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Abstract. Streebog and Kuznyechik are the latest symmetric cryptographic primitives
standardized by the Russian GOST. They share the same S-Box, 𝜋, whose design
process was not described by its authors. In previous works, Biryukov, Perrin and
Udovenko recovered two completely different decompositions of this S-Box.
We revisit their results and identify a third decomposition of 𝜋. It is an instance of a
fairly small family of permutations operating on 2𝑚 bits which we call TKlog and
which is closely related to finite field logarithms. Its simplicity and the small number
of components it uses lead us to claim that it has to be the structure intentionally
used by the designers of Streebog and Kuznyechik.
The 2𝑚-bit permutations of this type have a very strong algebraic structure: they
map multiplicative cosets of the subfield GF(2𝑚)* to additive cosets of GF(2𝑚)*.
Furthermore, the function relating each multiplicative coset to the corresponding
additive coset is always essentially the same. To the best of our knowledge, we are
the first to expose this very strong algebraic structure.
We also investigate other properties of the TKlog and show in particular that it can
always be decomposed in a fashion similar to the first decomposition of Biryukov et
al., thus explaining the relation between the two previous decompositions. It also
means that it is always possible to implement a TKlog efficiently in hardware and
that it always exhibits a visual pattern in its LAT similar to the one present in 𝜋.
While we could not find attacks based on these new results, we discuss the impact of
our work on the security of Streebog and Kuznyechik. To this end, we provide a new
simpler representation of the linear layer of Streebog as a matrix multiplication in the
exact same field as the one used to define 𝜋. We deduce that this matrix interacts in
a non-trivial way with the partitions preserved by 𝜋.
Keywords: Boolean functions · Kuznyechik · Streebog · Reverse-Engineering · Parti-
tions · Cosets · TKlog

1 Introduction
Many symmetric primitives rely on S-Boxes as their unique source of non-linearity, including
the AES [AES01]. Such objects are small functions mapping F𝑚

2 to F𝑛
2 which are often

specified via their look-up tables.
Their choice is crucial as both the security and the efficiency of the primitive depends

heavily on their properties. For example, a low differential uniformity [Nyb94] implies
a higher resilience against differential attacks [BS91a, BS91b]. On the other hand, the
existence of a simple decomposition greatly helps with an efficient bitsliced or hardware
implementation [LW14, CDL16]. Thus, algorithm designers are expected to provide
detailed explanation about their choice of S-Box. Each cipher that was published at a
cryptography or security conference has provided such explanations.

*This paper will appear in the IACR Transactions on Symmetric Cryptology.

mailto:leo.perrin@inria.fr


2 Partitions in the S-Box of Streebog and Kuznyechik

There are two prominent S-Boxes for which this information has not been provided.
The first is the so-called “F-table” of Skipjack [U.S98], a lightweight block cipher designed
by the American National Security Agency (NSA). The second is 𝜋, the 8-bit permutation
used by the Russian standard hash function (nicknamed Streebog [Fed12]) and block cipher
(nicknamed Kuznyechik [Fed15]), as well as the first version of the CAESAR candidate
STRIBOBr1 [Saa14] (which later changed its components for those of Whirlpool [SB15]).

While Streebog and Kuznyechik were first published as national standards in Russia
(GOST), they have since been included in other standards. For instance, both have been
included by the IETF as RFC 6986 [DD13] and RFC 7801 [Dol16] respectively. ISO/IEC
is also in the process of adding Kuznyechik to their list of standard block ciphers, namely
standard 18033-31.

S-Boxes have been found to be potential vehicules for the insertion of a backdoor in a
symmetric algorithm. In 1997, Rijmen and Preneel suggested an S-Box generation strategy
which ensured that a high probability linear transition existed [RP97]. The idea was that
only the designer would be able to know about this linear approximation but this claim
was later proven wrong [WBDY98]. Later, Paterson designed a backdoored variant of the
DES with modified S-Boxes [Pat99]. His overall approach was recently refined by Bannier
et al. [BBF16] to build a block cipher which preserves a partition of the plaintext space
independently from the key.

In this context, cryptanalysts have tried to reverse-engineer the structure of poorly
specified S-Boxes. The first such attempt occurred in the late 1970’s, shortly after the
publication of the DES: Hellman et al. identified some patterns in the S-Boxes of this block
cipher [HMS+76]. Much more recently, Biryukov et al. devised new tools for this purpose.
For example, a statistical analysis of the differential and linear properties allowed them to
show that the S-Box of Skipjack diplayed a higher resilience against linear attacks [Mat94]
than expected [BP15].

More importantly in our case, they provided the first decomposition of the Russian
S-Box, 𝜋, in [BPU16a, BPU16b]. The corresponding structure operates on two branches,
much like a Feistel or Misty structure. It is however much more complex than both of them
as it involves finite field multiplications in GF(24) and a multiplexer. Later, Perrin and
Udovenko found discrete logarithm-based decompositions of this component [PU16]. They
are very different from the previous decomposition but remain somewhat unsatisfactory
due to the complex “arithmetic layer” they use. Their authors concluded that “We could
not find sensible explanations for using a structure from any of our decompositions as
an S-Box.” In fact, the existence of these new structures raised more questions than it
answered, although they “strengthen the idea that 𝜋 has a strong algebraic structure
hardly compatible with the claims of randomness of the designers” [PU16]. In the end,
Perrin and Udovenko conjectured the existence of a “master decomposition” of which the
decompositions of both [BPU16a] and [PU16] would be mere side effects.

Our Contribution. We show that the intuition in [PU16] was correct and present what
we claim to be said “master decomposition”. It holds that 𝜋, the S-Box used by the last
two Russian standards, operates as follows:⎧⎪⎨⎪⎩

𝜋(0) = 𝜅(0)
𝜋(𝛼0+17𝑗) = 𝜅(16− 𝑗)
𝜋(𝛼𝑖+17𝑗) = 𝜅(16− 𝑖)⊕

(︀
𝛼17)︀𝑠(𝑗) for 𝑖 > 0 ,

where 𝛼 is a root of the primitive polynomial defining the finite field GF(28), where 𝑠
is a permutation of Z/15Z, and where 𝜅 : F4

2 → GF(28) is an affine function such that
1The corresponding “amendment” to standard 18033-3 can be previewed on the ISO website at

https://www.iso.org/standard/73205.html.

https://www.iso.org/standard/73205.html
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any element 𝑥 ∈ GF(28) can be written as 𝑥 = 𝑥4 ⊕ 𝜅(𝑥𝜅)⊕ 𝜅(0) with 𝑥4 ∈ GF(24) and
𝑥𝜅 ∈ F4

2. We also use “+” and “−” to denote integer addition and substration, and “⊕”
denotes the addition in the finite field.

We generalize this new structure by allowing 𝜅 and 𝑠 to be picked in appropriate sets
and call the resulting class of permutation TKlog. This new structure allows us to easily
explain a particular property of 𝜋: it maps the partition of GF(28) into multiplicative
cosets of GF(24)* to the partition of GF(28) into additive cosets of GF(24)*.2 Furthermore,
the restriction of 𝜋 to each independent multiplicative coset is always the same simple
function. Thus, not only does it map a simple partition of GF(28) to another one, it does
so in a very straightforward way.

We also prove that such permutations can always be written in a fashion similar to the
decomposition of [BPU16a] so our new decomposition provides the missing link between
the first decomposition of [BPU16a] and the logarithm-based decomposition of [PU16].
Using counting arguments, we show that the size of the set of the TKlogs operating on 8
bits and the number of affine 8-bit permutations are of comparable magnitudes, meaning
that the probability that a random permutation is a TKlog instance is negligible. We
therefore claim that the presence of this structure in 𝜋 is a deliberate choice by its designers.
Using experimental arguments, we propose a simple generation algorithm of which 𝜋 would
be a typical output.

Finally, we remark that the linear layer of Streebog is an MDS matrix with coefficients
in GF(28) where the primitive polynomial used to define the representation of its elements
is actually the same as the one used to define 𝜋 as a TKlog. Thus, the cosets interacting
with 𝜋 also interact with the linear layer of Streebog. We provide a first discussion of the
consequences of the new structure in 𝜋 in terms of security but leave their exploitation in
a cryptanalysis as an open problem.

Outline. Section 2 recalls the background necessary, both in terms of mathematics and in
terms of previous results. The TKlog, its relationship with 𝜋 and its partition-preserving
property are presented in Section 3. We show that the TKlog is the “missing link”
between [BPU16a] and [PU16] and list several consequences of this fact in Section 4. Then,
we investigate the consequences of the fact that 𝜋 is a TKlog for the higher level primitives
themselves in Section 5. We also present a new representation of the linear layer of Streebog
which can be of independent intrerest. Finally, Section 6 concludes this paper.

2 Background

2.1 Notations and Basic Definitions
Finite Fields. There exists, up to isomorphisms, a unique finite field with 2𝑛 elements
which we denote GF(2𝑛). We use “⊕” to denote the addition in the field and 𝑎⊙ 𝑏 or 𝑎𝑏
to denote the product of 𝑎, 𝑏 ∈ GF(2𝑛). For all 𝑥 ∈ GF(2𝑛), it holds that 𝑥2𝑛 ⊕ 𝑥 = 0.

If 𝑛 = 2𝑚 then we define the trace from GF(22𝑚) to GF(2𝑚) as the function Tr𝑚 :
GF(22𝑚) → GF(2𝑚) such that Tr𝑚(𝑥) = 𝑥2𝑚 ⊕ 𝑥. For any 𝛽 ∈ GF(22𝑚) such that
Tr𝑚(𝛽) = 1, the elements of GF(22𝑚) can all be decomposed in a unique way into 𝑎𝛽 ⊕ 𝑏,
where 𝑎 and 𝑏 are in GF(2𝑚). The bijection mapping 𝑥 ∈ GF(22𝑚) to (𝑎, 𝑏) ∈ GF(2𝑚)2

such that 𝑥 = 𝑎𝛽⊕𝑏 is denoted Split𝛽 , so that Split𝛽(𝑎𝛽⊕𝑏) = (𝑎, 𝑏). It is a linear function.
We use 𝑆* to denote a set 𝑆 minus the element 0. Even though GF(2𝑚)* is not an

additive group, we call {𝑎⊕ 𝑥, 𝑥 ∈ GF(2𝑚)*} an additive coset of GF(2𝑚)* for the sake

2Strictly speaking, GF(24)* is not an additive subgroup of GF(28). Thus, the set {𝑎 ⊕ 𝑥, 𝑥 ∈ GF(24)*}
is not formally an additive coset. However, for the sake of simplicity, we will slightly abuse this term and
call such sets “additive cosets of GF(24)*”.
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of simplicity. If 𝑆 is a set and 𝑎 is a constant, we denote 𝑎 ⊕ 𝑆 = {𝑎 ⊕ 𝑥, 𝑥 ∈ 𝑆} and
𝑎𝑆 = 𝑎⊙ 𝑆 = {𝑎⊙ 𝑥, 𝑥 ∈ 𝑆}.

