute
any program encoded in that ISA. Examples of some well-known implementations
of the above-listed architecture are IBM 360/91, VAX 11/780, Motorola 68040,
PowerPC 604, and Intel P6. Attributes associated with an implementation include
pipeline design, cache memories, and branch predictors. Implementation or
microarchitecture features are generally implemented in hardware and hidden from
the software. To develop these features is the job of the microprocessor designer or
the microarchitect.

A realization of an implementation is a specific physical embodiment of a
design. For a microprocessor, this physical embodiment is usually a chip or a multi-
chip package. For a given implementation, there can be various realizations of that
implementation. These realizations can vary and differ in terms of the clock fre-
quency, cache memory capacity, bus interface, fabrication technology, packaging,
etc. Attributes associated with a realization include die size, physical form factor,
power, cooling, and reliability. These attributes are the concerns of the chip
designer and the system designer who uses the chip.

The primary focus of this book is on the implementation of modern micropro-
cessors. Issues related to architecture and realization are also important. Architecture
serves as the specification for the implementation. Attributes of an architecture
can significantly impact the design complexity and the design effort of an implemen-
tation. Attributes of a realization, such as die size and power, must be considered
in the design process and used as part of the design objectives.

1.2.3 Instruction Set Architecture

Instruction set architecture plays a very crucial role and has been defined as a con-
tract between the software and the hardware, or between the program and the
machine. By having the ISA as a contract, programs and machines can be devel-
oped independently. Programs can be developed that target the ISA without
requiring knowledge of the actual machine implementation. Similarly, machines
can be designed that implement the ISA without concern for what programs will
run on them. Any program written for a particular ISA should be able to run on any
machine implementing that same ISA. The notion of maintaining the same ISA
across multiple implementations of that ISA was first introduced with the IBM
S/360 line of computers [Amdahl et al., 1964].

Having the ISA also ensures software portability. A program written for a par-
ticular ISA can run on all the implementations of that same ISA. Typically given
an ISA, many implementations will be developed over the lifetime of that ISA, or

PROCESSOR DESIGN

multiple implementations that provide different levels of cost and performance can
be simultaneously developed. A program only needs to be developed once for that
ISA, and then it can run on all these implementations. Such program portability
significantly reduces the cost of software development and increases the longevity
of software. Unfortunately this same benefit also makes migration to a new ISA
very difficult. Successful ISAs, or more specifically ISAs with a large software
installed base, tend to stay around for quite a while. Two examples are the IBM
360/370 and the Intel IA32.

Besides serving as a reference targeted by software developers or compilers,
ISA serves as the specification for processor designers. Microprocessor design
starts with the ISA and produces a microarchitecture that meets this specification.
Every new microarchitecture must be validated against the ISA to ensure that it per-
forms the functional requirements specified by the ISA. This is extremely impor-
tant to ensure that existing software can run correctly on the new microarchitecture.

Since the advent of computers, a wide variety of ISAs have been developed
and used. They differ in how operations and operands are specified. Typically an
ISA defines a set of instructions called assembly instructions. Each instruction
specifies an operation and one or more operands. Each ISA uniquely defines an
assembly language. An assembly language program constitutes a sequence of
assembly instructions. ISAs have been differentiated according to the number of
operands that can be explicitly specified in each instruction, for example two-
address or three-address architectures. Some early ISAs use an accumulator as an
implicit operand. In an accumulator-based architecture, the accumulator is used as
an implicit source operand and the destination. Other early ISAs assume that oper-
ands are stored in a stack [last in, first out (LIFO)] structure and operations are
performed on the top one or two entries of the stack. Most modern ISAs assume
that operands are stored in a multientry register file, and that all arithmetic and
logical operations are performed on operands stored in the registers. Special
instructions, such as load and store instructions, are devised to move operands
between the register file and the main memory. Some traditional ISAs allow oper-
ands to come directly from both the register file and the main memory.

ISAs tend to evolve very slowly due to the inertia against recompiling or rede-
veloping software. Typically a twofold performance increase is needed before
software developers will be willing to pay the overhead to recompile their existing
applications. While new extensions to an existing ISA can occur from time to time
to accommodate new emerging applications, the introduction of a brand new ISA
is a tall order. The development of effective compilers and operating systems for a
new ISA can take on the order of 10+ years. The longer an ISA has been in exist-
ence and the larger the installed base of software based on that ISA, the more diffi-
cult it is to replace that ISA. One possible exception might be in certain special
application domains where a specialized new ISA might be able to provide signif-
icant performance boost, such as on the order of 10-fold.

Unlike the glacial creep of ISA innovations, significantly new microarchitectures
can be and have been developed every 3 to 5 years. During the 1980s, there were
widespread interests in ISA design and passionate debates about what constituted the

7

8

MODERN PROCESSOR DESIGN

best ISA features. However, since the 1990s the focus has shifted to the implemen-
tation and to innovative microarchitecture techniques that are applicable to most,
if not all, ISAs. It is quite likely that the few ISAs that have dominated the micro-
processor landscape in the past decades will continue to do so for the coming
decade. On the other hand, we can expect to see radically different and innovative
microarchitectures for these ISAs in the coming decade.

1.2.4 Dynamic-Static Interface

So far we have discussed two critical roles played by the ISA. First, it provides a
contract between the software and the hardware, which facilitates the independent
development of programs and machines. Second, an ISA serves as the specifica-
tion for microprocessor design. All implementations must meet the requirements
and support the functionality specified in the ISA. In addition to these two critical
roles, each ISA has a third role. Inherent in the definition of every ISA is an associ-
ated definition of an interface that separates what is done statically at compile time
versus what is done dynamically at run time. This interface has been called the
dynamic-static interface (DSI) by Yale Patt and is illustrated in Figure 1.2 [Melvin
and Patt, 1987].

The DSI is a direct consequence of having the ISA serve as a contract between
the software and the hardware. Traditionally, all the tasks and optimizations done in
the static domain at compile time involve the software and the compiler, and are
considered above the DSI. Conversely, all the tasks and optimizations done in the
dynamic domain at run time involve the hardware and are considered below the
DSI. All the architecture features are specified in the ISA and are therefore exposed
to the software above the DSI in the static domain. On the other hand, all the imple-
mentation features of the microarchitecture are below the DSI and operate in the
dynamic domain at run time; usually these are completely hidden from the software
and the compiler in the static domain. As stated earlier, software development can
take place above the DSI independent of the development of the microarchitecture
features below the DSI.

A key issue in the design of an ISA is the placement of the DSI. In between
the application program written in a high-level language at the top and the actual
hardware of the machine at the bottom, there can be different levels of abstractions
where the DSI can potentially be placed. The placement of the DSI is correlated

Program (Software)

l ' Compiler Exposed to
complexity software “Static”
Architecture OsSh__ ¥
Hardware Hidden in “Dynamic”
complexity hardware
Machine (Hardware)
Figure 1.2

The Dynamic-Static Interface.

PROCESSOR DESIGN

_D EL _____- 9 — HLL Program
-5 __ DSI-1

-4 ———f - - DSI-2
-4t - ———— & —— DSI-3
-t Hardware
Figure 1.3

Conceptual lllustration of Possible Placements of DSI in ISA Design.

with the decision of what to place above the DSI and what to place below the DSI.
For example, performance can be achieved through optimizations that are carried
out above the DSI by the compiler as well as through optimizations that are per-
formed below the DSI in the microarchitecture. Ideally the DSI should be placed at
a level that achieves the best synergy between static techniques and dynamic tech-
niques, i.e., leveraging the best combination of compiler complexity and hardware
complexity to obtain the desired performance. This DSI placement becomes a real
challenge because of the constantly evolving hardware technology and compiler
technology.

In the history of ISA design, a number of different placements of the DSI have
been proposed and some have led to commercially successful ISAs. A conceptual
illustration of possible placements of the DSI is shown in Figure 1.3. This figure is
intended not to be highly rigorous but simply to illustrate that the DSI can be
placed at different levels. For example, Mike Flynn has proposed placing the DSI
very high and doing everything below the DSI, such that a program written in a
high-level language can be directly executed by a directly executable language
machine [Flynn and Hoevel, 1983]. A complex instruction set computer (CISC)
ISA places the DSI at the traditional assembly language, or macrocode, level. In
contrast, a reduced instruction set computer (RISC) ISA lowers the DSI and
expects to perform more of the optimizations above the DSI via the compiler. The
lowering of the DSI effectively exposes and elevates what would have been con-
sidered microarchitecture features in a CISC ISA to the ISA level. The purpose of
doing this is to reduce the hardware complexity and thus achieve a much faster
machine [Colwell et al., 1985].

The DSI provides an important separation between architecture and implemen-
tation. Violation of this separation can become problematic. As an ISA evolves and
extensions are added, the placement of the DSI is implicitly shifted. The lowering
of the DSI by promoting a former implementation feature to the architecture level
effectively exposes part of the original microarchitecture to the software. This can
facilitate optimizations by the compiler that lead to reduced hardware complexity.
However, hardware technology changes rapidly and implementations must adapt
and evolve to take advantage of the technological changes. As implementation
styles and techniques change, some of the older techniques or microarchitecture

9

10 MODERN PROCESSOR DESIGN

features may become ineffective or even undesirable. If some of these older fea-
tures were promoted to the ISA level, then they become part of the ISA and there
will exist installed software base or legacy code containing these features. Since all
future implementations must support the entire ISA to ensure the portability of all
existing code, the unfortunate consequence is that all future implementations must
continue to support those ISA features that had been promoted earlier, even if they
are now ineffective and even undesirable. Such mistakes have been made with real
ISAs. The lesson learned from these mistakes is that a strict separation of architec-
ture and microarchitecture must be maintained in a disciplined fashion. Ideally, the
architecture or ISA should only contain features necessary to express the function-
ality or the semantics of the software algorithm, whereas all the features that are
employed to facilitate better program performance should be relegated to the imple-
mentation or the microarchitecture domain.

The focus of this book is not on ISA design but on microarchitecture tech-
niques, with almost exclusive emphasis on performance. ISA features can influ-
ence the design effort and the design complexity needed to achieve high levels of
performance. However, our view is that in contemporary high-end microprocessor
design, it is the microarchitecture, and not the ISA, that is the dominant determi-
nant of microprocessor performance. Hence, the focus of this book is on microar-
chitecture techniques for achieving high performance. There are other important
design objectives, such as power, cost, and reliability. However, historically per-
formance has received the most attention, and there is a large body of knowledge
on techniques for enhancing performance. It is this body of knowledge that this
book is attempting to codify.

1.3 Principles of Processor Performance

The primary design objective for new leading-edge microprocessors has been
performance. Each new generation of microarchitecture seeks to significantly
improve on the performance of the previous generation. In recent years, reducing
power consumption has emerged as another, potentially equally important design
objective. However, the demand for greater performance will always be there, and
processor performance will continue to be a key design objective.

1.3.1 Processor Performance Equation

During the 1980s several researchers independently discovered or formulated an
equation that clearly defines processor performance and cleanly characterizes the
fundamental factors that contribute to processor performance. This equation has
come to be known as the iron law of processor performance, and it is shown in
Equation (1.1). First, the processor performance equation indicates that a proces-
sor’s performance is measured in terms of how long it takes to execute a particular
program (time/program). Second, this measure of time/program or execution time
can be formulated as a product of three terms: instructions/program, cycles/
instruction, and time/cycle. The first term indicates the total number of dynamic
instructions that need to be executed for a particular program; this term is also

PROCESSOR DESIGN

referred to as the instruction count. The second term indicates on average (averag-
ing over the entire execution of the program) how many machine cycles are con-
sumed to execute each instruction; typically this term is denoted as the CPI (cycles
per instruction). The third term indicates the length of time of each machine cycle,
namely, the cycle time of the machine.

1 _ _time _ instructions _cycles . time (1.1)
Performance program program instruction cycle '

The shorter the program’s execution time, the better the performance. Looking at
Equation 1.1, we can conclude that processor performance can be improved by reduc-
ing the magnitude of any one of the three terms in this equation. If the instruction
count can be reduced, there will be fewer instructions to execute and the execution
time will be reduced. If CPI is reduced, then on average each instruction will con-
sume fewer machine cycles. If cycle time can be reduced, then each cycle will
consume less time and the overall execution time is reduced. It might seem from
this equation that improving performance is quite trivial. Unfortunately, it is not that
straightforward. The three terms are not all independent, and there are complex inter-
actions between them. The reduction of any one term can potentially increase the
magnitude of the other two terms. The relationship between the three terms cannot be
easily characterized. Improving performance becomes a real challenge involving
subtle tradeoffs and delicate balancing acts. It is exactly this challenge that makes
processor design fascinating and at times more of an art than a science. Section 1.3.2
will examine more closely different ways to improve processor performance.

1.3.2 Processor Performance Optimizations

It can be said that all performance optimization techniques boil down to reducing
one or more of the three terms in the processor performance equation. Some tech-
niques can reduce one term while leaving the other two unchanged. For example,
when a compiler performs optimizations that eliminate redundant and useless
instructions in the object code, the instruction count can be reduced without impact-
ing the CPI or the cycle time. As another example, when a faster circuit technology
or a more advanced fabrication process is used that reduces signal propagation
delays, the machine cycle time can potentially be reduced without impacting the
instruction count or the CPIL. Such types of performance optimization techniques
are always desirable and should be employed if the cost is not prohibitive.

Other techniques that reduce one of the terms can at the same time increase
one or both of the other terms. For these techniques, there is performance gain
only if the reduction in one term is not overwhelmed by the increase in the other
terms. We can examine these techniques by looking at the reduction of each of the
three terms in the processor performance equation.

There are a number of ways to reduce the instruction count. First, the instruc-
tion set can include more complex instructions that perform more work per
instruction. The total number of instructions executed can decrease significantly.
For example, a program in a RISC ISA can require twice as many instructions as

11

12 MODERN PROCESSOR DESIGN

one in a CISC ISA. While the instruction count may go down, the complexity of
the execution unit can increase, leading to a potential increase of the cycle time. If
deeper pipelining is used to avoid increasing the cycle time, then a higher branch
misprediction penalty can result in higher CPI. Second, certain compiler optimiza-
tions can result in fewer instructions being executed. For example, unrolling loops
can reduce the number of loop closing instructions executed. However, this can
lead to an increase in the static code size, which can in turn impact the instruction
cache hit rate, which can in turn increase the CPI. Another similar example is the
in-lining of function calls. By eliminating calls and returns, fewer instructions are
executed, but the code size can significantly expand. Third, more recently
researchers have proposed the dynamic elimination of redundant computations via
microarchitecture techniques. They have observed that during program execution,
there are frequent repeated executions of the same computation with the same data
set. Hence, the result of the earlier computation can be buffered and directly used
without repeating the same computation [Sodani and Sohi, 1997]. Such computa-
tion reuse techniques can reduce the instruction count, but can potentially increase
the complexity in the hardware implementation which can lead to the increase of
cycle time. We see that decreasing the instruction count can potentially lead to
increasing the CPI and/or cycle time.

The desire to reduce CPI has inspired many architectural and microarchitec-
tural techniques. One of the key motivations for RISC was to reduce the complex-
ity of each instruction in order to reduce the number of machine cycles required to
process each instruction. As we have already mentioned, this comes with the over-
head of an increased instruction count. Another key technique to reduce CPI is
instruction pipelining. A pipelined processor can overlap the processing of multi-
ple instructions. Compared to a nonpipelined design and assuming identical cycle
times, a pipelined design can significantly reduce the CPI. A shallower pipeline,
that is, a pipeline with fewer pipe stages, can yield a lower CPI than a deeper pipe-
line, but at the expense of increased cycle time. The use of cache memory to reduce
the average memory access latency (in terms of number of clock cycles) will also
reduce the CPI. When a conditional branch is taken, stalled cycles can result from
having to fetch the next instruction from a nonsequential location. Branch predic-
tion techniques can reduce the number of such stalled cycles, leading to a reduction
of CPI. However, adding branch predictors can potentially increase the cycle time
due to the added complexity in the fetch pipe stage, or even increase the CPI if a
deeper pipeline is required to maintain the same cycle time. The emergence of
superscalar processors allows the processor pipeline to simultaneously process
multiple instructions in each pipe stage. By being able to sustain the execution of
multiple instructions in every machine cycle, the CPI can be significantly reduced.
Of course, the complexity of each pipe stage can increase, leading to a potential
increase of cycle time or the pipeline depth, which can in turn increase the CPI.

The key microarchitecture technique for reducing cycle time is pipelining.
Pipelining effectively partitions the task of processing an instruction into multiple
stages. The latency (in terms of signal propagation delay) of each pipe stage deter-
mines the machine cycle time. By employing deeper pipelines, the latency of each

PROCESSOR DESIGN

pipe stage, and hence the cycle time, can be reduced. In recent years, aggressive
pipelining has been the major technique used in achieving phenomenal increases
of clock frequency of high-end microprocessors. As can be seen in Table 1.1, dur-
ing the most recent decade, most of the performance increase has been due to the
increase of the clock frequency.

There is a downside to increasing the clock frequency through deeper pipelin-
ing. As a pipeline gets deeper, CPI can go up in three ways. First, as the front end
of the pipeline gets deeper, the number of pipe stages between fetch and execute
increases. This increases the number of penalty cycles incurred when branches are
mispredicted, resulting in the increase of CPIL. Second, if the pipeline is so deep
that a primitive arithmetic-logic unit (ALU) operation requires multiple cycles,
then the necessary latency between two dependent instructions, even with result-
forwarding hardware, will be multiple cycles. Third, as the clock frequency
increases with deeper central processing unit (CPU) pipelines, the latency of mem-
ory, in terms of number of clock cycles, can significantly increase. This can
increase the average latency of memory operations and thus increase the overall
CPI. Finally, there is hardware and latency overhead in pipelining that can lead to
diminishing returns on performance gains. This technique of getting higher fre-
quency via deeper pipelining has served us well for more than a decade. It is not
clear how much further we can push it before the requisite complexity and power
consumption become prohibitive.

As can be concluded from this discussion, achieving a performance improve-
ment is not a straightforward task. It requires interesting tradeoffs involving many
and sometimes very subtle issues. The most talented microarchitects and processor
designers in the industry all seem to possess the intuition and the insights that
enable them to make such tradeoffs better than others. It is the goal, or perhaps the
dream, of this book to impart not only the concepts and techniques of superscalar
processor design but also the intuitions and insights of superb microarchitects.

1.3.3 Performance Evaluation Method

In modern microprocessor design, hardware prototyping is infeasible; most design-
ers use simulators to do performance projection and ensure functional correctness
during the design process. Typically two types of simulators are used: functional
simulators and performance simulators. Functional simulators model a machine at
the architecture (ISA) level and are used to verify the correct execution of a pro-
gram. Functional simulators actually interpret or execute the instructions of a
program. Performance simulators model the microarchitecture of a design and are
used to measure the number of machine cycles required to execute a program.
Usually performance simulators are concerned not with the semantic correctness
of instruction execution, but only with the timing of instruction execution.
Performance simulators can be either trace-driven or execution-driven; as illus-
trated in Figure 1.4. Trace-driven performance simulators process pregenerated
traces to determine the cycle count for executing the instructions in the traces. A
trace captures the dynamic sequence of instructions executed and can be generated
in three different ways; see Figure 1.4(a). One way is via software instrumentation,

13

14 MODERN PROCESSOR DESIGN

Physical execution
with software
instrumentation

Physical execution Cycle-based
with hardware Traces performance
instrumentation simulator
’:‘race Trace-driven
storage timing simulation
Functional simulator
Trace generation
(a)
Execution
trace _
Functional simulator Ce};?(l)ernli:zii
(instruction interpretation) P imul
Checkpoint simulator
Functional simulation and control Execution-driven
timing simulation
(b)

Figure 1.4
Performance Simulation Methods: (a) Trace-Driven Simulation;
(b) Execution-Driven Simulation.

which inserts special instructions into a program prior to run time so that when the
instrumented program is executed on a physical system, the inserted instructions
will produce the dynamic execution trace. Another way is via hardware instrumen-
tation, which involves putting special hardware probes to monitor the system bus
and to record the actual execution trace when a program is executed on the system.
Software instrumentation can significantly increase the code size and the program
execution time. Hardware instrumentation requires the monitoring hardware and is
seriously limited by the buffering capacity of the monitoring hardware. The third
trace generation method uses a functional simulator to simulate the execution of a
program. During simulation, hooks are embedded in the simulator to record the
dynamic execution trace. For all three methods, once traces are generated, they can
be stored for subsequent repeated use by trace-driven performance simulators.
Execution-driven performance simulators overcome some of the limitations of
trace-driven performance simulators; see Figure 1.4(b). Instead of using pregener-
ated traces, an execution-driven performance simulator is interfaced to a functional
simulator, and the two simulators work in tandem. During simulation, the functional
simulator executes the instructions and passes information associated with the exe-
cuted instructions to the performance simulator. The performance simulator then
tracks the timing of these instructions and their movement through the pipeline
stages. It has the ability to issue directives to the functional simulator to checkpoint
the simulation state and to later resume from the checkpointed state. The checkpoint
capability allows the simulation of speculative instructions, such as instructions

PROCESSOR DESIGN

following a branch prediction. More specifically, execution-driven simulation can
simulate the mis-speculated instructions, such as the instructions following a
mispredicted branch, going through the pipeline. In trace-driven simulation, the pre-
generated trace contains only the actual (nonspeculative) instructions executed, and
a trace-driven simulator cannot account for the instructions on a mis-speculated path
and their potential contention for resources with other (nonspeculative) instructions.
Execution-driven simulators also alleviate the need to store long traces. Most mod-
ern performance simulators employ the execution-driven paradigm. The most
advanced execution-driven performance simulators are supported by functional
simulators that are capable of performing full-system simulation, that is, the simula-
tion of both application and operating system instructions, the memory hierarchy,
and even input/output devices.

The actual implementation of the microarchitecture model in a performance
simulator can vary widely in terms of the amount and details of machine resources
that are explicitly modeled. Some performance models are merely cycle counters
that assume unlimited resources and simply calculate the total number of cycles
needed for the execution of a trace, taking into account inter-instruction depen-
dences. Others explicitly model the organization of the machine with all its com-
ponent modules. These performance models actually simulate the movement of
instructions through the various pipeline stages, including the allocation of limited
machine resources in each machine cycle. While many performance simulators
claim to be “cycle-accurate,” the methods they use to model and track the activi-
ties in each machine cycle can be quite different.

While there is heavy reliance on performance simulators during the early
design stages of a microprocessor, the validation of the accuracy of performance
simulators is an extremely difficult task. Typically the performance model or sim-
ulator is implemented in the early phase of the design and is used to do initial
tradeoffs of various microarchitecture features. During this phase there isn’t a refer-
ence that can be used to validate the performance model. As the design progresses
and an RTL model of the design is developed, the RTL model can be used as a ref-
erence to validate the accuracy of the performance model. However, simulation
using the RTL model is very slow, and therefore only very short traces can be
used. During the entire design process, discipline is essential to concurrently
evolve the performance model and the RTL model to ensure that the performance
model is tracking all the changes made in the RTL model. It is also important to do
post-silicon validation of the performance model so that it can be used as a good
starting point for the next-generation design. Most performance simulators used in
academic research are never validated. These simulators can be quite complex
and, just like all large pieces of software, can contain many bugs that are difficult
to eliminate. It is quite likely that a large fraction of the performance data pub-
lished in many research papers using unvalidated performance models is com-
pletely erroneous. Black argues convincingly for more rigorous validation of
processor simulators [Black and Shen, 1998].

Other than the difficulty of validating their accuracy, another problem associated
with performance simulators is the extremely long simulation times that are often

15

16 MODERN PROCESSOR DESIGN

required. Most contemporary performance evaluations involve the simulation of
many benchmarks and a total of tens to hundreds of billion instructions. During the
early phase of the design, performance simulators are used extensively to support the
exploration of numerous tradeoffs, which require many simulation runs using differ-
ent sets of parameters in the simulation model. For execution-driven performance
simulators that have fairly detailed models of a complex machine, a slowdown factor
of four to five orders of magnitude is rather common. In other words, to simulate a
single machine cycle of the target machine, that is the machine being modeled, can
require the execution of 10,000 to 100,000 machine cycles on the host machine. A
large set of simulation runs can sometimes take many days to complete, even using a
large pool of simulation machines.

1.4 Instruction-Level Parallel Processing

Instruction-level parallel processing can be informally defined as the concurrent
processing of multiple instructions. Traditional sequential processors execute one
instruction at a time. A leading instruction is completed before the next instruction is
processed. To a certain extent, pipelined processors achieve a form of instruction-
level parallel processing by overlapping the processing of multiple instructions. As
many instructions as there are pipeline stages can be concurrently in flight at any
one time. Traditional sequential (CISC) processors can require an average of about
10 machine cycles for processing each instruction, that is CPI = 10. With pipelined
(RISC) processors, even though each instruction may still require multiple cycles to
complete, by overlapping the processing of multiple instructions in the pipeline, the
effective average CPI can be reduced to close to one if a new instruction can be initi-
ated every machine cycle.

With scalar pipelined processors, there is still the limitation of fetching and
initiating at most one instruction into the pipeline every machine cycle. With this
limitation, the best possible CPI that can be achieved is one; or inversely, the best
possible throughput of a scalar processor is one instruction per cycle (IPC). A
more aggressive form of instruction-level parallel processing is possible that
involves fetching and initiating multiple instructions into a wider pipelined proces-
sor every machine cycle. While the decade of the 1980s adopted CPI = 1 as its
design objective for single-chip microprocessors, the goal for the decade of the
1990s was to reduce CPI to below one, or to achieve a throughput of IPC greater
than one. Processors capable of IPC greater than one are termed superscalar pro-
cessors. This section presents the overview of instruction-level parallel processing
and provides the bridge between scalar pipelined processors and their natural
descendants, the superscalar processors.

1.4.1 From Scalar to Superscalar

Scalar processors are pipelined processors that are designed to fetch and issue at
most one instruction every machine cycle. Superscalar processors are those that
are designed to fetch and issue multiple instructions every machine cycle. This
subsection presents the basis and motivation for evolving from scalar to supersca-
lar processor implementations.

PROCESSOR DESIGN

1.4.1.1 Processor Performance. In Section 1.3.1 we introduced the iron law of
processor performance, as shown in Equation (1.1). That equation actually repre-
sents the inverse of performance as a product of instruction count, average CPI, and
the clock cycle time. We can rewrite that equation to directly represent performance
as a product of the inverse of instruction count, average IPC (IPC = 1/CPI), and the
clock frequency, as shown in Equation (1.2). Looking at this equation, we see that
performance can be increased by increasing the IPC, increasing the frequency, or
decreasing the instruction count.

1 instructions 1 IPC X frequency
Performance = - _ X X _ = -
instruction count cycle cycle time instruction count
(1.2)

Instruction count is determined by three contributing factors: the instruction
set architecture, the compiler, and the operating system. The ISA and the amount
of work encoded into each instruction can strongly influence the total number of
instructions executed for a program. The effectiveness of the compiler can also
strongly influence the number of instructions executed. The operating system
functions that are invoked by the application program effectively increase the total
number of instructions executed in carrying out the execution of the program.

Average IPC (instructions per cycle) reflects the average instruction throughput
achieved by the processor and is a key measure of microarchitecture effectiveness.
Historically, the inverse of IPC, that is, CPI (cycles per instruction), has been used to
indicate the average number of machine cycles needed to process each instruction.
The use of CPI was popular during the days of scalar pipelined processors. The per-
formance penalties due to various forms of pipeline stalls can be cleanly stated as dif-
ferent CPI overheads. Back then, the ultimate performance goal for scalar pipelined
processors was to reduce the average CPI to one. As we move into the superscalar
domain, it becomes more convenient to use IPC. The new performance goal for
superscalar processors is to achieve an average IPC greater than one. The bulk of the
microarchitecture techniques presented in this book target the improvement of IPC.

Frequency is strongly affected by the fabrication technology and circuit tech-
niques. Increasing the number of pipeline stages can also facilitate higher clocking
frequencies by reducing the number of logic gate levels in each pipe stage. Tradi-
tional pipelines can have up to 20 levels of logic gates in each pipe stage; most
contemporary pipelines have only 10 or fewer levels. To achieve high IPC in
superscalar designs, the pipeline must be made wider to allow simultaneous pro-
cessing of multiple instructions in each pipe stage. The widening of the pipeline
increases the hardware complexity and the signal propagation delay of each pipe
stage. Hence, with a wider pipeline, in order to maintain the same frequency an
even deeper pipeline may be required. There is a complex tradeoff between mak-
ing pipelines wider and making them deeper.

1.4.1.2 Parallel Processor Performance. As we consider the parallel process-
ing of instructions in increasing processor performance, it is insightful to revisit the
classic observation on parallel processing commonly referred to as Amdahl’s law

17

18 MODERN PROCESSOR DESIGN

<
S N
8
Q
e
o
2 le—) — <1 — h —> l—f f
2
E
z 1
Time
Figure 1.5

Scalar and Vector Processing in a Traditional Supercomputer.

[Amdahl, 1967]. Traditional supercomputers are parallel processors that perform
both scalar and vector computations. During scalar computation only one processor is
used. During vector computation all N processors are used to perform operations on
array data. The computation performed by such a parallel machine can be depicted as
shown in Figure 1.5, where N is the number of processors in the machine and # is
the fraction of time the machine spends in scalar computation. Conversely, 1 — h
is the fraction of the time the machine spends in vector computation.

One formulation of Amdahl’s law states that the efficiency E of the parallel
machine is measured by the overall utilization of the N processors or the fraction
of time the N processors are busy. Efficiency E can be modeled as

E

_h+Nx(1-h) _h+N-Nh _ 1
= N = N =1 hx(l N) (1.3)
As the number of processors N becomes very large, the efficiency E approaches
1 — h, which is the fraction of time the machine spends in vector computation. As
N becomes large, the amount of time spent in vector computation becomes smaller
and smaller and approaches zero. Hence, as N becomes very large, the efficiency E
approaches zero. This means that almost all the computation time is taken up with
scalar computation, and further increase of N makes very little impact on reducing
the overall execution time.

Another formulation of this same principle is based on the amount of work
that can be done in the vector computation mode, or the vectorizability of the pro-
gram. As shown in Figure 1.5, f represents the fraction of the program that can be
parallelized to run in vector computation mode. Therefore, 1 — f represents the
fraction of the program that must be executed sequentially. If T is the total time
required to run the program, then the relative speedup S can be represented as

1 1
- T (1-f)+(fIN)
where T is the sum of (1 — f), the time required to execute the sequential part, and

f/N, the time required to execute the parallelizable part of the program. As N
becomes very large, the second term of this sum approaches zero, and the total

(1.4)

PROCESSOR DESIGN

execution time is dictated by the amount of time required to execute the sequential
part. This is commonly referred to as the sequential bottleneck; that is, the time spent
in sequential execution or scalar computation becomes a limit to how much overall
performance improvement can be achieved via the exploitation of parallelism. As N
increases or as the machine parallelism increases, the performance will become
more and more sensitive to and dictated by the sequential part of the program.

The efficiency of a parallel processor drops off very quickly as the number of
processors is increased. Furthermore, as the vectorizability, i.e., the fraction of the
program that can be parallelized, of a program drops off slightly from 100%, the
efficiency drop-off rate increases. Similarly the overall speedup drops off very
quickly when f, the vectorizability of the program, drops even just very slightly
from 100%. Hence, the overall performance improvement is very sensitive to the
vectorizability of the program; or to state it another way, the overall speedup due
to parallel processing is strongly dictated by the sequential part of the program as
the machine parallelism increases.

1.4.1.3 Pipelined Processor Performance. Harold Stone proposed that a per-
formance model similar to that for parallel processors can be developed for pipe-
lined processors [Stone, 1987]. A typical execution profile of a pipelined processor
is shown in Figure 1.6(a). The machine parallelism parameter N is now the depth
of the pipeline, that is, the number of stages in the pipeline. There are three phases

Pipeline depth

I l—g f g
(a)
Nr- r=
= I
=3 -=! —
3 H !
Q‘:) - |-
5 1 1
[a W]]
1 L Ir——
1
I 1—¢ i g l
(b)
Figure 1.6

Idealized Pipelined Execution Profile: (a) Actual; (b) Modeled.

19

20 MODERN PROCESSOR DESIGN

in this execution profile. The first phase is the pipeline filling phase during which
the first sequence of N instructions enters the pipeline. The second phase is the
pipeline full phase, during which the pipeline is full and represents the steady state
of the pipeline. This is assuming that there is no pipeline disruption, and therefore
represents the perfect pipeline execution profile. The third phase is the pipeline
draining phase, during which no new instruction is entering the pipeline and the
pipeline is finishing the instructions still present in the pipeline stages.

For modeling purposes, we can modify the execution profile of Figure 1.6(a) to
the execution profile of Figure 1.6(b) by moving some of the work done during the
pipeline filling phase to the pipeline draining phase. The total amount of work
remains the same; that is, the areas within the two profiles are equal. The number of
pipeline stages is N, the fraction of the time that all N pipeline stages are utilized is g,
and 1 — g is the fraction of time when only one pipeline stage is utilized. Essentially
1 — g can be viewed as the fraction of time when only one instruction is moving
through the pipeline; that is, there is no overlapping of instructions in the pipeline.

Unlike the idealized pipeline execution profile, the realistic pipeline execu-
tion profile must account for the stalling cycles. This can be done as shown in
Figure 1.7(a). Instead of remaining in the pipeline full phase for the duration of the
entire execution, this steady state is interrupted by pipeline stalls. Each stall effec-
tively induces a new pipeline draining phase and a new pipeline filling phase, as
shown in Figure 1.7(a), due to the break in the pipeline full phase. Similar modifica-
tion can be performed on this execution profile to result in the modified profile of

Pipeline stall Pipeline stall
R S —
NF T
k=]
& i
< 1 H
o 1 H
= ! 1
© 1 H
B I |
A~] |
________ - !
1
(@)
Pipeline stall Pipeline stall
N[r- o
: i i
a, - - - ——
3 i ! : :
g i- - == i- - -=
= | |
g, == [} — _——
RS I 1
=L - !
r i
| 1
(b)
Figure 1.7

Realistic Pipeline Execution Profile: (a) Actual; (b) Modeled.

PROCESSORDESIGN 21

Figure 1.7(b) by moving part of the work done in the two pipeline filling phases to
the two pipeline draining phases. Now the modified profile of Figure 1.7(b) resem-
bles the execution profile of parallel processors as shown in Figure 1.5.

With the similarity of the execution profiles, we can now borrow the perfor-
mance model of parallel processors and apply it to pipelined processors. Instead of
being the number of processors, N is now the number of pipeline stages, or the
maximum speedup possible. The parameter g now becomes the fraction of time
when the pipeline is filled, and the parameter 1 — g now represents the fraction of
time when the pipeline is stalled. The speedup S that can be obtained is now

S 1

(1-g)+(g/N)
Note that g, the fraction of time when the pipeline is full, is analogous to f, the vec-
torizability of the program in the parallel processor model. Therefore, Amdahl’s
law can be analogously applied to pipelined processors. As g drops off just slightly
from 100%, the speedup or the performance of a pipelined processor can drop off
very quickly. In other words, the actual performance gain that can be obtained
through pipelining can be strongly degraded by just a small fraction of stall cycles.
As the degree of pipelining N increases, the fraction of stall cycles will become
increasingly devastating to the actual speedup that can be achieved by a pipeline
processor. Stall cycles in pipelined processors are now the key adversary and are
analogous to the sequential bottleneck for parallel processors. Essentially, stall
cycles constitute the pipelined processor’s sequential bottleneck.

Equation (1.5) is a simple performance model for pipelined processors based
on Amdahl’s law for parallel processors. It is assumed in this model that whenever
the pipeline is stalled, there is only one instruction in the pipeline, or it effectively
becomes a sequential nonpipelined processor. The implication is that when a pipe-
line is stalled no overlapping of instructions is allowed; this is effectively equiva-
lent to stalling the pipeline for N cycles to allow the instruction causing the stall to
completely traverse the pipeline. We know, however, that with clever design of
the pipeline, such as with the use of forwarding paths, to resolve a hazard that
causes a pipeline stall, the number of penalty cycles incurred is not necessarily N
and most likely less than N. Based on this observation, a refinement to the model
of Equation (1.5) is possible.

(1.5)

S= 1
81,8, . 8
172 N

(1.6)

Equation (1.6) is a generalization of Equation (1.5) and provides a refined model
for pipelined processor performance. In this model, g; represents the fraction of
time when there are i instructions in the pipeline. In other words, g; represents the
fraction of time when the pipeline is stalled for (N — i) penalty cycles. Of course,
gy 1s the fraction of time when the pipeline is full.

This pipelined processor performance model is illustrated by applying it to the
six-stage TYP pipeline in Chapter 2. Note that the TYP pipeline has a load penalty

22 MODERN PROCESSOR DESIGN

of one cycle and a branch penalty of four cycles. Based on the statistics from the
IBM study presented in Chapter 2, the typical percentages of load and branch
instructions are 25% and 20%, respectively. Assuming that the TYP pipeline is
designed with a bias for a branch not taken, only 66.6% of the branch instructions,
those that are actually taken, will incur the branch penalty. Therefore, only 13% of
the instructions (branches) will incur the four-cycle penalty and 25% of the
instructions (loads) will incur the one-cycle penalty. The remaining instructions
(62%) will incur no penalty cycles. The performance of the TYP pipeline can be
modeled as shown in Equation (1.7).

1 1 1
013, 025 062 013,025 062 022
(6-4) (6-1) 6 2 5 6
The resultant performance of the six-stage TYP pipeline processor is a factor of
4.5 over that of the sequential or nonpipelined processor. Note that the TYP is a
six-stage pipeline with the theoretical speedup potential of 6. The actual speedup
based on our model of Equation (1.6) is 4.5, as shown in Equation (1.7), which can
be viewed as the effective degree of pipelining of the TYP pipeline. Essentially the
six-stage TYP processor behaves as a perfect pipeline with 4.5 pipeline stages.
The difference between 6 and 4.5 reflects the difference between the potential
(peak) pipeline parallelism and the achieved (actual) pipeline parallelism.

45 (1.7

Sryp =

1.4.1.4 The Superscalar Proposal. We now restate Amdahl’s law that models
the performance of a parallel processor:

_ 1
SESHTUm

This model gives the performance or speedup of a parallel system over that of a
nonparallel system. The machine parallelism is measured by N, the number of pro-
cessors in the machine, and reflects the maximum number of tasks that can be
simultaneously performed by the system. The parameter f, however, is the vector-
izability of the program which reflects the program parallelism. The formulation
of this model is influenced by traditional supercomputers that contain a scalar unit
and a vector unit. The vector unit, consisting of N processors, executes the vector-
izable portion of the program by performing N tasks at a time. The nonvectoriz-
able portion of the program is then executed in the scalar unit in a sequential
fashion. We have already observed the oppressive tyranny of the nonvectorizable
portion of the program on the overall performance that can be obtained through
parallel processing.

The assumption that the nonvectorizable portion of the program must be exe-
cuted sequentially is overly pessimistic and not necessary. If some, even low, level
of parallelism can be achieved for the nonvectorizable portion of the program, the
severe impact of the sequential bottleneck can be significantly moderated. Figure 1.8
illustrates this principle. This figure, taken from an IBM technical report coauthored

(1.8)

PROCESSOR DESIGN 23

2
o
=1
=]
8
=%
)
0 I I I I
0 0.2 0.4 0.6 0.8 1
Vectorizability f
Figure 1.8

Easing of the Sequential Bottleneck with Instruction-Level Parallelism
for Nonvectorizable Code.
Source: Agerwala and Cocke, 1987.

by Agerwala and Cocke [1987], plots the speedup as a function of f, the vectorizabil-
ity of a program, for several values of N, the maximum parallelism of the machine. el
Take the example of the case when N = 6. The speedup is '* Ili i

= L

(1-1)+(f16)

Examining the curve for Equation (1.9) in Figure 1.8, we see that the speedup is
equal to 6 if fis 100%, that is, perfectly vectorizable. As f drops off from 100%, the
speedup drops off very quickly; as f becomes 0%, the speedup is one; that is, no
speedup is obtained. With higher values of N, this speedup drop-off rate gets signifi-
cantly worse, and as f approaches 0%, all the speedups approach one, regardless of
the value of N. Now assume that the minimum degree of parallelism of 2 can be
achieved for the nonvectorizable portion of the program. The speedup now becomes

1
= 1.10
a-n.,7s (10
2 6
Examining the curve for Equation (1.10) in Figure 1.8, we see that it also starts at a
speedup of 6 when fis 100%, but drops off more slowly than the curve for Equa-
tion (1.9) when fis lowered from 100%. In fact this curve crosses over the curve
for Equation (1.8) with N = 100 when fis approximately 75%. This means that for
cases with f less than 75%, it is more beneficial to have a system with maximum
parallelism of only 6, that is N = 6, but a minimum parallelism of two for the non-
vectorizable portion, than a system with maximum parallelism of N = 100 with

(1.9)

24 MODERN PROCESSOR DESIGN

kXAM L
= -

=

sequential execution of the nonvectorizable portion. The vectorizability of a pro-
gram fis a complex function involving the application algorithm, the programming
language, the compiler, and the architecture. Other than those for scientific applica-
tions involving mostly numerical computations, most programs for general-purpose
computing tend not to have very high vectorizability. It is safe to say that most
general-purpose programs have fless than 75%, and for many, significantly less.
One primary motivation for designing superscalar processors is to develop
general-purpose processors that can achieve some (perhaps low relative to vector-
izing) level of parallelism for a wide range of application programs. The goal is to
ensure that some degree of instruction-level parallelism can be achieved for all por-
tions of the program so as to moderate the severe impact of the sequential bottle-
neck. Of course, the highly vectorizable programs will continue to achieve good
speedup via parallelism. Note that the curve for Equation (1.10) is always higher
than that for Equation (1.9) even at high values of f, and is higher than other curves
for large values of N at lower values of f. The goal for superscalar processors is to
achieve generalized instruction-level parallelism and the consequent speedup for all
types of application programs, including those that are not necessarily vectorizable.

1.4.2 Limits of Instruction-Level Parallelism

In Equation (1.10), parallelism of degree 6 can be achieved for the f fraction of the
program and parallelism of degree 2 can be achieved for the remaining 1 — f frac-
tion of the program. The speedup S can be viewed as the aggregate degree of par-
allelism that can be achieved for the entire program. For example, if the parameter
fis 50% and the peak parallelism N is 6, then the speedup or the aggregate degree
of parallelism is

1 1

= = =3 1.11
(-, 7 05,05 (10
6

2 6 2
The implication of Equation (1.11) is that effectively an overall or aggregate
degree of parallelism of 3 is achieved for the entire program. Applying this result
at the instruction level, we see that Equation (1.11) indicates that an average of
three instructions can be simultaneously executed at a time. For traditional vector
computation, the number of operations that can be simultaneously performed is
largely determined by the size of the vectors or arrays, or essentially the data set
size. For general-purpose unstructured programs, the key question is, what aggre-
gate degree of instruction-level parallelism can potentially be achieved?
Instruction-level parallelism can be informally defined as the aggregate
degree of parallelism (measured by the number of instructions) that can be
achieved by the concurrent execution of multiple instructions. Possible limits of
ILP have been investigated for almost three decades. Numerous experimental
studies have been performed that yield widely varying results on purported limits
of ILP. The following table provides a sample listing of reported limits in order of
increasing degrees of ILP.

PROCESSORDESIGN 25

Study ILP Limit
Weiss and Smith, 1984 1.58
Sohi and Vajapeyam, 1987 1.81
Tjaden and Flynn, 1970 1.86
Tjaden and Flynn, 1973 1.96
Uht and Wedig, 1986 20
Smith et al.,, 1989 20
Jouppi and Wall, 1989 24
Johnson, 1991 2.5
Acosta et al., 1986 2.79
Wedig, 1982 30
Butler et al,, 1991 58
Melvin and Patt, 1991 6
Wall, 1991 7
Kuck et al., 1972 8
Riseman and Foster, 1972 51
Nicolau and Fisher, 1984 90

This listing is certainly not exhaustive, but clearly illustrates the diversity and
possible inconsistency of the research findings. Most of these are limit studies
making various idealized assumptions. The real challenge is how to achieve these
levels of ILP in realistic designs. The purported limits are also not monotonic with
respect to chronological order. During the decade of the 1990s the debate on the lim-
its of ILP replaced the RISC vs. CISC debate of the 1980s [Colwell et al., 1985].
This new debate on the limit of ILP is still not settled.

1.4.2.1 Flynn’s Bottleneck. One of the earliest studies done at Stanford Univer-
sity by Tjaden and Flynn in 1970 concluded that the ILP for most programs is less
than 2. This limit has been informally referred to as Flynn’s bottleneck. This study
focused on instruction-level parallelism that can be found within basic block
boundaries. Since crossing basic block boundaries involves crossing control depen-
dences, which can be dependent on run-time data, it is assumed that the basic
blocks must be executed sequentially. Because of the small size of most basic
blocks, typically the degree of parallelism found is less than 2. This result or
Flynn’s bottleneck has since been confirmed by several other studies.

One study in 1972 that confirmed this result was by Riseman and Foster
[1972]. However, they extended their study to examine the degree of ILP that can
be achieved if somehow control dependences can be surmounted. This study
reported various degrees of parallelism that can be achieved if various numbers of
control dependences can be overcome. If the number of control dependences that
can be overcome is unlimited, then the limit of ILP is around 51. This study high-
lights the strong influence of control dependences on the limits of ILP.

26 MODERN PROCESSOR DESIGN

1.4.2.2 Fisher's Optimism. At the other end of the spectrum is a study performed
by Nicolau and Fisher in 1984 at Yale University. This study hints at almost unlim-
ited amounts of ILP in many programs. The benchmarks used in this study tend to be
more numerical, and some of the parallelisms measured were due to data parallelism
resulting from array-type data sets. An idealized machine model capable of execut-
ing many instructions simultaneously was assumed. While some idealized assump-
tions were made in this study, it does present a refreshing optimistic outlook on the
amount of ILP that can be harvested against the pessimism due to Flynn’s bottle-
neck. We informally refer to this purported limit on ILP as Fisher’s optimism.

Initially this optimism was received with a great deal of skepticism. A number
of subsequent events somewhat vindicated this study. First a prototype machine
model called the VLIW (very long instruction word) processor was developed
along with a supporting compiler [Fisher, 1983]. Subsequently, a commercial ven-
ture (Multiflow, Inc.) was formed to develop a realistic VLIW machine, which
resulted in the Multiflow TRACE computer. The TRACE machines were sup-
ported by a powerful VLIW compiler that employs trace scheduling (developed by
Josh Fisher et al.) to extract instruction-level parallelism [Fisher, 1981]. Multiflow,
Inc., was reasonably successful and eventually had an installed base of more than
100 machines. More importantly, the short-lived commercial TRACE machines
were the first general-purpose uniprocessors to achieve an average IPC greater
than one. Although the actual levels of ILP achieved by the TRACE machines
were far less than the limits published earlier by Nicolau and Fisher in 1984, they
did substantiate the claims that there are significant amounts of ILP that can be
harvested beyond the previously accepted limit of 2.

1.4.2.3 Contributing Factors. Many of the studies on the limits of ILP employ
different experimental approaches and make different assumptions. Three key fac-
tors contribute to the wide range of experimental results: benchmarks used,
machine models assumed, and compilation techniques employed. Each study
adopts its own set of benchmarks, and frequently the results are strongly influ-
enced by the benchmarks chosen. Recently, the Standard Performance Evaluation
Corporation (SPEC) benchmark suites have become widely adopted, and most
manufacturers of processors and computing systems provide SPEC ratings for
their systems. While strict guidelines exist for manufacturers to report the SPEC
ratings on their products (see www.spec.org), there are still quite nonuniform uses
of the SPEC ratings by researchers. There are also strong indications that the
SPEC benchmark suites are only appropriate for workstations running scientific
and engineering applications, and are not relevant for other application domains
such as commercial transaction processing and embedded real-time computing.
The second key factor that contributes to the confusion and controversy on the
limits of ILP is the assumptions made by the various studies about the machine
model. Most of the limit studies assume idealized machine models. For example,
the cache memory is usually not considered or is assumed to have a 100% hit rate
with one-cycle latency. Some models assume infinite-sized machines with infinite
register files. Usually one-cycle latency is assumed for all operation and functional

PROCESSOR DESIGN 27

unit types. Other studies employ more realistic machine models, and these usually
resulted in more pessimistic, and possibly unnecessarily pessimistic, limits. Of
course, there is also a great deal of nonuniformity in the instruction set architectures
used. Some are fictitious architectures, and others use existing architectures. The
architectures used also tend to have a strong influence on the experimental results.

Finally, the assumptions made about the compilation techniques used are
quite diverse. Many of the studies do not include any consideration about the com-
piler; others assume infinitely powerful compilers. Frequently, these studies are
based on dynamic traces collected on real machines. Simulation results based on
such traces are not only dependent on the benchmarks and architectures chosen,
but also strongly dependent on the compilers used to generate the object code. The
potential contribution of the compilation techniques to the limits of ILP is an
ongoing area of research. There is currently a significant gap between the assumed
capabilities of all-powerful compilers and the capabilities of existing commer-
cially available compilers. Many anticipate that many more advancements can be
expected in the compilation domain.

Probably the safest conclusion drawn from the studies done so far is that the
real limit of ILP is beyond that being achieved on current machines. There is room
for more and better research. The assumption of any specific limit is likely to be
premature. As more powerful and efficient microarchitectures are designed and
more aggressive compilation techniques are developed, the previously made
assumptions may have to be changed and previously purported limits may have to
be adjusted upward.

1.4.3 Machines for Instruction-Level Parallelism

Instruction-level parallelism is referred to as fine-grained parallelism relative to
other forms of coarse-grained parallelism involving the concurrent processing
of multiple program fragments or computing tasks. Machines designed for exploit-
ing general ILP are referred to as ILP machines and are typically uniprocessors
with machine resource parallelisms at the functional unit level. A classification of
ILP machines was presented by Norm Jouppi in 1989 [Jouppi and Wall, 1989].
ILP machines are classified according to a number of parameters.

® Operation latency (OL). The number of machine cycles until the result of an
instruction is available for use by a subsequent instruction. The reference
instruction used is a simple instruction that typifies most of the instructions in
the instruction set. The operation latency is the number of machine cycles
required for the execution of such an instruction.

® Machine parallelism (MP). The maximum number of simultaneously execut-
ing instructions the machine can support. Informally, this is the maximum
number of instructions that can be simultaneously in flight in the pipeline at
any one time.

o Jssue latency (IL). The number of machine cycles required between issuing
two consecutive instructions. Again the reference instructions are simple

28 MODERN PROCESSOR DESIGN

instructions. In the present context, issuing means the initiating of a new
instruction into the pipeline.

® [ssue parallelism (IP). The maximum number of instructions that can be
issued in every machine cycle.

In Jouppi’s classification, the scalar pipelined processor is used as the baseline
machine. The classification also uses a generic four-stage instruction pipeline for
illustration. These stages are

1. IF (instruction fetch)

2. DE (instruction decode)
3. EX (execute)

4. WB (write back)

The EX stage is used as a reference for the determination of the operation latency.
The scalar pipelined processor, used as the baseline machine, is defined to be a
machine with OL =1 cycle and IL = 1 cycle. This baseline machine, with its instruc-
tion processing profile illustrated in Figure 1.9, can issue one new instruction into
the pipeline in every cycle, and a typical instruction requires one machine cycle for
its execution. The corresponding MP is equal to k, the number of stages in the pipe-
line; in Figure 1.9 MP = 4. The IP is equal to one instruction per cycle. Notice all
four of these parameters are static parameters of the machine and do not take into
account the dynamic behavior that depends on the program being executed.

When we discuss the performance or speedup of ILP machines, this baseline
machine is used as the reference. Earlier in this chapter we referred to the speedup
that can be obtained by a pipelined processor over that of a sequential nonpipe-
lined processor that does not overlap the processing of multiple instructions. This
form of speedup is restricted to comparison within the domain of scalar processors
and focuses on the increased throughput that can be obtained by a (scalar) pipelined
processor with respect to a (scalar) nonpipelined processor. Beginning with Chapter 3,

Z

£ I I I [|

3 IF DE EX WB

£

2 2

g 3

§ 4

@ 5

| "’ -
1 1 1 1 | | | l Il
1 2 3 4 5 6 7 8 9

Time in cycles (of baseline machine) —
Figure 1.9

Instruction Processing Profile of the Baseline Scalar Pipelined Machine.

PROCESSOR DESIGN 29

which deals with ILP machines, the form of speedup referred to is the performance
of an ILP machine compared to the scalar pipelined processor, which is used as the
new reference machine.

1.4.3.1 Superpipelined Machines. A superpipelined machine is defined with
respect to the baseline machine and is a machine with higher degrees of pipelining
than the baseline machine. In a superpipelined machine, the machine cycle time is
shorter than that of the baseline machine and is referred to as the minor cycle time.
The cycle time of a superpipelined machine is 1/m of the baseline cycle time, or
equivalently there are m minor cycles in the baseline cycle. A superpipelined
machine is characterized by OL = 1 cycle = m minor cycles and IL = 1 minor
cycle. In other words, the simple instruction still requires one baseline cycle, equal
to m minor cycles, for execution, but the machine can issue a new instruction in
every minor cycle. Consequently, IP = 1 instruction/minor cycle = m instructions/
cycle, and MP = m X k. The instruction processing profile of a superpipelined
machine is shown in Figure 1.10.

A superpipelined machine is a pipelined machine in which the degree of pipe-
lining is beyond that dictated by the operation latency of the simple instructions.
Essentially superpipelining involves pipelining of the execution stage into multi-
ple stages. An “underpipelined” machine cannot issue instructions as fast as they
are executed. On the other hand, a superpipelined machine issues instructions
faster than they are executed. A superpipelined machine of degree m, that is, one
that takes m minor cycles to execute a simple operation, can potentially achieve
better performance than that of the baseline machine by a factor of m. Technically,
traditional pipelined computers that require multiple cycles for executing simple
operations should be classified as superpipelined. For example, the latency for per-
forming fixed-point addition is three cycles in both the CDC 6600 [Thornton, 1964]
and the CRAY-1 [Russell, 1978], and new instructions can be issued in every cycle.
Hence, these are really superpipelined machines.

In a way, the classification of superpipelined machines is somewhat artifi-
cial, because it depends on the choice of the baseline cycle and the definition of
a simple operation. The key characteristic of a superpipelined machine is that the

Figure 1.10

Instruction Processing Profile of a Superpipelined Machine of
Degree m=3.

30 MODERN PROCESSOR DESIGN

One clock cycle
(20 ns at 50 MHz)

result of an instruction is not available to the next m — 1 instructions. Hence, a
superpipelined processor can be viewed simply as a more deeply pipelined pro-
cessor with some restrictions on the placement of forwarding paths. In a stan-
dard pipelined processor, the implicit assumption is that the sources and
destinations of forwarding paths can be the outputs and inputs, respectively, of
any of the pipeline stages. If a superpipelined machine is viewed as a deeply
pipelined machine with m X k stages, then the outputs of some of the stages can-
not be accessed for forwarding and the inputs of some of the stages cannot
receive forwarded data. The reason for this is that some of the operations that
require multiple minor cycles and multiple pipeline stages to complete are prim-
itive operations, in the sense of being noninterruptible for the purpose of data
forwarding. This is really the key distinction between pipelined and superpipe-
lined machines. In this book, outside of this section, there is no special treatment
of superpipelined machines as a separate class of processors distinct from pipe-
lined machines.

The 64-bit MIPS R4000 processor is one of the first processors claimed to be
“superpipelined.” Internally, the R4000 has eight physical stages in its pipeline, as
shown in Figure 1.11, with a physical machine cycle time of 10 nanoseconds
(ns) [Bashteen et al., 1991, Mirapuri et al., 1992]. However, the chip requires a 50-
MHz clock input and has an on-chip clock doubler. Consequently, the R4000 uses 20
ns as its baseline cycle, and it is considered superpipelined of degree 2 with respect to
a four-stage baseline machine with a 20-ns cycle time. There are two minor cycles to
every baseline cycle. In the case of the R4000, the multicycle primitive operations are
the cache access operations. For example, the first two physical stages (IF and IS) are
required to perform the I-cache access, and similarly the DF and DS physical stages
are required for D-cache access. These are noninterruptible operations; no data for-
warding can involve the buffers between the IF and IS stages or the buffers between
the DF and DS stages. Cache accesses, here considered “simple” operations, are pipe-
lined and require an operation latency of two (minor) cycles. The issue latency for the
entire pipeline is one (minor) cycle; that is, one new instruction can be issued every

Instruction Instruction
fetch first fetch second | Register fetch Execute Data first Data second | Tag check Writeback
(IF) (IS) (RF) (EX) (DF) (DS) (TC) (WB)
Decode -
Instruction cache r — ALU Data cache Tag R | | Reglster
- check file
Register | '
| I file v
. ress .
Address translation Tag addition Address translation
| check ‘
Figure 1.11

The “Superpipelined” MIPS R4000 8-Stage Pipeline.

PROCESSOR DESIGN

10 ns. Potentially the R4000 can achieve a speedup over the baseline four-stage pipe-
line by a factor of 2.

1.4.3.2 Superscalar Machines. Superscalar machines are extensions of the
baseline scalar pipelined machines and are characterized by OL = 1 cycle, IL =
1 cycle, and IP = rn instructions/cycle. The machine cycle is the same as the base-
line cycle; there are no minor cycles. A simple operation is executed in one cycle.
In every cycle, multiple instructions can be issued. The superscalar degree is deter-
mined by the issue parallelism n, the maximum number of instructions that can be
issued in every cycle. The instruction processing profile of a superscalar machine
is illustrated in Figure 1.12. Compared to a scalar pipelined processor, a supersca-
lar machine of degree n can be viewed as having n pipelines or a pipeline that is n
times wider in the sense of being able to carry » instructions in each pipeline stage
instead of one. A superscalar machine has MP = n X k. It has been shown that a
superpipelined machine and a superscalar machine of the same degree have the
same machine parallelism and can achieve roughly the same level of performance.
There is no reason why a superscalar machine cannot also be superpipelined.
The issue latency can be reduced to 1/m of the (baseline) cycle while maintaining
the issue parallelism of n instructions in every (minor) cycle. The total issue paral-
lelism or throughput will be n X m instructions per (baseline) cycle. The resultant
machine parallelism will become MP = nXm X k, where n is the superscalar
degree, m is the superpipelined degree, and k is the degree of pipelining of the
baseline machine. Alternatively the machine parallelism can be viewed as MP =
n X (m X k), representing a superscalar machine with m X k pipeline stages. Such
a machine can be equivalently viewed as a more deeply pipelined processor of
m X k stages with superscalar degree n, without having to invoke the tedious term
“superscalar-superpipelined” machine; and we won’t.

1.4.3.3 Very-Long-Instruction-Word Machines. Quite similar to the supersca-
lar machines is another class of ILP machines called VLIW (very long instruction
word) machines by Josh Fisher [Fisher, 1983]. The intent and performance objec-
tives are very similar for these two classes of machines; the key difference lies in the

1
2
3
4
5
6
5
8
9
IF DE EX WB
Figure 1.12

Instruction Processing Profile of a Superscalar Machine of
Degreen=3.

31

32 MODERN PROCESSOR DESIGN

N

IF DE WB

EX

Figure 1.13
Instruction Processing Profile of a VLIW Machine of Degree n= 3.

placement of the dynamic-static interface (DSI) or the partitioning of what is done
at run time via hardware mechanisms and what is done at compile time via soft-
ware means. The instruction processing profile of a VLIW machine is illustrated
in Figure 1.13.

Unlike in a superscalar machine, the IF and DE stages of a VLIW machine
need not be replicated to support the simultaneous processing, that is, fetching and
decoding, of n separate instructions. In a superscalar machine, the decision of
which 7 instructions are to be issued into the execute stage is made at run time. For
a VLIW machine, such an instruction-issuing decision is made at compile time,
and the n instructions to be simultaneously issued into the execute stage are deter-
mined by the compiler and stored appropriately in the program memory as a very
long instruction word.

Superscalar and VLIW machines represent two different approaches to the same
ultimate goal, which is achieving high processor performance via instruction-level
parallel processing. The two approaches have evolved through different historical
paths and from different perspectives. It has been suggested that these two
approaches are quite synergistic, and there is a strong motivation for pursuing
potential integration of the two approaches. This book focuses on dynamic tech-
niques implemented in the microarchitecture; hence, we will not address in depth
VLIW features that rely on aggressive compile-time techniques.

1.5 Summary

Microprocessors have had an unparalleled impact on the computer industry. The
changes that have taken place during the lifetime of microprocessors (30+ years)
have been phenomenal. Microprocessors are now entering their fourth decade. It is
fascinating to speculate on what we can expect from microprocessors in this coming
decade.

Although it was the fad of past decades, instruction set architecture (ISA)
design is no longer a very interesting topic. We have learned a great deal about how
to design an elegant and scalable ISA. However, code compatibility and the soft-
ware installed base are more crucial in determining the longevity of an ISA. It has
been amply shown that any ISA deficiency can be overcome by microarchitecture

PROCESSOR DESIGN 33

techniques. Furthermore, with the emergence of portable bytecodes and dynamic
just-in-time (JIT) compilation, the meaning of ISA and the consequent placement
of the dynamic-static interface (DSI) will become quite blurred.

In the coming decade, microarchitecture will be where the action is. As the chip
integration density approaches 1 billion transistors on a die, many of the traditional
(macro)architecture features, such as the memory subsystem, multiple processors,
and input/output subsystem, will become on-die issues and hence become effec-
tively microarchitecture issues. Traditional system-level architecture will become
part of chip-level design. We can expect to see the integration of multiple proces-
sors, the cache memory hierarchy, the main memory controller (and possibly even
the main memory), input/output devices, and network interface devices on one chip.

We can expect to see many new innovative microarchitecture techniques. As
we approach and possibly exceed the 10-GHz clocking speed, we will need to
rethink many of the fundamentals of microarchitecture design. A simple ALU
operation may take multiple cycles. A sophisticated branch predictor can require
up to 10 cycles. Main memory latency will be 1000+ cycles long. It may take tens
of clock cycles to traverse the entire die. What we currently think of as very
aggressive pipelining will be viewed as rather elementary.

Future microprocessors will become single-chip computing systems that will
need to exploit various forms of parallelism. These systems will need to go beyond
instruction-level parallelism to harvest thread-level parallelism (TLP) in the work-
load. Perhaps the most important will be the pursuit of memory-level parallelism
(MLP) in being able to process many simultaneous memory accesses. As main mem-
ory latency becomes three orders of magnitude slower than the CPU cycle time, we
will need to find clever ways of trading the memory bandwidth to mitigate the severe
negative impact of long memory latency on overall performance. The main challenge
will become the movement of data, not the operations performed on the data.

REFERENCES

Acosta, R., J. Kilestrup, and H. Torng: “An instruction issuing approach to enhancing per-
formance in multiple functional unit processors,” IEEE Trans. on Computers, C35, 9, 1986,
pp. 815-828.

Agerwala, T., and J. Cocke: “High performance reduced instruction set processors,” Tech-
nical report, IBM Computer Science, 1987.

Amdahl, G.: “Validity of the single processor approach to achieving large scale computing
capabilities,” AFIPS Conf. Proc., 1967, pp. 483-485.

Amdahl, G., G. Blaauw, and F. P. Brooks, Jr.: “Architecture of the IBM System/360,” IBM
Journal of Research and Development, 8, 1964, pp. 87-101.

Bashteen, A., I. Lui, and J. Mullan: “A superpipeline approach to the MIPS architecture,”
Proc. COMPCON Spring 91, 1991, pp. 325-333.

Blaauw, G., and F. P. Brooks, Jr.: Computer Architecture: Concepts and Evolution. Read-
ing, MA: Addison-Wesley, 1997.

Black, B., and J. P. Shen: “Calibration of microprocessor performance models,” Computer,
31,5, 1998, pp. 59-65.

34 MODERN PROCESSOR DESIGN

Butler, M., T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow: “Instruction level
parallelism is greater than two,” Proc. 18th Int. Symposium on Computer Architecture,
1991, pp. 276-286.

Colwell, R., C. Hitchcock, E. Jensen, H. B. Sprunt, and C. Kollar: “Instructions sets and
beyond: computers, complexity, and controversy,” IEEE Computer, 18, 9, 1985, pp. 8-19.

Fisher, J.: “Trace scheduling: A technique for global microcode compaction. IEEE Trans.
on Computers,” C-30, 7, 1981, pp. 478-490.

Fisher, J. A.: “Very long instruction word architectures and the ELI-512,” Technical Report
YLU 253, Yale University, 1983.

Flynn, M., and L. Hoevel: “Execution architecture: the DELtran experiment,” IEEE Trans.
on Computers, C-32, 2, 1983, pp. 156-175.

Johnson, M.: Superscalar Microprocessor Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

Jouppi, N. P., and D. W. Wall: “Available instruction-level parallelism for superscalar and
superpipelined machines,” Proc. Third Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-III), 1989, pp. 272-282.

Kuck, D., Y. Muraoka, and S. Chen: “On the number of operations simultaneously execut-
able in Fortran-like programs and their resulting speedup,” IEEE Trans. on Computers,
C-21, 1972, pp. 1293-1310.

Melvin, S., and Y. Patt: “Exploiting fine-grained parallelism through a combination of
hardware and software techniques,” Proc. 18th Int. Symposium on Computer Architecture,
1991, pp. 287-296.

Melvin, S. W., and Y. Patt: “A clarification of the dynamic/static interface,” Proc. 20th
Annual Hawaii Int. Conf. on System Sciences, 1987, pp. 218-226.

Mirapuri, S., M. Woodacre, and N. Vasseghi: “The MIPS R4000 processor,” IEEE Micro,
12, 2, 1992, pp. 10-22.

Nicolau, A., and J. Fisher: “Measuring the parallelism available for very long instruction
word architectures,” IEEE Transactions on Computers, C-33, 1984, pp. 968-976.
Riseman, E. M., and C. C. Foster: “The inhibition of potential parallelism by conditional
jumps,” IEEE Transactions on Computers, 1972, pp. 1405-1411.

Russell, R. M.: “The Cray-1 Computer System,” Communications of the ACM, 21, 1, 1978,
pp. 63-72.

Smith, M. D., M. Johnson, and M. A. Horowitz: “Limits on multiple instruction issue,”
Proc. Third Int. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-I11), 1989, pp. 290-302.

Sodani, A., and G. S. Sohi: “Dynamic instruction reuse,” Proc. 24th Annual Int. Sympo-
sium on Computer Architecture, 1997, pp. 194-205.

Sohi, G., and S. Vajapeyam: “Instruction issue logic for high-performance, interruptible
pipelined processors,” Proc. 14th Annual Int. Symposium on Computer Architecture, 1987,
pp- 27-34.

Stone, H.: High-Performance Computer Architecture. Reading, MA: Addison-Wesley, 1987.

Thornton, J. E.: “Parallel operation in the Control Data 6600,” AFIPS Proc. FICC, part 2,
26, 1964, pp. 33-40.

Tjaden, G., and M. Flynn: “Representation of concurrency with ordering matrices,” IEEE
Trans. on Computers, C-22, 8, 1973, pp. 752-761.

PROCESSOR DESIGN 35

Tjaden, G. S., and M. J. Flynn: “Detection and parallel execution of independent instruc-
tions,” IEEE Transactions on Computers, C19, 10, 1970, pp. 889-895.

Uht, A., and R. Wedig: “Hardware extraction of low-level concurrency from a serial
instruction stream,” Proc. Int. Conf. on Parallel Processing, 1986, pp. 729-736.

Wall, D.: “Limits of instruction-level parallelism,” Proc. 4th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems, 1991, pp. 176-188.

Wedig, R.: Detection of Concurrency in Directly Executed Language Instruction Streams.
PhD thesis, Stanford University, 1982.

Weiss, S., and J. Smith: “Instruction issue logic in pipelined supercomputers,” Proc. 11th
Annual Symposium on Computer Architecture, 1984, pp. 110-118.

HOMEWORK PROBLEMS

P1.1 Using the resources of the World Wide Web, list the top five reported
benchmark results for SPECINT2000, SPECFP2000, and TPC-C.

P1.2 Graph SPECINT2000 vs. processor frequency for two different pro-
cessor families (e.g., AMD Athlon and HP PA-RISC) for as many fre-
quencies as are posted at www.spec.org. Comment on performance
scaling with frequency, pointing out any anomalies and suggesting
possible explanations for them.

P1.3 Explain the differences between architecture, implementation, and
realization. Explain how each of these relates to processor performance
as expressed in Equation (1.1).

P1.4 As silicon technology evolves, implementation constraints and tradeoffs
change, which can affect the placement and definition of the dynamic-
static interface (DSI). Explain why architecting a branch delay slot [as
in the millions of instructions per second (MIPS) architecture] was a
reasonable thing to do when that architecture was introduced, but is
less attractive today.

P1.5 Many times, implementation issues for a particular generation end up
determining tradeoffs in instruction set architecture. Discuss at least
one historical implementation constraint that explains why CISC
instruction sets were a sensible choice in the 1970s.

P1.6 A program’s run time is determined by the product of instructions per
program, cycles per instruction, and clock frequency. Assume the fol-
lowing instruction mix for a MIPS-like RISC instruction set: 15% stores,
25% loads, 15% branches, and 35% integer arithmetic, 5% integer shift,
and 5% integer multiply. Given that load instructions require two cycles,
stores require one cycle, branches require four cycles, integer ALU
instructions require one cycle, and integer multiplies require ten cycles,
compute the overall CPL.

P1.7 Given the parameters of Problem 6, consider a strength-reducing opti-
mization that converts multiplies by a compile-time constant into a

36 MODERN PROCESSOR DESIGN

sequence of shifts and adds. For this instruction mix, 50% of the multiplies
can be converted to shift-add sequences with an average length of three
instructions. Assuming a fixed frequency, compute the change in instruc-
tions per program, cycles per instruction, and overall program speedup.

