
SSL – Secure Socket Layer

- architecture and services
- sessions and connections
- SSL Record Protocol
- SSL Handshake Protocol
- key exchange alternatives
- analysis of the SSL Record and Handshake Protocols
- SSL vs. TLS

???

2© Levente Buttyán

What is SSL?

SSL – Secure Socket Layer
it provides a secure transport connection between applications
(e.g., a web server and a browser)
SSL was developed by Netscape
SSL version 3.0 has been implemented in many web browsers
(e.g., Netscape Navigator and MS Internet Explorer) and web
servers and widely used on the Internet
SSL v3.0 was specified in an Internet Draft (1996)
it evolved into RFC 2246 and was renamed to TLS (Transport
Layer Security)
TLS can be viewed as SSL v3.1

3© Levente Buttyán

SSL architecture

SSL Record ProtocolSSL Record Protocol

SSL
Handshake

Protocol

SSL
Handshake

Protocol

SSL Change
Cipher Spec

Protocol

SSL Change
Cipher Spec

Protocol

SSL
Alert

Protocol

SSL
Alert

Protocol
applications
(e.g., HTTP)

applications
(e.g., HTTP)

TCPTCP

IPIP

A
rc

hi
te

ct
ur

e
an

d
se

rv
ic
es

4© Levente Buttyán

SSL components

SSL Handshake Protocol
– negotiation of security algorithms and parameters
– key exchange
– server authentication and optionally client authentication

SSL Record Protocol
– fragmentation
– compression
– message authentication and integrity protection
– encryption

SSL Alert Protocol
– error messages (fatal alerts and warnings)

SSL Change Cipher Spec Protocol
– a single message that indicates the end of the SSL handshake

A
rc

hi
te

ct
ur

e
an

d
se

rv
ic
es

5© Levente Buttyán

Sessions and connections

an SSL session is an association between a client and a server
sessions are stateful; the session state includes security
algorithms and parameters
a session may include multiple secure connections between the
same client and server
connections of the same session share the session state
sessions are used to avoid expensive negotiation of new
security parameters for each connection
there may be multiple simultaneous sessions between the same
two parties, but this feature is not used in practice

Se
ss

io
ns

 a
nd

 c
on

ne
ct

io
ns

6© Levente Buttyán

Session and connection states

session state
– session identifier

• arbitrary byte sequence chosen by the server to identify the session
– peer certificate

• X509 certificate of the peer
• may be null

– compression method
– cipher spec

• bulk data encryption algorithm (e.g., null, DES, 3DES, …)
• MAC algorithm (e.g., MD5, SHA-1)
• cryptographic attributes (e.g., hash size, IV size, …)

– master secret
• 48-byte secret shared between the client and the server

– is resumable
• a flag indicating whether the session can be used to initiate new

connections
– connection states

Se
ss

io
ns

 a
nd

 c
on

ne
ct

io
ns

7© Levente Buttyán

Session and connection states cont’d
connection state
– server and client random

• random byte sequences chosen by the server and the client for every
connection

– server write MAC secret
• secret key used in MAC operations on data sent by the server

– client write MAC secret
• secret key used in MAC operations on data sent by the client

– server write key
• secret encryption key for data encrypted by the server

– client write key
• secret encryption key for data encrypted by the client

– initialization vectors
• an IV is maintained for each encryption key if CBC mode is used
• initialized by the SSL Handshake Protocol
• final ciphertext block from each record is used as IV with the

following record
– sending and receiving sequence numbers

• sequence numbers are 64 bits long
• reset to zero after each Change Cipher Spec message