Binary Strings as Ring Elements. The field GF(2𝑛) can be identified with F2[𝑋]/𝑝(𝑋)
for some irreducible polynomial 𝑝 of degree 𝑛. If 𝛼 is a root of 𝑝 then we can represent all
the elements of GF(2𝑛) as

∑︀𝑛−1
𝑖=0 𝑥𝑖𝛼

𝑖, where 𝑥𝑖 ∈ F2. A binary string (𝑥0, ..., 𝑥𝑛−1) ∈ F𝑛
2

is therefore naturally interpreted as
∑︀𝑛−1

𝑖=0 𝑥𝑖𝛼
𝑖 ∈ GF(2𝑛) in much the same way that it

can also be interpreted as
∑︀𝑛−1

𝑖=0 𝑥𝑖2𝑖 ∈ Z/2𝑛Z. In this case, the binary representation of
𝑎⊕ 𝑏 for 𝑎, 𝑏 ∈ GF(2𝑛) is indeed the XOR of the binary representations of 𝑎 and 𝑏.

Logarithms. For all 𝑥 ∈ GF(2𝑛)*, the logarithm log𝛼(𝑥) is the integer of Z/(2𝑛 − 1)Z
such that 𝛼log𝛼(𝑥) = 𝑥. Such a function is not a permutation because it is not defined in 0.
This problem can be solved in different ways. In [HN10], Hakala and Nyberg study the
function which we denote logHN

𝛼 while Feng et al. in [FLY09] introduced another variant,
a special case of which is a permutation of GF(2𝑛) and which we call logFLY

𝛼 . These two
functions map GF(2𝑛) to Z/2𝑛Z and are defined by

logHN
𝛼 (𝑥) =

⎧⎪⎨⎪⎩
2𝑛 − 1 if 𝑥 = 0 ,

0 if 𝑥 = 1 ,

log𝛼(𝑥) if 𝑥 ̸∈ {0, 1} ,

and logFLY
𝛼 (𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑥 = 0 ,

2𝑛 − 1 if 𝑥 = 1 ,

log𝛼(𝑥) if 𝑥 ̸∈ {0, 1} .

In other words logFLY
𝛼 , is a variant of logHN

𝛼 where the outputs of 0 and 1 are swapped. We
remark that the built-in discrete logarithm in SAGE [Dev17] actually implements logFLY

𝛼

on GF(2𝑛)*. Another variant of the logarithm called “pseudo-logarithm” was introduced
in [PU16] when investigating 𝜋 but we will not use it here.

Boolean Functions. Let 𝐹 : F𝑛
2 → F𝑚

2 be a function. The Linear Approximations Table
(LAT) or Walsh transform of 𝐹 is the 2𝑛 × 2𝑚 matrix 𝒲𝐹 such that

𝒲𝐹 (𝑎, 𝑏) =
∑︁

𝑥∈F𝑛
2

(−1)𝑎·𝑥⊕𝑏·𝐹 (𝑥) ,

where 𝑎 · 𝑏 is the usual scalar product in F𝑛
2 . The maximum value of |𝒲𝐹 (𝑎, 𝑏)| for 𝑏 ̸= 0

is the linearity of 𝐹 . The Difference Distribution Table (DDT) of 𝐹 is the 2𝑛 × 2𝑚 matrix
𝛿𝐹 such that

𝛿𝐹 (𝑎, 𝑏) = # {𝑥 ∈ F𝑛
2 , 𝐹 (𝑥⊕ 𝑎)⊕ 𝐹 (𝑥) = 𝑏} .

The maximum value of 𝛿𝐹 (𝑎, 𝑏) for 𝑎 ̸= 0 is the differential uniformity of 𝐹 . If 𝐴 and 𝐵 are
affine permutations of F𝑚

2 and F𝑛
2 respectively, then 𝐹 is affine equivalent to 𝐺 = 𝐵 ∘𝐹 ∘𝐴.

Furthermore, let 𝐿𝐴 and 𝐿𝐵 be the linear parts of 𝐴 and 𝐵. Then the LAT of 𝐺 is:

𝒲𝐺(𝑎, 𝑏) =𝒲𝐹

(︀
(𝐿−1

𝐴 )𝑇 (𝑎), 𝐿𝑇
𝐵(𝑏)

)︀
.

Affine-equivalence can be generalized into CCZ-Equivalence [CCZ98]: two functions 𝐹 :
F𝑛

2 → F𝑚
2 and 𝐺 : F𝑛

2 → F𝑚
2 are CCZ-equivalent if there exists an affine permutation 𝒜 of

F𝑛
2 × F𝑚

2 such that

{(𝑥, 𝐹 (𝑥)) , 𝑥 ∈ F𝑛
2} = 𝒜

(︀
{(𝑥, 𝐺(𝑥)) , 𝑥 ∈ F𝑛

2}
)︀

.

This form of equivalence is known to preserve, among other things, the differential
uniformity and the linearity.
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2.2 On the S-Box 𝜋

While the specification of both Streebog and Kuznyechik have always been public, a
complete design rationale has not been provided. In particular, its designers gave very
little information about the design method of their S-Box. Its look-up table is given in
Table 2 in Appendix 8.

This lack of information prompted academics to try and reverse-engineer this S-Box.
We present the two decompositions that were found by Biryukov, Perrin and Udovenko
further below but first we summarize the information that the designers did provide.

2.2.1 From the Designers

At RusCrypto’13 [Shi13], Shishkin gave a talk presenting the design principles of their
upcoming block cipher (Kuznyechik was standardized in 2015). While they considered
using S-Boxes from a known class of good S-Boxes, their prefered design approach was
different. It is summarized in the following (translated) quote from their slides.

[The properties of S-Boxes designed via a] Random search with a specified
parameter restriction

∙ are not optimal when considering the aggregate of the values of the basic
cryptographic properties
∙ do not have a pronounced analytical structure

In other words, S-Boxes randomly generated trade their non-optimal cryptographic prop-
erties (differential uniformity, etc.) for the absence of an analytical structure which could
be used by an attacker. Further in their presentation, they state that the number of
bit operations needed to implement the S-Box should be minimized so as to help with
both hardware and vectorized implementations. Those design criteria make sense; in
fact, many algorithms use S-Boxes chosen with a similar rationale such as, for example,
CLEFIA [SSA+07].

However, up until the decomposition found by Biryukov et al. [BPU16a] (see Sec-
tion 2.2.2) no efficient implementation strategy was known for 𝜋. Furthermore, this
permutation was shown to be somewhat close to a finite field logarithm [PU16] (see
Section 2.3), which seems at odd with the claimed lack of analytical structure.

𝜔

𝜎

𝜑 ⊙

𝜈1𝜈0

ℐ⊙

𝛼

𝑇
𝑈

(a) The TU-decomposition.

𝜔′

⊗−1

�

𝑞′−1

log𝑤,16

𝑇

(b) The log-based decomposition.

Figure 1: The decompositions of 𝜋 in the literature.

2.2.2 TU-Decomposition

Because the design method of 𝜋 was not published, Biryukov et al. tried to look for
additional design criteria or even for hidden structure using (and improving) techniques
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from [BP15]. Their results are presented in [BPU16a, BPU16b]. They showed that
𝜋 has a TU-decomposition, i.e. that it is affine-equivalent to a permutation (𝑥, 𝑦) ↦→(︀
𝑇𝑦(𝑥), 𝑈𝑇𝑦(𝑥)(𝑦)

)︀
where both 𝑇𝑦 and 𝑈𝑥 are 4-bit permutations for all (𝑥, 𝑦) ∈ (F4

2)2.
They further provided a decomposition of both 𝑇 and 𝑈 , so that the overall structure of 𝜋
is as described in Figure 1a where 𝜈0, 𝜈1 and 𝜎 are 4-bit permutations, 𝜑 is a 4-bit function
such that 𝜑(𝑥) ̸= 0 and ℐ is the multiplicative inversion in GF(24). The multiplexer selects
the output of 𝜈0 if the right branch is equal to 0 and the output of 𝜈1 otherwise. The last
components are 𝛼 and 𝜔, two 8-bit linear permutations which are linked by the following
relation: {︀

𝛼−1(𝑥||0), 𝑥 ∈ F4
2
}︀

=
{︀

𝜔(0||𝑥), 𝑥 ∈ F4
2
}︀

. (1)

Biryukov et al. started by composing 𝜋 with an 8-bit linear layer 𝐿* applied at both
the input and the output. The fact that the same function is applied in both cases is a
consequence of the relation in Equation (1). They recovered 𝐿* using visual patterns in
the LAT of 𝜋.

Another remarkable property was noted in [PU16]: 𝜈0 is affine-equivalent to a discrete
logarithm in GF(24).

2.3 Discrete Logarithm
While investigating the S-Box of the Belarussian standard block cipher BelT [Bel11],
Perrin and Udovenko found a completely different decomposition of 𝜋 [PU16]. Indeed, they
showed that it had the structure summarized in Figure 1b, i.e. that it was the composition
of:

∙ a “pseudo-logarithm”, i.e. a permutation obtained by inverting a “pseudo-exponential”
which is itself built as a sequence [𝛼0, 𝛼1, 𝛼2, ..., 𝛼𝑗−1, 0, 𝛼𝑗 , ..., 𝛼2𝑛−2] for a generator
𝛼 of GF(28)* and some preimage 𝑗 for 0;

∙ a layer of modular arithmetic operations which they could not simplify,

∙ a 4-bit permutation 𝑞′−1, and

∙ an 8-bit linear permutation 𝜔′.

This decomposition uses the primitive polynomial 𝑝min(𝑋) = 𝑋8 ⊕𝑋4 ⊕𝑋3 ⊕𝑋2 ⊕ 1 to
define the finite field used in its logarithm. It is the first primitive polynomial of degree 8
in the lexicographic order as can be seen e.g. in Table C of [LN97]. It is also the default
polynomial used when building a finite field of size 28 in SAGE [Dev17].

2.3.1 Relations Between the Decompositions

These decompositions are functionally equivalent since they both correspond to the same
permutation 𝜋, and yet they have little to nothing in common. When evaluating the
TU-decomposition, the input first goes through a linear layer mapping F8

2 to (GF(24))2

and then undergoes (𝑎, 𝑏) ↦→ (𝑎/𝑏, 𝑏), except if 𝑏 = 0. On the other hand, evaluating the
log-based decomposition first requires using a variant of the discrete logarithm. What is
the relation between these operations?

We thus find it surprising that both decompositions exist. Furthermore, none of them
seems like a natural choice for building an S-Box. These observations led Perrin and
Udovenko to the following conclusion [PU16]:

we think it more likely that [the TU-decomposition and log-based decomposition
are] a consequence of a strong algebraic structure used to design [𝜋], probably
one related to a finite field exponential. Still this “master decomposition”, from
which the others would be consequences, remains elusive. Unfortunately, unless
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the Russian secret service release their design strategy, their exact process is
likely to remain a mystery, if nothing else because of the existence of alternative
decompositions: which exists by design and which is a mere side-effect of this
design?