P1.8 Recent processors like the Pentium 4 processors do not implement single-
cycle shifts. Given the scenario of Problem 7, assume that s = 50% of
the additional instructions introduced by strength reduction are shifts,
and shifts now take four cycles to execute. Recompute the cycles per
instruction and overall program speedup. Is strength reduction still a
good optimization?

P1.9 Given the assumptions of Problem 8, solve for the break-even ratio s
(percentage of additional instructions that are shifts). That is, find the
value of s (if any) for which program performance is identical to the
baseline case without strength reduction (Problem 6).

P1.10 Given the assumptions of Problem 8, assume you are designing the
shift unit on the Pentium 4 processor. You have concluded there are
two possible implementation options for the shift unit: four-cycle shift
latency at a frequency of 2 GHz, or two-cycle shift latency at 1.9 GHz.
Assume the rest of the pipeline could run at 2 GHz, and hence the two-
cycle shifter would set the entire processor’s frequency to 1.9 GHz.
Which option will provide better overall performance?

P1.11 Using Amdahl’s law, compute speedups for a program that is 85% vec-
torizable for a system with 4, 8, 16, and 32 processors. What would be
a reasonable number of processors to build into a system for running
such an application?

P1.12 Using Amdahl’s law, compute speedups for a program that is 98% vec-
torizable for a system with 16, 64, 256, and 1024 processors. What
would be a reasonable number of processors to build into a system for
running such an application?

P1.13 Replot the graph in Figure 1.8 on page 23 for each of the ILP limits
shown in the list of studies in Section 1.4.2. What conclusions can you
draw from the graphs you created?

P1.14 Compare and contrast these two ILP limit studies by reading the rele-
vant papers and explaining why the limits are so different: Jouppi and
Wall [1989] vs. Wall [1991].

P1.15 In 1995, the IBM AS/400 line of computers transitioned from a CISC
instruction set to a RISC instruction set. Because of the simpler instruc-
tion set, the realizable clock frequency for a given technology generation
and the CPI metric improved dramatically. However, for the same rea-
son, the number of instructions per program also increased noticeably.
Given the following parameters, compute the total performance

PROCESSOR DESIGN 37

improvement that occurred with this transition. Furthermore, compute
the break-even clock frequency, break-even cycles per instruction, and
break-even code expansion ratios for this transition, assuming the other
two factors are held constant.

AS/400

AS/400 RISC Break-
Performance CISC (IMPI) (PowerP(C) Actual even
Factor (Actual) (Actual) Ratio Ratio
Relative frequency 50 MHz 125 MHz 25 ?
Cycles per instruction 7 3 043 ?
Relative instructions per 1000 3300 33 ?
program (dynamic
count)

P1.16 MIPS (millions of instructions per second) was commonly used to
gauge computer system performance up until the 1980s. Explain why it
can be a very poor measure of a processor’s performance. Are there
any circumstances under which it is a valid measure of performance? If
so, describe those circumstances.

P1.17 MFLOPS (millions of floating-point operations per second) was com-
monly used to gauge computer system performance up until the 1980s.
Explain why it can be a very poor measure of a processor’s perfor-
mance. Are there any circumstances under which it is a valid measure
of performance? If so, describe those circumstances.

Terms and Buzzwords

These problems are similar to the “Jeopardy Game” on TV. The answers are shown
and you are to provide the best correct questions. For each answer there may be
more than one appropriate question; you need to provide the best one.

P1.18 A: Instruction-level parallelism within a basic block is typically upper

bounded by 2.
Q: What is ?
P1.19 A: It will significantly reduce the machine cycle time, but can increase
the branch penalty.
Q: What is ?

P1.20 A: Describes the speedup achievable when some fraction of the program
execution is not parallelizable.

Q: What is ?

38 MODERN PROCESSOR DESIGN

P1.21 A: A widely used solution to Flynn’s bottleneck.
Q: What is ?

P1.22 A: The best way to describe a computer system’s performance.

Q: What is ?

P1.23 A: This specifies the number of registers, available addressing modes,
and instruction opcodes.

Q: What is ?

P1.24 A: This determines a processor’s configuration and number of func-
tional units.

Q: What is ?

P1.25 A: This is a type of processor that relies heavily on the compiler to stat-
ically schedule independent instructions.

Q: What is ?

P1.26 A: This is a type of processor where results of instructions are not avail-
able until two or more cycles after the instruction begins execution.

Q: What is ?

P1.27 A: This is a type of processor that attempts to execute more than one
instruction at the same time.

Q: What is ?

P1.28 A: This important study showed that instruction-level parallelism was
abundant, if only control dependences could somehow be overcome.

Q: What is ?

P1.29 A: This is a type of processor that executes high-level languages with-
out the aid of a compiler.

Q: What is ?

P1.30 A: This approach to processor simulation requires substantial storage
space.

Q: What is ?

Pipelined Processors

CHAPTER OUTLINE
2.1 Pipelining Fundamentals
22 Pipelined Processor Design

23 Deeply Pipelined Processors
24 Summary

References
Homework Problems

Pipelining is a powerful implementation technique for enhancing system through-
put without requiring massive replication of hardware. It was first employed in the
early 1960s in the design of high-end mainframes. Instruction pipelining was first
introduced in the IBM 7030, nicknamed the Stretch computer [Bloch, 1959,
Bucholtz, 1962]. Later the CDC 6600 incorporated both pipelining and the use of
multiple functional units [Thornton, 1964].

During the 1980s, pipelining became the cornerstone of the RISC approach to
processor design. Most of the techniques that constituted the RISC approach are
directly or indirectly related to the objective of efficient pipelining. Since then,
pipelining has been effectively applied to CISC processors as well. The Intel i486
was the first pipelined implementation of the IA32 architecture [Crawford, 1990].
Pipelined versions of Digital’s VAX and Motorola’s M68K architectures were
also quite successful commercially.

Pipelining is a technique that is now widely employed in the design of instruc-
tion set processors. This chapter focuses on the design of (scalar) pipelined proces-
sors. Many of the approaches and techniques related to the design of pipelined
processors, such as pipeline interlock mechanisms for hazard detection and resolu-
tion, are foundational to the design of superscalar processors.

CHAPTER

2

39

40 MODERN PROCESSOR DESIGN

The current trend is toward very deep pipelines. Pipeline depth has increased
from less than 10 to more than 20. Deep pipelines are necessary for achieving very
high clock frequencies. This has been a very effective means of gaining greater
processor performance. There are some indications that this trend will continue.

2.1 Pipelining Fundamentals

This section presents the motivations and the fundamental principles of pipelining.
Historically there are two major types of pipelines: arithmetic pipelines and instruc-
tion pipelines. While instruction pipelines are the focus of this book, we begin by
examining an arithmetic pipeline example. Arithmetic pipelines more readily illus-
trate a set of idealized assumptions underlying the principles of pipelined designs.
We term these idealized assumptions the pipelining idealism. It is dealing with the
discrepancy between these idealized assumptions and realistic considerations in
instruction pipelining that makes pipelined processor design so interesting.

2.1.1 Pipelined Design

This subsection introduces the foundational notions of pipelined design. The moti-
vations and limitations of pipelining are presented. A theoretical model, proposed
by Peter Kogge, of optimal pipelining from the hardware design perspective is
described [Kogge, 1981].

2.1.1.1 Motivations. The primary motivation for pipelining is to increase the
throughput of a system with little increase in hardware. The throughput, or band-
width, of a system is measured in terms of the number of tasks performed per unit
time, and it characterizes the performance of the system. For a system that oper-
ates on one task at a time, the throughput P is equal to 1/D, where D is the latency
of a task or the delay associated with the performance of a task by the system. The
throughput of a system can be increased by pipelining if there are many tasks that
require the use of the same system. The actual latency for each task still remains
the same or may even increase slightly.

Pipelining involves partitioning the system into multiple stages with added
buffering between the stages. These stages and the interstage buffers constitute the
pipeline. The computation carried out by the original system is decomposed into
k subcomputations, carried out in the k stages of the pipeline. A new task can start
into the pipeline as soon as the previous task has traversed the first stage. Hence,
instead of initiating a new task every D units of time, a new task can be initiated
every D/k units of time, where & is the number of stages in the pipeline, and the
processing of k computations is now overlapped in the pipeline. It is assumed that
the original latency of D has been evenly partitioned into k stages and that no addi-
tional delay is introduced by the added buffers. Given that the total number of
tasks to be processed is very large, the throughput of a pipelined system can poten-
tially approach k times that of a nonpipelined system. This potential performance
increase by a factor of k by simply adding new buffers in a k-stage pipeline is the
primary attraction of the pipelined design. Figure 2.1 illustrates the potential k-fold
increase of throughput in a k-stage pipelined system.

PIPELINED PROCESSORS

Combinational logic
n gate delay

—_—

— BwW=_

=

L % Gate delay

'
Figure 2.1

Potential k-Fold Increase of Throughput in a k-Stage Pipelined System.

% Gate delay

% Gate delay % Gate delay L % Gate delay

— BW = =

w

=

A
: By
c— 4
E
- F B
B— D
E —]| c—H]
F —
. 2 s
F ‘ O
(@) (b
Figure 2.2

The Earle Latch and Its Incorporation into Logic Without Incurring Additional Gate Delay: (a) Earle Latch

Following the Combinational Logic; (b) Earle Latch Integrated with the Combinational Logic.

So far we have assumed that the addition of interstage buffers does not introduce
any additional delay. This is not unrealistic. The Earle latch shown in Figure 2.2(a)
was designed and used in the IBM 360/91 for buffering between stages of carry-save
adders in the pipelined multiply unit. In the Earle latch, the output Z follows the
input D when clock C = 1. When the clock goes low, the value at D is latched at Z
through the latching loop, and then the output Z becomes insensitive to further
changes at D. Proper hold time is required on the D input to ensure proper latching.
The middle AND gate ensures glitch-free operation; the product term represented
by this AND gate “covers” a potential hazard. A hazard is a spurious pulse caused

41

42 MODERN PROCESSOR DESIGN

by a race condition involving simultaneous change of multiple signals. The top and
bottom inputs to the OR gate can potentially change simultaneously in opposite
directions. Under such a condition, if the OR gate does not have the middle (redun-
dant) input, a spurious pulse (the hazard) can potentially appear at the output of the
OR gate. The Earle latch has this desirable glitch-free operation feature. Further-
more, the Earle latch can be integrated into the logic function so as not to incur any
additional gate delay. Figure 2.2(b) illustrates how the latching function can be
merged into the last two AND-OR levels of the combinational logic circuit resulting
in no additional gate delay for the addition of the latch. The circuit in Figure 2.2(b)
performs the same logic function as that of Figure 2.2(a) without incurring two
additional gate delays for latching. The increase of gate fan-in by one can slightly
increase the delay through these gates.

2.1.1.2 Limitations. Since the performance gained in a pipelined design is pro-
portional to the depth, that is, the number of stages, of a pipeline, it might seem
that the best design is always to maximize the number of stages of a pipelined sys-
tem. However, due to clocking constraints, there are physical limitations to how
finely an original computation can be partitioned into pipeline stages.

Each stage of a pipeline can be viewed as a piece of combinational logic F fol-
lowed by a set of latches L. Signals must propagate through F and be latched at L. Let
T,, be the maximum propagation delay through F, that is, the delay through the long-
est signal path; let 7,, be the minimum propagation delay through F, that is, the delay
through the shortest signal path. Let 7, be the additional time needed for proper
clocking. Delay 1, can include the necessary setup and hold times to ensure proper
latching, as well as the potential clock skews, that is, the worst-case disparity between
the arrival times of the clock edge at different latches. If the first set of signals X, is
applied at the inputs to the stage at time T, then the outputs of F must be valid at
T, + T,,. For proper latching at L, the signals at the outputs of F must continue to be
valid until T, + T}, + T,. When the second set of signals X, is applied at the inputs to
F at time T, , it takes at least until T, + T, for the effects to be felt at the latches L. To
ensure that the second set of signals does not overrun the first set, it is required that

T,+T,>T +Ty+T, 2.1)

which means that the earliest possible arrival of X, at the latches must not be
sooner than the time required for the proper latching of X, . This inequality can be
rewritten as

T,-T,>Ty-T,+T, (2.2)

where T, — T is effectively the minimum clocking period T. Therefore, the clock-
ing period T must be greater than T,,— T,, + T,, and the maximum clocking rate
cannot exceed 1/7 .

Based on the foregoing analysis, two factors limit the clocking rate. One is the
difference between the maximum and minimum propagation delays through the
logic, namely, T, — T,,. The other is the additional time required for proper clocking,

PIPELINED PROCESSORS

namely, T . The first factor can be eliminated if all signal propagation paths are of the
same length. This can be accomplished by padding the short paths. Hence, T,,— T, is
close to zero. The second factor is dictated by the need to latch the results of the pipe-
line stages. Proper latching requires the propagation of a signal through a feedback
loop and the stabilizing of that signal value in the loop. Another contribution to 7, is
the worst-case clock skew. The clock signal may arrive at different latches at slightly
different times due to the generation and distribution of the clock signals to all the
latches. In a fully synchronous system, this worst-case clock skew must be accounted
for in the clocking period. Ultimately, the limit of how deeply a synchronous system
can be pipelined is determined by the minimum time required for latching and the
uncertainty associated with the delays in the clock distribution network.

2.1.1.3 Tradeoff. Clocking constraints determine the ultimate physical limit to
the depth of pipelining. Aside from this limit, maximum pipeline depth may not be
the optimal design when cost, or pipelining overhead, is considered. In the hard-
ware design of a pipelined system, the tradeoff between cost and performance
must be considered. A cost/performance tradeoff model for pipelined design has
been proposed by Peter Kogge and is summarized here [Kogge, 1981]. Models for
both cost and performance are proposed. The cost of a nonpipelined design is
denoted as G. This cost can be in terms of gate count, transistor count, or silicon
real estate. The cost C for a k-stage pipelined design is equal to

C=G+kxL (2.3)

where k is the number of stages in the pipeline, L is the cost of adding each latch,
and G is the cost of the original nonpipelined hardware. Based on this cost model,
the pipeline cost C is a linear function of &, the depth of the pipeline. Basically, the
cost of a pipeline goes up linearly with respect to the depth of the pipeline.

Assume that the latency in the nonpipelined system is 7. Then the performance
of the nonpipelined design is 1/T, the computation rate. The performance P of
the pipelined design can be modeled as 1/(T/k + §), where T is the latency of the
original nonpipelined design and S is the delay due to the addition of the latch.
Assuming that the original latency T can be evenly divided into k stages, (7/k + §)
is the delay associated with each stage and is thus the clocking period of the pipeline.
Consequently, 1/(7T/k + S) is equal to the clocking rate and the throughput of the
pipelined design. Hence, the performance of the pipelined design is

1
P=
(TIk+S)
Note that P is a nonlinear function of k.

Given these models for cost and performance, the expression for the cost/
performance ratio is

(2.4)

C _ G+kxL 25)
P 1

(T/k+9)

43

44 MODERN PROCESSOR DESIGN

x10*
7

G=175,L=41,T =400, S = 22

Cost/performance ratio C/P

G=175L=21,T=400,S =11

0 10 20 30 40 50
Pipeline depth &

Figure 2.3
Cost/Performance Tradeoff Model for Pipelined Designs.

This expression can be rewritten as

%zLT+ GS+LSk+GTT (2.6)

which is plotted in Figure 2.3 for two sets of sample values of G, L, T, and S.

Equation (2.6) expresses the cost/performance ratio as a function of k. The first
derivative can be taken and set equal to zero to determine the value of & that will pro-
duce the minimal cost/performance ratio. This value of k, shown in Equation (2.7), is
the optimal pipelining depth in terms of the other parameters.

Gt
LS

e = 2.7)
Given this expression for the optimal value of k, a pipelined design with k <k,
can be considered as underpipelined in that further pipelining or increasing the
pipeline depth is beneficial and the increased cost is justified by the increase of
performance. On the other hand, k > k,,, indicates an overpipelined design in which
there is a diminishing return of performance for the increased cost of pipelining. The
foregoing tradeoff model is based purely on hardware design considerations; there
is no consideration of the dynamic behavior of the pipeline or the computations
being performed. We will take up these issues later, beginning in Section 2.2.

2.1.2 Arithmetic Pipeline Example

There are two major types of pipelines: arithmetic pipelines and instruction pipe-
lines. Although instruction pipeline design is the focus of this chapter, we will
begin by looking at an arithmetic pipeline example. Arithmetic pipelines clearly

PIPELINED PROCESSORS

illustrate the effectiveness of pipelining without having to deal with some of the
complex issues involved in instruction pipeline design. These complex issues will
be addressed in subsequent sections of this chapter.

2.1.2.1 Floating-Point Multiplication. The design of a pipelined floating-point
multiplier is used as the example. This “vintage” board-level design is taken from
a classic text by Shlomo Waser and Mike Flynn [Waser and Flynn, 1982]. (Even
though this design assumes 1980 technology, nonetheless it still serves as an effective
vehicle to illustrate arithmetic pipelining.) This design assumes a 64-bit floating-
point format that uses the excess-128 notation for the exponent e (8 bits) and the
sign-magnitude fraction notation with the hidden bit for the mantissa m (57 bits,
including the hidden bit).

The floating-point multiplication algorithm implemented in this design is as
follows.

1. Check to see if any operand is zero. If it is, the result is immediately set to zero.

2. Add the two characteristics (physical bit patterns of the exponents) and correct
for the excess-128 bias, that is, e, + (e, — 128).

3. Perform fixed-point multiplication of the two mantissas m; and m,.

4. Normalize the product of the mantissas, which involves shifting left by one
bit and decrementing the exponent by 1. (The normalized representation of
the mantissa has no leading zeros.)

5. Round the result by adding 1 to the first guard bit (the bit immediately to
the right of the least-significant bit of the mantissa). This is effectively
rounding up. If the mantissa overflows, then the mantissa must be shifted
right one bit and the exponent incremented by 1 t0 maintain the normalized
representation for the mantissa.

Figure 2.4 illustrates in the functional block diagram the nonpipelined design of the
floating-point multiplier. The input latches store the two operands to be multiplied.
At the next clock the product of the two operands will be stored in the output latches.

The fixed-point mantissa multiplier represents the most complex module in
this design and consists of three submodules for partial product generation, partial
product reduction, and final reduction. The hardware complexity, in terms of the
number of integrated circuit (IC) chips, and the propagation delay, in nanoseconds,
of each submodule can be obtained.

® Partial product generation. Simultaneous generation of the partial products
can be performed using 8 X 8 hardware multipliers. To generate all the partial
products, 34 such 8 X 8 multipliers are needed. The delay involved is 125 ns.

® Partial product reduction. Once all the partial products are generated, they
must be reduced or summed. A summing circuit called the (5, 5, 4) counter
can be used to reduce two columns of 5 bits each into a 4-bit sum. A (5, 5, 4)
counter can be implemented using alK X 4 read-only memory (ROM) with

45

46 MODERN PROCESSOR DESIGN

I 1 8 8 56 56
] [=] e =] Lim] e]

Y [Y

Add/Sub I Fixed-point

mantissa
—— multiplier ——

/

b Nomain |
Y \L

Add/Sub

Y
Rounding

Figure 2.4
A Nonpipelined Floating-Point Multiplier. Waser and Flynn, 1982.

a delay of 50 ns. Three levels of (5, 5, 4) counters are needed to reduce all
the partial products. Hence a total of 72 such1K x4 ROMs are needed,
incurring a total delay of 150 ns.

e Final reduction. Once all the partial products have been reduced down to
two partial products a final level of reduction can be implemented using
fast carry-lookahead (CLA) adders to produce the final result. Sixteen 4-bit
adder chips with CLA plus five 4-bit CLA units are needed for this final
reduction step. A total of 21 IC chips and a 55-ns delay are required.

Two additional modules are needed for the mantissa section, namely, a shifter for
performing normalization (2 chips, 20-ns delay) and an incrementer for perform-
ing rounding (15 chips, 50-ns delay). The Add/Sub modules in the exponent sec-
tion require another 4 chips; their delays are unimportant because they are not in
the critical delay path. An additional 17 and 10 chips are needed for implementing
the input and output latches, respectively. The total chip counts and critical delays
of the modules in the nonpipelined design are summarized in Table 2.1.

Based on the tabulation in Table 2.1, the nonpipelined design of the floating-
point multiplier requires 175 chips and can be clocked at 2.5 MHz with a clock
period of 400 ns. This implies that the nonpipelined design can achieve a through-
put of 2.5 MFLOPS (million floating-point operations per second).

2.1.2.2 Pipelined Floating-Point Multiplier. The nonpipelined design of the
floating-point multiplier can be pipelined to increase its throughput. In this example,
we will assume that there is no pipelining within a submodule; that is, the finest
granularity for partitioning into pipeline stages is at the submodule level. We now
examine the delays associated with each of the (sub)modules in the critical delay
path. These delays are shown in the third column of Table 2.1. The partial product

PIPELINED PROCESSORS

Table 2.1
Chip counts and critical delays of the modules in the nonpipelined floating-point
multiplier design.

Module Chip Count Delay, ns
Partial product generation 34 125

Partial product reduction 72 150

Final reduction 21 55
Normalization 2 20
Rounding 15 50
Exponent section 4

Input latches 17

Output latches 10

Total 175 400

Source: Waser and Flynn, 1982.

reduction submodule has the longest delay, 150 ns; this delay then determines the
delay of a stage in the pipeline. The five (sub)modules in the critical path can be par-
titioned into three fairly even stages with delays of 125 ns (partial product genera-
tion), 150 ns (partial product reduction), and 125 ns (final reduction, normalization,
and rounding). The resultant three-stage pipelined design is shown in Figure 2.5.

In determining the actual clocking rate of the pipelined design, we must con-
sider clocking requirements. Assuming that edge-triggered registers are used for
buffering between pipeline stages, we must add the clock-edge-to-register-output
delay of 17 ns and the setup time of 5 ns to the stage delay of 150 ns. This results
in the minimum clocking period of 172 ns. Therefore, instead of clocking at the
rate of 2.5 MHz, the new pipelined design can be clocked at the rate of 5.8 MHz.
This represents a factor of 2.3 increase in throughput. Note, however, that
the latency for performing each multiplication has increased slightly, from 400 to
516 ns.

The only additional hardware required for the pipelined design is the edge-
triggered register chips for buffering between pipeline stages. On top of the original
175 IC chips, an additional 82 IC chips are required. Using chip count as a measure
of hardware complexity, the total of 257 IC chips represents an increase of 45% in
terms of hardware complexity. This 45% increase in hardware cost resulted in a
130% increase in performance. Clearly, this three-stage pipelined design of the
floating-point multiplier is a win over the original nonpipelined design.

This example assumes board-level implementations using off-the-shelf parts.
Given today’s chip technology, this entire design can be easily implemented as a
small module on a chip. While a board-level implementation of the floating-point
multiplier may be viewed as outdated, the purpose of this example is to succinctly
illustrate the effectiveness of pipelining using a published specific design with
actual latency and hardware cost parameters. In fact, the upper curve in Figure 2.3
reflects the parameters from this example.

47

48 MODERN PROCESSOR DESIGN

Y Y
[—1
Y Y
Add/Sub
Y Y
J_s:i I——e;—'l
Clock
Figure 2.5

A Pipelined Floating-Point Multiplier.
Source: Waser and Flynn, 1982,

2.1.3 Pipelining Idealism

Recall that the motivation for a k-stage pipelined design is to achieve a k-fold
increase in throughput, as illustrated in Figure 2.1. However, in the foregoing
example, the three-stage pipelined floating-point multiplier only achieved a factor
of 2.3 increase in throughput. The main reason for falling short of the three-fold
increase of throughput is that the k-fold increase in throughput for a k-stage pipe-
lined design represents the ideal case and is based on three idealized assumptions,
which we referred to as the pipelining idealism. The understanding of pipelining
idealism is crucial to the appreciation of pipelined designs. The unavoidable devi-
ations from this idealism in real pipelines make pipelined designs challenging. The
solutions for dealing with this idealism-realism gap comprise the interesting tech-
niques for pipelined designs. The three points of pipelining idealism are

1. Uniform subcomputations. The computation to be performed can be evenly
partitioned into uniform-latency subcomputations.

2. Identical computations. The same computation is to be performed repeat-
edly on a large number of input data sets.

3. Independent computations. All the repetitions of the same computation are
mutually independent.

PIPELINED PROCESSORS

2.1.3.1 Uniform Subcomputations. The first point of pipelining idealism
states that the computation to be pipelined can be evenly partitioned into k uniform-
latency subcomputations. This means that the original design can be evenly
partitioned into k balanced (i.e., having the same latency) pipeline stages. If the
latency of the original computation, and hence the clocking period of the nonpipe-
lined design, is T, then the clocking period of a k-stage pipelined design is exactly
T/k, which is the latency of each of the k stages. Given this idealized assumption,
the k-fold increase in throughput is achieved due to the k-fold increase of the
clocking rate.

This idealized assumption may not be true in an actual pipelined design. It
may not be possible to partition the computation into perfectly balanced stages.
We see in our floating-point multiplier example that the latency of 400 ns of the
original computation is partitioned into three stages with latencies of 125, 150, and
125 ns, respectively. Clearly the original latency has not been evenly partitioned
into three balanced stages. Since the clocking period of a pipelined design is dic-
tated by the stage with the longest latency, the stages with shorter latencies in
effect will incur some inefficiency or penalty. In our example, the first and third
stages have an inefficiency of 25 ns each; we called such inefficiency within pipe-
line stages, the internal fragmentation of pipeline stages. Because of such internal
fragmentation, the total latency required for performing the same computation will
increase from T to T}, and the clocking period of the pipelined design will be no
longer T/k but T;/k. In our example the performance of the three subcomputa-
tions will require 450 ns instead of the original 400 ns, and the clocking period
will be not 133 ns (400/3 ns) but 150 ns.

There is a secondary implicit assumption, namely, that no additional delay is
introduced by the introduction of buffers between pipeline stages and that no addi-
tional delay is required for ensuring proper clocking of the pipeline stages. Again,
this assumption may not be true in actual designs. In our example, an additional
22 ns is required to ensure proper clocking of the pipeline stages, which resulted in
the cycle time of 172 ns for the three-stage pipelined design. The ideal cycle time
for a three-stage pipelined design would have been 133 ns. The difference between
172 and 133 ns for the clocking period accounts for the shortfall from the idealized
three-fold increase of throughput.

The first point of pipelining idealism basically assumes two things: (1) There is
no inefficiency introduced due to the partitioning of the original computation into
multiple subcomputations; and (2) there is no additional delay caused by the intro-
duction of the interstage buffers and the clocking requirements. In chip-level design
the additional delay incurred for proper pipeline clocking can be minimized by
employing latches similar to the Earle latch. The partitioning of a computation into
balanced pipeline stages constitutes the first challenge of pipelined design. The goal
is to achieve stages as balanced as possible to minimize internal fragmentation.
Internal fragmentation due to imperfectly balanced pipeline stages is the primary
cause of deviation from the first point of pipelining idealism. This deviation
becomes a form of pipelining overhead and leads to the shortfall from the idealized
k-fold increase of throughput in a k-stage pipelined design.

49

50 MODERN PROCESSOR DESIGN

2.1.3.2 Identical Computations. The second point of pipelining idealism states
that many repetitions of the same computation are to be performed by the pipeline.
The same computation is repeated on multiple sets of input data; each repetition
requires the same sequence of subcomputations provided by the pipeline stages.
For our floating-point multiplier example, this means that many pairs of floating-
point numbers are to be multiplied and that each pair of operands is sent through
the same three pipeline stages. Basically this assumption implies that all the pipe-
line stages are used by every repetition of the computation. This is certainly true
for our example.

This assumption holds for the floating-point multiplier example because this
pipeline performs only one function, that is, floating-point multiplication. If a
pipeline is designed to perform multiple functions, this assumption may not
hold. For example, an arithmetic pipeline can be designed to perform both addi-
tion and multiplication. In a multiple-function pipeline, not all the pipeline
stages may be required by each of the functions supported by the pipeline. It is
possible that a different subset of pipeline stages is required for performing each
of the functions and that each computation may not require all the pipeline
stages. Since the sequence of data sets traverses the pipeline in a synchronous
manner, some data sets will not require some pipeline stages and effectively will
be idling during those stages. These unused or idling pipeline stages introduce
another form of pipeline inefficiency that can be called external fragmentation
of pipeline stages. Similar to internal fragmentation, external fragmentation is a
form of pipelining overhead and should be minimized in multifunction pipe-
lines. For the pipelined floating-point multiplier example, there is no external
fragmentation.

The second point of pipelining idealism effectively assumes that all pipeline
stages are always utilized. Aside from the implication of having no external frag-
mentation, this idealized assumption also implies that there are many sets of data
to be processed. It takes k cycles for the first data set to reach the last stage of the
pipeline; these cycles are referred to as the pipeline fill time. After the last data set
has entered the first pipeline stage, an additional k cycles are needed to drain
the pipeline. During pipeline fill and drain times, not all the stages will be busy.
The main reason for assuming the processing of many sets of input data is that the
pipeline fill and drain times constitute a very small fraction of the total time.
Hence, the pipeline stages can be considered, for all practical purposes, to be
always busy. In fact, the throughput of 5.8 MFLOPS for the pipelined floating-
point multiplier is based on this assumption.

2.1.3.3 Independent Computations. The third point of pipelining idealism
states that the repetitions of computation, or simply computations, to be pro-
cessed by the pipeline are independent. This means that all the computations that
are concurrently resident in the pipeline stages are independent, that is, have no
data or control dependences between any pair of the computations. This assumption
permits the pipeline to operate in “streaming” mode, in that a later computation

PIPELINED PROCESSORS

need not wait for the completion of an earlier computation due to a dependence
between them. For our pipelined floating-point multiplier this assumption holds. If
there are multiple pairs of operands to be multiplied, the multiplication of a pair of
operands does not depend on the result from another multiplication. These pairs
can be processed by the pipeline in streaming mode.

For some pipelines this point may not hold. A later computation may require
the result of an earlier computation. Both of these computations can be concurrently
resident in the pipeline stages. If the later computation has entered the pipeline
stage that needs the result while the earlier computation has not reached the pipeline
stage that produces the needed result, the later computation must wait in that pipe-
line stage. This waiting is referred to as a pipeline stall. If a computation is stalled
in a pipeline stage, all subsequent computations may have to be stalled as well.
Pipeline stalls effectively introduce idling pipeline stages, and this is essentially a
dynamic form of external fragmentation and results in the reduction of pipeline
throughput. In designing pipelines that need to process computations that are not
necessarily independent, the goal is to produce a pipeline design that minimizes
the amount of pipeline stalls.

2.1.4 Instruction Pipelining

The three points of pipelining idealism are three idealized assumptions about pipe-
lined designs. For the most part, in arithmetic pipelines the reality is not far from
these idealized assumptions. However, for instruction pipelining the gap between
realism and idealism is greater. It is the bridging of this gap that makes instruction
pipelining interesting and challenging. In designing pipelined processors, these
three points become the three major challenges. These three challenges are now
briefly introduced and will be addressed in depth in Section 2.2 on pipelined pro-
cessor design. These three challenges also provide a nice road map for keeping
track of all the pipelined processor design techniques.

2.1.4.1 Instruction Pipeline Design. The three points of pipelining idealism
become the objectives, or desired goals, for designing instruction pipelines. The
processing of an instruction becomes the computation to be pipelined. This com-
putation must be partitioned into a sequence of fairly uniform subcomputations
that will result in fairly balanced pipeline stages. The latency for processing an
instruction is referred to as the instruction cycle; the latency of each pipeline stage
determines the machine cycle. The instruction cycle can be viewed as a logical
concept that specifies the processing of an instruction. The execution of a program
with many instructions involves the repeated execution of this computation. The
machine cycle is a physical concept that involves the clocking of storage elements
in digital logic circuits, and it is essentially the clocking period of the pipeline
stages.

We can view the earlier floating-point multiplier as an example of a very simple
processor with only one instruction, namely, floating-point multiply. The instruction

51

52 MODERN PROCESSOR DESIGN

PP generation

* Final reduction
Floating-point normalize 3
multiply round
Clock Clock —

(a) (b)

Figure 2.6
A Simple lllustration of Instruction Cycle vs. Machine Cycle.

cycle involves the performance of a floating-point multiply; see Figure 2.6(a).
This computation can be naturally partitioned, based on obvious functional unit
boundaries, into the following five subcomputations.

1. Partial product generation (125 ns).
2. Partial product reduction (150 ns).
3. Final reduction (55 ns).

4. Normalization (20 ns).

5. Rounding (50 ns).

For the purpose of pipelining, we had grouped the last three subcomputations into one
subcomputation. This resulted in the three pipeline stages shown in Figure 2.6(b).
The instruction cycle of Figure 2.6(a) has been mapped into the three machine cycles
of Figure 2.6(b), resulting in a three-stage pipelined design. We can refer to the
instruction cycle as an architected (logical) primitive which is specified in the
instruction set architecture, whereas the machine cycle is a machine (physical) prim-
itive and is specified in the microarchitecture. The pipelined design of Figure 2.6(b)
is an implementation of the architecture specified in Figure 2.6(a).

A main task of instruction pipelining can be stated as the mapping of the logi-
cal instruction cycle to the physical machine cycles. In other words, the computa-
tion represented by the instruction cycle must be partitioned into a sequence of
subcomputations to be carried out by the pipeline stages. To perform this mapping or
partitioning effectively, the three points of pipelining idealism must be considered.

PIPELINED PROCESSORS

Uniform Subcomputations. The partitioning of the instruction cycle to multi-
ple machine cycles can be called stage quantization, and it should be performed to
minimize internal fragmentation of the pipeline stages. If care is not taken in stage
quantization, the internal fragmentation introduced can quickly undermine the
efficiency of the pipeline. This first point of pipelining idealism leads to the first
challenge of instruction pipelining, namely, the need to balance the pipeline
stages. The more balanced the pipeline stages are, the less will be the internal
fragmentation.

Identical Computations. Unlike a single-function arithmetic pipeline, an instruc-
tion pipeline is inherently a multifunction pipeline, in that it must be able to process
different instruction types. Different instruction types will require slightly different
sequences of subcomputations and consequently different hardware resources. The
second challenge of instruction pipelining involves the efficient coalescing or unify-
ing of the different resource requirements of different instruction types. The pipeline
must be able to support the processing of all instruction types, while minimizing
unused or idling pipeline stages for each instruction type. This essentially is equiva-
lent to minimizing the external fragmentation.

Independent Computations. Again, unlike an arithmetic pipeline that processes
array data, an instruction pipeline processes instructions that are not necessarily
independent of one another. Hence, the instruction pipeline must have built-in
mechanisms to detect the occurrences of dependences between instructions and to
ensure that such dependences are not violated. The enforcing of interinstruction
dependences may incur penalties in the form of pipeline stalls. Recall that pipeline
stalls are a dynamic form of external fragmentation which reduces the throughput
of the pipeline. Therefore, the third challenge of instruction pipelining is the mini-
mizing of pipeline stalls.

2.1.4.2 Instruction Set Architecture Impacts. Before we address the three major
challenges of instruction pipelining in earnest, it might be enlightening to briefly con-
sider the impacts that instruction set architectures (ISAs) can have on instruction
pipelining. Again, the three points of pipelining idealism are considered in turn.

Uniform Subcomputations. The first challenge of balancing the pipeline stages
implies that a set of uniform subcomputations must be identified. Looking at all
the subcomputations that are involved in the processing of an instruction, one must
identify the one critical subcomputation that requires the longest latency and can-
not be easily further partitioned into multiple finer subcomputations. In pipelined
processor design, one such critical subcomputation is the accessing of main mem-
ory. Because of the disparity of speed between the processor and main memory,
memory accessing can be the critical subcomputation. To support more efficient
instruction pipelining, addressing modes that involve memory access should be
minimized, and fast cache memories that can keep up with the processor speed
should be employed.

53

54 MODERN PROCESSOR DESIGN

Identical Computations. The second challenge of unifying the resource require-
ments of different instruction types is one of the primary motivations for the RISC
architectures. By reducing the complexity and diversity of the different instruction
types, the task of unifying different instruction types is made easier. Complex
addressing modes not only require additional accesses to memory, but also increase
the diversity of resource requirements. To unify all these resource requirements
into one instruction pipeline is extremely difficult, and the resultant pipeline can
become very inefficient for many of the instructions with less complex resource
requirements. These instructions would have to pay the external fragmentation
overhead in that they underutilize the stages in the pipeline. The unifying of
instruction types for a pipelined implementation of a RISC architecture is clean
and results in an efficient instruction pipeline with little external fragmentation.

Independent Computations. The third challenge of minimizing pipeline stalls
due to interinstruction dependences is probably the most fascinating area of pipe-
lined processor design. For proper operation, an instruction pipeline must detect
and enforce interinstruction dependences. Complex addressing modes, especially
those that involve memory accessing, can make dependence detection very diffi-
cult due to the memory reference specifiers. In general, register dependences are
easier to check because registers are explicitly specified in the instruction. Clean
and symmetric instruction formats can facilitate the decoding of the instructions
and the detection of dependences. Both the detection and the enforcement of
dependences can be done either statically at compile time or dynamically at run
time. The decision of what to do at compile time vs. run time involves the defini-
tion of the dynamic-static interface (DSI). The placement of the DSI induces inter-
esting and subtle tradeoffs. These tradeoffs highlight the intimate relationship
between compilers and (micro)architectures and the importance of considering
both in the design of processors.

2.2 Pipelined Processor Design

In designing instruction pipelines or pipelined processors, the three points of pipe-
lining idealism manifest as the three primary design challenges. Dealing with these
deviations from the idealized assumptions becomes the primary task in designing
pipelined processors. The three points of pipelining idealism and the corresponding
three primary challenges for pipelined processor design are as follows:

1. Uniform subcomputations = balancing pipeline stages
2. Identical computations = unifying instruction types
3. Independent computations = minimizing pipeline stalls

These three challenges are addressed in turn in Subsections 2.2.1 to 2.2.3. These
three challenges provide a nice framework for presenting instruction pipelining
techniques. All pipelined processor design techniques can be viewed as efforts in
addressing these three challenges.

PIPELINED PROCESSORS 55

2.2.1 Balancing Pipeline Stages

In pipelined processor design, the computation to be pipelined is the work to be
done in each instruction cycle. A typical instruction cycle can be functionally par-
titioned into the following five generic subcomputations.

1. Instruction fetch (IF)

2. Instruction decode (ID)

3. Operand(s) fetch (OF)

4. Instruction execution (EX)
5. Operand store (OS)

A typical instruction cycle begins with the fetching of the next instruction to be
executed, which is followed by the decoding of the instruction to determine the
work to be performed by this instruction. Usually one or more operands are speci-
fied and need to be fetched. These operands can reside in the registers or in mem-
ory locations depending on the addressing modes used. Once the necessary
operands are available, the actual operation specified by the instruction is per-
formed. The instruction cycle ends with the storing of the result produced by the
specified operation. The result can be stored in a register or in a memory location,
again depending on the addressing mode specified. In a sequential processor, this
entire sequence of subcomputations is then repeated for the next instruction. Dur-
ing these five generic subcomputations some side effects can also occur as part of
the execution of this instruction. Usually these side effects take the form of certain
modifications to the machine state. These changes to the machine state are referred
to as side effects because these effects are not necessarily explicitly specified in the
instruction. The implementation complexity and resultant latency for each of the
five generic subcomputations can vary significantly depending on the actual ISA
specified.

2.2.1.1 Stage Quantization. One natural partitioning of the instruction cycle for
pipelining is based on the five generic subcomputations. Each of the five generic
subcomputations is mapped to a pipeline stage, resulting in a five-stage instruction
pipeline; see Figure 2.7. We called this example pipeline the GENERIC (GNR)
instruction pipeline. In the GNR pipeline, the logical instruction cycle has been
mapped into five physical machine cycles. The machine cycles/instruction cycle
ratio of 5 reflects the degree of pipelining and gives some indication of the granu-
larity of the pipeline stages.

The objective of stage quantization is to partition the instruction cycle into bal-
anced pipeline stages so as to minimize internal fragmentation in the pipeline stages.
Stage quantization can begin with the natural functional partition of the instruction
cycle, for example, the five generic subcomputations. Multiple subcomputations
with short latencies can be grouped into one new subcomputation to achieve more
balanced stages. For example, the three subcomputations—final reduction, normal-
ization, and rounding—of the floating-point multiplication computation are grouped

56 MODERN PROCESSOR DESIGN

[PL

i

i

1. iztsct;uction dﬂ
2. él;itcl:cllztion ED:
3. gfceﬁand E)g
Foeane x|

/
(ON]

5. Operand
store

Figure 2.7

The Five-Stage GENERIC (GNR)
Instruction Pipeline.

into one subcomputation in the pipelined design of Figure 2.6(b). Similarly, some of
the five generic subcomputations of a typical instruction cycle can be grouped to
achieve more balanced stages. For example, if an instruction set architecture employs
fixed instruction length, simple addressing modes, and orthogonal fields in the
instruction format, then both the IF and ID subcomputations should be quite straight-
forward and relatively simple compared to the other three subcomputations. These
two subcomputations can potentially be combined into one new subcomputation,
resulting in four subcomputations that are more balanced in terms of their required
latencies. Based on these four subcomputations a four-stage instruction pipeline can
be implemented; see Figure 2.8(a). In fact, the combining of the IF and ID subcompu-
tations is employed in the MIPS R2000/R3000 pipelined processors [Moussouris
et al., 1986, Kane, 1987]. This approach essentially uses the subcomputation with the
longest latency as a reference and attempts to group other subcomputations with
shorter latencies into a new subcomputation with comparable latency as the reference.
This will result in a coarser-grained machine cycle and a lower degree of pipelining.
Instead of combining subcomputations with short latencies, an opposite
approach can be taken to balance the pipeline stages. A given subcomputation with
extra-long latency can be further partitioned into multiple subcomputations of shorter
latencies. This approach uses the subcomputation with the shortest latency as the ref-
erence and attempts to subdivide long-latency subcomputations into many finer-
grained subcomputations with latencies comparable to the reference. This will result
in a finer-grained machine cycle and a higher degree of pipelining. For example, if an
ISA employs complex addressing modes that may involve accessing the memory for
both the OF and OS subcomputations, these two subcomputations can incur long
latencies and can therefore be further subdivided into multiple subcomputations.

PIPELINED PROCESSORS 57

IF
o |!

(

OF |2

Y

EX |3

y

os |4

(a) (b)
Figure 2.8

(a) A Four-Stage Instruction Pipeline Example.
(b) An 11-Stage Instruction Pipeline Example.

Additionally, some operations to be performed in the EX subcomputation may be
quite complex and can be further subdivided into multiple subcomputations as well.
Figure 2.8(b) illustrates such an instruction pipeline with an 11-stage design. Both
the OF and OS subcomputations are mapped into three pipeline stages, while the IF
and EX subcomputations are mapped into two pipeline stages. Essentially, the ID
subcomputation is used as the reference to achieve balanced stages.

The two methods presented for stage quantization are (1) merge multiple sub-
computations into one and (2) subdivide a subcomputation into multiple subcom-
putations. A combination of both methods can also be used in the design of
an instruction pipeline. As shown in the previous discussion, the instruction set
architecture can have a significant impact on stage quantization. In all cases, the
goal of stage quantization is to minimize the overall internal fragmentation. For
example, assume that the total latency for the five generic subcomputations is 280 ns
and that the resultant machine cycle times for the 4-stage design of Figure 2.8(a) and
the 11-stage design of Figure 2.8(b) are 80 and 30 ns, respectively. Consequently, the

inid

58 MODERN PROCESSOR DESIGN

total latency for the 4-stage pipeline is 320 ns (80 ns X 4) and the total latency for
the 11-stage pipeline is 330 ns (30 ns X 11). The difference between the new total
latency and the original total latency of 280 ns represents the internal fragmentation.
Hence, the internal fragmentation for the 4-stage design is 40 ns (320 ns — 280 ns),
and the internal fragmentation for the 11-stage design is 50 ns (330 ns — 280 ns). It
can be concluded that the 4-stage design is more efficient than the 11-stage design
in terms of incurring less overhead due to internal fragmentation. Of course, the
11-stage design yields a throughput that is 9.3 (280 ns/30 ns) times that of a non-
pipelined design, while the 4-stage design’s throughput is only 3.5 (280 ns/ 80 ns)
times that of a nonpipelined design. As can be seen in both designs, the internal
fragmentation has hindered the attainment of the idealized throughput increase by
factors of 11 and 4 for the 11-stage and the 4-stage pipelines, respectively.

2.2.1.2 Hardware Requirements. In most realistic engineering designs, the goal
is not simply to achieve the best possible performance, but to achieve the best per-
formance/cost ratio. Hence, in addition to simply maximizing the throughput
(performance) of an instruction pipeline, hardware requirements (cost) must be con-
sidered. In general, higher degrees of pipelining will incur greater costs in terms of
hardware requirements. Clearly there is the added cost due to the additional buffer-
ing between pipeline stages. We have already seen in the model presented in
Section 2.1.1.3 that there is a point beyond which further pipelining yields dimin-
ishing returns due to the overhead of buffering between pipeline stages. Besides
this buffering overhead, there are other, and more significant, hardware require-
ments for highly pipelined designs.

In assessing the hardware requirements for an instruction pipeline, the first
thing to keep in mind is that for a k-stage instruction pipeline, in the worst case, or
actually best case in terms of performance, there are k instructions concurrently
present in the pipeline. There will be an instruction resident in each pipeline stage,
with a total of k instructions all in different phases of the instruction cycle. Hence,
the entire pipeline must have enough hardware to support the concurrent processing
of k instructions in the k pipeline stages. The hardware requirements fall into three
categories: (1) the logic required for control and data manipulation in each stage,
(2) register-file ports to support concurrent register accessing by multiple stages, and
(3) memory ports to support concurrent memory accessing by multiple stages.

We first examine the four-stage instruction pipeline of Figure 2.8(a). Assuming
a load/store architecture, a typical register-register instruction will need to read the
two register operands in the first stage and store the result back to a register in the
fourth stage. A load instruction will need to read from memory in the second stage,
while a store instruction will need to write to memory in the fourth stage. Combining
the requirements for all four stages, a register file with two read ports and one write
port will be required, and a data memory interface capable of performing one memory
read and one memory write in every machine cycle will be required. In addition, the
first stage needs to read from the instruction memory in every cycle for instruction
fetch. If a unified (instruction and data) memory is used, then this memory must be
able to support two read accesses and one write access in every machine cycle.

PIPELINED PROCESSORS

Similar analysis of hardware requirements can be performed for the 11-stage
instruction pipeline of Figure 2.8(b). To accommodate slow instruction memory,
the IF generic subcomputation is subdivided and mapped to two pipeline stages,
namely, the IF1 and IF2 stages. Instruction fetch is initiated in IF1 and completes
in IF2. Even though instruction fetch takes two machine cycles, it is pipelined; that
is, while the first instruction is completing the fetching in IF2, the second instruction
can begin fetching in IF1. This means that the instruction memory must be able to
support two concurrent accesses, by IF1 and IF2 pipeline stages, in every machine
cycle. Similarly, the mapping of both the OF and OS generic subcomputations to
three pipeline stages each implies that at any one time there could be up to six
instructions in the pipeline, all in the process of accessing the data memory. Hence,
the data memory must be able to support six independent concurrent accesses with-
out conflict in every machine cycle. This can potentially require a six-ported data
memory. Furthermore, if the instruction memory and the data memory are unified
into one memory unit, an eight-ported memory unit can potentially be required.
Such multiported memory units are extremely expensive to implement. Less
expensive solutions, such as using interleaved memory with multiple banks, that
attempt to simulate true multiported functionality usually cannot guarantee conflict-
free concurrent accesses at all times.

As the degree of pipelining, or the pipeline depth, increases, the amount of
hardware resources needed to support such a pipeline increases significantly. The
most significant increases of hardware resources are the additional ports to the register
file(s) and the memory unit(s) needed to support the increased degree of concurrent
accesses to these data storage units. Furthermore, to accommodate long memory
access latency, the memory access subcomputation must be pipelined. However,
the physical pipelining of memory accessing beyond two machine cycles can
become quite complex, and frequently conflict-free concurrent accesses must be
compromised.

2.2.1.3 Example Instruction Pipelines. The stage quantization of two commer-
cial pipelined processors is presented here to provide illustrations of real instruction
pipelines. The MIPS R2000/R3000 RISC processors employ a five-stage instruc-
tion pipeline, as shown in Figure 2.9(a). The MIPS architecture is a load/store
architecture. The IF and ID generic subcomputations are merged into the IF stage,
which will require one memory (I-cache) read in every machine cycle. The OF
generic subcomputation is carried out in both the RD and MEM stages. For ALU
instructions that access only register operands, operand fetch is done in the RD
stage and requires the reading of two registers. For load instructions, the operand
fetch also requires accessing the memory (D-cache) and is carried out in the MEM
stage, which is the only stage in the pipeline that can access the D-cache. The OS
generic subcomputation is carried out in the MEM and WB stages. Store instruc-
tions must access the D-cache and are done in the MEM stage. ALU and load
instructions write their results back to the register file in the WB stage.

MIPS processors normally employ separate instruction and data caches. In every
machine cycle the R2000/R3000 pipeline must support the concurrent accesses of

59

60 MODERN PROCESSOR DESIGN

|

TR

[

MIPS R2000/R3000 AMDAHL 470V/7
IF —> '
1
D TF]

IF —

Cache Read

Cache Read

EX—> ALU 3 D

Decode

Read REG

Add GEN

Cache Read

OF
—>| WB I 5

EX

Cache Read

EX 2

Check Result

| 10

11

OS

Write Result 12

(b)

Figure 2.9

Two Commercial Instruction Pipelines: (a) MIPS R2000/R3000
Five-Stage Pipeline; (b) AMDAHL 470V/7 12-Stage Pipeline.

one I-cache read by the IF stage and one D-cache read (for a load instruction) or
write (for a store instruction) by the MEM stage. Note that with the split cache con-
figuration, both the I-cache and the D-cache need not be multiported. On the other
hand, if both instructions and data are stored in the same cache, the unified cache
will need to be dual-ported to support this pipeline. The register file must provide
adequate ports to support two register reads by the RD stage and one register write
by the WB stage in every machine cycle.

Figure 2.9(b) illustrates the 12-stage instruction pipeline of the AMDAHL
470V/7. The IF generic subcomputation is implemented in the first three stages.
Because of the complex addressing modes that must be supported, the OF generic
subcomputation is mapped into four stages. Both the EX and OS generic subcompu-
tations are partitioned into two pipeline stages. In stage 1 of this 12-stage pipeline,
the address of the next sequential instruction is computed. Stage 2 initiates cache
access to read the instruction; stage 3 loads the instruction from the cache into the

PIPELINED PROCESSORS

I-unit (instruction unit). Stage 4 decodes the instruction. Two general-purpose regis-
ters are read during stage 5; these registers are used as address registers. Stage 6
computes the address of an operand in memory. Stage 7 initiates cache access to
read the memory operand; stage 8 loads the operand from the cache into the I-unit
and also reads register operands. Stages 9 and 10 are the two execute stages in the
E-unit (execute unit). In Stage 11 error checking is performed on the computed
result. The final result is stored into the destination register in stage 12.

This 12-stage pipeline must support the concurrent accesses of two register
reads by stage 5 and one register write by stage 12 in every machine cycle, along
with four cache memory reads by stages 2, 3, 7, and 8 in every machine cycle. The
memory subsystem of this pipelined processor is clearly much more complicated
than that of the MIPS R2000/R3000 pipeline.

The current trend in pipelined processor design is toward higher degrees of
pipelining with deeper pipeline depth. This produces finer-grained pipelined stages
that can be clocked at higher rates. While four or five stages are common in first-
generation pipelined RISC processors, instruction pipelines with more than ten
stages are becoming commonplace. There is also the trend toward implementing
multiple pipelines with different numbers of stages. This is the subject of superscalar
processor design, which will be addressed in Chapter 4.

2.2.2 Unifying Instruction Types

The second point of pipelining idealism assumes that the same computation is to be
performed repeatedly by the pipeline. For most instruction pipelines, this idealized
assumption of repetition of identical computations does not hold. While the instruc-
tion pipeline repeatedly processes instructions, there are different types of instruc-
tions involved. Although the instruction cycle is repeated over and over, repetitions
of the instruction cycle may involve the processing of different instruction types.
Different instruction types have different resource requirements and may not require
the exact same sequence of subcomputations. The instruction pipeline must be able
to support the different requirements and must provide a superset of all the subcom-
putations needed by all the instruction types. Each instruction type may not require
all the pipeline stages in the instruction pipeline. For each instruction type, the
unnecessary pipeline stages become a form of inefficiency or overhead for that
instruction type; such inefficiency or overhead has been referred to as external frag-
mentation of the pipeline in Section 2.1.3.2. The goal for unifying instruction types,
the key challenge resulting from the second point of pipelining idealism, is to mini-
mize the external fragmentations for all the instruction types.

2.2.2.1 (Classification of Instruction Types. To perform a computation, a com-
puter must do three generic tasks:

1. Arithmetic operation
2. Data movement

3. Instruction sequencing

61

62 MODERN PROCESSOR DESIGN

These three generic tasks are carried out by the processing of instructions in the
processor. The arithmetic operation task involves the performing of arithmetic and
logical operations on specified operands. This is the most obvious part of perform-
ing a computation and has often been equated to computation. A processor can sup-
port a large variety of arithmetic operations. The data movement task is responsible
for moving the operands and the results between storage locations. Typically there
is a hierarchy of storage locations, and explicit instructions are used to move the data
among these locations. The instruction sequencing task is responsible for the sequenc-
ing of instructions. Typically a computation is specified in a program consisting of
many instructions. The performance of the computation involves the processing of a
sequence of instructions. This sequencing of instructions, or the program flow, can
be explicitly specified by the instructions themselves.

How these three generic tasks are assigned to the various instructions of an
ISA is a key component of instruction set design. A very complex instruction can
be specified that actually performs all three of these generic tasks. In a typical hori-
zontally microcoded machine, every microinstruction has fields that are used to
specify all three of these generic tasks. In more traditional instruction set architec-
tures known as complex instruction set computer (CISC) architectures, many of
the instructions carry out more than one of these three generic tasks.

Influenced by the RISC research of the 1980s, most recent instruction set
architectures all share some common attributes. These recent architectures
include Hewlett-Packard’s Precision architecture, IBM’s Power architecture,
IBM/Motorola’s PowerPC architecture, and Digital’s Alpha architecture. These
modern ISAs tend to have fixed-length instructions, symmetric instruction for-
mats, load/store architectures, and simple addressing modes. Most of these
attributes are quite compatible with instruction pipelining. For the most part, this
book adopts and assumes such a typical RISC architecture in its examples and
illustrations.

In a typical modern RISC architecture, the instruction set employs a dedicated
instruction type for each of the three generic tasks; each instruction only carries
out one of the three generic tasks. Based on the three generic tasks, instructions
can be classified into three types:

1. ALU instructions. For performing arithmetic and logical operations.

2. Load/store instructions. For moving data between registers and memory
locations.

3. Branch instructions. For controlling instruction sequencing.

ALU instructions perform arithmetic and logical operations strictly on register
operands. Only load and store instructions can access the data memory. Both the
load/store and branch instructions employ fairly simple addressing modes. Typically
only register-indirect with an offset addressing mode is supported. Often PC-relative
addressing mode is also supported for branch instructions. In the following
detailed specification of the three instruction types, the use of an instruction cache
(I-cache) and a data cache (D-cache) is also assumed.

PIPELINED PROCESSORS

Table 2.2
Specification of ALU instruction type

Generic Flo

0 b

ating-Point

Subcomputations Iinteger Instruction Instruction
IF Fetch instruction Fetch instruction
(access |-cache). (access I-cache).
D Decode instruction. Decode instruction.
OF Access register file. Access FP register file.
EX Perform ALU operation. Perform FP operation.
oS Write back to register file. Write back to FP register file.

The semantics of each of the three instruction types can be specified based on
the sequence of subcomputations performed by that instruction type. This specifi-
cation can begin with the five generic subcomputations (Section 2.2.1) with subse-
quent further refinements. Eventually, these subcomputations specify the sequence
of register transfers used for hardware implementation. For convenience, ALU
instructions are further divided into integer and floating-point instructions. The
semantics of the ALU instructions are specified in Table 2.2.

In a load/store architecture, load and store instructions are the only instruc-
tions that access the data memory. A load instruction moves data from a memory
location into a register; a store instruction moves data from a register to a memory
location. In the specification of the semantics of load and store instructions in
Table 2.3, it is assumed that the only addressing mode is register-indirect with an
offset. This addressing mode computes an effective address by adding the content
of a register with the offset specified in the immediate field of the instruction.

Comparing the specifications in Tables 2.2 and 2.3, we can observe that the
sequences of subcomputations required for ALU and load/store instruction types
are similar but not exactly the same. ALU instructions need not generate memory
addresses. On the other hand, load/store instructions, other than having to generate
the effective address, do not have to perform explicit arithmetic or logical opera-
tions. They simply move data between registers and memory locations. Even
between load and store instructions there are subtle differences. For the load
instruction, the OF generic subcomputation expands into three subcomputations
involving accessing the register file for the base address, generating the effective
address, and accessing the memory location. Similarly for the store instruction, the
OS generic subcomputation consists of two subcomputations involving generating
the effective address and storing a register operand into a memory location. This
assumes that the base address and the register operand are both accessed from the
register file during the OF generic subcomputation.

Finally the sequences of subcomputations that specify the unconditional jump
and the conditional branch instructions are presented in Table 2.4. A similar

63

64 MODERN PROCESSOR DESIGN

Table 2.3

Specification of load/store instruction type

Generic
Subcomputations Load instruction Store Instruction
IF Fetch instruction Fetch instruction
(access |-cache). (access |-cache).
D Decode instruction. Decode instruction.
OF Access register file (base Access register file
address). (register operand,
Generate effective address and base address).
(base + offset).
Access (read) memory
location (access D-cache).
EX
o Write back to register file. Generate effective address
(base + offset).
Access (write) memory
location (access D-cache).
Table 2.4

Specification of branch instruction type

Generic
Subcomputations

IF

D)
OF

EX
oS

Jump (unconditional)
Instruction

Fetch instruction
(access |-cache).
Decode instruction.

Access register file (base
address).

Generate effective address
(base + offset).

Update program counter
with target address.

Conditional Branch
Instruction

Fetch instruction

(access I-cache).

Decode instruction.
Access register file

(base address).

Generate effective address
(base + offset).

Evaluate branch condition.
If condition is true,

update program counter
with target address.

addressing mode as that for the load/store instructions is employed for the branch
instructions. A PC-relative addressing mode can also be supported. In this address-
ing mode, the address of the target of the branch (or jump) instruction is generated
by adding a displacement to the current content of the program counter. Typically

PIPELINED PROCESSORS

this displacement can be either a positive or a negative value, to facilitate both for-
ward and backward branches.

Examining the specifications of the three major instruction types in Tables 2.2
to 2.4, we see that the initial subcomputations for all three types are quite similar.
However, there are differences in the later subcomputations. For example, ALU
instructions do not access data memory, and hence for them no memory address
generation is needed. On the other hand, load/store and branch instruction types
share the same required subcomputation of effective address generation. Load/
store instructions must access the data memory, while branch instructions must
provide the address of the target instruction. We also see that for a conditional
branch instruction, in addition to generating the effective address, evaluation
of the branch condition must be performed. This can involve simply the check-
ing of a status bit generated by an earlier instruction, or it can require the perfor-
mance of an arithmetic operation on a register operand as part of the processing
of the branch instruction, or it can involve checking the value of a specified
register.

Based on the foregoing specifications of the instruction semantics, resource
requirements for the three major instruction types can be determined. While the
three instruction types share some commonality in terms of the fetching and decod-
ing of the instructions, there are differences between the instruction types. These
differences in the instruction semantics will lead to differences in the resource
requirements.

2.2.2.2 Coalescing of Resource Requirements. The challenge of unifying the
different instruction types involves the efficient coalescing of the different resource
requirements into one instruction pipeline that can accommodate all the instruction
types. The objective is to minimize the total resources required by the pipeline and
at the same time maximize the utilization of all the resources in the pipeline. The
procedure for unifying different instruction types can be informally stated as con-
sisting of the following three steps.

1. Analyze the sequence of subcomputations of each instruction type, and
determine the corresponding resource requirements.

2. Find commonality between instruction types, and merge common subcom-
putations to share the same pipeline stage.

3. If there exists flexibility, without violating the instruction semantics, shift
or reorder the subcomputations to facilitate further merging.

This procedure of unifying instruction types can be illustrated by applying it to the
instruction types specified in Tables 2.2 to 2.4. For simplicity and clarity, floating-
point instructions and unconditional jumps are not considered. Summary specifi-
cations of the ALU, load, store, and branch instruction types are repeated in
Figure 2.10. The four sequences of subcomputations required by these four instruc-
tion types are taken from Tables 2.2 to 2.4 and are summarized in the four columns
on the left-hand side of Figure 2.10. We now apply the unifying procedure from the
top down, by examining the four sequences of subcomputations and the associated

65

66 MODERN PROCESSOR DESIGN

ALU LOAD STORE BRANCH
IF: fetch inst. fetch inst. fetch inst. fetch inst.
’ update PC update PC update PC update PC

1D: Cdecode

decode decode decode

OF: Cread reg.

read reg. read reg. read reg.)—PI:HE

EX:

addr. gen.

read mem.

0OS:

(write reg. write reg.

addr. gen. addr. gen.

Figure 2.10

write mem. }——(update PC

Unifying of ALU, Load, Store, and Branch Instruction Types into a Six-Stage Instruction Pipeline, Henceforth
Identified as the TYPICAL (TYP) Instruction Pipeline.

hardware resources required to support them. This procedure results in the definition
of the stages of an instruction pipeline.

All four instruction types share the same common subcomputations for IF and
ID. Hence, the first two subcomputations for all four instruction types can be eas-
ily merged and used to define the first two pipeline stages, labeled IF and ID, for
instruction fetching and instruction decoding.

All four instruction types also read from the register file for the OF generic
subcomputation. ALU instructions access the two register operands. Load and
branch instructions access a register to obtain the base address. Store instructions
access a register to obtain the register operand and another register for the base
address. In all four cases either one or two registers are read. These similar sub-
computations can be merged into the third stage of the pipeline, called RD, for
reading up to two registers from the register file. The register file must be capable
of supporting two independent and concurrent reads in every machine cycle.

ALU instructions require an ALU functional unit for performing the necessary
arithmetic and logical operations. While load, store, and branch instructions do not
need to perform such operations, they do need to generate an effective address for
accessing memory. It can be observed that the address generation task can be per-
formed by the ALU functional unit. Hence, these subcomputations can be merged
into the fourth stage of the pipeline, called ALU, which consists primarily of the
ALU functional unit for performing arithmetic/logical operations or effective
address generation.

PIPELINED PROCESSORS

Both the load and store instruction types need to access the data memory.
Hence a pipeline stage must be devoted to this subcomputation. The fifth stage of
the pipeline, labeled MEM, is included for this purpose.

Both the ALU and load instruction types must write a result back to the register
file as their last subcomputation. An ALU instruction writes the result of the opera-
tion performed on the register operands into a destination register. A load instruction
loads into the destination register the data fetched from memory. No memory access
is required by an ALU instruction; hence, the writing back to the destination register
can theoretically take place immediately after the ALU stage. However, for the pur-
pose of unifying with the register write-back subcomputation of the load instruction
type, the register write-back subcomputation for ALU instructions is delayed by one
pipeline stage and takes place in the sixth pipeline stage, named WB. This incurs one
idle machine cycle for ALU instructions in the MEM pipeline stage. This is a form
of external fragmentation and introduces some inefficiency in the pipeline.

For conditional branch instructions, the branch condition must be determined
prior to updating the program counter. Since the ALU functional unit is used to
perform effective address generation, it cannot be used to perform the branch con-
dition evaluation. If the branch condition evaluation involves only the checking of
a register to determine if it is equal to zero, or if it is positive or negative, then only
a simple comparator is needed. This comparator can be added, and the earliest
pipeline stage in which it can be added is the ALU stage, that is, after the reference
register is read in the RD stage. Hence, the earliest pipeline stage in which the pro-
gram counter can be updated with the branch target address, assuming the condi-
tional branch is taken, is during the MEM stage, that is, after the target address is
computed and the branch condition is determined in the ALU stage.

The foregoing coalescing of resource requirements for the different instruction
types resulted in the six-stage instruction pipeline shown in the right-hand side of
Figure 2.10. This instruction pipeline is identified as the TYPICAL (TYP) instruction
pipeline and is used in the remainder of this chapter as an illustration vehicle. Other
than the one idling pipeline stage (MEM) for ALU instructions, store and branch
instruction types also incur some external fragmentation. Both store and branch
instructions do not need to write back to a register and are idling during the WB stage.
Overall this six-stage instruction pipeline is quite efficient. Load instructions use all
six stages of the pipeline; the other three instruction types use five of the six stages.

In unifying different instruction types into one instruction pipeline, there are
three optimization objectives. The first is to minimize the total resources required to
support all the instruction types. In a way, the objective is to determine the pipeline
that is analogous to the least common multiple of all the different resource require-
ments. The second objective is to maximize the utilization of all the pipeline stages
by the different instruction types, in other words, to minimize the idling stages
incurred by each instruction type. Idling stages lead to external fragmentation and
result in inefficiency and throughput penalty. The third objective is to minimize the
overall latency for each of the instruction types. Hence, if an idling stage is unavoid-
able for a particular instruction type and there is flexibility in terms of the placement
of that idling stage, then it is always better to place it at the end of the pipeline. This

67

68 MODERN PROCESSOR DESIGN

will allow the instruction to effectively complete earlier and reduce the overall
latency for that instruction type.

2.2.2.3 Instruction Pipeline Implementation. In the six-stage TYP instruction
pipeline (Figure 2.10), there are potentially six different instructions simulta-
neously present or “in flight” in the pipeline at any one time. Each of the six
instructions is going through one of the pipeline stages. The register file must sup-
port two reads (by the instruction in the RD stage) and one write (by the instruction
in the WB stage) in every machine cycle. The I-cache must support one read in
every machine cycle. Unless interrupted by a branch instruction, the IF stage con-
tinually increments the program counter and fetches the next sequential instruction
from the I-cache. The D-cache must support one memory read or memory write in
every machine cycle. Only the MEM stage accesses the D-cache; hence, at any time
only one instruction in the pipeline can be accessing the data memory.

The pipeline diagram in Figure 2.10 is only a logical representation of the six-
stage TYP instruction pipeline and illustrates only the ordering of the six pipeline
stages. The actual physical organization of the TYP instruction pipeline is shown in
Figure 2.11, which is the functional block diagram of the TYP pipelined processor

D-cache [

| Leache K MEM
| pata | | Adar |
4
Y b
| Ader | | Daa |
\ ID WB
—>|
Update Instruction - | Register
PC decode g g file
M
> ALU ALU
Figure 2.11

The Physical Organization of the Six-Stage TYP Instruction Pipeline.

PIPELINED PROCESSORS

implementation. In this diagram the buffers between the pipeline stages are explic-
itly identified. The logical buffer between two particular pipeline stages can actually
involve multiple physical buffers distributed in this diagram. The single logical path
that traverses the six pipeline stages in sequence actually involves multiple physical
paths in this diagram. The progression of each instruction through the pipeline must
be traced along these physical paths.

The physical organization of the six-stage TYP instruction pipeline in
Figure 2.11 looks more complex than it really is. To help digest it, we can first
examine the pipeline’s interfaces to the register file and the memory subsystem.
Assuming a split cache organization, that is, separate caches for storing instruc-
tions and data, two single-ported caches, one I-cache and one D-cache, are needed.
The memory subsystem interface of the TYP pipeline is quite simple and efficient,
and resembles most scalar pipelined processors. The IF stage accesses the I-cache,
and the MEM stage accesses the D-cache, as shown in Figure 2.12. The I-cache can
support the fetch of one instruction in every machine cycle; a miss in the I-cache
will stall the pipeline. In the MEM stage of the pipeline, a load (store) instruction
performs a read (write) from (to) the D-cache. Note that it is assumed here that the
latency for accessing the D-cache, and the I-cache, is within one machine cycle.
As caches become larger and processor logic becomes more deeply pipelined,
maintaining this one machine cycle latency for the caches will become more
difficult.

The interface to the multiported register file is shown in Figure 2.13. Only the
RD and the WB stages access the register file. In every machine cycle, the register

I-cache

Im~m0|l~x n.o.}’

Memory

D-cache

-9 [

Figure 2.12
The Six-Stage TYP Instruction Pipeline’s Interface to the Memory Subsystem.

69

70 MODERN PROCESSOR DESIGN

L.Tl.__t

WAdd WData — WR
Register
RAdd1 File
RAdd2
RDatal RData2

! !

Figure 2.13
The Six-Stage TYP Instruction Pipeline’s Interface to the Multiported Register File.

file must support potentially two register reads by the RD stage and one register
write by the WB stage. Hence, a multiported register file with two read ports and
one write port is required. Such a register file is illustrated in Figure 2.13. It has
three address ports, two data output ports, and one data input port for supporting two
reads and one write in every machine cycle. The instruction that is performing the
register write is in the WB stage and precedes the instruction that is performing
the register reads in the RD stage by three machine cycles or intervening instruc-
tions. Consequently, there are three additional pipeline stage buffers at the register
write address port to ensure that the register write address specifying the destination
register to be written arrives at the register file write address port at exactly the same
time as the data to be written are arriving at the input data port of the register file.
Three-ported register files are not very complex. However, as the number of ports
increases beyond three, the hardware complexity increases very rapidly. This is
especially true for increasing the number of write ports due to circuit design limita-
tions. Multiported register files with up to 20 some ports are feasible and can be
found in some high-end microprocessors.

If we look at the logical diagram of the six-stage TYP instruction pipeline of
Figure 2.10, it appears that every instruction flows through the single linear path
through the six pipeline stages. However, different sets of physical paths in the
physical organization of the TYP instruction pipeline of Figure 2.11 are traversed
by different instruction types. Some of the flow path segments are labeled in
Figure 2.11 to show which pipeline stages they are associated with. Essentially
some of the pipeline stages are physically distributed in the physical organization
diagram of the pipeline.

