Foundations
of Robotics

/ —B] [eesbs] _
—B A | [sinty|

OPEN ACCESS KINOvVa @ Sprlnger

Together in robotics

Foundations of Robotics

Damith Herath - David St-Onge
Editors

Foundations of Robotics

A Multidisciplinary Approach with Python
and ROS

KINOV @ Springer

Together in robotics

Editors

Damith Herath

Collaborative Robotics Lab

Human Centred Technology Research
Centre

David St-Onge

Department of Mechanical Engineering
Ecole de technologie supérieure
Montreal, QC, Canada

University of Canberra
Canberra, ACT, Australia

Kinova Inc., Quebec
This open-access book project has been fully funded by Kinova Robotics.
https://www.kinovarobotics.com/

o0¢e

ISBN 978-981-19-1982-4 ISBN 978-981-19-1983-1 (eBook)
https://doi.org/10.1007/978-981-19-1983-1

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license and indicate if you modified the licensed material. You do not have permission
under this license to share adapted material derived from this book or parts of it.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

This work is subject to copyright. All commercial rights are reserved by the author(s), whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Regarding these commercial rights a non-exclusive
license has been granted to the publisher.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover art by Laurent Pinabel (CC-BY-NC-ND)
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.

The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://www.kinovarobotics.com/
https://doi.org/10.1007/978-981-19-1983-1
http://creativecommons.org/licenses/by-nc-nd/4.0/

To

Dinendra and Nimali

—Damith Herath

Oscar, Arthur and Josée

—David St-Onge

In memory of Prof. Jean-Paul Laumond
(1953-2021) for his life’s work as a
roboticist, a humanist and a pioneer of robots
and art research-creation.

Foreword by Ken Goldberg

Robots are Mirrors of OQurselves

Man is a robot with defects.

Emile Cioran

Robots will always be fascinating because they reflect our very human fears and
hopes. Robots are a perennial subject for artists and writers, who often wish for an
accessible introduction to understanding how they work. Robots are also of great
interest to engineers, who often wish for an accessible introduction to understanding
their context in history and culture. This book, edited by leading artists and engineers
Damith Herath and David St-Onge, provides both.

The word “robot” emerged in 1920, shortly after the 1918 Pandemic. It was
coined, by playwright Karel Capek, from a Czech word for hard work and central
to his popular script about human-like machines rebelling against unfair working
conditions. Although the word was new, the concept of human-like machines has a
long history, dating back to Egyptian hydraulic machines, Pygmalian’s sculpture in
ancient Greece, the medieval Golem, the alchemists’ automata, and Frankenstein.

In 1942, Isaac Asimov introduced three “Laws” of robotics. Osamu Tezuka’s
Astro Boy emerged in 1952, and artist Nam Jun Paik exhibited a series of sculptural
robots in 1962. Countless robots have appeared in artworks, science fiction books,
films, and television series.

Real robots are of great interest for application in industry, exploration, defence,
healthcare, and service. Robotics research has a long history, dating back to Nikola
Tesla’s demonstration of a radio-controlled boat in 1898 and the emergence of “teler-
obots” to handle radioactive materials during World War II. The IEEE Robotics and
Automation Society held its first conference in 1984 (a significant year for several
reasons), and there are now dozens of conferences and journals devoted to robotics
research.

In 2022, during a huge resurgence of interest in Al and as the 2019 Pandemic
begins to subside, robots continue to attract interest and maintain a strong hold on

vii

viii Foreword by Ken Goldberg

our collective imagination. Books, films, and newspapers promote sensational stories
about human-like robots “stealing” jobs and making humans obsolete. Compa-
nies such as Tesla, Google, GM, and Toyota are actively working on autonomous
driving. Flying drones are being used for cinematography, inspection, and surveil-
lance. Robots that sort packages are being adopted to keep up with skyrocketing
demand for e-commerce.

Although many artists and designers have worked with robots, almost all courses
in robotics today are taught in engineering departments: in computer science or
in engineering: electrical, mechanical, or industrial. As a result, current robotics
textbooks are geared for engineers. They focus on mathematical models of coordinate
frames, wrench mechanics, and control theory, assuming that readers have completed
coursework in geometry, calculus, physics, and programming.

This book is different. It is written for students of all ages and backgrounds
who want to learn about the broad fundamentals of robotics. This includes artists,
designers, and writers who want to learn more about the technical workings of robots,
and engineers who want to learn more about the cultural history of robots.