In the next section, we present what we believe to be this “master decomposition”.
It relies on a discrete logarithm, which relates it to the second decomposition, and it
turns out that a TU-decomposition identical to the one of [BPU16a] is always possible for
permutations with a similar structure. We argue that this new decomposition is likely to
be the one intended by the designers later in Section 5.1.

3 The TKlog
In this section, we introduce a new type of permutation which we call TKlog of which
𝜋 turns out to be a particular case. As Stribog and Kuznyechik were both designed by
the “ТК-26”3, we used the letters “TK” to name this structure. It has log-like properties,
though mapping GF(22𝑚) to itself rather than to Z/22𝑚Z, hence the “log” part of the name.
More precisely, it maps the partition of GF(22𝑚) into multiplicative cosets of GF(2𝑚)* to
its partition into additive cosets of GF(2𝑚) and its restriction to each multiplicative coset
is essentially the same for all cosets. We define this structure in Section 3.1 and present
the details of this partition-preserving property in Section 3.2.

3.1 The TKlog Permutation Structure
The TKlog. Let GF(22𝑚) = F2[𝑋]/𝑝(𝑋) be a finite field of even degree defined by a
primitive polynomial 𝑝. The multiplicative subgroup GF(22𝑚)* is cyclic and generated by
𝛼 which is such that 𝑝(𝛼) = 0. In this context, 𝛼2𝑚+1 is a generator of the multiplicative
subgroup of the subfield GF(2𝑚).

Definition 1 (TKlog). A TKlog is permutation operating on GF(22𝑚) = F2[𝑋]/𝑝(𝑋) for
some primitive polynomial 𝑝 with root 𝛼. It is parametrized by:

∙ an affine function 𝜅 : F𝑚
2 → GF(22𝑚) such that any 𝑥 ∈ GF(22𝑚) can be written

𝑥 = 𝑥𝑚 ⊕ 𝜅(𝑥𝜅)⊕ 𝜅(0) for some 𝑥𝑚 ∈ GF(2𝑚) and 𝑥𝜅 ∈ F𝑚
2 ,4 and

∙ a permutation 𝑠 of Z/(2𝑚 − 1)Z.

The corresponding TKlog is denoted T𝜅,𝑠 and it works as follows:⎧⎪⎨⎪⎩
T𝜅,𝑠(0) = 𝜅(0) ,

T𝜅,𝑠

(︀
(𝛼2𝑚+1)𝑗

)︀
= 𝜅(2𝑚 − 𝑗), for 1 ≤ 𝑗 ≤ 2𝑚 − 1 ,

T𝜅,𝑠

(︀
𝛼𝑖+(2𝑚+1)𝑗

)︀
= 𝜅(2𝑚 − 𝑖)⊕

(︀
𝛼2𝑚+1)︀𝑠(𝑗)

, for 0 < 𝑖, 0 ≤ 𝑗 < 2𝑚 − 1 ,

where the fact that 1 ≤ 𝑗 ≤ 2𝑚 − 1 rather than 0 ≤ 𝑗 < 2𝑚 − 1 when 𝑥 ∈ GF(2𝑚)* comes
from the implicit use of Feng et al.’s logarithm. Algorithm 3 (in Appendix 9) evaluates
such a permutation.

3The official name of this organisation is “Технический Комитет По Стандартизации Криптографиче-
ская Защита Информации”, which stands for “Technical Committee for Standardization of cryptographic
information protection”

4Equivalently, we can write that the linear part of 𝜅 mapping 𝑦 ∈ F𝑚
2 to 𝜅(𝑦) ⊕ 𝜅(0) ∈ GF(22𝑚) maps

F𝑚
2 to a vector space in direct sum with the subfield GF(2𝑚).
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To convince ourselves that a TKlog instance as defined above is indeed a permutation,
we define its functional inverse, TKexp. It uses Φ𝜅 : GF(22𝑚)→ F𝑚

2 ×GF(2𝑚) which is
the affine permutation such that

Φ𝜅

(︀
𝜅(𝑥)⊕ 𝑣

)︀
= (𝑥, 𝑣)

for (𝑥, 𝑣) ∈ F𝑚
2 ×GF(2𝑚). The TKexp works as follows:⎧⎪⎨⎪⎩

(︀
T −1

𝜅,𝑠 ∘ Φ−1
𝜅

)︀
(0, 0) = 0 ,(︀

T −1
𝜅,𝑠 ∘ Φ−1

𝜅

)︀
(𝑘, 0) = 𝛼(2𝑚+1)(2𝑚−𝑘) ,(︀

T −1
𝜅,𝑠 ∘ Φ−1

𝜅

)︀
(𝑘, 𝑣) = 𝛼2𝑚−𝑘+(2𝑚+1)𝑠−1(𝑗) where 𝑗 = logFLY

𝛼 (𝑣)/(2𝑚 + 1) .

Alternatively, it can be evaluated using Algorithm 4 (in Appendix 9).

On the Substraction. The integer substraction in the input of 𝜅 is made necessary by
the fact that 𝑖 ∈ {1, ..., 2𝑚}, so that the binary representation of 𝑖 does not always fit in 𝑚
bits. We therefore need a small function that maps {1, ..., 2𝑚} to {0, ..., 2𝑚 − 1} since the
case 𝑖 = 0 is handled separately. A natural choice would obviously be 𝑖 ↦→ 𝑖− 1 but, in the
case, we would need a different function when 𝑖 = 0. Indeed, since a FLY logarithm is
used, we have 𝑗 ∈ {1, ..., 2𝑚 − 1} when 𝑖 = 0. Thus, we would need to compose 𝜅 with
two different functions depending on whether 𝑖 = 0. On the other hand, the function
𝑖← 2𝑚 − 𝑖 maps both {1, ..., 2𝑚} to {0, ..., 2𝑚 − 1} and {1, ..., 2𝑚 − 1} to itself, meaning
that it can be used in both cases.

We could not find such a simple function when logHN
𝛼 is used.

The Particular case of 𝜋. The S-Box 𝜋 is a TKlog operating on 8 bits. For implementa-
tion purposes, we identify GF(28) with F8

2 using the method we described in Section 2.1.
When written as TKlog instance, 𝜋 uses the following components:

∙ the finite field GF(28) = F2[𝑋]/𝑝min(𝑋) where 𝑝min(𝑋) = 𝑋8 ⊕𝑋4 ⊕𝑋3 ⊕𝑋2 ⊕ 1
and its root 𝛼;

∙ an affine function 𝜅 mapping F4
2 to F8

2 such that 𝜅(0) = 0xFC with a linear part Λ
defined by

Λ(1) = 12 , Λ(2) = 26 , Λ(4) = 24 , Λ(8) = 30 ,

where the numbers are written in hexadecimal form and where the linear function Λ
verifies

{︀
𝑥4 ⊕ Λ(𝑦), 𝑥4 ∈ GF(24), 𝑦 ∈ F4

2
}︀

= GF(28); and

∙ a permutation 𝑠 of Z/15Z defined in Table 1.

Table 1: The look up table of the permutation 𝑠 of Z/15Z.
𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝑠(𝑥) 0 12 9 8 7 4 14 6 5 10 2 11 1 3 13

The evaluation of 𝜋 using this structure is summarized in Algorithm 1. An implemen-
tation of 𝜋 based on this algorithm is given as a SAGE [Dev17] script in Appendix 12. It
is noteworthy that the default logarithm function in SAGE is logFLY

𝛼 , which simplifies the
implementation of the function.

We actually obtained the TKlog structure by first decomposing 𝜋 and then general-
izing the structure we found. A summary of our reverse-engineering process is given in
Appendix 10.
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Algorithm 1 A new decomposition of 𝜋.
1: function 𝜋(𝑥 ∈ GF(28))
2: if 𝑥 = 0 then
3: return 𝜅(0)
4: else
5: 𝑘 = logFLY

𝛼 (𝑥)
6: 𝑖← 𝑘 mod 17; 𝑗 ← ⌊𝑘/17⌋ ◁ 𝑥 = 𝛼𝑖+17𝑗

7: if 𝑖 = 0 then ◁ Case where 𝑥 ∈ GF(24)
8: return 𝜅 (16− 𝑗) ◁ 𝑖 = 0 so 𝑗 ∈ {1, ..., 15}
9: else

10: return 𝜅(16− 𝑖)⊕ (𝛼17)𝑠(𝑗) ◁ 𝑖 ̸= 0 so 16− 𝑖 ̸= 16
11: end if
12: end if
13: end function

3.2 Cosets to Cosets
3.2.1 A Partition-Preserving Property

Recall that GF(2𝑚)* is the field of size 2𝑚 minus 0 and that it is contained in GF(22𝑚)*.
Let 𝛼 be a multiplicative generator of GF(22𝑚)* so that 𝛼2𝑚+1 is a multiplicative generator
of GF(2𝑚)*. The field GF(22𝑚) can be written in two different ways using the multiplicative
cosets of GF(2𝑚)* on one hand and the additive cosets of GF(2𝑚)* on the other.

∙ All the elements in GF(22𝑚)* can be written as 𝛼𝑖+(2𝑚+1)𝑗 = 𝛼𝑖
(︀
𝛼2𝑚+1)︀𝑗 , so that

GF(22𝑚) = {0} ∪
(︃2𝑚⋃︁

𝑖=0
𝛼𝑖 ⊙GF(2𝑚)*

)︃
= GF(2𝑚) ∪

(︃2𝑚⋃︁
𝑖=1

𝛼𝑖 ⊙GF(2𝑚)*

)︃
.

∙ As GF(2𝑚) is a vector space of dimension 𝑚, there exists a vector space 𝑊 of
elements of GF(22𝑚) of dimension 𝑚 such that GF(22𝑚) is the direct sum of 𝑊 and
GF(2𝑚). In this case, we can write

GF(22𝑚) =
⋃︁

𝑤∈𝑊

𝑤 ⊕GF(2𝑚) = 𝑊 ∪

(︃ ⋃︁
𝑤∈𝑊

𝑤 ⊕GF(2𝑚)*

)︃
.

Both 𝑊 and GF(2𝑚) are vector spaces of dimension 𝑚 and, in each decomposition, 2𝑚

cosets of GF(2𝑚)* are used. It is therefore possible to map these decompositions from one
to the other. It is precisely what a TKlog does. More formally, the following theorem
holds.

Theorem 1 (Cosets to Cosets). Let T𝜅,𝑠 : GF(22𝑚)→ GF(22𝑚) be a valid TKlog instance.
Then the following equalities are always true:{︃

T𝜅,𝑠(GF(2𝑚)) = 𝜅 (F𝑚
2 )

T𝜅,𝑠

(︀
𝛼𝑖 ⊙GF(2𝑚)*)︀ = 𝜅(2𝑚 − 𝑖)⊕GF(2𝑚)* , ∀𝑖 ̸= 0 .