PIPELINED PROCESSORS

The six-stage TYP instruction pipeline is quite similar to two other instruction
pipelines, namely, the MIPS R2000/R3000 and the instructional DLX processor
used in the popular textbook by John Hennessy and David Patterson [2003]. Both
are five-stage pipelines. The MIPS pipeline combines the IF and ID stages of the
TYP pipeline into one pipeline stage. The DLX pipeline combines the ID and RD
stages of the TYP pipeline into one pipeline stage. The other four stages are essen-
tially the same for all three pipelines. The TYP pipeline is used in the remainder of
this chapter as a running example.

2.2.3 Minimizing Pipeline Stalls

The third point of pipelining idealism assumes that the computations that are per-
formed by the pipeline are mutually independent. In a k-stage pipeline, there can
be k different computations going on at any one time. For an instruction pipeline,
there can be up to k different instructions present or in flight in the pipeline at any
one time. These instructions may not be independent of one another; in fact, usu-
ally there are dependences between the instructions in flight. Having independent
instructions in the pipeline facilitates the streaming of the pipeline; that is, instruc-
tions move through the pipeline without encountering any pipeline stalls. When
there are inter-instruction dependences, they must be detected and resolved. The
resolution of these dependences can require the stalling of the pipeline. The chal-
lenge and design objective is to minimize such pipeline stalls and the resultant
throughput degradation.

2.2.3.1 Program Dependences and Pipeline Hazards. At the ISA abstraction
level, a program is specified as a sequence of assembly language instructions. A
typical instruction can be specified as a function i: T ¢ S1 op S2, where the
domain of instruction i is D(i) = {S1, S2}, the range is R(i) = {T}, and the
mapping from the domain to the range is defined by op, the operation. Given two
instructions i and j, with j following i in the lexical ordering of the two instruc-
tions, a data dependence can exist between i and j, or j can be data-dependent on i,
denoted i, if one of the following three conditions exists.

RG)ND(j)#D (2.8)
R(G)N D) 2D (2.9)
RG)NR(j) 2D (2.10)

The first condition implies that instruction j requires an operand that is in the range
of instruction i. This is referred to as the read-after-write (RAW) or true data
dependence and is denoted id,;. The implication of a true data dependence is that
instruction j cannot begin execution until instruction i completes. The second con-
dition indicates that an operand required by i is in the range of j, or that instruction
Jj will modify the variable which is an operand of i. This is referred to as the write-
after-read (WAR) or anti data dependence and is denoted i 0, . The existence of an
anti-dependence requires that instruction j not complete prior to the execution of

71

72 MODERN PROCESSOR DESIGN

instruction i; otherwise, instruction i will get the wrong operand. The third condi-
tion indicates that both instructions i and j share a common variable in their range,
meaning that both will modify that same variable. This is referred to as the write-
after-write (WAW) or output data dependence and is denoted i3, j. The existence
of an output dependence requires that instruction j not complete before the com-
pletion of instruction i; otherwise, instructions subsequent to j that have the same
variable in their domains will receive the wrong operand. Clearly, the read-after-
read case involves both instructions i and j accessing the same operand and is
harmless regardless of the relative order of the two accesses.

These three possible ways for the domains and ranges of two instructions to over-
lap induce the three types of possible data dependences between two instructions,
namely, true (RAW), anti (WAR), and output (WAW) data dependences. Since, in
assembly code, the domains and the ranges of instructions can be variables residing in
either the registers or memory locations, the common variable in a dependence can
involve either a register or a memory location. We refer to them as register depen-
dences and memory dependences. In this chapter we focus primarily on register depen-
dences. Figure 2.14 illustrates the RAW, WAR, and WAW register data dependences.

Other than data dependences, a control dependence can exist between two
instructions. Given instructions i and j, with j following i, j is control-dependent on
i, denoted id,j, if whether instruction j is executed or not depends on the outcome
of the execution of instruction i. Control dependences are consequences of the
control flow structure of the program. A conditional branch instruction causes
uncertainty on instruction sequencing. Instructions following a conditional branch
can have control dependences on the branch instruction.

An assembly language program consists of a sequence of instructions. The
semantics of this program assume and depend on the sequential execution of the
instructions. The sequential listing of the instructions implies a sequential prece-
dence between adjacent instructions. If instruction i is followed by instruction i + 1
in the program listing, then it is assumed that first instruction i is executed, and
then instruction i + 1 is executed. If such sequential execution is followed, the
semantic correctness of the program is guaranteed. To be more precise, since an
instruction cycle can involve multiple subcomputations, the implicit assumption
is that all the subcomputations of instruction i are carried out before any of the

¢ True dependence
R3 < R; op R, Read-after-write (RAW)
Rs <= Ry op Ry

+ Anti-dependence
Ry <_R; op R, Write-after-read (WAR)
R, "< R4 op Rs

¢ Output dependence
Ry < R; op R, Write-after-write (WAW)

QRS < Ry op Ry

Ry < Rg op R,

Figure 2.14
lllustration of RAW, WAR, and WAW Data Dependences.

PIPELINED PROCESSORS

subcomputations of instruction i + 1 can begin. We called this the total sequential
execution of the program; that is, all the subcomputations of the sequence of
instructions are carried out sequentially.

Given a pipelined processor with & pipeline stages, the processing of k instruc-
tions is overlapped in the pipeline. As soon as instruction i finishes its first sub-
computation and begins its second subcomputation, instruction i + 1 begins its first
subcomputation. The k subcomputations, corresponding to the & pipeline stages, of
a particular instruction are overlapped with subcomputations of other instructions.
Hence, the total sequential execution does not hold. While total sequential execu-
tion is sufficient to ensure semantic correctness, it is not a necessary requirement
for semantic correctness. The total sequential execution implied by the sequential
listing of instructions is an overspecification of the semantics of a program. The
essential requirement in ensuring that the program semantics are not violated is
that all the inter-instruction dependences not be violated. In other words, if there
exists a dependence between two instructions i and j, with j following i in the pro-
gram listing, then the reading/writing of the common variable by instructions i and
J must occur in original sequential order. In pipelined processors, if care is not
taken, there is the potential that program dependences can be violated. Such poten-
tial violations of program dependences are called pipeline hazards. All pipeline
hazards must be detected and resolved for correct program execution.

2.2.3.2 Identification of Pipeline Hazards. Once all the instruction types are
unified into an instruction pipeline and the functionality for all the pipeline stages
is defined, analysis of the instruction pipeline can be performed to identify all the
pipeline hazards that can occur in that pipeline. Pipeline hazards are consequences
of both the organization of the pipeline and inter-instruction dependences. The focus
of this chapter is on scalar instruction pipelines. By definition, a scalar instruction
pipeline is a single pipeline with multiple pipeline stages organized in a linear
sequential order. Instructions enter the pipeline according to the sequential order
specified by the program listing. Except when pipeline stalls occur, instructions
flow through a scalar instruction pipeline in the lockstep fashion; that is, each
instruction advances to the next pipeline stage with every machine cycle. For sca-
lar instruction pipelines, necessary conditions on the pipeline organization for the
occurrence of pipeline hazards due to data dependences can be determined.

A pipeline hazard is a potential violation of a program dependence. Pipeline
hazards can be classified according to the type of program dependence involved.
A WAW hazard is a potential violation of an output dependence. A WAR hazard
is a potential violation of an anti-dependence. A RAW hazard is a potential viola-
tion of a true data dependence. A data dependence involves the reading and/or
writing of a common variable by two instructions. For a hazard to occur, there must
exist at least two pipeline stages in the pipeline which can contain two instructions
that can simultaneously access the common variable.

Figure 2.15 illustrates the necessary conditions on the pipeline organization for
the occurrence of WAW, WAR, and RAW hazards. These necessary conditions
apply to hazards caused by both memory and register data dependences (only register

73

74 MODERN PROCESSOR DESIGN

e [Remerme] ¢ o Reamorr

i8] : i6,] : i8] :
(a) WAW Hazard (b) WAR Hazard (¢) RAW Hazard
Figure 2.15

Necessary Conditions on the Pipeline Organization for the Occurrence of (a) WAW
Hazards, (b) WAR Hazards, and (c) RAW Hazards.

dependences are illustrated in the figure). In order for a WAW hazard to occur due to
an output dependence 9, j, there must exist at least two pipeline stages that can per-
form two simultaneous writes to the common variable; see Figure 2.15(a). If only
one stage in the pipeline can write to that variable, then no hazard can occur because
both writes—in fact all writes—to that variable will be performed by that pipeline
stage according to the original sequential order specified by the program listing.
Figure 2.15(b) specifies that in order for a WAR hazard to occur, there must exist at
least two stages in the pipeline, with an earlier stage x and a later stage y, such that
stage x can write to that variable and stage y can read that variable. In order for the
anti-dependence id,j to be violated, instruction j must perform the write, that is,
reach stage x, prior to instruction i performing the read or reaching stage y. If this
necessary condition does not hold, it is impossible for instruction j, a trailing instruc-
tion, to perform a write prior to instruction i completing its read. For example, if
there exists only one pipeline stage that can perform both the read and write to that
variable, then all accesses to that variable are done in the original sequential order,
and hence no WAR hazard can occur. In the case where the stage performing the
read is earlier in the pipeline than the stage performing the write, the leading instruc-
tion i must complete its read before the trailing instruction j can possibly perform the
write in a later stage in the pipeline. Again, no WAR hazard can occur in such a
pipeline. In actuality, the necessary conditions presented in Figure 2.15 are also suf-
ficient conditions and can be considered as characterizing conditions for the occur-
rence of WAW, WAR, and RAW pipeline hazards.

Figure 2.15(c) specifies that in order for a RAW hazard to occur due to a true
data dependence i9,j, there must exist two pipeline stages x and y, with x occur-
ring earlier in the pipeline than y, such that stage x can perform a read and stage y
can perform a write to the common variable. With this pipeline organization, the
dependence id,j can be violated if the trailing instruction j reaches stage x prior to
the leading instruction i reaching stage y. Arguments similar to that used for WAR
hazards can be applied to show that if this necessary condition does not hold, then
no RAW hazard can occur. For example, if only one pipeline stage performs all

PIPELINED PROCESSORS

the reads and writes, then effectively total sequential execution is carried out and
no hazard can occur. If the stage performing the read is positioned later in the
pipeline than the stage performing the write, then RAW hazards can never occur;
the reason is that all the writes of leading instructions will be completed before the
trailing instructions perform their reads.

Since pipeline hazards are caused by potential violations of program depen-
dences, a systematic procedure for identifying all the pipeline hazards that can
occur in an instruction pipeline can be formulated by considering each dependence
type in turn. The specific procedure employed in this chapter examines program
dependences in the following order.

1. Memory data dependence
a. Output dependence
b. Anti-dependence
c. True data dependence

2. Register data dependence
a. Output dependence
b. Anti-dependence
c. True data dependence

3. Control dependence

We illustrate this procedure by applying it to the six-stage TYP instruction
pipeline. First, memory data dependences are considered. A memory data depen-
dence involves a common variable stored in memory that is accessed (either read
or write) by two instructions. Given a load/store architecture, memory data depen-
dences can only occur between load/store instructions. To determine whether
pipeline hazards can occur due to memory data dependences, the processing of
load/store instructions by the pipeline must be examined. Assuming a split cache
design, in the TYP pipeline, only the MEM stage can access the D-cache. Hence,
all accessing of memory locations by load/store instructions must and can only
occur in the MEM stage; there is only one stage in the pipeline that performs reads
and writes to the data memory. Based on the necessary conditions presented in
Figure 2.15 no pipeline hazards due to memory data dependences can occur in the
TYP pipeline. Essentially, all accesses to the data memory are performed sequen-
tially, and the processing of all load/store instructions is done in the total sequen-
tial execution mode. Therefore, for the TYP pipeline, there are no pipeline hazards
due to memory data dependences.

Register data dependences are considered next. To determine pipeline hazards
that can occur due to register data dependences, all pipeline stages that can access
the register file must be identified. In the TYP pipeline, all register reads occur in
the RD stage and all register writes occur in the WB stage. An output (WAW)
dependence, denoted i3, , indicates that an instruction i and a subsequent instruc-
tion j both share the same destination register. To enforce the output dependence,
instruction i must write to that register first; then instruction j can write to that
same register. In the TYP pipeline, only the WB stage can perform writes to the

75

76 MODERN PROCESSOR DESIGN

register file. Consequently, all register writes are performed in sequential order by
the WB stage; and according to the necessary condition of Figure 2.15(a), no pipe-
line hazards due to output dependences can occur in the TYP pipeline.

An anti (WAR) dependence, denoted 9, j, indicates that instruction i is reading
from a register that is the destination register of a subsequent instruction j. It must
be ensured that instruction i reads that register before instruction j writes into that
register. The only way that an anti-dependence can cause a pipeline hazard is if the
trailing instruction j can perform a register write earlier than instruction i can per-
form its register read. This is an impossibility in the TYP pipeline because all regis-
ter reads occur in the RD stage, which is earlier in the pipeline than the WB stage,
the only stage in which register writes can occur. Hence, the necessary condition of
Figure 2.15(b) does not exist in the TYP pipeline. Consequently, no pipeline haz-
ards due to anti-dependences can occur in the TYP pipeline.

The only type of register data dependences that can cause pipeline hazards
in the TYP pipeline are the true data dependences. The necessary condition of
Figure 2.15(c) exists in the TYP pipeline because the pipeline stage RD that performs
register reads is positioned earlier in the pipeline than the WB stage that performs
register writes. A true data dependence, denoted id,j, involves instruction i writing
into a register and a trailing instruction j reading from that same register. If instruc-
tion j immediately follows instruction i, then when j reaches the RD stage, instruction
i will still be in the ALU stage. Hence, j cannot read the register operand that is the
result of instruction i until i reaches the WB stage. To enforce this data dependence,
instruction j must be prevented from entering the RD stage until instruction i has
completed the WB stage. RAW pipeline hazards can occur for true data dependences
because a trailing instruction can reach the register read stage in the pipeline prior to
the leading instruction completing the register write stage in the pipeline.

Finally, control dependences are considered. Control dependences involve con-
trol flow changing instructions, namely, conditional branch instructions. The outcome
of a conditional branch instruction determines whether the next instruction to be
fetched is the next sequential instruction or the target of the conditional branch instruc-
tion. Essentially there are two candidate instructions that can follow a conditional
branch. In an instruction pipeline, under normal operation, the instruction fetch stage
uses the content of the program counter to fetch the next instruction, and then incre-
ments the content of the program counter to point to the next sequential instruction.
This task is repeated in every machine cycle by the instruction fetch stage to keep the
pipeline filled. When a conditional branch instruction is fetched, potential disruption
of this sequential flow can occur. If the conditional branch is not taken, then the con-
tinued fetching by the instruction fetch stage of the next sequential instruction is cor-
rect. However, if the conditional branch is actually taken, then the fetching of the next
sequential instruction by the instruction fetch stage will be incorrect. The problem is
that this ambiguity cannot be resolved until the condition for branching is known.

A control dependence can be viewed as a form of register data (RAW) depen-
dence involving the program counter (PC). A conditional branch instruction writes
into the PC, whereas the fetching of the next instruction involves reading of the PC.
The conditional branch instruction updates the PC with the address of the target

PIPELINED PROCESSORS 77

instruction if the branch is taken; otherwise, the PC is updated with the address of
the next sequential instruction. In the TYP pipeline, the updating of the PC with
the target instruction address is performed in the MEM stage, whereas the IF stage
uses the content of the PC to fetch the next instruction. Hence, the IF stage per-
forms reads on the PC register, and the MEM stage which occurs later in the pipe-
line performs writes to the PC register. This ordering of the IF and MEM stages,
according to Figure 2.15(c), satisfies the necessary condition for the occurrence of
RAW hazards involving the PC register. Therefore, a control hazard exists in the
TYP pipeline, and it can be viewed as a form of RAW hazard involving the PC.

2.2.3.3 Resolution of Pipeline Hazards. Given the organization of the TYP
pipeline, the only type of pipeline hazards due to data dependences that can occur
are the RAW hazards. In addition, pipeline hazards due to control dependences
can occur. All these hazards involve a leading instruction i that writes to a register
(or PC) and a trailing instruction j that reads that register. With the presence of
pipeline hazards, mechanisms must be provided to resolve these hazards, that is,
ensure that the corresponding data dependences are not violated. With regard to
each RAW hazard in the TYP pipeline, it must be ensured that the read occurs
after the write to the common register, or the hazard register.

To resolve a RAW hazard, the trailing instruction j must be prevented from
entering the pipeline stage in which the hazard register is read by j, until the leading
instruction i has traversed the pipeline stage in which the hazard register is written
by i. This is accomplished by stalling the earlier stages of the pipeline, namely all the
stages prior to the stage performing a register read, thus preventing instruction j from
entering the critical register read stage. The number of machine cycles by which
instruction j must be held back is, in the worst case, equal to the distance between the
two critical stages of the pipeline, that is, the stages performing read and write to the
hazard register. In the case of the TYP pipeline, if the leading instruction i is either
an ALU or a load instruction, the critical register write stage is the WB stage and
the critical register read stage for all trailing instruction types is the RD stage. The
distance between these two critical stages is three cycles; hence, the worst-case
penalty is three cycles, as shown in Table 2.5. The worst-case penalty is incurred

Table 2.5
Worst-case penalties due to RAW hazards in the TYP pipeline

ALU Load Branch

Trailing instruction types (j) ALU, Load/Store, Br. ALU, Load/Store, Br. ALU, Load/Store, Br.
Hazard register Int. register (Ri) Int. register (Ri) pC

Register write stage (/) WB (stage 6) WB (stage 6) MEM (stage 5)
Register read stage (/) RD (stage 3) RD (stage 3) IF (stage 1)

RAW distance or penalty 3 cycles 3 cycles 4 cycles

78 MODERN PROCESSOR DESIGN

when instruction j immediately follows instruction i in the original program listing;
that is, j is equal to i + 1. In this case, instruction j must be stalled for three cycles in
the ID stage and is allowed to enter the RD stage three cycles later as instruction i
exits the WB stage. If the trailing instruction j does not immediately follow instruc-
tion i, that is, if there are intervening instructions between i and j, then the penalty
will be less than three cycles. It is assumed that the intervening instructions do not
depend on instruction i. The actual number of penalty cycles incurred is thus equal
to 3 — s, where s is the number of intervening instructions. For example, if there are
three instructions between i and j, then no penalty cycle is incurred. In this case,
instruction j will be entering the RD stage just as instruction i is exiting the WB
stage, and no stalling is required to satisfy the RAW dependence.

For control hazards, the leading instruction i is a branch instruction, which
updates the PC in the MEM stage. The fetching of the trailing instruction j requires
the reading of the PC in the IF stage. The distance between these two stages is four
cycles; hence, the worst-case penalty is four cycles. When a conditional branch
instruction is encountered, all further fetching of instructions is stopped by stalling
the IF stage until the conditional branch instruction completes the MEM stage in
which the PC is updated with the branch target address. This requires stalling the
IF stage for four cycles. Further analysis reveals that this stalling is only necessary
if the conditional branch is actually taken. If it turns out that the conditional branch
is not taken, then the IF stage could have continued its fetching of the next sequen-
tial instructions. This feature can be included in the pipeline design, so that follow-
ing a conditional branch instruction, the instruction fetching is not stalled.
Effectively, the pipeline assumes that the branch will not be taken. In the event that
the branch is taken, the PC is updated with the branch target in the MEM stage and
all the instructions residing in earlier pipeline stages are deleted, or flushed, and the
next instruction fetched is the branch target. With such a design, the four-cycle
penalty is incurred only when the conditional branch is actually taken, and there is
no penalty cycle otherwise.

Similar to RAW hazards due to register data dependence, the four-cycle pen-
alty incurred by a control hazard can be viewed as the worst-case penalty. If
instructions that are not control-dependent on instruction i can be inserted between
instruction i and instruction j, the control-dependent instruction, then the actual
number of penalty cycles incurred can be reduced by the number of instructions
inserted. This is the concept of delayed branches. Essentially these penalty cycles
are filled by useful instructions that must be executed regardless of whether the
conditional branch is taken. The actual number of penalty cycles is 4 — s, where s
is the number of control-independent instructions that can be inserted between
instructions i and j. Delayed branches or the filling of penalty cycles due to
branches makes it difficult to implement the earlier technique of assuming that the
branch is not taken and allowing the IF stage to fetch down the sequential path.
The reason is that mechanisms must be provided to distinguish the filled instruc-
tions from the actual normal sequential instructions. In the event that the branch is
actually taken, the filled instructions need not be deleted, but the normal sequential
instructions must be deleted because they should not have been executed.

PIPELINED PROCESSORS

2.2.3.4 Penalty Reduction via Forwarding Paths. So far we have implicitly
assumed that the only mechanism available for dealing with hazard resolution is to
stall the dependent trailing instruction and ensure that the writing and reading of
the hazard register are done in their normal sequential order. More aggressive
techniques are available in the actual implementation of the pipeline that can help
reduce the penalty cycles incurred by pipeline hazards. One such technique
involves the incorporation of forwarding paths in the pipeline.

With respect to pipeline hazards, the leading instruction i is the instruction on
which the trailing instruction j depends. For RAW hazards, instruction j needs the
result of instruction i for its operand. Figure 2.16 illustrates the processing of the
leading instruction i in the case when i is an ALU instruction or a load instruction.
If the leading instruction i is an ALU instruction, the result needed by instruction j
is actually produced by the ALU stage and is available when instruction i com-
pletes the ALU stage. In other words, the operand needed by instruction j is actu-
ally available at the output of the ALU stage when instruction i exits the ALU
stage, and j need not wait two more cycles for i to exit the WB stage. If the output
of the ALU stage can be made available to the input side of the ALU stage via a
physical forwarding path, then the trailing instruction j can be allowed to enter the
ALU stage as soon as the leading instruction i leaves the ALU stage. In this case,
instruction j need not access the dependent operand by reading the register file in
the RD stage; instead, it can obtain the dependent operand by accessing the output
of the ALU stage. With the addition of this forwarding path and the associated
control logic, the worst-case penalty incurred is now zero cycles when the leading
instruction is an ALU instruction. Even if the trailing instruction is instruction i + 1,
no stalling is needed because instruction i + 1 can enter the ALU stage as instruc-
tion 7 leaves the ALU stage just as a normal pipeline operation.

4 cycles

1 cycle

Figure 2.16
Incorporation of Forwarding Paths in the TYP Pipeline
to Reduce ALU and Load Penalties.

79

80 MODERN PROCESSOR DESIGN

In the case that the leading instruction is a load instruction rather than an ALU
instruction, a similar forwarding path can be incorporated to reduce the penalty
cycles incurred due to a leading load instruction and a dependent trailing instruc-
tion. Examining Figure 2.16 reveals that if the leading instruction is a load instruc-
tion, the result of this load instruction, that is, the content of the memory location
being loaded into the register, is available at the output of the MEM stage when the
load instruction completes the MEM stage. Again, a forwarding path can be added
from the output of the MEM stage to the input of the ALU stage to support the
requirement of the trailing instruction. The trailing instruction can enter the ALU
stage as soon as the leading load instruction completes the MEM stage. This effec-
tively reduces the worst-case penalty due to a leading load instruction from three
cycles down to just one cycle. In the worst case, the dependent instruction is
instruction i + 1, i.e., j = i + 1. In normal pipeline processing when instruction i is in
the ALU stage, instruction i +1 will be in the RD stage. When instruction i
advances to the MEM stage, instruction i + 1 must be held back at the RD stage via
stalling the earlier stages of the pipeline. However, in the next cycle when instruc-
tion i exits the MEM stage, with the forwarding path from the output of the MEM
stage to the input of the ALU stage, instruction i + 1 can be allowed to enter the
ALU stage. In effect, instruction i + 1 is only stalled for one cycle in the RD stage;
hence the worst-case penalty is one cycle. With the incorporation of the forward-
ing paths the worst-case penalties for RAW hazards can be reduced as shown in
Table 2.6.

The penalty due to a RAW hazard with an ALU instruction as the leading
instruction is referred to as the ALU penalty. Similarly, the penalty due to a leading
load instruction is referred to as the load penalty. For the TYP pipeline, with for-
warding paths added, the ALU penalty is zero cycles. In effect, when the leading
instruction is an ALU instruction, no penalty is incurred. Note that the source of the
forwarding path is the output of the ALU stage, this being the earliest point where the
result of instruction i is available. The destination of the forwarding path is the input
to the ALU stage, this being the latest point where the result from instruction i is

Table 2.6
Worst-case penalties due to RAW hazards in the TYP pipeline when forwarding paths are used

ALU Load Branch

Trailing instruction types (j) ALU, Load/Store, Br. ALU, Load/Store, Br. ALU, Load/Store, Br.
Hazard register Int. register (Ri) Int. register (Ri) PC

Register write stage (i) WB (stage 6) WB (stage 6) MEM (stage 5)
Register read stage (j) RD (stage 3) RD (stage 3) IF (stage 1)

Forward from outputs of: ALU, MEM, WB MEM, WB MEM

Forward to input of: ALU ALU IF

Penalty w/ forwarding paths 0 cycles 1 cycle 4 cycles

PIPELINED PROCESSORS

needed by instruction j. A forwarding path from the earliest point a result is available
to the latest point that result is needed by a dependent instruction is termed the criti-
cal forwarding path, and it represents the best that can be done in terms of reducing
the hazard penalty for that type of leading instruction.

In addition to the critical forwarding path, additional forwarding paths are
needed. For example, forwarding paths are needed that start from the outputs of the
MEM and WB stages and end at the input to the ALU stage. These two additional
forwarding paths are needed because the dependent instruction j could potentially
be instruction i + 2 or instruction i + 3. If j = i + 2, then when instruction j is ready to
enter the ALU stage, instruction i will be exiting the MEM stage. Hence, the result
of instruction i, which still has not been written back to the destination register and
is needed by instruction j, is now available at the output of the MEM stage and must
be forwarded to the input of the ALU stage to allow instruction j to enter that stage
in the next cycle. Similarly, if j = i + 3, the result of instruction i must be forwarded
from the output of the WB stage to the input of the ALU stage. In this case,
although instruction i has completed the write back to the destination register,
instruction j has already traversed the RD stage and is ready to enter the ALU stage.
Of course, in the case that j = i + 4, the RAW dependence is easily satisfied via the
normal reading of the register file by j without requiring the use of any forwarding
path. By the time j reaches the RD stage, i will have completed the WB stage.

If the leading instruction is a load instruction, the earliest point at which the
result of instruction i is available is at the output of the MEM stage, and the latest
point where this result is needed is at the input to the ALU stage. Hence the critical
forwarding path for a leading load instruction is from the output of the MEM stage
to the input of the ALU stage. This represents the best that can be done, and in this
case the incurring of the one cycle penalty is unavoidable. Again, another forward-
ing path from the output of the WB stage to the input of the ALU stage is needed
in case the dependent trailing instruction is ready to enter the ALU stage when
instruction i is exiting the WB stage.

Table 2.6 indicates that no forwarding path is used to reduce the penalty due to
a branch instruction. If the leading instruction i is a branch instruction and given the
addressing mode assumed for the TYP pipeline, the earliest point where the result
is available is at the output of the MEM stage. For branch instructions, the branch
target address and the branch condition are generated in the ALU stage. It is not
until the MEM stage that the branch condition is checked and that the target address
of the branch is loaded into the PC. Consequently, only after the MEM stage can
the PC be used to fetch the branch target. On the other hand, the PC must be avail-
able at the beginning of the IF stage to allow the fetching of the next instruction.
Hence the latest point where the result is needed is at the beginning of the IF stage.
As a result the critical forwarding path, or the best that can be done, is the current
penalty path of updating the PC with the branch target in the MEM stage and start-
ing the fetching of the branch target in the next cycle if the branch is taken. If, how-
ever, the branch condition can be generated early enough in the ALU stage to allow
updating the PC with the branch target address toward the end of the ALU stage,
then in that case the branch penalty can be reduced from four cycles to three cycles.

81

82 MODERN PROCESSOR DESIGN

2.2.3.5 Implementation of Pipeline Interlock. The resolving of pipeline haz-
ards via hardware mechanisms is referred to as pipeline interlock. Pipeline inter-
lock hardware must detect all pipeline hazards and ensure that all the dependences
are satisfied. Pipeline interlock can involve stalling certain stages of the pipeline
as well as controlling the forwarding of data via the forwarding paths.

With the addition of forwarding paths, the scalar pipeline is no longer a simple
sequence of pipeline stages with data flowing from the first stage to the last stage.
The forwarding paths now provide potential feedback paths from outputs of later
stages to inputs of earlier stages. For example, the three forwarding paths needed
to support a leading ALU instruction involved in a pipeline hazard are illustrated
in Figure 2.17. These are referred to as ALU forwarding paths. As the leading
ALU instruction i traverses down the pipeline stages, there could be multiple trail-
ing instructions that are data (RAW) dependent on instruction i. The right side of
Figure 2.17 illustrates how multiple dependent trailing instructions are satisfied
during three consecutive machine cycles. During cycle tl, instruction i forwards
its result to dependent instruction i + 1 via forwarding path a. During the next
cycle, t2, instruction i forwards its result to dependent instruction i + 2 via forward-
ing path b. If instruction i + 2 also requires the result of instruction i + 1, this result
can also be forwarded to i + 2 by i + 1 via forwarding path a during this cycle. Dur-
ing cycle t3, instruction i can forward its result to instruction i + 3 via forwarding
path c. Again, path a or path b can also be activated during this cycle if instruction
i + 3 also requires the result of i + 2 or i + 1, respectively.

' Cycle t1: Cycle t2: Cycle t3:
D E i+1: <= R |i+2: < Ry |i+3: < R
| Baaaenioniionlioiioniiioniioniuiy]
1
tc [b |a 4
: ALU iR <« i+1: < R |i+2 < R,
1
I
[ALU Y
: forwarding MEM E iR < i+ 1. <
: paths
: Y
: WB iR, <«
. I
(i—i+1) (—i+2) (i—i+3)
Forwarding Forwarding i writes R;
via path a via path b before i + 3
reads R,
Figure 2.17

Forwarding Paths for Supporting Pipeline Hazards Due to an ALU Leading Instruction.

PIPELINED PROCESSORS

Register
file

Y Y
l Comp | Comp I | Comp | CompJ

[*]["][*] B B
\Vv *0'/

Figure 2.18
Implementation of Pipeline Interlock for RAW Hazards Involving a Leading ALU Instruction.

The physical implementation of the logical diagram of Figure 2.17 is shown in
Figure 2.18. Note that RAW hazards are detected using comparators that compare
the register specifiers of consecutive instructions. Four 5-bit (assuming 32 registers)
comparators are shown in Figure 2.18. If the trailing instruction j is currently in the
RD stage, that is, attempting to read its two register operands, then the first two com-
parators (to the left) are checking for possible RAW dependences between instruc-
tion j and instruction j — 1, which is now in the ALU stage. These two comparators
are comparing the two source register specifiers of j with the destination register
specifier of j — 1. At the same time the other two comparators (to the right) are
checking for possible RAW dependences between j and j — 2, which is now in the
MEM stage. These two comparators are comparing the two source register specifiers
of j with the destination register specifier of j — 2. The outputs of these four compar-
ators are used as control signals in the next cycle for activating the appropriate for-
warding paths if dependences are detected.

83

84 MODERN PROCESSOR DESIGN

Forwarding path a is activated by the first pair of comparators if any RAW
dependences are detected between instructions j and j — 1. Similarly, forwarding
path b is activated by the outputs of the second pair of comparators for satisfying
any dependences between instructions j and j — 2. Both paths can be simulta-
neously activated if j depends on both j — 1 and j - 2.

Forwarding path ¢ of Figure 2.17 is not shown in Figure 2.18; the reason is that
this forwarding path may not be necessary if appropriate care is taken in the design of
the multiported register file. If the physical design of the three-ported (two reads and
one write) register file performs first the write and then the two reads in each cycle,
then the third forwarding path is not necessary. Essentially instruction j will read the
new, and correct, value of the dependent register when it traverses the RD stage. In
other words, the forwarding is performed internally in the register file. There is no
need to wait for one more cycle to read the dependent register or to forward it from
the output of the WB stage to the input of the ALU stage. This is a reasonable design
choice, which can reduce either the penalty cycle by one or the number of forwarding
paths by one, and it is actually implemented in the MIPS R2000/R3000 pipeline.

To reduce the penalty due to pipeline hazards that involve leading load instruc-
tions, another set of forwarding paths is needed. Figure 2.19 illustrates the two for-
warding paths needed when the leading instruction involved in a pipeline hazard is a
load instruction. These are referred to as load forwarding paths. Forwarding path d
forwards the output of the MEM stage to the input of the ALU stage, whereas path e
forwards the output of the WB stage to the input of the ALU stage. When the leading

>]
Y
RD I i+1: < R, i+ 1 < Ry i+2 < R
mmmmm——— T
: Y
V¢ Load ALZ] iRy < MEM[] —_— i+1: < R
' forwarding)
I path)
! MEM I iiR, < MEM[] —_
1
I
I
| WB iR, < MEM[]
1
iinininieininieininte b ! (i—=i+1) (i—= i+ (i— i+2)
Stalli + 1 Forwarding i writes R,
via path d before i + 2
reads R,

Figure 2.19

Forwarding Paths for Supporting Pipeline Hazards Due to a Leading Load Instruction.

PIPELINED PROCESSORS

instruction i reaches the ALU stage, if instruction i + 1 is dependent on instruction i,
it must be stalled in the RD stage for one cycle. In the next cycle, when instruction i
is exiting the MEM stage, its result can be forwarded to the ALU stage via path d to
allow instruction i + 1 to enter the ALU stage. In case instruction i + 2 also depends
on instruction #, the same result is forwarded in the next cycle via path e from the
WB stage to the ALU stage to allow instruction i + 2 to proceed into the ALU stage
without incurring another stall cycle. Again, if the multiported register file performs
first the write and then the read, then forwarding path ¢ will not be necessary. For
example, instruction i + 2 will read the result of instruction i in the RD stage while
instruction i is simultaneously performing a register write in the WB stage.

The physical implementation of all the forwarding paths for supporting pipeline
hazards due to both ALU and load leading instructions is shown in Figure 2.20. For-
warding path e is not shown, assuming that the register file is designed to perform first
the write and then the read in each cycle. Note that while both ALU forwarding path b

I Register

> file -

B A

——— d

e

Y Y ﬁ)_
Comp | Comp I | Comp | Comp I Path d ? _

Y v KX

ALU
~———
=
Load § I._ ! I
Stall l I
IF, ID, RD
Figure 2.20

D-cache

Y
\u 3774\1 0 f<t— Toad

Implementation of Pipeline Interlock for RAW Hazards Involving ALU and Load Instructions.

85

86 MODERN PROCESSOR DESIGN

and load forwarding path d are shown in Figure 2.17 and Figure 2.19, respectively, as
going from the output of the MEM stage to the input of the ALU stage, these are actu-
ally two different physical paths, as shown in Figure 2.20. These two paths feed into
the first pair of multiplexers, and only one of the two can be selected depending on
whether the leading instruction in the MEM stage is an ALU or a load instruction.
Forwarding path b originates from the buffer in the MEM stage that contains the out-
put of the ALU from the previous machine cycle. Forwarding path d originates from
the buffer in the MEM stage that contains the data accessed from the D-cache.

The same two pairs of comparators are used to detect register dependences
regardless of whether the leading instruction is an ALU or a load instruction. Two
pairs of comparators are required because the interlock hardware must detect pos-
sible dependences between instructions i and i + 1 as well as between instructions i
and i + 2. When the register file is designed to perform first a write and then a read
in each cycle, a dependence between instructions i and i + 3 is automatically satis-
fied when they traverse the WB and RD stages, respectively. The output of the
first pair of comparators is used along with a signal from the ID stage indicating
that the leading instruction is a load to produce a control signal for stalling the first
three stages of the pipeline for one cycle if a dependence is detected between
instructions i and i + 1, and that instruction i is a load.

Pipeline interlock hardware for the TYP pipeline must also deal with pipeline
hazards due to control dependences. The implementation of the interlock mecha-
nism for supporting control hazards involving a leading branch instruction is
shown in Figure 2.21. Normally, in every cycle the IF stage accesses the I-cache to

I-cache

4

Y
| ader | | Daa R

Condition

/0 1\ D‘ ALU

‘—-4-—4_' Target address | I

Y ¢

Invalidate
IF, ID, RD, ALU
Figure 2.21

Implementation of Pipeline Interlock for Hazards Involving a Branch
Instruction.

PIPELINED PROCESSORS 87

fetch the next instruction and at the same time increments the PC in preparation
for fetching the next sequential instruction. When a branch instruction is fetched in
the IF stage and then decoded to be such an instruction in the ID stage, the IF stage
can be stalled until the branch instruction traverses the ALU stage, in which both
the branch condition and the target address are generated. In the next cycle, corre-
sponding to the MEM stage of the branch instruction, the branch condition is used
to load the branch target address into the PC via the right side of the PC multi-
plexer if the branch is taken. This results in a four-cycle penalty whenever a
branch instruction is encountered. Alternatively, the branch instruction can be
assumed to be not taken, and the IF stage continues to fetch subsequent instruc-
tions along the sequential path. In the case when the branch instruction is deter-
mined to be taken, the PC is updated with the branch target during the MEM stage
of the branch instruction, and the sequential instructions in the IF, ID, RD, and
ALU stages are invalidated and flushed from the pipeline. In this case, the four-
cycle penalty is incurred only when the branch is actually taken. If the branch
turns out to be not taken, then no penalty cycle is incurred.

2.2.4 Commercial Pipelined Processors

Pipelined processor design has become a mature and widely adopted technology.
The compatibility of the RISC philosophy with instruction pipelining is well known
and well exploited. Pipelining has also been successfully applied to CISC architec-
tures. This subsection highlights two representative pipelined processors. The
MIPS R2000/R3000 pipeline is presented as representative of RISC pipeline pro-
cessors [Moussouris et al., 1986; Kane, 1987]. The Intel i486 is presented as repre-
sentative of CISC pipelined processors [Crawford, 1990]. Experimental data from
an IBM study on RISC pipelined processors done by Tilak Agerwala and John
Cocke in 1987 are presented as representative of the characteristics and the perfor-
mance capabilities of scalar pipelined processors [Agerwala and Cocke, 1987].

2,2.4.1 RISCPipelined Processor Example. MIPS is a RISC architecture with
32-bit instructions. There are three different instruction formats as shown in
Figure 2.22.

31 26 25 21 20 16 15 0
I-type (immediate) I op I IS It immediate l
31 26 25 0
J-type (jump) L op | target I
31 26 25 21 20 16 15 11 10 65 0
R-type (register) op I rs It [rd re funct l

Figure 2.22
Instruction Formats Used in the MIPS Instruction Set Architecture.

pre)

88 MODERN PROCESSOR DESIGN

Instructions can be divided into four types.

® Computational instructions perform arithmetic, logical, and shift opera-
tions on register operands. They can employ the R-type format if all the
operands and the result are registers, or the I-type format if one of the oper-
ands is specified in the immediate field of the instruction.

® [oad/store instructions move data between the memory and registers. They
employ the I-type format. The only addressing mode is the base register
plus the signed offset stored in the immediate field.

® Jump and branch instructions steer the control flow of the program. Jumps
are unconditional and use the J-type format to jump to an absolute address
composed of the 26-bit target and the high-order 4 bits of the PC. Branches
are conditional and use the I-type format to specify the target address as the
PC plus the 16-bit offset in the immediate field.

® Other instructions in the instruction set are used to perform operations in
the coprocessors and other special system functions. Coprocessor 0 (CPO)
is the system control coprocessor. CPO instructions manipulate the memory
management and exception handling facilities. Floating-point instructions
are implemented as coprocessor instructions and are performed by a sepa-
rate floating-point processor.

The MIPS R2000/R3000 pipeline is a five-stage instruction pipeline quite simi-
lar to the TYP pipeline. However, each pipeline stage is further divided into two
separate phases, identified as phase one (¢ 1) and phase two (¢2). The functions per-
formed by each of the five stages and their phases are described in Table 2.7.

There are a number of interesting features in this five-stage pipeline. The
I-cache access, which requires an entire cycle, actually takes place during ¢2 of

Table 2.7
Functionality of the MIPS R2000/R3000 five-stage pipeline

Stage Name Phase Function Performed

1.1F o1 Translate virtual instruction address using TLB.
02 Access I-cache using physical address.
2.RD 01 Return instructions from |-cache; check tags and parity.
02 Read register file; if a branch, generate target address.
3.ALU o1 Start ALU operation; if a branch, check branch condition.
02 Finish ALU operation; if a load/store, translate virtual
address.
4. MEM 01 Access D-cache.
02 Return data from D-cache; check tags and parity.
5.WB o1 Write register file.

2 —

PIPELINED PROCESSORS 89

the IF stage and ¢ 1 of the RD stage. One translation lookaside buffer (TLB) is used
to do address translation for both the I-cache and the D-cache. The TLB is accessed
during ¢ 1 of the IF stage, for supporting I-cache access and is accessed during ¢2 of
the ALU stage, for supporting D-cache access, which takes place during the MEM
cycle. The register file performs first a write (¢ 1 of WB stage), and then a read (¢2
of RD stage) in every machine cycle. This pipeline requires a three-ported (two
reads and one write) register file and a single-ported I-cache and a single-ported
D-cache to support the IF and MEM stages, respectively.

With forwarding paths from the outputs of the ALU and the MEM stages back
to the input of the ALU stage, no ALU leading hazards will incur a penalty cycle.
The load penalty, that is, the worst-case penalty incurred by a load leading hazard,
is only one cycle with the forwarding path from the output of the MEM stage to
the input of the ALU stage. The branch penalty is also only one cycle. This is
made possible due to several features of the R2000/R3000 pipeline. First, branch
instructions use only PC-relative addressing mode. Unlike a register which must
be accessed during the RD stage, the PC is available after the IF stage. Hence, the
branch target address can be calculated, albeit using a separate adder, during the
RD stage. The second feature is that no explicit condition code bit is generated
and stored. The branch condition is generated during ¢1 of the ALU stage by com-
paring the contents of the referenced register(s). Normally with the branch condi-
tion being generated in the ALU stage (stage 3) and the instruction fetch being
done in the IF stage (stage 1), the expected penalty would be two cycles. How-
ever, in this particular pipeline design the I-cache access actually does not start until
02 of the IF stage. With the branch condition being available at the end of ¢1 of the
ALU stage and since the I-cache access does not begin until ¢2 of the IF stage,
the branch target address produced at the end of the RD stage can be steered by the
branch condition into the PC prior to the start of I-cache access in the middle of the IF
stage. Consequently only a one-cycle penalty is incurred by branch instructions.

Compared to the six-stage TYP pipeline, the five-stage MIPS R2000/R3000
pipeline is a better design in terms of the penalties incurred due to pipeline haz-
ards. Both pipelines have the same ALU and load penalties of zero cycles and one
cycle, respectively. However, due to the above stated features in its design, the
MIPS R2000/R3000 pipeline incurs only one cycle, instead of four cycles, for its
branch penalty. Influenced by and having benefited from the RISC research done
at Stanford University, the MIPS R2000/R3000 has a very clean design and is a
highly efficient pipelined processor.

2.24.2 C(ISCPipelined Processor Example. In 1978 Intel introduced one of the
first 16-bit microprocessors, the Intel 8086. Although preceded by earlier 8-bit
microprocessors from Intel (8080 and 8085), the 8086 began an evolution that would
eventually result in the Intel IA32 family of object code compatible microproces-
sors. The Intel IA32 is a CISC architecture with variable-length instructions and
complex addressing modes, and it is by far the most dominant architecture today in
terms of sales volume and the accompanying application software base. In 1985, the
Intel 386, the 32-bit version of the IA32 family, was introduced [Crawford, 1986].
The first pipelined version of the JA32 family, the Intel 486, was introduced in 1989.

90 MODERN PROCESSOR DESIGN

Table 2.8
Functionality of the Intel 486 five-stage pipeline
Stage Name Function Performed
1. Instruction fetch Fetch instruction from the 32-byte prefetch queue
(prefetch unit fills and flushes prefetch queue).
2. Instruction decode-1 Translate instruction into control signals or microcode
address. Initiate address generation and memory access.
3. Instruction decode-2 Access microcode memory.
Output microinstruction to execute unit.
4. Execute Execute ALU and memory accessing operations.
5. Register write-back Write back result to register.

While the original 8086 chip had less than 30K transistors, the 486 chip has more
than 1M transistors. The 486 is object code compatible with all previous members of
the IA32 family, and it became the most popular microprocessor used for personal
computers in the early 1990s [Crawford, 1990].

The 486 implemented a five-stage instruction pipeline. The functionality of
the pipeline stages is described in Table 2.8. An instruction prefetch unit, via the
bus interface unit, prefetches 16-byte blocks of instructions into the prefetch
queue. During the instruction fetch stage, each instruction is fetched from the
32-byte prefetch queue. Instruction decoding is performed in two stages. Hard-
wired control signals as well as microinstructions are produced during instruction
decoding. The execute stage performs both ALU operations as well as cache
accesses. Address translation and effective address generation are carried out dur-
ing instruction decoding; memory accessing is completed in the execute stage.
Hence, a memory load followed immediately by a use does not incur any penalty
cycle; output of the execute stage is forwarded to its input. However, if an instruc-
tion that produces a register result is followed immediately by another instruction
that uses the same register for address generation, then a penalty cycle is necessary
because address generation is done during instruction decoding. The fifth stage in
the pipeline performs a register write-back. Floating-point operations are carried out
by an on-chip floating-point unit and can incur multiple cycles for their execution.

With the five-stage instruction pipeline, the 486 can execute many IA32 instruc-
tions in one cycle without using microcode. Some instructions require the accessing
of micro-instructions and multiple cycles. The 486 clearly demonstrates the perfor-
mance improvement that can be obtained via instruction pipelining. Based on typical
instruction mix and the execution times for the frequently used IA32 instructions,
the Intel 386 is able to achieve an average cycles per instruction (CPI) of 4.9
[Crawford, 1986]. The pipelined Intel 486 can achieve an average CPI of about 1.95.
This represents a speedup by a factor of about 2.5. In our terminology, the five-stage
i486 achieved an effective degree of pipelining of 2.5. Clearly, significant pipelining
overhead is involved, primarily due to the complexity of the IA32 instruction set

PIPELINED PROCESSORS

architecture and the burden of ensuring object code compatibility. Nonetheless, for a
CISC architecture, the speedup obtained is quite respectable. The 486 clearly dem-
onstrated the feasibility of pipelining a CISC architecture.

2.24.3 Scalar Pipelined Processor Performance. A report documenting the
IBM experience with pipelined RISC machines by Tilak Agerwala and John
Cocke in 1987 provided an assessment of the performance capability of scalar
pipelined RISC processors [Agerwala and Cocke, 1987]. Some of the key obser-
vations from that report are presented here. In this study, it is assumed that the
I-cache and D-cache are separate. The I-cache can supply one instruction per cycle
to the processor. Only load/store instructions access the D-cache. In this study, the
hit rates for both caches are assumed to be 100%. The default latency for both
caches is one cycle. The following characteristics and statistics are used in the
study.

1. Dynamic instruction mix
a. ALU: 40% (register-register)
b. Loads: 25%
c. Stores: 15%
d. Branches: 20%

2. Dynamic branch instruction mix
a. Unconditional: 33.3% (always taken)
b. Conditional—taken: 33.3%
c. Conditional—not taken: 33.3%

3. Load scheduling
a. Cannot be scheduled: 25% (no delay slot filled)
b. Can be moved back one or two instructions: 65% (fill two delay slots)
c. Can be moved back one instruction: 10% (fill one delay slot)

4. Branch scheduling
a. Unconditional: 100% schedulable (fill one delay slot)
b. Conditional: 50% schedulable (fill one delay slot)

The performance of a processor can be estimated using the average cycles per
instruction. The idealized goal of a scalar pipeline processor is to achieve a CPI = 1.
This implies that the pipeline is processing or completing, on the average, one
instruction in every cycle. The IBM study attempted to quantify how closely this
idealized goal can be reached. Initially, it is assumed that there is no ALU penalty
and that the load and branch penalties are both two cycles. Given the dynamic
instruction mix, the CPI overheads due to these two penalties can be computed.

¢ Load penalty overhead: 0.25x2 = 0.5 CPI
¢ Branch penalty overhead: 0.20 X 0.66 x2 = 0.27 CPI
¢ Resultant CPI: 1.0+ 0.5+ 0.27 = 1.77 CPI

91

92 MODERN PROCESSOR DESIGN

Since 25% of the dynamic instructions are loads, if we assume each load
incurs the two-cycle penalty, the CPI overhead is 0.5. If the pipeline assumes that
branch instructions are not taken, or biased for not taken, then only the 66.6%
of the branch instructions that are taken will incur the two-cycle branch penalty.
Taking into account both the load and branch penalties, the expected CPI is 1.77.
This is far from the idealized goal of CPI = 1.

Assuming that a forwarding path can be added to bypass the register file for
load instructions, the load penalty can be reduced from two cycles down to just
one cycle. With the addition of this forwarding path, the CPI can be reduced to
1.0 + 0.25+0.27 = 1.52.

In addition, the compiler can be employed to schedule instructions into the
load and branch penalty slots. Assuming the statistics presented in the preceding
text, since 65% of the loads can be moved back by one or two instructions and
10% of the loads can be moved back by one instruction, a total of 75% of the load
instructions can be scheduled, or moved back, so as to eliminate the load penalty
of one cycle. For 33.3% of the branch instructions that are unconditional, they can
all be scheduled to reduce the branch penalty for them from two cycles to one
cycle. Since the pipeline is biased for not taken branches, the 33.3% of the branches
that are conditional and not taken incur no branch penalty. For the remaining 33.3%
of the branches that are conditional and taken, the assumption is that 50% of them
are schedulable, that is, can be moved back one instruction. Hence 50% of the con-
ditional branches that are taken will incur only a one-cycle penalty, and the other
50% will incur the normal two-cycle penalty. The new CPI overheads and the
resultant CPI are shown here.

e [Load penalty overhead: 0.25 X 0.25x 1 = 0.0625 CPI

e Branch penalty overhead: 0.20 X [0.33 X 1 + 0.33 X 0.5 x 1 +0.33 X
0.5x2]=0.167 CPI

e Resultant CPI: 1.0 + 0.063 + 0.167 = 1.23 CPI

By scheduling the load and branch penalty slots, the CPI overheads due to
load and branch penalties are significantly reduced. The resultant CPI of 1.23 is
approaching the idealized goal of CPI = 1. The CPI overhead due to the branch
penalty is still significant. One way to reduce this overhead further is to consider
ways to reduce the branch penalty of two cycles. From the IBM study, instead of
using the register-indirect mode of addressing, 90% of the branches can be
coded as PC-relative. Using the PC-relative addressing mode, the branch target
address generation can be done without having to access the register file. A sep-
arate adder can be included to generate the target address in parallel with the
register read stage. Hence, for the branch instructions that employ PC-relative
addressing, the branch penalty can be reduced by one cycle. For the 33.3% of the
branches that are unconditional, they are 100% schedulable. Hence, the branch
penalty is only one cycle. If 90% of them can be made PC-relative and conse-
quently eliminate the branch penalty, then only the remaining 10% of the uncon-
ditional branches will incur the branch penalty of one cycle. The corresponding

PIPELINED PROCESSORS

Table 2.9
Conditional branch penalties considering PC-relative addressing and scheduling
of penalty slot

PC-relative Addressing Schedulable Branch Penalty
Yes (90%) Yes (50%) 0 cycles

Yes (90%) No (50%) 1 cycle

No (10%) Yes (50%) 1 cycle

No (10%) No (50%) 2 cycles

CPI overhead for unconditional branches is then 0.20x0.33x0.10x1 =
0.0066 CPI.

With the employment of the PC-relative addressing mode, the fetch stage is
no longer biased for the not taken branches. Hence all conditional branches can be
treated in the same way, regardless of whether they are taken. Depending on
whether a conditional branch can be made PC-relative and whether it can be
scheduled, there are four possible cases. The penalties for these four possible cases
for conditional branches are shown in Table 2.9.

Including both taken and not taken ones, 66.6% of the branches are condi-
tional. The CPI overhead due to conditional branches is derived by considering the
cases in Table 2.9 and is equal to

0.20 x0.66 X { [0.9 X0.5%x 1]+ [0.1 x0.5%x 1]+ [0.1 X0.5%2]} = 0.079 CPI

Combining the CPI overheads due to unconditional and conditional branches results
in the total CPI overhead due to branch penalty of 0.0066 + 0.079 = 0.0856 CPI.
Along with the original load penalty, the new overheads and the resultant overall
CPI are shown here.

® Joad penalty overhead: 0.0625 CPI
e Branch penalty overhead: 0.0856 CPI
¢ Resultant CPI: 1.0 + 0.0625 + 0.0856 = 1.149 CPI

Therefore, with a series of refinements, the original CPI of 1.77 is reduced
to 1.15. This is quite close to the idealized goal of CPI = 1. One way to view
this is that CPI = 1 represents the ideal instruction pipeline, in which a new
instruction is entered into the pipeline in every cycle. This is achievable only if
the third point of pipelining idealism is true, that is, all the instructions are inde-
pendent. In real programs there are inter-instruction dependences. The CPI =
1.15 indicates that only a 15% overhead or inefficiency is incurred in the design
of a realistic instruction pipeline that can deal with inter-instruction depen-
dences. This is quite impressive and reflects the effectiveness of instruction
pipelining.

93

94 MODERN PROCESSOR DESIGN

2.3 Deeply Pipelined Processors

Pipelining is a very effective means of improving processor performance, and there
are strong motivations for employing deep pipelines. A deeper pipeline increases
the number of pipeline stages and reduces the number of logic gate levels in each
pipeline stage. The primary benefit of deeper pipelines is the ability to reduce the
machine cycle time and hence increase the clocking frequency. During the 1980s
most pipelined microprocessors had four to six pipeline stages. Contemporary
high-end microprocessors have clocking frequencies in the multiple-gigahertz
range, and pipeline depths have increased to more than 20 pipeline stages. Pipelines
have gotten not only deeper, but also wider, such as superscalar processors. As
pipelines get wider, there is increased complexity in each pipeline stage, which
can increase the delay of each pipeline stage. To maintain the same clocking fre-
quency, a wider pipeline will need to be made even deeper.

There is a downside to deeper pipelines. With a deeper pipeline the penalties
incurred for pipeline hazard resolution can become larger. Figure 2.23 illustrates
what can happen to the ALU, load, and branch penalties when a pipeline becomes
wider and much deeper. Comparing the shallow and the deep pipelines, we see
that the ALU penalty increases from zero cycles to one cycle, the load penalty
increases from one cycle to four cycles, and most importantly, the branch penalty
goes from three cycles to eleven cycles. With increased pipeline penalties, the
average CPI increases. The potential performance gain due to the higher clocking
frequency of a deeper pipeline can be ameliorated by the increase of CPI. To
ensure overall performance improvement with a deeper pipeline, the increase in
clocking frequency must exceed the increase in CPI.

There are two approaches that can be used to mitigate the negative impact of
the increased branch penalty in deep pipelines; see Figure 2.24. Among the three
pipeline penalties, the branch penalty is the most severe because it spans all
the front-end pipeline stages. With a mispredicted branch, all the instructions in the
front-end pipeline stages must be flushed. The first approach to reduce the branch

G B o

Decode | T TTTTTTTTTreep—————
Dispatch | e —-Decode] Branch
Execute y - penalty

Memory -"‘*---_“ el _ Dispatch__|

, e ALUC T —

Retire . ‘~~-___\ penalty- xecute

~ Memory_]) Load
penalty

\"‘---__ —— Retire - —

Figure 2.23

Impact on ALU, Load, and Branch Penalties with Increasing Pipeline Depth.

PIPELINED PROCESSORS

95

__Ferch_] Front-end —~ Fetch-—1
contraction__ __ - —— » | —-Decode — Branch
Branch --Decode—-{. ===""""" - Dispatch - penalty
penalty ~o —-Execute —
~ Dispatch_ | S~ - -
S~ ~ Memory]
— - Execute -~ DAY ‘
______ Back-end ~~~ _ ——Retire —
Z Memory _ | optimization S~ N
: — Optimize - -
--Retire:'-4/ | jem—————
Figure 2.24

Mitigating the Branch Penalty Impact of Deep Pipelines.

penalty is to reduce the number of pipeline stages in the front end. For example, a
CISC architecture with variable instruction length can require very complex instruc-
tion decoding logic that can require multiple pipeline stages. By using a RISC archi-
tecture, the decoding complexity is reduced, resulting in fewer front-end pipeline
stages. Another example is the use of pre-decoding logic prior to loading instructions
into the I-cache. Pre-decoded instructions fetched from the I-cache require less
decoding logic and hence fewer decode stages.

The second approach is to move some of the front-end complexity to the back
end of the pipeline, resulting in a shallower front end and hence a smaller branch
penalty. This has been an active area of research. When a sequence of instructions
is repeatedly executed by a pipeline, the front-end pipeline stages repeatedly per-
form the same work of fetching, decoding, and dispatching on the same instruc-
tions. Some have suggested that the result of the work done can be cached and
reused without having to repeat the same work. For example, a block of decoded
instructions can be stored in a special cache. Subsequent fetching of these same
instructions can be done by accessing this cache, and the decoding pipeline
stage(s) can be bypassed. Other than just caching these decoded instructions, addi-
tional optimization can be performed on these instructions, leading to further elim-
ination of the need for some of the front-end pipeline stages. Both the caching and
the optimization can be implemented in the back end of the pipeline without
impacting the front-end depth and the associated branch penalty. In order for deep
pipelines to harvest the performance benefit of a higher clocking frequency, the
pipeline penalties must be kept under control.

There are different forms of tradeoffs involved in designing deep pipelines.
As indicated in Section 2.1, a k-stage pipeline can potentially achieve an increase
of throughput by a factor of & relative to a nonpipelined design. When cost is taken
into account, there is a tradeoff involving cost and performance. This tradeoff dic-
tates that the optimal value of k not be arbitrarily large. This is illustrated
in Figure 2.3. This form of tradeoff deals with the hardware cost of implement-
ing the pipeline, and it indicates that there is a pipeline depth beyond which the

96 MODERN PROCESSOR DESIGN

additional cost of pipelining cannot be justified by the diminishing return on the
performance gain.

There is another form of tradeoff based on the foregoing analysis of CPI
impact induced by deep pipelines. This tradeoff involves the increase of clocking
frequency versus the increase of CPI. According to the iron law of processor per-
formance (Sec. 1.3.1, Eq. 1.1), performance is determined by the product of clock-
ing frequency and the average IPC, or the frequency/CPI ratio. As pipelines get
deeper, frequency increases but so does CPI. Increasing the pipeline depth is prof-
itable as long as the added pipeline depth brings about a net increase in perfor-
mance. There is a point beyond which pipelining any deeper will lead to little or
no performance improvement. The interesting question is, How deep can a pipe-
line go before we reach this point of diminishing returns?

A number of recent studies have focused on determining the optimum pipeline
depth [Hartstein and Puzak, 2002, 2003; Sprangle and Carmean, 2002; Srinivasan
et al., 2002] for a microprocessor. As pipeline depth increases, frequency can be
increased. However the frequency does not increase linearly with respect to
the increase of pipeline depth. The sublinear increase of frequency is due to the
overhead of adding latches. As pipeline depth increases, CPI also increases
due to the increase of branch and load penalties. Combining frequency and
CPI behaviors yields the overall performance. As pipeline depth is increased,
the overall performance tends to increase due to the benefit of the increased
frequency. However when pipeline depth is further increased, there reaches a
point where the CPI overhead overcomes the benefit of the increased frequency;
any further increase of pipeline depth beyond this point can actually bring
about the gradual decrease of overall performance. In a recent study, Hartstein
and Puzak [2003] showed, based on their performance model, this point
of diminishing return, and hence the optimum pipeline depth, occurs around
pipeline depth of ~25 stages. Using more aggressive assumptions, Sprangle and
Carmean [2002] showed that the optimum pipeline depth is actually around
50 stages.

If power consumption is taken into account, the optimum pipeline depth is
significantly less than 25 or 50 pipe stages. The higher frequency of a deeper
pipeline leads to a significant increase of power consumption. Power consump-
tion can become prohibitive so as to render a deep pipeline infeasible, even if
there is more performance to be harvested. In the same study, Hartstein and
Puzak [2003] developed a new model for optimum pipeline depth by taking into
account power consumption in addition to performance. They use a model based
on the BIPSM3/W metric, where BIPS*3 is billions of instructions per second to
the third power, and W is watt. This model essentially favors performance (BIPS)
to power (W) by a ratio of 3 to 1. Given their model, the optimum pipeline depth is
now more in the range of 6-9 pipe stages. Assuming lower latching overhead and
with increasing leakage power, they showed the optimum pipeline depth could
potentially be in the range of 10-15 pipe stages. While in recent years we have
witnessed the relentless push towards ever higher clocking frequencies and ever

PIPELINED PROCESSORS

deeper pipelines, the constraints due to power consumption and heat dissipation
can become serious impediments to this relentless push.

2.4 Summary

Pipelining is a microarchitecture technique that can be applied to any ISA. It is
true that the features of RISC architectures make pipelining easier and produce
more efficient pipeline designs. However, pipelining is equally effective on CISC
architectures. Pipelining has proved to be a very powerful technique in increasing
processor performance, and in terms of pipeline depth there is still plenty of head-
room. We can expect much deeper pipelines.

The key impediment to pipelined processor performance is the stalling of the
pipeline due to inter-instruction dependences. A branch penalty due to control
dependences is the biggest culprit. Dynamic branch prediction can alleviate this
problem so as to incur the branch penalty only when a branch misprediction
occurs. When a branch is correctly predicted, there is no stalling of the pipeline;
however, when a branch misprediction is detected, the pipeline must be flushed.

As pipelines get deeper, the branch penalty increases and becomes the key
challenge. One strategy is to reduce the branch penalty by reducing the depth of
the front end of the pipeline, that is, the distance between the instruction fetch
stage and the stage in which branch instructions are resolved. An alternative is to
increase the accuracy of the dynamic branch prediction algorithm so that the fre-
quency of branch misprediction is reduced; hence, the frequency of incurring the
branch penalty is also reduced. We did not cover dynamic branch prediction in this
chapter. This is a very important topic, and we have chosen to present branch pre-
diction in the context of superscalar processors. We will get to it in Chapter 5.

Pipelined processor design alters the relevance of the classic view of CPU
design. The classic view partitions the design of a processor into data path design
and control path design. Data path design focuses on the design of the ALU and
other functional units as well as the accessing of registers. Control path design
focuses on the design of the state machines to decode instructions and generate the
sequence of control signals necessary to appropriately manipulate the data path.
This view is no longer relevant. In a pipelined processor this partition is no longer
obvious. Instructions are decoded in the decode stage, and the decoded instruc-
tions, including the associated control signals, are propagated down the pipeline
and used by various subsequent pipeline stages. Each pipeline stage simply uses
the appropriate fields of the decoded instruction and associated control signals.
Essentially there is no longer the centralized control performed by the control
path. Instead, a form of distributed control via the propagation of the control sig-
nals through the pipeline stages is used. The traditional sequencing through multi-
ple control path states to process an instruction is now replaced by the traversal
through the various pipeline stages. Essentially, not only is the data path pipelined,
but also the control path. Furthermore, the traditional data path and the control
path are now integrated into the same pipeline.

97

98 MODERN PROCESSOR DESIGN

REFERENCES

Agerwala, T., and J. Cocke: “High performance reduced instruction set processors,” Tech-
nical report, IBM Computer Science, 1987.

Bloch, E.: “The engineering design of the STRETCH computer,” Proc. Fall Joint Computer
Conf., 1959, pp. 48-59.

Bucholtz, W.: Planning a Computer System: Project Stretch. New York: McGraw-Hill, 1962.
Crawford, J.: “Architecture of the Intel 80386,” Proc. IEEE Int. Conf. on Computer
Design: VLSI in Computers, 1986, pp. 155-160.

Crawford, J.: “The execution pipeline of the Intel i486 CPU,” Proc. COMPCON Spring "90,
1990, pp. 254-258.

Hartstein, A., and T. R. Puzak: “Optimum power/performance pipeline depth,” Proc. of the
36th Annual International Symposium on Microarchitecture (MICRO), Dec. 2003.

Hartstein, A., and T. R. Puzak: “The optimum pipeline depth for a microprocessor,” Proc. of
the 29th Annual International Symposium on Computer Architecture (ISCA), June 2002.

Hennessy, J., and D. Patterson: Computer Architecture: A Quantitative Approach, 3rd ed.,
San Mateo, CA: Morgan Kaufmann Publishers, 2003.

Kane, G.: MIPS R2000/R3000 RISC Architecture. Englewood Cliffs, NJ: Prentice Hall, 1987.
Kogge, P.: The Architecture of Pipelined Computers. New York: McGraw-Hill, 1981.

Moussouris, J., L. Crudele, D. Frietas, C. Hansen, E. Hudson, R. March, S. Przybylski, and
T. Riordan: “A CMOS RISC processor with integrated system functions,” Proc.
COMPCON, 1986, pp. 126-131.

Sprangle, E., and D. Carmean: “Increasing processor performance by implementing deeper
pipelines,” Proc. of the 29th Annual International Symposium on Computer Architecture

(ISCA), June 2002.

Srinivasan, V., D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Strenski, and P. G.
Emma: “Optimizing pipelines for power and performance,” Proc. of the 35th Annual Inter-
national Symposium on Microarchitecture (MICRO), Dec. 2002.

Thornton, J. E.: “Parallel operation in the Control Data 6600,” AFIPS Proc. FJCC part 2,
vol. 26, 1964, pp. 33-40.

Waser, S., and M. Flynn: Introduction to Arithmetic for Digital Systems Designers. New York:
Holt, Rinehart, and Winston, 1982.

HOMEWORK PROBLEMS

P2.1 Equation (2.4), which relates the performance of an ideal pipeline to
pipeline depth, looks very similar to Amdahl’s law. Describe the relation-
ship between the terms in these two equations, and develop an intuitive
explanation for why the two equations are so similar.

P2.2 Using Equation (2.7), the cost/performance optimal pipeline depth k,,
can be computed using parameters G, T, L, and S. Compute k,,, for the
pipelined floating-point multiplier example in Section 2.1 by using the

chip count as the cost terms (G = 175 chips and L = 82/2 = 41 chips

PIPELINED PROCESSORS 99

per interstage latch) and the delays shown for Tand S (T=400 ns, S =
22 ns). How different is k,,, from the proposed pipelined design?

P2.3 Identify and discuss two reasons why Equation (2.4) is only useful for
naive approximations of potential speedup from pipelining.

P2.4 Consider that you would like to add a load-immediate instruction to the
TYP instruction set and pipeline. This instruction extracts a 16-bit
immediate value from the instruction word, sign-extends the immedi-
ate value to 32 bits, and stores the result in the destination register
specified in the instruction word. Since the extraction and sign-extension
can be accomplished without the ALU, your colleague suggests that
such instructions be able to write their results into the register in the
decode (ID) stage. Using the hazard detection algorithm described in
Figure 2.15, identify what additional hazards such a change might
introduce.

P2.5 Ignoring pipeline interlock hardware (discussed in Problem 6), what
additional pipeline resources does the change outlined in Problem 4
require? Discuss these resources and their cost.

P2.6 Considering the change outlined in Problem 4, redraw the pipeline
interlock hardware shown in Figure 2.18 to correctly handle the load-
immediate instructions.

P2.7 Consider that you would like to add byte-wide ALU instructions to the
TYP instruction set and pipeline. These instructions have semantics that
are otherwise identical to the existing word-width ALU instructions,
except that the source operands are only 1 byte wide and the destination
operand is only 1 byte wide. The byte-wide operands are stored in the
same registers as the word-wide instructions, in the low-order byte, and
the register writes must only affect the low-order byte (i.e., the high-
order bytes must remain unchanged). Redraw the RAW pipeline inter-
lock detection hardware shown in Figure 2.18 to correctly handle these
additional ALU instructions.

P2.8 Consider adding a store instruction with an indexed addressing mode
to the TYP pipeline. This store differs from the existing store with the
register + immediate addressing mode by computing its effective add-
ress as the sum of two source registers, that is, stx r3,r4,r5 performs
r3«MEM[r4+15]. Describe the additional pipeline resources needed to
support such an instruction in the TYP pipeline. Discuss the advan-
tages and disadvantages of such an instruction.

P2.9 Consider adding a load-update instruction with register + immediate
and postupdate addressing mode. In this addressing mode, the effec-
tive address for the load is computed as register + immediate, and
the resulting address is written back into the base register. That is,
Iwu r3,8(r4) performs r3<—MEM][r448]; r4«r4+8. Describe the

100 MODERN PROCESSOR DESIGN

additional pipeline resources needed to support such an instruction in
the TYP pipeline.

P2.10 Given the change outlined in Problem 9, redraw the pipeline interlock
hardware shown in Figure 2.20 to correctly handle the load-update
instruction.

P2.11 Bypass network design: given the following ID, EX, MEM, and WB
pipeline configuration, draw all necessary Mux0 and Muxl bypass
paths to resolve RAW data hazards. Assume that load instructions are
always separated by at least one independent instruction [possibly a
no-operation instruction (NOP)] from any instruction that reads the
loaded register (hence you never stall due to a RAW hazard).

v MEM

Data Cache <

MEM
WB

P2.12 Given the forwarding paths in Problem 11, draw a detailed design for
Mux0 and Muxl that clearly identifies which bypass paths are
selected under which control conditions. Identify each input to each

PIPELINED PROCESSORS 101

mux by the name of the pipeline latch that it is bypassing from. Spec-
ify precisely the boolean equations that are used to control Mux0 and
Mux]1. Possible inputs to the boolean equations are:

e ID.OP, EX.OP, MEM.OP = {‘load’, ‘store’, ‘alu’, ‘other’}

¢ ID.ReadReg0, ID.ReadRegl =[0..31,32] where 32 means a register
is not read by this instruction

e EX ReadRegO, etc., as in ID stage
e MEM.ReadReg0, etc., as in ID stage

e ID.WriteReg, EX.WriteReg, MEM.WriteReg = [0..31,33] where 33
means a register is not written by this instruction

® Draw Mux0 and Mux1 with labeled inputs; you do not need to show
the controls using gates. Simply write out the control equations
using symbolic OP comparisons, etc. [e.g., Ctrll = (ID.op == ‘load’)
& (ID.WriteReg==MEM.ReadReg0)].

