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We significantly reduce the cost of factoring integers and computing discrete log-
arithms in finite fields on a quantum computer by combining techniques from Shor
1994, Griffiths-Niu 1996, Zalka 2006, Fowler 2012, Eker̊a-H̊astad 2017, Eker̊a 2017,
Eker̊a 2018, Gidney-Fowler 2019, Gidney 2019. We estimate the approximate cost of
our construction using plausible physical assumptions for large-scale superconducting
qubit platforms: a planar grid of qubits with nearest-neighbor connectivity, a charac-
teristic physical gate error rate of 10−3, a surface code cycle time of 1 microsecond, and
a reaction time of 10 microseconds. We account for factors that are normally ignored
such as noise, the need to make repeated attempts, and the spacetime layout of the
computation. When factoring 2048 bit RSA integers, our construction’s spacetime vol-
ume is a hundredfold less than comparable estimates from earlier works (Van Meter et
al. 2009, Jones et al. 2010, Fowler et al. 2012, Gheorghiu et al. 2019). In the abstract
circuit model (which ignores overheads from distillation, routing, and error correction)
our construction uses 3n+ 0.002n lgn logical qubits, 0.3n3 + 0.0005n3 lgn Toffolis, and
500n2 +n2 lgn measurement depth to factor n-bit RSA integers. We quantify the cryp-
tographic implications of our work, both for RSA and for schemes based on the DLP
in finite fields.

1 Introduction
Peter Shor’s introduction in 1994 of polynomial time quantum algorithms for factoring integers
and computing discrete logarithms [79, 89] was a historic milestone that greatly increased interest
in quantum computing. Shor’s algorithms were the first quantum algorithms that achieved a su-
perpolynomial speedup over classical algorithms, applied to problems outside the field of quantum
mechanics, and had obvious applications. In particular, Shor’s algorithms may be used to break
the RSA cryptosystem [73] based on the hardness of factoring integers that are the product of
two similarly-sized primes (hereafter “RSA integers”), and cryptosystems based on the discrete
logarithm problem (DLP), such as the Diffie-Hellman key agreement protocol [19] and the Digital
Signature Algorithm [59].

The most expensive operation performed by Shor’s factoring algorithm is a modular expo-
nentiation. Modern classical computers can perform modular exponentiations on numbers with
thousands of bits in under a second. These two facts may at first glance appear to suggest that fac-
toring a thousand bit number with Shor’s algorithm should only take seconds, but unfortunately (or
perhaps fortunately), that is not the case. The modular exponentiation in Shor’s algorithm is per-
formed over a superposition of exponents, meaning a quantum computer is required, and quantum
hardware is expected to be many orders of magnitude noisier than classical hardware [3, 48, 78].
This noise necessitates the use of error correction, which introduces overheads that ultimately make
performing reliable arithmetic on a quantum computer many orders of magnitude more expensive
than on classical computers [15, 28].
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Although Shor’s algorithms run in polynomial time, and although there has been significant
historical work focusing on reducing the cost of Shor’s algorithms and large scale quantum com-
puting architectures [7, 13, 16, 17, 21, 26–28, 44, 46, 64, 67, 85, 87, 88] (summarized in [82]), the
constant factors hidden by the asymptotic notation remain substantial. These constant factors
must be overcome, by heavy optimization at all levels, in order to make the algorithms practi-
cal. Current quantum computers are far from being capable of executing Shor’s algorithms for
cryptographically relevant problem sizes.

1.1 Our contributions and a summary of our results
In this work, we combine several novel and existing optimizations to reduce the cost of imple-
menting Shor’s algorithms. The main hurdle to overcome is to implement one or more modular
exponentiations efficiently, as these exponentiations dominate the overall cost of Shor’s algorithms.

We use the standard square-and-multiply approach to reduce the exponentiations into a se-
quence of modular multiplications. We apply optimizations to reduce the number of multiplications
and the cost of each multiplication.

The number of multiplications is reduced by using windowed arithmetic [35, 51, 83], which
uses small table lookups to fuse several multiplications together. It is also reduced by using Eker̊a
and H̊astad’s derivatives [21, 23–25] of Shor’s algorithms, that require fewer multiplications to be
performed compared to Shor’s original algorithms.

The cost of each multiplication is reduced by combining several optimizations. We use Zalka’s
coset representation of modular integers [91], which allows the use of cheaper non-modular arith-
metic circuits to perform modular additions. We use oblivious carry runways [33] to split registers
into independent pieces that can be worked on in parallel when performing additions. We bound
the approximation error introduced by using oblivious carry runways and the coset representation
of modular integers by analyzing them as approximate encoded permutations [33]. We use win-
dowed arithmetic (again) to fuse multiple additions into individual lookup additions [35]. We use
a layout of the core lookup addition operation where carry propagation is limited by the reaction
time of the classical control system, and where the lookups are nearly reaction limited [37]. Finally,
we optimize the overall computation by trying many possible parameter sets (e.g. window sizes
and code distances) for each problem size and selecting the best parameter set.

We estimate the approximate cost of our construction, both in the abstract circuit model, and
in terms of its runtime and physical qubit usage in an error corrected implementation under plau-
sible physical assumptions for large-scale superconducting qubit platforms with nearest neighbor
connectivity (see Figure 1). Our physical estimates are based on the surface code [28]. We assume
distance-d logical qubits are stored using square patches of 2(d+ 1)2 physical qubits (see Figure 8)
and are operated on via lattice surgery [27, 44]. We provide concrete cost estimates for several
cryptographically relevant problems, such as the RSA integer factoring problem, and various pa-
rameterizations of the DLP in finite fields. These cost estimates may be used to inform decisions
on when to mandate migration from currently deployed vulnerable cryptosystems to post-quantum
secure systems or hybrid systems.

We caution the reader that, although we report two significant figures in our tables, there are
large systemic uncertainties in our estimates. For example, doubling (or halving) the physical gate
error rate would increase (or decrease) the number of qubits required by more than 10%. The
estimates presented are intended to be ballpark figures that the cryptographic community can use
to understand the potential impact of quantum computers; not exacting predictions of the future.

Compared to previous works, we reduce the Toffoli count when factoring RSA integers by
over 10x (see Table 1). To only compare the Toffoli counts as in Table 1 may prove misleading,
however, as it ignores the cost of routing, the benefits of parallelization, etc. Ideally, we would like
to compare our runtime and physical qubit usage to previous works in the literature. However, this
is only possible when such estimates are actually reported and use physical assumptions similar to
our own. The number of works for which this requirement is met is limited.

The works by Jones et al. [46], Fowler et al. [28], and Gheorgiu et al. [30] stand out in that
they use the same basic cost model as we use in this paper, enabling reasonable comparisons to
be made. We improve on their estimates by over 100x (see Table 2) when accounting for slight
remaining differences in the cost model. We also include other historical cost estimates [61, 85],
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RSA via Ekerå-Håstad, hours
RSA via Ekerå-Håstad, megaqubits
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, hours
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, megaqubits
Short DLP or Schnorr DLP via EH, hours
Short DLP or Schnorr DLP via EH, megaqubits
Schnorr DLP via Shor, hours
Schnorr DLP via Shor, megaqubits
General DLP via EH, hours
General DLP via EH, megaqubits
General DLP via Shor, hours
General DLP via Shor, megaqubits

Figure 1: Log-log plot of estimated space and expected-time costs, using our parallel construction, for various
problems and problem sizes. See Section 3 for additional details. The jumps in space around n = 32786 occur
as the algorithm exceeds the error budget of the CCZ factory from [36] and switches to the T factory from [27].
Generated by ancillary file “estimate costs.py”.

Abstract Qubits Measurement Depth Toffoli+T/2 Count Toffoli+T/2 Count (billions) Min Volume (megaqubitdays)
Factoring RSA integers Asymptotic n = 1024 n = 2048 n = 3072 n = 1024 n = 2048 n = 3072
Vedral et al. 1996 [87] 7n+ 1 80n3 +O(n2) 80n3 +O(n2) 86 690 2300 240 4100 23000
Zalka 1998 (basic) [90] 3n+O(1) 12n3 +O(n) 12n3 +O(n2) 13 100 350 16 250 1400

Zalka 1998 (log add) [90] 5n+O(1) 600n2 +O(n) 52n3 +O(n2) 56 450 1500 16 160 540
Zalka 1998 (fft mult) [90] ≈ 96n ≈ 217n1.2 ≈ 217n2 140 550 1200 62 260 710

Beauregard 2002 [6] 2n+ 3 144n3 lgn+O(n2 lgn) 576n3 lg2 n+O(n3 lgn) 62000 600000 2200000 32000 380000 1700000
Fowler et al. 2012 [28] 3n+O(1) 40n3 +O(n2) 40n3 +O(n2) 43 340 1200 53 850 4600
Häner et al. 2016 [42] 2n+ 2 52n3 +O(n2) 64n3 lgn+O(n3) 580 5200 19000 230 2800 13000

(ours) 2019 3n + 0.002n lg n 500n2 + n2 lg n 0.3n3 + 0.0005n3 lg n 0.4 2.7 9.9 0.5 5.9 21
Solving elliptic curve DLPs Asymptotic n = 160 n = 224 n = 256 n = 160 n = 224 n = 256

Roetteler et al. 2017 [74] 9n+O(lgn) 448n3 lgn+ 4090n3 448n3 lgn+ 4090n3 30 84 130 13 52 83

Table 1: Expected costs of factoring n bit RSA integers using various constructions proposed in the literature.
For comparison, we include a single construction for solving the DLP in n bit prime order elliptic curve groups
with comparable classical security levels. The estimated minimum spacetime volumes assume modern surface
code constructions, even for older papers. See Appendix A for details on each entry in this table.