Se
ss

io
ns

 a
nd

 c
on

ne
ct

io
ns

8© Levente Buttyán

State changes

operating state
– currently used state

pending state
– state to be used
– built using the current state

operating state pending state
– at the transmission and reception of a Change Cipher Spec message

party A
(client or server)

party B
(server or client)

the sending part of the
pending state is copied
into the sending part
of the operating state the receiving part of the

pending state is copied
into the receiving part
of the operating state

Change Cipher Spec

Se
ss

io
ns

 a
nd

 c
on

ne
ct

io
ns

9© Levente Buttyán

SSL Record Protocol – processing overview
SS

L
Re

co
rd

 P
ro

to
co

l

type version length

p.lenpadding

application data
(compressed fragment)

MAC

fragmentation
compression
MAC computation
padding
encryption
SSL Record Protocol message:

10© Levente Buttyán

Header

type
– the higher level protocol used to process the enclosed fragment
– possible types:

• change_cipher_spec
• alert
• handshake
• application_data

version
– SSL version, currently 3.0

length
– length (in bytes) of the enclosed fragment or compressed

fragment
– max value is 214 + 2048

SS
L

Re
co

rd
 P

ro
to

co
l

11© Levente Buttyán

MAC

MAC = hash(MAC_wr_sec | pad_2 |
hash(MAC_wr_sec | pad_1 | seq_num | type | length |frag))

similar to HMAC but the pads are concatenated
supported hash functions:
– MD5
– SHA-1

pad_1 is 0x36 repeated 48 times (MD5) or 40 times (SHA-1)
pad_2 is 0x5C repeated 48 times (MD5) or 40 times (SHA-1)

SS
L

Re
co

rd
 P

ro
to

co
l

12© Levente Buttyán

Encryption

supported algorithms
– block ciphers (in CBC mode)

• RC2_40
• DES_40
• DES_56
• 3DES_168
• IDEA_128
• Fortezza_80

– stream ciphers
• RC4_40
• RC4_128

if a block cipher is used, than padding is applied
– last byte of the padding is the padding length

SS
L

Re
co

rd
 P

ro
to

co
l

13© Levente Buttyán

SSL Alert Protocol

each alert message consists of 2 fields (bytes)
first field (byte): “warning” or “fatal”
second field (byte):
– fatal

• unexpected_message
• bad_record_MAC
• decompression_failure
• handshake_failure
• illegal_parameter

– warning
• close_notify
• no_certificate
• bad_certificate
• unsupported_certificate
• certificate_revoked
• certificate_expired
• certificate_unknown

in case of a fatal alert
– connection is terminated
– session ID is invalidated no new connection can be established within

this session

SS
L

A
le
rt

 P
ro

to
co

l

14© Levente Buttyán

SSL Handshake Protocol – overview
client server

client_hello

server_hello

certificate

server_key_exchange

certificate_request

server_hello_done

certificate

client_key_exchange

certificate_verify

change_cipher_spec

finished

change_cipher_spec

finished

Phase 1: Negotiation of the session ID, key
exchange algorithm, MAC algorithm, encryption
algorithm, and exchange of initial random numbers

Phase 2: Server may send its certificate and key
exchange message, and it may request the client
to send a certificate. Server signals end of hello
phase.

Phase 3: Client sends certificate if requested and
may send an explicit certificate verification
message. Client always sends its key exchange
message.

Phase 4: Change cipher spec and finish handshake

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l

15© Levente Buttyán

Hello messages

client_hello
– client_version

• the highest version supported by the client
– client_random

• current time (4 bytes) + pseudo random bytes (28 bytes)
– session_id

• empty if the client wants to create a new session, or
• the session ID of an old session within which the client wants to

create the new connection
– cipher_suites

• list of cryptographic options supported by the client ordered by
preference

• a cipher suite contains the specification of the
– key exchange method, the encryption and the MAC algorithm
– the algorithms implicitly specify the hash_size, IV_size, and key_material

parameters (part of the Cipher Spec of the session state)
• exmaple: SSL_RSA_with_3DES_EDE_CBC_SHA

– compression_methods
• list of compression methods supported by the client

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Ph
as

e
1

16© Levente Buttyán

Hello messages cont’d

server_hello
– server_version

• min(highest version supported by client, highest version supported by
server)