P2.13 Given the IBM experience outlined in Section 2.2.4.3, compute the
CPI impact of the addition of a level-zero data cache that is able to sup-
ply the data operand in a single cycle, but only 75% of the time. The
level-zero and level-one caches are accessed in parallel, so that when
the level-zero cache misses, the level-one cache returns the result in the
next cycle, resulting in one load-delay slot. Assume uniform distribu-
tion of level-zero hits across load-delay slots that can and cannot be
filled. Show your work.

P2.14 Given the assumptions of Problem 13, compute the CPI impact if the
level-one cache is accessed sequentially, only after the level-zero
cache misses, resulting in two load-delay slots instead of one. Show
your work.

P2.15 The IBM study of pipelined processor performance assumed an
instruction mix based on popular C programs in use in the 1980s.
Since then, object-oriented languages like C++ and Java have become
much more common. One of the effects of these languages is that
object inheritance and polymorphism can be used to replace condi-
tional branches with virtual function calls. Given the IBM instruction
mix and CPI shown in the following table, perform the following trans-
formations to reflect the use of C++ and Java, and recompute the over-
all CPI and speedup or slowdown due to this change:

® Replace 50% of taken conditional branches with a load instruction
followed by a jump register instruction (the load and jump register
implement a virtual function call).

® Replace 25% of not-taken branches with a load instruction followed
by a jump register instruction.

102 MODERN PROCESSOR DESIGN

Instruction Old Mix, New Mix,
Type % Latency OIld CPl Cycles % Instructions Cycles New CPI
Load 250 2 0.50 500

Store 15.0 1 0.15 150

Arithmetic 30.0 1 030 300

Logical 10.0 1 0.10 100

Branch-T 8.0 3 0.24 240

Branch-NT 6.0 2 0.12 120

Jump 5.0 2 0.10 100

Jump register 1.0 3 0.03 30

Total 100.0 1.54 1540

P2.16 In a TYP-based pipeline design with a data cache, load instructions
check the tag array for a cache hit in parallel with accessing the data
array to read the corresponding memory location. Pipelining stores
to such a cache is more difficult, since the processor must check
the tag first, before it overwrites the data array. Otherwise, in the
case of a cache miss, the wrong memory location may be overwritten
by the store. Design a solution to this problem that does not require
sending the store down the pipe twice, or stalling the pipe for every
store instruction, or dual-porting the data cache. Referring to
Figure 2.15, are there any new RAW, WAR, and/or WAW memory
hazards?

P2.17 The MIPS pipeline shown in Table 2.7 employs a two-phase clocking
scheme that makes efficient use of a shared TLB, since instruction fetch
accesses the TLB in phase one and data fetch accesses in phase two.
However, when resolving a conditional branch, both the branch target
address and the branch fall-through address need to be translated during
phase one—in parallel with the branch condition check in phase one of
the ALU stage—to enable instruction fetch from either the target or the
fall-through during phase two. This seems to imply a dual-ported TLB.
Suggest an architected solution to this problem that avoids dual-porting
the TLB.

Problems 18 through 24: Instruction
Pipeline Design

This problem explores pipeline design. As discussed earlier, pipelining involves
balancing the pipe stages. Good pipeline implementations minimize both internal

PIPELINED PROCESSORS 103

and external fragmentation to create simple balanced designs. Below is a nonpipe-

lined implementation of a simple microprocessor that executes only ALU instruc-
tions, with no data hazards:

0.5 ns setup

Clk
—-»E Program counter (1 ns) I

\

Instruction
cache
(6 ns)

32 bits

Y 16

Function Sourct;
decoder ol operand
o decoder decoder

(2.5 ns) (3.5 ns) 4

3 10 *
5 I 5
- Register w1
File

5 (4 ns) WEN[<
R2

Ol 02

>

104 MODERN PROCESSOR DESIGN

P2.18 Generate a pipelined implementation of the simple processor outlined in
the figure that minimizes internal fragmentation. Each subblock in the
diagram is a primitive unit that cannot be further partitioned into smaller
ones. The original functionality must be maintained in the pipelined
implementation. Show the diagram of your pipelined implementation.
Pipeline registers have the following timing requirements:

® (.5-ns setup time
e]-ns delay time (from clock to output)

P2.19 Compute the latencies (in nanoseconds) of the instruction cycle of the
nonpipelined and the pipelined implementations.

P2.20 Compute the machine cycle times (in nanoseconds) of the nonpipe-
lined and the pipelined implementations.

P2.21 Compute the (potential) speedup of the pipelined implementation in
Problems 18-20 over the original nonpipelined implementation.

P2.22 What microarchitectural techniques could be used to further reduce the
machine cycle time of pipelined designs? Explain how the machine
cycle time is reduced.

P2.23 Draw a simplified diagram of the pipeline stages in Problem 18; you
should include all the necessary data forwarding paths. This diagram
should be similar to Figure 2.16.

P2.24 Discuss the impact of the data forwarding paths from Problem 23 on
the pipeline implementation in Problem 18. How will the timing be
affected? Will the pipeline remain balanced once these forwarding
paths are added? What changes to the original pipeline organization of
Problem 18 might be needed?

CHAPTER

3

Memory and I/0 Systems

CHAPTER OUTLINE
3 Introduction
37 Computer System Overview

23 Key Concepts: Latency and Bandwidth
34 Memory Hierarchy

35 Virtual Memory Systems

36 Memory Hierarchy Implementation
37 Input/Output Systems

38 Summary

References
Homework Problems

3.1 Introduction

The primary focus of this book is the design of advanced, high-performance proces-
sors; this chapter examines the larger context of computer systems that incorporate
such processors. Basic components, such as memory systems, input and output,
and virtual memory, and the ways in which they are interconnected are described
in relative detail to enable a better understanding of the interactions between
high-performance processors and the peripheral devices they are connected to.
Clearly, processors do not exist in a vacuum. Depending on their intended appli-
cation, processors will interact with other components internal to a computer system,
devices that are external to the system, as well as humans or other external entities.
The speed with which these interactions occur varies with the type of communica-
tion that is necessary, as do the protocols used to communicate with them. Typically,
interacting with performance-critical entities such as the memory subsystem is
accomplished via proprietary, high-speed interfaces, while communication with

105

106 MODERN PROCESSOR DESIGN

peripheral or external devices is accomplished across industry-standard interfaces
that sacrifice some performance for the sake of compatibility across multiple ven-
dors. Usually such interfaces are balanced, providing symmetric bandwidth to and
from the device. However, interacting with physical beings (such as humans) often
leads to unbalanced bandwidth requirements. Even the fastest human typist can
generate input rates of only a few kilobytes per second. In contrast, human visual
perception can absorb more than 30 frames per second of image data, where each
image contains several megabytes of pixel data, resulting in an output data rate of
over 100 megabytes per second (Mbytes/s).

Just as the bandwidth requirements of various components can vary dramati-
cally, the latency characteristics are diverse as well. For example, studies have
shown that while subsecond response times (a response time is defined as the inter-
val between a user issuing a command via the keyboard and observing the
response on the display) are critical for the productivity of human computer users,
response times much less than a second provide rapidly diminishing returns.
Hence, low latency in responding to user input through the keyboard or mouse is not
that critical. In contrast, modern processors operate at frequencies that are much
higher than main memory subsystems. For example, a state-of-the-art personal
computer has a processor that is clocked at 3 GHz today, while the synchronous
main memory is clocked at only 133 MHz. This mismatch in frequency can cause
the processor to starve for instructions and data as it waits for memory to supply
them, hence motivating high-speed processor-to-memory interfaces that are opti-
mized for low latency.

Section 3.2 presents an overview of modern computer systems. There are
numerous interesting architectural tradeoffs in the design of hardware subsystems,
interfaces, and protocols to satisfy input/output requirements that vary so dramati-
cally. In Section 3.3, we define the fundamental metrics of bandwidth and latency
and discuss some of the tradeoffs involved in designing interfaces that meet require-
ments for both metrics. In Section 3.4, we introduce the concept of a memory hierar-
chy and discuss the components used to build a modern memory hierarchy as well as
the key tradeoffs and metrics used in the design process. Section 3.5 introduces the
notion of virtual memory, which is critically important in modern systems that time-
share physical execution resources. Finally, Section 3.7 discusses various input/
output devices, their key characteristics, and the interconnects used in modern
systems to allow them to communicate with each other and with the processor.

3.2 Computer System Overview

As illustrated in Figure 3.1, a typical computer system consists of a processor or
CPU, main memory, and an input/output (I/O) bridge connected to a processor
bus, and peripheral devices such as a network interface, a disk controller driving
one or more disk drives, a display adapter driving a display, and input devices
such as a keyboard or mouse, all connected to the I/O bus. The main memory pro-
vides volatile storage for programs and data while the computer is powered up.
The design of efficient, high-performance memory systems using a hierarchical

MEMORY AND 1/0 SYSTEMS 107

CPU

y Display
adapter

Y

Processor bus
\ A

A Y

1/0 bus

/

Memory I/0 bridge [

Disk y SCSI bus
controller g/
Network
interface,

Figure 3.1
A Typical Computer System.

approach that exploits temporal and spatial locality is discussed in detail in Sec-
tion 3.4. In contrast to volatile main memory, a disk drive provides persistent storage
that survives even when the system is powered down. Disks can also be used to
transparently increase effective memory capacity through the use of virtual memory,
as described in Section 3.5. The network interface provides a physical connection
for communicating across local area or wide area networks (LANs or WANSs) with
other computer systems; systems without local disks can also use the network
interface to access remote persistent storage on file servers. The display subsystem
is used to render a textual or graphical user interface on a display device such as a
cathode-ray tube (CRT) or liquid-crystal display (LCD). Input devices enable a
user or operator to enter data or issue commands to the computer system. We will
discuss each of these types of peripheral devices (disks, network interfaces, display
subsystems, and input devices) in Section 3.7.1.

Finally, a computer system must provide a means for interconnecting all these
devices, as well as an interface for communicating with them. We will discuss vari-
ous types of busses used to interconnect peripheral devices in Section 3.7.2 and
will describe polling, interrupt-driven, and programmed means of communication
with I/O devices in Section 3.7.3.

3.3 Key Concepts: Latency and Bandwidth

There are two fundamental metrics that are commonly used to characterize various
subsystems, peripheral devices, and interconnections in computer systems. These
two metrics are latency, measured in unit time, and bandwidth, measured in quantity
per unit time. Both metrics are important for understanding the behavior of a system,
so we provide definitions and a brief introduction to both in this section.

108 MODERN PROCESSOR DESIGN

XMP
.

*

i

Latency is defined as the elapsed time between issuing a request or command to
a particular subsystem and receiving a response or reply. It is measured either in
units of time (seconds, microseconds, milliseconds, etc.) or cycles, which can be
trivially translated to time given cycle time or frequency. Latency provides a mea-
surement of the responsiveness of a particular system and is a critical metric for
any subsystem that satisfies time-critical requests. An example of such a system is
the memory subsystem, which must provide the processor with instructions and
data; latency is critical because processors will usually stall if the memory sub-
system does not respond rapidly. Latency is also sometimes called response time
and can be decomposed into the inherent delay of a device or subsystem, called the
service time, which forms the lower bound for the time required to satisfy a request,
and the queueing time, which results from waiting for a particular resource to
become available. Queueing time is greater than zero only when there are multiple
concurrent requests competing for access to the same resource, and one or more of
those requests must delay while waiting for another to complete.

Bandwidth is defined as the throughput of a subsystem; that is, the rate at
which it can satisfy requests. Bandwidth is measured in quantity per unit time, where
the quantity measured varies based on the type of request. At its simplest, bandwidth
is expressed as the number of requests per unit time. If each request corresponds to
a fixed number of bytes of data, for example, bandwidth can also be expressed as
the number of bytes per unit time.

Naively, bandwidth can be defined as the inverse of latency. That is, a device
that responds to a single request with latency / will have bandwidth equal to or
less than 1/, since it can accept and respond to one request every / units of time.
However, this naive definition precludes any concurrency in the handling of
requests. A high-performance subsystem will frequently overlap multiple requests
to increase bandwidth without affecting the latency of a particular request. Hence,
bandwidth is more generally defined as the rate at which a subsystem is able to
satisfy requests. If bandwidth is greater than 1//, we can infer that the subsystem
supports multiple concurrent requests and is able to overlap their latencies
with each other. Most high-performance interfaces, including processor-to-memory
interconnects, standard input/output busses like peripheral component interfaces
(PCIs), and device interfaces like small computer systems interface (SCSI),
support multiple concurrent requests and have bandwidth significantly higher
than 1/1.

Quite often, manufacturers will also report raw or peak bandwidth numbers,
which are usually derived directly from the hardware parameters of a particular
interface. For example, a synchronous dynamic random-access memory (DRAM)
interface that is 8 bytes wide and is clocked at 133 MHz may have a reported peak
bandwidth of 1 Gbyte/s. These peak numbers will usually be substantially higher than
sustainable bandwidth, since they do not account for request and response transaction
overheads or other bottlenecks that might limit achievable bandwidth. Sustainable
bandwidth is a more realistic measure that represents bandwidth that the sub-
system can actually deliver. Nevertheless, even sustainable bandwidth might be
unrealistically optimistic, since it may not account for real-life access patterns and

MEMORY AND 1/0 SYSTEMS 109

other system components that may cause additional queueing delays, increase
overhead, and reduce delivered bandwidth.

In general, bandwidth is largely driven by product-cost constraints rather than
fundamental limitations of a given technology. For example, a bus can always be
made wider to increase the number of bytes transmitted per cycle, hence increas-
ing the bandwidth of the interface. This will increase cost, since the chip pin count
and backplane trace count for the bus may double, and while the peak bandwidth
may double, the effective or sustained bandwidth may increase by a much smaller
factor. However, it is generally true that a system that is performance-limited
due to insufficient bandwidth is either poorly engineered or constrained by cost
factors; if cost were no object, it would usually be possible to provide adequate
bandwidth.

Latency is fundamentally more difficult to improve, since it is often dominated
by limitations of a particular technology, or possibly even the laws of physics. For
example, the electrical characteristics of a given signaling technology used in a mul-
tidrop backplane bus will determine the maximum frequency at which that bus can
operate. It follows that the minimum latency of a transaction across that bus is
bounded by the cycle time corresponding to that maximum frequency. A common
strategy for improving latency, short of transitioning to a newer, faster, technology,
is to decompose the latency into the portions that are due to various subcomponents
and attempt to maximize the concurrency of those components. For example, a
modern multiprocessor system like the IBM pSeries 690 exposes concurrency in
handling processor cache misses by fetching the missing block from DRAM main
memory in parallel with checking other processors’ caches to try and find a newer,
modified copy of the block. A less aggressive approach would first check the other
processors’ caches and then fetch the block from DRAM only if no other processor
has a modified copy. The latter approach serializes the two events, leading to
increased latency whenever a block needs to be fetched from DRAM.

However, there is often a price to be paid for such attempts to maximize concur-
rency, since they typically require speculative actions that may ultimately prove to
be unnecessary. In the preceding multiprocessor example, if a newer, modified
copy is found in another processor’s cache, the block must be supplied by that
cache. In this case, the concurrent DRAM fetch proves to be unnecessary and con-
sumes excess memory bandwidth and wastes energy. However, despite such cost,
various forms of speculation are commonly employed in an attempt to reduce the
observed latency of a request. As another example, modern processors incorporate
prefetch engines that look for patterns in the reference stream and issue specula-
tive memory fetches to bring blocks into their caches in anticipation of demand
references to those blocks. In many cases, these additional speculative requests or
prefetches prove to be unnecessary, and end up consuming additional bandwidth.
However, when they are useful, and a subsequent demand reference occurs to a
speculatively prefetched block, the latency of that reference corresponds to hitting in
the cache and is much lower than if the prefetch had not occurred. Hence, average
latency for all memory references can be lowered at the expense of consuming
additional bandwidth to issue some number of useless prefetches.

110 MODERN PROCESSOR DESIGN

In summary, bandwidth and latency are two fundamental attributes of com-
puter system components, peripheral devices, and interconnection networks.
Bandwidth can usually be improved by adding cost to the system, but in a well-
engineered system that maximizes concurrency, latency is usually much more
difficult to improve without changing the implementation technology or using
various forms of speculation. Speculation can be used to improve the observed
latency for a request, but this usually happens at the expense of additional band-
width consumption. Hence, in a well-designed computer system, latency and
bandwidth need to be carefully balanced against cost, since all three factors are
interrelated.

3.4 Memory Hierarchy

One of the fundamental needs that a computer system must meet is the need for
storage of data and program code, both while the computer is running, to support
storage of temporary results, as well as while the computer is powered off, to
enable the results of computation as well as the programs used to perform that
computation to survive across power-down cycles. Fundamentally, such storage is
nothing more than a sea of bits that is addressable by the processor. A perfect storage
technology for retaining this sea of bits in a computer system would satisfy the
following memory idealisms:

® [nfinite capacity. For storing large data sets and large programs.

® [nfinite bandwidth. For rapidly streaming these large data sets and programs
to and from the processor.

® [nstantaneous or zero latency. To prevent the processor from stalling while
waiting for data or program code.

® Persistence or nonvolatility. To allow data and programs to survive even
when the power supply is cut off.

® Zero or very low implementation cost.

Naturally, the system and processor designers must strive to approximate these
idealisms as closely as possible so as to satisfy the performance and correctness
expectations of the user. Obviously, the final factor—cost—plays a large role in
how easy it is to reach these goals, but a well-designed memory system can in fact
maintain the illusion of these idealisms quite successfully. This is true despite the
fact that the perceived requirements for the first three—capacity, bandwidth, and
latency—have been increasing rapidly over the past few decades. Capacity
requirements grow because the programs and operating systems that users demand
are increasing in size and complexity, as are the data sets that they operate over.
Bandwidth requirements are increasing for the same reason. Meanwhile, the
latency requirement is becoming increasingly important as processors continue to
become faster and faster and are more easily starved for data or program code if the
perceived memory latency is too long.

MEMORY AND 1/0 SYSTEMS 111

3.4.1 Components of a Modern Memory Hierarchy

A modern memory system, often referred to as a memory hierarchy, incorporates
various storage technologies to create a whole that approximates each of the five
memory idealisms. Figure 3.2 illustrates five typical components in a modern
memory hierarchy and plots each on approximate axes that indicate their relative
latency and capacity (increasing on the y axis) and bandwidth and cost per bit
(increasing on the x axis). Some important attributes of each of these components
are summarized in Table 3.1.

Magnetic Disks. Magnetic disks provide the most cost-efficient storage and
the largest capacities of any memory technology today, costing less than one-ten-
millionth of a cent per bit (i.e., roughly $1 per gigabyte of storage), while providing
hundreds of gigabytes of storage in a 3.5-inch (in.) standard form factor. However,
this tremendous capacity and low cost comes at the expense of limited effective band-
width (in the tens of megabytes per second for a single disk) and extremely long
latency (roughly 10 ms per random access). On the other hand, magnetic storage tech-
nologies are nonvolatile and maintain their state even when power is turned off.

b (D
2 Wﬂ
2 DRAM
o
8
E
> L2$—]
2
] i
< []
= F L1$3 Reg. file
=
Bandwidth and cost per bit
Figure 3.2

Memory Hierarchy Components.

Table 3.1
Attributes of memory hierarchy components

Cost per Cost per

Component Technology Bandwidth Latency Bit($) Gigabyte ($)
Disk drive Magnetic field 10+ Mbytes/s 10 ms <1x107° <1

Main memory DRAM 2+ Gbytes/s 50+ ns <2x107/ <200

On-chip L2 cache SRAM 10+ Gbytes/s 2+ns <1x107* < 100K
On-chipL1 cache SRAM 50+ Gbytes/s 300+ps >1x107% > 100K

Register file Multiported SRAM 200+ Gbytes/s 300+ ps >1x1072(Q) >10 Mbytes (?)

112 MODERN PROCESSOR DESIGN

isiads

Main Memory. Main memory based on standard DRAM technology is much
more expensive at approximately two hundred-thousandths of a cent per bit (i.e.,
roughly $200 per gigabyte of storage) but provides much higher bandwidth (several
gigabytes per second even in a low-cost commodity personal computer) and much
lower latency (averaging less than 100 ns in a modern design). We study various
aspects of main memory design at length in Section 3.4.4.

Cache Memory. On-chip and off-chip cache memories, both secondary (L2)
and primary (L1), utilize static random-access memory (SRAM) technology that
pays a much higher area cost per storage cell than DRAM technology, resulting in
much lower storage density per unit of chip area and driving the cost much higher.
Of course, the latency of SRAM-based storage is much lower—as low as a few
hundred picoseconds for small L1 caches or several nanoseconds for larger L2
caches. The bandwidth provided by such caches is tremendous, in some cases
exceeding 100 Gbytes/s. The cost is much harder to estimate, since high-speed
custom cache SRAM is available at commodity prices only when integrated with
high-performance processors. However, ignoring nonrecurring expenses and con-
sidering only the $50 estimated manufacturing cost of a modern x86 processor
chip like the Pentium 4 that incorporates 512K bytes of cache and ignoring the
cost of the processor core itself, we can arrive at an estimated cost per bit of one
hundredth of a cent per bit (i.e., roughly $100,000 per gigabyte).

Register File. Finally, the fastest, smallest, and most expensive element in a
modern memory hierarchy is the register file. The register file is responsible for
supplying operands to the execution units of a processor at very low latency—usually
a few hundred picoseconds, corresponding to a single processor cycle—and at
very high bandwidth, to satisfy multiple execution units in parallel. Register file
bandwidth can approach 200 Gbytes/s in a modern eight-issue processor like
the IBM PowerPC 970, that operates at 2 GHz and needs to read two and write one
8-byte operand for each of the eight issue slots in each cycle. Estimating the cost
per bit in the register file is virtually impossible without detailed knowledge of a
particular design and its yield characteristics; suffice it to say that it is likely several
orders of magnitude higher than our estimate of $100,000 per gigabyte for on-chip
cache memory.

These memory hierarchy components are attached to the processor in a hierar-
chical fashion to provide an overall storage system that approximates the five
idealisms—infinite capacity, infinite bandwidth, zero latency, persistence, and
zero cost—as closely as possible. Proper design of an effective memory hierarchy
requires careful analysis of the characteristics of the processor, the programs and
operating system running on that processor, and a thorough understanding of the
capabilities and costs of each component in the memory hierarchy. Table 3.1 sum-
marizes some of the key attributes of these memory hierarchy components and
illustrates that bandwidth can vary by four orders of magnitude, latency can vary
by eight orders of magnitude, while cost per bit can vary by seven orders of mag-
nitude. These drastic variations, which continue to change at nonuniform rates as

MEMORY AND 170 SYSTEMS 113

each technology evolves, lend themselves to a vast and incredibly dynamic design
space for the system architect.

3.4.2 Temporal and Spatial Locality

How is it possible to design a memory hierarchy that reasonably approximates the
infinite capacity and bandwidth, low latency, persistence, and low cost specified
by the five memory idealisms? If one were to assume a truly random pattern of
accesses to a vast storage space, the task would appear hopeless: the excessive cost
of fast storage technologies prohibits large memory capacity, while the long
latency and low bandwidth of affordable technologies violates the performance
requirements for such a system. Fortunately, an empirically observed attribute of
program execution called locality of reference provides an opportunity for design-
ing the memory hierarchy in a manner that satisfies these seemingly contradictory
requirements.

Locality of reference describes the propensity of computer programs to access
the same or nearby memory locations frequently and repeatedly. Specifically, we
can break locality of reference down into two dimensions: temporal locality and
spatial locality. Both types of locality are common in both the instruction and data
reference streams and have been empirically observed in both user-level application
programs, shared library code, as well as operating system kernel code.

Temporal locality refers to accesses to the same memory location that occur
close together in time; many real application programs exhibit this tendency for
both program text or instruction references, as well as data references. Figure 3.3(a)
annotates an example sequence of memory references with arrows representing
temporal locality; each arrow connects an earlier and later memory reference to the
same address. Temporal locality in the instruction reference stream can be easily
explained, since it is caused by loops in program execution. As each iteration of a
loop is executed, the instructions forming the body of the loop are fetched again

(a)

A D E A+1 A+2 D+2 D+4 D+6 A+3 E+4 D+8 A+4 E+8

e

(b)

Figure 3.3
lllustration of (a) Temporal and (b) Spatial Locality.

114 MODERN PROCESSOR DESIGN

and again. Similarly, nested or outer loops cause this repetition to occur on a coarser
scale. Furthermore, even programs that contain very few discernible loop struc-
tures can still share key subroutines that are called from various locations; each
time the subroutine is called, temporally local instruction references occur.

Within the data reference stream, accesses to widely used program variables
lead to temporal locality, as do accesses to the current stack frame in call-intensive
programs. As call-stack frames are deallocated on procedure returns and reallo-
cated on a subsequent call, the memory locations corresponding to the top of the
stack are accessed repeatedly to pass parameters, spill registers, and return func-
tion results. All this activity leads to abundant temporal locality in the data access
stream.

Spatial locality refers to accesses to nearby memory locations that occur close
together in time. Figure 3.3(b) annotates an example sequence of memory refer-
ences with arrows representing temporal locality; an earlier reference to some
address (for example, A) is followed by references to adjacent or nearby addresses
(A+1, A+2, A+3, and so on). Again, most real application programs exhibit this
tendency for both instruction and data references. In the instruction stream, the
instructions that make up a sequential execution path through the program are laid
out sequentially in program memory. Hence, in the absence of branches or jumps,
instruction fetches sequence through program memory in a linear fashion, where
subsequent accesses in time are also adjacent in the address space, leading to
abundant spatial locality. Even when branches or jumps cause discontinuities in
fetching, the targets of branches and jumps are often nearby, maintaining spatial
locality, though at a slightly coarser level.

Spatial locality within the data reference stream often occurs for algorithmic
reasons. For example, numerical applications that traverse large matrices of data
often access the matrix elements in serial fashion. As long as the matrix elements
are laid out in memory in the same order they are traversed, abundant spatial locality
occurs. Applications that stream through large data files, like audio MP3 decoder
or encoders, also access data in a sequential, linear fashion, leading to many spatially
local references. Furthermore, accesses to automatic variables in call-intensive
environments also exhibit spatial locality, since the automatic variables for a given
function are laid out adjacent to each other in the stack frame corresponding to the
current function.

Of course, it is possible to write programs that exhibit very little temporal or
spatial locality. Such programs do exist, and it is very difficult to design a cost-
efficient memory hierarchy that behaves well for such programs. If these programs
or classes of applications are deemed important enough, special-purpose high-cost
systems can be built to execute them. In the past, many supercomputer designs
optimized for applications with limited locality of reference avoided using many
of the techniques introduced in this chapter (cache memories, virtual memory, and
DRAM main memory), since these techniques require locality of reference in
order to be effective. Fortunately, most important applications do exhibit locality
and can benefit from these techniques. Hence, the vast majority of computer sys-
tems designed today incorporate most or all of these techniques.

MEMORY AND 1/0 SYSTEMS 115

3.4.3 Caching and Cache Memories

The principle of caching instructions and data is paramount in exploiting both
temporal and spatial locality to create the illusion of a fast yet capacious memory.
Caches were first proposed by Wilkes [1965] and first implemented in the IBM
System 360/85 in 1968 [Liptay, 1968]. Caching is accomplished by placing a
small, fast, and expensive memory between the processor and a slow, large, and
inexpensive main memory, and by placing instructions and data that exhibit tempo-
ral and spatial reference locality into this cache memory. References to memory loca-
tions that are cached can be satisfied very quickly, reducing average memory
reference latency, while the low latency of a small cache also naturally provides
high bandwidth. Hence, a cache can effectively approximate the second and third
memory idealisms—infinite bandwidth and zero latency—for those references
that can be satisfied from the cache. Since temporal and spatial locality are so
prevalent in most programs, even small first-level caches can satisfy in excess of
90% of all references in most cases; such references are said to Ait in the cache.
Those references that cannot be satisfied from the cache are called misses and
must be satisfied from the slower, larger, memory that is behind the cache.

3.4.3.1 Average Reference Latency. Caching can be extended to multiple levels
by adding caches of increasing capacity and latency in a hierarchical fashion,
using the technologies enumerated in Table 3.1. As long as each level of the cache is
able to capture a reasonable fraction of the references sent to it, the reference
latency perceived by the processor is substantially lower than if all references
were sent directly to the lowest level in the hierarchy. The average memory refer-
ence latency can be computed using Equation (3.1), which computes the weighted
average based on the distribution of references satisfied at each level in the cache.
The latency to satisfy a reference from each level in the cache hierarchy is defined
as [;, while the fraction of all references satisfied by that level is A;.

Latency =" h; X1, (3.1
i=0

This equation makes clear that as long as the hit rates A, for the upper levels in the
cache (those with low latency /,) are relatively high, the average latency observed ”
by the processor will be very low. For example, a two-level cache hierarchy with i i L
h,=0.95,1,=1ns, h,=0.04,1,=10 ns, h; =0.01, and /5 = 100 ns will deliver an
average latency of 0.95 X 1 ns + 0.04 x 10 ns + 0.01 X 100 ns = 2.35 ns, which is
nearly two orders of magnitude faster than simply sending each reference directly
to the lowest level.

3.4.3.2 Miss Rates and Cycles per Instruction Estimates. Equation (3.1)
assumes that A, hit rates are specified as global hit rates, which specify the fraction
of all memory references that hit in that level of the memory hierarchy. It is often
useful to also understand local hit rates for caches, which specify the fraction of all
memory references serviced by a particular cache that hit in that cache. For a first-
level cache, the global and local hit rates are the same, since the first-level cache

116 MODERN PROCESSOR DESIGN

services all references from a program. A second-level cache, however, only ser-
vices those references that result in a miss in the first-level cache. Similarly, a
third-level cache only services references that miss in the second-level cache, and
so on. Hence, the local hit rate [h; for cache level i is defined in Equation (3.2).

hi hi
lhy = — = ———— 3.2)

m;_, i1
1

Returning to our earlier example, we see that the local hit rate of the second-level
cache Ih; = 0.04/(1 — 0.95) = 0.8. This tells us that 0.8 or 80% of the references ser-
viced by the second-level cache were also satisfied from that cache, while 1 — 0.8 =0.2
or 20% were sent to the next level. This latter rate is often called a local miss rate,
as it indicates the fraction of references serviced by a particular level in the cache
that missed at that level. Note that for the first-level cache, the local and global hit
rates are equivalent, since the first-level cache services all references. The same is
true for the local and global miss rates of the first-level cache.

Finally, it is often useful to report cache miss rates as per-instruction miss rates.
This metric reports misses normalized to the number of instructions executed, rather
than the number of memory references performed and provides an intuitive basis
for reasoning about or estimating the performance effects of various cache organi-
zations. Given the per-instruction miss rate m; and a specific execution-time penalty
p; for a miss in each cache in a system, one can quickly estimate the performance
effect of the cache hierarchy using the memory-time-per-instruction (MTPI) metric,
as defined in Equation (3.3).

MTPI = ¥ m,x p, (3.3)
i=0

In this equation the p; term is not equivalent to the latency term /; used in
Equation (3.1). Instead, it must reflect the penalty associated with a miss in level i
of the hierarchy, assuming the reference can be satisfied at the next level. The miss
penalties are computed as the difference between the latencies to adjacent levels in
the hierarchy, as shown in Equation (3.4).

pi = L —1; (3.4)

Returning to our earlier example, if 7, = 0.95,1, =1 ns, h,=0.04, [, =10 ns, h; =0.01,
and /; = 100 ns, then p, = (I, — [}) = (10 ns — 1 ns) = 9 ns, which is the difference
between the [, and [, latencies and reflects the additional penalty of missing the
first level and having to fetch from the second level. Similarly, p, = (I3 — ;) =
(100 ns — 10 ns) = 90 ns, which is the difference between the /, and /5 latencies.
The m; miss rates are also expressed as per-instruction miss rates and need to be
converted from the global miss rates used earlier. To perform this conversion, we
need to know the number of references performed per instruction. If we assume that

MEMORY AND I/0 SYSTEMS 117

each instruction is fetched individually and that 40% of instructions are either loads
or stores, we have a total of n = (1 + 0.4) = 1.4 references per instruction. Hence, we
can compute the per-instruction miss rates using Equation (3.5).

(l - z h,)misses
_L e x 1 ref (3.5)
ref inst

m.:

1

Returning to our example, we would find that m; = (1 — 0.95) X 1.4 = 0.07 misses
per instruction, while m, =[1 — (0.95 + 0.04)] x 1.4 = 0.014 misses per instruction.
Finally, substituting into Equation (3.3), we can compute the memory-time-per-
instruction metric MTPI = (0.07 X 9 ns) + (0.014 X 90 ns) = 0.63 + 1.26 = 1.89 ns
per instruction. This can also be conveniently expressed in terms of cycles per
instruction by normalizing to the cycle time of the processor. For example, assum-
ing a cycle time of 1 ns, the memory-cycles-per-instruction (MCPI) would be
1.89 cycles per instruction.

Note that our definition of MTPI in Equation (3.3) does not account for the
latency spent servicing hits from the first level of cache, but only time spent for
misses. Such a definition is useful in performance modeling, since it cleanly separates
the time spent in the processor core from the time spent outside the core servicing
misses. For example, an ideal scalar processor pipeline would execute instructions
at a rate of one per cycle, resulting in a core cycles per instruction (CPI) equal to
one. This CPI assumes that all memory references hit in the cache; a core CPI is
also often called a perfect cache CPI, since the cache is perfectly able to satisfy all
references with a fixed hit latency. As shown in Equation (3.6), the core CPI can be
added to the MCPI computed previously to reach the actual CPI of the processor:
CPI=1.0 + 1.89 = 2.89 cycles per instruction for our recurring example.

CPI = CoreCPI + MCPI (3.6)

However, one has to be careful using such equations to reason about absolute
performance effects, since they do not account for any overlap or concurrency
between cache misses. In Chapter 5, we will investigate numerous techniques that
exist for the express purpose of maximizing overlap and concurrency, and we will
see that performance approximations like Equation (3.3) are less effective at predict-
ing the performance of cache hierarchies that incorporate such techniques.

3.4.3.3 Effective Bandwidth. Cache hierarchies are also useful for satisfying
the second memory idealism of infinite bandwidth. Each higher level in the cache
hierarchy is also inherently able to provide higher bandwidth than lower levels,
due to its lower access latency, so the hierarchy as a whole manages to maintain
the illusion of infinite bandwidth. In our recurring example, the latency of the first-
level cache is 1 ns, so a single-ported nonpipelined implementation can provide a
bandwidth of 1 billion references per second. In contrast, the second level, if also
not pipelined, can only satisfy one reference every 10 ns, resulting in a bandwidth of

118 MODERN PROCESSOR DESIGN

i ‘
{E xiM‘p Lﬂ‘
...... §—J H

100 million references per second. Of course, it is possible to increase concurrency
in the lower levels to provide greater effective bandwidth by either multiporting or
banking (see Section 3.4.4.2 for an explanation of banking or interleaving) the
cache or memory, or pipelining it so that it can initiate new requests at a rate
greater than the inverse of the access latency. Goodman [1983] conducted a classic
study of the bandwidth benefits of caches.

3.4.3.4 Cache Organization and Design. Each level in a cache hierarchy must
be designed in a way that matches the requirements for bandwidth and latency at
that level. Since the upper levels of the hierarchy must operate at speeds comparable
to the processor core, they must be implemented using fast hardware techniques,
necessarily limiting their complexity. Lower in the cache hierarchy, where latency
is not as critical, more sophisticated schemes are attractive, and even software tech-
niques are widely deployed. However, at all levels, there must be efficient policies
and mechanisms in place for locating a particular piece or block of data, for evicting
existing blocks to make room for newer ones, and for reliably handling updates to
any block that the processor writes. This section presents a brief overview of some
common approaches; additional implementation details are provided in Section 3.6.

Locating a Block. Each level must implement a mechanism that enables low-
latency lookups to check whether or not a particular block is cache-resident. There
are two attributes that determine the process for locating a block; the first is the
size of the block, and the second is the organization of the blocks within the cache.

Block size (sometimes referred to as line size) describes the granularity at which
the cache operates. Each block is a contiguous series of bytes in memory and begins
on a naturally aligned boundary. For example, in a cache with 16-byte blocks,
each block would contain 16 bytes, and the first byte in each block would be
aligned to 16-byte boundaries in the address space, implying that the low-order
4 bits of the address of the first byte would always be zero (i.e., Ob --- 0000). The
smallest usable block size is the natural word size of the processor (i.e., 4 bytes for
a 32-bit machine, or 8 bytes for a 64-bit machine), since each access will require
the cache to supply at least that many bytes, and splitting a single access over multi-
ple blocks would introduce unacceptable overhead into the access path. In practice,
applications with abundant spatial locality will benefit from larger blocks, as a ref-
erence to any word within a block will place the entire block into the cache.
Hence, spatially local references that fall within the boundaries of that block can
now be satisfied as hits in the block that was installed in the cache in response to
the first reference to that block.

Whenever the block size is greater than 1 byte, the low-order bits of an
address must be used to find the byte or word being accessed within the block. As
stated above, the low-order bits for the first byte in the block must always be zero,
corresponding to a naturally aligned block in memory. However, if a byte other
than the first byte needs to be accessed, the low-order bits must be used as a block
offset to index into the block to find the right byte. The number of bits needed for
the block offset is the log, of the block size, so that enough bits are available to

MEMORY AND I1/0 SYSTEMS 119

Address I | Address | Key |
Tag Data Tag| Data
Y
St -
3 3
— 3 — 3 ¥
53 53
=} =}
Y

(a) (b) (c)

Figure 3.4
Block Placement Schemes: (a) Direct-Mapped, (b) Fully Associative, (c) Set-Associative.

span all the bytes in the block. For example, if the block size is 64 bytes, log,(64) =6
low-order bits are used as the block offset. The remaining higher-order bits are
then used to locate the appropriate block in the cache memory.

The second attribute that determines how blocks are located, cache organiza-
tion, determines how blocks are arranged in a cache that contains multiple blocks.
Figure 3.4 illustrates three fundamental approaches for organizing a cache that
directly affect the complexity of the lookup process: direct-mapped, fully associa-
tive, and set-associative.

The simplest approach, direct-mapped, forces a many-to-one mapping between
addresses and the available storage locations in the cache. In other words, a particu-
lar address can reside only in a single location in the cache; that location is usually
determined by extracting n bits from the address and using those n bits as a direct
index into one of 2" possible locations in the cache.

Of course, since there is a many-to-one mapping, each location must also store
a tag that contains the remaining address bits corresponding to the block of data
stored at that location. On each lookup, the hardware must read the tag and com-
pare it with the address bits of the reference being performed to determine whether
a hit or miss has occurred. We describe this process in greater detail in Section 3.6.

In the degenerate case where a direct-mapped memory contains enough storage
locations for every address block (i.e., the n index bits include all bits of the
address), no tag is needed, as the mapping between addresses and storage locations
is now one-to-one instead of many-to-one. The register file inside the processor is
an example of such a memory; it need not be tagged since all the address bits (all
bits of the register identifier) are used as the index into the register file.

The second approach, fully associative, allows an any-to-any mapping
between addresses and the available storage locations in the cache. In this organi-
zation, any memory address can reside anywhere in the cache, and all locations
must be searched to find the right one; hence, no index bits are extracted from the
address to determine the storage location. Again, each entry must be tagged with

iy

120 MODERN PROCESSOR DESIGN

the address it is currently holding, and all these tags are compared with the address
of the current reference. Whichever entry matches is then used to supply the data;
if no entry matches, a miss has occurred.

The final approach, set-associative, is a compromise between the other two.
Here a many-to-few mapping exists between addresses and storage locations. On
each lookup, a subset of address bits is used to generate an index, just as in the
direct-mapped case. However, this index now corresponds to a set of entries, usually
two to eight, that are searched in parallel for a matching tag. In practice, this
approach is much more efficient from a hardware implementation perspective,
since it requires fewer address comparators than a fully associative cache, but due
to its flexible mapping policy behaves similarly to a fully associative cache. Hill
and Smith [1989] present a classic evaluation of associativity in caches.

Evicting Blocks. Since each level in the cache has finite capacity, there must be
a policy and mechanism for removing or evicting current occupants to make room
for blocks corresponding to more recent references. The replacement policy of the
cache determines the algorithm used to identify a candidate for eviction. In a
direct-mapped cache, this is a trivial problem, since there is only a single potential
candidate, as only a single entry in the cache can be used to store the new block,
and the current occupant of that entry must be evicted to free up the entry.

In fully associative and set-associative caches, however, there is a choice to
be made, since the new block can be placed in any one of several entries, and the
current occupants of all those entries are candidates for eviction. There are three
common policies that are implemented in modern cache designs: first in, first out
(FIFO), least recently used (LRU), and random.

The FIFO policy simply keeps track of the insertion order of the candidates
and evicts the entry that has resided in the cache for the longest amount of time.
The mechanism that implements this policy is straightforward, since the candidate
eviction set (all blocks in a fully associative cache, or all blocks in a single set in a
set-associative cache) can be managed as a circular queue. The circular queue has
a single pointer to the oldest entry which is used to identify the eviction candidate,
and the pointer is incremented whenever a new entry is placed in the queue. This
results in a single update for every miss in the cache.

However, the FIFO policy does not always match the temporal locality char-
acteristics inherent in a program’s reference stream, since some memory locations
are accessed continually throughout the execution (e.g., commonly referenced glo-
bal variables). Such references would experience frequent misses under a FIFO
policy, since the blocks used to satisfy them would be evicted at regular intervals,
as soon as every other block in the candidate eviction set had been evicted.

The LRU policy attempts to mitigate this problem by keeping an ordered list
that tracks the recent references to each of the blocks that form an eviction set.
Every time a block is referenced as a hit or a miss, it is placed on the head of this
ordered list, while the other blocks in the set are pushed down the list. Whenever a
block needs to be evicted, the one on the tail of the list is chosen, since it has been
referenced least recently (hence the name least recently used). Empirically, this policy

MEMORY AND I/0 SYSTEMS 121

has been found to work quite well, but is challenging to implement, as it requires
storing an ordered list in hardware and updating that list, not just on every cache
miss, but on every hit as well. Quite often, a practical hardware mechanism will
only implement an approximate LRU policy, rather than an exact LRU policy, due
to such implementation challenges. An instance of an approximate algorithm is
the not-most-recently-used (NMRU) policy, where the history mechanism must
remember which block was referenced most recently and victimize one of the other
blocks, choosing randomly if there is more than one other block to choose from. In
the case of a two-way associative cache, LRU and NMRU are equivalent, but for
higher degrees of associativity, NMRU is less exact but simpler to implement, since
the history list needs only a single element (the most recently referenced block).

The final policy we consider is random replacement. As the name implies,
under this policy a block from the candidate eviction set is chosen at random.
While this may sound risky, empirical studies have shown that random replace-
ment is only slightly worse than true LRU and still significantly better than FIFO.
Clearly, implementing a true random policy would be very difficult, so practical
mechanisms usually employ some reasonable pseudo-random approximation for
choosing a block for eviction from the candidate set.

Handling Updates to a Block. The presence of a cache in the memory sub-
system implies the existence of more than one copy of a block of memory in the
system. Even with a single level of cache, a block that is currently cached also has
a copy still stored in the main memory. As long as blocks are only read, and never
written, this is not a problem, since all copies of the block have exactly the same
contents. However, when the processor writes to a block, some mechanism must
exist for updating all copies of the block, in order to guarantee that the effects of
the write persist beyond the time that the block resides in the cache. There are two
approaches for handling this problem: write-through caches and writeback caches.

A write-through cache, as the name implies, simply propagates each write
through the cache and on to the next level. This approach is attractive due to its
simplicity, since correctness is easily maintained and there is never any ambiguity
about which copy of a particular block is the current one. However, its main draw-
back is the amount of bandwidth required to support it. Typical programs contain
about 15% writes, meaning that about one in six instructions updates a block in
memory. Providing adequate bandwidth to the lowest level of the memory hierarchy
to write through at this rate is practically impossible, given the current and contin-
ually increasing disparity in frequency between processors and main memories.
Hence, write-through policies are rarely if ever used throughout all levels of a
cache hierarchy.

A write-through cache must also decide whether or not to fetch and allocate
space for a block that has experienced a miss due to a write. A write-allocate policy
implies fetching such a block and installing it in the cache, while a write-no-allocate
policy would avoid the fetch and would fetch and install blocks only on read
misses. The main advantage of a write-no-allocate policy occurs when streaming
writes overwrite most or all of an entire block before any unwritten part of the

122 MODERN PROCESSOR DESIGN

block is read. In this scenario, a useless fetch of data from the next level is avoided
(the fetched data is useless since it is overwritten before it is read).

A writeback cache, in contrast, delays updating the other copies of the block
until it has to in order to maintain correctness. In a writeback cache hierarchy, an
implicit priority order is used to find the most up-to-date copy of a block, and only
that copy is updated. This priority order corresponds to the levels of the cache
hierarchy and the order in which they are searched by the processor when attempt-
ing to satisfy a reference. In other words, if a block is found in the highest level of
cache, that copy is updated, while copies in lower levels are allowed to become
stale, since the update is not propagated to them. If a block is only found in a lower
level, it is promoted to the top level of cache and is updated there, once again leaving
behind stale copies in lower levels of the hierarchy.

The updated copy in a writeback cache is also marked with a dirty bit or flag
to indicate that it has been updated and that stale copies exist at lower levels of the
hierarchy. Ultimately, when a dirty block is evicted to make room for other blocks,
it is written back to the next level in the hierarchy, to make sure that the update to
the block persists. The copy in the next level now becomes the most up-to-date
copy and must also have its dirty bit set, in order to ensure that the block will get
written back to the next level when it gets evicted.

Writeback caches are almost universally deployed, since they require much
less write bandwidth. Care must be taken to design these caches correctly, so that
no updates are ever dropped due to losing track of a dirty cache line. We revisit
writeback hierarchies in greater depth in Chapter 11 in the context of systems with
multiple processors and multiple cache hierarchies.

However, despite the apparent drawbacks of write-through caches, several
modern processors, including the IBM Power4 [Tendler et al., 2001] and Sun
UltraSPARC III [Lauterbach and Horel, 1999], do use a write-through policy for
the first level of cache. In such schemes, the hierarchy propagates all writes to the
second-level cache, which is also on the processor chip. Since the next level of
cache is on the chip, it is relatively easy to provide adequate bandwidth for the
write-through traffic, while the design of the first-level cache is simplified, since it
no longer needs to serve as the sole repository for the most up-to-date copy of a
cache block and never needs to initiate writebacks when dirty blocks are evicted
from it. However, to avoid excessive off-chip bandwidth consumption due to
write-throughs, the second-level cache maintains dirty bits to implement a writeback
policy.

Figure 3.5 summarizes the main parameters—block size, block organization,
replacement policy, write policy, and write-allocation policy—that can be used to
describe a typical cache design.

3.4.3.5 Cache Miss Classification. As discussed in Section 3.4.3.1, the average
reference latency delivered by a multilevel cache hierarchy can be computed as the
average of the latencies of each level in the hierarchy, weighted by the global hit rate
of each level. The latencies of each level are determined by the technology used and
the aggressiveness of the physical design, while the miss rates are a function of the

MEMORY AND 1/0 SYSTEMS 123

Cache design
Block size
Block organization
Direct-mapped
Fully associative
Set-associative
Block replacement policy
FIFO
LRU or approximations of LRU such as NMRU
Random
Write policy
—
Write-through
: Write-allocate
Write-no-allocate
Figure 3.5

Cache Design Parameters.

organization of the cache and the access characteristics of the program that is run-
ning on the processor. Attaining a deeper understanding of the causes of cache
misses in a particular cache hierarchy enables the designer to realize the shortcom-
ings of the design and discover creative and cost-effective solutions for improving
the hierarchy. The 3 C’s model proposed by Mark Hill [Hill, 1987] is a powerful and
intuitive tool for classifying cache misses based on their underlying root cause. This
model introduces the following mutually exclusive categories for cache misses:

® Cold or compulsory misses. These are due to the program’s first reference
to a block of memory. Such misses are considered fundamental since they
cannot be prevented by any caching technique.

® Capacity misses. These are due to insufficient capacity in a particular
cache. Increasing the capacity of that cache can eliminate some or all
capacity misses that occur in that cache. Hence, such misses are not funda-
mental, but rather a by-product of a finite cache organization.

® Conflict misses. These are due to imperfect allocation of entries in a particular
cache. Changing the associativity or indexing function used by a cache can
increase or decrease the number of conflict misses. Hence, again, such misses
are not fundamental, but rather a by-product of an imperfect cache organiza-
tion. A fully associative cache organization can eliminate all conflict misses,
since it removes the effects of limited associativity or indexing functions.

Cold, capacity, and conflict misses can be measured in a simulated cache hier-
archy by simulating three different cache organizations for each cache of interest.

124 MODERN PROCESSOR DESIGN

The first organization is the actual cache being studied; for notational convenience
let’s assume it experiences m, cache misses. The second organization is a fully
associative cache with the same capacity and block size as the actual cache; it
experiences m, cache misses. The third and final organization is a fully associative
cache with the same block size but infinite capacity; it experiences m, misses. The
number of cold, capacity, and conflict misses can now be computed as

¢ (Cold misses = m,, number of misses in fully associative, infinite cache.

¢ Capacity misses = m; — m., number of additional misses in finite but fully
associative cache over infinite cache.

¢ Conflict misses = m, — m, number of additional misses in actual cache over
number of misses in fully associative, finite cache.

Cold misses are fundamental and are determined by the working set of the pro-
gram in question, rather than by the cache organization. However, varying the
block size directly affects the number of cold misses experienced by a cache.
Intuitively, this becomes obvious by considering two extreme block sizes: a
cache with a block size of one word will experience a cold miss for every unique
word referenced by the program (this forms the upper bound for the number of
cold misses in any cache organization), while a cache with an infinite block size
will experience only a single cold miss. The latter is true because the very first
reference will install all addressable memory into the cache, resulting in no addi-
tional misses of any type. Of course, practical cache organizations have a finite
block size somewhere between these two endpoints, usually in the range of 16 to
512 bytes.

Capacity misses are not fundamental but are determined by the block size and
capacity of the cache. Clearly, as capacity increases, the number of capacity misses
is reduced, since a larger cache is able to capture a larger share of the program’s
working set. In contrast, as block size increases, the number of unique blocks that
can reside simultaneously in a cache of fixed capacity decreases. Larger blocks tend
to be utilized more poorly, since the probability that the program will access all the
words in a particular block decreases as the block gets bigger, leading to a lower
effective capacity. As a result, with fewer unique blocks and a decreased probability
that all words in each block are useful, a larger block size usually results in an
increased number of capacity misses. However, programs that efficiently utilize all
the contents of large blocks would not experience such an increase.

Conflict misses are also not fundamental and are determined by the block size,
the capacity, and the associativity of the cache. Increased capacity invariably reduces
the number of conflict misses, since the probability of a conflict between two
accessed blocks is reduced as the total number of blocks that can reside in the cache
simultaneously increases. As with capacity misses, a larger number of smaller blocks
reduces the probability of a conflict and improves the effective capacity, resulting in
likely fewer conflict misses. Similarly, increased associativity will almost invariably
reduce the number of conflict misses. (Problem 25 in the homework will ask you to
construct a counterexample to this case.)

MEMORY AND I/0 SYSTEMS 125

Table 3.2
Interaction of cache organization and cache misses

Cache

Parameter Cold Misses Capacity Misses Conflict Misses Overall Misses
Reduced capacity No effect Increase Likely increase Likely increase
Increased capacity No effect Decrease Likely decrease Likely decrease
Reduced block size Increase Likely decrease Likely decrease Varies

Increased block size Decrease Likely increase Likely increase Varies

Reduced associativity No effect No effect Likely increase Likely increase
Increased associativity No effect No effect Likely decrease Likely decrease
Writeback vs. write- No effect No effect No effect No effect
through

Write-no-allocate Possible decrease Possible decrease Possible decrease Possible decrease

Table 3.2 summarizes the effects of cache organizational parameters on each
category of cache misses, as well as overall misses. Note that some parameters can
have unexpected effects, but empirical evidence tells us that for most programs,
the effects are as summarized in Table 3.2. The possible decrease noted for write-
no-allocate caches is due to blocks that are only written to and never read; these
blocks are never fetched into the cache, and hence never incur any type of misses.
This directly reduces the number of cold misses and can indirectly reduce capacity
misses, conflict misses, and overall misses.

3.4.3.6 Example Cache Hierarchy.Figure 3.6 illustrates a typical two-level 0{5 HE
cache hierarchy, where the CPU or processor contains a register file and is directly - l

connected to a small, fast level-one instruction cache (L1 I-$) and a small, fast
level-one data cache (L1 D-$). Since these first-level or primary caches are rela-
tively small, typically ranging from 8 up to 64K bytes, they can be accessed
quickly, usually in only a single processor cycle, and they can provide enough
bandwidth to keep the processor core busy with enough instructions and data. Of
course, only in rare cases do they provide enough capacity to contain all the work-
ing set of a program. Inevitably, the program will issue a reference that is not
found in the first-level cache. Such a reference results in a cache miss, or a refer-
ence that needs to be forwarded to the next level in the memory hierarchy. In the
case of the example in Figure 3.6, this is the level-two cache, which contains both
program text and data and is substantially larger. Modern second-level caches
range from 256K bytes to 16 Mbytes, with access latencies of a few nanoseconds
up to 10 or 15 ns for large, off-chip level-two caches.

Modern processors usually incorporate a second level of cache on chip, while
recent processor designs like the Intel Xeon and Itanium 2 actually add a third level
of cache onboard the processor chip. High-end system designs like IBM xSeries 445

126 MODERN PROCESSOR DESIGN

CPU

256 byte—1K-byte capacity
<<1-ns latency (typical)

8K-128K-byte capacity
<I-ns latency (typical)

ETTL11-$3 L1 D-$3

128K-byte—16-Mbyte capacity
~10-ns latency (typical)

Memory 128-Mbyte—100+ Gbyte capacity
~100-ns latency (typical)

Figure 3.6
A Typical Memory Hierarchy.

multiprocessors that employ Itanium 2 processors and are intended for extremely
memory-intensive server applications even include a fourth level of cache memory
on the system board.

Finally, the physical memory hierarchy is backed up by DRAM that ranges in
size from 128 Mbytes in entry-level desktop PCs to 100 Gbytes or more in high-
end server systems. The latency for a reference that must be satisfied from DRAM
is typically at least 100 ns, though it can be somewhat less in a single-processor
system. Systems with multiple processors that share memory typically pay an
overhead for maintaining cache coherence that increases the latency for main
memory accesses, in some cases up to 1000 ns. Chapter 11 discusses many of the
issues related to efficient support for coherent shared memory.

In light of the example shown in Figure 3.6, let’s revisit the five memory
idealisms introduced earlier in the chapter:

® [nfinite capacity. For storing large data sets and large programs.

® [nfinite bandwidth. For rapidly streaming these large data sets and programs
to and from the processor.

® [nstantaneous or zero latency. To prevent the processor from stalling while
waiting for data or program code.

® Persistence or nonvolatility. To allow data and programs to survive even
when the power supply is cut off.

® Zero or very low implementation cost.

MEMORY AND I/0 SYSTEMS 127

We see that the highest levels of the memory hierarchy—register files and primary
caches—are able to supply near-infinite bandwidth and very low average latency
to the processor core, satisfying the second and third idealisms. The first idealism—
infinite capacity—is satisfied by the lowest level of the memory hierarchy, since
the capacities of DRAM-based memories are large enough to contain the working
sets of most modern applications; for applications where this is not the case,
Section 3.5 describes a technique called virtual memory that extends the memory
hierarchy beyond random-access memory devices to magnetic disks, which provide
capacities that exceed the demands of all but the most demanding applications.
The fourth idealism—persistence or nonvolatility—can also be supplied by magnetic
disks, which are designed to retain their state even when they are powered down.
The final idealism—Ilow implementation cost—is also satisfied, since the high
per-bit cost of the upper levels of the cache hierarchy is only multiplied by a rela-
tively small number of bits, while the lower levels of the hierarchy provide tre-
mendous capacity at a very low cost per bit. Hence, the average cost per bit is kept
near the low cost of commodity DRAM and magnetic disks, rather than the high
cost of the custom SRAM in the cache memories.

3.4.4 Main Memory

In a typical modern computer system, the main memory is built from standardized
commodity DRAM chips organized in a flexible, expandable manner to provide
substantial capacity and expandability, high bandwidth, and a reasonably low access
latency that should be only slightly higher than the access latency of the DRAM chips
themselves. Since current-generation DRAM chips have a capacity of 256 megabits,
a computer system with 1 Gbyte of memory would require approximately 32
DRAM chips for storage; including overhead for parity or error-correction codes to
detect and tolerate soft errors would typically increase the count to 36 chips. Next-
generation DRAM chips, which are just around the corner, will provide 1 gigabit of
capacity each, reducing the chip count by a factor of 4. However, demand for
increased memory capacity in future systems will likely keep the total number of
DRAM chips required to satisfy that capacity relatively constant.

Clearly, there are many possible ways to configure a large number of DRAM
chips to optimize for cost, latency, bandwidth, or expandability. Figure 3.7 illus-
trates one possible approach for arranging and interconnecting memory chips. In
this configuration, multiple DRAM chips are mounted on a dual inline memory
module (DIMM); multiple DIMMs are connected to a shared port or bank, and one
or more banks are connected to a memory controller. In turn, the memory controller
connects to the system’s processor bus and responds to the processor’s memory
requests by issuing appropriate commands to one or both memory banks. Sec-
tion 3.4.4.1 introduces the basic principles of DRAM chip organization, and
Section 3.4.4.2 discusses several key issues in memory controller design.

3.4.4.1 DRAM Chip Organization. DRAM chips are a commodity product that
are manufactured by several competing vendors worldwide. DRAM manufacturers
collaborate on standardizing the specification of the capacities and interfaces of

128 MODERN PROCESSOR DESIGN

@ Display
A adapter
Processor bus
1\
y

- Memory | | I/O bridge <> DISl;l
ReadQ WriteQ RespQ controller

— — ——1 Memory
— _ —| controller Network
J interface

Scheduler —>| Buffer I<—

AL

1/0 bus

>

A
Y

‘}Commands ¥ Data \: Commands \ Data
Bank0 § Bankl |
|
i |
DIMM(s) DIMM(s)

Figure 3.7
Typical Main Memory Organization.

each generation of DRAM chips in order to guarantee compatibility and consistent
performance. Conceptually, the function and organization of DRAM chips is quite
straightforward, since they are designed to store as many bits as possible in as
compact an area as possible, while minimizing area and product cost and maximiz-
ing bandwidth. While all these factors are considered in DRAM design, historically
the primary design constraints have been capacity and cost. DRAM manufacturing
is an extremely competitive business, where even minor increases in product cost,
potentially caused by complex designs that reduce process yields, can drive a vendor
out of business. Hence, DRAM vendors are typically very conservative about
adopting dramatically new or different approaches for building DRAM chips.

As semiconductor process geometries have shrunk, DRAM capacity per chip
has increased at a rate more or less directly proportional to Moore’s law, which
predicts a doubling of devices per chip every two years or so. This has resulted in
exponential growth in the capacity of DRAM chips with a fixed die size, which in
turn has tended to hold product cost roughly constant. Despite the fact that device
switching times improve with reduced process geometries, DRAM chip latency
has not improved dramatically. This is due to the fact that DRAM access latency is
dominated by wire delay, and not device switching times. Since wire delay has not
improved nearly as dramatically as device switching delay, and the overall dimension
of the memory array has remained largely fixed (to accommodate increased capac-
ity), the end-to-end latency to retrieve a word from a DRAM chip has only
improved at a compound rate of about 10% per year. This provides a stark contrast

MEMORY AND 1/0 SYSTEMS 129

with the 60% compound rate of frequency growth observed for general-purpose
microprocessors. This divergence in device frequency has led many computer sys-
tem designers and researchers to search for new techniques that will surmount
what is known as the memory wall [Wulf and McKee, 1995].

The other main contributor to DRAM product cost—packaging, as driven by
per-chip pin count—has also remained relatively stable over the years, resulting in
a dearth of dramatic improvements in bandwidth per chip. The improvements that
have been made for bandwidth have been largely in the realm of enhanced signaling
technology, synchronous interfaces [synchronous DRAM (SDRAM)], higher inter-
face frequencies (e.g., PC100 which runs at 100 MHz, while PC133 runs at 133 MHz),
and aggressive use of both rising and falling clock edges to transmit twice the
amount of data per clock period [known as double-data rate (DDR)].

Figure 3.8 shows the internal organization of a typical DRAM chip. At its
heart, there is an array of binary storage elements organized in rows and columns.
The storage elements are tiny capacitors, which store a charge to represent a 1, or
store no charge to represent a 0. Each capacitor-based cell is connected by a tran-
sistor to a vertical bit line that stretches from the top of the array to the bottom.
The transistor is controlled by a horizontal word line which selects a particular row
in the array for either reading or writing. The bit line is used to read the state of the
cell: a charged capacitor will drive the bit line to a higher voltage; this higher volt-
age will be sensed by a high-gain amplifier at one end of the bit line that converts
the signal to a standard logic level 1, while a discharged capacitor will drain

Bit lines
Word
lines
g
Row § Mireri?ry Transistor
address '; armay Bit line
& || Word line
N
AN Capacitor
| Sense amps
P11 [11
| Row buffer

Col
a;d?;l: _A\ Column decoder /

Data bus

Figure 3.8
DRAM Chip Organization.

130 MODERN PROCESSOR DESIGN

charge from the bitline, reducing its voltage to a level that is amplified to logic
level 0. The high-gain analog amplifier is called a sense amp and relies on bit-line
precharging, a process that presets the bit-line voltage prior to a read to an interme-
diate value that can swing high or low very quickly depending on the state of the
accessed cell’s capacitor. The bit line is also used to store a value in the cell by
driving the bit line high to store a charge in the capacitor, or driving it low to drain
the charge from the capacitor. Since the charge stored by a capacitor decays over
time, cells in a DRAM chip must be refreshed periodically to maintain their state.
This dynamic behavior lends itself to the naming of DRAM chips; the acronym
stands for dynamic random-access memory. In contrast, SRAM or static random-
access memory, employed in higher levels of the cache hierarchy, does not need to
be refreshed since the storage cells are static complementary metal-on-semiconductor
(CMOS) circuits (a pair of cross-coupled inverters) that can hold their state indefi-
nitely, as long as power is supplied to them.

DRAM Addressing. The word lines in Figure 3.8 are used to select a row
within the array to either read from that row (i.e., let the capacitors from that row
drive the bit lines) or write to it (i.e., let the bit lines drive or drain the capacitors in
that row). A row address of n bits must be supplied to the DRAM chip, and a
decoder circuit activates one of the 2" word lines that corresponds to the supplied
row address. At each storage cell, the word line controls a pass transistor that
either isolates the capacitor from the bit line or connects it to the bit line, to enable
selective reading or writing of a single row. During a read, the bits in the selected
row are sensed by the sense amps and are stored in a row buffer. In a subsequent
command cycle, a column address of m bits must also be supplied; this is used to
select one of 2" words from within the row.

DRAM Access Latency. The latency to access a random storage location within
a DRAM chip is determined by the inherent latency of the storage array aug-
mented by the overhead required to communicate with the chip. Since DRAM
chips are very cost-sensitive, and an increased pin count drives cost higher,
DRAM interfaces typically share the same physical pin for several purposes. For
example, a DRAM chip does not provide enough address pins to directly address
any word within the array; instead, the address pins are time-multiplexed to first
provide the row address when the row address strobe (RAS) control line is
asserted, followed by a column address strobe (CAS) while the column address is
provided. As long as there are an equal number of rows and columns, only half the
number of address pins are needed, reducing cost significantly. On the other hand,
two transactions are required across the interface to provide a complete address,
increasing the latency of an access.

The decoupling of the row and column addresses creates an opportunity for
optimizing the access latency for memory references that exhibit spatial locality.
Since the DRAM chip reads the entire row into a row buffer, and then selects a
word out of that row based on the column address, it is possible to provide multiple
column addresses in back-to-back cycles and read bursts of words from the same
row at a very high rate, usually limited only by the interface frequency and data rate.

MEMORY AND 1/0 SYSTEMS 131

Historically, back-to-back accesses to the same row have been called page-mode
accesses. These same-row accesses complete much faster (up to 3 times faster in
current-generation DRAM) since they do not incur the additional latency of pro-
viding a row address, decoding the row address, precharging the bit lines, and
reading the row out of the memory cell array into the row buffer. This creates a
performance-enhancing scheduling opportunity for the memory controller, which
we will revisit in Section 3.4.4.2.

DRAM chips also share the pins of the data bus for both reads and writes.
While it is easy to pipeline a stream of reads or a stream of writes across such an
interface, alternating reads with writes requires a bus turnaround. Since the DRAM
chip is driving the data bus during reads, while the memory controller is driving it
during writes, care must be taken to ensure that there is never a time during which
both the memory controller and DRAM chip are attempting to drive the bus, as this
could result in a short-circuit condition between the respective drivers. Hence, the
interface must be carefully designed to allow enough timing margin for the current
bus master (e.g., the DRAM chip on a read) to stop driving the bus before the new
bus master (e.g., the memory controller on a write) starts to drive the bus. This
results in additional delay and reduces the efficiency of the DRAM interface.

Rambus DRAM. In the late 1990s, an alternative standard called Rambus
DRAM (RDRAM) emerged from research in high-speed signaling at Stanford
University. RDRAM employed many of the techniques that more recent standards
for synchronous DRAM (e.g., DDR2) have since adopted, including advanced sig-
naling, higher interface frequencies, and multiple data words per clock period.
RDRAM chips also provide a row buffer cache which contains several of the most
recently accessed DRAM rows; this increases the probability that a random access
can be satisfied with much lower latency from one of the row buffer entries, avoid-
ing the row access latency. To improve interface bandwidth, RDRAM carefully
specifies the physical design for board-level traces used to connect RDRAM chips
to the controller, and uses source-synchronous clocking (i.e., the clock signal trav-
els with the data) to drive clock frequencies several times higher than more con-
ventional SDRAM approaches. As a result of these optimizations, RDRAM is able
to provide substantially higher bandwidth per pin, albeit at a higher product cost and
increased design time due to the stringent physical design requirements.

High bandwidth per pin is very useful in systems that require lots of band-
width but relatively little capacity. Examples of such systems that use RDRAM
are the Sony Playstation 2 and Microsoft X-Box game controllers, which provide
only 32 Mbytes of memory in their base configuration while requiring lots of
memory bandwidth to support intensive three-dimensional gaming. A modest
capacity requirement of only 32 Mbytes could be satisfied by a single current-
generation 256-Mbit DRAM chip. However, since that DRAM chip only has a
small number of data pins (between 2 and 16, typically 4 or 8), each pin must
provide very high bandwidth to satisfy the system’s overall bandwidth demand.

In contrast, general-purpose computer systems such as personal computers
typically contain at least an order of magnitude more memory, ranging from at

1
i i
PiLIE
s
b
o ot

132 MODERN PROCESSOR DESIGN

least 256 Mbit to several gigabytes. In such a system, per-pin bandwidth is less
important, since many DRAM chips are required to provide the requisite capacity
anyway, and these chips can be arranged in parallel to provide a wide interface
that supplies the required bandwidth. Of course, this increases the package cost of
the memory controller chip, since it has to have enough pins to access multiple
DRAM chips in parallel. On the other hand, product cost can be lowered by using
less aggressive and less expensive circuit board technology, since each pin signals
at a lower rate.

Detailed performance evaluation and comparison of various modern DRAM
technologies can be found in two recent studies [Cuppu et al., 1999; Cuppu and
Jacob, 2001].

3.44.2 Memory Controller Organization. Memory controllers serve as the
interface between a system’s processor bus, which communicates reads and writes
issued by the processor, and the standard DRAM command interface, which
expects a tightly specified sequence of commands for supplying row addresses,
column addresses, and read or write commands to each DRAM chip. There are
many alternatives for arranging the mapping between the physical addresses pro-
vided by the processor and the DRAM addresses needed to access the actual storage
locations. Furthermore, there are various optimizations that can be applied within the
memory controller to improve read performance and increase spatial locality in the
DRAM reference stream. The net effect is that the design of the memory controller
can substantially impact sustainable memory bandwidth and the observed latency of
memory references. The following sections discuss some of these issues in detail.

Memory Module Organization. The desired memory capacity for a system
determines the total number of DRAM chips needed to provide that capacity. In prac-
tice, most systems are designed to support a range of capacities to enable use of sev-
eral generations of memory chips and to allow for future expansion from an initial
configuration. However, for simplicity we will assume a fixed capacity only, result-
ing in a fixed number of DRAM chips in the memory subsystem. Figure 3.9 illus-
trates four possible organizations for four DRAM chips in a system, as determined by
two fundamental attributes: serial vs. parallel and interleaved vs. non-interleaved. In
the top left case, the DRAM chips all share the same address, command, and data
lines, but only a single chip is active at a time when it is selected via its chip select
(CS) control line. In this case, the number of pins required in the controller is mini-
mized, since all pins except for the CS control lines are shared. However, data band-
width is limited by the data bus width of each DRAM chip. DRAM chips have 2, 4,
8, or 16 data lines—typically 4 or 8 in current-generation chips—with a price pre-
mium charged for wider interfaces. In this organization, transaction bandwidth is
restricted to one concurrent command, since the address and command lines are
shared across all chips.