Physical assumptions Approach Estimated costs
Historical cost Physical gate Cycle time Reaction time Physical Distillation Execution Physical qubits Expected runtime Expected volume

estimate at n = 2048 error rate (microseconds) (microseconds) connectivity strategy strategy (millions) (days) (megaqubitdays)
Van Meter et al. 2009 [85] 0.2% 49 N/A planar 1000+ T and S distillation limited carry lookahead 6500 410 2600000

Jones et al. 2010 [46] 0.1% 0.25 N/A planar 7000 T distillation limited carry lookahead 620 10 6200
Fowler et al. 2012 [28] 0.1% 1 0.1 planar 1200 T reaction limited ripple carry 1000 1.1 1100

O’Gorman et al. 2017 [61] 0.1% 10 1 arbitrary block CCZ reaction limited ripple carry 230 3.7 850
Gheorghiu et al. 2019 [30] 0.1% 0.2 0.1 planar 1100 T reaction limited ripple carry 170 1 170

(ours) 2019 (1 factory) 0.1% 1 10 planar 1 CCZ distillation limited ripple carry 16 6 90
(ours) 2019 (1 thread) 0.1% 1 10 planar 14 CCZ reaction limited ripple carry 19 0.36 6.6

(ours) 2019 (parallel) 0.1% 1 10 planar 28 CCZ reaction limited carry runways 20 0.31 5.9

Table 2: Historical estimates of the expected costs of factoring n = 2048 bit RSA integers, and the assumptions
they used. We caution the reader to carefully consider the physical assumptions of each paper when comparing
their expected volumes. For example, assuming a cycle time that is 5x more optimistic will reduce the expected
volume by a corresponding factor of 5. See Appendix B for details on each entry in this table.
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although in these cases the differences in physical assumptions are substantial.
As most previous works focus either on factoring, or on the DLP in elliptic curve groups, it

is hard to find references against which to compare our cost estimates for solving the DLP in
multiplicative groups of finite fields. In general, the improvements we achieve for factoring RSA
integers are comparable to the improvements we achieve for solving the general DLP in finite
fields. As may be seen in Figure 1, the choice of parameterization has a significant impact on the
costs. For the short DLP, and the DLP in Schnorr groups, we achieve significant improvements.
These are primarily due to our use of derivatives of Shor’s algorithm that are optimized for these
parameterizations.

1.2 Notation and conventions
Throughout this paper, we refer to the modulus as N . The modulus is the composite integer to be
factored, or the prime characteristic of the finite field when computing discrete logarithms. The
number of bits in N is n = dlgNe where lg(x) = log2(x). The number of modular multiplication
operations to perform (i.e. the combined exponent length in the modular exponentiations) is
denoted ne. Our construction has a few adjustable parameters, which we refer to as cexp (the
exponent window length), cmul (the multiplication window length), csep (the runway separation),
and cpad (the padding length used in approximate representations).

In the examples and figures, we consider moduli of length n = 2048 bits when n needs to be
explicitly specified. This is because n = 2048 bits is the default modulus length in several widely
used software programs [63, 80, 81]. Our optimizations are not specific to this choice of n. Section 3
provides cost estimates for a range of cryptographically relevant modulus lengths n.

We often quote costs as a function of both the number of exponent qubits ne and the problem
size n. We do this because the relationship between ne and n changes from problem to problem, and
optimizations that improve ne are orthogonal to optimizations that improve the cost of individual
operations.

1.3 On the structure of this paper
The remainder of this paper is organized as follows: In Section 2, we describe our construction
and the optimizations it uses, and show how to estimate its costs. We then proceed in Section 3 to
describe how existing widely deployed cryptosystems are impacted by our work. In Section 4, we
present several ideas and possible optimizations that we believe are worth exploring in the future.
Finally, we summarize our contributions and their implications in Section 5.

2 Our construction
2.1 Quantum algorithms
In Shor’s original algorithm [79], composite integers N that are not pure powers are factored by
computing the order r of a randomly selected element g ∈ Z∗N . Specifically, period finding is per-
formed with respect to the function f(e) = ge. This involves computing a modular exponentiation
with ne = 2n qubits in the exponent e.

If r is even and gr/2 6≡ −1, which holds with probability at least 1/2 by [79], this yields non-
trivial factors of N . To see why, lift g to Z. As gr − 1 = (gr/2 − 1)(gr/2 + 1) ≡ 0 (mod N) it
suffices to compute gcd((gr/2 ± 1) mod N,N) to factor N .

In [21, 23, 25], Eker̊a and H̊astad explain how to factor RSA integers N = pq in a different
way; namely by computing a short discrete logarithm. This algorithm proceeds as follows: First
y = gN+1 is computed classically, where as before g is randomly selected from Z∗N and of unknown
order r. Then the discrete logarithm d = logg y ≡ p + q (mod r) is computed on the quantum
computer. To see why d ≡ p+ q (mod r), note that Z∗N has order φ(N) = (p−1)(q−1) by Euler’s
totient theorem, so d ≡ pq+ 1 ≡ p+ q (mod r) as r divides φ(N) and pq+ 1 ≡ p+ q (mod φ(N)),
with equality if r > p+ q. For large random RSA integers, the order r > p+ q with overwhelming
probability. Hence, we may assume d = p + q. By using that N = pq and d = p + q, where N
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and d are both known, it is trivial to deterministically recover the factors p and q as the roots of
the quadratic equation p2 − dp+N = 0.

The quantum part of Eker̊a and H̊astad’s algorithm is similar to the quantum part of Shor’s
algorithm, except for the following important differences: there are two exponents e1, e2, of lengths
2m and m qubits respectively. The value m is a positive integer that must satisfy p + q < 2m.
We set m = 0.5n + O(1). Period finding is performed against the function f(e1, e2) = ge1y−e2

rather than the function f(e) = ge. The total exponent length is hence ne = 3m = 1.5n + O(1)
qubits, compared to 2n qubits in Shor’s algorithm. It is this reduction in the exponent length that
translates into a reduction in the overall number of multiplications that are performed quantumly.

The two exponent registers are initialized to uniform superpositions of all 22m and 2m values,
respectively, and two quantum Fourier transforms are applied independently to the two registers.
This implies that standard optimization techniques, such as the square-and-multiply technique,
the semi-classical Fourier transform of Griffiths and Niu [40], recycling of qubits in the exponent
registers [58, 66], and so forth, are directly applicable.

The classical post-processing algorithm used to extract the logarithm from the observed fre-
quencies is by necessity different from Shor’s. It uses lattice-based techniques, and critically does
not require r to be known. Eker̊a shows in [23] that the post-processing algorithm has probability
above 99% of recovering d. As the factors p and q are recovered deterministically from d and N ,
this implies that it in general suffices to run the quantum algorithm once.

In summary, Eker̊a and H̊astad’s algorithm is similar to Shor’s algorithm from an implemen-
tation perspective: a sequence of multiplications is computed, where one operand is in a quantum
register and one operand is a classical constant. The multiplications are interleaved with the
Fourier transform. It is of no significance to our construction what sequence of classical constants
are used, or if one or more independent Fourier transforms need to be applied. This fact, coupled
with the fact that the algorithms of Eker̊a and H̊astad may be used to solve other relevant problems
where ne is a different function of n (see Section 3), lead us to describe our construction in terms
of n and ne.

Note that the above description of the algorithm has been somewhat simplified compared to
the algorithm described in [23, 25] in the interest of improved legibility. Furthermore, there are
technical conditions that need to be respected for the analysis in [23] to be applicable. For the full
details, see Appendix A.2.1 of [23].

2.2 Reference implementation
To avoid overloading the reader, we will describe our factoring construction by starting from a
simple reference implementation of the quantum part of Shor’s original algorithm and then apply
optimizations one by one.

The reference implementation works the way most implementations of Shor’s algorithm do, by
decomposing exponentiation into iterative controlled modular multiplication [6, 31, 42, 87, 90, 91].
A register x is initialized to the |1〉 state, then a controlled modular multiplication of the classical

constant g2j (mod N) into x is performed, controlled by the qubit ej from the exponent e, for
each integer j from ne − 1 down to 0. After the multiplications are done, x is storing ge (mod N)
and measuring x completes the hard part of Shor’s algorithm.

Controlled modular multiplication is still not a primitive operation, so it must also be decom-
posed. It can be performed by introducing a work register y initialized to |0〉 and then performing
the following two controlled scaled additions: y += x ·k (mod N) then x += y · (−k−1) (mod N).
After these two operations, y is storing the result and x has been cleared to the |0〉 state. Swapping
the two registers, so that the result is in x, completes the multiplication.

Performing a controlled scaled addition with classical scale factor k can be done with a series of n
controlled modular additions. For each qubit qj in the input register, you add k · 2j (mod N) into
the target, controlled by qj . Controlled modular addition in turn is performed via a series of non-
modular additions and comparisons. For example, [87] uses five additions for this purpose. Finally,
using the Cuccaro adder [18], uncontrolled non-modular additions can be performed with O(1)
additional workspace using 2n Toffolis.

Combining the numbers in the preceding two paragraphs implies a Toffoli count of ne ·2n·5·2n =
20nen

2 for the reference implementation. It constitutes the baseline for the optimizations that we
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apply in the following sections.

2.3 The quantum Fourier transform
Before proceeding, note that we focus exclusively on costing the controlled modular multiplica-
tions, both in the reference implementation and throughout the remainder of this paper. This is
because they constitute the hard part of Shor’s algorithm from an implementation perspective.
The other part of the algorithm, the quantum Fourier transform (QFT), can be implemented
semi-classically [40] and interleaved with the controlled modular multiplications.

When the QFT is implemented in this manner (see Figure 2) it suffices to have control qubits
for the window of controlled modular multiplications currently being processed, as these control
qubits may be recycled [58, 66]. In the QFT, a sequence of classically controlled gates that shift
the phase by 2π/2k for various integers k up to the QFT dimension are applied to the control
qubit for each modular multiplication. This sequence can be combined into a single shift, and
implemented using e.g. the technique in [10], to a level of precision far below other sources of error
in the algorithm without incurring a noticeable cost. This implies that the cost of implementing
the QFT is negligible.

Note furthermore that when we analyze the success probabilities of Shor’s algorithms, and the
various derivatives, we assume the use of an ideal QFT even though the implemented QFT is
technically an approximation.

2.4 The coset representation of modular integers
Following Zalka [91], the first improvement we make over the reference implementation is to switch
from the usual representation of integers to the coset representation of modular integers. The usual
representation of an integer k in a quantum computer is the computational basis state |k〉.

The coset representation is different: It uses a periodic superposition with period N and offset k.

In ideal conditions, the integer k (mod N) is represented by the state
√

2−cpad
∑2cpad−1

j=0 |jN + k〉
where cpad is the number of additional padding qubits placed at the end of the register after the high
order bits. The key idea is that the periodicity of the superposition causes a non-modular adder to
perform approximate modular addition on this representation, and the error of the approximation
can be exponentially suppressed by adding more padding to the register.