Corollary 1 (Vector spaces to affine spaces). Let T𝜅,𝑠 : GF(22𝑚)→ GF(22𝑚) be a valid
TKlog instance. Then it always holds that

T𝜅,𝑠(GF(2𝑚)) = 𝜅 (F𝑚
2 ) and T𝜅,𝑠(𝛼2𝑚

⊙GF(2𝑚)) = 𝜅(0)⊕GF(2𝑚) ,
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where all the spaces involved in these equalities are of dimension 𝑚. Furthermore,

GF(22𝑚) =
{︁

𝑥⊕ 𝑦, 𝑥 ∈ GF(2𝑚), 𝑦 ∈ 𝛼2𝑚

⊙GF(2𝑚)
}︁

=
{︀

𝑥⊕ 𝑦, 𝑥 ∈ 𝜅(0)⊕GF(2𝑚), 𝑦 ∈ 𝜅(0)⊕ 𝜅 (F𝑚
2 )
}︀

,

so a TKlog maps two vector spaces of dimension 𝑚 spanning GF(22𝑚) to two affine spaces
of dimension 𝑚 spanning GF(22𝑚).

As 𝜋 is a TKlog instance, Theorem 1 implies that it verifies the following set equalities{︃
𝜋
(︀
GF(24)

)︀
= 𝜅(F4

2)
𝜋
(︀
𝛼𝑖 ⊙GF(24)*)︀ = 𝜅(16− 𝑖)⊕GF(2𝑚)* , ∀𝑖 ̸= 0 ,

and applying Corollary 1 yields 𝜋(𝛼16 ⊙GF(24)) = 𝜅(0)⊕GF(24). These equalities are
summarized in Figure 2 where relationships between complete affine spaces are represented
by dashed and thick arrows while those linking sets of size 2𝑚 − 1 are represented by plain
thin ones.

{0} GF(24)*

𝛼
16
⊙

G
F(

24 )
*

...

𝛼
2
⊙

G
F(

24 )
*

𝛼
1
⊙

G
F(

24 )
*

{0xFC}

𝜅
((
F4 2)

* )

𝜅(15)⊕GF(24)*

𝜅(14)⊕GF(24)*

...

𝜅(0)⊕GF(24)*

...

Figure 2: The partition of GF(28) into multiplicative cosets of GF(24)* (left), additive
cosets of GF(24)* (right), and the action of 𝜋 on them (arrows).

3.2.2 The Simplicity of the TKlog Properties

The partitions dealt with in Theorem 1 have simple algebraic descriptions. Indeed,
𝑥, 𝑦 ∈ GF(22𝑚)* are in the same additive coset of GF(2𝑚)* if and only if Tr𝑚(𝑥) = Tr𝑚(𝑦).
Then, we remark that(︁

𝛼𝑖+(2𝑚+1)𝑗
)︁2𝑚−1

= 𝛼(2𝑚−1)𝑖+(22𝑚−1)𝑗 = 𝛼(2𝑚−1)𝑖 ,

so that
(︀
𝛼𝑖+(2𝑚+1)𝑗

)︀2𝑚−1 =
(︁

𝛼𝑖′+(2𝑚+1)𝑗′
)︁2𝑚−1

if and only if 𝑖 = 𝑖′. Thus, 𝑥, 𝑦 ∈
GF(22𝑚)* are in the same multiplicative coset of GF(2𝑚)* if and only if 𝑥2𝑚−1 = 𝑦2𝑚−1.
Furthermore, 𝑥 ∈ GF(2𝑚)* if and only if 𝑥2𝑚−1 = 1. We deduce the following corollary of
Theorem 1.

Corollary 2. Let T𝜅,𝑠 : GF(22𝑚)→ GF(22𝑚) be a valid TKlog instance. Then we always
have that

𝑥2𝑚−1 = 𝑦2𝑚−1 ̸= 1 ⇔ Tr𝑚 (T𝜅,𝑠(𝑥)) = Tr𝑚 (T𝜅,𝑠(𝑦)) ̸= Tr𝑚 (𝜅(0)) .
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As a consequence, for any constant 𝑐 ∈ GF(22𝑚)∖{0, 1}, we have the following implication
involving only linear equations:

𝑥2𝑚

⊕ 𝑐𝑥 = 𝑦2𝑚

⊕ 𝑐𝑦 = 0 =⇒ (T𝜅,𝑠(𝑥))2𝑚

⊕T𝜅,𝑠(𝑥) = (T𝜅,𝑠(𝑦))2𝑚

⊕T𝜅,𝑠(𝑦) .

The interaction of a TKlog with these two partitions goes beyond mapping one to the
other. Indeed, consider a more general structure corresponding to permutations 𝑃 such
that:

𝑃 :

⎧⎪⎨⎪⎩
0 ↦→ 𝜅 (𝑡0(0))
𝛼(2𝑚+1)𝑗 ↦→ 𝜅 (𝑡0(2𝑚 − 𝑗))
𝛼𝑖+(2𝑚+1)𝑗 ↦→ 𝜅 (𝑡1(2𝑚 − 𝑖))⊕

(︀
𝛼2𝑚+1)︀𝑠𝑖(𝑗) for 𝑖 > 0 ,

(2)

where 𝑡0 and 𝑡1 are permutations of F𝑚
2 , and where 𝑠𝑖 is a permutation of Z/(2𝑚 − 1)Z

for all 𝑖 ∈ Z/(2𝑚 + 1)Z. Any such 𝑃 is a permutation with the exact partition-preserving
property described in Theorem 1 but its contributions on GF(2𝑚) and on 𝜅(F𝑚

2 ) each
depend on both 𝑖 and 𝑗, even when we restrict ourselves to 𝑖 > 0. It is not the case for
TKlogs; these permutations are far simpler.

Lemma 1 (Separation Property). Let T𝜅,𝑠 : GF(22𝑚) → GF(22𝑚) be a valid TKlog
instance. Then, for any 𝑖, 𝑗 such that 0 < 𝑖 ≤ 2𝑚 and 0 ≤ 𝑗 < 2𝑚 − 1, it holds that

T𝜅,𝑠(𝛼𝑖+(2𝑚+1)𝑗) = 𝜅(2𝑚 − 𝑖)⏟  ⏞  
∈𝜅(F𝑚

2 )

⊕ (𝛼2𝑚+1)𝑠(𝑗)⏟  ⏞  
∈GF(2𝑚)*

,

so that the contribution of 𝑖 is restricted to 𝜅(F𝑚
2 ) and that of 𝑗 is restricted to GF(2𝑚).

In other words, a TKlog interacts with each multiplicative coset other than GF(2𝑚)*

in the exact same way, even though this property is in no way implied by Theorem 1.
We could not find any attack leveraging these surprising properties of 𝜋. However, we

did find that these partitions interact in a non-trivial way with the linear layer of Streebog.
We discuss the consequences of the presence of this structure in 𝜋 in Section 5.

4 The Missing Link
The TKlog structure is the missing link between the two previous decompositions of 𝜋.
Its relationship with the logarithm-based decompositions of [PU16] is natural since both
consist in a variant of the discrete logarithm followed by some arithmetic. The fact that 𝜋
has a TU-decomposition remains a priori surprising but, in Section 4.1, we show that it
is always the case for TKlogs. We also list some of the consequences of this property in
Section 4.2.

4.1 A TU-Decomposition Always Exists
TKlogs can always be expressed in a fashion very similar to the first decomposition of
Biryukov et al. [BPU16a]. In order to establish it, we first derive the following lemma.

Lemma 2. There exists a function 𝛾 : (Z/(2𝑚 + 1)Z)* → Z/(2𝑚 − 1)Z such that{︀
𝑥 ∈ GF(22𝑚), Tr(𝑥) = 1

}︀
=
{︁

𝛼𝑖+(2𝑚+1)𝛾(𝑖), 𝑖 ∈ Z/(2𝑚 + 1)Z*
}︁

.

Proof. Let (𝑎, 𝑏) = Split𝛽(𝑥). If 𝑥 ̸∈ GF(2𝑚), then 𝑎 ̸= 0 and we can write 𝑥 = 𝑎(𝛽 ⊕ 𝑐)
where 𝑐 = 𝑏/𝑎 is an element of GF(2𝑚), so that Tr(𝛽 ⊕ 𝑐) = Tr(𝛽) = 1. As such a
decomposition exists for all 𝑥 ̸∈ GF(2𝑚), we deduce that the set{︀

logFLY
𝛼 (𝑐⊕ 𝛽), 𝑐 ∈ GF(2𝑚)

}︀
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must contain a representative of each equivalence class modulo 2𝑚 + 1 as the contrary
would imply that some elements 𝛼𝑖+(2𝑚+1)𝑗 with 𝑖 ̸= 0 could not be written 𝑎(𝛽 ⊕ 𝑐). As
a consequence,

{︀
logFLY

𝛼 (𝑐⊕ 𝛽) mod (2𝑚 + 1), 𝑐 ∈ GF(2𝑚)
}︀

= {1, ..., 2𝑚} and there must
therefore exist a function 𝛾 as described above such that{︀

logFLY
𝛼 (𝑐⊕ 𝛽), 𝑐 ∈ GF(2𝑚)

}︀
=
{︀

1 + (2𝑚 + 1)𝛾(1), ..., 2𝑚 + (2𝑚 + 1)𝛾(2𝑚)
}︀

.

The lemma follows.

Theorem 2 (TU-Decomposition of the TKlog). The permutation T𝜅,𝑠 of GF(22𝑚) has a
TU-decomposition involving three 𝑚-bit permutations 𝜏, 𝜈 and 𝜎, and an 𝑚-bit function 𝜑.
It is given in Algorithm 2.

The specification of the subcomponents is given in the proof of this theorem.

Algorithm 2 The TU-decomposition of TKlog.
1: function T𝜅,𝛼,𝑠(𝑥 ∈ GF(28))
2: ◁ Input linear layer
3: 𝑎, 𝑏← Split𝛽(𝑥)
4: ◁ Evaluation of ℓ = 𝑇𝑎(𝑏)
5: if 𝑎 = 0 then
6: ℓ← 𝜏(𝑏)
7: else
8: ℓ← 𝜈(𝑏/𝑎)
9: end if

10: ◁ Evaluation of ℎ = 𝑈𝑇𝑎(𝑏)(𝑎) = 𝑈ℓ(𝑎)
11: ℎ← 𝜎

(︀
𝜑(ℓ)⊙ 𝑎

)︀
12: ◁ Output linear layer
13: return 𝜅(ℓ)⊕ ℎ
14: end function

Proof. Let (𝑎, 𝑏) = Split𝛽(𝑥). Intuitively, 𝑎 will correspond to the right-side branch of
the TU-decomposition and 𝑏/𝑎 to the left-side one. In particular, the case 𝑎 = 0 is a
special case. This proof is direct in the sense that it “simply” consists in defining the
subcomponents 𝜏, 𝜎, 𝜈 and 𝜑 correctly and then checking that they work.

a = 0. If 𝑎 = 0 then 𝑥 ∈ GF(2𝑚), so that the definition of the TKlog yields T𝜅,𝑠(𝑥) =
𝜅 (𝜏(𝑏)) where

𝜏 :

⎧⎨⎩
GF(2𝑚) → F𝑚

2
0 ↦→ 0 ,

𝑏 ↦→ 2𝑚 − logFLY
(𝛼2𝑚+1)(𝑏) if 𝑏 ̸= 0 .