The book begins with a review of the rich history of robots. It then introduces
chapters on teaching, designing, and programming, with details on the open access
standard Robot Operating System (ROS) and a concise review of core mathematical
concepts. The book then goes into the details of robot perception and actuation, with
chapters on algorithms for robot control, motion planning, and manipulation. It also
introduces active research topics such as bio-inspired robot design, human-robot
interaction, ethics, and recent advances in robot learning.

This book provides the “foundation” for understanding how robots work.

It is the accessible introduction that artists and engineers have been waiting for.

February 2022 Ken Goldberg
William S. Floyd Jr. Distinguished

Chair in Engineering

UC Berkeley

Berkeley, CA, USA

http://goldberg.berkeley.edu

http://goldberg.berkeley.edu

Foreword by Sue Keay

The world is changing. Robotics and robotics technology is becoming increasingly
pervasive. We have robots in our homes, in the form of things like vacuum cleaner
robots, and in many cases, we don’t even notice their presence. For robots to become
truly useful to humans, to understand us and operate in ways that make sense to us,
and to be able to operate reliably and seamlessly in the cluttered, disorganised and
unstructured world that we live in requires robot-builders that have a deep under-
standing of the complexity of not only technology but of the humans that use it and the
complex environments that we inhabit. For this, traditional engineering-type learning
is no longer sufficient. In the future, the pathway into a career in robotics is likely
to be more complicated than via degrees in mechanical, electrical and mechatronics
engineering, or computer science. A multidisciplinary approach, more human-centric
design considerations, as well as pedagogy, safety, psychology, research design, and
ethics is needed, all subjects of this text.

The authors have a very human-centred approach to robotics and a keen eye
for how to incorporate arts, creativity, and the social sciences into this tradition-
ally engineering-heavy field. They also combined this with a deep understanding of
industry context, how to meaningfully apply robotics R&D to solve industry prob-
lems, and the importance of keeping human workers engaged in the process through
the use of collaborative robotics. After leading the development of Australia’s first
national robotics roadmap, these are all themes that have come across very strongly
both in case studies of the creation and use of robotics technology as well as in public
consultations that I have been engaged in. The one burning issue for all robotics
companies in Australia (and all around the world) is access to robotics talent, and
that’s where this book, Foundations of Robotics, plays an important role.

Foundation of Robotics provides the tools and building blocks necessary to train
our next generation of robot technologists and equip them with a taste of the multi-
disciplinary considerations that are required to build modern robots. Importantly, the
book also stresses the importance of diversity and culture, if we are to build robotic
technologies that are truly representative of the communities within which they are
used. In many cases, the robots will be used in industrial settings, and this is why the
partnership with Kinova to develop this book is especially important to ensure that

X Foreword by Sue Keay

learning is related to industry best practices and that practical examples and exercises
are given to students to consolidate their learnings.

I highly commend this book to you, whether you are a student of robotics, a
teacher, an experienced researcher, a hobbyist, an enthusiast, or just an interested
observer. Damith, David, and their team of contributing authors are leading the way
in expanding the horizons of future roboticists and smoothing the path for more
extensive deployment of robotics technologies, especially cobots, in the future.

February 2022 Dr. Sue Keay, FTSE
Chair, Board of Directors
Robotics Australia Group

Chair, Advisory Board
Australian Cobotics Centre

Preface

These are exciting times to be engaged in robotics!

Over the last couple of decades, we have had great fun building and programming
some fascinating and interactive robots. Robotics is becoming pervasive, and robots
are ever more in contact with ordinary humans away from research labs and manufac-
turing confines. However, as exciting as it may be, little has evolved in how robotics
is taught at universities. Increasingly, this is becoming problematic as traditionally
trained engineers are called to develop robots that could have an impact and interac-
tions with the community at large. In our own practice, we have realised the evolving
multidisciplinary nature of robotics. Recently, both of us have been developing new
undergraduate programmes in robotics. While there are several exceptional textbooks
that deal with various facets of robotics (books by such luminaries as Khatib, Sicil-
iano, Thrun, Corke, Dudek comes to mind), we were at a loss in finding a compre-
hensive introductory textbook that touches on some critical elements of modern
robotics that are usually omitted in traditional engineering programmes. Thus, the
initial impetus came almost by necessity to develop a book that we can use in our
courses that is true to our multidisciplinary backgrounds.