As we will discuss later, the amount of padding required is logarithmic in the number of
operations. This small cost enables the large benefit of using non-modular adders instead of
modular adders. It is possible to perform a controlled non-modular addition in 4n Toffolis [18, 32],
significantly cheaper than the 10n we assumed for a controlled modular adder. Therefore switching
to the coset representation reduces the leading asymptotic term of the Toffoli count of the reference
implementation from 20nen

2 to 8nen
2.

2.5 Windowed arithmetic
The next optimization we use is windowed arithmetic [35, 51, 83]. Specifically, we follow the
modular exponentiation construction from [35] and use windowing at two levels.

First, at the level of a multiplication, we window over the controlled additions. We fuse groups
of controlled additions into single lookup additions. A lookup addition is an addition where the
value to add into a register is the result of a table lookup. Small windows of the qubits that
would have been used as controls for the additions are instead treated as addresses into classically
precomputed tables of values to unconditionally add into the target.

Second, at the level of the exponentiation, we window over the controlled multiplications. This
is done by including exponent qubits in the addresses of all lookups being performed within the
multiplications. We refer the reader to [35] for the exact details of this nested windowed arithmetic
construction.

The cost of windowed arithmetic depends on the size of the windows. Let cexp be the size of the
window over exponent qubits that are being used to control multiplications. Increasing cexp pro-
portionally decreases the number of multiplications needed for the modular exponentiation, since
more exponent qubits are handled by each multiplication. Let cmul be the size of the window over
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|+〉 Rz(...)

Input e[ne − 4 : ne] QFT

|+〉 Rz(...)

Input e[ne − 8 : ne − 4] QFT

. . .

|+〉 Rz(...) |+〉 Rz(...) . . .

|+〉 Rz(...) |+〉 Rz(...) . . .

|+〉 Rz(...) |+〉 Rz(...) . . .

/
n

×g2ne−4·e[ne−4:ne] (mod N) ×g2ne−8·e[ne−8:ne−4] (mod N) . . .

Figure 2: Working through the qubits representing an exponent in Shor’s algorithm with a window size cexp
of four, while using a semi-classical Fourier transform [40] with recycling [58, 66]. The notation e[a : b] =
be/2ac mod 2b−a refers to a slice of (qu)bits in e from (qu)bit index a (inclusive) to (qu)bit index b (exclusive).
Each Rz(. . . ) gate rotates by an amount determined by previous measurements, e.g. using the technique in
[10]. All 16 possible values of the expression ge[4:8]24

(mod N) (and similar expressions) can be precomputed
classically, and looked up on demand within the multiplication circuit. This reduces the number of multiplications
by a factor of the window size, at the cost of some additional lookup work within the multiplication.

factor qubits being used to control additions. Increasing cmul proportionally decreases the number
of additions needed within each multiplication. By using windowed arithmetic, the ne controlled
multiplications we needed to perform become ne/cexp uncontrolled multiplications while the 2n
controlled additions we needed to perform within each multiplication become 2n/cmul uncontrolled
additions. The cost of increasing cexp and cmul is that each addition is now accompanied by a
lookup, and the Toffoli count of the lookup operation is 2cexp+cmul .

Using Cuccaro et al.’s adder [18], each n-bit addition has a Toffoli count and measurement
depth of 2n. Using Babbush et al.’s QROM read (section 3A of [2]), each table lookup has a
Toffoli count and measurement depth of 2cmul+cexp and uses a negligible O(cmul + cexp) ancillae.
Using measurement-based uncomputation (appendix C of [8]), uncomputing each table lookup has

a Toffoli count and measurement depth of 2
√

2cmul+cexp which is negligible compared to the lookup
for the parameters we will be using.

The measurement-based uncomputation uses max(0,
√

2cmul+cexp−n) ancillae (it starts by mea-
suring away n logical qubits of the lookup output register). This ancillae count is always zero for
the reasonable values of cmul, cexp, and classically intractable values of n, that we consider in this
paper. The overhead due to the logarithmic padding introduced by the coset representation of
modular integers is logarithmic in n.

Thus, by using windowed arithmetic, the leading term of the Toffoli count of the reference
implementation has been reduced to 2nen

cmulcexp
(2n + 2cmul+cexp). If we set cmul = cexp = 1

2 lgn then

we achieve a Toffoli count with leading term 24nen2

lg2 n
. In terms of space, we are using 3n+O(lgn)

logical qubits. The qubits are distributed as follows: n + O(lgn) for the accumulation register
storing the product, n + O(lgn) for a workspace register during the multiplication, n + O(lgn)
for the lookup output register, and O(lgn) qubits to hold the part of the exponent needed for the
current stage of the semi-classical Fourier transform [40].

2.6 Oblivious carry runways
The last major algorithmic optimization we apply is the use of oblivious carry runways [33]. The
basic problem addressed by runways is that, normally, a carry signal generated at the bottom of a
register must propagate all the way to the top of the register. This process can be short-circuited
by instead terminating the carry propagation into an appropriately constructed runway. Runways
allow large additions to be performed piecewise, with each piece being worked on in parallel, by
terminating carries into appropriately placed runways at the end of each piece.

As with the coset representation of modular integers, circuits using oblivious carry runways
approximate the original circuit instead of perfectly reproducing it. But, as we will discuss later,
increasing the runway length cpad exponentially suppresses the approximation error.

For the full details of how to add, maintain, and remove oblivious runways we refer the reader
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register[0,csep) . . . register[0,csep)

runway0 Input r0 . . . Input r0 runway0

register[csep,csep+cpad)
+r0

≈ |+〉⊗cpad

−r0

register[csep,csep+cpad)

|0〉 runway′0 . . . |0〉
register[csep+cpad,2csep) . . . register[csep+cpad,2csep)

runway1 Input r1 . . . Input r1 runway1

register[2csep,2csep+cpad)
+r1

≈ |+〉⊗cpad

−r1

register[2csep,2csep+cpad)

|0〉 runway′1 . . . |0〉
register[2csep+cpad,3csep) . . . register[2csep+cpad,3csep)...

Figure 3: How to temporarily reduce oblivious carry runways to a single qubit, in preparation for being used as
the input factor in a multiply-add operation that must iterate over all qubits in the register. The multiply-add
should occur during the “. . . ” section in the middle.

to [33]. That being said, we will point out one optimization not mentioned in that paper which
applies here. Note that, ultimately, each register we add carry runways to is going to either be
measured or discarded. The last thing that would happen to these registers, before they were
measured or discarded, is carry runway removal. However, the carry runway removal process is
classical; it can be constructed out of Toffoli gates. As a result, the carry runway removal process
does not need to be performed under superposition. The register qubits and runway qubits can
simply be measured just before the runways would have been removed, and the runway removal
process can be performed by classical post-processing of the measurements.

Note that we use cpad for both the runway length of oblivious carry runways and the padding
length of the coset representation. We do this because they have identical error mechanisms,
namely unwanted carries into the extra qubits. There is negligible benefit in suppressing one more
than the other.

The major benefit of oblivious carry runways, compared to previous techniques for reducing
the depth of addition such as Draper et al.’s logarithmic depth carry-lookahead adder [20], is
that oblivious carry runways can be introduced gradually without incurring large overheads. The
Toffoli count and workspace overheads are linear in the number of pieces dn/csepe (where csep is
the runway spacing) but only logarithmic in n.

For example, if you place a single runway at the midpoint of a 2048-qubit register, then the
number of qubits and the number of Toffolis needed to perform an addition will increase by a
couple percent but the depth of the additions is nearly halved.

2.7 Interactions between optimizations
A major benefit of the set of optimizations we have chosen to use in this paper is that they
complement each other. They make orthogonal improvements that compound or reinforce, instead
of conflicting.

For example, when using the coset representation of modular integers, it is important that
additions only use offsets less than N . Larger offsets cause larger approximation error. However,
because we are using windowed arithmetic, every addition we perform has an offset that is being
returned by a table lookup. Since the entries in the tables are classically precomputed, we can
classically ensure all offsets are canonicalized into the [0, N) range.

There are two cases where the optimizations do not mesh perfectly.
First, using oblivious runways reduces the depth of addition but not the depth of lookups. This

changes their relative costs, which affects the optimal window sizes to use in windowed arithmetic.
When addition is suddenly four times faster than it used to be, the optimal window sizes cexp

and cmul decrease by 1 (approximately).
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Second, when iterating over input qubits during a multiply-add, it is necessary to also iterate
over runway qubits and padding qubits. This increases the number of lookup additions that need
to be performed in order to complete a windowed multiplication. This issue is partially solved
by temporarily adding the runways back into the main register before performing a multiply-add
where that register is used as one of the factors (instead of the target). This temporarily reduces
each runway to a single carry qubit (see Figure 3). We could reduce the runways to zero qubits,
but this would require propagating the carry qubits all the way across the register, so we do not.

2.8 Abstract circuit model cost estimate
We have now described all the details necessary to estimate the cost of our implementation in the
abstract circuit model. The cost depends on the two parameters specified by the problem (the
input size n and the number of exponent qubits ne) and also the four controllable parameters
we have discussed (the exponentiation window size cexp, the multiplication window size cmul, the
runway separation csep, and the padding/runway length cpad).

Although we do consider alternate values when producing tables and figures, in general we have
found that the settings cexp = cmul = 5, csep = 1024, cpad = 2 lgn + lgne + 10 ≈ 3 lgn + 10 work
well. In this overview we will focus on these simple, though slightly suboptimal, values.

Recall that an exponentiation may be reduced to a sequence of ne multiplications, which we
process in groups of size cexp. For each multiplication, we do two multiply-adds. Each multiply-
add will use several small additions to temporarily reduce the runway registers to single qubits.
The multiply-add then needs to perform a sequence of additions controlled by the n main register
qubits, the O(lgn) coset padding qubits, and the n/csep reduced runway qubits. Using windowed
arithmetic, these additions are done in groups of size cmul with each group handled by one lookup
addition. Therefore the total number of lookup additions we need to perform is

LookupAdditionCount(n, ne) = 2nne

cexpcmul
· csep + 1

csep
+O

(
ne lgn
cexpcmul

)
→ 2nne

25 · 1025
1024 +O (ne lgn)

≈ 0.1nen

(1)

The lookup additions make up essentially the entire cost of the algorithm, i.e. the total Toffoli
count is approximately equal to the Toffoli count of a lookup addition times the lookup addition
count. This works similarly for the measurement depth. Ignoring the negligible cost of uncom-
puting the lookup, the Toffoli count of a lookup addition is 2n + ncpad/csep + 2cexp+cpad and the
measurement depth is 2csep + 2cpad + 2cexp+cmul . Therefore

ToffoliCount(n, ne) ≈ LookupAdditionCount(n, ne) ·
(

2n+ cpad
n

csep
+ 2cexp+cpad

)
≈ 0.2nen

2 + 0.0003nen
2 lgn

(2)

MeasurementDepth(n, ne) ≈ LookupAdditionCount(n, ne) ·
(
2csep + 2cpad + 2cexp+cmul

)
≈ 300nen+ 0.5nen lgn

(3)

These approximate upper bounds, with ne set to 1.5n, are the formulae we report in the abstract
and in Table 1 for the cost of factoring RSA integers.