Indeed, let 𝑥 = 𝑏 = 𝛼(2𝑚+1)𝑗 for 0 < 𝑗 ≤ 2𝑚−1. For 𝑏 ̸= 0, 1, we have that logFLY
(𝛼2𝑚+1)(𝑏) =

log𝛼(𝑏)/(2𝑚 + 1) = 𝑗, so that 𝜅 (𝜏(𝑏)) is indeed equal to T𝜅,𝑠(𝑥). For 𝑏 = 0, we also
immediately have that 𝜅 (𝜏(𝑏)) = T𝜅,𝑠(𝑥). For 𝑏 = 1, logFLY

𝛼 (𝑏) = 22𝑚− 1 = (2𝑚− 1)(2𝑚 +
1), so that 𝑗 = 2𝑚 − 1 which is indeed equal to logFLY

(𝛼2𝑚+1)(𝑏).

a ̸= 0. Otherwise, since 𝑎 ̸= 0 we can write 𝑥 = 𝑎(𝛽 ⊕ 𝑏/𝑎) and, as 0 and 1 are in
GF(2𝑚), we have that 𝑥 ̸= 0, 1 so that logFLY

𝛼 (𝑥) = log𝛼(𝑥). In order to evaluate T𝜅,𝑠(𝑥),
we need to find 𝑖 and 𝑗 such that 𝑎(𝛽 ⊕ 𝑏/𝑎) = 𝛼𝑖+(2𝑚+1)𝑗 . It holds that Tr𝑚(𝑎) = 0 and
Tr𝑚(𝛽 ⊕ 𝑏/𝑎) = 1, so we can apply Lemma 2 to write{︃

𝛽 ⊕ 𝑏/𝑎 = 𝛼𝑖+(2𝑚+1)𝛾(𝑖)

𝑎 = 𝛼(2𝑚+1)(𝑗−𝛾(𝑖)) .
(3)
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We define the permutations 𝜈, 𝜎 and the function 𝜑 as follows.

∙ The permutation 𝜈 captures the way the logarithm and the arithmetic operation
𝑥 ↦→ 2𝑚 − 𝑥 operate on 𝑏/𝑎 to return the correct input for 𝜅:

𝜈 :
{︂

GF(2𝑚) → F4
2

𝑐 ↦→ 2𝑚 −
(︀

log𝛼 (𝛽 ⊕ 𝑐) mod (2𝑚 + 1)
)︀

,

so that 𝜈(𝑏/𝑎) = 2𝑚 − 𝑖.

∙ The permutation 𝜎 corresponds to the permutation 𝑠 applied on 𝑗:

𝜎 :

⎧⎪⎨⎪⎩
GF(2𝑚) → GF(2𝑚)

0 ↦→ 0

𝑐 ↦→
(︀
𝛼2𝑚+1)︀𝑠

(︀
log(𝛼2𝑚+1)(𝑐)

)︀
when 𝑐 ̸= 0 .

∙ The function 𝜑 corresponds to the function 𝛾 introduced because of Lemma 2. It is
defined by

𝜑 :
{︂

F𝑚
2 → GF(2𝑚)
𝑖 ↦→ 𝛼(2𝑚+1)𝛾(2𝑚−𝑖) ,

where 𝑖 ∈ F𝑚
2 is interpreted as an element of Z/(2𝑚 + 1)Z. Note that 𝜑(𝑖) ̸= 0 for

all 𝑖. Using that 𝜈(𝑏/𝑎) = 2𝑚 − 𝑖, we have

(𝜑 ∘ 𝜈)(𝑏/𝑎) = 𝜑(2𝑚 − 𝑖) = 𝛼(2𝑚+1)𝛾(𝑖)

and, using Equation 3 as well, we obtain that

(𝜑 ∘ 𝜈)(𝑏/𝑎)⊙ 𝑎 = 𝛼(2𝑚+1)𝛾(𝑖) ⊙ 𝛼(2𝑚+1)(𝑗−𝛾(𝑖)) = 𝛼(2𝑚+1)𝑗 .

Combining this result with the definition of 𝜎, we obtain that

𝜎
(︀
(𝜑 ∘ 𝜈)(𝑏/𝑎)⊙ 𝑎

)︀
= 𝜎

(︁
𝛼(2𝑚+1)𝑗

)︁
=
(︁

𝛼2𝑚+1
)︁𝑠(𝑗)

.

We can then write for any 𝑎 ̸= 0 that

T𝜅,𝑠(𝑎𝛽 ⊕ 𝑏) = 𝜅
(︀

𝜈(𝑏/𝑎)⏟  ⏞  
2𝑚−𝑖

)︀
⊕ 𝜎

(︀
(𝜑 ∘ 𝜈)(𝑏/𝑎)⊙ 𝑎

)︀⏟  ⏞  
(𝛼2𝑚+1)𝑠(𝑗)

.

When 𝑎 = 0, the term on the right of the XOR cancels out because 𝜎(0) = 0. Therefore,
when 𝑎 = 0, we can write:

T𝜅,𝑠(𝑎𝛽 ⊕ 𝑏) = 𝜅
(︀
𝜏(𝑏)

)︀⏟  ⏞  
T𝜅,𝑠(𝑏)

⊕𝜎
(︀
(𝜑 ∘ 𝜈)(𝑏/𝑎)⊙ 𝑎

)︀⏟  ⏞  
0

,

which is the same expression as when 𝑎 ≠ 0 except that the input of 𝜅 is changed from
𝜈(𝑏/𝑎) to 𝜏(𝑏). As a consequence, it is possible to evaluate this function in two stages.

1. Let (𝑎, 𝑏) = Split𝛽(𝑥). If 𝑎 = 0, let ℓ = 𝜏(𝑏); otherwise let ℓ = 𝜈(𝑏/𝑎).

2. Return 𝜅(ℓ)⊕ 𝜎
(︀
𝜑(ℓ)⊙ 𝑎

)︀
.

This process is exactly the one described in Algorithm 2, an observation which concludes
the proof.
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The existence of the TU-decomposition of Biryukov et al. is obviously a direct
consequence of this theorem. The relationship between this decomposition and the original
TKlog structure further allows us to better understand some of the patterns existing in
this decomposition.

First, the component Biryukov et al. called 𝜈0 plays the role of 𝜏 in Theorem 2. Since 𝜏
is essentially a logarithm in base 𝛼−(2𝑚+1), it is not surprising that 𝜈0 was noted in [PU16]
to be affine-equivalent to a logarithm.

Second, the linear layers 𝛼 and 𝜔 of the original decomposition are basically splitting
GF(22𝑚) into GF(2𝑚)2 and then putting it back together, hence the relation presented in
Equation 1. Furthermore, the output layer 𝜔 is more complex than the input layer 𝛼 since
it also evaluates the linear part of 𝜅.

4.2 Properties Explained by the TU-Decomposition
Efficient Hardware Implementation. The knowledge of the decomposition from Theo-
rem 2 allowed Biryukov et al. to significantly improve the implementation of 𝜋: they made
a circuit implementing such a permutation with an area and delay divided by 2.5 and 8
respectively [BPU16b, Table 8]. We can expect similar gains for all 8-bit TKlogs.

Visual Artefact in the LAT. Biryukov et al. used a particular visual artefact in the
LAT of 𝜋 to perform the first step of their TU-decomposition, namely the presence of
columns with a lower number of different coefficients than the others. They showed that
this pattern was a direct consequence of the structure they identified in this S-Box, namely
the one imposed by Theorem 2. As a consequence, we can generalize their result to all
TKlog instances.

Lemma 3. Consider a TKlog instance T𝜅,𝛼,𝑠, let Split𝛽 , 𝜏, 𝜎, 𝜈 and 𝜑 be the subfunc-
tions used to implement its TU-decomposition as presented in Algorithm 2, and let
𝜑𝜅 : GF(22𝑚)→ GF(2𝑚)×GF(2𝑚) be the affine bijection such that 𝜑𝜅(𝜅(𝑥)⊕ 𝑣) = (𝑥, 𝑣).

We further let 𝐹 be the permutation of GF(2𝑚)2 defined by 𝐹 = 𝜑𝜅 ∘T𝜅,𝑠 ∘ Split−1
𝛽 , so

that it consists in the TU-decomposition of T𝜅,𝑠 without the input and output linear layers.
Then, for (𝑎𝐿, 𝑎𝑅) ̸= (0, 0) and 𝑏𝐿 ̸= 0, we have

𝒲𝐹 [(𝑎𝐿, 𝑎𝑅), (𝑏𝐿, 0)] =
(︀
𝒲𝜏 [𝑎𝐿, 𝑏𝐿] ± 2𝑚

)︀
[𝑎𝐿 ̸= 0] ,

where [𝑎𝐿 ̸= 0] = 0 if 𝑎𝐿 = 0 and 1 otherwise.

The proof of this lemma is essentially the same as the one Biryukov et al. gave in
the full version of their paper [BPU16b]. For the sake of completeness, we also give it in
Appendix 11.

Since 𝜏 is essentially a discrete logarithm, its non-linearity is always high, so that the
pattern is always visible. Indeed, because of this high non-linearity, |𝒲𝜏 [𝑎𝐿, 𝑏𝐿]| can only
take values much lower than 2𝑚, which implies that the low contrast will always be present.

In [BPU16a], the authors of the original decomposition remarked that they had been
lucky since the conjunction of circumstances that lead to the success of their decomposition
seemed unlikely. In their own words (page 19 of [BPU16b]):

[the visual pattern] is caused by the conjunction of three elements:

∙ the use of a multiplexer,
∙ the use of finite field inversion, and
∙ the fact that 𝜈0 has good non-linearity.
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Ironically, the only “unsurprising” sub-component of 𝜋, namely the inverse
function, is one of the reasons why we were able to reverse-engineer this S-Box
in the first place. Had [the inversion] been replaced by a different (and possibly
weaker!) S-Box, there would not have been any of the lines in the LAT which
got our reverse-engineering started.

We can now see that, rather than luck, all of these events are direct consequences of
the TKlog structure of 𝜋.

Incidentally, it provides an excellent method for spotting such structure should someone
else decide to use one—and try to keep this fact hidden. In [PU16], Perrin and Udovenko
suggested to plot the variance of the absolute value of the coefficients in each row/column
of the LAT. They noticed that, in the case of 𝜋, there was a sharp drop for some columns.
Because of Lemma 3, we can see that this pattern is an inherent property of the TKlog
which will therefore always betray the presence of such a structure. Furthermore, should
the TKlog instance be obfuscated by composing it with affine layers, this pattern would
remain and in fact provide some information about the linear part of said affine layers.

Furthermore, since a TKlog always has a TU-decomposition, it will always have a
vector space of dimension 𝑛 = 2𝑚 inside the set of the coordinates of the zeroes of its
LAT [CP19]. This other pattern can also be detected and thus identicate a TKlog instance
to be such.