– server_random
• current time + random bytes
• random bytes must be independent of the client random

– session_id
• session ID chosen by the server
• if the client wanted to resume an old session:

– server checks if the session is resumable
– if so, it responds with the session ID and the parties proceed to the

finished messages
• if the client wanted a new session

– server generates a new session ID
– cipher_suite

• single cipher suite selected by the server from the list given by the
client

– compression_method
• single compression method selected by the server

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Ph
as

e
1

17© Levente Buttyán

Supported key exchange methods

RSA based (SSL_RSA_with...)
– the secret key (pre-master secret) is encrypted with the server’s public

RSA key
– the server’s public key is made available to the client during the exchange

fixed Diffie-Hellman (SSL_DH_RSA_with… or SSL_DH_DSS_with…)
– the server has fix DH parameters contained in a certificate signed by a CA
– the client may have fix DH parameters certified by a CA or it may send an

unauthenticated one-time DH public value in the client_key_exchange
message

ephemeral Diffie-Hellman (SSL_DHE_RSA_with… or
SSL_DHE_DSS_with…)
– both the server and the client generate one-time DH parameters
– the server signs its DH parameters with its private RSA or DSS key
– the client may authenticate itself (if requested by the server) by signing

the hash of the handshake messages with its private RSA or DSS key
anonymous Diffie-Hellman (SSL_DH_anon_with…)
– both the server and the client generate one-time DH parameters
– they send their parameters to the peer without authentication

Fortezza
– Fortezza proprietary key exchange scheme

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Ph
as

e
1

18© Levente Buttyán

Server certificate and key exchange msgs

certificate
– required for every key exchange method except for anonymous DH
– contains one or a chain of X.509 certificates (up to a known root CA)
– may contain

• public RSA key suitable for encryption, or
• public RSA or DSS key suitable for signing only, or
• fix DH parameters

server_key_exchange
– sent only if the certificate does not contain enough information to

complete the key exchange (e.g., the certificate contains an RSA signing
key only)

– may contain
• public RSA key (exponent and modulus), or
• DH parameters (p, g, public DH value), or
• Fortezza parameters

– digitally signed
• if DSS: SHA-1 hash of (client_random | server_random | server_params) is

signed
• if RSA: MD5 hash and SHA-1 hash of (client_random | server_random |

server_params) are concatenated and encrypted with the private RSA key

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Ph
as

e
2

19© Levente Buttyán

Cert request and server hello done msgs

certificate_request
– sent if the client needs to authenticate itself
– specifies which type of certificate is requested (rsa_sign,

dss_sign, rsa_fixed_dh, dss_fixed_dh, …)

server_hello_done
– sent to indicate that the server is finished its part of the key

exchange
– after sending this message the server waits for client response
– the client should verify that the server provided a valid

certificate and the server parameters are acceptable

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Ph
as

e
2

20© Levente Buttyán

Client authentication and key exchange

certificate
– sent only if requested by the server
– may contain

• public RSA or DSS key suitable for signing only, or
• fix DH parameters

client_key_exchange
– always sent (but it is empty if the key exchange method is fix DH)
– may contain

• RSA encrypted pre-master secret, or
• client one-time public DH value, or
• Fortezza key exchange parameters

certificate_verify
– sent only if the client sent a certificate
– provides client authentication
– contains signed hash of all the previous handshake messages

• if DSS: SHA-1 hash is signed
• if RSA: MD5 and SHA-1 hash is concatenated and encrypted with the private key
MD5(master_secret | pad_2 | MD5(handshake_messages | master_secret | pad_1))

SHA(master_secret | pad_2 | SHA(handshake_messages | master_secret | pad_1))

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Ph
as

e
3

21© Levente Buttyán

Finished messages

finished
– sent immediately after the change_cipher_spec message
– used to authenticate all previous handshake messages
– first message that uses the newly negotiated algorithms, keys,