Traditionally, robotics is aligned with one of the following foundational disci-
plines, Mechanical, Electrical and Computer Engineering (and these have their roots
in physics). Depending on the alignment of the department, the course you study
will have a flavour that accentuates the particular alignment to the point that some-
times even the terminology will be different (e.g. a robot may be referred to as a
cyber-physical system!). To complicate matters further, you will soon find out that
roboticists possibly do not agree on a singular definition for what a robot is. What
all these allude to is that robotics is still a young and emerging discipline (compared
to its founding roots), and we must collectively develop and contribute to its body
of knowledge in an inclusive and mindful way so as to embrace its ever-expanding
disciplinary boundaries. The book you are holding is our contribution to the field.
We believe that a foundational book in robotics should be broadly multidisciplinary
yet grounded in the fundamentals essential to understanding the standard building
blocks of robotics.

xi

xii Preface

In developing this book, we wanted to approach it not only from designing a robot
from first principles firmly rooted in engineering but also from the point of view of
the human element, present during the design process and throughout the robot’s
journey post-fabrication. We started by asking what should a modern foundational
textbook in robotics look like, particularly tapping into our experience working in the
worlds of robotic art and human-robot interaction research. The natural realisation
was that this book requires collaboration at the highest level with colleagues from
many disciplines. What you are about to read is a fresh new look at robotics based
on our own interactions with students and colleagues tempered by a desire to present
robotics in a more humanistic light.

A second intention has been to make the material relevant to the industrial practice
and accessible. We believe one of the unique aspects of the book is the industry expert
interviews dotted throughout the book. They inspire and provide insider insights as
to what goes into making real robots for real commercial applications. We hope you
enjoy the little personal stories shared by various experts in the field. We are ever
so grateful to be associated with Kinova in this aspect. The Kinova team provided
helpful feedback throughout the book’s development, providing insight into shaping
the academic content of the book. The reader can be assured that the foundational
concepts presented here will not be lost in the practical realities of working in the
real world with real robots. We are also grateful to Kinova for funding' the project
to publish the book as a Springer open access book. Considering the ever-increasing
cost of student textbooks, we hope that free accessibility to this book provides many
aspiring roboticists access to relevant academic material without hindrance. Modern
robotics is also about entrepreneurship. We like to invite you to read the inspiring
story behind Kinova’s founding as narrated by Charles Deguire, the president and
CEO of Kinova, embedded in the first chapter—we hope the book will ignite a spark
of entrepreneurship in you!

The book is divided into three main parts.

We believe that robot design should be part of an ecosystem influenced by culture,
contemporary thinking, and ancillary technologies of the day. Thus, the first part,
Contextual Design, brings together an eclectic collection of ideas that will lay the
contextual foundation on which the rest of the book is built. This part begins with a
colourful historical perspective highlighting the mythological beginnings of robotics,
its trends, and the importance of craft, arts, and creation in evolving modern robotics.
We then explore the parallel pedagogical evolution in robotics. The second chapter
highlights some of its missteps and approaches you can take to learn and teach
robotics as a student or a teacher successfully. Next, the chapter on Design Thinking
provides pointers to useful tools and ways of thinking in solving problems, robotic
or otherwise. The final three chapters in this part provide introductory material
on software, ROS—the Robot Operating System and mathematics, the ancillary
technologies upon which modern robotics is being constructed.

1 Although Kinova Robotics has generously funded this project, they have never interfered with the
academic independence of the editors and the authors in developing the book.

Preface xiii

The second part develops your understanding of the foundational technical
domains: the Embedded design. We start with an introduction to sensors, actua-
tors, and algorithms, the building blocks of a robot. The eighth and ninth chapters
develop the key ideas relevant to mobile robots—robots that can move around in
the world (think self-driving cars!). The tenth chapter is a deep dive into robot arms
that enable them to manipulate the environment. Then we explore how to assemble
a swarm of robots. Concepts and challenges in deploying multi-robot systems are
discussed in detail. Finally, the part concludes with a chapter revolving around proto-
typing and discussing the embedded design process. Topics including 3D printing and
computer-aided design are discussed in practical detail, giving you the confidence to
understand how to combine theoretical knowledge with actual implementations of
prototypes that allows you to build and test your robot designs.