2.9 Approximation error
Because we are using oblivious carry runways and the coset representation of modular integers, the
computations we perform are not exact. Rather, they are approximations. This is not a problem
in practice, as we may bound the approximation error using concepts and results from [33].

The oblivious runways and the coset representation of modular integers are both examples of
“approximate encoded permutations” which have a “deviation”. When using a padding/runway
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Figure 4: Space usage during the key lookup-add-unlookup inner loop of our construction. During lookup,
the target register is spread out to make room for the temporary register that will hold the lookup’s output.
During addition the target register and lookup output register are squeezed through a moving operating area
that sweeps up then down, applying the MAJ and UMA sweeps of Cuccaro’s adder. Uncomputing the lookup
is done with measurement-based uncomputation [8], which is overlapped slightly with the UMA sweep (this is
why the yellow rows disappear early). “CCZ factory” space is being used to produce CCZ states. “CCZ fixup”
space is being used to convert the CCZ states into AutoCCZ states [37]. “MAJ/UMA” space is being used to
perform a ripple carry addition, fueled by AutoCCZ states, of the temporary register (the result of the lookup)
into the target register.

length of cpad, and a runway separation of csep, the deviation per addition is at most n/(csep2cpad).
Deviation is subadditive under composition, so the deviation of the entire modular exponentiation
process is at most the number of lookup additions times the deviation per addition.

We can use this to check how much deviation results from using cpad = 2 lgn+lgne +10, which
we so far have merely claimed would be sufficient:

TotalDeviation(n, ne) ≤ LookupAdditionCount(n, ne) · n

csep2cpad

≈ 0.1nen
n

1024 · 22 lg n+lg ne+10

≈ 0.1 n2ne

1024 · n2ne · 210

= 0.1 1
1024 · 210

≈ 10−7

(4)

When an approximate encoded permutation has a deviation of ε, the trace distance between
its output and the ideal output is at most 2

√
ε. Therefore the approximation error (i.e. the

trace distance due to approximations), using the parameter assignments we have described, is
roughly 0.1%. This is significantly lower than other error rates we will calculate.
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2.10 Spacetime layout
Our implementation of Shor’s algorithm uses a layout that is derived from the (nearly) reaction
limited layouts presented in [37]. In these layouts, a lookup addition is performed as follows (see
Figure 4). All data qubits are arranged into rows. The rows of qubits making up the target register
of the addition are spread out into row pairs with gaps five rows wide in between. In these gaps
there will be two rows for the lookup output register, and three rows for access hallways. This
arrangement allows the lookup computation two ways to access each output row, doubling the
speed at which it can run, while simultaneously ensuring the target register and the lookup output
register are interleaved in a convenient fashion.

After the lookup is completed, the rows of the lookup output register and the addition target
register are packed tightly against the top (or equivalently bottom) of the available area. An
operating area is prepared below them, and the data is gradually streamed through the operating
area while the operating area gradually shifts upward. This performs the MAJ sweep of Cuccaro’s
ripple carry adder [18]. Everything then begins moving in the opposite direction in order to perform
the UMA sweep on the return stroke.

The lookup register is quickly uncomputed using measurement-based uncomputation [8], and
the system is returned to a state where another lookup addition can be performed.

In order to perform piecewise additions separated by oblivious carry runways, we simply par-
tition the computation horizontally as shown in Figure 5 and Figure 7. The lookup before each
addition prepares registers across the pieces, as shown in Figure 6, but the additions themselves
stick to their own piece.

The width of each piece is determined by the number of CCZ factories needed to run at the
reaction limited rate. This number is 14, assuming a code distance of 27 and using the CCZ
factories from [36, 37]. Also, assuming a level 1 code distance of 17, the footprint of the factory
is 15 × 8 [37]. The factories are laid out into 2 rows of 7, with single logical qubit gaps to allow
space for data qubits to be routed in and out. The total width of a piece is 15 · 7 + 7 = 113 logical
qubits. The height of the operating area is 33 rows of logical qubits (2 · 8 for the CCZ factories,
three for the ripple-carry operating area, six for AutoCCZ fixup boxes, and eight for routing data
qubits). The cpad+csep qubits from each register add another 30 rows (approximately). So, overall,
when working on a problem of size n, the computation covers a 113w × 63 grid of logical qubits
where w = n/csep = n/1024.

2.11 Runtime
Because our implementation is dominated almost entirely by the cost of performing lookup addi-
tions, its runtime is approximately equal to the number of lookup additions times the runtime of
a single lookup addition.

During the lookup phase of a lookup addition, the computation is code depth limited. Assuming
a code depth of d = 27 and a surface code cycle time of 1 microsecond, it takes 1µs·d/2·2cexp+cmul ≈
14 milliseconds to perform the lookup using double-access hallways.

During the addition phase of a lookup addition, the computation is reaction limited. Given a
reaction time of 10 microseconds, it takes 2(csep + cpad) · 10µs ≈ 22 milliseconds to perform the
addition. The remaining bits of a lookup addition, such as uncomputing the lookup and rearrang-
ing the rows, take approximately 1 millisecond. Thus one lookup addition takes approximately
37 milliseconds. Given this fact, i.e. that we perform quantum lookup additions slower than most
video games render entire frames, we can approximate the total runtime:

TotalRuntime(n, ne) ≈ LookupAdditionCount(n, ne) · 37 milliseconds

≈ 4nen milliseconds
(5)

Though we caution the reader that this estimate ignores the fact that, at larger problem sizes,
lookups become slower due to the minimum code distance increasing.

This estimate implies that factoring a 2048 bit integer will take approximately 7 hours, assuming
only one run of the quantum part of the algorithm is needed. Note that in our reported numerical
estimates we achieve lower per-run numbers by using more precise intermediate values and by more
carefully selecting parameters.
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Figure 5: Data layout during a parallel addition. Corresponds to one of the “addition” columns from Figure 4.
To scale, assuming a 2048 bit number is being factored. The left and right halves of the computer run completely
independently and in parallel. The factories (red boxes and pink boxes) are feeding AutoCCZ states into the
blue area, which is rippling the carry bit back and forth as the offset and target register data (green and yellow
rows) is routed through gaps between the factories to the other side.

Figure 6: Data layout during a table lookup, as generalized from [37]. To scale, assuming a 2048 bit number is
being factored. Corresponds to the center “lookup” column from Figure 4. The factories (red boxes and pink
boxes) are feeding AutoCCZ states into the dark gray region, which is performing the unary iteration part of a
table lookup computation. There are enough factories, and enough work space, to run the lookup at double
speed, made possible by the fact that every qubit in the lookup output register (yellow) is adjacent to two
access hallways. The target register (green rows) and factor register (blue rows) are idle, except that a few
qubits from the factor register are being used as address bits in the table lookup.

Figure 7: Spacetime layout during part of an addition. Time moves upward and has been truncated. Corresponds
to one of the “addition” columns from Figure 4. Tiny gray squares are the size of one logical qubit. Yellow and
green rows are qubits from the target and input registers of the addition. Dark blue rows are qubits from an idle
register. Red boxes are CCZ magic state factories, turned into AutoCCZ states by the pink boxes. Light blue
boxes are the MAJ operation of Cuccaro’s adder, arranged into a spacelike sweep to keep ahead of the control
software). The full adder is formed by repeating this pattern, with the operating area gradually sweeping up and
then down through the green/yellow data. The diagram is to scale for n = 2048 with a level 2 code distance
of d = 27 and a level 1 code distance of 17, and fits on a 225× 63 rectangular grid of logical qubits.
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2.12 Distillation error
In order to perform the 0.2nen

2 + 0.0003nen
2 lgn Toffoli gates our implementation uses to factor

an n = 2048 bit RSA integer, we need to distill approximately 3 billion CCZ states. According to
the spreadsheet included in [36], using a level 1 code distance 17 and a level 2 code distance of 27,
this corresponds to a total distillation error of 6.4%.

This quantity is computed by considering the initial error rate of injecting physical T states,
topological error within the factory, and the likelihood of the various stages of distillation producing
a false negative.

2.13 Topological error
Elsewhere in this paper we frame our hardware assumptions in terms of a physical gate error rate.
In [29] it is stated that, for a physical gate error rate of 10−3, the probability of error in a logical
qubit of distance d, per surface code cycle, is approximately 10−dd/2+1e. We base our cost estimates
on the assumption that this scaling relationship holds. Each time the code distance is increased
by two, the logical error suppression must jump by at least a factor of 10. We believe a physical
error rate of 10−3 is sufficient to achieve this scaling relationship.

Now that we know the number of logical qubits, the runtime of the algorithm, and the rela-
tionship between code distance and logical error rates, we can approximate the probability of a
topological error occurring within the surface code during the execution of the algorithm. This
will allow us to verify our initial assumption that a code distance of 27 is sufficient in the case
where n = 2048. Larger computations will require larger code distances.

When factoring an n = 2048 bit RSA integer we are using a board of 226 · 63 logical qubits.
Approximately 25% of these qubits are being used for distillation, which we already accounted
for, and so we do not count them in this calculation. The remaining qubits are kept through
4nen · 1000 ≈ 25 billion surface code cycles, which implies that the probability of a topological
error arising is approximately 10−d27/2+1e · 226 · 63 · 0.75 · 25 · 109 ≈ 27%.

This is a large error rate. Using a code distance of 27 is pushing the limits of feasibility. We
would need to repeat the computation roughly 1.4 times, on average, to factor a number. If our
goal is to minimize the expected spacetime volume of the computation, perhaps we should increase
the code distance to 29. Doing so would increase the physical qubit count by 15%, but the error
rate would drop by approximately a factor of 10 and so the expected number of runs would be
much closer to 1. Ultimately the choice comes down to one’s preferences for using more space
versus taking more time.