IVs, etc.
– contains the MD5 and SHA-1 hash of all the previous handshake

messages:
MD5(master_secret | pad_2 | MD5(handshake_messages | sender | master_secret | pad_1)) |
SHA(master_secret | pad_2 | SHA(handshake_messages | sender | master_secret | pad_1))

where “sender” is a code that identifies that the sender is the client or
the server (client: 0x434C4E54; server: 0x53525652)

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Ph
as

e
4

22© Levente Buttyán

Cryptographic computations

pre-master secret
– if key exchange is RSA based:

• generated by the client
• sent to the server encrypted with the server’s public RSA key

– if key exchange is Diffie-Hellman based:
• pre_master_secret = gxy mod p

master secret (48 bytes)
master_secret = MD5(pre_master_sec | SHA(“A” | pre_master_sec | client_random | server_random)) |

MD5(pre_master_sec | SHA(“BB” | pre_master_sec | client_random | server_random)) |
MD5(pre_master_sec | SHA(“CCC” | pre_master_sec | client_random | server_random))

keys, MAC secrets, IVs
MD5(master_secret | SHA(“A” | master_secret | client_random | server_random)) |
MD5(master_secret | SHA(“BB” | master_secret | client_random | server_random)) |
MD5(master_secret | SHA(“CCC” | master_secret | client_random | server_random)) | …

client write MAC sec server write MAC sec client write key server write key …
key block :

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l
/

Cr
yp

to
gr

ap
hi
c

co
m
pu

ta
ti
on

s

23© Levente Buttyán

Key exchange alternatives

RSA / no client authentication
– server sends its encryption capable RSA public key in

server_certificate
– server_key_exchange is not sent
– client sends encrypted pre-master secret in client_key_exchange
– client_certificate and certificate_verify are not sent
or
– server sends its RSA or DSS public signature key in

server_certificate
– server sends a temporary RSA public key in server_key_exchange
– client sends encrypted pre-master secret in client_key_exchange
– client_certificate and certificate_verify are not sent

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l

24© Levente Buttyán

Key exchange alternatives cont’d

RSA / client is authenticated
– server sends its encryption capable RSA public key in

server_certificate
– server_key_exchange is not sent
– client sends its RSA or DSS public signature key in

client_certificate
– client sends encrypted pre-master secret in client_key_exchange
– client sends signature on all previous handshake messages in

certificate_verify
or
– server sends its RSA or DSS public signature key in

server_certificate
– server sends a one-time RSA public key in server_key_exchange
– client sends its RSA or DSS public signature key in

client_certificate
– client sends encrypted pre-master secret in client_key_exchange
– client sends signature on all previous handshake messages in

certificate_verify

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l

25© Levente Buttyán

Key exchange alternatives cont’d

fix DH / no client authentication
– server sends its fix DH parameters in server_certificate
– server_key_exchange is not sent
– client sends its one-time DH public value in client_key_exchange
– client_ certificate and certificate_verify are not sent

fix DH / client is authenticated
– server sends its fix DH parameters in server_certificate
– server_key_exchange is not sent
– client sends its fix DH parameters in client_certificate
– client_key_exchange is sent but empty
– certificate_verify is not sent

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l

26© Levente Buttyán

Key exchange alternatives cont’d

ephemeral DH / no client authentication
– server sends its RSA or DSS public signature key in

server_certificate
– server sends signed one-time DH parameters in

server_key_exchange
– client sends one-time DH public value in client_key_exchange
– client_certificate and certificate_verify are not sent

ephemeral DH / client is authenticated
– server sends its RSA or DSS public signature key in

server_certificate
– server sends signed one-time DH parameters in

server_key_exchange
– client sends its RSA or DSS public signature key in

client_certificate
– client sends one-time DH public value in client_key_exchange
– client sends signature on all previous handshake messages in