CCZ-Equivalence. Because of Theorem 2, we know that a TKlog is always affine-
equivalent to a permutation 𝑃 : (GF(2𝑚))2 → (F𝑚

2 )2 such that

𝑃 (𝑏, 𝑎) =
(︀
𝑇𝑎(𝑏), 𝑈𝑇𝑎(𝑏)(𝑎)

)︀
where

{︃
𝑇𝑎(𝑏) = 𝜏(𝑏)× [𝑎 = 0]⊕ 𝜈(𝑏/𝑎)× [𝑎 ̸= 0] ,

𝑈𝑘(𝑎) = 𝜎 (𝑎/𝜑(𝑘)) ,

where [𝑎 = 0] is a Boolean function mapping 0 to 1 and 𝑎 ̸= 0 to 0 and where [𝑎 ̸= 0] =
1⊕ [𝑎 = 0].

As explained in [CP19], the existence of such a decomposition where 𝑇𝑟 is a permutation
for all 𝑟 ∈ F𝑚

2 is equivalent to the possibility of a so-called 𝑚-twist, an operation which
preserves the CCZ-equivalence class but a priori does not preserve the AE-equivalence
class. As a functional inversion also preserves the CCZ-Equivalence class, we deduce the
following corollary of Theorem 2.

Corollary 3. Let 𝑇 and 𝑈 be as defined above. Both the corresponding TKlog instance
and its inverse are CCZ-equivalent to the function 𝐹 : F𝑚

2 ×GF(2𝑚)→ F𝑚
2 ×GF(2𝑚) such

that

𝐹 (𝑏, 𝑎) =
(︀
𝑇 −1

𝑎 (𝑏), 𝑈𝑏(𝑎)
)︀

where
{︃

𝑇 −1
𝑎 (𝑏) = 𝜏−1(𝑏)× [𝑎 = 0]⊕

(︀
𝜈−1(𝑏)⊙ 𝑎

)︀
× [𝑎 ̸= 0] ,

𝑈𝑏(𝑎) = 𝜎 (𝑎/𝜑(𝑏)) ,

Proof. By definition (see [CP19]), the 𝑚-twist maps a function 𝑃 : (𝑟, ℓ) ↦→
(︀
𝑇𝑟(ℓ), 𝑈𝑇𝑟(ℓ)(𝑟)

)︀
to 𝐹 : (𝑟, ℓ) ↦→

(︀
𝑇 −1

𝑟 (ℓ), 𝑈ℓ(𝑟)
)︀
. The corollary follows directly.

In the case of 𝜋, we generated the function 𝐹𝜋 which is CCZ-equivalent to it as specified
in Corollary 3. Its lookup-table is provided in the Supplementary Material for the sake
of completeness (see Table 3). It of course has the same differential and extended Walsh
spectra as 𝜋 and, again like 𝜋, all of its coordinates have degree 7. However, it is not a
permutation: 15 elements in its image have 3 preimages, 75 have 2 and the 61 remainding
ones have 1.
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5 New Information on the Russian Primitives
In this section, we discuss the consequences of the fact that 𝜋 is (up to a translation)
a TKlog instance for the primitives using it. First, we argue that the presence of a
TKlog structure must be a deliberate choice from the designers (Section 5.1). We then
introduce a new representation of the binary matrix used in Streebog in Section 5.2 which
we use to highlight some interactions between the partitions preserved by 𝜋 and this linear
component. Finally, we discuss our findings and their consequences in Section 5.3.

5.1 The Likely Design Process of 𝜋

In light of our results, we can deduce some information about the design process of 𝜋.
First, we establish that the number of TKlog instances is extremely small, meaning that
the choice of this structure must have been deliberate. Then, using some experimental
results, we obtain a design process which yields results extremely similar to 𝜋.

Density of the TKlog set. Apart from the high level algorithm, a TKlog operating on
8 bits is fully defined by three components: a primitive polynomial 𝑝 of degree 8 (there
are 16 possible choices), an affine function 𝜅 : 𝑥 ↦→ Λ(𝑥) ⊕ 𝜅(0) where the 8 × 4 binary
matrix Λ is such that Λ(F4

2) and GF(24) span GF(28), and a permutation 𝑠 of Z/15Z. The
matrix Λ must be such that its first column Λ0 is not in GF(24), the second one is not in
GF(24)∪ (Λ0 ⊕GF(24)), etc. so that there are (28 − 24)(28 − 25)(28 − 26)(28 − 27) ≈ 230.3

choices for this matrix. As a consequence, there are about

16⏟ ⏞ 
𝑝

× 230.3⏟ ⏞ 
Λ

× 28⏟ ⏞ 
𝜅(0)

× 15!⏟ ⏞ 
𝑠

≈ 282.6

distinct TKlog instances on 8 bits.
This number is very small. To put it into perspective, there is a total of 28! ≈ 21684

permutations of F8
2 out of which 28 ×

∏︀7
𝑖=0(28 − 2𝑖) ≈ 270.2 are affine. The number of

TKlog instances is thus about 4000 times larger than the number of affine permutations.
Our point with these estimates is to give an intuition of how small the number of

TKlogs is. A random permutation generator returning an affine permutation would be
assumed to deliberately generate such object. In much the same way, the generation
process that led the designers of Streebog to choose 𝜋 can be assumed to have deliberately
returned a TKlog instance.
Claim. Given how small the number of TKlog is, we are confident that the designers of 𝜋
deliberately chose to use this structure.

Experimental Results. How good are the differential and linear properties of TKlog
instances compared to those expected from a random permutation? To answer this
question, we build upon the analysis of the S-Box of Skipjack in [BP15] to introduce the
following concepts.
Definition 2 (Anomaly of an S-Box). Let 𝐹 : F𝑛

2 → F𝑛
2 be a permutation, 𝑢(𝐹 ) be its

differential uniformity, and 𝑁𝑘(𝐹 ) be the number of occurrences of 𝑘 in its DDT. The
differential anomaly of 𝐹 is equal to

Ad
𝐹 = − log2

(︁
Pr
[︀
𝑢(𝐺) ≤ 𝑢(𝐹 ) and 𝑁𝑢(𝐹 )(𝐺) ≤ 𝑁𝑢(𝐹 )(𝐹 )

]︀ )︁
,

where the probability is taken over all permutations 𝐺. If ℓ(𝐹 ) is the linearity of 𝐹 and
𝑁 ′

𝑘(𝐹 ) is the sum of the number of occurrences of 𝑘 and −𝑘 in the LAT of 𝐹 , then the
linear anomaly of 𝐹 is equal to

Aℓ
𝐹 = − log2

(︁
Pr
[︁
ℓ(𝐺) ≤ ℓ(𝐺) and 𝑁 ′

ℓ(𝐹 )(𝐺) ≤ 𝑁 ′
ℓ(𝐹 )(𝐹 )

]︁ )︁
,
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where the probability is taken over all permutations 𝐺.

An S-Box with a differential anomaly close to 0 has differential properties close to those
of a random S-Box or worse. The differential anomaly behaves as we would expect: when
the differential uniformity decreases under its expected value, the anomaly increases. As
it contains more information than the differential uniformity, it allows a comparison of
S-Boxes for which this quantity is the same. From a cryptographic standpoint, the higher
the anomaly the better as it means that the S-Box will provide a better security against
differential attacks. The same can be said for the linear anomaly.

In [BP15], Biryukov and Perrin provided formulas for computing the differential and
linear anomalies based on the statistical distribution of the DDT and LAT coefficients
presented in [DR07]. They also showed that the linear anomaly of the S-Box of Skipjack
was equal to 55.4 so that this component could not have been generated randomly.

To try and gather more information about the design process of 𝜋, we generated 106

random 8-bit TKlog instances. We plotted the differential and linear anomalies of each of
them in a two dimensional graph given in Figure 3. Each instance corresponds to a light
gray point; darker points are obtained when multiple instances have the same differential
and linear anomalies. We also put the anomalies of 𝜋, logFLY

𝛼 and logHN
𝛼 in the same graph

for comparison.

Figure 3: The differential and linear anomalies of random 8-bit TKlog instances, 𝜋,
logFLY

𝛼 and logHN
𝛼 .

As we can see, the differential and linear anomalies of 𝜋 are somewhat good but not
exceptional compared to those of a random TKlog. More precisely, an 8-bit TKlog instance
has both a differential and linear anomaly at least as high as that of 𝜋 with probability
about 2−10.6 and it is not hard to obtain much better instances. They are also lower than
those of both logFLY

𝛼 and logHN
𝛼 .

However, none of our random instances have a better differential uniformity or linearity
than 𝜋 (including logFLY

𝛼 and logHN
𝛼 ). Furthermore, 𝜋 is in the area of Figure 3 containing

most instances with the same differential uniformity and linearity. Thus, its anomalies are
on par with those of a random TKlog instance with the same differential uniformity and
linearity.

Design Process Outline. In light of the experimental results above, we can see that the
following design process would yield a result very similar to 𝜋.

1. Figure out that the best possible differential uniformity for an 8-bit TKlog instance
is 8 and the best linearity is 56, for example via extensive computer simulations.
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2. Pick a TKlog instance at random among those with said differental uniformity and
linearity—without taking the anomaly into account.

This strategy is natural as long as there is a reason to impose the use of a TKlog—
though we cannot think of one. Since both the differential and linear anomalies of 𝜋 are
inferior to those of logFLY

𝛼 and of logHN
𝛼 , the purpose of the use of a TKlog in this case

could not be an improvement of the cryptographic properties of the discrete logarithm.
More importantly, the very strong algebraic properties of such components which we
described in Section 3.2 would a priori invite caution; even more so in the case of Streebog.
Indeed, as we explain below, its linear layer interacts non-trivially with the corresponding
partitions.

5.2 On the Linear Layer of Streebog
The binary matrix corresponding to the L operation of Streebog is given in Figure 4 where
a black pixel corresponds to 1 and a white one to 0.

Figure 4: The 64× 64 matrix L used in Streebog.

As we can see, it has a strong structure. In [KK13], Kazymyrov and Kazymyrova
showed that it could be written as the composition of:

∙ a layer of 8-bit linear permutations ℓ which simply inverts the order of the bits in
each byte,

∙ the multiplication by an 8 × 8 MDS matrix of GF(28) = F2[𝑋]/𝑃KK(𝑋) where
𝑃KK(𝑋) = 𝑋8 ⊕𝑋6 ⊕𝑋5 ⊕𝑋4 ⊕ 1 is a primitive polynomial of degree 8, and

∙ the inverse of the layer ℓ.

We used a very direct approach to try and simplify this structure: by setting each byte in
a row to 1 one after the other, multiplying it by L, and then writing its bytes as elements
of GF(28) = F2[𝑋]/𝑝min(𝑋), we generated the matrix LF such that

LF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

83 47 8b 07 b2 46 87 64
46 b6 0f 01 1a 83 98 8e
ac cc 9c a9 32 8a 89 50
03 21 65 8c ba 93 c1 38
5b 06 8c 65 18 10 a8 9e
f9 7d 86 d9 8a 32 77 28
a4 8b 47 4f 9e f5 dc 18
64 1c 31 4b 2b 8e e0 83

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The polynomial used by Kazymrov and Kazymrova is the reciprocate of 𝑝min, i.e. 𝑃KK(1/𝑋) =
𝑝min(𝑋)/𝑋8. In hindsight, it was obvious that the reversal of the bit order at the byte
level in their expression of the linear layer could be removed by considering this polynomial
instead.