2.14 Physical qubit count
In lattice surgery, a logical qubit covers 2(d+ 1)2 physical qubits where d is the code distance (see
Figure 8). Assuming we push the limits and use a code distance of 27 at n = 2048, each logical
qubit will cover 1568 physical qubits. Therefore the total physical qubit count is the number of
logical qubits 226 · 63 times 1568; approximately 23 million qubits.

Attentive readers will note that this number disagrees with the estimate in the title of the
paper. This is because, throughout this section, we have been sloppily rounding quantities up and
choosing fixed parameters in order to keep things simple. The estimate in the title is produced by
the ancillary file “estimate costs.py”, which does not make these simplifications. (In particular,
“estimate costs.py” realizes that the level 1 code distance used during distillation can be reduced
from 17 to 15 when n = 2048 and this adjusts the layout in several fortuitous ways.)

2.15 Construction summary
We now review the basic flow of our implementation of Shor’s algorithm, including some details
we would have otherwise left unstated.

The quantum part of the algorithm starts by preparing two registers, storing zero and one
respectively, into the coset representation of modular integers with oblivious carry runways. The
cost of this preparation is negligible compared to the cost of the rest of the algorithm. The register
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Figure 8: Stabilizer configuration diagrams for lattice surgery qubits in the rotated surface code with code
distances d of (from left to right) 3, 5, and 11. Each small yellow circle is a data qubit. Each filled shape is
a stabilizer that is measured each surface code cycle. Black squares are four body Z stabilizers, gray squares
are four body X stabilizers, black semi-circles are two body Z stabilizers, and gray semi-circles are two body
X stabilizers. Not all physical qubits are shown; in particular there is a measurement qubit present for each
stabilizer. There are 2(d + 1)2 physical qubits per logical qubit, including the spacing between logical qubits.
We assume that each increase of the code distance by 2 suppresses logical errors per surface code cycle by a
factor of 10 and that this is achieved with a physical error rate of 10−3.

storing one is the accumulation register that will ultimately store the modular exponentiation,
while the zero register is a workspace register.

The bulk of the execution time is then spent performing the modular exponentiation(s). Ex-
ponent qubits are iteratively introduced in groups of size cexp. We are performing a semi-classical
Fourier transform [40], so the exponent qubits must be phased according to measurements on
previous exponent qubits. Performing the phasing operations requires using T factories instead
of CCZ factories, but there is so little phasing work compared to CCZ work that we ignore this
cost in our estimates. The phased exponent qubits are used as address qubits during a windowed
modular multiplication, then measured in the frequency basis and discarded. See Figure 2. Within
this step, almost all of the computation time is spent on lookup additions.

After all of the modular multiplications have been completed, the accumulation register is
storing the result of the modular exponentiation. Note that this register still has oblivious carry
runways and is still using the coset representation of modular integers. We could decode the register
before measuring it but, because the decoding operations are all classical, it is more efficient to
simply measure the entire register and perform the decoding classically. As with the cost of
initialization of the registers, this cost is completely negligible.

This completes the quantum part of the algorithm. The exponent qubit measurement results,
and the decoded accumulator measurement result, are fed into the classical post-processing code
which uses them to derive the solution. If this fails, which can occur e.g. due to a distillation error
during quantum execution, the algorithm is restarted.

Note that there are many minor implementation details that we have not discussed. For ex-
ample, during a windowed multiplication, one of the registers is essentially sitting idle except that
its qubits are being used (cmul at a time) as address qubits for the lookup additions. We have not
discussed how these qubits are routed into and out of the lookup computation as they are needed.
It is simply clear that there is enough leeway, in the packing of the computation into spacetime,
for this routing task to be feasible and contribute negligible cost.

2.16 Other physical gate error rates
Throughout this paper, we focus primarily on a physical gate error rate of 0.1%, because we
consider this error rate to be plausibly achievable by quantum hardware, yet sufficiently low to
enable error correction with the surface code.

This being said, it is of course important to be conservative when estimating the security of
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cryptographic schemes. The reader may therefore also be interested in estimates for lower error
rates. With this in mind, in addition to including a 0.01% curve in Figure 1, we present the
following rule of thumb for translating to other error rates:

V (p) ≈ V (0.1%)/(− log10(p)− 2)3

Here V (p) is the expected spacetime volume, assuming a physical gate error rate of p. The rule
of thumb is based on the following observation:

Each time the code distance of a construction is increased by 2, logical errors are suppressed
by a factor roughly equal to the ratio between the code’s threshold error rate and the hardware’s
physical error rate. The surface code has a threshold error rate of around 1%. For example, this
means that at a physical error rate of 0.01% you suppress logical errors by 100x each time you
increase the code distance by 2, whereas at a physical error rate of 0.1% the same suppression
factor would require increasing the code distance by 4. Consequently, code distances tend to be
half as large at a physical error rate of 0.01%. The code distance is a linear measure, and we are
packing the computation into a three-dimensional space (one of the dimensions being time), so
proportional improvements to the code distance get cubed.

Hence the idea is that at a physical error rate of 0.01% code distances are half as big, meaning
the computational pieces being packed into spacetime are 23 = 8 times smaller, meaning in turn
that the optimal packing will also be roughly eight times smaller. Similarly, at an error rate of
0.001%, code distances are a third as big, so spacetime volumes should be roughly 27 times smaller.

Of course, this rule of thumb is imperfect. For example, it does not account for the fact that
code distances have to be rounded to integer values, or for the fact that the spacetime tradeoffs
being made have to change due to the reaction time of the control system staying constant as the
code distance changes, or for the fact that at really low error rates you would switch to different
error correcting codes. Regardless, for order of magnitude estimates involving physical error rates
between 0.3% and 0.001%, we consider this rule of thumb to be a sufficient guide.

3 Cryptographic implications of our construction
In this section, we consider how the security of RSA, and of cryptographic schemes based on the
intractability of the DLP in finite fields, is affected when the optimized construction previously
described is used to implement the currently most efficient derivatives of Shor’s algorithms.

Our goal throughout this section is to minimize the overall expected spacetime volume, includ-
ing expected repetitions, when factoring RSA integers or computing discrete logarithms. That is
to say, we minimize the spacetime volume in each run of the quantum algorithm times the expected
number of runs required.

3.1 Methodology
To minimize the spacetime volume for a given choice of n and ne, we consider all combinations
of level 1 and 2 surface code distances d1 ∈ {15, 17, . . . , 23} and d2 ∈ {25, 27, . . . , 51} used
during distillation and computation, window sizes cmul ∈ {4, 5, 6} and cexp ∈ {4, 5, 6}, runway
spacings csep ∈ {512, 768, 1024, 1536, 2048}, and padding offsets δoff ∈ {2, 3, . . . , 10} where δoff =
cpad− 2 lgn− lgne. Furthermore, we consider two different magic state distillation strategies: the
CCZ factory from [36, 37] and the T factory from [27]. For each combination of parameters we
estimate the execution time t and physical qubit count s, and upper bound the overall probability
of errors occurring (to obtain the “retry risk” ε).

To derive an upper bound on the overall probability of errors occurring, we separately estimate
the probabilities of topological errors occurring due to a failure of the surface code to correct errors,
of approximation errors occurring due to using oblivious carry runways and the coset representation
of modular integers, of magic state distillation errors, and of the classical post-processing algorithm
failing to recover the solution from a correct run of the quantum algorithm. We combine these
error probabilities, assuming independence, to derive an upper bound on the overall probability of
errors occurring.
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We chose to optimize the quantity s1.2 · t/(1 − ε), which we refer to as the “skewed expected
spacetime volume”. The t/(1− ε) factor is the expected runtime, and the s1.2 factor grows slightly
faster than the space usage. We skew the space usage when optimizing because we have a slight
preference for decreasing space usage over decreasing runtime. We consider all combinations of
parameters (d1, d2, δoff, cmul, cexp, csep), choose the set that minimizes the skewed expected space-
time volume, and report the corresponding estimated costs.

3.2 Implications for RSA
Today, the arguably most commonly used modulus size for RSA is n = 2048 bits. Larger moduli
are however in widespread use and smaller moduli have been used historically.

The best published academic record is the factorization of an 829 bit RSA modulus in 2020,
see [11] for details regarding this computation. For the earlier record, see [50].

In Table 3 and Figure 1, we provide estimates for the resource and time requirements for
attacking RSA for various cryptographically relevant modulus lengths n. The estimates are for
factoring RSA integers with Eker̊a-H̊astad’s algorithm [23, 25] that computes a short discrete
logarithm, see the appendix to [23] for full technical details. As is explained in [23], a single correct
run of this quantum algorithm suffices for the RSA integer to be factored with at least 99% success
probability in the classical post-processing.

Volume Qubits Runtime
Parameters Retry (megaqubitdays) (megaqubits) (hours)

n ne d1 d2 δoff cmul cexp csep Risk per run expected per run per run
1024

3(
n
/
2
−

1)
−

40

15 27 5 5 5 1024 6% 0.5 0.5 9.7 1.3
2048 15 27 4 5 5 1024 31% 4.1 5.9 20 5.1
3072 17 29 6 4 5 1024 9% 19 21 38 12
4096 17 31 9 4 5 1024 5% 48 51 55 22
8192 19 33 4 4 5 1024 5% 480 510 140 86
12288 19 33 3 4 5 1024 12% 1700 1900 200 200
16384 19 33 4 4 5 1024 24% 3900 5100 270 350

Table 3: Factoring an n bit RSA integer by computing a short discrete logarithm. This table was produced by
the script in the ancillary file “estimate costs.py”.

3.3 Implications for finite field discrete logarithms
Given a generator g of an order r subgroup to Z∗N , where the modulus N is prime, and an element
x = gd, the finite field discrete logarithm problem is to compute d = logg x. In what follows, we
assume r to be prime. If r is composite, the discrete logarithm problem may be decomposed into
problems in subgroups of orders dividing r, as shown by Pohlig and Hellman [68]. For this reason,
prime order subgroups are used in cryptographic applications.