The top right case in Figure 3.9 shows a parallel organization, in which all
chips are active for all commands (hence, no chip selects), and the n-bit data bus-
ses from each chip are concatenated to form a 4n-bit interface. This configuration
provides much better data bandwidth, but at a higher memory controller cost due to

MEMORY AND I/0 SYSTEMS 133

Serial Parallel

S
(S5 &va

cf‘«’vo

Non-interleaved

$ s $ >
& S & Fo® S
[1] [11
Interleaved DRAM DRAM
[[T L1
DRAM DRAM

Figure 3.9
Memory Module Organization.

the private data bus pins for each DRAM chip. It provides no increase in transac-
tion bandwidth, since the address and command lines are still shared.

The bottom left shows an interleaved (or banked) organization where half the
DRAM chips are connected to one set of chip select, address, command, and data
busses, while the other half is connected to a second set. This organization pro-
vides twice the data bandwidth, and also twice the transaction bandwidth, since
each interleaved bank can now operate independently, at the cost of twice as many
address and command pins. The final configuration, on the bottom right, combines
the parallel and interleaved organizations, providing twice the transaction band-
width through interleaving, and four times the data bandwidth through two 2n-bit
wide data busses. Of course, this final configuration requires the highest cost and
largest number of pins in the memory controller.

There are other possible combinations of these techniques (for example, a
semi-parallel scheme where only half—instead of all—DRAM chips are in parallel,
and chip selects are still used to select which half drives the 2r-bit wide data bus).
In all these combinations, however, the linear physical address presented by the
processor needs to be translated to an n-tuple that describes the actual physical
location of the memory location being addressed. Table 3.3 summarizes the con-
tents of the DRAM address n-tuple for several approaches for organizing memory
modules. Linear physical addresses are mapped to these n-tuples by selecting
appropriately sized subsets of bits from the physical address to form each element

134 MODERN PROCESSOR DESIGN

Table 3.3

Translating linear physical address to DRAM address*
Organization DRAM Address Example Physical Corresponding
(Figure 3.9) Breakdown Address DRAM Address
Serial non-interleaved, 16 1211 21 0 0x4321 RAS: 0x4, CAS: 0xC8,
8-bit data bus [RAs | cas [cs| CS: 0x1
Parallel non-interleaved, 16 1211 21 0 0x4320 RAS: 0x4, CAS: 0xC8
32-bit data bus [RAS | CAS [na |
Serial interleaved, 16 1211 2 1.0 0x8251 RAS: 0x4, CAS: 0x94,
8-bit data bus [Ras [cAS [Ba]cs] Bank: 0x0, CS: 0x0
Parallel interleaved, 16 1211 2 1.0 0x8254 RAS: 0x4, CAS: 0x95,

16-bit data bus

[RAS | cAS [Ba|n/a] Bank: 0x0

*Examples assume 4 x 256-kbit DRAM with 8-bit data path and 8-kbit row, for a total of 128 kB of addressable memory.

of the n-tuple. In general, this selection problem has (); possible solutions, where x
is the number of physical address bits and y is the total number of bits needed to
specify all the n-tuple elements. Table 3.3 shows only one of these many possible
ways of choosing the bits for each element in the DRAM address n-tuple.
Regardless of which organization is chosen, the RAS bits should be selected
to maximize the number of row hits; careful study of the access patterns of impor-
tant applications can reveal which address bits are the best candidates for RAS. Fur-
thermore, in an interleaved design, the bits used for bank selection need to be
selected carefully to ensure even distribution of references across the memory
banks, since a poor choice of bank bits can direct all references to a single bank,
negating any bandwidth benefit expected from the presence of multiple banks.

Components of a Memory Controller. As shown in Figure 3.7, a memory con-
troller contains more than just an interface to the processor bus and an interface to
the DRAM chips. It also contains logic for buffering read and write commands
from the processor bus (the ReadQ and WriteQ), a response queue (RespQ) for
buffering responses heading back to the processor, scheduling logic for issuing
DRAM commands to satisfy the processor’s read and write requests, and buffer
space to assemble wide data responses from multiple narrow DRAM reads. This
reassembly is needed whenever the processor bus issues read commands that are
wider than the DRAM data interface; in such cases multiple DRAM reads have to
be performed to assemble a block that matches the width of the processor’s read
request (which is usually the width of a cache block in the processor’s cache). In a
similar fashion, wide writes from the processor bus need to be decomposed into
multiple narrower writes to the DRAM chips.

Although Figure 3.7 shows the memory controller as a physically separate entity,
recent designs, exemplified by the AMD Opteron [Keltcher et al., 2003], integrate the
memory controller directly on chip to minimize memory latency, simplify the chipset
design, and reduce overall system cost. One of the drawbacks of an on-chip memory

MEMORY AND 1/0 SYSTEMS 135

controller is that processor designs must now be synchronized with evolving memory
standards. As an example, the Opteron processors must be redesigned to take advan-
tage of the new DDR2 DRAM standard, since the onboard controller will only work
the older DDR standard. In contrast, an off-chip memory controller (North Bridge in
the Intel/PC terminology) can be more quickly redesigned and replaced to match new
memory standards.

The ReadQ is used to buffer multiple outstanding reads; this decouples comple-
tion of a read from accepting the next one. Quite often the processor will issue reads
in bursts, as cache misses tend to occur in clusters and accepting multiple reads into
the ReadQ prevents the bus from stalling. Queueing up multiple requests may also
expose more locality that the memory controller can exploit when it schedules
DRAM commands. Similarly, the WriteQ prevents the bus and processor from stall-
ing by allowing multiple writes to be outstanding at the same time. Furthermore, the
WriteQ enables a latency-enhancing optimization for reads: since writes are usually
not latency-critical, the WriteQ can delay them in favor of outstanding reads, allow-
ing the reads to be satisfied first from the DRAM. The delayed writes can be retired
whenever there are no pending reads, utilizing idle memory channel cycles.

Memory Reference Scheduling. Of course, reference reordering in the memory
controller is subject to the same correctness requirements as a pipelined processor
for maintaining read-after-write (RAW), write-after-read (WAR), and write-after-
write (WAW) dependences. In effect, this means that reads cannot be reordered
past pending writes to the same address (RAW), writes cannot be reordered past
pending reads from the same address (WAR), and writes cannot bypass pending
writes to the same address (WAW). If we are only reordering reads with respect to
outstanding writes, only the RAW condition needs to be checked. If a RAW condi-
tion exists between a pending write and a newer read, the read must either stall and
wait for the write to be performed against the DRAM, or the read can be satisfied
directly from the write queue. Either solution will maintain correctness, while the
latter should improve performance, since the latency of the read from the on-chip
WriteQ will be lower than a read from an external DRAM chip.

However, in Section 3.4.4.1 we showed how DRAM chips can exploit spatial
locality by fetching multiple words from the same row by issuing different column
addresses to the DRAM in back-to-back cycles. These references can be satisfied
much more quickly than references to different rows, which incur the latency for a
row address transfer and row read in the internal DRAM array. In current-generation
DRAMs, rows can be as large as 8 kilobits; an eight-wide parallel organization
(extrapolating from the two-wide parallel scheme shown in Figure 3.9) would result
in an 8-kilobits row in physical memory. Accesses to the same row can be satisfied
much more quickly than references to other rows. Hence, the scheduling logic in
advanced memory controllers will attempt to find references to the same row in the
ReadQ and WriteQ and attempt to schedule them together to increase the number of
row hits. This type of scheduling optimization can substantially reduce average
DRAM read latency and improve sustained memory bandwidth, but can dramati-
cally complicate the scheduling logic as well as the ReadQ and WriteQ bypass logic.

136 MODERN PROCESSOR DESIGN

Current-generation DRAM chips are also internally interleaved or banked. A
typical chip will contain four independent banks that replicate most of the structures
shown in Figure 3.8, while sharing the external address, data, and control lines.
Internal DRAM banking allows the memory controller to overlap different types of
commands to each bank; for example, bank 0 can begin a bit-line precharge cycle
while bank 1 is performing a row access and bank 2 is performing a column access.
Furthermore, each bank has a separate row buffer, which allows the memory con-
troller to leave multiple rows open concurrently, increasing the probability that a
future request will hit an open row, reducing the access latency for that request.

Finally, banking or interleaving the DRAM interface increases the transaction
bandwidth for the memory controller, since multiple banks can operate indepen-
dently and concurrently, as long as the ReadQ and WriteQ contain references to
different banks. High-end memory controllers in multiprocessor server systems
have many independent memory banks; commodity PC systems typically have
one or two.

As a final note, the parallel and interleaved organizations described here for
DRAM systems can also be applied to SRAM caches in higher levels of the memory
hierarchy. In particular, multibanked caches are commonly used to increase transac-
tion bandwidth to a cache. For example, the Intel Pentium processor incorporates
an eight-way interleaved primary data cache to support concurrent memory
accesses from its dual pipelines [Intel Corp., 1993]. Similarly, the IBM Power
four-chip multiprocessor that is described in Chapter 6 has a three-way interleaved
on-chip level-2 cache to support concurrent requests from the two processor cores
that are on the chip [Tendler et al., 2001].

3.5 Virtual Memory Systems

So far, we have only considered levels of the memory hierarchy that employ random-
access storage technology. However, in modern high-performance computer systems,
the lowest level of the memory hierarchy is actually implemented using magnetic
disks as a paging device or backing store for the physical memory, comprising a
virtual memory system. The backing store contains blocks of memory that have
been displaced from main memory due to capacity reasons, just the same as blocks
are displaced from caches and placed either in the next level of the cache hierarchy
or in main memory.

Historically, virtual memory predates caches and was first introduced 40 years
ago in time-shared mainframe computers to enable sharing of a precious commodity—
the main memory—among multiple active programs [Kilburn et al., 1962]. Virtual
memory, as the name implies, virfualizes main memory by separating the program-
mer’s view of memory from the actual physical placement of blocks in memory.
It does so by adding a layer of cooperating hardware and software that manages
the mappings between a program’s virtual address and the physical address that
actually stores the data or program text being referenced. This process of address
translation is illustrated in Figure 3.10. The layer of cooperating hardware and soft-
ware that enables address translation is called the virtual memory system and is

MEMORY AND 1/0 SYSTEMS 137

I Virtual address I Main memory

Address | I
translation § physical address

—_—

Figure 3.10
Virtual to Physical Address Translation.

responsible for maintaining the illusion that all virtually addressable memory is
resident in physical memory and can be transparently accessed by the program, while
also efficiently sharing the limited physical resources among competing demands
from multiple active programs.

In contrast, time-sharing systems that predated or failed to provide virtual
memory handicapped users and programmers by requiring them to explicitly man-
age physical memory as a shared resource. Portions of physical memory had to be
statically allocated to concurrent programs; these portions had to be manually
replaced and evicted to allocate new space; and cumbersome techniques such as
data and program overlays were employed to reduce or minimize the amount of
space consumed by each program. For example, a program would have to explicitly
load and unload overlays that corresponded to explicit phases of program execution,
since loading the entire program and data set could either overwhelm all the physical
memory or starve other concurrent programs.

Instead, a virtual memory system allows each concurrent program to allocate
and occupy as much memory as the system’s backing store and its virtual address
space allows: up to 4 Gbytes for a machine with 32-bit virtual addresses, assuming
adequate backing store is available. Meanwhile, a separate demand paging mecha-
nism manages the placement of memory in either the limited physical memory or
in the system’s capacious backing store, based on the policies of the virtual memory
system. Such a system is responsible for providing the illusion that all virtually
addressable memory is resident in physical memory and can be transparently
accessed by the program.

The illusion of practically infinite capacity and a requirement for transparent
access sound quite similar to the principles for caching described in Section 3.4.3;
in fact, the underlying principles of temporal and spatial locality, as well as poli-
cies for locating, evicting, and handling updates to blocks, are all conceptually
very similar in virtual memory subsystems and cache memories. However, since the
relative latencies for accessing the backing store are much higher than the latencies
for satisfying a cache miss from the next level of the physical memory hierarchy,
the policies and particularly the mechanisms can and do differ substantially. A refer-
ence to a block that resides only in the backing store inflicts 10 ms or more of

138 MODERN PROCESSOR DESIGN

latency to read the block from disk. A pure hardware replacement scheme that
stalls the processor while waiting for this amount of time would result in very
poor utilization, since 10 ms corresponds to approximately 10 million instruction
execution opportunities in a processor that executes one instruction per nanosec-
ond. Hence, virtual memory subsystems are implemented as a hybrid of hardware
and software, where references to blocks that reside in physical memory are satis-
fied quickly and efficiently by the hardware, while references that miss invoke the
operating system through a page fault exception, which initiates the disk transfer
but is also able to schedule some other, ready task to execute in the window of
time between initiating and completing the disk request. Furthermore, the operat-
ing system now becomes responsible for implementing a policy for evicting
blocks to allocate space for the new block being fetched from disk. We will study
these issues in further detail in Section 3.5.1.

However, there is an additional complication that arises from the fact that multi-
ple programs are sharing the same physical memory: they should somehow be pro-
tected from accessing each others’ memory, either accidentally or due to a malicious
program attempting to spy on or subvert another concurrent program. In a typical
modern system, each program runs in its own virtual address space, which is disjoint
from the address space of any other concurrent program. As long as there is no over-
lap in address spaces, the operating system need only ensure that no two concurrent
address mappings from different programs ever point to the same physical location,
and protection is ensured. However, this can limit functionality, since two programs
cannot communicate via a shared memory location, and can also reduce perfor-
mance, since duplicates of the same objects may need to exist in memory to satisfy
the needs of multiple programs. For these two reasons, virtual memory systems typ-
ically provide mechanisms for protecting the regions of memory that they map into
each program’s address space; these protection mechanisms allow efficient sharing
and communication to occur. We describe them further in Section 3.5.2.

Finally, a virtual memory system must provide an architected means for trans-
lating a virtual address to a physical address and a structure for storing these
mappings. We outline several schemes for doing so in Section 3.5.3.

3.5.1 Demand Paging

Figure 3.11 shows an example of a single process that consumes virtual address
space in three regions: for program text (to load program binaries and shared
libraries); for the process stack (for activation records and automatic storage); and
for the process heap (for dynamically allocated memory). Not only are these three
regions noncontiguous, leaving unused holes in the virtual address space, but each
of these regions can be accessed relatively sparsely. Practically speaking, only the
regions that are currently being accessed need to reside in physical memory
(shown as shaded in the figure), while the unaccessed or rarely accessed regions
can be stored on the paging device or backing store, enabling the use of a system
with a limited amount of physical memory for programs that consume large frac-
tions of their address space, or, alternatively, freeing up main memory for other
applications in a time-shared system.

MEMORY AND 1/0 SYSTEMS 139

Virtual address space

Physical memory Process heap

Process stack

Paging device

Program text

Figure 3.11
Virtual Memory System.

A virtual memory demand paging system must track regions of memory at
some reasonable granularity. Just as caches track memory in blocks, a demand paging
system must choose some page size as the minimum granularity for locating and
evicting blocks in main memory. Typical page sizes in current-generation systems
are 4K or 8K bytes. Some modern systems also support variable-sized pages or multi-
ple page sizes to more efficiently manage larger regions of memory. However, we
will restrict our discussion to fixed-size pages.

Providing a virtual memory subsystem relieves the programmer from having
to manually and explicitly manage the program’s use of physical memory. Fur-
thermore, it enables efficient execution of classes of algorithms that use the virtual
address space greedily but sparsely, since it avoids allocating physical memory for
untouched regions of virtual memory. Virtual memory relies on lazy allocation to
achieve this very purpose: instead of eagerly allocating space for a program’s
needs, it defers allocation until the program actually references the memory.

This requires a means for the program to communicate to the virtual memory
subsystem that it needs to reference memory that has previously not been
accessed. In a demand-paged system, this communication occurs through a page-
fault exception. Initially, when a new program starts up, none of its virtual address
space may be allocated in physical memory. However, as soon as the program
attempts to fetch an instruction or perform a load or store from a virtual memory
location that is not currently in virtual memory, a page fault occurs. The hardware
registers a page fault whenever it cannot find a valid translation for the current vir-
tual address. This is conceptually very similar to a cache memory experiencing a
miss whenever it cannot find a matching tag when it performs a cache lookup.

140 MODERN PROCESSOR DESIGN

However, a page fault is not handled implicitly by a hardware mechanism;
rather, it transfers control to the operating system, which then allocates a page for
the virtual address, creates a mapping between the virtual and physical addresses,
installs the contents of the page into physical memory (usually by accessing the
backing store on a magnetic disk), and returns control to the faulting program. The
program is now able to continue execution, since the hardware can satisfy its virtual
address reference from the corresponding physical memory location.

Detecting a Page Fault. To detect a page fault, the hardware must fail to find a
valid mapping for the current virtual address. This requires an architected structure
that the hardware searches for valid mappings before it raises a page fault exception
to the operating system. The operating system’s exception handler code is then
invoked to handle the exception and create a valid mapping. Section 3.5.3 discusses
several schemes for storing such mappings.

Page Allocation. Allocating space for a new virtual memory page is similar to
allocating space for a new block in the cache, and depends on the page organiza-
tion. Current virtual memory systems all use a fully-associative policy for placing
virtual pages in physical memory, since it leads to efficient use of main memory,
and the overhead of performing an associative search is not significant compared
to the overall latency for handling a page fault. However, there must be a policy
for evicting an active page whenever memory is completely full. Since a least-
recently-used (LRU) policy would be too expensive to implement for the thousands
of pages in a reasonably sized physical memory, some current operating systems
use an approximation of LRU called the clock algorithm. In this scheme, each
page in physical memory maintains a reference bit that is set by the hardware
whenever a reference occurs to that page. The operating system intermittently clears
all the reference bits. Subsequent references will set the page reference bits, effec-
tively marking those pages that have been referenced recently. When the virtual
memory system needs to find a page to evict, it randomly chooses a page from the
set of pages with cleared reference bits. This scheme avoids evicting pages that
have been referenced since the last time the reference bits were cleared, providing
a very coarse approximation of the LRU policy.

Alternatively, the operating system can easily implement a FIFO policy for evict-
ing pages by maintaining an ordered list of pages that have been fetched into main
memory from the backing store. While not optimal, this scheme can perform reason-
ably well and is easy to implement since it avoids the overhead of the clock algorithm.

Once a page has been chosen for eviction, the operating system must place it in
the backing store, usually by performing a write of the contents of the page to a mag-
netic disk. This write can be avoided if the hardware maintains a change bit or dirty
bit for the page, and the dirty bit is not set. This is similar in principle to the dirty bits
in a writeback cache, where only the blocks that have their dirty bit set need to be
written back to the next level of the cache hierarchy when they are evicted.

Accessing the Backing Store. The backing store needs to be accessed to supply
the paged contents of the virtual page that is about to be installed in physical memory.

MEMORY AND I/0 SYSTEMS 141

Running Translation not found; process sleeps Process resumes
User process 1 l—-i— ————————————————————— l—'
Page table Evict victim; Schedule Schedule
search initiate I/O read process 2 process 1
O/S supervisor I I I I |"—|
Running

User process 2 |—|

Fetch missing page

Backing store [|

Figure 3.12
Handling a Page Fault.

Typically, this involves issuing a read to a magnetic disk, which can have a
latency exceeding 10 ms. Multitasking operating systems will put a page-faulting
task to sleep for the duration of the disk read and will schedule some other active
task to run on the processor instead.

Figure 3.12 illustrates the steps that occur to satisfy a page fault: first, the cur-
rent process 1 fails to find a valid translation for a memory location it is attempting
to access; the operating system supervisor is invoked to search the page table for a
valid translation via the page fault handler routine; failing to find a translation, the
supervisor evicts a physical page to make room for the faulting page and initiates
an I/O read to the backing store to fetch the page; the supervisor scheduler then
runs to find a ready task to occupy the CPU while process 1 waits for the page
fault to be satisfied; process 2 runs while the backing store completes the read; the
supervisor is notified when the read completes, and runs its scheduler to find the
waiting process 1; finally, process 1 resumes execution on the CPU.

3.5.2 Memory Protection

A system that time-shares the physical memory system through the use of virtual
memory allows the physical memory to concurrently contain pages from multiple
processes. In some scenarios, it is desirable to allow multiple processes to access
the same physical page, in order to enable communication between those processes
or to avoid keeping duplicate copies of identical program binaries or shared libraries
in memory. Furthermore, the operating system kernel, which also has resident
physical pages, must be able to protect its internal data structures from user-level
programs.

The virtual memory subsystem must provide some means for protecting
shared pages from defective or malicious programs that might corrupt their state.
Furthermore, even when no sharing is occurring, protecting various address ranges
from certain types of accesses can be useful for ensuring correct execution or for
debugging new programs, since erroneous references can be flagged by the protec-
tion mechanism.

142 MODERN PROCESSOR DESIGN

Typical virtual memory systems allow each page to be granted separate read,
write, and execute permissions. The hardware is then responsible for checking that
instruction fetches occur only to pages that grant execute permission, loads occur
only to pages that grant read permission, and writes occur only to pages that grant
write permission. These permissions are maintained in parallel with the virtual to
physical translations and can only be manipulated by supervisor-state code running
in the operating system kernel. Any references that violate the permissions specified
for that page will be blocked, and the operating system exception handler will be
invoked to deal with the problem, usually resulting in termination of the offending
process.

Permission bits enable efficient sharing of read-only objects like program bina-
ries and shared libraries. If there are multiple concurrent processes executing the
same program binary, only a single copy of the program needs to reside in physi-
cal memory, since the kernel can map the same physical copy into the address
space of each process. This will result in multiple virtual-physical address map-
pings where the physical address is the same. This is referred to as virtual address
aliasing.

Similarly, any other read-only objects can be shared. Furthermore, programs
that need to communicate with each other can request shared space from the operat-
ing system and can communicate directly with each other by writing to and reading
from the shared physical address. Again, the sharing is achieved via multiple virtual
mappings (one per process) to the same physical address, with appropriate read
and/or write permissions set for each process sharing the memory.

3.5.3 Page Table Architectures

The virtual address to physical address mappings have to be stored in a translation
memory. The operating system is responsible for updating these mappings whenever
they need to change, while the processor must access the translation memory to
determine the physical address for each virtual address reference that it performs.
Each translation entry contains the fields shown in Figure 3.13: the virtual address, the
corresponding physical address, permission bits for reading (Rp), writing (Wp), and
executing (Ep), as well as reference (Ref) and change (Ch) bits, and possibly a
caching-inhibited bit (Ca). The reference bit is used by the demand paging systems
eviction algorithm to find pages to replace, while the change bit plays the part of a

Virtual address Real address Rp | Wp| Ep [Ref | Ch | Ca

L Caching-inhibited bit
Change bit
Reference bit
Execute permission
Write permission
Read permission

Figure 3.13
Typical Page Table Entry.

MEMORY AND I/0 SYSTEMS 143

dirty bit, indicating that an eviction candidate needs to be written back to the backing
store. The caching-inhibited bit is used to flag pages in memory that should not, for
either performance or correctness reasons, be stored in the processor’s cache hierar-
chy. Instead, all references to such addresses must be communicated directly
through the processor bus. We will learn in Section 3.7.3 how this caching-inhibited
bit is vitally important for communicating with I/O devices with memory-mapped
control registers.

The translation memories are usually called page tables and can be organized
either as forward page tables or inverted page tables (the latter are often called
hashed page tables as well). At its simplest, a forward page table contains a page
table entry for every possible page-sized block in the virtual address space of the
process using the page table. However, this would result in a very large structure
with many unused entries, since most processes do not consume all their virtual
address space. Hence, forward page tables are usually structured in multiple lev-
els, as shown in Figure 3.14. In this approach, the virtual address is decomposed
into multiple sections. The highest-order bits of the address are added to the page
table base register (PTBR), which points to the base of the first level of the page
table. This first lookup provides a pointer to the next table; the next set of bits from
the virtual address are added to this pointer to find a pointer to the next level.
Finally, this pointer is added to the next set of virtual address bits to find the final
leaf-level page table entry, which provides the actual physical address and permission
bits corresponding to the virtual address. Of course, the multilevel page table can
be extended to more than the three levels shown in Figure 3.14.

A multilevel forward page table can efficiently store translations for a sparsely
populated virtual address space, since leaf nodes are only needed for those portions

F | | | Offset |

©

Figure 3.14
Multilevel Forward Page Table.

144 MODERN PROCESSOR DESIGN

of the address space that are actually in use; unused tables in the middle and leaf levels
are lazily allocated only when the operating system actually allocates storage in
those portions of the address space. Furthermore, the page table entries themselves
can be stored in virtual memory, allowing them to be paged out to the backing store.
This can lead to nested page faults, when the initial page fault experiences a second
page fault as it is trying to find the translation information for its virtual address. If
paging of the page table is allowed, the root level of the page table needs to remain
resident in physical memory to avoid an unserviceable page fault.

An alternative page table organization derives from the observation that there
is little motivation to provide translation entries for more pages than can actually
fit in physical memory. In an inverted page table, there are only enough entries to
map all the physical memory, rather than enough entries to map all the virtual
memory. Since an inverted page table has far fewer entries and fits comfortably
into main memory, there is no need to make it pageable. Rather, the operating sys-
tem can access it directly with physical addressing.

Figure 3.15 illustrates how translation entries are found in an inverted or hashed
page table. The virtual address is hashed, usually by applying an exclusive-OR func-
tion to nonoverlapping portions of the virtual address, and is added to the page table
base register. The resulting address is used directly as a physical address to find a set
of page table entries (PTEO through PTE3 in Figure 3.15). These page table entries
are then checked sequentially to find a matching entry. Multiple entries need to be
searched and provided, since it is possible for multiple virtual addresses to hash to
the same location. In fact, it is possible for the number of virtual page numbers that
map to the same page table entry group to exceed the capacity of the group;
this results in an overflow condition that induces additional page faults. In effect,
space in physical memory is now allocated in a set-associative manner, rather than a

Virtual page number | Offset I

PTBR I > @ > PTEO PTE1 PTE2 PTE3

Figure 3.15
Hashed Page Table.

MEMORY AND 1/0O SYSTEMS 145

fully-associative manner. Fortunately, these types of conflicts are relatively rare. In
the PowerPC virtual memory architecture, which uses a hashed page table, they are
further mitigated by providing a secondary hashing scheme that differs substantially
from the primary hash. Whenever the primary page table entry group fails to provide
a valid translation, the secondary hash is used to find a second group that is also
searched. The probability of failing to find a valid translation in either of the two
groups is further minimized, though still not completely avoided.

One drawback of an inverted page table is that it only contains mappings for
resident physical pages. Hence, pages that have been evicted from physical memory
to the backing store need their mappings stored elsewhere. This is handled by the
operating system, which maintains a separate software page table for tracking
pages that reside in the backing store. Of course, this software page table main-
tains mapping from virtual addresses to the corresponding disk blocks, rather than
to physical memory addresses.

As a final alternative, page tables need not be architected to reside in physical
memory in a particular organization. Instead, a structure called the translation
lookaside buffer (TLB, further described in Section 3.6 and illustrated in Figures 3.21
and 3.22) can be defined as part of the supervisor state of the processor. The TLB
contains a small number (typically 64) of entries that look just like the entry illus-
trated in Figure 3.13, but arranged in a fully-associative fashion. The processor
must provide fast associative lookup hardware for searching this structure to trans-
late references for every instruction fetch, load, or store. Misses in an architected
TLB result in page faults, which invoke the operating system. The operating sys-
tem uses its own page table or other mapping structure to find a valid translation or
create a new one and then updates the TLB using supervisor-mode instructions
that can directly replace and update entries in the TLB. In such a scheme, the operat-
ing system can structure the page table in whatever way it deems best, since the
page table is searched only by the page fault handler software, which can be modi-
fied to adapt to a variety of page table structures. This approach to handling trans-
lation misses is called a software TLB miss handler and is specified by the MIPS,
Alpha, and SPARC instruction set architectures.

In contrast, a processor that implements an architecture that specifies the page
table architecture provides a hardware state machine for accessing memory to search
the page table and provide translations for all memory references. In such an archi-
tecture, the page table structure is fixed, since not just the operating system page
fault handler has to access it, but a hardware state machine must also be able to
search it. Such a system provides a hardware TLB miss handler. The PowerPC and
Intel IA-32 instruction set architectures specify hardware TLB miss handlers.

3.6 Memory Hierarchy Implementation

To conclude our discussion of memory hierarchies, we address several interesting
issues that arise when they are realized in hardware and interfaced to a high-
performance processor. Four topics are covered in this section: memory accessing
mechanisms, cache memory implementations, TLB implementations, and interac-
tion between cache memory and the TLB.

146 MODERN PROCESSOR DESIGN

As discussed in Section 3.4.3.4, there are three fundamental ways to access a
multientry memory: indexing via an address, associative search via a tag, or a com-
bination of the two. An indexed memory uses an address to index into the memory
to select a particular entry; see Figure 3.4(a). A decoder is used to decode the n-bit
address in order to enable one of the 2" entries for reading or writing. There is a
rigid or direct mapping of an address to the data which requires the data to be
stored in a fixed entry in the memory. Indexed or direct-mapped memory is rigid
in this mapping but less complex to implement. In contrast, an associative memory
uses a key to search through the memory to select a particular entry; see
Figure 3.4(b). Each entry of the memory has a tag field and a comparator that com-
pares the content of its tag field to the key. When a match occurs, that entry is
selected. Using this form of associative search allows the data to be flexibly stored
in any location of the memory. This flexibility comes at the cost of implementa-
tion complexity. A compromise between the indexed memory and the associative
memory is the set-associative memory which uses both indexing and associative
search; see Figure 3.4(c). An address is used to index into one of the sets, while the
multiple entries within a set are searched with a key to identify one particular
entry. This compromise provides some flexibility in the placement of data without
incurring the complexity of a fully associative memory.

Main memory is normally implemented as a large indexed memory. However,
a cache memory can be implemented using any one of the three memory accessing
schemes shown in Figure 3.4. When a cache memory is implemented as an indexed
memory, it is referred to as a direct-mapped cache (illustrated in Figure 3.16).
Since the direct-mapped cache is smaller and has fewer entries than the main
memory, it requires fewer address bits and its smaller decoder can only decode a
subset of the main memory address bits. Consequently, many main memory
addresses can be mapped to the same entry in the direct-mapped cache. To ensure
the selected entry contains the correct data, the remaining, i.e., not decoded,

Tag Tag [Index [BOJ

Decoder
Decoder

:é)—» E—

Tag . Tag
match Multiplexor match

(@) (b)

Figure 3.16
Direct-Mapped Caches: (a) Single Word Per Block; (b) Multiword Per Block.

MEMORY AND /0 SYSTEMS 147

address bits must be used to identify the selected entry. Hence in addition to the
data field, each entry has an additional tag field for storing these undecoded bits.
When an entry of the cache is selected, its tag field is accessed and compared with
the undecoded bits of the original address to ensure that the entry contains the data
being addressed.

Figure 3.16(a) illustrates a direct-mapped cache with each entry, or block,
containing one word. In order to take advantage of spatial locality, the block size
of a cache usually contains multiple words as shown in Figure 3.16(b). With a multi-
word block, some of the bits from the original address are used to select the particu-
lar word being referenced. Hence, the original address is now partitioned into three
portions: the index bits are used to select a block; the block offset bits are used to
select a word within a selected block, and the tag bits are used to do a tag match
against the tag stored in the tag field of the selected entry.

Cache memory can also be implemented as a fully associative or a set-associative
memory, as shown in Figures 3.17 and 3.18, respectively. Fully associative caches
have the greatest flexibility in terms of the placement of data in the entries of the
cache. Other than the block offset bits, all other address bits are used as a key for
associatively searching all the entries of the cache. This full associativity facilitates
the most efficient use of all the entries of the cache, but incurs the greatest implemen-
tation complexity. Set-associative caches permit the flexible placement of data among
all the entries of a set. The index bits select a particular set, the tag bits select an entry
within the set, and the block offset bits select the word within the selected entry.

As discussed in Section 3.5, virtual memory requires mapping the virtual
address space to the physical address space. This requires the translation of the virtual
address into the physical address. Instead of directly accessing the main memory
with the address generated by the processor, the virtual address generated by the
processor must first be translated into a physical address. The physical address is
then used to access the physical main memory, as shown in Figure 3.10.

Block offset
T) é ,
1
| —>®—>
; —>®—->
I
I
I
I
I
I
I
I
[>
Associative
Y search

Multiplexor

Figure 3.17
Fully Associative Cache.

148 MODERN PROCESSOR DESIGN

Tag | Index BOI

b
()
3
3 -
3 Associative
[a)
T
1
\ | %

3

search

Multiplexor/
Figure 3.18
Set-Associative Cache.
Virtual address I
o)
I =
3 Main memory
A
Translation '“g’
memory Physical address g

Figure 3.19
Translation of Virtual Word Address to Physical Word Address Using
a Translation Memory.

As discussed in Section 3.5.3, address translation can be done using a transla-
tion memory that stores the virtual-to-real mappings; this structure is usually
called a page table. The virtual address is used to index into or search the transla-
tion memory. The data retrieved from the selected entry in the translation memory
are then used as the physical address to index the main memory. Hence, physical
addresses that correspond to the virtual addresses are stored in the corresponding
entries of the translation memory. Figure 3.19 illustrates the use of a translation
memory to translate word addresses; i.e., it maps a virtual address of a word in the
virtual address space into a physical address of a word in the physical main memory.

There are two weaknesses to the naive translation scheme shown in Figure 3.19.
First, translation of word addresses will require a translation memory with the

MEMORY AND I/0 SYSTEMS 149

Virtual address

I | | | Page offset
Virtual .
page Main memory pages
number
5
S —> ¥ 1<
L o
A ¢
Translation o
memory 5 I
(page table) > 3
Physical A
page
number
Figure 3.20

Translation of Virtual Page Address to Physical Page Address Using a Translation Memory.

same number of entries as the main memory. This can result in doubling the size
of the physical main memory. Translation is usually done at a coarser granularity.
Multiple (usually in powers of 2) words in the main memory can be grouped
together into a page, and only addresses to each page need to be translated. Within
the page, words can be selected using the lower-order bits of the virtual address,
which form the page offset. This is illustrated in Figure 3.20. Within a virtual
memory paging system, the translation memory is called the page table.

The second weakness of the translation memory scheme is the fact that two
memory accesses are required for every main memory reference by an instruction.
First the page table must be accessed to obtain the physical page number, and then
the physical main memory can be accessed using the translated physical page num-
ber along with the page offset. In actual implementations the page table is typically
stored in the main memory (usually in the portion of main memory allocated to the
operating system); hence, every reference to memory by an instruction requires
two sequential accesses to the physical main memory. This can become a serious
bottleneck to performance. The solution is to cache portions of the page table in a
small, fast memory called a translation lookaside buffer (TLB).

A TLB is essentially a cache memory for the page table. Just like any other
cache memory, the TLB can be implemented using any one of the three memory
accessing schemes of Figure 3.4. A direct-mapped TLB is simply a smaller (and
faster) version of the page table. The virtual page number is partitioned into an

150 MODERN PROCESSOR DESIGN

index for the TLB and a tag; see Figure 3.21. The virtual page number is translated
into the physical page number, which is concatenated with the page offset to form
the physical address.

To ensure more flexible and efficient use of the TLB entries, associativity is
usually added to the TLB implementation. Figure 3.22 illustrates the set-associative
and fully associative TLBs. For the set-associative TLB, the virtual address bits
are partitioned into three fields: index, tag, and page offset. The size of the page
offset field is dictated by the page size which is specified by the architecture and the
operating system. The remaining fields, i.e., index and tag, constitute the virtual

Virtual address

Virtual page no. | | | _ _J Page offset
| L
Tag
L
Index
Page
Physical page no. offset
C Physical address)
Figure 3.21
Direct-Mapped TLB.
Virtual page no.
Tag |Index | PO | Tag | PO |
I L
Virtual %
PPN Tag page no. PPN Tag
L] =
Page Page
offset offset
Physical page no.y Physical page no. }
Physical address) C Physical address)
(a) (b)
Figure 3.22

Associative TLBs: (a) Set-Associative TLB; (b) Fully Associative TLB.

MEMORY AND /0 SYSTEMS 151

page number. For the fully associative TLB, the index field is missing, and the tag
field contains the virtual page number.

Caching a portion of the page table into the TLB allows fast address translation;
however, TLB misses can occur. Not all the virtual page to physical page mappings
in the page table can be simultaneously present in the TLB. When accessing the
TLB, a cache miss can occur, in which case the TLB must be filled from the page
table sitting in the main memory. This can incur a number of stall cycles in the
pipeline. It is also possible that a TLB miss can lead to a page fault. A page fault
occurs when the virtual page to physical page mapping does not even exist in the
page table. This means that the particular page being referenced is not resident in
the main memory and must be fetched from secondary storage. To service a page
fault requires invoking the operating system to access the disk storage and can
require potentially tens of thousands of machine cycles. Hence, when a page fault
is triggered by a program, that program is suspended from execution until the page
fault is serviced by the operating system. This process is illustrated in Figure 3.12.

A data cache is used to cache a portion of the main memory; a TLB is used to
cache a portion of the page table. The interaction between the TLB and the data
cache is illustrated in Figure 3.23. The n-bit virtual address shown in Figure 3.23
is the effective address generated by the first pipe stage. This virtual address consists
of a virtual page number (v bits) and a page offset (g bits). If the TLB is a set-
associative cache, the v bits of the virtual page number is further split into a k-bit
index and a (v-k)-bit tag. The second pipe stage of the load/store unit corresponds
to the accessing of the TLB using the virtual page number. Assuming there is no
TLB miss, the TLB will output the physical page number (p bits), which is then
concatenated with the g-bit page offset to produce the m-bit physical address
where m = p + g and m is not necessarily equal to n. During the third pipe stage the
m-bit physical address is used to access the data cache. The exact interpretation of the

Virtual page no. (VPN)

Virtual .
address | Tag 1 Index I Page offset (PO) I
(n = v + gbits) .
v—k k
Y
C TLB D) g
p
Y \
Physical Physical page no. (PPN)| PO
address T
(m = p + g bits) Tag | Index ! BO BO:
block offset
t i b
Y
C D-cache)
Data
Figure 3.23

Interaction Between the TLB and the Data Cache.

152 MODERN PROCESSOR DESIGN

m-bit physical address depends on the design of the data cache. If the data cache
block contains multiple words, then the lower-order b bits are used as a block off-
set to select the referenced word from the selected block. The selected block is
determined by the remaining (mm — b) bits. If the data cache is a set-associative cache,
then the remaining (m — b) bits are split into a #-bit tag and an i-bit index. The value
of i is determined by the total size of the cache and the set associativity; i.e., there
should be i sets in the set-associative data cache. If there is no cache miss, then at
the end of the third pipe stage (assuming the data cache can be accessed in a single
cycle) the data will be available from the data cache (assuming a load instruction
is being executed).

The organization shown in Figure 3.23 has a disadvantage because the TLB
must be accessed before the data cache can be accessed. Serialization of the TLB
and data cache accesses introduces an overall latency that is the sum of the two
latencies. Hence, one might assume that address translation and memory access are
done in two separate pipe stages. The solution to this problem is to use a virtually
indexed data cache that allows the accessing of the TLB and the data cache to be
performed in parallel. Figure 3.24 illustrates such a scheme.

A straightforward way to implement a virtually indexed data cache is to use
only the page offset bits to access the data cache. Since the page offset bits do not
require translation, they can be used without translation. The g bits of the page offset
can be used as the block offset (b bits) and the index (i bits) fields in accessing the
data cache. For simplicity, let’s assume that the data cache is a direct-mapped
cache of 2' entries with each entry, or block, containing 2" words. Instead of stor-
ing the remaining bits of the virtual address, i.e., the virtual page number, as its tag
field, the data cache can store the translated physical page number in its tag field.
This is done at the time when a data cache line is filled. At the same time as the
page offset bits are being used to access the data cache, the remaining bits of the
virtual address, i.e., the virtual page number, are used to access the TLB. Assum-
ing the TLB and data cache access latencies are comparable, at the time when the

Virtual page no. (VPN) Virtual page no. (VPN)
| Tag : Index | Page offset (PO) I | Tag : Index Page offset
v—k k II Index : BO
(

C TLB D) g ‘ v
p (D-cache)

| PPN [v’ l

Hit/miss

Figure 3.24
Virtually Indexed Data Cache.

MEMORY AND I/0 SYSTEMS 153

physical page number from the TLB becomes available, the tag field (also containing
the physical page number) of the data cache will also be available. The two p-bit
physical page numbers can then be compared to determine whether there is a hit
(matching physical page numbers) in the data cache or not. With a virtually
indexed data cache, address translation and data cache access can be overlapped to
reduce the overall latency. A classic paper by Wang, Baer, and Levy discusses
many of the tradeoffs involved in designing a multilevel virtually addressed cache
hierarchy [Wang et al., 1989].

3.7 Input/Output Systems

Obviously, a processor in isolation is largely useless to an end user and serves no
practical purpose. Of course, virtually everyone has interacted with computers of
various types, either directly, through a keyboard and display device, or indirectly,
through the phone system or some other interface to an embedded computing sys-
tem. The purpose of such interaction is to either log information into a computer
system and possibly request it to perform certain computations (input) and then
either observe the result or allow the computer to directly interact with external
devices (output). Thus, the computer system as a whole can be thought of as a
black box device with some set of inputs, provided through various interfaces, and
some set of outputs, also provided through a set of interfaces. These interfaces can
interact directly with a human (by capturing keystrokes on a keyboard, movements
of a mouse, or even spoken commands, and by displaying text or graphics or play-
ing audio that are comprehensible to humans) or can instead interact with other
digital devices at various speeds. This section discusses some of these devices and
their attributes.

Table 3.4 summarizes some attributes of common input/output devices. For
each device type, the table specifies how the device is connected to the system;
whether it is used for input, output, both input and output, or storage; whether it
communicates with a human or some other machine; and approximate data rates
for these devices. The table makes clear that I/O devices are quite diverse in their
characteristics, with data rates varying by seven orders of magnitude.

Table 3.4
Types of input/output devices
How/Where Input/Output/ Data Rate
Device Connected Storage Partner (kB/s)
Mouse, keyboard Serial port Input Human 0.01
Graphical display 170 bus and Output Human 100,000
memory bus
Modem Serial port Input and output Machine 2-8
LAN 1/0 bus Input and output Machine 500-120,000

Disk Storage bus Storage Machine 10,000+

154 MODERN PROCESSOR DESIGN

3.7.1 Types of /0 Devices

This section briefly discusses the I/O devices enumerated in Table 3.4 (mouse,
keyboard, graphical displays, modems, LANSs, and disk drives), and also provides
an overview of high-performance and fault-tolerant disk arrays.

Mouse and Keyboard. A mouse and keyboard are used to provide direct user
R L input to the system. The keyboard and mouse devices are usually connected to the
E}EHAP}LH, system via a low-speed serial port. The universal serial bus (USB) is an example
L of a standardized serial port available on many systems today. The data rates for
keyboards and mice are very low, as they are limited by the speed at which
humans can type on a keyboard or operate a mouse. Since the data rates are so low,
keyboard and mouse input are typically communicated to the CPU via external
interrupts. Every key press or movement of the mouse ultimately invokes the oper-
ating system’s interrupt handler, which then samples the current state of the mouse
or the keyboard to determine which key was pressed or which direction the mouse
moved so it can respond appropriately. Though this may appear to create an exces-
sive rate of interrupts that might seriously perturb the processor, the low data rates
of these devices generally avoid that problem on a single-user system. However, in
a large-scale time-shared system that services keyboard input from hundreds or
thousands of users, the interrupt rates quickly become prohibitive. In such envi-
ronments, it is not unusual to provide terminal I/O controllers that handle key-
board interrupts from users and only communicate with the main processor once a
cluster of keyboard activity has been aggregated at the controller. The modern-day
equivalent of this type of aggregation of interactive I/O activity occurs when users
enter data into a form on their Web browser: all the data entry is captured by the
user’s Web browser client, and the Web server does not get involved until the user
clicks on a submit button that transmits all the Web form data in a single transac-
tion to the server. In this fashion, load on the server as well as the communication
links between the client and the server is minimized, since only the aggregated
information is communicated, rather than every keystroke.

e

Graphical Display. A graphical display conveys video or image data, illustra-
tions, and formatted documents to the user, and also presents a user interface that
simplifies the user’s interaction with the system. Graphical displays must render a
million or more pixels on the screen using a 24-bit color representation per pixel and
usually update the screen at a rate of 60 or more frames per second. The contents of
the screen are rendered in a frame buffer which contains a pixel-by-pixel representa-
tion of the contents of the screen. A random access memory digital-to-analog con-
verter (RAMDAC) uses a high-speed interface to the frame buffer’s memory and
converts the digitally represented image into an analog image that is displayed on a
CRT (cathode-ray tube) or LCD (liquid-crystal display) monitor. The frame buffer
contents are updated by a graphics processor that typically supports various schemes
for accelerating two-dimensional and three-dimensional graphics transformations.
For example, dedicated hardware in the graphics processor pipeline can perform visi-
bility checks to see if certain objects are hidden behind others, can correct for per-
spective in a three-dimensional environment, and can perform lighting, shading, and

MEMORY AND 1/0 SYSTEMS 155

texture transforms to add realism to the generated image. All these transforms require
extremely high bandwidth to the frame buffer memory, as well as to main memory to
access the image database, where objects are represented as collections of polygons
in three-dimensional space. Hence, while graphical display adapters are connected to
the main I/0 bus of the system to interact with the main CPU, they also often utilize a
special-purpose memory port [the accelerated graphics port (AGP) is an example of
such a port] to enable high memory bandwidth for performing these transforms.

Modem. Modems are used to interconnect digital systems over an analog com-
munication line, usually a standard telephone connection. Because of the nature of
standard phone lines, they are only able to provide limited bandwidth, with a maxi-
mum of 56 kbits/s with the latest standard. Hence, because of the low overall data
rates, modems are usually connected to the system via a low-speed serial port, like
a USB or even older RS-232 serial port.

LAN. Local area network adapters are used to connect computer systems to each
other. A LAN adapter must provide a physical layer interface that converts the
computer’s internal signal level digital data to the signaling technology employed
by the LAN interface. Fast Ethernet, running at 100 Mbits/s, dominates the industry
today, while Gbit Ethernet is rapidly being adopted. LAN adapters, due to their
reasonably high data rates, are usually connected directly to the I/O backplane bus
of the system to provide high bandwidth access to the system’s main memory and
to the processor. Originally, Ethernet was conceived as a shared bus-based inter-
connect scheme, but over time it has evolved into a switched, point-to-point orga-
nization where each computer system has a dedicated link to a centralized switch
that is responsible for routing data packets to and from each of its ports based on
the destination addresses of the packets. Ethernet switches can be connected hier-
archically to allow larger number of systems to communicate.

Disk Drives. Magnetic disk drives store information on a platter by changing the
orientation of a magnetic field at each individually addressable location on the platter.
As shown in Figure 3.25, a disk drive may contain multiple platters per spindle.

Read/write
head

Sector

Read/write _
head(s)

Platter(s)

Spindle

Figure 3.25
Disk Drive Structure.

156 MODERN PROCESSOR DESIGN

Usually, data are stored on each side of the platter, with a separate read/write head
for each side of each platter. Each platter has multiple concentric tracks that are
divided into sectors. Read/write heads rest on a cushion of air on top of each spin-
ning platter and seek to the desired track via a mechanical actuator. The desired
sector is found by waiting for the disk to rotate to the desired position. Typical
disks today rotate from 3000 to 15,000 revolutions per minute (rpm), contain any-
where from 500 to 2500 tracks with 32 or more sectors per track, and have platters
with diameters ranging in size from 1 to 3.5 in.

Recent drives have moved to placing a variable number of sectors per track,
where outer tracks with greater circumference have more sectors, and inner tracks
with lesser circumference contain fewer tracks. This approach maintains constant
areal bit density on the platter substrate, but complicates the read/write head control
logic, since the linear velocity of the disk under the head varies with the track (with a
higher velocity for outer tracks). Hence, the rate at which bits pass underneath the
head also varies with the track, with a higher bit rate for outer tracks. In contrast, in
older disks with a constant number of sectors and variable bit density, the bit rate
that the head observed remained constant, independent of which track was being
accessed. Some older disk drives, most notably the floppy drives in the original
Apple Macintosh computers, held the bit rate and linear velocity constant by varying
the rotational speed of the disk based on the position of the head, leading to an audi-
ble variation in the sound the drive generates. This approach substantially compli-
cates the motor and its control electronics, making it infeasible for high-speed hard
drives spinning at thousands of rpm, and has been abandoned in recent disk designs.

Latency = rotational + seek + transfer + queueing 3.7

As shown in Equation (3.7), the access latency for a disk drive consists of the
sum of four terms: the rotational latency, the seek latency, the transfer latency,
and queueing delays. Rotational latency is determined by the speed at which the
disk rotates. For example, a 5400-rpm drive completes a single revolution in (60 s)/
(5400 rpm) = 11.1 ms. On average, a random access will have to wait half a revolu-
tion, leading to an average rotational latency of 11.1 ms/2 = 5.5 ms for our 5400-rpm
drive. The seek latency is determined by the number of tracks, the size of the plat-
ter, and the design of the seek actuator, and varies depending on the distance from
the head’s current position to the target track. Typical average seek latencies range
from 5 to 15 ms. The transfer latency is determined by the read/write head’s data
transfer rate divided by the block size. Data transfer rates vary from 1 to 4 Mbytes/s
or more, while typical blocks are 512 bytes; assuming a 4-Mbyte transfer rate for a
512-b block, a drive would incur 0.12 ms of transfer latency. Finally, queueing
delays in the controller due to multiple outstanding requests can consume 1 ms or
more of latency. The final average latency for our example drive would add up to
5.5 ms (rotational latency) + 5 ms (seek latency) + 0.1 ms (transfer latency) + 1 ms
(queueing latency) = 11.6 ms.

Modern disk drives also provide cache buffers ranging in size from 2 to
8 Mbytes that are used to capture temporal and spatial locality in the disk refer-
ence stream. These operate very similarly to processor caches and are often able to

MEMORY AND 1/0 SYSTEMS 157

satisfy a substantial fraction of all disk requests with very low latency, hence
reducing the average disk latency by a considerable amount. Of course, worst-case
access patterns that exhibit little spatial or temporal locality will still incur access
latencies determined by the physical design of the disk, since they cannot be satis-
fied from the disk buffer.

Subsequent references to the same or nearby tracks or sectors can be satisfied
much more quickly than the average case, since the rotational and seek latencies
are minimized in those cases. Hence, modern operating systems attempt to reorder
references in order to create a schedule that maximizes this type of spatial locality,
hence minimizing average reference latency. As long as the operating system is
aware of the physical disk layout of the blocks it is referencing, such scheduling is
possible and desirable. Disk drive performance and modeling issues are discussed
at length in a classic paper by Ruemmler and Wilkes [1994].

Disk Arrays. High-performance computer systems typically contain more than
one disk to provide both increased capacity as well as higher bandwidth to and
from the file system and the demand-paged backing store. Quite often, these disks
are arranged in arrays that can be configured to provide both high performance as
well as some degree of fault tolerance. In such arrays, data can be striped across
multiple disks at varying levels of granularity to enable either higher data band-
width or higher transaction bandwidth by accessing multiple disks in parallel.
Figure 3.26 illustrates several approaches for striping or interleaving data across

A0 A0 A0 A0

A0 BO Co DO Al Al Al Al A0 Al A2 A3

A2 A2 A2 A2

BO BO BO BO

Al Bl Cl1 D1 Bl B1 Bl B1 BO Bl B2 B3

B2 B2 B2 B2

Co Co Co Co

A2 B2 C2 D2 Cl1 Cl1 Cl Cl1 Co Cl1 c2 C3

C2 C2 (67] C2

Independent Fine-grained Coarse-grained

Each disk is represented by a column, each block is represented by a name (A0, Al, A2, etc.), and
blocks from the same file are named with the same letter (e.g., A0, Al, and A2 are all from the
same file). Independent disk arrays place related blocks on the same drive. Fine-grained
interleaving subdivides each block and stripes it across multiple drives. Coarse-grained
interleaving stripes related blocks across multiple drives.

Figure 3.26
Striping Data in Disk Arrays.

158 MODERN PROCESSOR DESIGN

Table 3.5

multiple disks at varying levels of granularity. Without interleaving, shown at left
in the figure as Independent, blocks from a single file (e.g. A0, Al, A2) are all
placed consecutively on a single disk (represented by a column in Figure 3.26.
With fine-grained interleaving, shown in the middle of the figure, blocks are sub-
divided and striped across multiple disks. Finally, in coarse-grained interleaving,
shown at right in the figure, each block is placed on a single disk, but related
blocks are striped across multiple disks.

The redundant arrays of inexpensive disks (RAID) nomenclature, introduced
by Patterson, Gibson, and Katz [1988] and summarized in Table 3.5, provides a
useful framework for describing different approaches for combining disks into
arrays. RAID level O provides no degree of fault tolerance, but does provide high
performance by striping data across multiple disks. Because of the striping, greater
aggregate read and write bandwidth is available to the objects stored on the disks.

Redundant arrays of inexpensive disks (RAID) levels

RAID
Level

0
1

Fault Usage and

Explanation Overhead Tolerance Comments
Data striped across disks None None Widely used; fragile
Data mirrored Each disk duplicated 10of2 Widely used; very

high overhead
Hamming code ECC Very high for few Single disk Not practical; requires
protection; data + disks; reasonable only failure too many disks to
ECC bits striped across for a large disk array amortize cost of
many disks ECC bits
Data striped; single Parity disk per Single disk Available; high data
parity disk per word striped block failure bandwidth, poor

transaction bandwidth
Data not striped Parity disk per Single disk Available; poor write
(interleaved at block block set failure performance due to
granularity); single parity disk bottleneck
parity disk
Data not striped 1 of n disk blocks Single disk Widespread; writes
(interleaved at block used for parity (e.g,, failure require updates to
granularity); parity 5 disks provide data two disks—one for
blocks interleaved capacity of 4) data, one for parity
on all disks
Data not striped 2 of n disk blocks Multiple disk Available; writes updates
(interleaved at block used for parity (e.g., failure to three disks—one for
granularity); two- 6 disks provide data data, one for row parity,
dimensional parity capacity of 4) one for column parity

blocks interleaved
on disks

Source: Patterson et al., 1988.

MEMORY AND 1/O SYSTEMS 159

Furthermore, since each disk can operate independently, transaction bandwidth is
also increased dramatically. However, a single disk failure will cause the entire
array to fail. RAID level 1, also known as disk mirroring, addresses this by provid-
ing fault tolerance through mirroring of all data. This approach is simple to imple-
ment, but has very high overhead and provides no improvement in write bandwidth
(since both copies must be updated), and only a doubling of read and read transac-
tion bandwidth.

Higher levels of RAID protection use parity or error-correction codes (ECCs)!
to reduce the overhead of fault tolerance to much less than the 100% overhead
required by RAID level 1. In RAID level 2, word-level ECCs based on Hamming
codes are used to identify and correct single errors. Conceptually, an ECC contains
both a parity bit (used to check for a bit error in the coded word), as well as an off-
set that points to the data bit that is in error. Both the parity bit and offset are
encoded using a Hamming code to minimize storage overhead and are used
together to correct a bit error by flipping the bit at the specified offset whenever
the parity bit indicates an error.

Unfortunately, the inherent overhead of word-level ECCs is high enough that
RAID level 2 is impractical for all but the largest disk arrays, where large words
can be spread across dozens of drives to reduce the ECC overhead. For example,
the ECC SECDED ? overhead for a 64-bit word size is a minimum of 7 bits, requir-
ing a disk array with 71 drives (64 data drives and 7 ECC drives) to achieve a rea-
sonable 11% overhead. Since the ECC SECDED overhead is much higher for
smaller word sizes, RAID level 2 is rarely employed in arrays with few drives.
RAID level 3 replaces the ECCs with just parity, since failing drives can typically
be detected by the disk array controller without the explicit error-correction-coded
offset that identifies the failing bit (modern disks include diagnostic firmware that
is able to report disk failure and even predict imminent failure to the disk control-
ler). Using only parity reduces overhead and simplifies RAID implementation.
However, since data are striped at a very fine grain in RAID level 3 (at the bit
level), each transaction requires the coordinated participation of all the drives in the
parity set; hence, transaction bandwidth does not scale well. Instead, RAID level 4
maintains parity at a coarser block level, reducing the transaction overhead and sup-
plying much better transaction bandwidth scaling. As illustrated in Figure 3.27,
RAID level 4 places all parity blocks on the same drive. This leads to the parity
drive bottleneck, since all writes must access this single drive to update their block
set’s parity. RAID level 5 solves the parity block bottleneck by rotating the parity
blocks across all the drives, as shown at right in Figure 3.27.

RAID level 5 is widely used to provide both high performance and fault toler-
ance to protect against single disk failure. In RAID level 5, data blocks are indepen-
dently stored across the disks in the array, while parity blocks covering a group of

For background information on error-correcting codes, which are not covered in detail in this book, the
interested reader is referred to Blahut [1983] and Rao and Fujiwara [1989].

2Single—error correct and dual-error detect (SECDED) codes are powerful enough to correct a single bit error
and detect the occurrence of—but not correct—a dual-bit error within a protected word.

ﬁ*
]

MHH

160 MODERN PROCESSOR DESIGN

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
RAID level 4 RAID level 5
Figure 3.27

Placement of Parity Blocks in RAID Level 4 (Left) vs. RAID Level 5 (Right).

data blocks are interleaved in the drives as well. In terms of capacity overhead, this
means that 1 of n disks is consumed for storing parity, in exchange for tolerance of
single drive failures. Read performance is still very good, since each logical read
requires only a single physical read of the actual data block. Write performance
suffers slightly compared to RAID level 0O, since the parity block must be updated in
addition to writing the new data block. However, RAID level 5 provides a powerful
combination of fault tolerance, reasonable overhead, and high performance, and is
widely deployed in real systems.

Finally, RAID level 6 extends level 5 by maintaining two dimensions of parity
for each block, requiring double the storage and write overhead of level 5 but
providing tolerance of multiple disk failures. RAID level 6 is typically employed only
in environments where data integrity is extremely important. The interested reader
is referred to the original work by Patterson et al. [1988] for a more in-depth treat-
ment of the advantages and disadvantages of the various RAID levels.

RAID controllers can be implemented either completely in hardware, with
limited or no operating system involvement, or in the operating system’s device
driver (also known as software RAID). For example, the open-source Linux kernel
supports software RAID levels 0, 1, and 5 over arrays of inexpensive, commodity
integrated drive electronics (IDE) drives, and even across drives on separate LAN-
connected machines that are configured as network block devices (nbd). This
makes it possible to implement fault-tolerant RAID arrays using very inexpensive,
commodity PC hardware.

Hardware RAID controllers, typically used in higher-end server systems,
implement RAID functionality in the controller’s firmware. High-end RAID
controllers often also support hot-swappable drives, where a failed or failing drive
can be replaced on the fly, while the RAID array remains on-line. Alternatively, a
RAID array can be configured to contain hot spare drives, and the controller can
automatically switch in a hot spare drive for a drive that is about to fail or has
already failed (this is called automated failover). During the period of time that a
failed disk is still part of the array, all accesses to blocks stored on the failed disk

MEMORY AND /0 SYSTEMS 161

are satisfied by reading the parity block and the other blocks in the parity set and
reconstructing the contents of the missing block using the parity function. For
example, in an array employing even parity across four disks, where the failing
disk is the third disk, the controller might read a parity bit of <1> and <0,1,?,1>
from the remaining good drives. Since even parity implies an even number of “1”
bits across the parity set, the missing “?” bit is inferred to be a “1.” Since each
access to the failed drive requires coordinated reads to all the remaining drives in
the parity set, this on-line forward error correction process can result in very poor
disk performance until the failed disk has been replaced.

In a similar fashion, a RAID array with hot spares can automatically recon-
struct the contents of the failed drive and write them to the spare disk, while alerting
the system operator to replace the failed drive. In a RAID array that does not support
hot spares, this reconstruction process has to be conducted either off line, after the
array has been powered down and the failed disk replaced, or on line, as soon as
the operator has hot-swapped the failed drive with a functioning one.

3.7.2 Computer System Busses

A typical computer system provides various busses for interconnecting the compo-
nents we have discussed in the preceding sections. In an ideal world, a single com-
munication technology would satisfy the needs and requirements of all system
components and I/O devices. However, for numerous practical reasons—including
cost, backward compatibility, and suitability for each application—numerous
interconnection schemes are employed in a single system. Figure 3.28 shows three
types of busses: the processor bus, the I/O bus, and a storage bus.

Processor busses are used to connect the CPU to main memory as well as to
an I/O bridge. Since CPU performance depends heavily on a high-bandwidth,

CPU
- adapter
Y 2
Processor bus g
A A
) }
Memory I/O bridge fe—> Disk Storage bus
controller g/

Network
interface,

Figure 3.28
Different Types of Computer System Busses.

T

162 MODERN PROCESSOR DESIGN

I
i
|
+
i

i

T

low-latency connection to main memory, processor busses employ leading-edge sig-
naling technology running at very high frequencies. Processor busses are also fre-
quently updated and improved, usually with every processor generation. Hence,
all the devices that connect to the processor bus (typically the CPU, the memory
controller, and the I/O bridge; often referred to as the chip set) need to be updated
at regular intervals. Because of this de facto update requirement, there is little or
no pressure on processor busses to maintain backward compatibility beyond more
than one processor generation. Hence, not only does the signaling technology
evolve quickly, but also the protocols used to communicate across the bus adapt
quickly to take advantage of new opportunities for improving performance. Sec-
tion 11.3.7 provides some additional discussion on the design of processor busses
and the coherent memory interface that a modern CPU needs to provide to com-
municate with a processor bus. Processor busses are also designed with electrical
characteristics that match very short physical distances, since the components
attached to this bus are usually in very close proximity inside the physical com-
puter package. This enables very high speed signaling technologies that would be
impossible or very expensive for longer physical distances.

In contrast to the processor bus, a typical I/O bus evolves much more
slowly, since backward compatibility with legacy I/O adapters is a primary
design constraint. In fact, systems will frequently support multiple generations
of I/0 busses to enable use of legacy adapters as well as modern ones. For example,
many PC systems support both the peripheral component interface (PCI) I/0O bus
and the industry standard architecture (ISA) bus, where the ISA bus standard
stretches back 15 years into the past. Also, for cost and physical design reasons,
I/0 busses usually employ less aggressive signaling technology, run at much
lower clock frequencies, and employ less complex communication protocols than
processor busses. For example, a modern PC system might have a 533-MHz pro-
cessor bus with an 8-byte datapath, while the PCI I/O bus would run at 33 MHz
with a 4-byte datapath. Since most peripheral I/O devices cannot support higher
data rates anyway, for cost reasons the I/O busses are less aggressive in their
design. The only standard peripheral that requires much higher bandwidth is a
modern graphics processing unit (or display adapter); modern PCs provide a
dedicated accelerated graphics port (AGP) to supply this bandwidth to main
memory, while control and other communication with the display adapter still
occurs through the PCI I/O bus.

I/O busses typically need to span physical distances that are limited by the
computer system enclosure; these distances are substantially longer than what
the processor bus needs to span, but are still limited to less than 12 in. (30 cm) in
most cases.

Finally, storage busses, used primarily to connect magnetic disk drives to the
system, suffer even more from legacy issues and backward compatibility. As a
result, they are often hobbled in their ability to adopt new signaling technology in
a clean, straightforward fashion that does not imply less-than-elegant solutions.
For example, most storage busses are limited in their use of newer technology or
signaling by the oldest peer sharing that particular bus. The presence of one old

MEMORY AND I/0 SYSTEMS 163

device will hence limit all newer devices to the lowest common denominator of
performance.

Storage busses must also be able to span much greater physical distances,
since the storage devices they are connecting may reside in an external case or
adjacent rack. Hence, the signaling technology and communication protocol must
tolerate long transmission latencies. In the case of Fiber Channel, optical fiber
links are used and can span several hundred meters, enabling storage devices to
reside in separate buildings.

Simple busses support only a single concurrent transaction. Following an arbi-
tration cycle, the device that wins the arbitration is allowed to place a command on
the bus. The requester then proceeds to hold or occupy the bus until the command
completes, which usually involves waiting for a response from some other entity
that is connected to the same bus. Of course, if providing a response entails some
long-latency event like performing a read from a disk drive, the bus is occupied for
a very long time for each transaction. While such a bus is relatively easy to design,
it suffers from very poor utilization due to these long wait times, during which the
bus is effectively idle. In fact, virtually all modern bus designs support split trans-
actions, which enable multiple concurrent requests on a single bus. On a split
transaction bus, a requester first arbitrates for the bus, but then occupies the bus
only long enough to issue the request, and surrenders the bus to the next user with-
out waiting for the response. Some period of time later, the responder now arbi-
trates for the bus and then transmits the response as a separate bus event. In this
fashion, transactions on the bus are split into two—and sometimes more than
two—separate events. This interleaving of multiple concurrent requests leads to
much better efficiency, since the bus can now be utilized to transfer independent
requests and responses while a long-latency request is pending. Naturally, the
design complexity of such a bus is much higher, since all devices connected to the
bus must now be able to track outstanding requests and identify which bus transac-
tions correspond to those requests. However, the far higher effective bandwidth
that results justifies the additional complexity.

Figure 3.29 summarizes the key design parameters that describe computer
system busses. First of all, the bus topology must be set as either point-to-point,
which enables much higher frequency, or multidrop, which limits frequency due
to the added capacitance of each electrical connection on the shared bus, but pro-
vides more flexible connectivity. Second, a particular signaling technology must
be chosen to determine voltage levels, frequency, receiver/transmitter design,
use of differential signals, etc. Then, several parameters related to actual data
transfer must be set: the width of the data bus; whether or not the data bus lines
are shared or multiplexed with the control lines; and either a single-word data
transfer granularity, or support for multiword transfers, possibly including sup-
port for burst-mode operation that can saturate the data bus with back-to-back
transfers. Also, a bidirectional bus that supports multiple signal drivers per data
wire must provide a mechanism for turning the bus around to switch from one
driver to another; this usually leads to dead cycles on the bus and reduces sus-
tainable bandwidth (a unidirectional bus avoids this problem). Next, a clocking

164 MODERN PROCESSOR DESIGN

Bus design

Topology

Point to point

Multidrop (broadcast)

— Signaling technology (voltage levels, frequency, etc.)
— Data transfer

Data bus width

Data bus wires

Shared/multiplexed with address lines
Dedicated data lines
Transfer granularity

Single word
Multiple words (burst mode)

Directionality

Unidirectional (single driver per data wire)
Bidirectional (multiple drivers, bus turnarounds required)

—— Clocking strategy

Asynchronous (handshaking required)
Synchronous (single shared clock)
Source synchronous (clock travels with address and/or data)

Bus arbitration

Single bus master (no arbitration necessary)
——— Multiple bus masters

Arbitration mechanism

Daisy chain
Centralized
Distributed
Switching strategy

Blocking (circuit-switched or pended)
Nonblocking (packet-switched or split transaction)

Figure 3.29
Bus Design Parameters.

strategy must also be set: the simplest option is to avoid bus clocks, instead
employing handshaking sequences using request and valid lines to signal the
presence of valid commands or data on the bus. As an alternative, a single shared
clock can be used on a synchronous bus to avoid handshaking and improve bus
utilization. Finally, an aggressive source-synchronous clocking approach can be
used, where the clock travels with the data and commands, enabling the highest
operating frequency and wave pipelining with multiple packets in flight at the
same time. Finally, for bus designs that allow multiple bus masters to control the

MEMORY AND 1/0 SYSTEMS 165

bus, an arbitration and switching policy must be specified. Possible arbitration
mechanisms include daisy-chained arbiters, centralized arbiters, or distributed
arbiters; while switching policies are either circuit-switched (also known as
blocking), where a single transaction holds the bus until it completes, or packet-
switched (also known as nonblocking, pipelined, or split transaction buses),
where bus transactions are split into two or more packets and each packet occu-
pies a separate slot on the bus, allowing for interleaving of packets from multiple
distinct requests.

Modern high-performance bus designs are trending toward the following
characteristics to maximize signaling frequency, bandwidth, and utilization: point-
to-point connections with relatively few data lines to minimize crosstalk, source-
synchronous clocking with support for burst mode transfers, distributed arbitration
schemes, and support for split transactions. One interesting alternative bus design
that has emerged recently is the simultaneous bidirectional bus: in this scheme, the
bus wires have multiple pipelined source-synchronous transfers in flight at the
same time, with the additional twist of signaling simultaneously in both directions
across the same set of wires. Such advanced bus designs conceptually treat the
digital signal as an analog waveform traveling over a well-behaved waveguide (i.e.,
a copper wire), and require very careful driver and receiver design that borrows con-
cepts and techniques from the signal processing and advanced communications
transceiver design communities.

3.7.3 Communication with 1/0 Devices

Clearly, the processor needs to communicate with I/O devices in the system using
some mechanism. In practice, there are two types of communication that need to
occur: control flow, which communicates commands and responses to and from
the I/0O device; and data flow, which actually transfers data to and from the /O
device. Control flow can further be broken down into commands which flow from
the processor to the I/O device (outbound control flow), and responses signaling
completion of the commands or other status information back to the processor
(inbound control flow). Figure 3.30 summarizes the main attributes of I/O device
communication that will be discussed in this section.

Outbound Control Flow. There are two basic approaches for communicating
commands (outbound control flow) from the processor to the I/O device. The first
of these is through programmed I/O: certain instruction set architectures provide
specific instructions for communicating with I/O devices; for example, the Intel
TA-32 instruction set provides such primitives. These programmed I/O instructions
are directly connected to control registers in the I/O devices, and the I/O devices
react accordingly to changes written to these control registers. The main shortcom-
ing of this approach is that the ISA provides only a finite set of I/O port interfaces
to the processor, and in the presence of multiple I/O devices, they need to be
shared or virtualized in a manner that complicates operating system device driver
software. Furthermore, these special-purpose instructions do not map cleanly to

166 MODERN PROCESSOR DESIGN

1/0 device communication
Control flow granularity

|: Fine-grained (shallow adapters)

Coarse-grained (deep adapters, e.g., channels)
Mechanics of control flow
Outbound control flow

Programmed 1/0
Memory-mapped control registers

Inbound control flow

Polling
Interrupt-driven

|

Mechanics of data flow

i: Programmed I/O

Direct memory access (DMA)

Software cache coherence
Hardware cache coherence

|

Figure 3.30
Communication with I/O Devices.

the pipelined and out-of-order designs described in this book, but require complex
specialized handling within the processor core.