While most industrial robots are still destined to be confined in isolated factory
settings where human interaction is minimal, a paradigm shift is happening now in
how we interact with robots. Increasingly, robots are being designed and deployed
to be interactive and to be able to work with humans. The Interaction Design part
explores the implications and some of the emerging new technical domains that
underpin this (r)evolution. It is no longer enough to test your robots for their technical
ability. They now need to be evaluated for their ability to work with or alongside
humans. The first chapter in this part takes you through the emerging domain of
human-robot interactions from a psychological perspective. It provides you with
a thorough guide on developing user studies to test your hypotheses about robots
interacting with humans with helpful case studies and statistical tools. Safety takes
an elevated meaning in this new interactive world. The fourteenth chapter discusses
the existing and emerging international safety standards related to various types of
robots and robot deployments. It provides practical approaches and tools to deploy
robots safely in interactive and collaborative settings.

The robots and techniques we discussed in Part II rely on clearly defined world
models and constraints restricting their use to relatively simple environments or use
cases. While these techniques have allowed us to deploy robots successfully in a wide
variety of tasks, we are now starting to see their limitations. As you would imagine,
the human world is highly complex. Such simplistic models are no longer adequate
to deploy robots in natural human-centred interactive settings (think self-driving cars
again!). The chapter on Machine Learning discusses some of the cutting-edge ideas
being developed in robotics. These emerging ideas enable robots to operate in more
complex worlds and to attempt complicated tasks (as humans do) successfully. As
robots begin to interact with us in such complex ways, they can no longer be treated
as mere tools. On the one side, they are increasingly becoming human-like, and
on the other, they are increasingly permeating and challenging our way of life. As a
robot designer, you now have a fundamental responsibility to think about the broader
implications of your robot design. The final chapter on Robot Ethics is a systematic
guide to help you navigate the robot design process with an ethical framework.

As detailed in the second chapter, no amount of theoretical work and instruc-
tions alone is sufficient to properly acquire the skills needed to design and deploy
robots successfully. A hands-on, project-based approach is an essential pedagogical

Xiv Preface

component in robotics. Therefore, the book includes two comprehensive projects
that capture most of the theoretical elements covered in the book. In addition, we
have included the necessary software and other resources needed to complete these
projects on the companion website. We hope you make use of these resources to the
fullest.

We have endeavoured to make each chapter relatively self-contained, so if you are
after a specific topic, it is bound to be covered in its entirety within a single chapter.
Each chapter has a section at the beginning that describes the key learning objectives
and a summary at the end. This should enable you to identify a particular topic you
are after quickly. The parts and the chapters are laid out in a way that you can also
read them consecutively, building on from one to the other.

However you use it, we hope that you enjoy the book and be inspired by the truly
interdisciplinary nature of the field.

Please visit the companion website of the book for teaching and learning
resources, updates and errata at: https://foundations-of-robotics.org
Book’s GitHub: https://github.com/Foundations-of-Robotics

Canberra, Australia Damith Herath
Montreal, Canada David St-Onge
January 2022

https://foundations-of-robotics.org
https://github.com/Foundations-of-Robotics

Acknowledgements

A book of this nature is simply the result of direct and indirect collaboration and
support of many colleagues, students, family, and friends. So many have inspired
and supported us along the journey to reach this point. Foremost, we want to thank
all the contributing authors to the book. This is an enormous undertaking on their
part, particularly during a pandemic. They have tirelessly worked around the clock
to develop high-quality content within the brief time frame in which this project
was set out. Our authors include early career researchers, graduate students, industry
veterans, and senior academics from many disciplines. A genuinely multidisciplinary
and multi-generational effort!

To maintain the academic integrity of the content and make sure the chapters are
presented in the best possible way, we have enlisted the help of several colleagues
both from academia and the industry to carefully review and provide feedback to
the authors of the chapters. In particular, we thank Ilian Bonev, Matt Bower, Jacob
Choi, Jenny L. Davis, Samira Ebrahimi-Kahou, Sabrina Jocelyn, Rami Khushaba,
Sarath Kodagoda, Dominic Millar, Adel Sghaier, Bill Smart, and Elizabeth Williams
for their contributions to the high-quality review of the chapters.

We want to acknowledge the efforts and extend our thanks to the student team
which worked on putting the teaching labs together. The hexapod team includes
Chris Lane, Bryce Cronin, Charles Raffaele, Dylan Morley, and Jed Hodson. The
ROS mobile manipulator projects were built upon the efforts of Nerea Urrestilla
Anguiozar, Rafael Gomes Braga, and Corentin Boucher. Without their tireless efforts,
none of this would have been possible.