As Z∗N has order N −1, it must be that r divides N −1, so N = 2rk+1 for some integer k ≥ 1.
The asymptotically best currently known classical algorithms for computing discrete logarithms in
subgroups of this form are generic cycle-finding algorithms, such as Pollard’s ρ- and λ-algorithms
[69], that run in time O(

√
r) and O(

√
d), respectively, and the general number field sieve (GNFS),

that runs in subexponential time in the bit length n of N .
The idea of factoring via algebraic number fields was originally introduced by Pollard [70] for

integers on special forms. It was over time generalized, by amongst others Buhler et al. [14],
Lenstra et al. [55] and Pollard [71], to factor general integers, and modified by amongst others
Gordon [39] and Schirokauer [75, 76] to compute discrete logarithms in finite fields. Much research
effort has since been devoted to optimizing the GNFS in various respects. For an in-depth historical
account of the development of the GNFS, see [53, 72]. For the best academic record, see [11].

Let z be the number of bits of security provided by the modulus with respect to classical attacks
using the GNFS. Let nd and nr be the lengths in bits of d and r, respectively. It then suffices to
pick nd, nr ≥ 2z to achieve z bits of classical security, as the generic cycle-finding algorithms are
then not more efficient than the GNFS.
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When instantiating schemes based on the intractability of the finite field discrete logarithm
problem, one may hence choose between using a Schnorr group, for which nd = nr = 2z, or a
safe-prime group, for which nr = n− 1. In the latter case, one may in turn choose between using
a short exponent, such that nd = 2z, or a full length exponent, such that nd = nr = n − 1. All
three parameterization options provide z bits of classical security.

3.3.1 What finite field groups are used in practice?

In practice, Schnorr groups or safe-prime groups with short exponents are often preferred over safe-
prime groups with full length exponents, as the comparatively short exponents yield considerable
performance improvements.

The discrete logarithm problem in Schnorr groups is of standard form, unlike the short discrete
logarithm problem in safe-prime groups, and Schnorr groups are faster to generate than safe-prime
groups. A downside to using Schnorr groups is that group elements received from untrusted parties
must be tested for membership of the order r subgroup. This typically involves exponentiating
the element to the power of r, which is computationally expensive. Safe-prime groups are more
flexible than Schnorr groups, in that the exponent length may be adaptively selected depending
on the performance requirements. The reader is referred to [86] for a more in-depth comparison
and historical recommendations. In more recent years, the use of safe-prime groups would appear
to have become increasingly prevalent. Some cryptographic schemes, such as the Diffie-Hellman
key agreement protocol, are agnostic to the choice of group, whereas other schemes, such as DSA,
use Schnorr groups for efficiency reasons.

The National Institute of Standards and Technology (NIST) in the United States standardizes
the use of cryptography in unclassified applications within the federal government. Up until April
of 2018, NIST recommended the use of randomly selected Schnorr groups with moduli of length
2048 bits for Diffie-Hellman key agreement. NIST changed this recommendation in the 3rd revision
of SP800-56A [4], and are now advocating using a fixed set of safe-prime groups with moduli of
length up to 8192 bits, with short or full length exponents. These groups were originally developed
for TLS [38] and IKE [49] where, again, they are used either with short of full length exponents.

3.3.2 Complexity estimates

To estimates the resource and time requirements for computing discrete logarithms in finite fields
for various modulus lengths n, and for the aforementioned parameterization options, we need to
decide on what model to use for estimating z as a function of n. Various models have been proposed
over the years, see for instance [9, 52, 54]. For simplicity, we use the same model that NIST uses
in SP 800-56A [4]. It is described on p. 110 of FIPS 140-2 IG [60]. Note that NIST rounds z to
the closest multiple of eight bits.

To compute short logarithms in safe-prime groups, the best option is to use Eker̊a-H̊astad’s
algorithm [23, 25] that is specialized for this purpose. To compute general discrete logarithms
in safe-prime or Schnorr groups, one option is to use Eker̊a’s algorithm [24]. As is explained
in [23, 24], a single correct run of these quantum algorithms suffices for the logarithm to be
recovered with ≥ 99% success probability in the classical post-processing. These algorithms do not
require the order of the group to be known. See Table 4 and Figure 1 for complexity estimates.

If the group order is known, a better option for computing general discrete logarithms in safe-
prime groups and Schnorr groups when not making tradeoffs is to use Shor’s original algorithm [79],
modified to work in the order r subgroup rather than in the whole multiplicative group Z∗N , and
to start with a uniform superposition of all exponent values, as opposed to superpositions of r
values. Note that the latter modification is necessary to enable the use of the semi-classical Fourier
transform, qubit recycling and the windowing technique. The modified algorithm is described
in [22] where a heuristic analysis is also provided.

When using this modified version of Shor’s algorithm to compute discrete logarithms, the
heuristic analysis [22] shows that a single correct run suffices to compute the logarithm with ≥ 99%
success probability, assuming that each of the two exponent registers is padded with 5 bits, and
that a small search is performed in the classical post-processing. This implies that Shor’s algo-
rithm outperforms Eker̊a’s algorithm, as Shor’s algorithm performs only approximately 2nr group
operations per run, compared to 3nr operations in Eker̊a’s algorithm, see Table 5 for complexity
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Volume Qubits Runtime
Parameters Retry (megaqubitdays) (megaqubits) (hours)

n ne nd nr z d1 d2 δoff cmul cexp csep Risk per run expected per run per run
Sc

hn
or

r

1024

3n
r

=
6z

2z 2z

80 15 25 4 5 5 1024 10% 0.2 0.2 9.2 0.4
2048 112 15 27 3 5 5 1024 9% 0.9 1.0 20 1.2
3072 128 15 27 9 5 5 1024 18% 2.4 2.9 29 2.0
4096 152 17 29 7 4 5 1024 4% 6.5 6.8 51 3.1
8192 200 17 31 3 4 5 1024 5% 38 40 110 8.3
12288 240 17 31 9 4 5 1024 9% 110 120 170 15
16384 272 17 31 5 4 5 1024 17% 210 250 220 23

Sa
fe

-p
rim

e

Sh
or

t

1024

3n
d

=
6z

2z
n
−

1

80 15 25 4 5 5 1024 10% 0.2 0.2 9.2 0.4
2048 112 15 27 3 5 5 1024 9% 0.9 1.0 20 1.2
3072 128 15 27 9 5 5 1024 18% 2.4 2.9 29 2.0
4096 152 17 29 7 4 5 1024 4% 6.5 6.8 51 3.1
8192 200 17 31 3 4 5 1024 5% 38 40 110 8.3
12288 240 17 31 9 4 5 1024 9% 110 120 170 15
16384 272 17 31 5 4 5 1024 17% 210 250 220 23

Fu
ll

Le
ng

th

1024

3n
r

=
3(
n
−

1)

n
−

1

n
−

1

80 15 27 9 5 5 1024 10% 1.1 1.2 9.7 2.7
2048 112 17 29 6 4 5 1024 6% 12 12 26 11
3072 128 17 31 5 4 5 1024 5% 41 43 41 24
4096 152 17 31 7 4 5 1024 9% 97 110 55 43
8192 200 19 33 4 4 5 1024 8% 960 1100 140 180
12288 240 19 33 3 4 5 1024 21% 3300 4100 200 390
16384 272 21 35 4 4 5 1024 16% 9100 11000 320 700

Table 4: Computing discrete logarithms using Eker̊a-Håstad’s [23, 25] and Eker̊a’s [24] algorithms. This table
was produced by the script in the ancillary file “estimate costs.py”.

Volume Qubits Runtime
Parameters Retry (megaqubitdays) (megaqubits) (hours)

n ne nd nr z d1 d2 δoff cmul cexp csep Risk per run expected per run per run

Sc
hn

or
r

1024

2(
n

r
+

5)

2z 2z

80 15 25 6 5 5 1024 8% 0.1 0.1 9.2 0.3
2048 112 15 27 8 5 5 1024 6% 0.6 0.7 20 0.8
3072 128 15 27 6 5 5 1024 13% 1.6 1.8 29 1.3
4096 152 15 27 3 5 5 1024 25% 3.3 4.4 39 2.1
8192 200 17 29 5 4 5 1024 11% 23 26 110 5.5
12288 240 17 31 4 4 5 1024 8% 68 74 170 10
16384 272 17 31 5 4 5 1024 12% 140 160 220 16

Sa
fe

-p
rim

e

1024

2(
n

r
+

5)

n
−

1

n
−

1

80 15 27 3 5 5 1024 8% 0.7 0.8 9.7 1.8
2048 112 17 29 3 4 5 1024 5% 7.4 7.8 26 7.0
3072 128 17 29 4 4 5 1024 12% 25 29 38 16
4096 152 17 31 4 4 5 1024 8% 65 70 55 29
8192 200 19 33 3 4 5 1024 6% 640 680 140 120
12288 240 19 33 4 4 5 1024 15% 2200 2600 200 260
16384 272 21 35 2 4 5 1024 12% 6100 6900 320 470

Table 5: Computing discrete logarithms using Shor’s algorithm [79] modified as described in [21, 22]. This
table was produced by the script in the ancillary file “estimate costs.py”.

estimates. This is because Eker̊a’s algorithm does not require r to be known. In fact, it computes
both d and r.

Note that for safe-prime groups, r = (N − 1)/2, so when N is known to the adversary then so
is r. For Schnorr groups, it may be that r is unknown to the adversary, especially if the group is
randomly selected. It may be hard to compute r classically, as it amounts to finding a nr = 2z bit
prime factor of (N − 1)/2.

3.4 Implications for elliptic curve discrete logarithms
Over the past decades cryptographic schemes based on the intractability of the DLP in finite fields
and the RSA integer factoring problem have gradually been replaced by cryptography based on
the intractability of the DLP in elliptic curve groups. This is reflected in standards issued by
organizations such as NIST.

Not all optimizations developed in this paper are directly applicable to arithmetic in elliptic
curve groups. It is an interesting topic for future research to study to what extent the optimizations
developed in this paper may be adapted to optimize such arithmetic operations (see Section 4.5).
This paper should not be perceived to indicate that the RSA integer factoring problem and the
DLP in finite fields is in itself less complex than the DLP in elliptic curve groups on quantum
computers. The feasibility of optimizing the latter problem must first be properly studied.
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3.5 On the importance of complexity estimates
It is important to estimate the complexity of attacking widely deployed asymmetric cryptographic
schemes using future large-scale quantum computers. Such estimates enable informed decisions to
be made on when to mandate migration from existing schemes to post-quantum secure schemes.