In the end, if we let 𝐴 be the 8 × 8 matrix of elements of GF(28) corresponding to
the internal state of Streebog and let P denote the transposition of 𝐴 (as is done in the
specification of Streebog), then applying the whole linear part of the round function of
Streebog can be written

(L ∘ P)(𝐴) = 𝐴𝑇 × LF ,

where “×” denotes the usual matrix multiplication.

Additive to Multiplicative Cosets. The subfield GF(24)* has a particular interaction
with L. Indeed, applying the matrix multiplication of Streebog to the vector 𝑥𝑖 =
[0, ..., 0, 𝑥, 0, ..., 0] of GF(28)8 such that 𝑥𝑖

𝑖 = 𝑥 and 𝑥𝑖
𝑘 = 0 if 𝑘 ̸= 𝑖 is equivalent to

computing
𝑣 = 𝑥𝑖 × LF =

[︀
LF

𝑖,0 ⊙ 𝑥, ..., LF
𝑖,7 ⊙ 𝑥

]︀
,

so that if 𝑥 ∈ GF(2𝑚)* then 𝑣𝑗 ∈ LF
𝑖,𝑗 ⊙ GF(2𝑚)*, i.e. it maps the subfield to its

multiplicative cosets. However, it is unclear what happens when multiple cells of the input
vector are active.

Kuznyechik. The linear layer of Kuznyechik is specified as an LFSR made of 16 cells,
each of which is an element of GF(28), which is clocked 16 times. It can also be represented
as a multiplication by a 16× 16 matrix. However the representation of the field elements
uses a different polynomial, namely 𝑝kuz(𝑋) = 𝑋8 ⊕𝑋7 ⊕𝑋6 ⊕𝑋 ⊕ 1. While 𝑝min(𝑋) =
𝑋8⊕𝑋4⊕𝑋3⊕𝑋2⊕ 1 is the first primitive polynomial of degree 8 in lexicographic order,
𝑝kuz is the last such polynomial of weight 5 (see Table C of [LN97]).

Unlike the matrix multiplication in Streebog, the one in Kuznyechik cannot be written
as a matrix multiplication in F2[𝑋]/𝑝min(𝑋), so that the coset propagation described
above for the hash function does not seem applicable to the block cipher.

5.3 Discussion
The consequences of the partition-preserving properties of 𝜋 and its non-trivial interaction
with the linear layer are hard to assess.

In the literature, we can find other S-Boxes mapping cosets to cosets. For example,
monomials map multiplicative cosets of the subfield to multiplicative cosets of the subfield:
if 𝐹 : 𝑥 ↦→ 𝑥𝑑 is a permutation of GF(22𝑚), then

𝐹
(︀
𝛼𝑖 ⊙GF(2𝑚)

)︀
= 𝛼𝑑×𝑖 ⊙GF(2𝑚) .

If we remove their affine components, the S-Boxes of the AES [AES01] and Misty1 [Mat97]
(among many others) exhibit this behaviour. Yet, despite their appearance in some very
prominent targets, multiplicative cosets have never been used in symmetric cryptanalysis.
Note that algorithm designers always compose the inverse with unrelated affine layers so
as to break its algebraic structure. This conservative decision is likely to prevent the use
of multiplicative cosets to attack these ciphers in practice.

It is not the case for additive cosets. In fact, the authors of [BBF16] purposefully built
an S-Box mapping additive cosets to additive cosets with the explicit purpose of using
this pattern as a backdoor. They show that such a partition can be preserved if the linear
layer is chosen carefully and can thus hold for an arbitrary number of rounds. The reason
why Bannier et al. considered additive cosets is the following observation.
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Remark 1. If 𝐹𝑘 : 𝑥 ↦→ 𝑥⊕ 𝑘 is a key addition in F𝑛
2 and 𝑉 is a vector subspace of F𝑛

2 , then

𝐹𝑘

(︀
𝑐⊕ 𝑉

)︀
= (𝑘 ⊕ 𝑐)⊕ 𝑉 ,

so that the partition of F𝑛
2 into additive cosets of 𝑉 is preserved under 𝐹𝑘 independently

from 𝑘.
In the cipher of Bannier et al., the key schedule can therefore be arbitrarily com-

plex without hindering the backdoor. This property is not shared by the partition into
multiplicative cosets.

The only case (other than the TKlog) we can think of where a partition into cosets is
mapped to a different partition is that of (plain) discrete logarithms. Indeed, a Hakala-
Nyberg type of logarithm operating on GF(22𝑚), which maps 𝛼2𝑚−1 to 0, always maps
multiplicative cosets of the subfield to additive cosets of Z/(2𝑚 − 1)Z. In this case, the
multiplication is in the finite field and the addition over the integers. Since these two
operations are completely different, we deem it unlikely that a cryptanalysis is aided by
this property.

In the end, when looking at the impact of cosets on symmetric primitives, we have one
of the following situations:

1. the partition into cosets cannot be iterated since the input partition and output
partition are over completely different structures (case of the logarithm);

2. although the S-Box and linear layer are defined over similar structures, a small
function was added with the explicit purpose of breaking this similarity (case of the
AES and the affine permutation used in its S-Box); or

3. the S-Box and the linear layer were chosen with aligned structures that preserve
the same partition so as to purposefully introduce a backdoor in a block cipher
(backdoored cipher of of [BBF16]).

Kuznyechik seems to be in the second situation. While the designers did not disclose
their security analysis, it would make sense for them to choose the polynomial used to
define the finite field in which the linear layer operates so as not to “align” it with the
structure used to construct 𝜋.

However, Streebog falls in neither category. The input and output partitions are defined
over the same structure (the finite field) so it is not in the first situation. The S-Box could
have been composed with an affine layer breaking its relationship with GF(28) (like in
the AES) or the linear layer could have been defined over a different finite field (like in
Kuznyechik) but neither is the case so it does not fall in the second category either. Still,
while the linear layer is defined over the same structure as the partitions preserved by
the S-Box, these partitions are different and it is unclear how they may interact with the
matrix multiplication. It is therefore not obvious that Streebog fits into the third category
and the following question remains open.

Open Problem 1. Is there a way to leverage the partition-preserving property of 𝜋 to
mount an attack against Streebog?

6 Conclusion
We have extracted a new structure from 𝜋 which we claim to be the one originally
intended by its designers. Its generalization, the TKlog, is obtained by composing a
discrete logarithm with a simple layer of arithmetic. The TKlog explains both previous
decompositions of 𝜋, thus providing the missing link between these two results.

The knowledge of this decomposition allowed us to explain a very specific partition-
preserving property of 𝜋. Surprisingly, we also found a new expression of the linear



Léo Perrin 21

layer of Streebog expressed in the same finite field as 𝜋. While we cannot leverage these
properties to attack this hash function, we question the wisdom of this design choice.
Indeed, when dealing with components defined over identical mathematical structures,
academic designers break this alignment e.g. by composing their S-Boxes with unrelated
affine permutations. We are of the opinion that it would have been more cautious to do
the same in Streebog.
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8 Look-up Tables
The S-Box 𝜋 was only specified via its look-up table. It is provided in Table 2. The
function 𝐹𝜋 is obtained from 𝜋 via Corollary 3. Its look-up table is provided in Table 3.

Table 2: The look-up table of 𝜋. For example 𝜋(7A) = C6.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. FC EE DD 11 CF 6E 31 16 FB C4 FA DA 23 C5 04 4D
1. E9 77 F0 DB 93 2E 99 BA 17 36 F1 BB 14 CD 5F C1
2. F9 18 65 5A E2 5C EF 21 81 1C 3C 42 8B 01 8E 4F
3. 05 84 02 AE E3 6A 8F A0 06 0B ED 98 7F D4 D3 1F
4. EB 34 2C 51 EA C8 48 AB F2 2A 68 A2 FD 3A CE CC
5. B5 70 0E 56 08 0C 76 12 BF 72 13 47 9C B7 5D 87
6. 15 A1 96 29 10 7B 9A C7 F3 91 78 6F 9D 9E B2 B1
7. 32 75 19 3D FF 35 8A 7E 6D 54 C6 80 C3 BD 0D 57
8. DF F5 24 A9 3E A8 43 C9 D7 79 D6 F6 7C 22 B9 03
9. E0 0F EC DE 7A 94 B0 BC DC E8 28 50 4E 33 0A 4A
A. A7 97 60 73 1E 00 62 44 1A B8 38 82 64 9F 26 41
B. AD 45 46 92 27 5E 55 2F 8C A3 A5 7D 69 D5 95 3B
C. 07 58 B3 40 86 AC 1D F7 30 37 6B E4 88 D9 E7 89
D. E1 1B 83 49 4C 3F F8 FE 8D 53 AA 90 CA D8 85 61
E. 20 71 67 A4 2D 2B 09 5B CB 9B 25 D0 BE E5 6C 52
F. 59 A6 74 D2 E6 F4 B4 C0 D1 66 AF C2 39 4B 63 B6

Table 3: The look-up table of 𝐹𝜋, a function CCZ-equivalent to 𝜋.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 8C 42 87 C8 9E DF 13 54 B6 FB 3D 75 29 60 AA E1
1. BC 70 E8 9A 53 25 BF C6 A9 D2 41 37 FD 84 1B 6E
2. 0C D2 37 E8 6E BF 53 84 C6 1B FD 25 A9 70 9A 41
3. 2C E3 59 BD A2 44 F0 15 D7 3E 8A 66 78 9F 21 CB
4. 9C 8F 9D 11 B0 36 24 A7 F8 73 6B E9 4A C5 DE 52
5. 1C 98 B3 2F F9 61 4D DB 72 E7 C4 5E 80 1A 35 A6
6. 4C 1D 20 34 48 5B 6A 7E 83 99 A5 B2 CF D1 E6 F7
7. FC 0F 0D 01 00 06 04 07 08 03 0B 09 0A 05 0E 02
8. CC 6A CF A5 1D 7E D1 B2 20 48 E6 83 34 5B F7 99
9. 5C 34 6A 5B CF F7 A5 99 1D 20 7E 48 D1 E6 B2 83
A. 7C FB 75 87 E1 13 9E 60 54 AA 29 DF B6 42 C8 3D
B. 3C A3 D9 7D 32 94 E0 45 67 CE BA 16 58 FF 81 2B
C. EC 26 4B 62 85 A8 C7 ED 91 B4 D3 FA 1E 39 50 7F
D. DC C4 1A DB 2F E7 35 F9 4D 80 5E 98 61 A6 72 B3
E. 6C BA FF 45 7D CE 81 32 E0 58 16 A3 94 2B 67 D9
F. AC 52 A7 F8 DE 8F 73 24 36 6B 9D C5 E9 B0 4A 11
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9 Algorithms
An algorithm evaluating a TKlog is provided in Algorithm 3 and one evaluating its inverse,
a TKexp, is given in Algorithm 4.