This book is possible and openly accessible, thanks to the trust and support of our
industrial partner, Kinova Robotics. More specifically, we thank Jonathan Lussier
and Jean Guilbault for jumping into the project early on and sharing their thoughts all
through the production. In addition, Marc-André Brault and Maude Goulet managed
the interviews within each chapter, an essential feature of the book. We also want
to thank all the industrial experts featured in our interviews dotted throughout the
book.

We appreciate the patience and support of the Springer Nature team for their
tireless efforts to bring this book to life and into your hands.

XV

XVi Acknowledgements

And of course, we thank you, the readers of the book. Whether you are a robotics
student or an academic adapting the text for your teaching, we hope this book inspires
you to see robotics in a whole new light. We would love to hear your feedback, so
please feel free to drop us an email or drop in for a cuppa if you are in our part of the
world!

Finally, we wish to dedicate this book to our respective families, for they sustained
us and endured the madness of being academics!

Contents

PartI Contextual Design

1

Genealogy of Artificial Beings: From Ancient Automata
to Modern Robotics i 3
Nicolas Reeves and David St-Onge

Teaching and Learning Robotics: A Pedagogical Perspective 43
Eleni Petraki and Damith Herath

Design Thinking: From Empathy to Evaluation 63
Fanke Peng

Software Building Blocks: From Python to Version Control 83

Damith Herath, Adam Haskard, and Niranjan Shukla

The Robot Operating System (ROS1&2): Programming
Paradigms and Deployment 105
David St-Onge and Damith Herath

Mathematical Building Blocks: From Geometry
to Quaternions to Bayesian 127
Rebecca Stower, Bruno Belzile, and David St-Onge

Part I Embedded Design

7

What Makes Robots? Sensors, Actuators, and Algorithms 177
Jiefei Wang and Damith Herath

How to Move? Control, Navigation and Path Planning
for Mobile Robots 205
Jiefei Wang and Damith Herath

Lost in Space! Localisation and Mapping 239
Damith Herath

xvii

Xviii

10

11

12

How to Manipulate? Kinematics, Dynamics and Architecture
of Robot Arms
Bruno Belzile and David St-Onge

Get Together! Multi-robot Systems: Bio-Inspired Concepts
and Deployment Challenges
Vivek Shankar Varadharajan and Giovanni Beltrame

The Embedded Design Process: CAD/CAM and Prototyping
Eddi Pianca

Part III Interaction Design

13

14

15

16

Social Robots: Principles of Interaction Design and User
Studies
Janie Busby Grant and Damith Herath

Safety First: On the Safe Deployment of Robotic Systems . ..
Bruno Belzile and David St-Onge

Managing the World Complexity: From Linear Regression
toDeepLearning i,
Yann Bouteiller

Robot Ethics: Ethical Design Considerations
Dylan Cawthorne

Part IV Projects

17

18

Robot Hexapod Build Labs
David Hinwood and Damith Herath

Deployment of Advanced Robotic Solutions: The ROS Mobile
Manipulator Laboratories
David St-Onge, Corentin Boucher, and Bruno Belzile

Contents

Editors and Contributors

About the Editors

Damith Herath Associate Professor, Collaborative Robotics Lab, University of
Canberra, Australia.

Damith Herath is an Associate Professor in Robotics and Art at the University of
Canberra. Damith is a multi-award winning entrepreneur and a roboticist with exten-
sive experience leading multidisciplinary research teams on complex robotic integra-
tion, industrial and research projects for over two decades. He founded Australia’s
first collaborative robotics startup in 2011 and was named one of the most innovative
young tech companies in Australia in 2014. Teams he led in 2015 and 2016 consecu-
tively became finalists and, in 2016, a top-ten category winner in the coveted Amazon
Robotics Challenge—an industry-focused competition amongst the robotics research
elite. In addition, Damith has chaired several international workshops on Robots
and Art and is the lead editor of the book Robots and Art: Exploring an Unlikely
Symbiosis—the first significant work to feature leading roboticists and artists together
in the field of Robotic Art. e-mail: Damith.Herath@Canberra.edu.au

David St-Onge Associate Professor, Department of Mechanical Engineering, ETS
Montréal.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechan-
ical Engineering Department at the Ecole de technologie supérieure and director
of the INIT Robots Lab (initrobots.ca). David’s research focuses on human-swarm
collaboration more specifically with respect to operators’ cognitive load and motion-
based interactions. He has over 10 years’ experience in the field of interactive media
(structure, automatization and sensing) as workshop production director and as R&D
engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in
national training programs for highly qualified personnel for drone services (UTILI),
as well as for the deployment of industrial cobots (CoRoM). He led the team effort