For cryptographic schemes that are used to protect confidentiality, such as encryption and key
agreement schemes, a sufficiently long period must elapse inbetween the point in time when the
scheme ceases to be used, and the point in time when the scheme is projected to become susceptible
to practical attacks. This is necessary so as to ensure that the information that has been afforded
protection with the scheme is no longer sensitive once the scheme becomes susceptible to practical
attacks. This is because one must assume that encrypted information may be recorded and archived
for decryption in the future.

If the information you seek to protect is to remain confidential for 25 years, you must hence
stop using asymmetric schemes such as RSA and Diffie-Hellman at least 25 years before quantum
computers capable of breaking these schemes become available to the adversary. For cryptographic
schemes that are used to protect authenticity, or for authentication, such as signature schemes, it
suffices to migrate to post-quantum secure schemes only right before the schemes become suscep-
tible to practical attacks. This is an important distinction.

3.6 On early adoption of post-quantum secure schemes
The process of transitioning to post-quantum secure schemes has already begun. However, no
established or universally recognized standards are as of yet available. Early adopters may therefore
wish to consider implementing schemes conjectured to be post-quantum secure alongside existing
classically secure schemes, in such a fashion that both schemes must be broken for the combined
hybrid scheme to be broken.

4 Future work
4.1 Investigate asymptotically efficient multiplication
The multiplication circuits that we are using have a Toffoli count that scales quadratically (up to
polylog factors). There are multiplication circuits with asymptotically better Toffoli counts. For
example, the Karatsuba algorithm [47] has a Toffoli count of O(nlg 3) and the Schönhage–Strassen
algorithm [77] has a Toffoli count of O(n lgn lg lgn). However, there are difficulties when attempt-
ing to use these asymptotically efficient algorithms in the context of Shor’s algorithm.

The first difficulty is that efficient multiplication algorithms are typically classical, implemented
with non-reversible computation in mind. They need to be translated into a reversible form. This
is not trivial. For example, a naive translation of Karatsuba multiplication will result in twice as
many recursive calls at each level (due to the need to uncompute), and increase the asymptotic
Toffoli count from O(nlg 3) to O(nlg 6). Attempting to fix this problem can result in the space
complexity increasing [65], though it is possible to solve this problem [34].

The second difficulty is constant factors, both in workspace and in Toffoli count. Clever mul-
tiplication circuits have better Toffoli counts for sufficiently large n but, when we do back-of-the-
envelope estimates, “sufficiently large” is beyond n = 2048. This difficulty is made worse if the
multiplier is incompatible with optimizations that work on naive multipliers, such as windowed
arithmetic and the coset representation of modular integers. Clever multiplication circuits also
tend to use additional workspace, and it is necessary to contrast using the better multiplier against
the opportunity cost of using the space for other purposes (such as distillation of magic states).
For example, the first step of the Schönhage–Strassen algorithm is to pad the input up to dou-
ble length, then split the padded register into O(

√
n) pieces and pad each piece up to double

length. The target register quadruples in size before even getting into the details of performing the
number theoretic transform! This large increase in space means that the quantum variant of the
Schönhage–Strassen algorithm is competing with the many alternative opportunities one has when
given 6000 more logical qubits of workspace (at n = 2048). For example, that’s enough space for
fifty additional CCZ factories.
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Can multipliers with asymptotically lower Toffolis counts help at practical sizes, such as n =
2048 bits? We believe that they do not, but only a careful investigation can properly determine
the answer to this question.

4.2 Optimize distillation
To produce our magic states, we use slightly-modified copies of the CCZ factory from [36] as
explained in [37]. We have many ideas for improving on this approach.

First, the factory we are using is optimized for the case where it is working in isolation. But,
generally speaking, error correcting codes get better when working over many objects instead of
one object. It is likely that a factory using a block code to produce multiple CCZ states at once
would perform better than the factory we used. For example, [41] presents a distillation protocol
that produces good CCZ states ten at a time.

Second, since publishing [36], we have realized there are two obvious-in-hindsight techniques
that could be used to reduce the volume of the factories in that paper. First, we assumed that
topological errors that can occur within the factories were undetected, but actually many of them
are heralded as distillation failures. By taking advantage of this heralding, it should be possible to
reduce the code distance used in many parts of the factories. Second, when considering the set of S
gates to apply to correct T gate teleportations performed by the factories, there are redundancies
that we were not previously aware of. In particular, for each measured X stabilizer, one can toggle
whether or not every qubit in that stabilizer has an S gate applied to it. This freedom makes it
possible to e.g. apply dynamically chosen corrections while guaranteeing that the number of S
gate fixups in the 15-to-1 T factory is at most 5 (instead of 15), or to ensure a particular qubit
will never need an S gate fixup (removing some packing constraints).

Third, we believe it should be possible to use detection events produced by the surface code to
estimate how likely it is that an error occurred, and that this information can be use to discard
“risky factory runs” in a way that increases reliability. This would allow us to trade the increased
reliability for a decreased code distance. As an extreme example, suppose that instead of attempt-
ing to correct errors during a factory run we simply discarded the run if there were any detection
events where a local stabilizer flipped. Then the probability that a factory run would complete
without being discarded would be approximately zero, but when a run did pass the chance of error
would be amazingly low. We believe that by picking the right metric (e.g. number of detections
or diameter of alternating tree during matching), then interpolating a rejection threshold between
the extreme no-detections-anywhere rule and the implicit hope-all-errors-were-corrected rule that
is used today, there will be a middle ground with lower expected volume per magic state. (Even
more promisingly, this thresholded error estimation technique should work on any small state pro-
duction task and almost all quantum computation can be reformulated as a series of small state
production tasks.)

Reducing the volume of distillation would improve the space and time estimates in this paper.
But turning some combination of the above ideas into a concrete factory layout, with understood
error behavior, is too large of a task for one paper. Of course, the problem of finding small factories
is a problem that the field has been exploring for some time. In fact, in the week before we first
released this paper, Daniel Litinsky made [56] available. He independently arrived at the idea of
using distillation to herald errors within the factory, and provided rough numerics indicating this
may reduce the volume of distillation by as much as a factor of 10. Therefore we leave optimizing
distillation not as future work, but as ongoing work.

4.3 Optimize qubit encoding
Most of the logical qubits in our construction spend most of their time sitting still, waiting for
other qubits to be processed. It should be possible to store these qubits in a more compact, but
less computationally convenient, form. A simple example is that resting qubits do not need the
“padding layer” between qubits implicit in Figure 8, because this layer is only there to make surgery
easier. Another example is that there may to be ways to pack lattice surgery qubits that use less
area while preserving the code distance (e.g. the “bulbs” shown in Figure 9).

Accepted in Quantum 2021-03-29, click title to verify. Published under CC-BY 4.0. 20



Figure 9: A possible dense packing for idle qubits, using 1.5d2 + O(d) physical qubits instead of 2(d + 1)2. In
the diagram, there is one distance 13 logical qubit per “bulb”. The X and Z observables of one of the logical
qubits are shown in red and blue respectively. The pattern continues past the cut-off at the left and right sides.

One could also imagine encoding the resting qubits into a block code. The difficulty is in finding
a block code that a) works with small groups of qubits, b) can be encoded and decoded fast enough
and compactly enough to fit into the existing computation, and c) is sufficiently better than the
surface code that the benefits (reduced code distance within the surface code) outweigh the costs
(redundant additional qubits).

Finally, there are completely different ways of storing information in the surface code. For ex-
ample, qubits stored using dislocations [43] could be denser than qubits stored using lattice surgery.
However, dislocations also create runs of stabilizers over not-quite-adjacent physical qubits. Mea-
suring these stabilizers requires additional physical operations, creating more opportunities for
errors, and so errors will propagate more quickly along these runs.

Do the “qubit houses” in Figure 9 actually work, or is there some unexpected error mechanism?
Can dislocation qubits be packed more tightly than lattice surgery qubits while achieving an
equivalent logical error rate? Is there a block code that is sufficiently beneficial when layered over
surface code qubits? Until careful simulations are done it will be unclear what the answer to these
questions is, and so we leave the answers to future work.

4.4 Distribute the computation
An interesting consequence of how we parallelize addition, by segmenting registers into pieces
terminated by carry runways, is that there is limited interaction between the different pieces. In
fact, the additions themselves require no communication between the pieces; it is only the lookup
procedure preparing the input of the additions that requires communication. If we place each piece
on a separate quantum computer, only a small amount of communication is needed to seed the
lookups and keep the computation progressing.

Given the parameters we chose for our construction, each lookup is controlled by ten address
qubits. Five of those qubits come from the exponent and are re-used hundreds of times. The
other five come from the factor register, which is being iterated over during multiplication. If
the computation was to be distributed over multiple machines, the communication cost would be
dominated by broadcasting the successive groups of five qubits from the factor register.

Recall from Section 2 that each lookup addition takes approximately 37 milliseconds. Five
qubits must be broadcast per lookup addition. Therefore, if each quantum computer had a 150 qb/s
quantum channel, the necessary qubits could be communicated quickly enough to keep up with
the lookup additions. This would distribute the factoring computation.

For example, a network topology where the computers were arranged into a linear chain and
were constantly forwarding the next set of factor qubits to each other would be sufficient. Each
quantum computer in the distributed computation would have a computational layout basically
equivalent to the left half (or right half) of Figure 7. Factoring an n = 2048 bit number could
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be performed with two machines each having perhaps 11 million physical qubits, instead of one
machine with 20 million physical qubits.

We can decrease the size of each individual quantum computer by decreasing the piece size
we use for the additions. For example, suppose we used an addition piece size of csep = 256
and distributed an n = 2048 RSA factoring computation over 8 machines. Normally using smaller
pieces would proportionally accelerate the addition, but the number of magic state factories has not
changed (they have simply been distributed) so each lookup addition will still take approximately
the same amount of time. So a 150 qb/s quantum channel per computer should still be sufficient.
One caveat here is that each of these much smaller machines has to run its own copy of the
lookup operation, and because there are so few factories per machine the lookup will take much
longer. The optimal windows sizes of the lookups will decrease, and the total computation time
will approximately double.

Based on this surface analysis it seems that, instead of using 1 machine with 20 million qubits,
we could use 8 machines each with perhaps 4 million qubits, as long as they were connected by
quantum channels with bandwidths of 150qb/s. But we have not carefully explored the question
of how to distribute a quantum computation structured in this way and, although there has been
significant previous work done on distributing quantum computations such as [45, 62, 84], we think
the piecewise nature of carry runway adders makes them well suited to a specialized analysis.