A more general approach for outbound control flow is to use memory-
mapped 1/0. In this approach, the device-specific control registers are mapped
into the memory address space of the system. Hence, they can be accessed with
conventional load and store instructions, with no special support in the ISA.
However, care must be taken in cache-based systems to ensure that the effects of
loads and stores to and from these memory-mapped I/O registers are actually
visible to the I/O device, rather than being masked by the cache as references
that hit in the cache hierarchy. Hence, virtual memory pages corresponding to
memory-mapped control registers are usually marked as caching inhibited or
uncacheable in the virtual memory page table (refer to Section 3.5.3 for more
information on page table design). References to uncacheable pages must be
routed off the processor chip and to the I/O bridge interface, which then satisfies
them from the control registers of the I/O device that is mapped to the address in
question.

Inbound Control Flow. For inbound control flow, i.e., responses or status infor-
mation returned from the I/O devices back to the processor, there are two funda-
mental approaches: polling or interrupts. In a polling system, the operating system
will intermittently check either a programmed I/O or memory-mapped control
register to determine the status of the I/O device. While straightforward to implement,
both in hardware and software, polling systems suffer from inefficiency, since the

MEMORY AND 1/0 SYSTEMS 167

processor can spend a significant amount of time polling for completion of a long-
latency event. Furthermore, since the polling activity requires communication
across the processor and I/O busses of the system, these busses can become over-
whelmed and begin to suffer from excessive queueing delays. Hence, a much
cleaner and scalable approach involves utilizing the processor’s support for external
interrupts. Here, the processor is not responsible for polling the I/O device for
completion. Rather, the I/O device instead is responsible for asserting the external
interrupt line of the processor when it completes its activity, which then initiates
the operating system’s interrupt handler and conveys to the processor that the I/O is
complete. The interrupt signal is routed from the I/O device, through the I/O
bridge, to the processor’s external interrupt controller.

Control Flow Granularity. Command and response control flow can also vary
in granularity. In typical PC-based systems, most I/O devices expose a very simple
interface through their control registers. They can perform fairly simple activities
to support straightforward requests like reading or writing a simple block of memory
to or from a peripheral device. Such devices have very fine-grained control flow,
since the processor (or the operating system device driver running on the processor)
has to control such devices in a very fine-grained manner, issuing many simple
commands to complete a more complex transaction with the peripheral I/O device.
In contrast, in the mainframe and minicomputer world, I/O devices will often
expose a much more powerful and complex interface to the processor, allowing
the processor to control those devices in a very coarse-grained fashion. For example, ~
I/0O channel controllers in IBM S/390-compatible mainframe systems can actually g
execute separate programs that contain internal control flow structures like loops

and conditional branches. This richer functionality can be used to off-load such
fine-grained control from the main CPU, freeing it to focus on other tasks. Modern = -
three-dimensional graphics adapters in today’s desktop PC systems are another e WL
example of I/O devices with coarse-grained control flow. The command set avail-

able to the operating system device drivers for these adapters is semantically rich

and very powerful, and most of the graphics-related processing is effectively off-

loaded from the main processor to the graphics adapter.

-
[]

Data Flow. Data flow between the processor and I/O devices can occur in two
fundamental ways. The first of these relies on instruction set support for pro-
grammed I/O. Again, the ISA must specify primitives for communicating with I/O
devices, and these primitives are used not just to initiate requests and poll for com-
pletion, but also for data transfer. Hence, the processor actually needs to individu-
ally read or write each word that is transferred to or from the I/O device through an
internal processor register, and move it from there to the operating system’s in-
memory buffer. Of course, this is extremely inefficient, as it can occupy the pro-
cessor for thousands of cycles whenever large blocks of data are being transferred.
These data transfers will also unnecessarily pollute and cause contention in the
processor’s cache hierarchy.

168 MODERN PROCESSOR DESIGN

Instead, modern systems enable direct memory access (DMA) for peripheral I/O
devices. In effect, these devices can issue reads and writes directly to the main
memory controller, just as the processor can. In this fashion, an I/O device can
update an operating system’s in-memory receive buffer directly, with no interven-
tion from the processor, and then signal the processor with an interrupt once the
transfer is complete. Conversely, transmit buffers can be read directly from main
memory, and a transmission completion interrupt is sent to the processor once the
transmission completes.

Of course, just as with memory-mapped control registers, DMA can cause
problems in cache-based systems. The operating system must guarantee that any
cache blocks that the I/O device wants to read from are not currently in the proces-
sor’s caches, because otherwise the I/0O device may read from a stale copy of the
cache block in main memory. Similarly, if the I/O device is writing to a memory
location, the processor must ensure that it does not satisfy its next read from the
same location from a cached copy that has now become stale, since the I/O device
only updated the copy in memory. In effect, the caches must be kept coherent with
the latest updates to and from their corresponding memory blocks. This can be
done manually, in the operating system software, by using primitives in the ISA
that enable flushing blocks out of cache. This approach is called software cache
coherence.

Alternatively, the system can provide hardware that maintains coherence; such a
scheme is called hardware cache coherence. To maintain hardware cache coherence,
the I/0 devices’ DMA accesses must be made visible to the processor’s cache hier-
archy. In other words, DMA writes must either directly update matching copies in
the processor’s cache, or those matching copies must be marked invalid to prevent
the processor from reading them in the future. Similarly, DMA reads must be satis-
fied from the processor’s caches whenever a matching and more up-to-date copy of
a block is found there, rather than being satisfied from the stale copy in main mem-
ory. Hardware cache coherence is often achieved by requiring the processor’s caches
to snoop all read and write transactions that occur across the processor-memory bus
and to respond appropriately to snooped commands that match cached lines by
either invalidating them (when a bus write is snooped) or supplying the most up-to-
date data (when a bus read to a dirty line is snooped). Chapter 11 provides more
details on hardware mechanisms for enforcing cache coherence.

3.7.4 Interaction of I/0 Devices and Memory Hierarchy

As discussed in Section 3.7.3, direct memory access (DMA) by I/0 devices causes
a cache coherence problem in cache-based systems. Cache coherence is a more
general and pervasive problem in systems that contain multiple processors, since
each processor can now also update copies of blocks of memory locally in their
cache, whereas the effects of those updates should be made visible to other proces-
sors in the system as well (i.e., their caches should remain coherent). We revisit
this problem at length in Section 11.3 and describe cache coherence protocols that
can be used to elegantly and efficiently solve this problem in systems with a few
or even hundreds of processors.

MEMORY AND 1/0 SYSTEMS 169

. | CPUI | Diskaccess | CPUl ; Thinktime | I .
Single user: I 1 T 1 1 nerease in
number of
__________________________ active threads
CPUI1 CPUI reduces
Time-shared: | effectiveness
Disk access Think time of spatial
| Diskaccess | | Thinkime || ol
CPU2 CPU2 increasing
l—H l——H working set.

l Think time
CPU3 l ¥
I Think time

>

I Disk access
CPU3
Disk access l

Time dilation of each thread reduces
effectiveness of temporal locality.

In this example, three users time-share the CPU, overlapping their CPU usage with the disk latency
and think time of the other interactive users. This increases overall throughput, since the CPU is
always busy, but can increase the latency observed by each user. Latency increases due to context
switch overhead and queuing delay (waiting for the CPU while another user is occupying it).
Temporal and spatial locality are adversely affected by time-sharing.

Figure 3.31
Time-Sharing the CPU.

However, there is another interesting interaction that occurs with the memory
hierarchy due to long-latency I/O events. In our discussion of demand-paged virtual
memory subsystems in Section 3.5.1, we noted that the operating system will put a
faulting process to sleep while it fetches the missing page from the backing store
and will schedule an alternative process to run on the processor. This process is
called time-sharing the CPU and is illustrated in Figure 3.31. The top half of the
figure shows a single process first consuming CPU, then performing a long-
latency disk access, then consuming CPU time again, and finally shows think time
while waiting for the user to respond to program output. In the bottom half of the
figure, other processes with similar behavior are interleaved onto the processor
while the first process is waiting for disk “access” or for user response. Clearly,
much better CPU utilization results, since the CPU is no longer idle for long periods
of time.

However, this increased utilization comes at a price: since each process’s exe-
cution is now dilated in time due to the intervening execution of other processes,
the temporal locality of each process suffers, resulting in high cache miss rates.
Furthermore, the fact that the processor’s memory hierarchy must now contain the
working sets of all the active processes, rather than just a single active process,
places great strain on the caches and reduces the beneficial effects of spatial locality.
As a result, there can be substantial increases in cache miss rates and substantially
worse average memory reference latency in such heavily time-shared systems.

170 MODERN PROCESSOR DESIGN

As processors continue to increase their speed, while the latency of I/O devices
improves at a glacial rate, the ratio of active processes that need to be scheduled to
cover the latency of a single process’s I/O event is increasing rapidly. As a result, the
effects pointed out in Figure 3.31 are more and more pronounced, and the effective-
ness of cache-based memory hierarchies is deteriorating. We revisit this problem in
Chapter 11 as we discuss systems that execute multiple threads simultaneously.

3.8 Summary

This chapter introduces the basic concept of a memory hierarchy, discusses vari-
ous technologies used to build a memory hierarchy, and covers many of the effects
that a memory hierarchy has on processor performance. In addition, we have studied
some of the key input and output devices that exist in systems, the technology used
to implement them, and the means with which they are connected to and interact
with the processor and the rest of the computer system.

We also discussed the following memory idealisms and showed how a well-
designed memory hierarchy can provide the illusion that all of them are satisfied,
at least to some extent:

® [Infinite capacity. For storing large data sets and large programs.

® [nfinite bandwidth. For rapidly streaming these large data sets and programs
to and from the processor.

® [nstantaneous or zero latency. To prevent the processor from stalling while
waiting for data or program code.

® Persistence or nonvolatility. To allow data and programs to survive even
when the power supply is cut off.

® Zero or very low implementation cost.

We have learned that the highest levels of the memory hierarchy—register files
and primary caches—are able to supply near-infinite bandwidth and very low
average latency to the processor core, satisfying the second and third idealisms.
The first idealism—infinite capacity—is satisfied by the lowest level of the
memory hierarchy, since the capacities of DRAM-based memories are large
enough to contain the working sets of most modern applications; for applica-
tions where this is not the case, we learned about a technique called virtual mem-
ory that extends the memory hierarchy beyond random-access memory devices
to magnetic disks, which provide capacities that exceed the demands of all but the
most demanding applications. The fourth idealism—persistence or nonvolatility—
can also be supplied by magnetic disks, which are designed to retain their state
even when they are powered down. The final idealism—Ilow implementation
cost—is also satisfied, since the high per-bit cost of the upper levels of the cache
hierarchy is only multiplied by a relatively small number of bits, while the lower
levels of the hierarchy provide tremendous capacity at a very low cost per bit.
Hence, the average cost per bit is kept near the low cost of commodity DRAM

MEMORY AND I/0 SYSTEMS 171

and magnetic disks, rather than the high cost of the custom SRAM in the cache
memories and register files.

REFERENCES

Blahut, R. E.: Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley
Publishing Company, 1983.

Cuppu, V., and B. L. Jacob: “Concurrency, latency, or system overhead: Which has the
largest impact on uniprocesor DRAM-system performance?,” Proc. 28th Int. Symposium
on Computer Architecture, 2001, pp. 62-71.

Cuppu, V., B. L. Jacob, B. Davis, and T. N. Mudge: “A performance comparison of con-
temporary DRAM architectures,” Proc. 26th Int. Symposium on Computer Architecture,
1999, pp. 222-233.

Goodman, J.: “Using cache memory to reduce processor-memory traffic,” Proc. 10th Int.
Symposium on Computer Architecture, 1983, pp. 124-131.

Hill, M., and A. Smith: “Evaluating associativity in CPU caches,” IEEE Trans. on Computers,
38, 12, 1989, pp. 1612-1630.

Hill, M. D.: Aspects of Cache Memory and Instruction Buffer Performance. PhD thesis,
University of California at Berkeley, Computer Science Division, 1987.

Intel Corp.: Pentium Processor User’s Manual, Vol. 3: Architecture and Programming
Manual. Santa Clara, CA: Intel Corp., 1993.

Keltcher, C., K. McGrath, A. Ahmed, and P. Conway: “The AMD Opteron processor for
multiprocessor servers,” IEEE Micro, 23, 2, 2003, pp. 66-76.

Kilburn, T., D. Edwards, M. Lanigan, and F. Sumner: “One-level storage systems,” IRE
Transactions, EC-11, 2, 1962, pp. 223-235.

Lauterbach, G., and T. Horel: “UltraSPARC-III: Designing third generation 64-bit perfor-
mance,” IEEE Micro, 19, 3, 1999, pp. 56-66.

Liptay, J.: “Structural aspects of the system/360 model 85, part ii,” IBM Systems Journal, 7,
1, 1968, pp. 15-21.

Patterson, D., G. Gibson, and R. Katz: “A case for redundant arrays of inexpensive disks
(RAID),” Proc. ACM SIGMOD Conference, 1988, pp. 109-116.

Rao, T. R.N,, and E. Fujiwara: Error-Control Coding for Computer Systems. Englewood
Cliffs, NJ: Prentice Hall, 1989.

Ruemmler, C., and J. Wilkes: “An introduction to disk drive modeling,” IEEE Computer,
27,3, 1994, pp. 5-15.

Tendler, J. M., S. Dodson, S. Fields, and B. Sinharoy: “IBM eServer POWER4 system
microarchitecture,” IBM Whitepaper, 2001.

Wang, W.-H., J.-L. Baer, and H. Levy: “Organization and performance of a two-level
virtual-real cache hierarchy,” Proc. 16th Annual Int. Symposium on Computer Architecture,
1989, pp. 140-148.

Wilkes, M.: “Slave memories and dynamic storage allocation,” IEEE Trans. on Electronic
Computers, EC-14, 2, 1965, pp. 270-271.

Wulf, W. A., and S. A. McKee: “Hitting the memory wall: Implications of the obvious,”
Computer Architecture News, 23, 1, 1995, pp. 20-24.

172 MODERN PROCESSOR DESIGN

HOMEWORK PROBLEMS

P3.1 Given the following benchmark code and assuming a virtually-addressed
fully-associative cache with infinite capacity and 64-byte blocks, com-
pute the overall miss rate (number of misses divided by number of refer-
ences). Assume that all variables except array locations reside in registers
and that arrays A, B, and C are placed consecutively in memory. Assume
that the generated code for the loop body first loads from B, then from C,
and finally stores to A.
double A[1024], B[1024], C[10247];
for(int i=0;1<1000;1i += 2) {

A[i] = 35.0 * B[i] + C[i+1];
}

P3.2 Given the example code in Problem 3.1 and assuming a virtually-
addressed direct-mapped cache of capacity 8K-byte and 64-byte blocks,
compute the overall miss rate (number of misses divided by number of
references). Assume that all variables except array locations reside in
registers and that arrays A, B, and C are placed consecutively in memory.

P3.3 Given the example code in Problem 3.1 and assuming a virtually-
addressed two-way set-associative cache of capacity 8K-byte and 64-
byte blocks, compute the overall miss rate (number of misses divided by
number of references). Assume that all variables except array locations
reside in registers and that arrays A, B, and C are placed consecutively in
memory.

P3.4 Consider a cache with 256 bytes. The word size is 4 bytes, and the
block size is 16 bytes. Show the values in the cache and tag bits after
each of the following memory access operations for the following two
cache organizations: direct mapped and two-way associative. Also
indicate whether the access was a hit or a miss. Justify. The addresses
are in hexadecimal representation. Use LRU (least recently used)
replacement algorithm wherever needed.

Read 0010
Read 001C
Read 0018
Write 0010
Read 0484
Read 051C
Read 001C
Read 0210
Read 051C

P3.5 Describe a program that has very high temporal locality. Write
pseudocode for such a program, and show that it will have a high cache
hit rate.

X NN R W=

e

MEMORY AND 1/O SYSTEMS 173

P3.6 Describe a program that has very low temporal locality. Write
pseudocode for such a program, and show that it will have a high cache
miss rate.

P3.7 Write the programs of Problems 3.5 and 3.6 and compile them on a plat-
form that supports performance counters (for example, Microsoft Win-
dows and the Intel VTune performance counter software). Collect and
report performance counter data that verifies that the program with
high temporal locality experiences fewer cache misses.

P3.8 Write the programs of Problems 3.5 and 3.6 in C, and compile them
using the Simplescalar compilation tools available from http://www
.simplescalar.com. Download and compile the Simplescalar 3.0 simula-
tion suite and use the sim-cache tool to run both programs.Verify that
the program with high temporal locality experiences fewer cache
misses by reporting cache miss rates from both programs.

P3.9 Describe a program that has very high spatial locality. Write pseudocode
for such a program, and show that it will have a high cache hit rate.

P3.10 Describe a program that has very low spatial locality. Write pseudocode
for such a program, and show that it will have a high cache miss rate.

P3.11 Write the programs of Problems 3.9 and 3.10 and compile them on a plat-
form that supports performance counters (for example, Linux and the
Intel VTune performance counter software). Collect and report perfor-
mance counter data that verifies that the program with high temporal
locality experiences fewer cache misses.

P3.12 Write the programs of Problems 3.9 and 3.10 in C, and compile
them using the Simplescalar compilation tools available from http://
www.simplescalar.com. Download and compile the Simple-scalar
3.0 simulation suite and use the sim-cache tool to run both
programs. Verify that the program with high temporal locality experi-
ences fewer cache misses by reporting cache miss rates from both
programs.

P3.13 Consider a processor with 32-bit virtual addresses, 4K-byte pages, and
36-bit physical addresses. Assume memory is byte-addressable (i.e.,
the 32-bit virtual address specifies a byte in memory).

e L1 instruction cache: 64K bytes, 128-byte blocks, four-way set-
associative, indexed and tagged with virtual address.

e 11 data cache: 32K bytes, 64-byte blocks, two-way set-associative,
indexed and tagged with physical address, writeback.

e Four-way set-associative TLB with 128 entries in all. Assume the
TLB keeps a dirty bit, a reference bit, and three permission bits
(read, write, execute) for each entry.

174 MODERN PROCESSOR DESIGN

Specify the number of offset, index, and tag bits for each of these
structures in the following table. Also, compute the total size in num-
ber of bit cells for each of the tag and data arrays.

Offset Index Tag Sizeof Tag Size of Data
Structure Bits Bits Bits Array Array

I-cache
D-cache
TLB

P3.14 Given the cache organization in Problem 3.13, explain why accesses to
the data cache would take longer than accesses to the instruction cache.
Suggest a lower-latency data cache design with the same capacity and
describe how the organization of the cache would have to change to
achieve the lower latency.

P3.15 Given the cache organization in Problem 3.13, assume the architecture
requires writes that modify the instruction text (i.e., self-modifying
code) to be reflected immediately if the modified instructions are
fetched and executed. Explain why it may be difficult to support this
requirement with this instruction cache organization.

P3.16 Assume a two-level cache hierarchy with a private level-1 instruction
cache (L11), a private level-1 data cache (L1D), and a shared level-two
data cache (IL2). Given local miss rates for the 4% for L1I, 7.5% for
L1D, and 35% for L2, compute the global miss rate for the L2 cache.

P3.17 Assuming 1 L1I access per instruction and 0.4 data accesses per
instruction, compute the misses per instruction for the L1I, L1D, and
L2 caches of Problem 3.16.

P3.18 Given the miss rates of Problem 3.16 and assuming that accesses to the
L1I and L1D caches take 1 cycle, accesses to the L2 take 12 cycles,
accesses to main memory take 75 cycles, and a clock rate of 1 GHz,
compute the average memory reference latency for this cache hierarchy.

P3.19 Assuming a perfect cache CPI (cycles per instruction) for a pipelined pro-
cessor equal to 1.15 CPI, compute the MCPI and overall CPI for a pipe-
lined processor with the memory hierarchy described in Problem 3.18
and the miss rates and access rates specified in Problems 3.16 and 3.17.

P3.20 Repeat Problem 3.16 assuming an L1I local miss rate of 7%, an L1D
local miss rate of 3.5%, and an L2 local miss rate of 75%.

P3.21 Repeat Problem 3.17 given the miss rates of Problem 3.20.
P3.22 Repeat Problem 3.18 given the miss rates of Problem 3.20.
P3.23 Repeat Problem 3.19 given the miss rates of Problem 3.20.

MEMORY AND I1/0 SYSTEMS 175

P3.24 CPI equations can be used to model the performance of in-order super-
scalar processors with multilevel cache hierarchies. Compute the CPI
for such a processor, given the following parameters:

Infinite cache CPI of 1.15

L1 cache miss penalty of 12 cycles

L2 cache miss penalty of 50 cycles

L1 instruction cache per-instruction miss rate of 3% (0.03 misses/
instruction)

e [.] data cache per-instruction miss rate of 2% (0.02 misses/
instruction).

e 1.2]local cache miss rate of 25% (0.25 misses/L2 reference).

P3.25 It is usually the case that a set-associative or fully associative cache has
a higher hit rate than a direct-mapped cache. However, this is not
always true. To illustrate this, show a memory reference trace for a
program that has a higher hit rate with a two-block direct-mapped
cache than a fully associative cache with two blocks.

P3.26 Download and install the Simplescalar 3.0 simulation suite and instruc-
tional benchmarks from www.simplescalar.com. Using the sim-cache
cache simulator, plot the cache miss rates for each benchmark for the fol-
lowing cache hierarchy: 16K-byte two-way set-associative L1 instruc-
tion cache with 64-byte lines; 32K-byte four-way set-associative L1 data
cache with 32-byte lines; 12K-byte eight-way set-associative L2 cache
with 64-byte lines.

P3.27 Using the benchmarks and tools from Problem26, plot several miss-
rate sensitivity curves for each of the three caches (L1I, L1D, L2) by
varying each of the following parameters: cache size 0.5%, 1X, 2X, 4X;
associativity 0.5%, 1X, 2X, 4X; block size 0.25%, 0.5%, 1X, 2X, 4X. Hold
the other parameters fixed at the values in Problem 3.26 while varying
each of the three parameters for each sensitivity curve. Based on your
sensitivity curves, identify an appropriate value for each parameter
near the knee of the curve (if any) for each benchmark.

P3.28 Assume a synchronous front-side processor-memory bus that operates
at 100 MHz and has an 8-byte data bus. Arbitration for the bus takes
one bus cycle (10 ns), issuing a cache line read command for 64 bytes
of data takes one cycle, memory controller latency (including DRAM
access) is 60 ns, after which data doublewords are returned in back-to-
back cycles. Further assume the bus is blocking or circuit-switched.
Compute the latency to fill a single 64-byte cache line. Then compute
the peak read bandwidth for this processor-memory bus, assuming the
processor arbitrates for the bus for a new read in the bus cycle following
completion of the last read.

176 MODERN PROCESSOR DESIGN

P3.29 Given the assumptions of Problem 3.28, assume a nonblocking (split-
transaction) bus that overlaps arbitration with commands and data
transfers, but multiplexes data and address lines. Assume that a read
command requires a single bus cycle, and further assume that the memory
controller has infinite DRAM bandwidth. Compute the peak data band-
width for this front side bus.

P3.30 Building on the assumptions of Problem 3.29, assume the bus now has
dedicated data lines and a separate arbitration mechanism for addresses/
commands and data. Compute the peak data bandwidth for this front
side bus.

P3.31 Consider finite DRAM bandwidth at a memory controller, as follows.
Assume double-data-rate DRAM operating at 100 MHz in a parallel
non-interleaved organization, with an 8-byte interface to the DRAM
chips. Further assume that each cache line read results in a DRAM row
miss, requiring a precharge and RAS cycle, followed by row-hit CAS
cycles for each of the doublewords in the cache line. Assuming mem-
ory controller overhead of one cycle (10 ns) to initiate a read operation,
and one cycle latency to transfer data from the DRAM data bus to the
processor-memory bus, compute the latency for reading one 64-byte
cache block. Now compute the peak data bandwidth for the memory
interface, ignoring DRAM refresh cycles.

P3.32 Two page-table architectures are in common use today: multilevel
forward page tables and hashed page tables. Write out a pseudocode
function matching the following function declaration that searches a
three-level forward page table and returns 1 on a hit and O on a miss,
and assigns *realaddress on a hit.

int fptsearch(void *pagetablebase, void*
virtualaddress, void** realaddress) ;

P3.33 As in Problem 3.32, write out a pseudocode function matching the fol-
lowing function declaration that searches a hashed page table and
returns 1 on a hit and O on a miss, and assigns *realaddress on a
hit:
int hptsearch(void *pagetablebase, void*

virtualaddress, void** realaddress) ;

P3.34 Assume a single-platter disk drive with an average seek time of 4.5 ms,
rotation speed of 7200 rpm, data transfer rate of 10 Mbytes/s per head,
and controller overhead and queueing of 1 ms. What is the average
access latency for a 4096-byte read?

P3.35 Recompute the average access latency for Problem34 assuming a rota-
tion speed of 15K rpm, two platters, and an average seek time of 4.0 ms.

B -

CHAPTER

4

Superscalar Organization

CHAPTER OUTLINE
4.1 Limitations of Scalar Pipelines
4.2 From Scalar to Superscalar Pipelines
4.3 Superscalar Pipeline Overview
44 Summary
References

Homework Problems

While pipelining has proved to be an extremely effective microarchitecture tech-
nique, the type of scalar pipelines presented in Chapter 2 have a number of short-
comings or limitations. Given the never-ending push for higher performance, these
limitations must be overcome in order to continue to provide further speedup for
existing programs. The solution is superscalar pipelines that are able to achieve per-
formance levels beyond those possible with just scalar pipelines.

Superscalar machines go beyond just a single-instruction pipeline by being
able to simultaneously advance multiple instructions through the pipeline stages.
They incorporate multiple functional units to achieve greater concurrent processing
of multiple instructions and higher instruction execution throughput. Another
foundational attribute of superscalar processors is the ability to execute instructions
in an order different from that specified by the original program. The sequential
ordering of instructions in standard programs implies some unnecessary prece-
dences between the instructions. The capability of executing instructions out of
program order relieves this sequential imposition and allows more parallel processing
of instructions without requiring modification of the original program. This and the
following chapters attempt to codify the body of knowledge on superscalar processor
design in a systematic fashion. This chapter focuses on issues related to the pipeline
organization of superscalar machines. The techniques that address the dynamic

177

178 MODERN PROCESSOR DESIGN

interaction between the superscalar machine and the instructions being processed
are presented in Chapter 5. Case studies of two commercial superscalar processors
are presented in Chapters 6 and 7, while Chapter 8 provides a broad survey of his-
torical and current designs.

4.1 Limitations of Scalar Pipelines

Scalar pipelines are characterized by a single-instruction pipeline of k stages. All
instructions, regardless of type, traverse through the same set of pipeline stages. At
most, one instruction can be resident in each pipeline stage at any one time, and the
instructions advance through the pipeline stages in a lockstep fashion. Except for the
pipeline stages that are stalled, each instruction stays in each pipeline stage for
exactly one cycle and advances to the next stage in the next cycle. Such rigid scalar
pipelines have three fundamental limitations:

1. The maximum throughput for a scalar pipeline is bounded by one instruction
per cycle.

2. The unification of all instruction types into one pipeline can yield an ineffi-
cient design.

3. The stalling of a lockstep or rigid scalar pipeline induces unnecessary pipe-
line bubbles.

We elaborate on these limitations in Sections 4.1.1 to 4.1.3.

4.1.1 Upper Bound on Scalar Pipeline Throughput

As stated in Chapter 1 and as shown in Equation (4.1), processor performance can
be increased either by increasing instructions per cycle (IPC) and/or frequency or
by decreasing the total instruction count.

1 instructions 1 IPC X frequency
Performance = - _ X X — = -
instruction count cycle cycle time instruction count
(4.1)

Frequency can be increased by employing a deeper pipeline. A deeper pipeline has
fewer logic gate levels in each pipeline stage, which leads to a shorter cycle time
and a higher frequency. However, there is a point of diminishing return due to the
hardware overhead of pipelining. Furthermore, a deeper pipeline can potentially
incur higher penalties, in terms of the number of penalty cycles, for dealing with
inter-instruction dependences. The additional average cycles per instruction (CPI)
overhead due to this higher penalty can possibly eradicate the benefit due to the
reduction of cycle time.

Regardless of the pipeline depth, a scalar pipeline can only initiate the process-
ing of at most one instruction in every machine cycle. Essentially, the average IPC
for a scalar pipeline is fundamentally bounded by one. To get more instruction
throughput, especially when deeper pipelining is no longer the most cost-effective

SUPERSCALAR ORGANIZATION 179

way to get performance, the ability to initiate more than one instruction in every
machine cycle is necessary. To achieve an IPC greater than one, a pipelined
processor must be able to initiate the processing of more than one instruction in
every machine cycle. This will require increasing the width of the pipeline to facilitate
having more than one instruction resident in each pipeline stage at any one time.
We identify such pipelines as parallel pipelines.

4.1.2 Inefficient Unification into a Single Pipeline

Recall that the second idealized assumption of pipelining is that all the repeated
computations to be processed by the pipeline are identical. For instruction pipelines,
this is clearly not the case. There are different instruction types that require different
sets of subcomputations. In unifying these different requirements into one pipeline,
difficulties and/or inefficiencies can result. Looking at the unification of different
instruction types into the TYP pipeline in Chapter 2, we can observe that in the
earlier pipeline stages (such as IF, ID, and RD stages) there is significant uniformity.
However, in the execution stages (such as ALU and MEM stages) there is sub-
stantial diversity. In fact, in the TYP example, we have ignored floating-point instruc-
tions on purpose due to the difficulty of unifying them with the other instruction types.
It is for this reason that at one point in time during the “RISC revolution,” floating-
point instructions were categorized as inherently CISC and considered to be violating
RISC principles.

Certain instruction types make their unification into a single pipeline quite
difficult. These include floating-point instructions and certain fixed-point instruc-
tions (such as multiply and divide instructions) that require multiple execution
cycles. Instructions that require long and possibly variable latencies are difficult to
unify with simple instructions that require only a single cycle latency. As the disparity
between CPU and memory speeds continues to widen, the latency (in terms of
number of machine cycles) of memory instructions will continue to increase. Other
than latency differences, the hardware resources required to support the execution of
these different instruction types are also quite different. With the continued push for
faster hardware, more specialized execution units customized for specific instruction
types will be required. This will also contribute to the need for greater diversity in
the execution stages of the instruction pipeline.

Consequently, the forced unification of all the instruction types into a single pipe-
line becomes either impossible or extremely inefficient for future high-performance
processors. For parallel pipelines there is a strong motivation not to unify all the
execution hardware into one pipeline, but instead to implement multiple different
execution units or subpipelines in the execution portion of parallel pipelines. We
call such parallel pipelines diversified pipelines.

4.1.3 Performance Lost due to a Rigid Pipeline

Scalar pipelines are rigid in the sense that instructions advance through the pipeline
stages in a lockstep fashion. Instructions enter a scalar pipeline according to program
order, i.e., in order. When there are no stalls in the pipeline, all the instructions in the
pipeline stages advance synchronously and the program order of instructions is

180 MODERN PROCESSOR DESIGN

maintained. When an instruction is stalled in a pipeline stage due to its dependence
on a leading instruction, that instruction is held in the stalled pipeline stage while all
leading instructions are allowed to proceed down the pipeline stages. Because of
the rigid nature of a scalar pipeline, if a dependent instruction is stalled in pipeline
stage i, then all earlier stages, i.e., stages 1,2, ..., i~ 1, containing trailing instruc-
tions are also stalled. All i stages of the pipeline are stalled until the instruction in
stage i is forwarded its dependent operand. After the inter-instruction dependence is
satisfied, then all i stalled instructions can again advance synchronously down the
pipeline. For a rigid scalar pipeline, a stalled stage in the middle of the pipeline
affects all earlier stages of the pipeline; essentially the stalling of stage i is propa-
gated backward through all the preceding stages of the pipeline.

The backward propagation of stalling from a stalled stage in a scalar pipeline
induces unnecessary pipeline bubbles or idling pipeline stages. While an instruc-
tion is stalled in stage i due to its dependence on a leading instruction, there may
be another instruction trailing the stalled instruction which does not have a depen-
dence on any leading instruction that would require its stalling. For example, this
independent trailing instruction could be in stage i — 1 and would be unnecessarily
stalled due to the stalling of the instruction in stage i. According to program
semantics, it is not necessary for this instruction to wait in stage i — 1. If this
instruction is allowed to bypass the stalled instruction and continue down the pipe-
line stages, an idling cycle of the pipeline can be eliminated, which effectively
reduces the penalty due to the stalled instruction by one cycle; see Figure 4.1. If
multiple instructions are able and allowed to bypass the stalled instruction, then
multiple penalty cycles can be eliminated or “covered” in the sense that idling
pipeline stages are given useful instructions to process. Potentially all the penalty
cycles due to the stalled instruction can be covered. Allowing the bypassing of a
stalled leading instruction by trailing instructions is referred to as an out-of-order
execution of instructions. A rigid scalar pipeline does not allow out-of-order exe-
cution and hence can incur unnecessary penalty cycles in enforcing inter-instruction
dependences. Parallel pipelines that support out-of-order execution are called
dynamic pipelines.

Backward

ny Pa?ls.‘gg propagation
ofstalle Stalled instruction of stalling
instruction

not allowed

Figure 4.1
Unnecessary Stall Cycles Induced by Backward
Propagation of Stalling in a Rigid Pipeline.

SUPERSCALAR ORGANIZATION 181

4.2 From Scalar to Superscalar Pipelines

Superscalar pipelines can be viewed as natural descendants of the scalar pipelines
and involve extensions to alleviate the three limitations (see Section 4.1) with scalar
pipelines. Superscalar pipelines are parallel pipelines, instead of scalar pipelines, in
that they are able to initiate the processing of multiple instructions in every machine
cycle. In addition, superscalar pipelines are diversified pipelines in employing
multiple and heterogeneous functional units in their execution stage(s). Finally,
superscalar pipelines can be implemented as dynamic pipelines in order to achieve
the best possible performance without requiring reordering of instructions by the
compiler. These three characterizing attributes of superscalar pipelines will be further
elaborated in this section.

4.2.1 Parallel Pipelines

The degree of parallelism of a machine can be measured by the maximum number of
instructions that can be concurrently in progress at any one time. A k-stage scalar pipe-
line can have k instructions concurrently resident in the machine and can potentially
achieve a factor-of-k speedup over a nonpipelined machine. Alternatively, the same
speedup can be achieved by employing & copies of the nonpipelined machine to pro-
cess k instructions in parallel. These two forms of machine parallelism are illustrated in
Figure 4.2(b) and (c), and they can be denoted temporal machine parallelism and spa-
tial machine parallelism, respectively. Temporal and spatial parallelism of the same
degree can yield about the same factor of potential speedup. Clearly, temporal parallel-
ism via pipelining requires less hardware than spatial parallelism, which requires repli-
cation of the entire processing unit. Parallel pipelines can be viewed as employing both
temporal and spatial machine parallelism, as illustrated in Figure 4.2(d), to achieve
higher instruction processing throughput in an efficient manner.

The speedup of a scalar pipeline is measured with respect to a nonpipelined
design and is primarily determined by the depth of the scalar pipeline. For parallel
pipelines, or superscalar pipelines, the speedup now is usually measured with re-
spect to a scalar pipeline and is primarily determined by the width of the parallel
pipeline. A parallel pipeline with width s can concurrently process up to s instruc-
tions in each of its pipeline stages, which can lead to a potential speedup of s over
a scalar pipeline. Figure 4.3 illustrates a parallel pipeline of width s = 3.

Significant additional hardware resources are required for implementing parallel
pipelines. Each pipeline stage can potentially process and advance up to s instruc-
tions in every machine cycle. Hence, the logic complexity of each pipeline stage
can increase by a factor of s. In the worst case, the circuitry for interstage intercon-
nection can increase by a factor of s?if an sX s crossbar is used to connect all s
instruction buffers from one stage to all s instruction buffers of the next stage. In
order to support concurrent register file accesses by s instructions, the number of
read and write ports of the register file must be increased by a factor of s. Similarly,
additional I-cache and D-cache access ports must be provided.

As shown in Chapter 2, the Intel 1486 is a five-stage scalar pipeline
[Crawford, 1990]. The sequel to the i486 was the Pentium microprocessor from

182 MODERN PROCESSOR DESIGN

e

! !

(a) No parallelism (b) Temporal parallelism

l | : :

! ! ! !

(c) Spatial parallelism

! ;

e
e

! !

(d) Parallel pipeline

Figure 4.2

Machine Parallelism: (a) No Parallelism (Nonpipelined); (b) Temporal
Parallelism (Pipelined); (c) Spatial Parallelism (Multiple Units);

(d) Combined Temporal and Spatial Parallelism.

Intel [Intel Corp., 1993]. The Pentium microprocessor is a superscalar machine
implementing a parallel pipeline of width s = 2. It essentially implements two 1486
pipelines; see Figure 4.4. Multiple instructions can be fetched and decoded by the
first two stages of the parallel pipeline in every machine cycle. In each cycle,
potentially two instructions can be issued into the two execution pipelines, i.e., the
U pipe and the V pipe. The goal is to maximize the number of dual-issue cycles.
The superscalar Pentium microprocessor can achieve a peak execution rate of two
instructions per machine cycle.

As compared to the scalar pipeline of 1486, the Pentium parallel pipeline
requires significant additional hardware resources. First, the five pipeline stages

SUPERSCALAR ORGANIZATION 183

b

A S
¢

P S S
¢

S N
¢

ALU | I i |
¢

MEM | : i |
¢

we [11

Figure 4.3
A Parallel Pipeline of Width s= 3.

i QR

E;ZI DI DI

y
| WB | [WB | WB
Y Y I
U pipe V pipe
(a) (b

Figure 4.4 Aﬂi"‘ : i
(a) The Five-Stage i486 Scalar Pipeline; 1

(b) The Five-Stage Pentium Parallel Pipeline
of Width s= 2.

184 MODERN PROCESSOR DESIGN

have doubled in width. The two execution pipes can accommodate up to two
instructions in each of the last three stages of the pipeline. The execute stage can
perform an ALU operation or access the D-cache. Hence, additional ports to the
register file must be provided to support the concurrent execution of two ALU
operations in every cycle. If the two instructions in the execute stage are both
load/store instructions, then the D-cache must provide dual access. A true dual-
ported D-cache is expensive to implement. Instead, the Pentium D-cache is imple-
mented as a single-ported D-cache with eight-way interleaving. Simultaneous
accesses to two different banks by the two load/store instructions in the U and V
pipes can be supported. If there is a bank conflict, i.e., both load/store instructions
must access the same bank, then the two D-cache accesses are serialized.

4.2.2 Diversified Pipelines

The hardware resources required to support the execution of different instruction
types can vary significantly. For a scalar pipeline, all the diverse requirements for
the execution of all instruction types must be unified into a single pipeline. The
resultant pipeline can be highly inefficient. Each instruction type only requires a
subset of the execution stages, but it must traverse all the execution stages. Every
instruction is idling as it traverses the unnecessary stages and incurs significant
dynamic external fragmentation. The execution latency for all instruction types is
equal to the total number of execution stages. This can result in unnecessary stalling
of trailing instructions and/or require additional forwarding paths.

This inefficiency due to unification into one single pipeline is naturally
addressed in parallel pipelines by employing multiple different functional units
in the execution stage(s). Instead of implementing s identical pipes in an s-wide
parallel pipeline, in the execution portion of the parallel pipeline, diversified
execution pipes can be implemented; see Figure 4.5. In this example, four exe-
cution pipes, or functional units, of differing pipe depths are implemented. The
RD stage dispatches instructions to the four execution pipes based on the
instruction types.

There are a number of advantages in implementing diversified execution
pipes. Each pipe can be customized for a particular instruction type, resulting in
efficient hardware design. Each instruction type incurs only the necessary latency
and makes use of all the stages of an execution pipe. This is certainly more effi-
cient than implementing s identical copies of a universal execution pipe each of
which can execute all instruction types. If all inter-instruction dependences
between different instruction types are resolved prior to dispatching, then once
instructions are issued into the individual execution pipes, no further stalling can
occur due to instructions in other pipes. This allows the distributed and indepen-
dent control of each execution pipe.

The design of a diversified parallel pipeline does require special considerations.
One important consideration is the number and mix of functional units. Ideally the
number of functional units should match the available instruction-level parallelism
of the program, and the mix of functional units should match the dynamic mix
of instruction types of the program. Most first-generation superscalar processors

SUPERSCALAR ORGANIZATION 185

IF 1
D I
RD 1

ex | au | [memi || 1 || BrR |

/
| mMem2 | | P2 |
Y
FP3 I
|_+L * T I
| |

Figure 4.5
A Diversified Parallel Pipeline with Four
Execution Pipes.

WB |

simply integrated a second execution pipe for processing floating-point instruc-
tions with the existing scalar pipe for processing non-floating-point instructions. As
superscalar designs evolved from two-issue machines to four-issue machines, typi-
cally four functional units are implemented for executing integer, floating-point,
load/store, and branch instructions. Some recent designs incorporate multiple integer
units, some of which are dedicated to long-latency integer operations such as multiply
and divide, and others are dedicated to the processing of special operations for
image, graphics, and signal processing applications.

Similar to pipelining, the employment of a multiplicity of diversified functional
units in the design of a high-performance CPU is not a recent invention. The CDC
6600 incorporates both pipelining and the use of multiple functional units
[Thornton, 1964]. The CPU of the CDC 6600 employs 10 diversified functional
units, as shown in Figure 4.6. The 10 functional units operate on data stored in 24
operating registers, which consist of 8 address registers (18 bits), 8 index registers
(18 bits), and 8 floating-point registers (60 bits). The 10 functional units operate
independently and consist of a fixed-point adder (18 bits), a floating-point adder
(60 bits), two multiply units (60 bits), a divide unit (60 bits), a shift unit (60 bits), a
boolean unit (60 bits), two increment units, and a branch unit. The CDC 6600 CPU
is a pipelined processor with two decoding stages preceding the execution portion;

186 MODERN PROCESSOR DESIGN

E ‘ Long add
e Multiply
k=
3
=3 -
g) Multiply
s
=t
:
)
2
g & 7
2 o0 ‘B
E < > = 5
= = [5)
g &2
o} o =
s =
Q
Add
W
o]
&
:
w3
s
:
<
=
2 | ol |
Figure 4.6
The CDC 6600 with 10 Diversified Functional Units
in Its CPU.

however, the 10 functional units are not pipelined and have variable execution
latencies. For example, a fixed-point add requires 3 cycles, and a floating-point
multiply (divide) requires 10 (29) cycles. The goal of the CDC 6600 CPU is to sustain
an issue rate of one instruction per machine cycle.

Another superscalar microprocessor employed a similar mix of functional
units as the CDC 6600. Just prior to the formation of the PowerPC alliance with
IBM and Apple, Motorola had developed a very clean design of a wide superscalar
microprocessor called the 88110 [Diefendorf and Allen, 1992]. Interestingly, the
88110 also employs 10 functional units; see Figure 4.7. The 10 functional units
consist of two integer units, a bit field unit, a floating-point add unit, a multiply
unit, a divide unit, two graphic units, a load/store unit, and an instruction sequencing/
branch unit. Most of the units have single-cycle latency. With the exception of the
divide unit, the other units with multicycle latencies are all pipelined. In terms of
the total number of functional units, the 88110 represents one of the wider super-
scalar designs.

4.2.3 Dynamic Pipelines

In any pipelined design, buffers are required between pipeline stages. In a scalar rigid
pipeline, a single-entry buffer is placed between two consecutive pipeline stages

SUPERSCALAR ORGANIZATION 187

. . . Bus
Target instruction Instruction e
cache h interface
Sacic unit
Y
} (Y k<) Y
. General . . Instruction s
pveedl IR [P SR s | =
utter file g and branch unit | 8 o
1%}

[Y

Source busses

Y ((/ L L
Integer Integer Bit field § [Multiplier | | Floating-pointf§ [Divider Graphics [| Graphics Load/
unit unit unit unit add unit unit add unit pack unit § { store unit

Writeback busses

Figure 4.7
The Motorola 88110 Superscalar Microprocessor.
Source: Diefendorf and Allen, 1992.

(stages i and i + 1), as shown in Figure 4.8(a). The buffer holds all essential control
and data bits for the instruction that has just traversed stage i of the pipeline and is
ready to traverse stage i + 1 in the next machine cycle. Single-entry buffers are quite
easy to control. In every machine cycle, the buffer’s current content is used as input
to stage i +1; and at the end of the cycle, the buffer latches in the result produced by
stage i. Essentially the buffer is clocked in every machine cycle. The exception
occurs when the instruction in the buffer must be held back and prevented from tra-
versing stage i + 1. In that case, the clocking of the buffer is disabled, and the instruc-
tion is stalled in the buffer. Clearly if this buffer is stalled in a scalar rigid pipeline, all
stages preceding stage { must also be stalled. Hence, in a scalar rigid pipeline, if there
is no stalling, then every instruction remains in each buffer for exactly one machine
cycle and then advances to the next buffer. All the instructions enter and leave each
buffer in exactly the same order as specified in the original sequential code.

In a parallel pipeline, multientry buffers are needed between two consecutive
pipeline stages as shown in Figure 4.8(b). Multientry buffers can be viewed as sim-
ple extensions of the single-entry buffers. Multiple instructions can be latched into
each multientry buffer in every machine cycle. In the next cycle, these instructions
can then traverse the next pipeline stage. If all the instructions in a multientry buffer
are required to advance simultaneously in a lockstep fashion, then the control of the

188 MODERN PROCESSOR DESIGN

Stage i Stage i r : s : I
1 ﬂ n (in order)

Buffer (1) [:___l Butfer (n) | e | |

1 @ n (in order)

Stage i + 1 I Stagei-ﬁ-l[: e : I

(a) (b)

w OO0 -5

L Y L (in order)
Buffer (= n) | |

‘L \ y (out of order)

Stage i + 1 | I | I |__I
! ! !

(c)

Figure 4.8
Interpipeline-Stage Buffers: (a) Single-Entry Buffer; (b) Multientry
Buffer; (c) Multientry Buffer with Reordering.

multientry buffer is similar to that of the single-entry buffer. The entire multientry
buffer is either clocked or stalled in each machine cycle. However, such operation of
the parallel pipeline may induce unnecessary stalling of some of the instructions in a
multientry buffer. For more efficient operation of a parallel pipeline, much more
sophisticated multientry buffers are needed.

Each entry of the simple multientry buffer of Figure 4.8(b) is hardwired to one
write port and one read port, and there is no interaction between the multiple entries.
One enhancement to this simple buffer is to add connectivity between the entries to
facilitate movement of data between entries. For example, the entries can be con-
nected into a linear chain like a shift register and function as a FIFO queue. Another
enhancement is to provide a mechanism for independent accessing of each entry in
the buffer. This will require the ability to explicitly address each individual entry in
the buffer and independently control the reading and writing of each entry. If each
input/output port of the buffer is given the ability to access any entry in the buffer,
then such a multientry buffer will effectively resemble a small multiported RAM.
With such a buffer an instruction can remain in an entry of the buffer for many
machine cycles and can be updated or modified while resident in that buffer. A further
enhancement can incorporate associative accessing of the entries in the buffer. Instead
of using conventional addressing to index into an entry in the buffer, the content of an

SUPERSCALAR ORGANIZATION 189

entry can be used as an associative tag to index into that entry. With such accessing
mechanism, the multientry buffer becomes a small associative cache memory.

Superscalar pipelines differ from (rigid) scalar pipelines in one key aspect,
which is the use of complex multientry buffers for buffering instructions in flight.
In order to minimize unnecessary stalling of instructions in a parallel pipeline,
trailing instructions must be allowed to bypass a stalled leading instruction. Such
bypassing can change the order of execution of instructions from the original
sequential order of the static code. With out-of-order execution of instructions,
there is the potential of approaching the data flow limit of instruction execution;
i.e., instructions are executed as soon as their operands are available. A parallel
pipeline that supports out-of-order execution of instructions is called a dynamic
pipeline. A dynamic pipeline achieves out-of-order execution via the use of complex
multientry buffers that allow instructions to enter and leave the buffers in different
orders. Such a reordering multientry buffer is shown in Figure 4.8(c).

Figure 4.9 illustrates a parallel diversified pipeline of width s = 3 that is a dynamic
pipeline. The execution portion of the pipeline, consisting of the four pipelined

!

" 1

-
D 1

<=

T T
RD | I I I

U (in order)
Dispatch I
buffer L

| | (out of order)

Y ¥ ¥ v

EX | acu | [memi | | Fe1 | | BR |

Y

[mMEm2 | | Fe2 |

FP3
(out of order)
Reorder l i YY ¢ out o orler
buffer
u (in order)
Figure 4.9

A Dynamic Pipeline of Width s = 3.

190 MODERN PROCESSOR DESIGN

functional units, is bracketed by two reordering multientry buffers. The first buffer,
called the dispatch buffer, is loaded with decoded instructions according to program
order and then dispatches instructions to the functional units potentially in an order
different from the program order. Hence instructions can leave the dispatch buffer in
a different order than the order in which they enter the dispatch buffer. This pipeline
also implements a set of diverse functional units with different latencies.

With potential out-of-order issuing into the functional units and/or the variable
latencies of the functional units, instructions can finish execution out of order. To
ensure that exceptions can be handled according to the original program order, the
instructions must be completed (i.e., the machine state must be updated), in program
order. When instructions finish execution out of order, another reordering multientry
buffer is needed at the back end of the execution portion of the pipeline to ensure in-
order completion. This buffer, called the completion buffer, buffers the instructions
that may have finished execution out of order and retires the instructions in order by
outputting instructions to the final writeback stage in program order. Such a dynamic
pipeline facilitates the out-of-order execution of instructions in order to achieve the
shortest possible execution time, and yet is able to provide precise exception by retir-
ing the instructions and updating the machine state according to the program order.

4.3 Superscalar Pipeline Overview

This section presents an overview of the critical issues involved in the design of
superscalar pipelines. The focus is on the organization, or structural design, of super-
scalar pipelines. Issues and techniques related to the dynamic interaction of machine
organization and instruction semantics and the optimization of the resultant machine
performance are covered in Chapter 5. Essentially this chapter focuses on the
design of the machine organization, while Chapter 5 takes into account the interac-
tion between the machine and the program.

Similar to the use of the six-stage TYP pipeline in Chapter 2 as a vehicle for
presenting scalar pipeline design, we use the six-stage TEM superscalar pipeline
shown in Figure 4.10 as a “template” for discussion on the organization of super-
scalar pipelines. Compared to scalar pipelines, there is far more variety and greater
diversity in the implementation of superscalar pipelines. The TEM superscalar
pipeline should not be viewed as an actual implementation of a typical or represen-
tative superscalar pipeline. The six stages of the TEM superscalar pipeline should
be viewed as logical pipeline stages which may or may not correspond to six physical
pipeline stages. The six stages of the TEM superscalar pipeline provide a nice
framework or outline for discussing the six major portions of, or six major tasks
performed by, most superscalar pipeline organizations.

The six stages of the TEM superscalar pipeline are fetch, decode, dispatch,
execute, complete, and retire. The execute stage can include multiple (pipelined)
functional units of different types with different execution latencies. This necessitates
the dispatch stage to distribute instructions of different types to their corresponding
functional units. With out-of-order execution of instructions in the execute stage,
the complete stage is needed to reorder the instructions and ensure the in-order

SUPERSCALAR ORGANIZATION 191

| Fetch I
r I l l | l ! I Instruction buffer
l Decode I

{

|] ' I I | | IDiSpatch buffer

¢

| Dispatch]

§

|] ' l I | l I Issuing buffer

&

I Execute I
[l] l } l | ICompletion buffer

| Complete

§

l l | l | l I lStorebuffer

r Retire I

§

Figure 4.10
The Six-Stage Template (TEM) Superscalar
Pipeline.

updating of the machine state. Note also that there are multientry buffers separating
these six stages. The complexity of these buffers can vary depending on their func-
tionality and location in the superscalar pipeline. These six stages and design
issues related to them are now addressed in turn.

4.3.1 Instruction Fetching

Unlike a scalar pipeline, a superscalar pipeline, being a parallel pipeline, is capable of
fetching more than one instruction from the I-cache in every machine cycle. Given a
superscalar pipeline of width s, its fetch stage should be able to fetch s instructions
from the I-cache in every machine cycle. This implies that the physical organization
of the I-cache must be wide enough that each row of the I-cache array can store

192 MODERN PROCESSOR DESIGN

Address

Row decoder

Figure 4.11

Address
T T T T Cache T T T
- : : ; line [] Tag ; f ; Cache
Tag | I I 3 > | | ! line
. . I .
E3
Tl o % [o ———+——
Tag ! I ! > ! ! I

(a) (b)

Organization of a Wide |-Cache: (a) One Cache Line is Equal to One Physical Row; (b) One Cache Line is
Equal to Two Physical Rows.

s instructions and that an entire row can be accessed at one time. In our current discus-
sion, we assume that the access latency of the I-cache is one cycle and that the fetch
width is equal to the row width. Typically in such a wide cache organization, a cache
line corresponds to a physical row in the cache array; it is also possible that a cache
line can span several physical rows of the cache array, as illustrated in Figure 4.11.
The primary objective of the fetch stage is to maximize the instruction-fetching
bandwidth. The sustained throughput achieved by the fetch stage will impact the
overall throughput of the superscalar pipeline, because the throughput of all subse-
quent stages depends on and cannot possibly exceed the throughput of the fetch
stage. Two primary impediments to achieving the maximum throughput of
s instructions fetched per cycle are (1) the misalignment of the s instructions being
fetched, called the fetch group, with respect to the row organization of the I-cache
array; and (2) the presence of control-flow changing instructions in the fetch group.
In every machine cycle, the fetch stage uses the program counter (PC) to
index into the I-cache to fetch the instruction pointed to by the PC along with the
next s — 1 instructions, i.e., the s instructions of the fetch group. If the entire fetch
group is stored in the same row of the cache array, then all s instructions can be
fetched. On the other hand, if the fetch group crosses a row boundary, then not
all s instructions can be fetched in that cycle (assuming that only one row of the
I-cache can be accessed in each cycle). Hence, only those instructions in the first
row can be fetched; the remaining instructions will require another cycle for their
fetching. The fetch bandwidth is effectively reduced by one-half, for it now
requires two cycles to fetch s instructions. This is due to the misalignment of the
fetch group with respect to the row boundaries of the I-cache array, as illustrated in
Figure 4.12. Such misalignments reduce the effective fetch bandwidth. In the case
where each cache line corresponds to a physical row, as shown in Figure 4.11(a),
then the crossing of a row boundary also corresponds to the crossing of a cache line
boundary, which can incur additional problems. If a fetch group spans two cache
lines, then it can induce an I-cache miss involving the second line even though the

SUPERSCALAR ORGANIZATION 193

A
PC = XX00001 !
e

Y 00 o1 10 1
000 r | .
I 1]
5| ! ! !
S !
S . .
o . .
2 - :
=}
& A111 T T T
I 1 I
Y } Y Y
[1 i i |
j«———— Fetch group ———
j«—— Row width———>|
Figure 4.12

Misalignment of the Fetch Group Relative to the Row
Boundaries of the I-Cache Array.

first line is resident. Even if both lines are resident in the I-cache, the physical
accessing of multiple cache lines in one cycle is problematic.

There are two possible solutions to the misalignment problem. The first solution
is a static technique employed at compile time. The compiler can be given informa-
tion on the organization of the I-cache, e.g., its indexing scheme and row size.
Based on this information, instructions can be appropriately placed in memory loca-
tions so as to ensure the aligning of fetch groups with physical rows. For example,
every instruction that is the target of a branch can be placed in a memory location
that is mapped to the first instruction of a row. This will increase the probability of
fetching s instructions from the beginning of a row. Such techniques have been
implemented and are reasonably effective. A problem with this solution is that the
object code is tuned to a particular I-cache organization and may not be properly
aligned for other I-cache organizations. Another problem is that the static code
now can occupy a larger address range, which can potentially lead to a higher I-cache
miss rate.

The second solution to the misalignment problem involves using hardware
at run time. Alignment hardware can be incorporated to ensure that s instructions
are fetched in every cycle even if the fetch group crosses a row boundary (but
not a cache line boundary). Such alignment hardware is incorporated in the IBM
RS/6000 design; we now briefly describe this design [Grohoski, 1990; Oehler and
Groves, 1990].

The RS/6000 employs a two-way set-associative I-cache with a line size of
16 instructions (64 bytes). Each row of the I-cache array stores four associative
sets (two per set) of instructions. Hence, each line of the I-cache spans four physical
rows, as shown in Figure 4.13. The physical I-cache array is actually composed of
four independent subarrays (denoted 0, 1, 2, and 3), which can be accessed in parallel.
One instruction can be fetched from each subarray in every I-cache access. Which

194 MODERN PROCESSOR DESIGN

——

Odd
directory
| sets
A&B

—

Even

_‘ directory

sets
A&B

Figure 4.13

T T T
logic logic logic
0|AO0 [BO 0(Al |B1 0{A2 |B2 0|A3 |B3
1|A4 |B4 1[AS |BS 1|A6 [B6 1|A7 |B7
2 |A8 (B8 2|A9 (B9 2 |A10(B10 2 [A11|B11
TLB 3|A12|BI12 3 (A13(BI13 3|A14(B14 3|A15|BI15
hit
and
buffer ° . . .
control 255 255 255 255
logic
mux mux mux mux
I Instruction buffer network I
= -))
+ + +
E = = =
EI 2 g g g
Interlock, Z] 9 2
dispatch, - @_ % g g
branch, — = =
execution { D I
logic {EI__
\ \

Organization of the RS/6000 Two-Way Set-Associative I-Cache with Auto-Realignment.

of the two instructions (either A or B) in the associative set is accessed depends on
which of the two has a tag match with the address. The instruction addresses are
allocated in an interleaved fashion across the four subarrays.

If the PC happens to point to the first subarray, i.e., subarray 0, then four con-
secutive instructions can be simultaneously fetched from the four subarrays. All
four of these instructions reside in the same physical row of the I-cache, and all
four subarrays are accessed using the same row address. On the other hand, if the
PC indexes into the middle of the row, e.g., the first instruction of the fetch group
resides in subarray 2, then the four consecutive instructions in the fetch group will
span across two rows. The RS/6000 deals with this problem by detecting when the
starting address points to a subarray other than subarray 0 and automatically incre-
menting the row address of the nonconsecutive subarrays. This is done by the
“T-logic” hardware associated with each subarray. For example, if the PC indexes
into subarray 2, then subarrays 2 and 3 will be accessed with the same row address
presented to them. However the T-logic of subarrays 0 and 1 will detect this condi-
tion and automatically increment the row address presented to subarrays 0 and 1.

SUPERSCALAR ORGANIZATION 195

Consequently the two instructions fetched from subarrays 0 and 1 will actually be
from the next physical row of the I-cache.

Therefore, regardless of the starting address and where that address points in
an I-cache row, four consecutive instructions can always be fetched in every cycle
as long as the fetch group does not cross a cache line boundary. When a fetch
group crosses a cache line boundary, only instructions in the first cache line can
be fetched in that cycle. Given the fact that the cache line of the RS/6000 consists
of 16 instructions, and that there are 16 possible starting addresses of a word in
a cache line, on the average the fetch bandwidth of this I-cache organization is
(13/16) x4 + (1/16) x 3 + (1/16) x 2 + (1/16) x 1 = 3.625 instructions per cycle.

Although the fetch group can begin in any one of the four subarrays, only
subarrays 0, 1, and 2 require the T-logic hardware. The row address of subarray 3
never needs to be incremented regardless of the starting subarray of a fetch group.
The instruction buffer network in the RS/6000 contains a rotating network which
can rotate the four fetched instructions so as to present the four instructions, at its
output, in original program order. This design of the I-cache is quite sophisticated
and can ensure high fetch bandwidth even if the fetch group is misaligned
with respect to the row organization of the I-cache. However, it is quite hardware
intensive and was made feasible because the RS/6000 was implemented on
multiple chips.

Other than the misalignment problem, the second impediment to sustaining
the maximum fetch bandwidth of s instructions per cycle is the presence of control-
flow changing instructions within the fetch group. If one of the instructions in the
middle of the fetch group is a conditional branch, then the subsequent instructions
in the fetch group will be discarded if the branch is taken. Consequently, when this
happens, the fetch bandwidth is effectively reduced. This problem is fundamen-
tally due to the presence of control dependences between instructions and is
related to the handling of conditional branches. This topic, viewed as more related
to the dynamic interaction between the machine and the program, is addressed in
greater detail in Chapter 5, which covers techniques for dealing with control
dependences and branch instructions.

4.3.2 Instruction Decoding

Instruction decoding involves the identification of the individual instructions,
determination of the instruction types, and detection of inter-instruction depen-
dences among the group of instructions that have been fetched but not yet dis-
patched. The complexity of the instruction decoding task is strongly influenced by
two factors, namely, the ISA and the width of the parallel pipeline. For a typical
RISC instruction set with fixed-length instructions and simple instruction formats,
the decoding task is quite straightforward. No explicit effort is needed to determine
the beginning and ending of each instruction. The relatively few different instruc-
tion formats and addressing modes make the distinguishing of instruction types
reasonably easy. By simply decoding a small portion, e.g., one op code byte, of an
instruction, the instruction type and the format used can be determined and the

196 MODERN PROCESSOR DESIGN

remaining fields of the instruction and their interpretation can be quickly deter-
mined. A RISC instruction set simplifies the instruction decoding task.

For a RISC scalar pipeline, instruction decoding is quite trivial. Frequently the
decode stage is used for accessing the register operands and is merged with the
register read stage. However, for a RISC parallel pipeline with multiple instruc-
tions being simultaneously decoded, the decode stage must identify dependences
between these instructions and determine the independent instructions that can be
dispatched in parallel. Furthermore, to support efficient instruction fetching, the
decode stage must quickly identify control-flow changing branch instructions
among the instructions being decoded in order to provide quick feedback to the
fetch stage. These two tasks in conjunction with accessing many register operands
can make the logic for the decode stage of a RISC parallel pipeline somewhat
complex. A large number of comparators are needed for determining register
dependences between instructions. The register files must be multiported and able
to support many simultaneous accesses. Multiple busses are also needed to route
the accessed operands to their appropriate destination buffers. It is possible that
the decode stage can become the critical stage in the overall superscalar pipeline.

For a CISC parallel pipeline, the instruction decoding task can become even
more complex and usually requires multiple pipeline stages. For such a parallel
pipeline, the identification of individual instructions and their types is no longer
trivial. Both the Intel Pentium and the AMD K5 employ two pipeline stages for
decoding IA32 instructions. On the more deeply pipelined Intel Pentium Pro, a
total of five machine cycles are required to access the I-cache and decode the 1A32
instructions. The use of variable instruction lengths imposes an undesirable
sequentiality to the instruction decoding task; the leading instruction must be
decoded and have its length determined before the beginning of the next instruction
can be identified. Consequently, the simultaneous parallel decoding of multiple
instructions can become quite challenging. In the worst case, it must be assumed
that a new instruction can begin anywhere within the fetch group, and a large
number of decoders are used to simultaneously and “speculatively” decode instruc-
tions, starting at every byte boundary. This is extremely complex and can be quite
inefficient.

There is an additional burden on the instruction decoder of a CISC parallel
pipeline. The decoder must translate the architected instructions into internal low-
level operations that can be directly executed by the hardware. Such a translation
process was first described by Patt, Hwu, and Shebanow in their seminal paper on
the high-performance substrate (HPS), which decomposed complex VAX CISC
instructions into RISC-like primitives [Patt et al., 1985]. These internal operations
resemble RISC instructions and can be viewed as vertical micro-instructions. In
the AMD K35 these operations are called RISC operations or ROPs (pronounced
“ar-ops”). In the Intel P6 these internal operations are identified as micro-operations
or Hops (pronounced “you-ops”). Each IA32 instruction is translated into one or
more ROPs or pops. According to Intel, on average, one IA32 instruction is trans-
lated into 1.5 to 2.0 lops. In these CISC parallel pipelines, between the instruction
decoding and instruction completion stages, all instructions in flight within the

SUPERSCALAR ORGANIZATION 197

Macro-instruction bytes from IFU

|

‘ Instruction buffer 16 bytes I

To next
address
calculation

Y } T

LROM <«— Decoder — Decoder . Decoder v
0 1 2
T l] Branch
address
L4 HOps Ll uop Ll Jop calculation

pop queue (6)

Figure 4.14
The Fetch/Decode Unit of the Intel P6 Superscalar Pipeline.

machine are these internal operations. In this book, for convenience we will adopt
the Intel terminology and refer to these internal operations as Lops.

The instruction decoder for the Intel Pentium Pro is presented as an illustrative
example of instruction decoding for a CISC parallel pipeline. A diagram of the
fetch/decode unit of the P6 is shown in Figure 4.14. In each machine cycle, the
I-cache can deliver 16 aligned bytes to the instruction queue. Three parallel decod-
ers simultaneously decode instruction bytes from the instruction queue. The first
decoder at the front of the queue is capable of decoding all IA32 instructions,
while the other two decoders have more limited capability and can only decode
simple IA32 instructions such as register-to-register instructions.

The decoders translate IA32 instructions into the internal three-address LLops.
The lops employ the load/store model. Each IA32 instruction with complex
addressing modes is translated into multiple pops. The first (generalized) decoder
can generate up to four pops per cycle in response to the decoding of an IA32
instruction. Each of the other two (restricted) decoders can generate only one pop
per cycle in response to the decoding of a simple IA32 instruction. In each
machine cycle at least one IA32 instruction is decoded by the generalized decoder,
leading to the generation of one or more pops. The goal is to go beyond this and
have the other two restricted decoders also decode two simple IA32 instructions
that trail the leading IA32 instruction in the same machine cycle. In the most ideal
case the three parallel decoders can generate a total of six [lops in one machine
cycle. For those complex IA32 instructions that require more than four plops to
translate, when they reach the front of the instruction queue, the generalized
decoder will invoke a [lops sequencer to emit microcode, which is simply a pre-
programmed sequence of normal [ops. These [lops will require two or more
machine cycles to generate. All the llops generated by the three parallel decoders
are loaded into the reorder buffer (ROB), which has 40 entries to hold up to
40 Hops, to await dispatching to the functional units.

198 MODERN PROCESSOR DESIGN

For many superscalar processors, especially those that implement wide and/or
CISC parallel pipelines, the instruction decoding hardware can be extremely com-
plex and require partitioning into multiple pipeline stages. When the number of
decoding stages is increased, the branch penalty, in terms of number of machine
cycles, is also increased. Hence, it is not desirable to just keep increasing the depth
of the decoding portion of the parallel pipeline. To help alleviate this complexity,
a technique called predecoding has been proposed and implemented.

Predecoding moves a part of the decoding task to the other side, i.e., the input
side, of the I-cache. When an I-cache miss occurs and a new cache line is being
brought in from the memory, the instructions in that cache line are partially
decoded by decoding hardware placed between the memory and the I-cache. The
instructions and some additional decoded information are then stored in the I-cache.
The decoded information, in the form of predecode bits, simplifies the instruction
decoding task when the instructions are fetched from the I-cache. Hence, part of
the decoding is performed only once when instructions are loaded into the I-cache,
instead of every time when these instructions are fetched from the I-cache. With
some of the decoding hardware having been moved to the input side of the I-cache,
the instruction decoding complexity of the parallel pipeline can be simplified.

The AMD K5 is an example of a CISC superscalar pipeline that employs
aggressive predecoding of IA32 instructions as they are fetched from memory and
prior to their being loaded into the I-cache. In a single bus transaction a total of
eight instruction bytes are fetched from memory. These bytes are predecoded, and
five additional bits are generated by the predecoder for each of the instruction
bytes. These five predecode bits contain information about the location of the start
and end of an IA32 instruction, the number of Llops (or ROPs) needed to translate
that IA32 instruction, and the location of op codes and prefixes. These additional
predecode bits are stored in the I-cache along with the original instruction’s bytes.
Consequently, the original I-cache line size of 128 bits (16 bytes) is increased by
an additional 80 bits; see Figure 4.15. In each I-cache access, the 16 instruction
bytes are fetched along with the 80 predecode bits. The predecode bits significantly
simplify instruction decoding and allow the simultaneous decoding of multiple
IA32 instructions by four identical decoders/translators that can generate up to
four Hops in each cycle.

There are two forms of overhead associated with predecoding. The I-cache miss
penalty can be increased due to the necessity of predecoding the instruction bytes
fetched from memory. This is not a serious problem if the I-cache miss rate is very
low. The other overhead involves the storing of the predecode bits in the I-cache
and the consequent increase of the I-cache size. For the K5 the size of the I-cache is
increased by about 50%. There is clearly a tradeoff between the aggressiveness of
predecoding and the I-cache size increase.

Predecoding is not just limited to alleviating the sequential bottleneck in parallel
decoding of multiple CISC instructions in a CISC parallel pipeline. It can also be
used to support RISC parallel pipelines. RISC instructions can be predecoded when
they are being loaded into the I-cache. The predecode bits can be used to identify
control-flow changing branch instructions within the fetch group and to explicitly

SUPERSCALAR ORGANIZATION 199

From memory

8 instruction bytes {64 —=——=————-—— ->| Bytel | Byte2 I eee

Byte8 I

Predecode logic . . .
5 bits 5 bits 5 bits

—— — —

8 instruction bytes + predecode bits] 64 + 40 ====—===— ->| Bytel Byte2 s+ | Byte8

16 instruction bytes + predecode bits‘ 128 + 80

Decode, translate,
and dispatch

oYYy e

Up to 4 ROPs ROP1 ROP2 ROP3 ROP4 E XM L i

Figure 4.15
The Predecoding Mechanism of the AMD K5.

identify subgroups of independent instructions within the fetch group. For example,

the PowerPC 620 employs 7 predecode bits for each instruction word in the I-cache.