Algorithm 3 A TKlog permutation.
1: function T𝜅,𝑠(𝑥 ∈ GF(22𝑚))
2: 𝑘 ← logFLY

𝛼 (𝑥)
3: if 𝑘 = 0 then ◁ Case where 𝑥 = 0
4: return 0
5: else
6: 𝑖← 𝑘 mod (2𝑚 + 1)
7: 𝑗 ← ⌊𝑘/(2𝑚 + 1)⌋ ◁ 𝑥 = 𝛼𝑖+(2𝑚+1)𝑗

8: if 𝑖 = 0 then ◁ Case where 𝑥 ∈ GF(2𝑚)
9: return 𝜅 (2𝑚 − 𝑗) ◁ As 𝑖 = 0, 𝑗 ∈ {1, ..., 2𝑚 − 1} = (F𝑚

2 )*

10: else
11: return 𝜅(2𝑚 − 𝑖)⊕ 𝛼(2𝑚+1)𝑠(𝑗) ◁ 𝑖 ̸= 0 so (2𝑚 − 𝑖) ∈ F𝑚

2
12: end if
13: end if
14: end function

Algorithm 4 A TKexp permutation.
1: function T −1

𝜅,𝑠 (𝑥 ∈ GF(22𝑚))
2: if 𝑥 = 0 then
3: return 0
4: else
5: (𝑘, 𝑣)← Φ𝜅(𝑥)
6: if 𝑣 = 0 then ◁ Case where 𝑥 ∈ 𝜅(F𝑚

2 )
7: return 𝛼(2𝑚+1)(2𝑚−𝑘)

8: else
9: 𝑗 ← logFLY

𝛼 (𝑣)/(2𝑚 + 1) ◁ Always an integer as (𝛼2𝑚+1)𝑗 = 𝑣

10: return 𝛼2𝑚−𝑘+(2𝑚+1)𝑠−1(𝑗) ◁ 𝑘 ∈ F𝑚
2 so 𝑘 + 1 ∈ {1, ..., 2𝑚}

11: end if
12: end if
13: end function
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10 How Did We Obtain the TKlog from 𝜋?
We had the intuition for the overall structure of the TKlog because of observations on the
TU-decomposition of Biryukov et al. which we present below.

Figure 5 recalls the TU-decomposition of 𝜋 and describes the notations used below.
For each input 𝑐 of 𝜈1, i.e. for all 𝑐 ∈ F4

2, we can define two sets 𝐴𝑐 and 𝐵𝑐 as

𝐴𝑐 =
{︀

𝛼−1(𝑥, 𝑥⊙ ℐ(𝑐)),∀𝑥 ∈ F4
2
}︀

,

𝐵𝑐 =
{︀

𝜔(𝜈1(𝑐), 𝑦),∀𝑦 ∈ F4
2
}︀

.

The sets 𝐴𝑐 are all vector spaces while the sets 𝐵𝑐 are additive cosets of the vector space{︀
𝜔(0, 𝑦),∀𝑦 ∈ F4

2
}︀

.

𝜔

𝜎

𝜑 ⊙

𝜈1

ℐ⊙

𝛼

𝜈0

𝑦

𝜈1(𝑐)

𝑐
𝑥⊙ ℐ(𝑐)

𝑥

Figure 5: The propagation of particular vector spaces through 𝜋.

As we can see in Figure 5, if we apply 𝜋 to all the elements of 𝐴𝑐 we obtain 16 elements
out of which 15 are in 𝐵𝑐. Furthermore, as we recalled in Equation (1), it holds that{︀

𝛼−1(𝑥, 0),∀𝑥 ∈ F4
2
}︀

=
{︀

𝜔(0, 𝑥),∀𝑥 ∈ F4
2
}︀

. We then have that

𝐵𝑐 = 𝜔(𝜈1(𝑐), 0)⊕𝐴0

and that 𝐴𝑐 is somehow related to 𝐴0 using a finite field multiplication. We also noticed
that these sets had a special relationship with the matrix multiplication used in Streebog.
Let L be the 64× 64 binary matrix used in Streebog and let [𝑎, 0, ..., 0]× L = [𝑎′

0, ..., 𝑎′
7]. If

𝑎 takes all values in 𝐴𝑐 for some 𝑐 ∈ F4
2 then 𝑎′

𝑖 takes all values in 𝐴𝑐𝑖
for some 𝑐𝑖. This

property holds regardless of the position of 𝑎 in the initial vector. Since we knew from the
work of Kazymrov and Kazymrova [KK13] that L is somehow related to an MDS matrix
with coefficients in GF(28), we deduced that the sets 𝐴𝑐 had to have a particular relation
with this field.

These observations, in combination with the fact that 𝜋 is somehow related to a
logarithm [PU16], gave us the intuition that the vector spaces 𝐴𝑐 and the affine spaces 𝐵𝑐

were in fact respectively the multiplicative and additive cosets of a unique vector space of
dimension 4 which we quickly identified as the subfield.

This intuition allowed us to write a first very crude decomposition of 𝜋 which we
improved iteratively by re-writing its subcomponents in progressively simpler ways. The
final result of this long and tedious process was the decomposition of 𝜋 as a TKlog we
then generalized.
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11 Proof of Lemma 3
The following proof is essentially the same as the one in [BPU16b]; we only provide it for
the sake of completeness.

Proof. We study 𝐹 = Φ𝜅 ∘T𝜅,ℎ,𝑔𝑚,𝑠 ∘ Split−1
𝛽 . Let 𝑎𝐿, 𝑎𝑅 and 𝑏𝐿 ̸= 0 be some 𝑚-bit linear

masks. By definition, of the LAT and of 𝐹 , we have

𝒲𝐹 [𝑎𝐿||𝑎𝑅, 𝑏𝐿||0]

=
∑︁

𝑟∈GF(2𝑚)

∑︁
ℓ∈GF(2𝑚)

(−1)𝑎𝐿·ℓ+𝑎𝑅·𝑟+(𝑏𝐿||0)·𝐹 (𝑟||ℓ)

=
∑︁

ℓ∈GF(2𝑚)

(−1)𝑎𝐿·ℓ+𝑏𝐿·𝜏(ℓ)

⏟  ⏞  
𝑟=0

+
∑︁

𝑟∈GF(2𝑚)*

∑︁
ℓ∈GF(2𝑚)

(−1)𝑎𝐿·ℓ+𝑎𝑅·𝑟+𝑏𝐿·𝜈(ℓ/𝑟) .

The first term, which corresponds to 𝑟 = 0, is equal to 𝒲𝜏 [𝑎𝐿, 𝑏𝐿]. To evaluate the second
term (where 𝑟 ̸= 0), we set 𝑢 = 𝜈(ℓ/𝑟) so that ℓ = 𝑟 ⊙ 𝜈−1(𝑢). Then we write∑︁

𝑟∈GF(2𝑚)*

∑︁
𝑢∈GF(2𝑚)

(−1)𝑎𝐿·(𝑟⊙𝜈−1(𝑢))+𝑎𝑅·𝑟+𝑏𝐿·𝑢

=
∑︁

𝑢∈GF(2𝑚)

(−1)𝑏𝐿·𝑢

⎛⎝ ∑︁
𝑟∈GF(2𝑚)

(−1)𝑎𝐿·(𝑟⊙𝜈−1(𝑢))+𝑎𝑅·𝑟 − 1⏟ ⏞ 
𝑟=0

⎞⎠
=

∑︁
𝑢∈GF(2𝑚)

(−1)𝑏𝐿·𝑢
∑︁

𝑟∈GF(2𝑚)

(−1)𝑎𝐿·(𝑟⊙𝜈−1(𝑢))+𝑎𝑅·𝑟 −
∑︁

𝑢∈GF(2𝑚)

(−1)𝑏𝐿·𝑢

⏟  ⏞  
=0

The sum over 𝑟 corresponds to the evaluation of a Walsh coefficient of a linear function,
namely 𝑟 ↦→ 𝑟×𝜈−1(𝑢). As a consequence, it is equal to 0 unless 𝑟 ↦→ 𝑎𝑅 ·𝑟⊕𝑎𝐿 ·(𝑟×𝜈−1(𝑢))
is constant.

If 𝑎𝐿 = 0, then this quantity is never constant. Thus, for 𝑎𝐿 = 0, we have

𝒲𝐹 [𝑎𝐿||𝑎𝑅, 𝑏𝐿||0] = 0 +𝒲𝜏 [0, 𝑏𝐿] = 0 .

However, if 𝑎𝐿 ≠ 0, then 𝑟 ↦→ 𝑎𝑅 · 𝑟⊕ 𝑎𝐿 · (𝑟⊙ 𝜈−1(𝑢)) is constant for exactly one value of
𝑢, in which case the sum is equal to 2𝑚. Therefore, we have in this case⎛⎝ ∑︁

𝑢∈GF(2𝑚)

(−1)𝑏𝐿·𝑢
∑︁

𝑟∈GF(2𝑚)

(−1)𝑎𝐿·(𝑟⊙𝜈−1(𝑢))+𝑎𝑅·𝑟

⎞⎠ ∈ {−2𝑚, +2𝑚}

and we conclude that, if (𝑎𝐿, 𝑎𝑅) ̸= (0, 0) and 𝑏𝐿 ̸= 0, then

𝒲𝐹 [𝑎𝐿||𝑎𝑅, 𝑏𝐿||0] =
(︀
𝒲𝜏 [𝑎𝐿, 𝑏𝐿] ± 2𝑚

)︀
[𝑎𝐿 ̸= 0] .

The lemma follows.
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12 Implementation of Our Decomposition
The following SAGE [Dev17] script prints the lookup table of 𝜋 after generating it using
its TKlog decomposition.

1 #!/ usr/bin/sage
2
3 from sage.all import *
4
5 # arithmetic machinery
6 N = 8
7 X = GF (2). polynomial_ring ().gen ()
8 F = GF (2**8 , name="a", modulus =X**8+X**4+X**3+X **2+1)
9 alpha = F.gen ()

10 xor = lambda x,y : Integer (x). __xor__ ( Integer (y))
11
12 # arbitrary components
13 s = [0, 12, 9, 8, 7, 4, 14, 6, 5, 10, 2, 11, 1, 3, 13]
14 lambda_vectors = [0x12 , 0x26 , 0x24 , 0x30]
15 cstte = 0xFC
16
17 # subfunction
18 def kappa (x):
19 result = 0
20 for j in xrange (0, 4):
21 if (x >> j) & 1 == 1:
22 result = xor(result , lambda_vectors [j])
23 return xor(result , cstte )
24
25
26 # generating pi
27 # -- pi [0]
28 pi = [ kappa (0)]
29 # -- pi[x] for x > 0
30 for x in xrange (1, 2**N):
31 l = int(F. fetch_int (x). _log_repr ())
32 i, j = l % 17, floor (l / 17)
33 if i == 0:
34 y = kappa (16 -j)
35 else :
36 gf_elmt = ( alpha **17) **s[j]
37 y = xor( kappa (16 -i), gf_elmt . integer_representation ())
38 pi. append (y)
39
40 print pi
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