4.5 Revisit elliptic curves
Many of the optimization techniques that we use in this paper generalize to other contexts where
arithmetic is performed. In particular, consider the Toffoli count for computing discrete logarithms
over elliptic curves reported in [74]. It can likely be improved substantially by using windowed
arithmetic. On the other hand, because of the need to compute modular inverses, it is not clear if
the coset representation of modular integers is applicable.

Which of our optimizations can be ported over, and which ones cannot? How much of an
improvement would result? These are interesting questions for future research work.

5 Conclusion
In this paper, we combined several techniques and optimizations into an efficient construction for
factoring integers and computing discrete logarithms over finite fields. We estimated the approx-
imate cost of our construction, both in the abstract circuit model and under plausible physical
assumptions for large-scale quantum computers based on superconducting qubits. We presented
concrete cost estimates for several cryptographically relevant problems. Our estimated costs are
orders of magnitude lower than in previous works with comparable physical assumptions.

In [57], Mosca poses the rhetorical question: “How many physical qubits will we need to break
RSA-2048? [...] Current estimates range from tens of millions to a billion physical qubits”. One
of the sources estimating a billion physical qubits is [28]. Our physical assumptions are more
pessimistic than the physical assumptions used in that paper (see Table 2) so it is reasonable to
say that, in the four years since 2015, the upper end of the estimate of how many qubits will be
needed to factor 2048 bit RSA integers has dropped nearly two orders of magnitude; from a billion
to twenty million.

Clearly the low end of Mosca’s estimate should also drop. However, the low end of the estimate
is highly sensitive to advances in the design of quantum error correcting codes, the engineering of
physical qubits, and the construction of quantum circuits. Predicting such advances is beyond the
scope of this paper.

Post-quantum cryptosystems are in the process of being standardized [1], and small-scale ex-
periments with deploying such systems on the internet have been performed [12]. However, a
considerable amount of work remains to be done to enable large-scale deployment of post-quantum
cryptosystems. We hope that this paper informs the rate at which this work needs to proceed.
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beyond factoring RSA integers and to algorithms beyond Shor’s factoring algorithm.
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A Notes on Table 1
A.1 Columns

• Abstract Qubits: The number of logical qubits used in the abstract circuit model. Ignores
qubits used for distillation and routing.

• Measurement Depth: The length of the longest chain of dependent measurements, which
determines the reaction limited runtime of an algorithm. These numbers are not adjusted to
account for the chance of retrying.

• Toffoli+T/2: Number of magic states required by the algorithm. The “/2” adjustment is
intended to account for the fact that T states take less volume to distill than Toffoli states.
These numbers are not adjusted to account for the chance of retrying.

• Min volume: Expected spacetime cost of the computation, including retries. The papers
included in the table span decades, and a range of assumptions about the architecture of
quantum computers, and generally do not provide spacetime volumes. To assign volumes
to these papers, we plugged their asymptotic formulas into various possible realizations of
that algorithm (serial, parallel, and intermediate) using ancillary file “fill-in-table.py”. Each
volume entry is the minimum volume achieved by the different possible realizations. We
assumed all papers but our own had a negligible retry chance.

A.2 Entries
Some entries in the table are directly from a paper, others had to be inferred by hand, and others
were filled in using the output of the ancillary file “fill-in-table.py”. Here is where each entry in
the table came from:

• Vedral et al. 1996 [87]:

– Toffoli+T/2 Count: 80n3 derived from figures at end of the paper.

– Abstract Qubits: Paper says 7n+ 1 (end of section IV). Verified using figures at end of
paper. Paper mentions this can be improved to 4n+3, but the described method would
radically increase the Toffoli count.

– Measurement Depth: Equal to the Toffoli count. The circuit construction is serial.

– Numbers at specific n: from “fill-in-table.py”.

• Zalka 1998 (basic) [90]:

– Toffoli+T/2 Count: Paper says 12n3 (title of section 1.4.1).

– Abstract Qubits: Paper says 3n (title of section 1.4.1).

– Measurement Depth: Equal to the Toffoli count. The circuit construction is serial.

– Numbers at specific n: from “fill-in-table.py”.

• Zalka 1998 (log add) [90]:

– Toffoli+T/2 Count: Paper says 52n3 (section 5, bottom of page 18).

– Abstract Qubits: Paper says 5n (section 5, bottom of page 18).

– Measurement Depth: Paper says 600n2 (section 5, top of page 19).

– Numbers at specific n: from “fill-in-table.py”.

• Zalka 1998 (fft mult) [90]:

– Toffoli+T/2 Count: Paper says 217n2 (section 5, middle of page 19).

– Abstract Qubits: Paper says 96n (section 5, middle of page 19).

– Measurement Depth: Paper says 217n1.2 (section 5, middle of page 19).
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– Numbers at specific n: from “fill-in-table.py”.

• Beauregard 2002 [6]:

– Toffoli+T/2 Count: Derived from figures in the paper. Our estimate has an additional
factor of lgn to account for the need to approximate arbitrary phase rotations using T
states.

– Abstract Qubits: Stated in the title of the paper.

– Measurement Depth: Derived from figures in the paper. Our estimate has an additional
factor of lgn to account for the need to approximate arbitrary phase rotations using T
states.

– Numbers at specific n: from “fill-in-table.py”.

• Fowler et al. 2012 [28]:

– Toffoli+T/2 Count: From table I in the paper.

– Abstract Qubits: The paper erroneously claims 2n in table I due to overlooking a
necessary workspace register. We corrected this to 3n+O(1).

– Measurement Depth: From table I in the paper.

– Numbers at specific n: from “fill-in-table.py”.

• Häner et al. 2016 [42]:

– Toffoli+T/2 Count: From table 2 of [74].

– Abstract Qubits: From paper’s title.

– Measurement Depth: Derived 52n3 from the circuit diagrams included in the paper.

– Numbers at specific n: from “fill-in-table.py”.

• (ours) 2019: Asymptotic bounds explained in Section 2. Concrete numbers at specific sizes
come from ancillary file “estimate costs.py”. The Toffoli count does not account for the
chance of retrying (because it is mostly insensitive to changes that lower this chance), but
the volume does account for it (i.e. it is the expected total volume to factor, not the per-run
volume).

• Roetteler et al. 2017 [74]:

– Toffoli+T/2 Count (asymptotic): From the paper’s abstract.

– Abstract Qubits: From the paper’s abstract.

– Measurement Depth: Assumed same as Toffoli count.

– Toffoli+T/2 Count (at n = 224): From Table 2.

– Numbers at specific n: from “fill-in-table.py”.

Note that an n bit prime order elliptic curve group provides approximately n/2 bits of classical
security (see Appendix D to [4]), since the best classical attacks are cycle-finding attacks,
whilst RSA-1024, RSA-2048 and RSA-3072 provide approximately 80, 112 and 128 bits of
classical security, respectively, according to the model used by NIST (see Appendix D to [5]).
There are several other models [9, 52, 54]. The table compares problem instances that provide
the same level of classical security according to the NIST model.

Accepted in Quantum 2021-03-29, click title to verify. Published under CC-BY 4.0. 29



B Notes on Table 2
B.1 Columns

• Physical gate error rate: The probability that executing a physical gate will introduce Pauli
errors onto targeted qubits.

• Cycle time: The amount of time it takes to measure all of the surface code’s stabilizers once.

• Reaction time: The amount of time it takes the classical control system to trigger a logical
measurement, collect and error-correct the result, and decide on which measurement basis
to use for the next set of measurements.

• Physical connectivity: Which physical qubits can interact with each other. Planar means only
adjacent qubits on a planar grid can interact (typical of superconducting qubits). Arbitrary
means qubits can interact with other qubits as needed by the construction (typical of ion
traps).

• Distillation strategy: The dominant kind of magic states being distilled, and the number or
type of factory being used to distill them.

• Execution strategy: Notes on how the computation progresses at a low level. Each con-
struction spends most of its time performing additions, so this column ended up describing
addition strategies. The suffixes “carry lookahead”, “ripple carry”, and “carry runways” de-
scribe the type of adder being used. The prefixes “distillation limited” and “reaction limited”
describe what is preventing the adder from running faster. Distillation limited means that
the adder is bottlenecked on magic states being produced. Reaction limited means that the
adder is bottlenecked on the control system resolving long chains of dependent measurement
bases.

• Physical qubits: The number of physical qubits used by the computation, using the original
historical assumptions.

• Expected runtime: The average amount of time before the computation has completed suc-
cessfully, using the original historical assumptions.

• Expected volume: The average number of physical qubit-rounds before the computation has
completed successfully, using the original historical assumptions.

B.2 Entries
• Van Meter et al. 2009 [85]: Numbers are derived from Table 2 of [85]. The paper does not

use reaction limited computation, so the reaction time is not included.

• Jones et al. 2009 [46]: Numbers are derived from Figure 15, Table II, and Table VII of [46].
The paper does not use reaction limited computation, so the reaction time is not included.

• Fowler et al. 2012 [28]: Numbers are from the background section of [28]. This paper’s ex-
pected volume is directly comparable to ours, despite the different reaction time assumption,
because their volume estimate is dominated by distillation and changing the reaction time
does not affect distillation volume.

• O’Gorman et al. (2017) [61]: Numbers are derived from table I of [61]. The physical qubit
count of 2.18 · 108 from their table only includes distillation; we increased it by 3 · 2048 · (2 ·
322) ≈ 0.13 · 108 to account for three n-logical-qubit data registers.

• Gheorghiu et al. (2019) [30] The physical gate error rate, qubit count, and time are stated
in the caption of fig 45 (“B. RSA-2048”) of the paper. The surface code cycle time is stated
to be 200 nanoseconds in Section B, soon after equation 3. The T factory count was inferred
by dividing the stated T count of 2.4 · 1012 by the production rate of the T factory from [27],
which is approximately 25kHz for the given surface code cycle time. The paper does not
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state a reaction time, but the T states are being used to perform chains of dependent Tof-
folis. This implies the reaction time must be faster than the number factories times the
per-factory production rate divided by 4 (the number of Ts needed to perform a Toffoli). So
a 0.2 microsecond reaction time would not be sufficient, but a 0.1 microsecond reaction time
would be, and so we state the reaction time as 0.1 microseconds.

• Ours (2019): The parallel entry is the implementation described in Section 2 and produced
by ancillary file “estimates costs.py”. The single threaded and serial distillation entries use
the same basic architecture, but with fewer factories and without piecewise additions or
double-speed lookups.
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