The UltraSPARC, MIPS R10000, and HP PA-8000 also employ either 4 or 5 prede- .Hl”‘ : i
code bits for each instruction.

As superscalar pipelines become wider and the number of instructions that must
be simultaneously decoded increases, the instruction decoding task will become
more of a bottleneck and more aggressive use of predecoding can be expected. The
predecoder partially decodes the instructions, and effectively transforms the original
undecoded instructions into a format that makes the final decoding task easier. One
can view the predecoder as translating the instructions fetched from memory into
different instructions that are then loaded into the I-cache. To expand this view,
the possibility of enhancing the predecoder to do run-time object code translation
between ISAs could be interesting.

4.3.3 Instruction Dispatching

Instruction dispatching is necessary for superscalar pipelines. In a scalar pipeline,
all instructions regardless of their type flow through the same single pipeline. Super-
scalar pipelines are diversified pipelines that employ a multiplicity of heteroge-
neous functional units in their execution portion. Different types of instructions are
executed by different functional units. Once the type of an instruction is identified in
the decode stage, it must be routed to the appropriate functional unit for execution;
this is the task of instruction dispatching.

Although superscalar pipelines are parallel pipelines, both the instruction
fetching and instruction decoding tasks are usually carried out in a centralized
fashion; i.e., all the instructions are managed by the same controller. Although
multiple instructions are fetched in a cycle, all instructions must be fetched from
the same I-cache. Hence all the instructions in the fetch group are accessed from the

200 MODERN PROCESSOR DESIGN

I-cache at the same time, and they are all deposited into the same buffer. Instruction
decoding is done in a centralized fashion because in the case of CISC instructions,
all the bytes in the fetch group must be decoded collectively by a centralized
decoder in order to identify the individual instructions. Even with RISC instruc-
tions, the decoder must identify inter-instruction dependences, which also requires
centralized instruction decoding.

On the other hand, in a diversified pipeline all the functional units can operate
independently in a distributed fashion in executing their own types of instructions
once the inter-instruction dependences are resolved. Consequently, going from
instruction decoding to instruction execution, there is a change from centralized
processing of instructions to distributed processing of instructions. This change is
carried out by, and is the reason for, the instruction dispatching stage in a superscalar
pipeline. This is illustrated in Figure 4.16.

Another mechanism that is necessary between instruction decoding and instruc-
tion execution is the temporary buffering of instructions. Prior to its execution, an
instruction must have all its operands. During decoding, register operands are
fetched from the register files. In a superscalar pipeline it is possible that some of
these operands are not yet ready because earlier instructions that update these regis-
ters have not finished their execution. When this situation occurs, an obvious solution
is to stall the decoding stage until all register operands are ready. This solution seri-
ously restricts the decoding throughput and is not desirable. A better solution is to
fetch those register operands that are ready and go ahead and advance these

Instruction fetching
Instruction decoding

—_— -

///I \\\\\
[rut || Fu2 || rUs | -eo | FUR \
\ + /)
h -
S~ - Instruction execution - -

Figure 4.16

The Necessity of Instruction Dispatching in a Superscalar Pipeline.

SUPERSCALAR ORGANIZATION 201

!

]?ispatch l l l I l I I l I ICeqtralize;d reservation
(issue) station (dispatch buffer)

Execute < | I |

r] [l l I Completion buffer

Figure 4.17
Centralized Reservation Station.

instructions into a separate buffer to await those register operands that are not ready.
When all register operands are ready, those instructions can then exit this buffer and
be issued into the functional units for execution. Borrowing the term used in the
Tomasulo’s algorithm employed in the IBM 360/91 [Tomasulo, 1967], we denote
such a temporary instruction buffer as a reservation station. The use of a reservation
station decouples instruction decoding and instruction execution and provides a
buffer to take up the slack between decoding and execution stages due to the temporal
variation of throughput rates in the two stages. This eliminates unnecessary stalling
of the decoding stage and prevents unnecessary starvation of the execution stage.
Based on the placement of the reservation station relative to instruction dis-
patching, two types of reservation station implementations are possible. If a single
buffer is used at the source side of dispatching, we identify this as a centralized
reservation station. On the other hand, if multiple buffers are placed at the destina-
tion side of dispatching, they are identified as distributed reservation stations.
Figures 4.17 and 4.18 illustrate the two ways of implementing reservation stations.
The Intel Pentium Pro implements a centralized reservation station. In such an
implementation, one reservation station with many entries feeds all the functional
units. Instructions are dispatched from this centralized reservation station directly
to all the functional units to begin execution. On the other hand, the PowerPC 620
employs distributed reservation stations. In this implementation, each functional
unit has its own reservation station on the input side of the unit. Instructions are
dispatched to the individual reservation stations based on instruction type. These
instructions remain in these reservation stations until they are ready to be issued
into the functional units for execution. Of course, these two implementations of

202 MODERN PROCESSOR DESIGN

!

Dispatch ‘ l l l I I I | I IDispatch buffer

Issue

’_T-E‘—\ { ' l j Distributed
D D e
]_LJ Y 'y

¢ J_ L |

Y
Exceute 3 | T |

Finish y Y

I Completion buffer

Complete

Figure 4.18
Distributed Reservation Stations.

reservation stations represent only the two extreme alternatives. Hybrids of these
two approaches are also possible. For example, the MIPS R10000 employs one
such hybrid implementation. We identified such hybrid implementations as clus-
tered reservation stations. With clustered reservation stations, instructions are dis-
patched to multiple reservation stations, and each reservation station can feed or be
shared by more than one functional unit. Typically the reservation stations and
functional units are clustered based on instruction or data types.

Reservation station design involves certain tradeoffs. A centralized reserva-
tion station allows all instruction types to share the same reservation station and
will likely achieve the best overall utilization of all the reservation station entries.
However, a centralized implementation can incur the greatest complexity in its hard-
ware design. It requires centralized control and a buffer that is highly multiported
to allow multiple concurrent accesses. Distributed reservation stations can be single-
ported buffers, each with only a small number of entries. However, each reservation
station’s idling entries cannot be used by instructions destined for execution in
other functional units. The overall utilization of all the reservation station entries
will be lower. It is also likely that one reservation station can saturate when all its
entries are occupied and hence induce stalls in instruction dispatching.

With the different alternatives for implementing reservation stations, we need to
clarify our use of certain terms. In this book the term dispatching implies the asso-
ciating of instruction types with functional unit types after instructions have been
decoded. On the other hand, the term issuing always means the initiation of execution
in functional units. In a distributed reservation station design, these two events occur

SUPERSCALAR ORGANIZATION 203

separately. Instructions are dispatched from the centralized decode/dispatch buffer
to the individual reservation stations first, and when all their operands are available,
then they are issued into the individual functional units for execution. With a cen-
tralized reservation station, the dispatching of instructions from the centralized
reservation station does not occur until all their operands are ready. All instructions,
regardless of type, are held in the centralized reservation station until they are ready
to execute, at which time instructions are dispatched directly into the individual
functional units to begin execution. Hence, in a machine with a centralized reserva-
tion station, the associating of instructions to individual functional units occurs at the
same time as their execution is initiated. Therefore, with a centralized reservation
station, instruction dispatching and instruction issuing occur at the same time, and
these two terms become interchangeable. This is illustrated in Figure 4.17.

4.3.4 Instruction Execution

The instruction execution stage is the heart of a superscalar machine. The current
trend in superscalar pipeline design is toward more parallel and more diversified
pipelines. This translates into having more functional units and having these func-
tional units be more specialized. By specializing them for executing specific
instruction types, these functional units can be more performance efficient. Early
scalar pipelined processors have essentially one functional unit. All instruction
types (excluding floating-point instructions that are executed by a separate floating-
point coprocessor chip) are executed by the same functional unit. In the TYP pipe-
line example, this functional unit is a two-stage pipelined unit consisting of the
ALU and MEM stages of the TYP pipeline. Most first-generation superscalar pro-
cessors are parallel pipelines with two diversified functional units, one executing
integer instructions and the other executing floating-point instructions. These early
superscalar processors simply integrated floating-point execution in the same
instruction pipeline instead of employing a separate coprocessor unit.

Current superscalar processors can employ multiple integer units, and some
have multiple floating-point units. These are the two most fundamental functional
unit types. Some of these units are becoming quite sophisticated and are capable
of executing more than one operation involving more than two source operands
in each cycle. Figure 4.19(a) illustrates the integer execution unit of the TI
SuperSPARC which contains a cascaded ALU configuration [Blanck and
Krueger, 1992]. Three ALUs are included in this two-stage pipelined unit, and up
to two integer operations can be issued into this unit in one cycle. If they are inde-
pendent, then both operations are executed in the first stage using ALUO and
ALU?2. If the second operation depends on the first, then the first one is executed
in ALU2 during the first stage with the second one executed in ALUC in the sec-
ond stage. Implementing such a functional unit allows more cycles in which two
instructions are simultaneously issued.

The floating-point unit in the IBM RS/6000 is implemented as a two-stage pipe-
lined multiply-add-fused (MAF) unit that takes three inputs (A, B, C) and performs
(AXB)+ C. This is illustrated in Figure 4.19(b). The MAF unit is motivated by
the most common use of floating-point multiplication to carry out the dot-product
operation D= (A X B) + C. If the compiler is able to merge many multiply-add

204 MODERN PROCESSOR DESIGN

S N I Joo ==

Round/Normalize

Figure 4.19
(a) Integer Functional Unit in the TI SuperSPARC; (b) Floating-Point Unit in the
IBM RS/6000.

pairs of instructions into single MAF instructions, and the MAF unit can sustain the
issuing of one MAF instruction in every cycle, then an effective throughput of two
floating-point instructions per cycle can be achieved using only one MAF unit. The
normal floating-point multiply instruction is actually executed by the MAF unit as
(A x B) + 0, while the floating-point add instruction is performed by the MAF unit as
(A X 1)+ C. Since the MAF unit is pipelined, even without executing MAF instruc-
tions, it can still sustain an execution rate of one floating-point instruction per cycle.

In addition to executing integer ALU instructions, an integer unit can be used
for generating memory addresses and executing branch and load/store instruc-
tions. However, in most recent designs separate branch and load/store units have
been incorporated. The branch unit is responsible for updating the PC, while the
load/store unit is directly connected to the D-cache. Other specialized functional
units have emerged for supporting graphics and image processing applications.
For example, in the Motorola 88110 there is a dedicated functional unit for bit
manipulation and two functional units for supporting pixel processing. For many
of the signal processing and multimedia applications, the common data type is a
byte. Frequently 4 bytes are packed into a 32-bit word for simultaneous processing
by specialized 32-bit functional units for increased throughput. In the TriMedia
VLIW processor intended for such applications, such functional units are employed
[Slavenburg et al., 1996]. For example, the TriMedia-1 processor can execute the
quadavg instruction in one cycle. The quadavg instruction sums four rounded
averages and is quite useful in MPEG decoding for decompressing compressed
video images; it carries out the following computation.

(a+e+l)+(b+f+l)+(c+g+1)+(d+h+l)

4.2
2 2 2 2 42

quadavg =

SUPERSCALAR ORGANIZATION 205

The eight variables denote 8-byte operands with a, b, ¢, and d stored as one 32-bit
quantity and e, f, g, and h stored as another 32-bit quantity. The functional unit
takes as input these two 32-bit operands and produces the quadavg result in one
cycle. This single-cycle operation replaces numerous add and divide instructions
that would have been required if the eight single-byte operands were manipu-
lated individually. With the widespread deployment of multimedia applications,
such specialized functional units that operate on special data types have
emerged.

What is the best mix of functional units for a superscalar pipeline is an inter-
esting question. The answer is dependent on the application domain. If we use the
statistics from Chapter 2 of typical programs having 40% ALU instructions, 20%
branches, and 40% load/store instructions, then we can have a 4-2-4 rule of thumb.
For every four ALU units, we should have two branch units and four load/store
units. Many of the current leading superscalar processors have four or more ALU-
type functional units (including both integer and floating-point units). Most of
them have only one branch unit but are able to speculate beyond one conditional
branch instruction. However, most of these processors have only one load/store
unit; some are able to process two load/store instructions in every cycle with some
constraints. Clearly there seems be an imbalance in having too few load/store
units. The reason is that implementing multiple load/store units that operate in par-
allel in accessing the same D-cache is a difficult task. It requires the D-cache to be
multiported. Multiported memory modules involve very complex circuit design
and can significantly slow down the memory speed.

In many designs multiple memory banks are used to simulate a truly multiported
memory. A memory is partitioned into multiple banks. Each bank can perform a
read/write operation in a machine cycle. If the effective addresses of two load/
store instructions happen to reside on different banks, then both instructions can be
carried out by the two different banks at the same time. However, if there is a bank
conflict, then the two instructions must be serialized. Multibanked D-caches have
been used to simulate multiported D-caches. For example, the Intel Pentium pro-
cessor uses an eight-banked D-cache to simulate a two-ported D-cache [Intel
Corp., 1993]. A truly multiported memory can guarantee conflict-free simulta-
neous accesses. Typically, more read ports than write ports are needed. Multiple
read ports can be implemented by having multiple copies of the memory. All
memory writes are broadcast to all the copies, with all the copies having identical
content. Each copy can provide a small number of read ports with the total number
of read ports being the sum of all the read ports on all the copies. For example, a
memory with four read ports and two write ports can be implemented as two copies
of simpler memory modules, each with only two write ports and two read ports.
Implementing multiple, especially more than two, load/store units to operate in
parallel can be a challenge in designing wide superscalar pipelines.

The amount of resource parallelism in the instruction execution portion is
determined by the combination of spatial and temporal parallelism. Having multi-
ple functional units is a form of spatial parallelism. Alternatively, parallelism can
be obtained via pipelining of these functional units, which is a form of temporal

206 MODERN PROCESSOR DESIGN

parallelism. For example, instead of implementing a dual-ported D-cache, in some
current designs D-cache access is pipelined into two pipeline stages so that two
load/store instructions can be concurrently serviced by the D-cache. Currently,
there is a general trend toward implementing deeper pipelines in order to reduce
the cycle time and increase the clock speed. Spatial parallelism also tends to
require greater hardware complexity and silicon real estate. Temporal parallelism
makes more efficient use of hardware but does increase the overall instruction pro-
cessing latency and potentially pipeline stall penalties due to inter-instruction
dependences.

In real superscalar pipeline designs, we often see that the total number of
functional units exceeds the actual width of the parallel pipeline. Typically the
width of a superscalar pipeline is determined by the number of instructions that
can be fetched, decoded, or completed in every machine cycle. However, because
of the dynamic variation of instruction mix and the resultant nonuniform distribu-
tion of instruction mix during program execution on a cycle-by-cycle basis, there
is a potential dynamic mismatch of instruction mix and functional unit mix. The
former varies in time and the latter stays fixed. Because of the specialization and
heterogeneity of the functional units the total number of functional units must
exceed the width of the superscalar pipeline to avoid having the instruction execu-
tion portion become the bottleneck due to excessive structural dependences related
to the unavailability of certain functional unit types. Some of the aggressive com-
piler back ends actually try to smooth out this dynamic variation of instruction mix
to ensure a better sustained match with the functional unit mix. Of course, differ-
ent application programs can exhibit a different inherent overall mix of instruction
types. The compiler can only make localized adjustments to achieve some perfor-
mance gain. Studies have been done in assessing the best number and mix of func-
tional units based on SPEC benchmarks [Jourdan et al., 1995].

With a large number of functional units, there is additional hardware complexity
other than the functional units themselves. Results from the outputs of functional
units need to be forwarded to inputs of the functional units. A multiplicity of busses
are required, and potentially logic for bus control and arbitration is needed. Usually a
full crossbar interconnection network is too costly and not absolutely necessary. The
mechanism for routing operands between functional units introduces another form of
structural dependence. The interconnect mechanism also contributes to the latency of
the execution stage(s) of the pipeline. In order to support data forwarding the reserva-
tion station(s) must monitor the busses for tag matches, indicating the availability of
needed operands, and latch in the operands when they are broadcasted on the busses.
Potentially the complexity of the instruction execution stage can grow at the rate of
n2, where n is the total number of functional units.

4.3.5 Instruction Completion and Retiring

An instruction is considered completed when it finishes execution and updates the
machine state. An instruction finishes execution when it exits the functional unit
and enters the completion buffer. Subsequently it exits the completion buffer and
becomes completed. When an instruction finishes execution, its result may only

SUPERSCALAR ORGANIZATION 207

reside in nonarchitected buffers. However, when it is completed, its result is written
into an architecture register. With instructions that actually update memory loca-
tions, there can be a time period between when they are architecturally completed
and when the memory locations are updated. For example, a store instruction can be
architecturally completed when it exits the completion buffer and enters the store
buffer to wait for the availability of a bus cycle in order to write to the D-cache. This
store instruction is considered retired when it exits the store buffer and updates the
D-cache. Hence, in this book instruction completion involves the updating of the
machine state, whereas instruction retiring involves the updating of the memory
state. For instructions that do not update the memory, retiring occurs at the same
time as completion. So, in a distributed reservation station machine, an instruction
can go through the following phases: fetch, decode, dispatch, issue, execute, finish,
complete, and retire. Issuing and finishing simply refer to starting execution and
ending execution, respectively. Some of the superscalar processor vendors use
these terms in slightly different ways. Frequently, dispatching and issuing are used
almost interchangeably, similar to completion and retiring. Sometimes completion is
used to mean finishing execution, and retiring is used to mean updating the machine’s
architectural state. There is yet no standardization on the use of these terms.

During the execution of a program, interrupts and exceptions can occur that
will disrupt the execution flow of a program. Superscalar processors employing
dynamic pipelines that facilitate out-of-order execution must be able to deal with
such disruptions of program execution. Interrupts are usually induced by the
external environment such as I/O devices or the operating system. These occur in
an asynchronous fashion with respect to the program execution. When an interrupt
occurs, the program execution must be suspended to allow the operating system to
service the interrupt. One way to do this is to stop fetching new instructions and
allow the instructions that are already in the pipeline to finish execution, at which
time the state of the machine can be saved. Once the interrupt has been serviced
by the operating system, the saved machine state can be restored and the original
program can resume execution.

Exceptions are induced by the execution of the instructions of the program.
An instruction can induce an exception due to arithmetic operations, such as divid-
ing by zero and floating-point overflow or underflow. When such exceptions
occur, the results of the computation may no longer be valid and the operating sys-
tem may need to intervene to log such exceptions. Exceptions can also occur due
to the occurrence of page faults in a paging-based virtual memory system. Such
exceptions can occur when instructions reference the memory. When such excep-
tions occur, a new page must be brought in from secondary storage, which can
require on the order of thousands of machine cycles. Consequently, the execution
of the program that induced the page fault is usually suspended, and the execution
of a new program is initiated in the multiprogramming environment. After the
page fault has been serviced, the original program can then resume execution.

It is important that the architectural state of the machine present at the time the
excepting instruction is executed be saved so that the program can resume execu-
tion after the exception is serviced. Machines that are capable of supporting this

208 MODERN PROCESSOR DESIGN

suspension and resumption of execution of a program at the granularity of each
individual instruction are said to have precise exception. Precise exception
involves being able to checkpoint the state of the machine just prior to the execu-
tion of the excepting instruction and then resume execution by restoring the check-
pointed state and restarting execution at the excepting instruction. In order to
support precise exception, the superscalar processor must maintain its architec-
tural state and evolve this machine state in such a way as if the instructions in the
program are executed one at a time according to the original program order. The
reason is that when an exception occurs, the state the machine is in at that time
must reflect the condition that all instructions preceding the excepting instruction
have completed while no instructions following the excepting instruction have
completed. For a dynamic pipeline to have precise exception, this sequential
evolving of the architectural state must be maintained even though instructions are
actually executed out of program order.

In a dynamic pipeline, instructions are fetched and decoded in program order
but are executed out of program order. Essentially, instructions can enter the res-
ervation station(s) in order but exit the reservation station(s) out of order. They
also finish execution out of order. To support precise exception, instruction com-
pletion must occur in program order so as to update the architectural state of the
machine in program order. In order to accommodate out-of-order finishing of exe-
cution and in-order completion of instructions, a reorder buffer is needed in the
instruction completion stage of the parallel pipeline. As instructions finish execu-
tion, they enter the reorder buffer out of order, but they exit the reorder buffer
in program order. As they exit the reorder buffer, they are considered architec-
turally completed. This is illustrated in Figure 4.20 with the reservation station
and the reorder buffer bounding the out-of-order region of the pipeline or essen-
tially the instruction execution portion of the pipeline. The terms adopted in this
book, referring to the various phases of instruction processing, are illustrated in
Figure 4.20.

Precise exception is handled by the instruction completion stage using the
reorder buffer. When an exception occurs, the excepting instruction is tagged in
the reorder buffer. The completion stage checks each instruction before that
instruction is completed. When a tagged instruction is detected, it is not allowed to
be completed. All the instructions prior to the tagged instructions are allowed to be
completed. The machine state is then checkpointed or saved. The machine state
includes all the architected registers and the program counter. The remaining
instructions in the pipeline, some of which may have already finished execution,
are discarded. After the exception has been serviced, the checkpointed machine
state is restored and execution resumes with the fetching of the instruction that
triggered the original exception.

Early work on support for providing precise exceptions in a processor that
supports out-of-order execution was conducted by Acosta et al. [1986], Sohi and
Vajapeyam [1987], and Smith and Pleszkun [1988]. An early proposal describing
the Metaflow processor, which was never completed, also provides interesting
insights for the curious reader [Popescu et al., 1991].

SUPERSCALAR ORGANIZATION 209

I l | I I l] IInstruction/decode buffer

In order
—

I I | l l I l IDispatchbuffer

v

Dispatch |

)
! ! ' .
T RO O O T

Issue ¢ * *
L —
=
5]

s Execute
3
/
Finish
N l | l I | | I [l IReorder/completion buffer
| Complete I
£ !}
E I ’ I | | l I JStorebuffer
v
| Retire I
Figure 4.20

A Dynamic Pipeline with Reservation Station and Reorder Buffer.

4.4 Summary

Figure 4.20 represents an archetype of a contemporary out-of-order superscalar
pipeline. It has an in-order front end, an out-of-order execution core, and an in-order
back end. Both the front-end and back-end pipeline stages can advance multiple
instructions per machine cycle. Instructions can remain in the reservation stations
for one or more cycles while waiting for their source operands. Once the source
operands are available, an instruction is issued from the reservation station into the
execution unit. After execution, the instruction enters the reorder buffer (or comple-
tion buffer). Instructions in the reorder buffer are completed according to program

210 MODERN PROCESSOR DESIGN

order. In fact the reorder buffer is managed as a circular queue with instructions
arranged according to the program order.

This chapter focuses on the superscalar pipeline organization and highlights
the issues associated with the various pipeline stages. So far, we have addressed
mostly the static structures of superscalar pipelines. Chapter 5 will get into the
dynamic behavior of superscalar processors. We have chosen to present superscalar
pipeline organization at a fairly high level, avoiding the implementation details.
The main purpose of this chapter is to provide a bridge from scalar to superscalar
pipelines and to convey a high-level framework for superscalar pipelines that will
be a useful navigational aid when we get into the plethora of superscalar processor
techniques in Chapter 5.

REFERENCES

Acosta, R., J. Kilestrup, and H. Torng: “An instruction issuing approach to enhancing per-
formance in multiple functional unit processors,” IEEE Trans. on Computers, C35, 9, 1986,
pp. 815-828.

Blanck, G., and S. Krueger: “The SuperSPARC microprocessor,” Proc. IEEE COMPCON,
1992, pp. 136-141.

Crawford, J.: “The execution pipeline of the Intel i486 CPU,” Proc. COMPCON Spring’90,
1990, pp. 254-258.

Diefendorf, K., and M. Allen: “Organization of the Motorola 88110 superscalar RISC
microprocessor,” IEEE MICRO, 12, 2, 1992, pp. 40-63.

Grohoski, G.: “Machine organization of the IBM RISC System/6000 processor,” IBM
Journal of Research and Development, 34, 1, 1990, pp. 37-58.

Intel Corp.: Pentium Processor User’s Manual, Vol. 3: Architecture and Programming
Manual. Santa Clara, CA: Intel Corp., 1993.

Jourdan, S., P. Sainrat, and D. Litaize: “Exploring configurations of functional units in an
out-of-order superscalar processor,” Proc. 22nd Annual Int. Symposium on Computer
Architecture, 1995, pp. 117-125.

Oehler, R. R., and R. D. Groves: “IBM RISC System/6000 processor architecture,” IBM
Journal of Research and Development, 34, 1, 1990, pp. 23-36.

Patt, Y., W. Hwu, and M. Shebanow: “HPS, a new microarchitecture: Introduction and
rationale,” Proc. 18th Annual Workshop on Microprogramming (MICRO-18), 1985,
pp. 103-108.

Popescu, V., M. Schulz, J. Spracklen, G. Gibson, B. Lightner, and D. Isaman: “The Meta-
flow architecture,” IEEE Micro., June 1991, pp. 10-13, 63-73.

Slavenburg, G., S. Rathnam, and H. Dijkstra: “The TriMedia TM-1 PCI VLIW media pro-
cessor,” Proc. Hot Chips 8, 1996, pp. 171-178.

Smith, J., and A. Pleszkun: “Implementing precise interrupts in pipelined processors,”
IEEE Trans. on Computers, 37, 5, 1988, pp. 562-573.

Sohi, G., and S. Vajapeyam: “Instruction issue logic for high-performance, interruptible
pipelined processors,” Proc. 14th Annual Int. Symposium on Computer Architecture, 1987,
pp- 27-34.

SUPERSCALAR ORGANIZATION 211

Thornton, J. E.: “Parallel operation in the Control Data 6600,” AFIPS Proc. FJCC part 2,
vol. 26, 1964, pp. 33-40.

Tomasulo, R.: “An efficient algorithm for exploiting multiple arithmetic units,” IBM Journal
of Research and Development, 11, 1967, pp. 25-33.

HOMEWORK PROBLEMS

P4.1 Is it reasonable to build a scalar pipeline that supports out-of-order exe-
cution? If so, describe a code execution scenario where such a pipeline
would perform better than a conventional in-order scalar pipeline.

P4.2 Superscalar pipelines require replication of pipeline resources across
each parallel pipeline, naively including the replication of cache ports.
In practice, however, a two-wide superscalar pipeline may have two
data cache ports but only a single instruction cache port. Explain why
this is possible, but also discuss why a single instruction cache port can
perform worse than two (replicated) instruction cache ports.

P4.3 Section 4.3.1 suggests that a compiler can generate object code where
branch targets are aligned at the beginning of physical cache lines to
increase the likelihood of fetching multiple instructions from the
branch target in a single cycle. However, given a fixed number of
instructions between taken branches, this approach may simply shift
the unused fetch slots from before the branch target to after the branch
that terminates sequential fetch at the target. For example, moving the
code at 1abel0 so it aligns with a physical cache line will not improve
fetch efficiency, since the wasted fetch slot shifts from the beginning
of the physical line to the end.

Original code: Physical cache line

bc cond, labelO I be I.

see

labelO: Wasted
add rl, r2, r3 slot

cmp cond, rl, r5
be cond, labell Optimized code: Physical cache line

dd [emp| be

Wasted
slot

Discuss the relationship between fetch block size and the dynamic
distance between taken branches. Describe how one affects the other,
describe how important is branch target alignment for small vs. large
fetch blocks and short vs. long dynamic distance, and describe how
well static compiler-based target alignment might work in all cases.

212 MODERN PROCESSOR DESIGN

P4.4 The auto-realigning instruction fetch hardware shown in Figure 4.13
still fails to achieve full-width fetch bandwidth (i.e., four instructions
per cycle). Describe a more aggressive organization that is always able
to fetch four instructions per cycle. Comment on the additional hard-
ware such an organization implies.

P4.5 One idea to eliminate the branch misprediction penalty is to build a
machine that executes both paths of a branch. In a two to three paragraph
essay, explain why this may or may not be a good idea.

P4.6 Section 4.3.2 discusses adding predecode bits to the instruction cache
to simplify the task of decoding instructions after they have been
fetched. A logical extension of predecode bits is to simply store the
instructions in decoded form in a decoded instruction cache; this is par-
ticularly attractive for processors like the Pentium Pro that dynamically
translate fetched instructions into a sequence of simpler RISC-like
instructions for the core to execute. Identify and describe at least one
factor that complicates the building of decoded instruction caches for
processors that translate from a complex instruction set to a simpler
RISC-like instruction set.

P4.7 What is the most important advantage of a centralized reservation station
over distributed reservation stations?

P4.8 In an in-order pipelined processor, pipeline latches are used to hold
result operands from the time an execution unit computes them until
they are written back to the register file during the writeback stage. In
an out-of-order processor, rename registers are used for the same pur-
pose. Given a four-wide out-of-order processor TYP pipeline, compute
the minimum number of rename registers needed to prevent rename
register starvation from limiting concurrency. What happens to this
number if frequency demands force a designer to add five extra pipeline
stages between dispatch and execute, and five more stages between
execute and retire/writeback?

P4.9 A banked or interleaved cache can be an effective approach for allowing
multiple loads or stores to be performed in one cycle. Sketch out the
data flow for a two-way interleaved data cache attached to two load/
store units. Now sketch the data flow for an eight-way interleaved data
cache attached to four load/store units. Comment on how well inter-
leaving scales or does not scale.

P4.10 The Pentium 4 processor operates its integer arithmetic units at double
the nominal clock frequency of the rest of the processor. This is
accomplished by pipelining the integer adder into two stages, comput-
ing the low-order 16 bits in the first cycle and the high-order 16 bits in
the second cycle. Naively, this appears to increase ALU latency from
one cycle to two cycles. However, assuming that two dependent

SUPERSCALAR ORGANIZATION 213

instructions are both arithmetic instructions, it is possible to issue the
second instruction in the cycle immediately following issue of the first
instruction, since the low-order bits of the second instruction are
dependent only on the low-order bits of the first instruction. Sketch out
a pipeline diagram of such an ALU along with the additional bypass
paths needed to handle this optimized case.

P4.11 Given the ALU configuration described in Problem 4.10, specify how
many cycles a trailing dependent instruction of each of the following
types must delay, following the issue of a leading arithmetic instruction:
arithmetic, logical (and/or/xor), shift left, shift right.

P4.12 Explain why the kind of bit-slice pipelining described in Problem 4.10
cannot be usefully employed to pipeline dependent floating-point arith-
metic instructions.

P4.13 Assume a four-wide superscalar processor that attempts to retire four
instructions per cycle from the reorder buffer. Explain which data
dependences need to be checked at this time, and sketch the dependence-
checking hardware.

P4.14 Four-wide superscalar processors rarely sustain throughput much
greater than one instruction per cycle (IPC). Despite this fact, explain
why four-wide retirement is still useful in such a processor.

P4.15 Most general-purpose instruction sets have recently added multimedia
extensions to support vector-like operations over arrays of small data
types. For example, Intel IA32 has added the MMX and SSE instruction
set extensions for this purpose. A single multimedia instruction will load,
say, eight 8-bit operands into a 64-bit register in parallel, while arithmetic
instructions will perform the same operation on all eight operands in
single-instruction, multiple data (SIMD) fashion. Describe the changes
you would have to make to the fetch, decode, dispatch, issue, execute,
and retire logic of a typical superscalar processor to accommodate these
instructions.

P4.16 The PowerPC instruction set provides support for a fused floating-
point multiply-add operation that multiplies two of its input registers
and adds the product to the third input register. Explain how the addition
of such an instruction complicates the decode, dispatch, issue, and exe-
cute stages of a typical superscalar processor. What effect do you think
these changes will have on the processor’s cycle time?

P4.17 The semantics of the fused multiply-add instruction described in
Problem 4.16 can be mimicked by issuing a separate floating-point add
and floating-point multiply whenever such an instruction is decoded.
In fact, the MIPS R10000 does just that; rather than supporting this
instruction (which also exists in the MIPS instruction set) directly, the

214 MODERN PROCESSOR DESIGN

decoder simply inserts the add/multiply instruction pair into the execution
window. Identify and discuss at least two reasons why this approach
could reduce performance as measured in instructions per cycle.

P4.18 Does the ALU mix for the Motorola 88110 processor shown in Figure 4.7
agree with the IBM instruction mix provided in Section 2.2.4.3? If not,
how would you change the ALU mix?

Terms and Buzzwords

These problems are similar to the “Jeopardy Game” on TV. The “answers” are
given and you are to provide the best correct “questions.” For each “answer” there
may be more than one appropriate “question”; you need to provide the best one.

P4.19 A: A mechanism that tracks out-of-order execution and maintains specu-
lative machine state.

Q: What is ?

P4.20 A: It will significantly reduce the machine cycle time, but can increase
the branch penalty.
Q: What is ?

P4.21 A: Additional I-cache bits generated at cache refill time to ease the
decoding/dispatching task.

Q: What are ?

P4.22 A: A program attribute that causes inefficiencies in a superscalar fetch
unit.
Q: What is ?

P4.23 A: The internal RISC-like instruction executed by the Pentium Pro (P6)
microarchitecture.
Q: What is ?

P4.24 A: The logical pipeline stage that assigns an instruction to the appropri-
ate execution unit.

Q: What is ?

P4.25 A: An early processor design that incorporated 10 diverse functional
units.
Q: What is ?

P4.26 A: A new instruction that allows a scalar pipeline to achieve more than
one floating-point operation per cycle.

Q: What is ?

SUPERSCALAR ORGANIZATION 215

P4.27 A: An effective technique for allowing more than one memory operation
to be performed per cycle.

Q: What s ?

P4.28 A: A useful architectural property that simplifies the task of writing
low-level operating system code.

Q: What is ?

P4.29 A: The first research paper to describe run-time, hardware translation
of one instruction set to another, simpler one.

Q: What was ?

P4.30 A: The first real processor to implement run-time, hardware translation
of one instruction set to another, simpler one.

Q: What was ?

P4.31 A: This attribute of most RISC instruction sets substantially simplifies
the task of decoding multiple instructions in parallel.

Q: What was ?

CHAPTER

5

Superscalar Techniques

CHAPTER OUTLINE
5.1 Instruction Flow Technigues
5.2 Register Data Flow Techniques
53 Memory Data Flow Techniques
54 Summary

References

Homework Problems

In Chapter 4 we focused on the structural, or organizational, design of the super-
scalar pipeline and dealt with issues that were somewhat independent of the specific
types of instructions being processed. In this chapter we focus more on the
dynamic behavior of a superscalar processor and consider techniques that deal
with specific types of instructions. The ultimate performance goal of a superscalar
pipeline is to achieve maximum throughput of instruction processing. It is convenient
to view instruction processing as involving three component flows of instructions
and/or data, namely, instruction flow, register data flow, and memory data flow.
This partitioning into three flow paths is similar to that used in Mike Johnson’s
1991 textbook entitled Superscalar Microprocessor Design [Johnson, 1991]. The
overall performance objective is to maximize the volumes in all three of these flow
paths. Of course, what makes this task interesting is that the three flow paths are
not independent and their interactions are quite complex. This chapter classifies
and presents superscalar microarchitecture techniques based on their association
with the three flow paths.

The three flow paths correspond roughly to the processing of the three major
types of instructions, namely, branch, ALU, and load/store instructions. Conse-
quently, maximizing the throughput of the three flow paths corresponds to the
minimizing of the branch, ALU, and load penalties.

217

218 MODERN PROCESSOR DESIGN

1. Instruction flow. Branch instruction processing.
2. Register data flow. ALU instruction processing.
3. Memory data flow. Load/store instruction processing.

This chapter uses these three flow paths as a convenient framework for presenting
the plethora of microarchitecture techniques for optimizing the performance of
modern superscalar processors.

5.1 Instruction Flow Techniques

We present instruction flow techniques first because these deal with the early
stages, e.g., the fetch and decode stages, of a superscalar pipeline. The throughput
of the early pipeline stages will impose an upper bound on the throughput of all
subsequent stages. For contemporary pipelined processors, the traditional partition-
ing of a processor into control path and data path is no longer clear or effective.
Nevertheless, the early pipeline stages along with the branch execution unit can be
viewed as corresponding to the traditional control path whose primary function is to
enforce the control flow semantics of a program. The primary goal for all instruc-
tion flow techniques is to maximize the supply of instructions to the superscalar
pipeline subject to the requirements of the control flow semantics of a program.

5.1.1 Program Control Flow and Control Dependences

The control flow semantics of a program are specified in the form of the control
flow graph (CFG), in which the nodes represent basic blocks and the edges repre-
sent the transfer of control flow between basic blocks. Figure 5.1(a) illustrates a
CFG with four basic blocks (dashed-line rectangles), each containing a number of
instructions (ovals). The directed edges represent control flows between basic
blocks. These edges are induced by conditional branch instructions (diamonds).
The run-time execution of a program entails the dynamic traversal of the nodes
and edges of its CFG. The actual path of traversal is dictated by the branch instruc-
tions and their branch conditions which can be dependent on run-time data.

The basic blocks, and their constituent instructions, of a CFG must be stored
in sequential locations in the program memory. Hence the partial ordered basic
blocks in a CFG must be arranged in a total order in the program memory. In map-
ping a CFG to linear consecutive memory locations, additional unconditional
branch instructions must be added, as illustrated in Figure 5.1(b). The mapping of
the CFG to a linear program memory facilitates an implied sequential flow of control
along the sequential memory locations during program execution. However, the
encounter of both conditional and unconditional branches at run time induces
deviations from this implied sequential control flow and the consequent disrup-
tions to the sequential fetching of instructions. Such disruptions cause stalls in the
instruction fetch stage of the pipeline and reduce the overall instruction fetching
bandwidth. Subroutine jump and return instructions also induce similar disrup-
tions to the sequential fetching of instructions.

SUPERSCALAR TECHNIQUES 219

(@ (b)

Figure 5.1
Program Control Flow: (a) The Control Flow Graph (CFG);
(b) Mapping the CFG to Sequential Memory Locations.

5.1.2 Performance Degradation Due to Branches

A pipelined machine achieves its maximum throughput when it is in the streaming
mode. For the fetch stage, streaming mode implies the continuous fetching of
instructions from sequential locations in the program memory. Whenever the control
flow of the program deviates from the sequential path, potential disruption to the
streaming mode can occur. For unconditional branches, subsequent instructions
cannot be fetched until the target address of the branch is determined. For condi-
tional branches, the machine must wait for the resolution of the branch condition,
and if the branch is to be taken, it must further wait until the target address is avail-
able. Figure 5.2 illustrates the disruption of the streaming mode by branch instruc-
tions. Branch instructions are executed by the branch functional unit. For a
conditional branch, it is not until it exits the branch unit and when both the branch
condition and the branch target address are known that the fetch stage can correctly
fetch the next instruction.

As Figure 5.2 illustrates, this delay in processing conditional branches incurs
a penalty of three cycles in fetching the next instruction, corresponding to the tra-
versal of the decode, dispatch, and execute stages by the conditional branch. The
actual lost-opportunity cost of three stalled cycles is not just three empty instruction

220 MODERN PROCESSOR DESIGN

-------------- -»I Fetch J
v

l | I | ! I I IDecode buffer

v

l Decode

¢

| | | l l I | J Dispatch buffer

T

| Dispatch I

Y

e B EEEE I P
Issue stations

! ! !
----I Branch I | I

Execute
\ Y ﬁ Y
PR -! I I l | I I | l l l ICOmpletion buffer
b
I Complete I
b
l | | l I I l IStore buffer
Y
| Retire J
Figure 5.2

Disruption of Sequential Control Flow by Branch Instructions.

slots as in the scalar pipeline, but the number of empty instruction slots must be
multiplied by the width of the machine. For example, for a four-wide machine the
total penalty is 12 instruction “bubbles” in the superscalar pipeline. Also recall
from Chapter 1, that such pipeline stall cycles effectively correspond to the
sequential bottleneck of Amdahl’s law and rapidly and significantly reduce the
actual performance from the potential peak performance.

For conditional branches, the actual number of stalled or penalty cycles can be
dictated by either target address generation or condition resolution. Figure 5.3 illus-
trates the potential cycles that can be incurred by target address generation. The

SUPERSCALAR TECHNIQUES 221

1
1
pe- 4 [T T [T T Jowoserurer
1
1
1

indirect

)
1
1
1
1
1
1
1
1
Register 1
1
1
1
1
1
1
1
1
1
1

e

ll:lilgli'setcetr I l l l ' l I I Dispatch buffer
with U,
offset 1. -I Dispatch I
Y
! ! ! ,
o o e o e i
Y Y Y Y
---I Branch l | 1
(¢ (Y
Finish u
““““““ ‘l I ‘ | [|] ’ I ! l ICompletion buffer
v
I Complete I
Ll IUI B
v
‘ Retire I
Figure 5.3

Branch Target Address Generation Penalties.

actual number of penalty cycles is determined by the addressing modes of the
branch instructions. For the PC-relative addressing mode, the branch target address
can be generated during the fetch stage, resulting in a penalty of one cycle. If the
register indirect addressing mode is used, the branch instruction must traverse the
decode stage to access the register. In this case a two-cycle penalty is incurred. For
register indirect with an offset addressing mode, the offset must be added after register
access and a total three-cycle penalty can result. For unconditional branches, only
the penalty due to target address generation is of concern. For conditional branches,
branch condition resolution latency must also be considered.

222 MODERN PROCESSOR DESIGN

mmmmmsIIIn T
b

| ! I | l l I IDecode buffer

v

Decode I

v

I] I] I I I IDispatch buffer

v
________ + Dispatch 1

]

P ! ! ' .

o o e e e
"

E ! Y {
+--+ Branch | |]

GP register
value
comparison

Execute
v
T T T T T LT T comeontume

b

| Complete I
Y

| | | | l I | IStorebuffer
Y

| Retire I

Figure 5.4

Branch Condition Resolution Penalties.

Different methods for performing condition resolution can also lead to different
penalties. Figure 5.4 illustrates two possible penalties. If condition code registers
are used, and assuming that the relevant condition code register is accessed during
the dispatch stage, then a penalty of two cycles will result. If the ISA permits the
comparison of two general-purpose registers to generate the branch condition,
then one more cycle is needed to perform an ALU operation on the contents of the
two registers. This will result in a penalty of three cycles. For a conditional branch,
depending on the addressing mode and condition resolution method used, either
one of the penalties may be the critical one. For example, even if the PC-relative

SUPERSCALAR TECHNIQUES 223

addressing mode is used, a conditional branch that must access a condition code
register will still incur a two-cycle penalty instead of the one-cycle penalty for target
address generation.

Maximizing the volume of the instruction flow path is equivalent to maximiz-
ing the sustained instruction fetch bandwidth. To do this, the number of stall
cycles in the fetch stage must be minimized. Recall that the total lost-opportunity
cost is equal to the product of the number of penalty cycles and the width of a
machine. For an n-wide machine each stalled cycle is equal to fetching n no-op
instructions. The primary aim of instruction flow techniques is to minimize the
number of such fetch stall cycles and/or to make use of these cycles to do poten-
tially useful work. The current dominant approach to accomplishing this is via
branch prediction which is the subject of Section 5.1.3.

5.1.3 Branch Prediction Techniques

Experimental studies have shown that the behavior of branch instructions is highly
predictable. A key approach to minimizing branch penalty and maximizing
instruction flow throughput is to speculate on both branch target addresses and
branch conditions of branch instructions. As a static branch instruction is repeatedly
executed at run time, its dynamic behavior can be tracked. Based on its past behavior,
its future behavior can be effectively predicted. Two fundamental components of
branch prediction are branch target speculation and branch condition speculation.
With any speculative technique, there must be mechanisms to validate the predic-
tion and to safely recover from any mispredictions. Branch misprediction recovery
will be covered in Section 5.1.4.

Branch target speculation involves the use of a branch target buffer (BTB) to
store previous branch target addresses. BTB is a small cache memory accessed
during the instruction fetch stage using the instruction fetch address (PC). Each
entry of the BTB contains two fields: the branch instruction address (BIA) and the
branch target address (BTA). When a static branch instruction is executed for the
first time, an entry in the BTB is allocated for it. Its instruction address is stored in
the BIA field, and its target address is stored in the BTA field. Assuming the BTB
is a fully associative cache, the BIA field is used for the associative access of the
BTB. The BTB is accessed concurrently with the accessing of the I-cache. When
the current PC matches the BIA of an entry in the BTB, a hit in the BTB results.
This implies that the current instruction being fetched from the I-cache has been
executed before and is a branch instruction. When a hit in the BTB occurs, the
BTA field of the hit entry is accessed and can be used as the next instruction fetch
address if that particular branch instruction is predicted to be taken; see Figure 5.5.

By accessing the BTB using the branch instruction address and retrieving the
branch target address from the BTB all during the fetch stage, the speculative
branch target address will be ready to be used in the next machine cycle as the new
instruction fetch address if the branch instruction is predicted to be taken. If the
branch instruction is predicted to be taken and this prediction turns out to be cor-
rect, then the branch instruction is effectively executed in the fetch stage, incurring
no branch penalty. The nonspeculative execution of the branch instruction is still

224 MODERN PROCESSOR DESIGN

Branch target buffer (BTB)

Access Branch instruction Branch target
I-cache address (BIA) field address (BTA) field
Access
BTB
BIA BTA
PC
(instruction
fetch address)
4 Speculative

...................... target address
(Used as the new PC if branch is predicted taken)

Figure 5.5

Branch Target Speculation Using a Branch Target Buffer.

performed for the purpose of validating the speculative execution. The branch
instruction is still fetched from the I-cache and executed. The resultant target
address and branch condition are compared with the speculative version. If they
agree, then correct prediction was made; otherwise, misprediction has occurred
and recovery must be initiated. The result from the nonspeculative execution is
also used to update the content, i.e., the BTA field, of the BTB.

There are a number of ways to do branch condition speculation. The simplest
form is to design the fetch hardware to be biased for not taken, i.e., to always pre-
dict not taken. When a branch instruction is encountered, prior to its resolution, the
fetch stage continues fetching down the fall-through path without stalling. This
form of minimal branch prediction is easy to implement but is not very effective.
For example, many branches are used as loop closing instructions, which are
mostly taken during execution except when exiting loops. Another form of predic-
tion employs software support and can require ISA changes. For example, an extra
bit can be allocated in the branch instruction format that is set by the compiler.
This bit is used as a hint to the hardware to perform either predict not taken or pre-
dict taken depending on the value of this bit. The compiler can use branch instruc-
tion type and profiling information to determine the most appropriate value for this
bit. This allows each static branch instruction to have its own specified prediction.
However, this prediction is static in the sense that the same prediction is used for
all dynamic executions of the branch. Such static software prediction technique is
used in the Motorola 88110 [Diefendorf and Allen, 1992]. A more aggressive and
dynamic form of prediction makes prediction based on the branch target address
offset. This form of prediction first determines the relative offset between the
address of the branch instruction and the address of the target instruction. A posi-
tive offset will trigger the hardware to predict not taken, whereas a negative offset,
most likely indicating a loop closing branch, will trigger the hardware to predict
taken. This branch offset-based technique is used in the original IBM RS/6000
design and has been adopted by other machines as well [Grohoski, 1990; Oehler
and Groves, 1990]. The most common branch condition speculation technique

SUPERSCALAR TECHNIQUES 225

Actual direction
of resolved branch

Output logic:
produces prediction
based on current state

Predicted direction
of fetched branch

Figure 5.6
FSM Model for History-Based Branch Direction Predictors.

employed in contemporary superscalar machines is based on the history of previ-
ous branch executions.

History-based branch prediction makes a prediction of the branch direction,
whether taken (T) or not taken (N), based on previously observed branch direc-
tions. This approach was first proposed by Jim Smith, who patented the technique
on behalf of his employer, Control Data, and later published an important early
study [Smith, 1981]. The assumption is that historical information on the direction
that a static branch takes in previous executions can give helpful hints on the
direction that it is likely to take in future executions. Design decisions for such
type of branch prediction include how much history should be tracked and for
each observed history pattern what prediction should be made. The specific algo-
rithm for history-based branch direction prediction can be characterized by a finite
state machine (FSM); see Figure 5.6. The n state variables encode the directions
taken by the last n executions of that branch. Hence each state represents a partic-
ular history pattern in terms of a sequence of takens and not takens. The output
logic generates a prediction based on the current state of the FSM. Essentially, a
prediction is made based on the outcome of the previous n executions of that
branch. When a predicted branch is finally executed, the actual outcome is used as
an input to the FSM to trigger a state transition. The next state logic is trivial; it
simply involves chaining the state variables into a shift register, which records the
branch directions of the previous n executions of that branch instruction.

Figure 5.7(a) illustrates the FSM diagram of a typical 2-bit branch predictor
that employs two history bits to track the outcome of two previous executions of
the branch. The two history bits constitute the state variables of the FSM. The pre-
dictor can be in one of four states: NN, NT, TT, or TN, representing the directions
taken in the previous two executions of the branch. The NN state can be desig-
nated as the initial state. An output value of either T or N is associated with each of
the four states representing the prediction that would be made when a predictor is
in that state. When a branch is executed, the actual direction taken is used as an
input to the FSM, and a state transition occurs to update the branch history which
will be used to do the next prediction.

The particular algorithm implemented in the predictor of Figure 5.7(a) is
biased toward predicting branches to be taken; note that three of the four states

226 MODERN PROCESSOR DESIGN

Branch instruction ~ Branch target Branch

L-cache address field address field history
BTB
BIA BTA
PC

Initial

state
Branch Speculative
history target address ESM

Pfedlc.ted \ Predict taken
direction Actual direction or not taken

(a) (b)

Figure 5.7
History-Based Branch Prediction: (a) A 2-Bit Branch Predictor Algorithm; (b) Branch Target Buffer with an
Additional Field for Storing Branch History Bits.

predict the branch to be taken. It anticipates either long runs of N’s (in the NN
state) or long runs of T’s (in the TT state). As long as at least one of the two previ-
ous executions was a taken branch, it will predict the next execution to be taken.
The prediction will only be switched to not taken when it has encountered two
consecutive N’s in a row. This represents one particular branch direction prediction
algorithm; clearly there are many possible designs for such history-based predictors,
and many designs have been evaluated by researchers.

To support history-based branch direction predictors, the BTB can be aug-
mented to include a history field for each of its entries. The width, in number of
bits, of this field is determined by the number of history bits being tracked. When a
PC address hits in the BTB, in addition to the speculative target address, the history
bits are retrieved. These history bits are fed to the logic that implements the next-
state and output functions of the branch predictor FSM. The retrieved history bits
are used as the state variables of the FSM. Based on these history bits, the output
logic produces the 1-bit output that indicates the predicted direction. If the predic-
tion is a taken branch, then this output is used to steer the speculative target address
to the PC to be used as the new instruction fetch address in the next machine cycle.
If the prediction turns out to be correct, then effectively the branch instruction has
been executed in the fetch stage without incurring any penalty or stalled cycle.

A classic experimental study on branch prediction was done by Lee and Smith
[1984]. In this study, 26 programs from six different types of workloads for three
different machines (IBM 370, DEC PDP-11, and CDC 6400) were used. Averaged
across all the benchmarks, 67.6% of the branches were taken while 32.4% were
not taken. Branches tend to be taken more than not taken by a ratio of 2 to 1. With
static branch prediction based on the op-code type, the prediction accuracy ranged
from 55% to 80% for the six workloads. Using only 1 bit of history, history-based
dynamic branch prediction achieved prediction accuracies ranging from 79.7% to

SUPERSCALAR TECHNIQUES 227

96.5%. With 2 history bits, the accuracies for the six workloads ranged from
83.4% to 97.5%. Continued increase of the number of history bits brought addi-
tional incremental accuracy. However, beyond four history bits there is a very
minimal increase in the prediction accuracy. They implemented a four-way set
associative BTB that had 128 sets. The averaged BTB hit rate was 86.5%. Com-
bining prediction accuracy with the BTB hit rate, the resultant average prediction
effectiveness was approximately 80%.

Another experimental study was done in 1992 at IBM by Ravi Nair using the
RS/6000 architecture and Systems Performance Evaluation Cooperative (SPEC)
benchmarks [Nair, 1992]. This was a very comprehensive study of possible branch
prediction algorithms. The goal for branch prediction is to overlap the execution of
branch instructions with that of other instructions so as to achieve zero-cycle
branches or accomplish branch folding; i.e., branches are folded out of the critical
latency path of instruction execution. This study performed an exhaustive search
for optimal 2-bit predictors. There are 220 possible FSMs of 2-bit predictors. Nair
determined that many of these machines are uninteresting and pruned the entire
design space down to 5248 machines. Extensive simulations are performed to
determine the optimal (achieves the best prediction accuracy) 2-bit predictor for
each of the benchmarks. The list of SPEC benchmarks, their best prediction accu-
racies, and the associated optimal predictors are shown in Figure 5.8.

In Figure 5.8, the states denoted with bold circles represent states in which the
branch is predicted taken; the nonbold circles represent states that predict not
taken. Similarly the bold edges represent state transitions when the branch is actu-
ally taken; the nonbold edges represent transitions corresponding to the branch

Benchmark Optimal ~ “Counter” N

spice2g6 97.2 97.0 @
doduc 943 TN O @rua @ rua @ —
gec 89.1 89.1 QOZG‘KOZO@

espresso 89.1 89.1 m

eqntott 87.9 87.2 OC@):_:O@
@ Initial state O Predict NT O Predict T

Figure 5.8
Optimal 2-Bit Branch Predictors for Six SPEC Benchmarks from the Nair Study.

228 MODERN PROCESSOR DESIGN

actually not taken. The state denoted with an asterisk indicates the initial state. The
prediction accuracies for the optimal predictors of these six benchmarks range from
87.1% to 97.2%. Notice that the optimal predictors for doduc, gcc, and espresso are
identical (disregarding the different initial state of the gcc predictor) and exhibit the
behavior of a 2-bit up/down saturating counter. We can label the four states from
left to right as 0, 1, 2, and 3, representing the four count values of a 2-bit counter.
Whenever a branch is resolved taken, the count is incremented; and it is decre-
mented otherwise. The two lower-count states predict a branch to be not taken,
while the two higher-count states predict a branch to be taken. Figure 5.8 also pro-
vides the prediction accuracies for the six benchmarks if the 2-bit saturating counter
predictor is used for all six benchmarks. The prediction accuracies for spice2g6, li,
and egntott only decrease minimally from their optimal values, indicating that the
2-bit saturating counter is a good candidate for general use on all benchmarks. In
fact, the 2-bit saturating counter, originally invented by Jim Smith, has become a
popular prediction algorithm in real and experimental designs.

The same study by Nair also investigated the effectiveness of counter-based
predictors. With a 1-bit counter as the predictor, i.e., remembering the direction
taken last time and predicting the same direction for the next time, the prediction
accuracies ranged from 82.5% to 96.2%. As we have seen in Figure 5.8, a 2-bit
counter yields an accuracy range of 86.8% to 97.0%. If a 3-bit counter is used, the
increase in accuracy is minimal; accuracies range from 88.3% to 97.0%. Based
on this study, the 2-bit saturating counter appears to be a very good choice for a
history-based predictor. Direct-mapped branch history tables are assumed in this
study. While some programs, such as gcc, have more than 7000 conditional
branches, for most programs, the branch penalty due to aliasing in finite-sized
branch history tables levels out at about 1024 entries for the table size.

5.1.4 Branch Misprediction Recovery

Branch prediction is a speculative technique. Any speculative technique requires
mechanisms for validating the speculation. Dynamic branch prediction can be
viewed as consisting of two interacting engines. The leading engine performs
speculation in the front-end stages of the pipeline, while a trailing engine performs
validation in the later stages of the pipeline. In the case of misprediction the trailing
engine also performs recovery. These two aspects of branch prediction are illus-
trated in Figure 5.9.

Branch speculation involves predicting the direction of a branch and then pro-
ceeding to fetch along the predicted path of control flow. While fetching from the
predicted path, additional branch instructions may be encountered. Prediction of
these additional branches can be similarly performed, potentially resulting in spec-
ulating past multiple conditional branches before the first speculated branch is
resolved. Figure 5.9(a) illustrates speculating past three branches with the first
and the third branches being predicted taken and the second one predicted not
taken. When this occurs, instructions from three speculative basic blocks are now
resident in the machine and must be appropriately identified. Instructions from
each speculative basic block are given the same identifying tag. In the example of

SUPERSCALAR TECHNIQUES 229

N_'.T T
i O I
e T(Tagl)

(b)

Figure 5.9
Two Aspects of Branch Prediction: (a) Branch Speculation; (b) Branch
Validation/Recovery.

Figure 5.9(a), three distinct tags are used to identify the instructions from the three
speculative basic blocks. A tagged instruction indicates that it is a speculative
instruction, and the value of the tag identifies which basic block it belongs to. As a
speculative instruction advances down the pipeline stages, the tag is also carried
along. When speculating, the instruction addresses of all the speculated branch
instructions (or the next sequential instructions) must be buffered in the event that
recovery is required.

Branch validation occurs when the branch is executed and the actual direction
of a branch is resolved. The correctness of the earlier prediction can then be deter-
mined. If the prediction turns out to be correct, the speculation tag is deallocated
and all the instructions associated with that tag become nonspeculative and are
allowed to complete. If a misprediction is detected, two actions are required;
namely, the incorrect path must be terminated, and fetching from a new correct
path must be initiated. To initiate a new path, the PC must be updated with a new
instruction fetch address. If the incorrect prediction was a not-taken prediction,
then the PC is updated with the computed branch target address. If the incorrect
prediction was a taken prediction, then the PC is updated with the sequential (fall-
through) instruction address, which is obtained from the previously buffered
instruction address when the branch was predicted taken. Once the PC has been
updated, fetching of instructions resumes along the new path, and branch predic-
tion begins anew. To terminate the incorrect path, speculation tags are used. All
the tags that are associated with the mispredicted branch are used to identify the

230 MODERN PROCESSOR DESIGN

instructions that must be eliminated. All such instructions that are still in the
decode and dispatch buffers as well as those in reservation station entries are
invalidated. Reorder buffer entries occupied by these instructions are deallocated.
Figure 5.9(b) illustrates this validation/recovery task when the second of the three
predictions is incorrect. The first branch is correctly predicted, and therefore
instructions with Tag 1 become nonspeculative and are allowed to complete. The
second prediction is incorrect, and all the instructions with Tag 2 and Tag 3 must
be invalidated and their reorder buffer entries must be deallocated. After fetching
down the correct path, branch prediction can begin once again, and Tag 1 is used
again to denote the instructions in the first speculative basic block. During branch
validation, the associated BTB entry is also updated.

We now use the PowerPC 604 superscalar microprocessor to illustrate the
implementation of dynamic branch prediction in a real superscalar processor. The
PowerPC 604 is a four-wide superscalar capable of fetching, decoding, and dispatch-
ing up to four instructions in every machine cycle [IBM Corp., 1994]. Instead of a
single unified BTB, the PowerPC 604 employs two separate buffers to support
branch prediction, namely, the branch target address cache (BTAC) and the branch
history table (BHT); see Figure 5.10. The BTAC is a 64-entry fully associative
cache that stores the branch target addresses, while the BHT, a 512-entry direct-
mapped table, stores the history bits of branches. The reason for this separation
will become clear shortly.

Both the BTAC and the BHT are accessed during the fetch stage using the
current instruction fetch address in the PC. The BTAC responds in one cycle;
however, the BHT requires two cycles to complete its access. If a hit occurs in the
BTAC, indicating the presence of a branch instruction in the current fetch group, a
predict taken occurs and the branch target address retrieved from the BTAC is
used in the next fetch cycle. Since the PowerPC 604 fetches four instructions in a
fetch cycle, there can be multiple branches in the fetch group. Hence, the BTAC
entry indexed by the fetch address contains the branch target address of the first
branch instruction in the fetch group that is predicted to be taken. In the second
cycle, or during the decode stage, the history bits retrieved from the BHT are used
to generate a history-based prediction on the same branch. If this prediction agrees
with the taken prediction made by the BTAC, the earlier prediction is allowed to
stand. On the other hand, if the BHT prediction disagrees with the BTAC prediction,
the BTAC prediction is annulled and fetching from the fall-through path, corre-
sponding to predict not taken, is initiated. In essence, the BHT prediction can over-
rule the BTAC prediction. As expected, in most cases the two predictions agree. In
some cases, the BHT corrects the wrong prediction made by the BTAC. It is possi-
ble, however, for the BHT to erroneously change the correct prediction of the BTAC;
this occurs very infrequently. When a branch is resolved, the BHT is updated; and
based on its updated content the BHT in turn updates the BTAC by either leaving an
entry in the BTAC if it is to be predicted taken the next time, or deleting an entry
from the BTAC if that branch is to be predicted not taken the next time.

The PowerPC 604 has four entries in the reservation station that feeds the
branch execution unit. Hence, it can speculate past up to four branches; i.e., there

SUPERSCALAR TECHNIQUES 231

vy
> = I FA
3 ; > I-cache
s
> _I FA FA
\A
Branch target
. ddress cache
Branch history a
+4 table (BHT) (BTAC)
BTAC
Y update . . Decode buffer
BHT prediction BHT
update

BTAC prediction
. - Dispatch buffer
Reservation

1 stations

BRN SFX \ SFX CFX \ FPU v LS

“‘I;SJAJII Y]] [
———fprance] [] []

Execute

\ i ¢ Y
Finish @
1 e

v

Y

Figure 5.10
Branch Prediction in the PowerPC 604 Superscalar Microprocessor.

can be a maximum of four speculative branches present in the machine. To denote
the four speculative basic blocks involved, a 2-bit tag is used to identify all specu-
lative instructions. After a branch resolves, branch validation takes place and all
speculative instructions either are made nonspeculative or are invalidated via the
use of the 2-bit tag. Reorder buffer entries occupied by misspeculated instructions
are deallocated. Again, this is performed using the 2-bit tag.

5.1.5 Advanced Branch Prediction Techniques

The dynamic branch prediction schemes discussed thus far have a number of limi-
tations. Prediction for a branch is made based on the limited history of only that
particular static branch instruction. The actual prediction algorithm does not take

232 MODERN PROCESSOR DESIGN

into account the dynamic context within which the branch is being executed. For
example, it does not make use of any information on the particular control flow
path taken in arriving at that branch. Furthermore the same fixed algorithm is used
to make the prediction regardless of the dynamic context. It has been observed
experimentally that the behavior of certain branches is strongly correlated with the
behavior of other branches that precede them during execution. Consequently
more accurate branch prediction can be achieved with algorithms that take into
account the branch history of other correlated branches and that can adapt the pre-
diction algorithm to the dynamic branching context.

In 1991, Yeh and Patt proposed a two-level adaptive branch prediction technique
that can potentially achieve better than 95% prediction accuracy by having a highly
flexible prediction algorithm that can adapt to changing dynamic contexts [Yeh and
Patt, 1991]. In previous schemes, a single branch history table is used and indexed by
the branch address. For each branch address there is only one relevant entry in the
branch history table. In the two-level adaptive scheme, a set of history tables is used.
These are identified as the pattern history table (PHT); see Figure 5.11. Each branch
address indexes to a set of relevant entries; one of these entries is then selected based
on the dynamic branching context. The context is determined by a specific pattern of
recently executed branches stored in a branch history shift register (BHSR); see
Figure 5.11. The content of the BHSR is used to index into the PHT to select one of
the relevant entries. The content of this entry is then used as the state for the predic-
tion algorithm FSM to produce a prediction. When a branch is resolved, the branch
result is used to update both the BHSR and the selected entry in the PHT.

The two-level adaptive branch prediction technique actually specifies a frame-
work within which many possible designs can be implemented. There are two options

Pattern history table (PHT)

Branch instruction address —%{1

00...00]

Branch history shift
register (BHSR) 00...01 |

(Shift left when update) 00...10 -

{11

| N

.10
.11

1

Prediction

Branch result

Figure 5.11
Two-Level Adaptive Branch Prediction of Yeh and Patt.
Source: Yeh and Patt, 1991.

SUPERSCALAR TECHNIQUES 233

to implementing the BHSR: global (G) and individual (P). The global implemen-
tation employs a single BHSR of bits that tracks the branch directions of the last
k dynamic branch instructions in program execution. These can involve any number
(1 to k) of static branch instructions. The individual (called per-branch by Yeh and
Patt) implementation employs a set of k-bit BHSRs as illustrated in Figure 5.11,
one of which is selected based on the branch address. Essentially the global BHSR
is shared by all static branches, whereas with individual BHSRs each BHSR is
dedicated to each static branch or a subset of static branches if there is address
aliasing when indexing into the set of BHSRs using the branch address. There are
three options to implementing the PHT: global (g), individual (p), or shared (s).
The global PHT uses a single table to support the prediction of all static branches.
Alternatively, individual PHTs can be used in which each PHT is dedicated to
each static branch (p) or a small subset of static branches (s) if there is address
aliasing when indexing into the set of PHTs using the branch address. A third
dimension to this design space involves the implementation of the actual predic-
tion algorithm. When a history-based FSM is used to implement the prediction
algorithm, Yeh and Patt identified such schemes as adaptive (A).

All possible implementations of the two-level adaptive branch prediction can
be classified based on these three dimensions of design parameters. A given imple-
mentation can then be denoted using a three-letter notation; e.g., GAs represents a
design that employs a single global BHSR, an adaptive prediction algorithm, and a
set of PHTs with each being shared by a number of static branches. Yeh and Patt
presented three specific implementations that are able to achieve a prediction
accuracy of 97% for their given set of benchmarks:

e GAg: (1) BHSR of size 18 bits; (1) PHT of size 218 % 2 bits.
e PAg: (512 x 4) BHSRs of size 12 bits; (1) PHT of size 212 % 2 bits.
e PAs: (512 x4) BHSRs of size 6 bits; (512) PHTs of size 20 % 2 bits.

All three implementations use an adaptive (A) predictor that is a 2-bit FSM. The
first implementation employs a global BHSR (G) of 18 bits and a global PHT (g)
with 2!8 entries indexed by the BHSR bits. The second implementation employs
512 sets (four-way set-associative) of 12-bit BHSRs (P) and a global PHT (g) with
2!2 entries. The third implementation also employs 512 sets of four-way set-
associative BHSRs (P), but each is only 6 bits wide. It also uses 512 PHTs (s), each
having 2° entries indexed by the BHSR bits. Both the 512 sets of BHSRs and the
512 PHTs are indexed using 9 bits of the branch address. Additional branch address
bits are used for the set-associative access of the BHSRs. The 512 PHTs are direct-
mapped, and there can be aliasing, i.e., multiple branch addresses sharing the same
PHT. From experimental data, such aliasing had minimal impact on degrading the
prediction accuracy. Achieving greater than 95% prediction accuracy by the two-
level adaptive branch prediction schemes is quite impressive; the best traditional
prediction techniques can only achieve about 90% prediction accuracy. The two-
level adaptive branch prediction approach has been adopted by a number of real
designs, including the Intel Pentium Pro and the AMD/NexGen Nx686.

234 MODERN PROCESSOR DESIGN

Branch address

/ Traditional BHT

I 1
' I
Global branch history |'

shift register (BHSR) e m e e e e

gmm@@@@

counter FSM

Prediction

PHT of 2¥ X 2/ X 2

Figure 5.12
Correlated Branch Predictor with Global BHSR and Shared PHTs (GAs).

Following the original Yeh and Patt proposal, other studies by McFarling [1993],
Young and Smith [1994], and Gloy et al. [1995] have gained further insights into two-
level adaptive, or more recently called correlated, branch predictors. Figure 5.12
illustrates a correlated branch predictor with a global BHSR (G) and a shared PHT (s).
The 2-bit saturating counter 1s used as the predictor FSM. The global BHSR tracks the
directions of the last £ dynamic branches and captures the dynamic control flow con-
text. The PHT can be Vlewed as a single table containing a two-dimensional array,
with 2/ columns and 2* rows, of 2-bit predictors. If the branch address has n bits, a
subset of j bits is used to index into the PHT to select one of the 2/ columns. Since j is
less than n, some aliasing can occur where two different branch addresses can index
into the same column of the PHT. Hence the d651gnat10n of shared PHT. The k bits
from the BHSR are used to select one of the 2* entries in the selected column. The
2 history bits in the selected entry are used to make a history-based prediction. The
traditional branch history table is equivalent to having only one row of the PHT that is
indexed only by the j bits of the branch address, as illustrated in Figure 5.12 by the
dashed rectangular block of 2-bit predictors in the first row of the PHT.

Figure 5.13 illustrates a correlated branch predictor with individual, or per-
branch, BHSRs (P) and the same shared PHT (s). Similar to the GAs scheme, the
PAs scheme also uses j bits of the branch address to select one of the 2 columns of
the PHT. However, i bits of the branch address, which can overlap with the j bits
used to access the PHT, are used to index into a set of BHSRs. Depending on the
branch address, one of the 2" BHSRs is selected. Hence, each BHSR is associated
with one particular branch address, or a set of branch addresses if there is aliasing.
Essentially, instead of using a single BHSR to provide the dynamic control flow
context for all static branches, multiple BHSRs are used to provide distinct
dynamic control flow contexts for different subsets of static branches. This adds

SUPERSCALAR TECHNIQUES 235

Branch address
ibits | T J bits

Individual branch history

shiftre%HSRs>
I

PHT of 2% X 2/ x 2

Prediction

Figure 5.13
Correlated Branch Predictor with Individual BHSRs and Shared PHTs (PAs).

Branch address

Global branch history it
shift register (BHSR) J bits =
=]
(LTI |, 2
L
[o . &

k bits NP max{k, j} bits
PHT of 2max(k.j} % 2
Figure 5.14

The gshare Correlated Branch Predictor of McFarling.
Source: McFarling, 1993.

flexibility in tracking and exploiting correlations between different branch instruc-
tions. Each BHSR tracks the directions of the last k dynamic branches belonging
to the same subset of static branches. Both the GAs and the PAs schemes require a
PHT of size 2% x 2/ x 2 bits. The GAs scheme has only one k-bit BHSR whereas
the PAs scheme requires 2' k-bit BHSRs.