Xix

mailto:Damith.Herath@Canberra.edu.au

XX Editors and Contributors

to present the first large-scale symbiotic integration of robotic art at the IEEE Inter-
national Conference on Robotics and Automation (ICRA 2019). e-mail: david.st-
onge @etsmtl.ca

Contributors

Beltrame Giovanni Department of Computer and Software Engineering, Polytech-
nique Montréal, Montreal, Canada

Belzile Bruno Department of Mechanical Engineering, Ecole de Technologie
Supérieure, Montréal, Canada

Boucher Corentin Department of Mechanical Engineering, Ecole de Technologie
Supérieure, Montréal, Canada

Bouteiller Yann Department of Computer and Software Engineering, Polytech-
nique Montréal, Montreal, Canada

Cawthorne Dylan Unmanned Aerial Systems Center, University of Southern
Denmark, Odense, Denmark

Grant Janie Discipline of Psychology, Faculty of Health, University of Canberra,
Academic Fellow, Graduate Research, Canberra, Australia

Haskard Adam Bluerydge, Canberra, ACT, Australia

Herath Damith Collaborative Robotics Lab, University of Canberra, Canberra,
Australia

Hinwood David University of Canberra, Bruce, Australia
Peng Fanke UniSA Creative, University of South Australia, Canberra, Australia
Petraki Eleni Faculty of Education, University of Canberra, Canberra, Australia
Pianca Eddi University of Canberra, Canberra, Australia

Reeves Nicolas School of Design, University of Quebec in Montreal, Montreal,
Canada

Shukla Niranjan Accenture, Canberra, ACT, Australia

St-Onge David Department of Mechanical Engineering, Ecole de Technologie
Supérieure, Montréal, Canada

Stower Rebecca Department of Psychology, Université Vincennes-Paris 8, Saint-
Denis, France

mailto:david.st-onge@etsmtl.ca

Editors and Contributors xxi
Varadharajan Vivek Shankar Department of Computer and Software Engi-
neering, Polytechnique Montréal, Montreal, Canada

Wang Jiefei The School of Engineering and Information Technology, University
of New South Wales, Canberra, Australia

Part I
Contextual Design

Chapter 1 ®)
Genealogy of Artificial Beings: From s
Ancient Automata to Modern Robotics

Nicolas Reeves and David St-Onge

Learning objectives

e To understand the mythological origins of contemporary robots and automata

e To be able to connect current trends in robotics to the history of artificial beings

e To understand the role of crafts, arts and creation in the evolution of contemporary
robotics.

Introduction

This chapter is an extensive overview of the history of automata and robotics from
the Hellenistic period, which saw the birth of science and technology, and during
which lived the founders of modern engineering, to today. Contemporary robotics
is actually a very young field. It was preceded by a 2000-years period in which
highly sophisticated automata were built for very different purposes—to entertain, to
impress or to amaze—at different times. You will see that the methods and techniques
that were used to build these automata, and that largely contributed to the develop-
ment of robotics, were at times imported from unexpected fields—astronomy, music,
weaving, jewellery; and that the impulse that drove automata makers to build their
artificial beings was far from rational, but rather rooted in the age-old mythical desire
to simulate, and even to realize, an entity from inert materials.

N. Reeves (X))
School of Design, University of Quebec in Montreal, Montreal, Canada
e-mail: reeves.nicolas @uqam.ca

D. St-Onge
Department of Mechanical Engineering, ETS Montréal, Montreal, Canada
e-mail: david.st-onge @etsmtl.ca

© The Author(s) 2022 3
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_1&domain=pdf
mailto:reeves.nicolas@uqam.ca
mailto:david.st-onge@etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_1

4 N. Reeves and D. St-Onge

1.1 Whatis a Robot?

Whereas most of us would think they know what a robot actually is, a closer look
at the concept will show that a precise definition of the term is actually not that
easy to frame; and that it broadened again in the last decades to encompass a large
variety of devices. From the first appearance of the word in the Czech theatre play
R.U.R (Capek, 2004), in which it was referring to human beings artificially created
to become perfect and servile workers (Fig. 1.1), it is now used for a range of devices
as different as robotic arms in factories, battery-operated toys for kids, androids or
biomorphic machines. It even came to describe entities that lie at the boundary of
technology and biology and that cannot anymore be described as fully artificial.