certificate_verify

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l

27© Levente Buttyán

Key exchange alternatives cont’d

anonymous DH / no client authentication
– server_certificate is not sent
– server sends (unsigned) one-time DH parameters in

server_key_exchange
– client sends one-time DH public value in client_key_exchange
– client_certificate and certificate_verify are not sent

anonymous DH / client is authenticated
– not allowed

SS
L

H
an

ds
ha

ke
 P

ro
to

co
l

Analysis of the SSL Record and
Handshake Protocols

29© Levente Buttyán

Eavesdropping

+ all application data is encrypted with a short term connection
key

+ short term key is derived from per-connection salts (client and
server randoms) and a strong shared secret (master secret) by
hashing (one-way operation)
+ even if connection keys are compromised the master secret

remains intact
+ different keys are used in each connection and in each

direction of the connection
+ supported encryption algorithms are strong

A
na

ly
si
s

/
SS

L
Re

co
rd

 P
ro

to
co

l

30© Levente Buttyán

Traffic analysis

- SSL doesn’t attempt to protect against traffic analysis
– padding length is not random
– no padding if a stream cipher is used (this is the default option)

- if SSL is used to protect HTTP traffic, then an attacker
– can learn the length of a requested URL
– can learn the length of the HTML data returned
– could find which URL was requested with high probability

A
na

ly
si
s

/
SS

L
Re

co
rd

 P
ro

to
co

l

31© Levente Buttyán

Active attacks on confidentiality

cut-and-paste attack

+ SSL prevents cut-and-paste attacks
+ different keys are used in different directions (and connections)
+ all encrypted packets are authenticated by a MAC

C S:

kacsa

S C: http://w s.hu/indww.crysy ex.html

http://w s.hu/indww.crysy ex.html

DK

⊕

http://w

DK

⊕

DK

⊕

DK

⊕

DK

⊕

DK

⊕

DK

⊕

%$#^*@(& kacsa %#^$%@(& s.hu/ind ex.html

word:kis kacsapass

word:kispass

word:kis

A
na

ly
si
s

/
SS

L
Re

co
rd

 P
ro

to
co

l

32© Levente Buttyán

Replay attacks

+ SSL protects against replay attacks by including an implicit
sequence number in the MAC computation
+ prevents re-order and deletion of messages

+ sequence numbers are 64 bit long
+ practically never wraps around

A
na

ly
si
s

/
SS

L
Re

co
rd

 P
ro

to
co

l

33© Levente Buttyán

Message authentication

+/- SSL uses a HMAC-like MAC
– it actually uses an obsolete version of HMAC
+ HMAC is provably secure

+ MAC secret is 128 bits long
+ different MAC secrets are used in different directions and

connections
- the MAC doesn’t involve the version number (part of the

message)
- if the version number is ever used, then it should be covered by

the MAC
- if the version number is never used, then it should not be sent

A
na

ly
si
s

/
SS

L
Re

co
rd

 P
ro

to
co

l

34© Levente Buttyán

The Horton principle

appl. data

compressed

hdr MACcompressed

compression alg.

MAC alg., MAC key

hdr compressed

content type, version

padding method,
encryption alg.,
encryption key (IV),
…

appl. data

compressed

hdr MACcompressed

compression alg.

MAC alg., MAC key

hdr compressed

content type, version?

padding method,
encryption alg.,
encryption key (IV),
…

not only data should be authenticated, but all context information on
which processing and interpretation of the data depend (e.g.,
algorithms, keys, information added to headers, etc)

A
na

ly
si
s

/
SS

L
Re

co
rd

 P
ro

to
co

l

35© Levente Buttyán

Cipher suite rollback attack

in SSL 2.0, an attacker could force the use of an export-
weakened encryption algorithm by modifying the list of
supported cipher suites in the hello messages
this is prevented in SSL 3.0 by authenticating all handshake
messages with the master secret (in the finished messages)
the master secret itself is authenticated by other means
– for the client:

• implicit authentication via the server certificate
– only the server could decrypt the RSA encrypted pre-master secret
– only the server could compute the pre-master secret from the client’s

public DH value
• explicit authentication via the server_key_exchange message (if sent)

– ephemeral DH parameters are signed by the server

– for the server:
• explicit authentication via the certificate_verify message (if sent)

– certificate_verify is signed by the client
– it involves the master secret

A
na

ly
si
s

/
SS

L
H
an

ds
ha

ke
 P

ro
to

co
l

36© Levente Buttyán

Dropping the change_cipher_spec msg

authentication in the finished message does not protect the
change_cipher_spec message (it is not part of the handshake
protocol !)
this may allow the following attack:
– assume that the negotiated cipher suite includes only message

authentication (no encryption)

change_cipher_spec

finishedC, mack1(finishedC)
finishedC

change_cipher_spec

finishedS, mack2(finishedS)
finishedS

data, mack1(data)
modified data

man-in-the-middle

sending state
is updated

serverclient first 3 phases of the handshake:
setup of MAC secrets k1 and k2

sending state
is updated

receiving state
is not updated:

finishS is
accepted

receiving state
is not yet updated:
finishC is accepted

A
na

ly
si
s

/
SS

L
H
an

ds
ha

ke
 P

ro
to

co
l

37© Levente Buttyán

Dropping the change_cipher_spec msg

if the negotiated cipher suite includes encryption, then the
attacks doesn’t work
– client sends encrypted finished message
– server expects clear finished message
– the attacker cannot decrypt the encrypted finished message

simplest fix: require reception of change_cipher_spec before
processing the finished message
– this seems to be obvious, but…
– even Netscape’s reference SSL implementation SSLRef 3.0b1

allows processing finished messages without checking if a
change_cipher_spec has been received

– SSLRef 3.0b3 contains the fix
another fix: include the change_cipher_spec message in the
computation of the finished message
– this would require a more radical change in the SSL specification

A
na

ly
si
s

/
SS

L
H
an

ds
ha

ke
 P

ro
to

co
l

38© Levente Buttyán

Key-exchange algorithm rollback
A
na

ly
si
s

/
SS

L
H
an

ds
ha

ke
 P

ro
to

co
l

serverclient man-in-the-middle

client_hello: SSL_RSA_...
client_hello: SSL_DHE_...

server_hello: SSL_DHE_...
server_hello: SSL_RSA_...

server_key_exchange:
p, g, gy mod p, signature

server_key_exchange:
p, g, gy mod p, signature

certificate: server signing key certificate: server signing key

RSA modulus = p
RSA exponent = g client_key_exchange:

secg mod p client_key_exchange:
gx mod p

sec’ = (gx)y mod p
recover sec by

computing g-th root
(this is easy since p is prime)

compute sec’ as (gy)x mod p

finished:
{ hash(msgs, sec), macsec(…) }sec

finished:
{ hash(msgs, sec’), macsec’(…) }sec’

39© Levente Buttyán

Key-exchange algorithm rollback

SSL authenticates only the server’s (RSA or DH) parameters in
the server_key_exchange message
it doesn’t authenticate the context (key exchange algorithm in
use) in which those parameters should be interpreted
this is not compliant with the Horton principle !

a fix:
– hash all messages exchanged before the server_key_exchange

message
– include the hash in the signature in server_key_exchange message

A
na

ly
si
s

/
SS

L
H
an

ds
ha

ke
 P

ro
to

co
l

40© Levente Buttyán

Version rollback attacks

SSL 3.0 implementations may still support SSL 2.0
an attacker may change the client_hello message so that it
looks like an SSL 2.0 client_hello
as a result the client and the server will run SSL 2.0
SSL 2.0 has serious security flaws
– among other things, there are no finished messages to

authenticate the handshake
- the version rollback attack will go undetected

fortunately, SSL 3.0 can detect version rollback
– pre-master secret generated on SSL 3.0 enabled clients:

struct{
ProtocolVersion client_version; // latest version supported by the client
opaque random[46]; // random bytes