A fairly efficient correlated branch predictor called gshare was proposed by
Scott McFarling [1993]. In this scheme, j bits from the branch address are “hashed”
(via bitwise XOR function) with the k bits from a global BHSR; see Figure 5.14. The
resultant max{k, j} bits are used to index into a PHT of size 2%} x 2 bits to

236 MODERN PROCESSOR DESIGN

select one of the 2™™*{%J} 2_pit branch predictors. The gshare scheme requires
only one k-bit BHSR and a much smaller PHT, yet achieves comparable predic-
tion accuracy to other correlated branch predictors. This scheme is used in the
DEC Alpha 21264 4-way superscalar microprocessor [Keller, 1996].

5.1.6 Other Instruction Flow Techniques

The primary objective for instruction flow techniques is to supply as many useful
instructions as possible to the execution core of the processor in every machine
cycle. The two major challenges deal with conditional branches and taken branches.
For a wide superscalar processor, to provide adequate conditional branch through-
put, the processor must very accurately predict the outcomes and targets of multi-
ple conditional branches in every machine cycle. For example, in a fetch group of
four instructions, it is possible that all four instructions are conditional branches.
Ideally one would like to use the addresses of all four instructions to index into a
four-ported BTB to retrieve the history bits and target addresses of all four
branches. A complex predictor can then make an overall prediction based on all
the history bits. Speculative fetching can then proceed based on this prediction.
Techniques for predicting multiple branches in every cycle have been proposed by
Conte et al. [1995] as well as Rotenberg et al. [1996]. It is also important to ensure
high accuracy in such predictions. Global branch history can be used in conjunc-
tion with per-branch history to achieve very accurate predictions. For those
branches or sequences of branches that do not exhibit strongly biased branching
behavior and therefore are not predictable, dynamic eager execution (DEE) has
been proposed by Gus Uht [Uht and Sindagi, 1995]. DEE employs multiple PCs to
simultaneously fetch from multiple addresses. Essentially the fetch stage pursues
down multiple control flow paths until some branches are resolved, at which time
some of the wrong paths are dynamically pruned by invalidating the instructions
on those paths.

Taken branches are the second major obstacle to supplying enough useful
instructions to the execution core. In a wide machine the fetch unit must be able to
correctly process more than one taken branch per cycle, which involves predicting
each branch’s direction and target, and fetching, aligning, and merging instruc-
tions from multiple branch targets. An effective approach in alleviating this problem
involves the use of a trace cache that was initially proposed by Eric Rotenberg
[Rotenberg et al., 1996]. Since then, a form of trace caching has been implemented
in Intel’s most recent Pentium 4 superscalar microprocessor. Trace cache is a
history-based fetch mechanism that stores dynamic instruction traces in a cache
indexed by the fetch address and branch outcomes. These traces are assembled
dynamically based on the dynamic branching behavior and can contain multiple
nonconsecutive basic blocks. Whenever the fetch address hits in the trace cache,
instructions are fetched from the trace cache rather than the instruction cache.
Since a dynamic sequence of instructions in the trace cache can contain multiple
taken branches but is stored sequentially, there is no need to fetch from multiple
targets and no need for a multiported instruction cache or complex merging and
aligning logic in the fetch stage. The trace cache can be viewed as doing dynamic

SUPERSCALAR TECHNIQUES 237

basic block reordering according to the dominant execution paths taken by a program.
The merging and aligning can be done at completion time, when nonconsecutive
basic blocks on a dominant path are first executed, to assemble a trace, which is
then stored in one line of the trace cache. The goal is that once the trace cache is
warmed up, most of the fetching will come from the trace cache instead of the
instruction cache. Since the reordered basic blocks in the trace cache better match
the dynamic execution order, there will be fewer fetches from nonconsecutive
locations in the trace cache, and there will be an effective increase in the overall
throughput of taken branches.

5.2 Register Data Flow Techniques

Register data flow techniques concern the effective execution of ALU (or register-
register) type instructions in the execution core of the processor. ALU instructions
can be viewed as performing the “real” work specified by the program, with control
flow and load/store instructions playing the supportive roles of providing the neces-
sary instructions and the required data, respectively. In the most ideal machine,
branch and load/store instructions, being “overhead” instructions, should take no
time to execute and the computation latency should be strictly determined by the
processing of ALU instructions. The effective processing of these instructions is
foundational to achieving high performance.

Assuming a load/store architecture, ALU instructions specify operations to be
performed on source operands stored in registers. Typically an ALU instruction
specifies a binary operation, two source registers where operands are to be re-
trieved, and a destination register where the result is to be placed. R; - F,(R.R))
specifies a typical ALU instruction, the execution of which requires the availability
of (1) F,, the functional unit; (2) R; and R,, the two source operand registers; and
(3) R,, the destination register. If the functional unit F,, is not available, then a struc-
tural dependence exists that can result in a structural hazard. If one or both of the
source operands in R; and R, are not available, then a hazard due to true data depen-
dence can occur. If the destination register R; is not available, then a hazard due to
anti- and output dependences can occur.

5.2.1 Register Reuse and False Data Dependences

The occurrence of anti- and output dependences, or false data dependences, is due
to the reuse of registers. If registers are never reused to store operands, then such
false data dependences will not occur. The reuse of registers is commonly referred
to as register recycling. Register recycling occurs in two different forms, one static
and the other dynamic. The static form is due to optimization performed by the
compiler and is presented first. In a typical compiler, toward the back end of the
compilation process two tasks are performed: code generation and register alloca-
tion. The code generation task is responsible for the actual emitting of machine
instructions. Typically the code generator assumes the availability of an unlimited
number of symbolic registers in which it stores all the temporary data. Each sym-
bolic register is used to store one value and is only written once, producing what is

238 MODERN PROCESSOR DESIGN

commonly referred to as single-assignment code. However, an ISA has a limited
number of architected registers, and hence the register allocation tool is used to
map the unlimited number of symbolic registers to the limited and fixed number of
architected registers. The register allocator attempts to keep as many of the tempo-
rary values in registers as possible to avoid having to move the data out to memory
locations and reloading them later on. It accomplishes this by reusing registers. A
register is written with a new value when the old value stored there is no longer
needed; effectively each register is recycled to hold multiple values.

Writing of a register is referred to as the definition of a register and the reading
of aregister as the use of a register. After each definition, there can be one or more
uses of that definition. The duration between the definition and the last use of a
value is referred to as the live range of that value. After the last use of a live range,
that register can be assigned to store another value and begin another live range.
Register allocation procedures attempt to map nonoverlapping live ranges into the
same architected register and maximize register reuse. In single-assignment code
there is a one-to-one correspondence between symbolic registers and values. After
register allocation, each architected register can receive multiple assignments, and
the register becomes a variable that can take on multiple values. Consequently the
one-to-one correspondence between registers and values is lost.

If the instructions are executed sequentially and a redefinition is never allowed
to precede the previous definition or the last use of the previous definition, then the
live ranges that share the same register will never overlap during execution and the
recycling of registers does not induce any problem. Effectively, the one-to-one cor-
respondence between values and registers can be maintained implicitly if all the
instructions are processed in the original program order. However, in a superscalar
machine, especially with out-of-order processing of instructions, register reading
and writing operations can occur in an order different from the program order. Con-
sequently the one-to-one correspondence between values and registers can poten-
tially be perturbed; in order to ensure semantic correctness all anti- and output
dependences must be detected and enforced. Out-of-order reading (writing) of regis-
ters can be permitted as long as all the anti- (output) dependences are enforced.

The dynamic form of register recycling occurs when a loop of instructions is
repeatedly executed. With an aggressive superscalar machine capable of support-
ing many instructions in flight and a relatively small loop body being executed,
multiple iterations of the loop can be simultaneously in flight in a machine. Hence,
multiple copies of a register defining instruction from the multiple iterations can
be simultaneously present in the machine, inducing the dynamic form of register
recycling. Consequently anti- and output dependences can be induced among
these dynamic instructions from the multiple iterations of a loop and must be
detected and enforced to ensure semantic correctness of program execution.

One way to enforce anti- and output dependences is to simply stall the depen-
dent instruction until the leading instruction has finished accessing the dependent
register. If an anti- [write-after-read (WAR)] dependence exists between a pair of
instructions, the trailing instruction (register updating instruction) must be stalled
until the leading instruction has read the dependent register. If an output [write-
after-write (WAW)] dependence exists between a pair of instructions, the trailing

SUPERSCALAR TECHNIQUES 239

instruction (register updating instruction) must be stalled until the leading instruc-
tion has first updated the register. Such stalling of anti- and output dependent
instructions can lead to significant performance loss and is not necessary. Recall
that such false data dependences are induced by the recycling of the architected
registers and are not intrinsic to the program semantics.

5.2.2 Register Renaming Techniques

A more aggressive way to deal with false data dependences is to dynamically
assign different names to the multiple definitions of an architected register and, as
a result, eliminate the presence of such false dependences. This is called register
renaming and requires the use of hardware mechanisms at run time to undo the
effects of register recycling by reproducing the one-to-one correspondence
between registers and values for all the instructions that might be simultaneously
in flight. By performing register renaming, single assignment is effectively recov-
ered for the instructions that are in flight, and no anti- and output dependences can
exist among these instructions. This will allow the instructions that originally had
false dependences between them to be executed in parallel.

A common way to implement register renaming is to use a separate rename
register file (RRF) in addition to the architected register file (ARF). A straightfor-
ward way to implement the RRF is to simply duplicate the ARF and use the RRF
as a shadow version of the ARF. This will allow each architected register to be
renamed once. However, this is not a very efficient way to use the registers in the
RRF. Many existing designs implement an RRF with fewer entries than the ARF
and allow each of the registers in the RRF to be flexibly used to rename any one of
the architected registers. This facilitates the efficient use of the rename registers,
but does require a mapping table to store the pointers to the entries in the RRF.
The use of a separate RRF in conjunction with a mapping table to perform renam-
ing of the ARF is illustrated in Figure 5.15.

When a separate RRF is used for register renaming, there are implementation
choices in terms of where to place the RRF. One option is to implement a separate
stand-alone structure similar to the ARF and perhaps adjacent to the ARF. This is
shown in Figure 5.15(a). An alternative is to incorporate the RRF as part of the
reorder buffer, as shown in Figure 5.15(b). In both options a busy field is added to
the ARF along with a mapping table. If the busy bit of a selected entry of the ARF
is set, indicating the architected register has been renamed, the corresponding
entry of the map table is accessed to obtain the tag or the pointer to an RRF entry.
In the former option, the tag specifies a rename register and is used to index into
the RRF; whereas in the latter option, the tag specifies a reorder buffer entry and is
used to index into the reorder buffer.

Based on the diagrams in Figure 5.15, the difference between the two options
may seem artificial; however, there are important subtle differences. If the RRF is
incorporated as part of the reorder buffer, every entry of the reorder buffer con-
tains an additional field that functions as a rename register, and hence there is a
rename register allocated for every instruction in flight. This is a design based on
worst-case scenario and may be wasteful since not every instruction defines a regis-
ter. For example, branch instructions do not update any architected register. On the

240 MODERN PROCESSOR DESIGN

ARF Map table
Data Busy Tag RRF
1 Data Valid
1
Register /
specifier
Operand
(@
ARF Map table
Data Busy Tag e
1 —_]
AE
<
| Qa %
Register
specifier > -
Reorder buffer
(b)
Figure 5.15

Rename Register File (RRF) Implementations: (a) Stand-Alone; (b) Attached to the Reorder Buffer.

other hand, a reorder buffer already contains ports to receive data from the func-
tional units and to update the ARF at instruction completion time. When a separate
stand-alone RRF is used, it introduces an additional structure that requires ports
for receiving data from the functional units and for updating the ARF. The choice
of which of the two options to implement involves design tradeoffs, and both
options have been employed in real designs. We now focus on the stand-alone
option to get a better feel of how register renaming actually works.

Register renaming involves three tasks: (1) source read, (2) destination allocate,
and (3) register update. The first task of source read typically occurs during the
decode (or possibly dispatch) stage and is for the purpose of fetching the register
operands. When an instruction is decoded, its source register specifiers are used to
index into a multiported ARF in order to fetch the register operands. Three possi-
bilities can occur for each register operand fetch. First, if the busy bit is not set,
indicating there is no pending write to the specified register and that the archi-
tected register contains the specified operand, the operand is fetched from the
AREF. If the busy bit is set, indicating there is a pending write to that register and
that the content of the architected register is stale, the corresponding entry of the
map table is accessed to retrieve the rename tag. This rename tag specifies a

SUPERSCALAR TECHNIQUES 241

Update at instruction completion . o
Update at instruction finish

l ARF Map table
Data Busy Tag L RRF
—_] Data Valid | Busy
Regi.ster _>/
specifier
From
' functional
/- units
Operand read
Figure 5.16

Register Renaming Tasks: Source Read, Destination Allocate, and Register Update.

rename register and is used to index into the RRF. Two possibilities can occur
when indexing into the RRF. If the valid bit of the indexed entry is set, it indicates
that the register-updating instruction has already finished execution, although it is
still waiting to be completed. In this case, the source operand is available in the
rename register and is retrieved from the indexed RRF entry. If the valid bit is not
set, it indicates that the register-updating instruction still has not been executed
and that the rename register has a pending update. In this case the tag, or the
rename register specifier, from the map table is forwarded to the reservation sta-
tion instead of to the source operand. This tag will be used later by the reservation
station to obtain the operand when it becomes available. These three possibilities
for source read are shown in Figure 5.16.

The task of destination allocate also occurs during the decode (or possibly dis-
patch) stage and has three subtasks, namely, set busy bit, assign tag, and update
map table. When an instruction is decoded, its destination register specifier is used
to index into the ARF. The selected architected register now has a pending write,
and its busy bit must be set. The specified destination register must be mapped to a
rename register. A particular unused (indicated by the busy bit) rename register
must be selected. The busy bit of the selected RRF entry must be set, and the index
of the selected RRF entry is used as a tag. This tag must then be written into the
corresponding entry in the map table, to be used by subsequent dependent instruc-
tions for fetching their source operands.

While the task of register update takes place in the back end of the machine and is
not part of the actual renaming activity of the decode/dispatch stage, it does have a
direct impact on the operation of the RRF. Register update can occur in two separate
steps; see Figure 5.16. When a register-updating instruction finishes execution, its
result is written into the entry of the RRF indicated by the tag. Later on when this

242 MODERN PROCESSOR DESIGN

instruction is completed, its result is then copied from the RRF into the ARF. Hence,
register update involves updating first an entry in the RRF and then an entry in the
ARF. These two steps can occur in back-to-back cycles if the register-updating
instruction is at the head of the reorder buffer, or they can be separated by many
cycles if there are other unfinished instructions in the reorder buffer ahead of this
instruction. Once a rename register is copied to its corresponding architected register,
its busy bit is reset and it can be used again to rename another architected register.

So far we have assumed that register renaming implementation requires the use
of two separate physical register files, namely the ARF and the RRF. However,
this assumption is not necessary. The architected registers and the rename registers
can be pooled together and implemented as a single physical register file with its
number of entries equal to the sum of the ARF and RRF entry counts. Such a pooled
register file does not rigidly designate some of the registers as architected registers
and others as rename registers. Each physical register can be flexibly assigned to
be an architected register or a rename register. Unlike a separate ARF and RRF
implementation which must physically copy a result from the RRF to the ARF at
instruction completion, the pooled register file only needs to change the designation
of a register from being a rename register to an architected register. This will save
the data transfer interconnect between the RRF and the ARF. The key disadvantage
of the pooled register file is its hardware complexity. A secondary disadvantage is
that at context swap time, when the machine state must be saved, the subset of regis-
ters constituting the architected state of the machine must be explicitly identified
before state saving can begin.

The pooled register file approach is used in the floating-point unit of the original
IBM RS/6000 design and is illustrated in Figure 5.17 [Grohoski, 1990; Oehler and
Groves, 1990]. In this design, 40 physical registers are implemented for supporting
an ISA that specifies 32 architected registers. A mapping table is implemented, based
on whose content any subset of 32 of the 40 physical registers can be designated as
the architected registers. The mapping table contains 32 entries indexed by the 5-bit
architected register specifier. Each entry when indexed returns a 6-bit specifier indi-
cating the physical register to which the architected register has been mapped.

OP T SI S2S3 OP T SI 283
[Fap|3[2]1] | [rap]3]2]1] |
¢ * * ¢ * * ¢T Head Free list Tail

<—-132|33|34|35|36|37|38|39|

Map table
32%6 Pending target return queue
uBEEEREEE
Head
release

tail

Figure 5.17
Floating-Point Unit (FPU) Register Renaming in the IBM RS/6000.

SUPERSCALAR TECHNIQUES 243

The floating-point unit (FPU) of the RS/6000 is a pipelined functional unit with
the rename pipe stage preceding the decode pipe stage. The rename pipe stage con-
tains the map table, two circular queues, and the associated control logic. The first
queue is called the free list (FL) and contains physical registers that are available for
new renaming. The second queue is called the pending target return queue (PTRQ)
and contains those physical registers that have been used to rename architected regis-
ters that have been subsequently re-renamed in the map table. Physical registers in the
PTRQ can be returned to the FL once the last use of that register has occurred. Two
instructions can traverse the rename stage in every machine cycle. Because of the pos-
sibility of fused multiply-add (FMA) instructions that have three sources and one des-
tination, each of the two instructions can contain up to four register specifiers. Hence,
the map table must be eight-ported to support the simultaneous translation of the eight
architected register specifiers. The map table is initialized with the identity mapping;
i.e., architected register i is mapped to physical register i fori =0, 1, . . ., 31. At ini-
tialization, physical registers 32 to 39 are placed in the FL and the PTRQ is empty.

When an instruction traverses the rename stage, its architected register specifi-
ers are used to index into the map table to obtain their translated physical register
specifiers. The eight-ported map table has 32 entries, indexed by the 5-bit archi-
tected register specifier, with each entry containing 6 bits indicating the physical reg-
ister to which the architected register is mapped. The content of the map table
represents the latest mapping of architected registers to physical registers and speci-
fies the subset of physical registers that currently represents the architected registers.

In the FPU of the RS/6000, by design only load instructions can trigger a new
renaming. Such register renaming prevents the FPU from stalling while waiting
for loads to execute in order to enforce anti- and output dependences. When a load
instruction traverses the rename stage, its destination register specifier is used to
index into the map table. The current content of that entry of the map table is
pushed out to the PTRQ, and the next physical register in the FL is loaded into the
map table. This effectively renames the redefinition of that destination register to a
different physical register. All subsequent instructions that specify this architected
register as a source operand will receive the new physical register specifier as the
source register. Beyond the rename stage, i.e., in the decode and execute stages,
the FPU uses only physical register specifiers, and all true register dependences
are enforced using the physical register specifiers.

The map table approach represents the most aggressive and versatile implemen-
tation of register renaming. Every physical register can be used to represent any
redefinition of any architected register. There is significant hardware complexity
required to implement the multiported map table and the logic to control the two
circular queues. The return of a register in the PTRQ to the FL is especially trouble-
some due to the difficulty in identifying the last-use instruction of a register. How-
ever, unlike approaches based on the use of separate rename registers, at instruction
completion time no copying of the content of the rename registers to the architected
registers is necessary. On the other hand, when interrupts occur and as part of con-
text swap, the subset of physical registers that constitute the current architected
machine state must be explicitly determined based on the map table contents.

244 MODERN PROCESSOR DESIGN

wli+k] .ip
wli+j].rp

Figure 5.18
FFT Code Fragment: (a) Original Source Statements; (b) Compiled Assembly Instructions.

Most contemporary superscalar microprocessors implement some form of
register renaming to avoid having to stall for anti- and output register data depen-
dences induced by the reuse of registers. Typically register renaming occurs during
the instruction decoding time, and its implementation can become quite complex,
especially for wide superscalar machines in which many register specifiers for
multiple instructions must be simultaneously renamed. It’s possible that multiple
redefinitions of a register can occur within a fetch group. Implementing a register
renaming mechanism for wide superscalars without seriously impacting machine
cycle time is a real challenge. To achieve high performance the serialization con-
straints imposed by false register data dependences must be eliminated; hence,
dynamic register renaming is absolutely essential.

5.2.3 True Data Dependences and the Data Flow Limit

A RAW dependence between two instructions is called a true data dependence due
to the producer-consumer relationship between these two instructions. The trailing
consumer instruction cannot obtain its source operand until the leading producer
instruction produces its result. A true data dependence imposes a serialization con-
straint between the two dependent instructions; the leading instruction must finish
execution before the trailing instruction can begin execution. Such true data
dependences result from the semantics of the program and are usually represented
by a data flow graph or data dependence graph (DDG).

Figure 5.18 illustrates a code fragment for a fast Fourier transform (FFT) imple-
mentation. Two source-level statements are compiled into 16 assembly instruc-
tions, including load and store instructions. The floating-point array variables

z[i] .rp + z[m+i] .rp;
elk+1] .rp * (z[i].rp - z[m+i].rp) - elk+1l].ip * (z[i].ip - z[m+i].ip);

(a)

il: £f2 « load,4(r2)
i2: f0 < load,4(r5)
i3: f0 <« fadd, £2, f0
i4: 4 (r6) < store, f0
i5: fl14 < laod,8(r7)
i6: f6 < load,0(r2)
i7: f5 <« load,0(r3)
i8: f5 <« fsub, f6, f5
19: f4 < fmul, f14,£5
110: f£f15 < load,12(r7)
il1l: f7 < load,4(r2)
112: f8 <« load, 4 (r3)
113: f8 < fsub, f7,f8
il4: f£8 < fmul, f15, £8
115: f8 <« fsub,f4,f8
116: 0(r8) < store, £8

(b)

SUPERSCALAR TECHNIQUES 245

Figure 5.19
Data Flow Graph of the Code Fragment in Figure 5.18(b).

are stored in memory and must be first loaded before operations can be per-
formed. After the computation, the results are stored back out to memory. Integer
registers (ri) are used to hold addresses of arrays. Floating-point registers (fj)
are used to hold temporary data. The DFG induced by the writing and reading of
floating-point registers by the 16 instructions of Figure 5.18(b) is shown in
Figure 5.19.

Each node in Figure 5.19 represents an instruction in Figure 5.18(b). A directed
edge exists between two instructions if there exists a true data dependence between
the two instructions. A dependent register can be identified for each of the depen-
dence edges in the DFG. A latency can also be associated with each dependence
edge. In Figure 5.19, each edge is labeled with the execution latency of the producer
instruction. In this example, load, store, addition, and subtraction instructions are
assumed to have two-cycle execution latency, while multiplication instructions
require four cycles.

The latencies associated with dependence edges are cumulative. The longest
dependence chain, measured in terms of total cumulative latency, is identified as
the critical path of a DFG. Even assuming unlimited machine resources, a code
fragment cannot be executed any faster than the length of its critical path. This is
commonly referred to as the data flow limit to program execution and represents
the best performance that can possibly be achieved. For the code fragment of
Figure 5.19 the data flow limit is 12 cycles. The data flow limit is dictated by the
true data dependences in the program. Traditionally, the data flow execution
model stipulates that every instruction in a program begin execution immedi-
ately in the cycle following when all its operands become available. In effect,
all existing register data flow techniques are attempts to approach the data
flow limit.

246 MODERN PROCESSOR DESIGN

5.2.4 The Classic Tomasulo Algorithm

The design of the IBM 360/91’s floating-point unit, incorporating what has come
to be known as Tomasulo’s algorithm, laid the groundwork for modern supersca-
lar processor designs [Tomasulo, 1967]. Key attributes of most contemporary reg-
ister data flow techniques can be found in the classic Tomasulo algorithm, which
deserves an in-depth examination. We first introduce the original design of the
floating-point unit of the IBM 360, and then describe in detail the modified design
of the FPU in the IBM 360/91 that incorporated Tomasulo’s algorithm, and finally
illustrate its operation and effectiveness in processing an example code sequence.
The original design of the IBM 360 floating-point unit is shown in
Figure 5.20. The FPU contains two functional units: one floating-point add unit
and one floating-point multiply/divide unit. There are three register files in the
FPU: the floating-point registers (FLRs), the floating-point buffers (FLBs), and
the store data buffers (SDBs). There are four FLR registers; these are the archi-
tected floating-point registers. Floating-point instructions with storage-register or
storage-storage addressing modes are preprocessed. Address generation and memory

Storage bus Instruction unit
6 Floating-
5 point 1 *
Floating-point 4 operand 8
Control - -
buffers (FLBs) 3 stack Floating-point 4
Control -
2 (FLOS) registers (FLRs)2
1 0
7
[: | | 1 |} —
> Decoder I
Floating-point '&()dir Floati int ; 4
buffer 0 lnrgégzizr Store 3
(FLB) bus (FLR) bus Control data 2
buffers (SDBs) 1
, { !
+ + To storage
| sink |Source| cCul. | | cul | sink |source

Adder M(;]il\fiigley/
Result Result
|'—'y_| i Result bus
Figure 5.20

The Original Design of the IBM 360 Floating-Point Unit.

SUPERSCALAR TECHNIQUES 247

accessing are performed outside of the FPU. When the data are retrieved from the
memory, they are loaded into one of the six FLB registers. Similarly if the destina-
tion of an instruction is a memory location, the result to be stored is placed in one
of the three SDB registers and a separate unit accesses the SDBs to complete the
storing of the result to a memory location. Using these two additional register
files, the FLBs, and the SDBs, to support storage-register and storage-storage
instructions, the FPU effectively functions as a register-register machine.

In the IBM 360/91, the instruction unit (IU) decodes all the instructions and
passes all floating-point instructions (in order) to the floating-point operation stack
(FLOS). In the FPU, floating-point instructions are then further decoded and
issued in order from the FLOS to the two functional units. The two functional units
are not pipelined and incur multiple-cycle latencies. The adder incurs 2 cycles for
add instructions, while the multiply/divide unit incurs 3 cycles and 12 cycles for
performing multiply and divide instructions, respectively.

In the mid-1960s, IBM began developing what eventually became Model 91
of the Systems 360 family. One of the goals was to achieve concurrent execution
of multiple floating-point instructions and to sustain a throughput of one instruc-
tion per cycle in the instruction pipeline. This is quite aggressive considering the
complex addressing modes of the 360 ISA and the multicycle latencies of the exe-
cution units. The end result is a modified FPU in the 360/91 that incorporated
Tomasulo’s algorithm; see Figure 5.21.

Tomasulo’s algorithm consists of adding three new mechanisms to the original
FPU design, namely, reservation stations, the common data bus, and register tags.
In the original design, each functional unit has a single buffer on its input side to
hold the instruction currently being executed. If a functional unit is busy, issuing
of instructions by FLOS will stall whenever the next instruction to be issued
requires the same functional unit. To alleviate this structural bottleneck, multiple
buffers, called reservation stations, are attached to the input side of each func-
tional unit. The adder unit has three reservation stations, while the multiply/divide
unit has two. These reservation stations are viewed as virtual functional units; as
long as there is a free reservation station, the FLOS can issue an instruction to that
functional unit even if it is currently busy executing another instruction. Since the
FLOS issues instructions in order, this will prevent unnecessary stalling due to
unfortunate ordering of different floating-point instruction types.

With the availability of reservation stations, instructions can also be issued to
the functional units by the FLOS even though not all their operands are yet avail-
able. These instructions can wait in the reservation station for their operands and
only begin execution when they become available. The common data bus (CDB)
connects the outputs of the two functional units to the reservation stations as well
as the FLRs and SDB registers. Results produced by the functional units are
broadcast into the CDB. Those instructions in the reservation stations needing the
results as their operands will latch in the data from the CDB. Those registers in the
FLR and SDB that are the destinations of these results also latch in the same data
from the CDB. The CDB facilitates the forwarding of results directly from pro-
ducer instructions to consumer instructions waiting in the reservation stations

248 MODERN PROCESSOR DESIGN

Storage bus Instruction unit
6 Floating-
5 point * *
Floating-point 4 operand 8
Control - -
buffers (FLBs) 3 stack Busy T Floating-point 4
- a
2 (FLOS) bits & egisters (FLRs)2
1 0
[] L] L 1]
L 1 I 1| T 1
l__"_—l
i Decoder
' (Sataatacll
buffers (SDBs) |
FLB bus
¥ FLR bus
CDB
A A A A A
Tag Sink Tag | Source | Ctrl. Tag Sink Tag | Source | Ctrl.
Tag Sink Tag | Source | Ctrl. Tag Sink Tag | Source | Ctrl.
Tag Sink Tag | Source | Ctrl.
Multiply/divide
Adder
L Result Result
|—[—| Common data bus (CDB) |—H
Figure 5.21

The Modified Design of the IBM 360/91 Floating-Point Unit with Tomasulo’s Algorithm.

without having to go through the registers. Destination registers are updated
simultaneously with the forwarding of results to dependent instructions. If an
operand is coming from a memory location, it will be loaded into a FLB register
once memory accessing is performed. Hence, the FLB can also output onto the
CDB, allowing a waiting instruction in a reservation station to latch in its operand.
Consequently, the two functional units and the FLBs can drive data onto the CDB,
and the reservation station’s FLRs and SDBs can latch in data from the CDB.
When the FLOS is dispatching an instruction to a functional unit, it allocates a
reservation station and checks to see if the needed operands are available. If an
operand is available in the FLRs, then the content of that register in the FLRs is
copied to the reservation station; otherwise a tag is copied to the reservation sta-
tion instead. The tag indicates where the pending operand is going to come from.

SUPERSCALAR TECHNIQUES 249

The pending operand can come from a producer instruction currently resident in
one of the five reservation stations, or it can come from one of the six FLB regis-
ters. To uniquely identify one of these 11 possible sources for a pending operand,
a 4-bit tag is required. If one of the two operand fields of a reservation station con-
tains a tag instead of the actual operand, it indicates that this instruction is waiting
for a pending operand. When that pending operand becomes available, the pro-
ducer of that operand drives the tag along with the actual operand onto the CDB.

A waiting instruction in a reservation station uses its tag to monitor the CDB.
When it detects a tag match on the CDB, it then latches in the associated operand.
Essentially the producer of an operand broadcasts the tag and the operand on the
CDB; all consumers of that operand monitor the CDB for that tag, and when the
broadcasted tag matches their tag, they then latch in the associated operand from
the CDB. Hence, all possible destinations of pending operands must carry a tag
field and must monitor the CDB for a tag match. Each reservation station contains
two operand fields, each of which must carry a tag field since each of the two
operands can be pending. The four FLRs and the three registers in the SDB must
also carry tag fields. This is a total of 17 tag fields representing 17 places that can
monitor and receive operands; see Figure 5.22. The tag field at each potential con-
sumer site is used in an associative fashion to monitor for possible matching of its
content with the tag value being broadcasted on the CDB. When a tag match
occurs, the consumer latches in the broadcasted operand.

The IBM 360 floating-point instructions use a two-address instruction format.
Two source operands can be specified. The first operand specifier is called the sink
because it also doubles as the destination specifier. The second operand specifier
is called the source. Each reservation station has two operand fields, one for the
sink and the other for the source. Each operand field is accompanied by a tag field.
If an operand field contains real data, then its tag field is set to zero. Otherwise, its
tag field identifies the source where the pending operand will be coming from, and
is used to monitor the CDB for the availability of the pending operand. Whenever

First operand Second operand

Reservation €L « -
station I Tag | Sink I Tag I Source I

(@)
FLR | Busy | Tag | Daa |

(b)
SDB
register l - I Data I

(©
Figure 5.22

The Use of Tag Fields in (a) A Reservation Station, (b) A FLR, and
(c) A SDB Register.

250 MODERN PROCESSOR DESIGN

an instruction is dispatched by the FLOS to a reservation station, the data in the
FLR corresponding to the sink operand are retrieved and copied to the reservation
station. At the same time, the “busy” bit associated with this FLR is set, indicating
that there is a pending update of that register, and the tag value that identifies the
particular reservation station to which the instruction is being dispatched is written
into the tag field of the same FLR. This clearly identifies which of the reservation
stations will eventually produce the updated data for this FLR. Subsequently if a
trailing instruction specifies this register as one of its source operands, when it is
dispatched to a reservation station, only the tag field (called the pseudo-operand)
will be copied to the corresponding tag field in the reservation station and not the
actual data. When the busy bit is set, it indicates that the data in the FLR are stale
and the tag represents the source from which the real data will come. Other than
reservation stations and FLRs, SDB registers can also be destinations of pending
operands and hence a tag field is required for each of the three SDB registers.

We now use an example sequence of instructions to illustrate the operation of
Tomasulo’s algorithm. We deviate from the actual IBM 360/91 design in several
ways to help clarify the example. First, instead of the two-address format of the
IBM 360 instructions, we will use three-address instructions to avoid potential
confusion. The example sequence contains only register-register instructions. To
reduce the number of machine cycles we have to trace, we will allow the FLOS to
dispatch (in program order) up to two instructions in every cycle. We also assume
that an instruction can begin execution in the same cycle that it is dispatched to a
reservation station. We keep the same latencies of two and three cycles for add and
multiply instructions, respectively. However, we allow an instruction to forward
its result to dependent instructions during its last execution cycle, and a dependent
instruction can begin execution in the next cycle. The tag values of 1, 2, and 3 are
used to identify the three reservation stations of the adder functional unit, while 4
and 5 are used to identify the two reservation stations of the multiply/divide func-
tional unit. These tag values are called the IDs of the reservation stations. The
example sequence consists of the following four register-register instructions.

w: R4« RO+RS8
x: R2«RO*R4
y: R4« R4+RS8
zz R8«R4*R2

Figure 5.23 illustrates the first three cycles of execution. In cycle 1, instructions
w and x are dispatched (in order) to reservation stations 1 and 4. The destination
registers of instructions w and x are R4 and R2 (i.e., FLRs 4 and 2), respectively.
The busy bits of these two registers are set. Since instruction w is dispatched to
reservation station 1, the tag value of 1 is entered into the tag field of R4, indicating
that the instruction in reservation station 1 will produce the result for updating R4.
Similarly the tag value of 4 is entered into the tag field of R2. Both source operands
of instruction w are available, so it begins execution immediately. Instruction x

SUPERSCALAR TECHNIQUES 251

CYCLE 1 Dispatched instruction(s): w, X (in order)
S) RS .
Tag Sink Tag Source Tag Sink Tag Source Busy Tag Data
wlj{0]| 60 |0] 738 x4[0] 60 | 1| - 0 6.0
2 5 2|Yes| 4 3.5
3 Mult/Div 4|Yes| 1| 100
w| Adder 8 78
CYCLE 2 Dispatched instruction(s): y, Z (in order)
RS . RS . LR
Tag Sink Tag Source Tag Sink Tag Source Busy Tag Data
wll{0] 60 |0| 78 x 4{0| 6.0 |g1 | ---- 0 6.0
y 2|1 - 10| 78 z 52| - 4| - 2|Yes| 4 3.5
3 N Mult/Div 4]Yes| 2| 100
wi~ Adder 8| Yes| 5 7.8
CYCLE 3 Dispatched instruction(s):
RS . RS . FLR
Tag Sink Tag Source Tag Sink Tag Source Busy Tag Data
1 x 40| 60 |[0] 138 0 6.0
y2[0] 138 |0] 738 z 5|2 — |4] - 2 |Yes| 4 3.5
3 x | Mult/Div 4 |Yes| 2 | 100
y| Adder I 8 [Yes| 5 7.8
Figure 5.23

lllustration of Tomasulo's Algorithm on an Example Instruction Sequence (Part 1).

requires the result (R4) of instruction w for its second (source) operand. Hence
when instruction X is dispatched to reservation station 4, the tag field of the second
operand is written the tag value of 1, indicating that the instruction in reservation
station 1 will produce the needed operand.

During cycle 2, instructions y and z are dispatched (in order) to reservation
stations 2 and 5, respectively. Because it needs the result of instruction w for its
first operand, instruction y, when it is dispatched to reservation station 2, receives
the tag value of 1 in the tag field of the first operand. Similarly instruction z, dis-
patched to reservation station 5, receives the tag values of 2 and 4 in its two tag
fields, indicating that reservation stations 2 and 4 will eventually produce the two
operands it needs. Since R4 is the destination of instruction y, the tag field of R4 is
updated with the new tag value of 2, indicating reservation station 2 (i.e., instruc-
tion y) is now responsible for the pending update of R4. The busy bit of R4
remains set. The busy bit of R8 is set when instruction z is dispatched to reservation
station 5, and the tag field of RS is set to 5. At the end of cycle 2, instruction w
finishes execution and broadcasts its ID (reservation station 1) and its result onto
the CDB. All the tag fields containing the tag value of 1 will trigger a tag match
and latch in the broadcasted result. The first tag field of reservation station 2 (holding
instruction y) and the second tag field of reservation station 4 (holding instruction x)

252 MODERN PROCESSOR DESIGN

CYCLE 4 Dispatched instruction(s):

S . RS , FLR
Tag Sink Tag Source Tag Sink Tag Source Busy Tag Data
1 x 4{0] 60 (0] 138 0 6.0
y2|0]| 138 |[0] 78 z 502 -— [4] - 2 [Yes| 4 3.5
3 x | Mult/Div 4 |Yes) 2| 100
y | Adder 8 s| 5 7.8
CYCLE S5 Dispatched instruction(s):
S . RS . FLR
Tag Sink Tag Source Tag Sink Tag Source Busy Tag Data
1 x 410 60 | 0] 138 0 6.0
2 Z 500 216 | 4 fe=- 2 |Yes| 4 3.5
3 xl Mult/Div 4 21.6
Adder 8 [Yes| 5 7.8
CYCLE 6 Dispatched instruction(s):
S . RS . FLR
Tag Sink Tag Source Tag Sink Tag Source Busy Tag Data
1 4 0 6.0
2 z 5/0] 216 |0 828 2 82.8
3 z | Mult/Div 4 216
Adder 8 | Yes| 5 7.8
Figure 5.24

lllustration of Tomasulo’s Algorithm on an Example Instruction Sequence (Part 2).

E)glAH;LL,H, have such tag matches. Hence the result of instruction w is forwarded to dependent
: 73! instructions x and y.

— In cycle 3, instruction y begins execution in the adder unit, and instruction x
begins execution in the multiply/divide unit. Instruction y finishes execution in
cycle 4 (see Figure 5.24) and broadcasts its result on the CDB along with the tag
value of 2 (its reservation station ID). The first tag field in reservation station 5
(holding instruction z) and the tag field of R4 have tag matches and pull in the
result of instruction y. Instruction x finishes execution in cycle 5 and broadcasts its
result on the CDB along with the tag value of 4. The second tag field in reservation
station 5 (holding instruction z) and the tag field of R2 have tag matches and pull
in the result of instruction x. In cycle 6, instruction z begins execution and finishes
in cycle 8.

Figure 5.25(a) illustrates the data flow graph of this example sequence of four
instructions. The four solid arcs represent the four true data dependences, while
the other three arcs represent the anti- and output dependences. Instructions are
dispatched in program order. Anti-dependences are resolved by copying an operand
at dispatch time to the reservation station. Hence, it is not possible for a trailing
instruction to overwrite a register before an earlier instruction has a chance to read
that register. If the operand is still pending, the dispatched instruction will receive

—t

SUPERSCALAR TECHNIQUES 253

OO

waw raw
e
N0 e
0

raw
war ‘
o Y 0

(a) (b)

Figure 5.25
Data Flow Graphs of the Example Instruction Sequence: (a) All Data
Dependences; (b) True Data Dependences.

the tag for that operand. When that operand becomes available, the instruction will
receive that operand via a tag match in its reservation station.

As an instruction is dispatched, the tag field of its destination register is written
with the reservation station ID of that instruction. When a subsequent instruction with
the same destination register is dispatched, the same tag field will be updated with the
reservation station ID of this new instruction. The tag field of a register always con-
tains the reservation station ID of the latest updating instruction. If there are multiple
instructions in flight that have the same destination register, only the latest instruction
will be able to update that register. Output dependences are implicitly resolved by
making it impossible for an earlier instruction to update a register after a later instruc-
tion has updated the same register. This does introduce the problem of not being able
to support precise exception since the register file does not necessarily evolve through
all its sequential states; i.e., a register can potentially miss an intermediate update. For
example, in Figure 5.23, at the end of cycle 2, instruction w should have updated its
destination register R4. However, instruction y has the same destination register, and
when it was dispatched earlier in that cycle, the tag field of R4 was changed from 1 to
2 anticipating the update of R4 by instruction y. At the end of cycle 2 when instruc-
tion w broadcasts its tag value of 1, the tag field of R4 fails to trigger a tag match and
does not pull in the result of instruction w. Eventually R4 will be updated by instruc-
tion y. However, if an exception is triggered by instruction x, precise exception will
be impossible since the register file does not evolve through all its sequential states.

Tomasulo’s algorithm resolves anti- and output dependences via a form of regis-
ter renaming. Each definition of an FLR triggers the renaming of that register to a
register tag. This tag is taken from the ID of the reservation station containing the
instruction that redefines that register. This effectively removes false dependences
from causing pipeline stalls. Hence, the data flow limit is strictly determined by the
true data dependences. Figure 5.25(b) depicts the data flow graph involving only

1)

254 MODERN PROCESSOR DESIGN

true data dependences. As shown in Figure 5.25(a) if all four instructions were
required to execute sequentially to enforce all the data dependences, including anti-
and output dependences, the total latency required for executing this sequence of
instructions would be 10 cycles, given the latencies of 2 and 3 cycles for addition
and multiplication instructions, respectively. When only true dependences are con-
sidered, Figure 5.25(b) reveals that the critical path is only 8 cycles, i.e., the path
involving instructions w, X, and z. Hence, the data flow limit for this sequence of
four instructions is 8 cycles. This limit is achieved by Tomasulo’s algorithm as
demonstrated in Figures 5.23 and 5.24.

5.2,5 Dynamic Execution Core

Most current state-of-the-art superscalar microprocessors consist of an out-of-order
execution core sandwiched between an in-order front end, which fetches and dis-
patches instructions in program order, and an in-order back end, which completes
and retires instructions also in program order. The out-of-order execution core (also
referred to as the dynamic execution core), resembling a refinement of Tomasulo’s
algorithm, can be viewed as an embedded data flow, or micro-dataflow, engine that
attempts to approach the data flow limit in instruction execution. The operation of
such a dynamic execution core can be described according to the three phases in
the pipeline, namely, instruction dispatching, instruction execution, and instruction
completion, see Figure 5.26.

Dispatch buffer Register writeback

Y I
| Dispatch I—*‘ Architected RFHRename RF]

rcorder i1 t 4
1]

buffer l
entries .
O o | I¢| | L L | S

{

|Branch| |Integer| Ilntegerl Floating- Load/ Forwarding
N results to
point store reservation
stations and

rename
\ Y J * registers

Completion buffer I [| I I I I Managed as a queue;

(reorder buffer) maintains sequential order
of all instructions in flight
Complete (“takeoff” = dispatching;
“landing” = completion)
Figure 5.26

Micro-Dataflow Engine for Dynamic Execution.

SUPERSCALAR TECHNIQUES 255

The instruction dispatching phase consists of renaming of destination registers,
allocating of reservation station and reorder buffer entries, and advancing instruc-
tions from the dispatch buffer to the reservation stations. For ease of presentation,
we assume here that register renaming is performed in the dispatch stage. All
redefinitions of architected registers are renamed to rename registers. Trailing uses
of these redefinitions are assigned the corresponding rename register specifiers.
This ensures that all producer-consumer relationships are properly identified and
all false register dependences are removed.

Instructions in the dispatch buffer are then dispatched to the appropriate reser-
vation stations based on instruction type. Here we assume the use of distributed
reservation stations, and we use reservation station to refer to the (multientry)
instruction buffer attached to each functional unit and reservation station entry to
refer to one of the entries of this buffer. Simultaneous with the allocation of reser-
vation station entries for the dispatched instructions is the allocation of entries in
the reorder buffer for the same instructions. Reorder buffer entries are allocated
according to program order.

Typically, for an instruction to be dispatched there must be the availability of
arename register, a reservation station entry, and a reorder buffer entry. If any one of
these three is not available, instruction dispatching is stalled. The actual dispatching
of instructions from the dispatch buffer entries to the reservation station entries is
via a complex routing network. If the connectivity of this routing network is less
than that of a full crossbar (this is frequently the case in real designs), then stalling
can also occur due to resource contention in the routing network.

The instruction execution phase consists of issuing of ready instructions, execut-
ing the issued instructions, and forwarding of results. Each reservation station is
responsible for identifying instructions that are ready to execute and for scheduling
their execution. When an instruction is first dispatched to a reservation station, it
may not have all its source operands and therefore must wait in the reservation sta-
tion. Waiting instructions continually monitor the busses for tag matches. When a
tag match is triggered, indicating the availability of the pending operand, the result
being broadcasted is latched into the reservation station entry. When an instruction
in a reservation station entry has all its operands, it becomes ready for execution
and can be issued into the functional unit. In a given machine cycle if multiple
instructions in a reservation station are ready, a scheduling algorithm is used
(typically oldest first) to pick one of them for issuing into the functional unit to
begin execution. If there is only one functional unit connected to a reservation
station (as is the case for distributed reservation stations), then that reservation
station can only issue one instruction per cycle.

Once issued into a functional unit, an instruction is executed. Functional units
can vary in terms of their latency. Some have single-cycle latencies, others have fixed
multiple-cycle latencies. Certain functional units can require a variable number of
cycles, depending on the values of the operands and the operation being performed.
Typically, even with function units that require multiple-cycle latencies, once an
instruction begins execution in a pipelined functional unit, there is no further stalling
of that instruction in the middle of the execution pipeline since all data dependences
have been resolved prior to issuing and there shouldn’t be any resource contention.

256 MODERN PROCESSOR DESIGN

When an instruction finishes execution, it asserts its destination tag (i.e., the
specifier of the rename register assigned for its destination) and the actual result
onto a forwarding bus. All dependent instructions waiting in the reservation stations
will trigger a tag match and latch in the broadcasted result. This is how an instruction
forwards its result to other dependent instructions without requiring the intermediate
steps of updating and then reading of the dependent register. Concurrent with
result forwarding, the RRF uses the broadcasted tag as an index and loads the
broadcasted result into the selected entry of the RRF.

Typically a reservation station entry is deallocated when its instruction is
issued in order to allow another trailing instruction to be dispatched into it. Reser-
vation station saturation can cause instruction dispatch to stall. Certain instructions
whose execution can induce an exceptional condition may require rescheduling for
execution in a future cycle. Frequently, for these instructions, their reservation
station entries are not deallocated until they finish execution without triggering
any exceptions. For example, a load instruction can potentially trigger a D-cache
miss that may require many cycles to service. Instead of stalling the functional
unit, such an excepting load can be reissued from the reservation station after the
miss has been serviced.

In a dynamic execution core as described previously, a producer-consumer
relationship is satisfied without having to wait for the writing and then the reading
of the dependent register. The dependent operand is directly forwarded from the
producer instruction to the consumer instruction to minimize the latency incurred
due to the true data dependence. Assuming that an instruction can be issued in the
same cycle that it receives its last pending operand via a forwarding bus, if there is
no other instruction contending for the same functional unit, then this instruction
should be able to begin execution in the cycle immediately following the availabil-
ity of all its operands. Hence, if there are adequate resources such that no stalling
due to structural dependences occurs, then the dynamic execution core should be
able to approach the data flow limit.

5.2.6 Reservation Stations and Reorder Buffer

Other than the functional units, the critical components of the dynamic execution
core are the reservation stations and the reorder buffer. The operations of these
components dictate the function of the dynamic execution core. Here we present
the issues associated with the implementation of the reservation station and the
reorder buffer. We present their organization and behavior with special focus on
Joading and unloading of an entry of a reservation station and the reorder buffer.
There are three tasks associated with the operation of a reservation station:
dispatching, waiting, and issuing. A typical reservation station is shown in
Figure 5.27(b), and the various fields in an entry of a reservation station are illus-
trated in Figure 5.27(a). Each entry has a busy bit, indicating that the entry has
been allocated, and a ready bit, indicating that the instruction in that entry has all
its source operands. Dispatching involves loading an instruction from the dispatch
buffer into an entry of the reservation station. Typically the dispatching of an
instruction requires the following three steps: select a free, i.e., not busy, reservation

SUPERSCALAR TECHNIQUES 257

Dispatch Forwarding Dispatch Forwarding
slots busses slots busses

;...U...i ¢'°°H"'l,
'

l Busy l Operand 1 | Valﬂ Operand 2 I Valid |Ready|
Tag Tag
match match
Tag busses Tag busses
(@)
Allocate Dispatching Issuing
unit unit
Entry 1 l) Entry
to be to be
allocated issued
Busy l Ready
Issuing
(b)
Figure 5.27

Reservation Station Mechanisms: (a) A Reservation Station Entry;
(b) Dispatching into and Issuing from a Reservation Station.

station entry; load operands and/or tags into the selected entry; and set the busy bit
of that entry. The selection of a free entry is based on the busy bits and is per-
formed by the allocate unit. The allocate unit examines all the busy bits and selects
one of the nonbusy entries to be the allocated entry. This can be implemented
using a priority encoder. Once an entry is allocated, the operands and/or tags of the
instruction are loaded into the entry. Each entry has two operand fields, each of
which has an associated valid bit. If the operand field contains the actual operand,
then the valid bit is set. If the field contains a tag, indicating a pending operand,
then its valid bit is reset and it must wait for the operand to be forwarded. Once an
entry is allocated, its busy bit must be set.

An instruction with a pending operand must wait in the reservation station.
When a reservation station entry is waiting for a pending operand, it must continu-
ously monitor the tag busses. When a tag match occurs, the operand field latches
in the forwarded result and sets its valid bit. When both operand fields are valid,
the ready bit is set, indicating that the instruction has all its source operands and is
ready to be issued. This is usually referred to as instruction wake up.

258 MODERN PROCESSOR DESIGN

The issuing step is responsible for selecting a ready instruction in the reserva-
tion station and issues it into the functional unit. This is usually referred to as
instruction select. All the ready instructions are identified by their ready bits being
set. The selecting of a ready instruction is performed by the issuing unit based on a
scheduling heuristic; see Figure 5.27(b). The heuristic can be based on program
order or how long each ready instruction has been waiting in the reservation
station. Typically when an instruction is issued into the functional unit, its reserva-
tion station entry is deallocated by resetting the busy bit.

A large reservation station can be quite complex to implement. On its input
side, it must support many possible sources, including all the dispatch slots and
forwarding busses; see Figure 5.27(a). The data routing network on its input side
can be quite complex. During the waiting step, all operand fields of a reservation
station with pending operands must continuously compare their tags against poten-
tially multiple tag busses. This is comparable to doing an associative search across
all the reservation station entries involving multiple keys (tag busses). If the num-
ber of entries is small, this is quite feasible. However, as the number of entries
increases, the increase in complexity is quite significant. This portion of the hard-
ware is commonly referred to as the wake-up logic. When the entry count increases,
it also complicates the issuing unit and the scheduling heuristic in selecting the
best ready instruction to issue. This portion of the hardware is commonly referred
to as the select logic. In any given machine cycle, there can be multiple ready
instructions. The select logic must determine the best one to issue. For a superscalar
machine, a reservation station can potentially support multiple instruction issues
per cycle, in which case the select logic must pick the best subset of instructions to
issue among all the ready instructions.

The reorder buffer contains all the instructions that are in flight, i.e., all the
instructions that have been dispatched but not yet completed architecturally.
These include all the instructions waiting in the reservation stations and execut-
ing in the functional units and those that have finished execution but are waiting
to be completed in program order. The status of each instruction in the reorder
buffer can be tracked using several bits in each entry of the reorder buffer. Each
instruction can be in one of several states, i.e., waiting execution, in execution,
and finished execution. These status bits are updated as an instruction traverses
from one state to the next. An additional bit can also be used to indicate whether
an instruction is speculative (in the predicted path) or not. If speculation can cross
multiple branches, additional bits can be employed to identify which speculative
basic block an instruction belongs to. When a branch is resolved, a speculative
instruction can become nonspeculative (if the prediction is correct) or invalid
(if the prediction is incorrect). Only finished and nonspeculative instructions can be
completed. An instruction marked invalid is not architecturally completed when
exiting the reorder buffer. Figure 5.28(a) illustrates the fields typically found in a
reorder buffer entry; in this figure the rename register field is also included.

The reorder buffer is managed as a circular queue using a head pointer and a
tail pointer; see Figure 5.28(b). The tail pointer is advanced when reorder buffer
entries are allocated at instruction dispatch. The number of entries that can be

SUPERSCALAR TECHNIQUES 259

Busy Issued Finished Instruction Reqame Speculative| Valid
address register

(a)

Next entry to Next instruction
be allocated to complete
(tail pointer) (head pointer)

l |

oOjojojojo {1 frf1qi1

o~ o

Reorder buffer

(b)

Figure 5.28
(a) Reorder Buffer Entry; (b) Reorder Buffer Organization.

allocated per cycle is limited by the dispatch bandwidth. Instructions are completed
from the head of the queue. From the head of the queue as many instructions that
have finished execution can be completed as the completion bandwidth allows. The
completion bandwidth is determined by the capacity of another routing network
and the ports available for register writeback. One of the critical issues is the num-
ber of write ports to the architected register file that are needed to support the trans-
ferring of data from the rename registers (or the reorder buffer entries if they are
used as rename registers) to the architected registers. When an instruction is com-
pleted, its rename register and its reorder buffer entry are deallocated. The head
pointer to the reorder buffer is also appropriately updated. In a way the reorder
buffer can be viewed as the heart or the central control of the dynamic execution
core because the status of all in-flight instructions is tracked by the reorder buffer.

It is possible to combine the reservation stations and the reorder buffer into
one single structure, called the instruction window, that manages all the instruc-
tions in flight. Since at dispatch an entry in the reservation station and an entry in
the reorder buffer must be allocated for each instruction, they can be combined as
one entry in the instruction window. Hence, instructions are dispatched into the
instruction window, entries of the instruction window monitor the tag busses for
pending operands, results are forwarded into the instruction window, instructions
are issued from the instruction window when ready, and instructions are completed
from the instruction window. The size of the instruction window determines the
maximum number of instructions that can be simultaneously in flight within the
machine and consequently the degree of instruction-level parallelism that can be
achieved by the machine.

260 MODERN PROCESSOR DESIGN

5.2.7 Dynamic Instruction Scheduler

The dynamic instruction scheduler is the heart of a dynamic execution core. We
use the term dynamic instruction scheduler to include the instruction window and
its associated instruction wake-up and select logic. Currently there are two styles
to the design of the dynamic instruction scheduler, namely, with data capture and
without data capture.

Figure 5.29(a) illustrates a scheduler with data capture. With this style of
scheduler design, when dispatching an instruction, those operands that are ready are
copied from the register file (either architected or physical) into the instruction win-
dow; hence, we have the term data captured. For the operands that are not ready,
tags are copied into the instruction window and used to latch in the operands when
they are forwarded by the functional units. Results are forwarded to their waiting
instructions in the instruction window. In effect, result forwarding and instruction
wake up are combined, a la Tomasulo’s algorithm. A separate forwarding path is
needed to also update the register file so that subsequent dependent instructions can
grab their source operands from the register file when they are being dispatched.

Some recent microprocessors have adopted a different style that does not
employ data capture in the scheduler design; see Figure 5.29(b). In this style, reg-
ister read is performed after the scheduler, as instructions are being issued to the
functional units. At instruction dispatch there is no copying of operands into the
instruction window; only tags (or pointers) for operands are loaded into the win-
dow. The scheduler still performs tag match to wake up ready instructions. How-
ever, results from functional units are only forwarded to the register file. All ready
instructions that are issued obtain their operands directly from the register file just
prior to execution. In effect, result forwarding and instruction wake up are decou-
pled. For instruction wake up only the tag needs to be forwarded to the scheduler.
With the non-data-captured style of scheduler, the size (width) of the instruction
window can be significantly reduced, and the much wider result-forwarding path
to the scheduler is not needed.

Non-data-captured

Register || sch.eduling o
file g window b
B &
> B

? I \

Operand copying L g
% .
Data-captured ~ Register

< file

schedulu}g wm@ow < -y)
(reservation station) s = 5
S 2 =
5% g
2 5
———————————— 122 —_——— == ————— =@
| Functional uni — ! Functional uni
unctional units unctional units
| — | T

Figure 5.29
Dynamic Instruction Scheduler Design: (a) With Data Capture; (b) Without Data Capture.

SUPERSCALAR TECHNIQUES 261

There is a close relationship between register renaming and instruction schedul-
ing. As stated earlier, one purpose for doing dynamic register renaming is to elimi-
nate the false dependences induced by register recycling. Another purpose is to
establish the producer-consumer relationship between two dependent instructions.
A true data dependence is determined by the common rename register specifier in
the producer and consumer instructions. The rename register specifier can func-
tion as the tag for result forwarding. In the non-data-captured scheduler of
Figure 5.29(b) the register specifiers are used to access the register file for retrieving
source operands; the (destination) register specifiers are used as tags for waking up
dependent instructions in the scheduler. For the data-captured type of scheduler of
Figure 5.29(a), the tags used for result forwarding and instruction wake up do not
have to be actual register specifiers. The tags are mainly used to identify producer-
consumer relationships between dependent instructions and can be assigned arbi-
trarily. For example, Tomasulo’s algorithm uses reservation station IDs as the tags
for forwarding results to dependent instructions as well as for updating architected
registers. There is no explicit register renaming involving physical rename registers.

5.2.8 Other Register Data Flow Techniques

For many years the data flow limit has been assumed to be an absolute theoretical
limit and the ultimate performance goal. Extensive research efforts on data flow archi-
tectures and data flow machines have been going on for over three decades. The data
flow limit assumes that true data dependences are absolute and cannot possibly be
overcome. Interestingly, in the late 1960s and the early 1970s a similar assumption
was made concerning control dependences. It was generally thought that control
dependences are absolute and that when encountering a conditional branch instruction
there is no choice but to wait for that conditional branch to be executed before pro-
ceeding to the next instruction due to the uncertainty of the actual control flow. Since
then, we have witnessed tremendous strides made in the area of branch prediction
techniques. Conditional branches and associated control dependences are no longer
absolute barriers and can frequently be overcome by speculating on the direction and
the target address of the branch. What made such speculation possible is that fre-
quently the outcome of a branch instruction is quite predictable. It wasn’t until 1995
that researchers began to also question the absoluteness of true data dependences.

In 1996 several research papers appeared that proposed the concept of value
prediction. The first paper by Lipasti, Wilkerson, and Shen focused on predicting
Jload values based on the observation that frequently the values being loaded by a
particular static load instruction are quite predictable [Lipasti et al., 1996]. Their sec-
ond paper generalized the same basic idea for predicting the result of ALU instruc-
tions [Lipasti and Shen, 1996]. Experimental data based on real input data sets
indicate that the results produced by many instructions are actually quite predictable.
The notion of value locality indicates that certain instructions tend to repeatedly pro-
duce the same small set (sometimes one) of result values. By tracking the results
produced by these instructions, future values can become predictable based on the
historical values. Since these seminal papers, numerous papers have been published in
recent years proposing various designs of value predictors [Mendelson and Gabbay,
1997; Sazeides and Smith, 1997; Calder et al., 1997; Gabbay and Mendelson, 1997,

262 MODERN PROCESSOR DESIGN

1998a; 1998b; Calder et al., 1999]. In a recent study, it was shown that a hybrid
value predictor can achieve prediction rates of up to 80% and a realistic design
incorporating value prediction can achieve IPC improvements in the range of 8.6%
to 23% for the SPEC benchmarks [Wang and Franklin, 1997].

When the result of an instruction is correctly predicted via value prediction,
typically performed during the fetch stage, a subsequent dependent instruction can
begin execution using this speculative result without having to wait for the actual
decoding and execution of the leading instruction. This effectively removes the
serialization constraint imposed by the true data dependence between these two
instructions. In a way this particular dependence edge in the data flow graph is
effectively removed when correct value prediction is performed. Hence, value pre-
diction provides the potential to exceed the classical data flow limit. Of course, vali-
dation is still required to ensure that the prediction is correct and becomes the new
limit on instruction execution throughput. Value prediction becomes effective in
increasing machine performance if misprediction rarely occurs and the mispredic-
tion penalty is small (e.g., zero or one cycle) and if the validation latency is less
than the average instruction execution latency. Clearly, efficient implementation of
value prediction is crucial in ensuring its efficacy in improving performance.

Another recently proposed idea is called dynamic instruction reuse [Sodani and
Sohi, 1997]. Similar to the concept of value locality, it has been observed through
experiments with real programs that frequently the same sequence of instructions is
repeatedly executed using the same set of input data. This results in redundant com-
putation being performed by the machine. Dynamic instruction reuse techniques
attempt to track such redundant computations, and when they are detected, the pre-
vious results are used without performing the redundant computations. These tech-
niques are nonspeculative; hence, no validation is required. While value prediction
can be viewed as the elimination of certain dependence edges in the data flow
graph, dynamic instruction reuse techniques attempt to remove both nodes and
edges of a subgraph from the data flow graph. A much earlier research effort had
shown that such elimination of redundant computations can yield significant per-
formance gains for programs written in functional languages [Harbison, 1980;
1982]. A more recent study also yields similar data on the presence of redundant
computations in real programs [Richardson, 1992]. This is an area that is currently
being actively researched, and new insightful results can be expected.

We will revisit these advanced register data flow techniques in Chapter 10 in
greater detail.

5.3 Memory Data Flow Techniques

Memory instructions are responsible for moving data between the main memory
and the register file, and they are essential for supporting the execution of ALU
instructions. Register operands needed by ALU instructions must first be loaded
from memory. With a limited number of registers, during the execution of a pro-
gram not all the operands can be kept in the register file. The compiler generates
spill code to temporarily place certain operands out to the main memory and to

SUPERSCALAR TECHNIQUES 263

reload them when they are needed. Such spill code is implemented using store and
load instructions. Typically, the compiler only allocates scalar variables into registers.
Complex data structures, such as arrays and linked lists, that far exceed the size of
the register file are usually kept in the main memory. To perform operations on
such data structures, load and store instructions are required. The effective pro-
cessing of load/store instructions can minimize the overhead of moving data
between the main memory and the register file.

The processing of load/store instructions and the resultant memory data flow
can become a bottleneck to overall machine performance due to the potential long
latency for executing memory instructions. The long latency of load/store instruc-
tions results from the need to compute a memory address and the need to access a
memory location. To support virtual memory, the computed memory address
(called the virtual address) also needs to be translated into a physical address
before the physical memory can be accessed. Cache memories are very effective
in reducing the effective latency for accessing the main memory. Furthermore,
various techniques have been developed to reduce the overall latency and increase
the overall throughput for processing load/store instructions.

5.3.1 Memory Accessing Instructions

The execution of memory data flow instructions occurs in three steps: memory
address generation, memory address translation, and data memory accessing. We
first state the basis for these three steps and then describe the processing of load/
store instructions in a superscalar pipeline.

The register file and the main memory are defined by the instruction set
architecture for data storage. The main memory as defined in an instruction set
architecture is a collection of 2" memory locations with random access capability;
i.e., every memory location is identified by an n-bit address and can be directly
accessed with the same latency. Just like the architected register file, the main
memory is an architected entity and is visible to the software instructions. How-
ever, unlike the register file, the address that identifies a particular memory loca-
tion is usually not explicitly stored as part of the instruction format. Instead, a
memory address is usually generated based on a register and an offset specified in
the instruction. Hence, address generation is required and involves the accessing
of the specified register and the adding of the offset value.

In addition to address generation, address translation is required when virtual
memory is implemented in a system. The architected main memory constitutes the
virtual address space of the program and is viewed by each program as its private
address space. The physical memory that is implemented in a machine constitutes the
physical address space, which may be smaller than the virtual address space and may
even be shared by multiple programs. Virtual memory is a mechanism that maps the
virtual address space of a program to the physical address space of the machine. With
such address mapping, virtual memory is able to support the execution of a program
with a virtual address space that is larger than the physical address space, and the
multiprogramming paradigm by mapping multiple virtual address spaces to the same
physical address space. This mapping mechanism involves the translation of the

264 MODERN PROCESSOR DESIGN

computed effective address, i.e., the virtual address, into a physical address that can
be used to access the physical memory. This mechanism is usually implemented
using a mapping table, and address translation is performed via a table lookup.

The third step in processing a load/store instruction is memory accessing. For
load instructions data are read from a memory location and stored into a register,
while for store instructions a register value is stored into a memory location. While
the first two steps of address generation and address translation are performed in
identical fashion for both loads and stores, the third step is performed differently
for loads and stores by a superscalar pipeline.

In Figure 5.30, we illustrate these three steps as occurring in three pipeline
stages. The first pipe stage performs effective address generation. We assume the
typical addressing mode of register indirect with an offset for both load and store
instructions. For a load instruction, as soon as the address register operand is avail-
able, it is issued into the pipelined functional unit and the effective address is gener-
ated by the first pipe stage. A store instruction must wait for the availability of both
the address register and the data register operands before it is issued.

Dispatch buffer

Register writeback
Y I
| Dispatch I—>| Architected RF I—>| Rename RF I
Y {)
Y \ l l

i B L) D) R dees™
Y y i ¢
{Branch I | Integerl | Integer I Floating- Load/ | Address generation
point Store Address translation
_Memory access

|—]

Reorder bufferl I I l I l I I |Data memoryl
A

Complete

Retire

Store buffer I I I | l
|]

Figure 5.30
Processing of Load/Store Instructions.

SUPERSCALAR TECHNIQUES 265

After the first pipe stage generates the effective address, the second pipe stage
translates this virtual address into a physical address. Typically, this is done by
accessing the translation lookaside buffer (TLB), which is a hardware-controlled
table containing the mapping of virtual to physical addresses. The TLB is essentially
a cache of the page table that is stored in the main memory. (Section 3.6 provides
more background material on the page table and the TLB.) It is possible that the vir-
tual address being translated belongs to a page whose mapping is not currently resi-
dent in the TLB. This is called a TLB miss. If the particular mapping is present in the
page table, then it can be retrieved by accessing the page table in the main memory.
Once the missing mapping is retrieved and loaded into the TLB, the translation can
be completed. It is also possible that the mapping is not resident even in the page
table, meaning that the particular page being referenced has not been mapped and is
not resident in the main memory. This will induce a page fault and require accessing
disk storage to retrieve the missing page. This constitutes a program exception and
will necessitate the suspension of the execution of the current program.

After successful address translation in the second pipe stage, a load instruction
accesses the data memory during the third pipe stage. At the end of this machine
cycle, the data are retrieved from the data memory and written into either the rename
register or the reorder buffer. At this point the load instruction finishes execution.
The updating of the architected register is not performed until this load instruction is
completed from the reorder buffer. Here we assume that data memory access can be
done in one machine cycle in the third pipe stage. This is possible if a data cache is
employed. (Section 3.6 provides more background material on caches.) With a data
cache, it is possible that the data being loaded are not resident in the data cache. This
will result in a data cache miss and require the filling of the data cache from the main
memory. Such cache misses can necessitate the stalling of the load/store pipeline.

Store instructions are processed somewhat differently than load instructions.
Unlike a load instruction, a store instruction is considered as having finished exe-
cution at the end of the second pipe stage when there is a successful translation of
the address. The register data to be stored to memory are kept in the reorder buffer.
At the time when the store is being completed, these data are then written out to
memory. The reason for this delayed access to memory is to prevent the premature
and potentially erroneous update of the memory in case the store instruction may
have to be flushed due to the occurrence of an exception or a branch mispredic-
tion. Since load instructions only read the memory, their flushing will not result in
unwanted side effects to the memory state.

For a store instruction, instead of updating the memory at completion, it is pos-
sible to move the data to the store buffer at completion. The store buffer is a FIFO
buffer that buffers architecturally completed store instructions. Each of these store
instructions is then retired, i.e., updates the memory, when the memory bus is avail-
able. The purpose of the store buffer is to allow stores to be retired when the mem-
ory bus is not busy, thus giving priority to loads that need to access the memory
bus. We use the term completion to refer to the updating of the CPU state and the
term retiring to refer to the updating of the memory state. With the store buffer, a
store instruction can be architecturally complete but not yet retired to memory.

266 MODERN PROCESSOR DESIGN

When a program exception occurs, the instructions that follow the excepting
instruction and that may have finished out of order, must be flushed from the reor-
der buffer; however, the store buffer must be drained, i.e., the store instructions in
the store buffer must be retired, before the excepting program can be suspended.

We have assumed here that both address translation and memory accessing
can be done in one machine cycle. Of course, this is only the case when both the
TLB and the first level of the memory hierarchy return hits. An in-depth treatment
of memory hierarchies that maximize the occurrence of cache hits by exploiting
temporal and spatial locality and using various forms of caching is provided in
Chapter 3. In Section 5.3.2, we will focus specifically on the additional complica-
tions that result from out-of-order execution of memory references and on some of
the mechanisms used by modern problems to address these complications.

5.3.2 Ordering of Memory Accesses

A memory data dependence exists between two load/store instructions if they both
reference the same memory location, i.e., there exists an aliasing, or collision, of the
two memory addresses. A load instruction performs a read from a memory location,
while a store instruction performs a write to a memory location. Similar to register
data dependences, read-after-write (RAW), write-after-read (WAR), and write-after-
write (WAW) dependences can exist between load and store instructions. A store
(load) instruction followed by a load (store) instruction involving the same memory
location will induce a RAW (WAR) memory data dependence. Two stores to the
same memory location will induce a WAW dependence. These memory data depen-
dences must be enforced in order to preserve the correct semantics of the program.
One way to enforce memory data dependences is to execute all load/store
instructions in program order. Such total ordering of memory instructions is sufficient
for enforcing memory data dependences but not necessary. It is conservative and
can impose an unnecessary limitation on the performance of a program. We use
the example in Figure 5.31 to illustrate this point. DAXPY is the name of a piece

Y(i)=A*X(1i)+Y (1)

FO <« LD, a @
R4 < ADDI,RX,#512 ;last address

Loop: @ Q
F2 < LD, 0 (Rx) ;load X (i)
F2 < MULTD,FO,F2 JA*X (1)
F4 < LD, 0 (Ry) ;load Y(1)
F4 < ADDD,F2,F4 JA*X (1) + Y (1)
0(Ry) < SD,F4