This evolution is less paradoxical than it seems. As opposed to a common idea,
Capek’s robots where not strictly speaking artificial machines: they were created
with organic materials synthesized by chemical processes. In the scenario, the core
of the project was to build teams of workers that were free from everything that was
not essential to the implementation of their tasks—feelings, emotions, sensibility.
Their role was that of robots, but they were still living biological organisms, which
makes them quite different from the highly sophisticated technological devices that
come to mind when thinking of contemporary robots. They were in a sense much
more related to automata, a word that Capek has actually used in a previous play, but
that was completely replaced by “robots” in this one.

This last point is worth noticing. At the time R.U.R. was written, the word
“robot” was a neologism forged from slavish roots referring to work, chore, forced
labour. Nothing in its original meaning implied that a robot should be a machine:
an automaton created to help human beings in the implementation of some task

Fig. 1.1 Scene from Capek’s play Rossum’s universal robots, with three robots on the right; 1920

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 5

becomes a robot. In that respect, it actually contradicts the original meaning of the
word “automaton”, which, etymologically, refers to an animated device which acts
by itself. The word decomposes in the Greek roots auto, which precisely means
“by itself”, whose origin, strangely enough, is unknown; and matos, “thinking” or
“endowed with will”, from the older proto-Indo-European * mens, “to think”. It
therefore designates an animated artificial being that is able to make decisions and to
act autonomously, whereas “robot” is frequently associated with a machine that has
been designed for the sole purpose of blindly executing sets of instructions crafted
by a human being—the opposite of an autonomous entity. What is hardly disputable
however is the fact that every contemporary robot finds its place in the age-old
genealogy of automata. It might also be interesting to note that the oldest origins
of the root “rob”, from which “robot” was created, evokes the fact of being orphan,
which corresponds surprisingly well to these artificial beings which, as a matter of
fact, never had a biological father or a mother.

Since its first occurrence, the meaning and signification of “robot” have extended
well beyond this gloomy etymology. A lot of robots are today created for research,
experimentation or entertainment, without any practical use; but current roboticists
do not yet agree on a single definition. Two elements however strike out as reaching
a broad consensus: first, the device must present some form of intelligence; second,
it must be embodied. As it is well known, “intelligence” is in itself a tricky notion to
define. In this context, it does not indeed refer to human intelligence, less again does
it correspond to the common perception of artificial intelligence, better represented
by the concept of machine learning. Intelligence for a robot is only about taking
decision on its own, based on the limited information it has from its context or
from its internal states. Here again, etymology comes to help: the word comes from
the Latin inter ligere—«to link between». The links can be elementary—a bumper
sensing a wall makes the robot wheels stop—or more complex—the robot takes a
decision by comparing information coming from multiple sources. The concept of
embodiment refers to the physicality of the robot, as opposed to software “bots.” On
its side, «automaton» today refers indifferently to a hardware or a software device.

For the sake of the present chapter, we will tighten the meaning the word “robot”
in order to encompass essentially hardware automata fulfilling two criteria: first,
they must be dedicated to the autonomous implementation of DDD (Dangerous,
Dull or Dirty) tasks, or to facilitate the implementation of such tasks for human
beings; second, they must be able to take decisions through some form of interaction
with their context. As we will see below, this definition itself has undergone several
variations in the last decades, but we will keep it for the moment.

1.2 A Mythical Origin

The genealogy of robots, as well as the history of robotics, are then intimately linked
to that of automata. An extensive recapitulation of this history would be far beyond
the scope of this chapter, all the more since several books have already been written

6 N. Reeves and D. St-Onge

on it (among many others: Demson & Clason, 2020; Mayor, 2018; Nocks, 2008;
Foulkes, 2017 ...). However, an efficient way to understand the fundamentals of
human motivation and fascination for robots and robotic systems is to recapitulate
some of its main chapters, and to locate in time the bifurcations that progressively
separated robots from automata: the evolution of historical trends in robotics is of the
greatest help to understand why some aspects of robotic research are better known,
and better developed, than others.

The first and likely most important point to consider is that the roots of robotics
are not anchored in technology or science, but rather in a mythological ground that
extends far beyond these fields, and that can be broadly divided in two layers. The first
one is concerned by the myth of a being with supernatural power and unpredictable
intentions, an image that still hovers over any robot or automaton. The second involves
all the attempts that have been made along history to replicate through artificial
mechanisms two natural phenomena that escape human understanding, namely life
and cosmological events.