} PreMasterSecret;

– an SSL 3.0 enabled server detects the version rollback attack,
when it runs an SSL 2.0 handshake but receives a pre-master
secret that includes version 3.0 as the latest version supported by
the client

A
na

ly
si
s

/
SS

L
H
an

ds
ha

ke
 P

ro
to

co
l

41© Levente Buttyán

MAC usage

while the SSL Record Protocol uses HMAC (an early version),
the SSL Handshake Protocol uses ad-hoc MACs at several
points
– certificate_verify:

hash(master_secret | pad_2 | hash(handshake_messages | master_secret | pad_1))

– finished:
hash(master_secret | pad_2 | hash(handshake_messages | sender | master_secret | pad_1))

in addition, these ad-hoc MACs involve the master secret
this is dangerous, and SSL should use HMAC consistently

A
na

ly
si
s

/
SS

L
H
an

ds
ha

ke
 P

ro
to

co
l

42© Levente Buttyán

Analysis summary

SSL Record Protocol
+ good protection against passive eavesdropping and active attacks
– should better protect against traffic analysis (e.g., apply random

padding)
– should use the latest version of HMAC

SSL Handshake Protocol
+ some active attacks are foiled

• cipher suite rollback
• version rollback

– other active attacks could still be possible depending on how an
implementation interprets the SSL specification

• dropping change_cipher_spec messages
• key-exchange algorithm rollback

– ad-hoc MAC constructions should be replaced with HMAC

overall: SSL 3.0 was an extremely important step toward
practical communication security for Internet applications

A
na

ly
si
s

SSL vs. TLS

44© Levente Buttyán

Miscellaneous changes

version number
– for TLS the current version number is 3.1

cipher suites
– TLS doesn’t support Fortezza key exchange and Fortezza

encryption
padding
– variable length padding is allowed (max 255 padding bytes)

MAC
– TLS uses the latest version of HMAC
– the MAC covers the version field of the record header too

certificate_verify message
– the hash is computed only over the handshake messages
– in SSL, the hash contained the master_secret and pads

more alert codes

TL
S

vs
.

SS
L

45© Levente Buttyán

New pseudorandom function (PRF)

P_hash(secret, seed) = HMAC_hash(secret, A(1) | seed) |
HMAC_hash(secret, A(2) | seed) |
HMAC_hash(secret, A(3) | seed) | …

where
A(0) = seed
A(i) = HMAC_hash(secret, A(i-1))

PRF(secret, label, seed) =
P_MD5(secret_left, label | seed) ⊕ P_SHA(secret_right, label | seed)

TL
S

vs
.

SS
L

46© Levente Buttyán

P_hash illustrated

HMACsecret

|| seed

HMACsecret

A(1)

seed

HMACsecret

|| seed

HMACsecret

A(2)

HMACsecret

|| seed

HMACsecret

A(3) …

…

TL
S

vs
.

SS
L

47© Levente Buttyán

Usage of the new PRF

finished message
PRF(master_secret,

“client finished”,
MD5(handshake_messages) | SHA(handshake_messages))

cryptographic computations
– pre-master secret is calculated in the same way as in SSL
– master secret:

PRF(pre_master_secret,
“master secret”,
client_random | server_random)

– key block:
PRF(master_secret,

“key expansion”,
server_random | client_random)

TL
S

vs
.

SS
L

48© Levente Buttyán

Recommended readings

SSL v3.0 specification, available on-line at
http://wp.netscape.com/eng/ssl3/index.html
D. Wagner, B. Schneier, Analysis of the SSL 3.0 protocol, 2nd

USENIX Workshop on Electronic Commerce, 1996.
The TLS protocol v1.0, available on-line as RFC 2246