These two layers are intricated at many levels, but they differ by their basic
intentions. The first one is most likely at the origin of all humanoid or animal-like
automata. It led to the pursuit of creating artificial beings whose power surpass those
of human beings: autonomous entities that can be made insensitive to pain, fear,
boredom, and to any form of emotion, less again empathy. A lot of examples of
inventors who try to build such entities can be found in tales, science-fiction stories,
movies and video games, covering all the spectrum of intentions towards mankind—
from help, assistance and protection to destruction and domination. However, once
it is built, because it should possess, as an automaton, a kind of free will, it can
become uncontrollable and behave in unpredictable ways, even for its creator. This
is illustrated by Capek’s play, but also by the wealth of works that has emanated from
the Jewish myth of the Golem, first mentioned in the Talmudic literature. Being an
artificial creature made of clay, the Golem was an embryonic form of life created
for the sole purpose of helping or protecting his creator. It should be noted that
historically speaking, Golem is most likely the first entity that corresponds to the
above definition of a robot: an artificial entity built specifically for a implementing a
practical task or function.

Despite the highly functional and technological nature of most contemporary
robotic systems, the evolution of automata and the emergence of robots cannot be
fully understood without realizing that most of them originate from the will to simu-
late life; that automata makers have been developed highly advanced skills, and
have been spending tremendous amounts of time and resources, in order to achieve
this goal with the highest possible precision; and last but not least, that in every
automaton maker rests the secret and hidden dream of seeing one day his own inan-
imate creatures come to life—a dream to which, in a previous work, we gave the
name «Geppetto syndrome» (Reeves, 1992).

From their very beginnings, automata were created to simulate. Their main—and
often only—objective was to dissimulate what that they actually were: assemblages
of inanimate matter pretending to act by themselves. It is not a coincidence if the
first automata appeared at time during which a first, elementary understanding of

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 7

physics was slowly emerging. Since only a tiny part of the population had access to
it, its mastering was often perceived as magical by common people. Even if one of
the main objectives of the new-born Greek science was to explain natural events by
natural causes, that is, to get rid of supernatural explanation, its power could easily be
confused with that of entities found in myths, tales or religious texts. Several works
exploited it in order to create devices whose purpose was either to entertain, or to
siderate crowds by simulating the intervention of supernatural forces. Automata built
for practical purposes were virtually non-existent.

This was not always obvious. At first glance, the perpetual clepsydra built by
Ctesibios from Alexandria (Fig. 1.2), of whom we will talk below, could claim
to be a primordial robot, since it has the function of giving the time of the day.
An ordinary clepsydra cannot be considered as an automaton: it is akin to that of
an hourglass that uses water instead of sand, and as such, it does not feature any
autonomous component. But Ctesibios’ device, built three centuries BC, was coupled
with a mechanism that refilled its tanks every day with water coming from a source,
and that reconfigured its internal states in order to indicate the time for each day
of the year. Being completely autonomous, it qualifies as an automaton. Since it

Fig. 1.2 Ctesibio’s
clepsydra, circa 250 B.C, as
represented in the French
translation of Vitruvius’
treatise “ten books on
architecture” by Claude
Perrault (1864)

8 N. Reeves and D. St-Onge

was built for a practical purpose, since it incorporates some kind of intelligence by
reacting to the amount of water in its tanks, and since it was embodied, it could
claim to be a first instantiation of a robot in the modern sense of the term. But this
interpretation only holds when considering it with our contemporary eyes. Like most
time-measuring devices, Ctesibios’ clepsydra was more an astronomical model than
a clock: it transposed the movements of the Sun into an autonomous mechanism.
Just like humanoid or zoomorphic automata were trying to describe, comprehend
and replicate the functions and behaviour of living beings, the first clocks, up to
the beginning of the scientific revolution, were mainly planetary or cosmological
models built to translate a partial understanding of celestial mechanics.! Vitruvius
himself, while referring to Ctesibios’ clepsydra in the 10th book of its treatise De
Architectura, does not attribute to it any practical function. The design and building of
such instruments usually requested workers and craftsmen that were the best skilled of
their generation. The technological challenges implied by such mechanisms triggered
the development of fully new technological and theoretical knowledge, and often
requested massive amounts of money that could be provided only by the wealthiest
members of the society. They became symbols of prestige, and testified for the level
of expertise achieved in their country of origin. Even today, building a clock with
a very long revolution period is everything but a simple venture. It took more than
fifteen years to design and twelve years to build the astronomical clock located at
the Copenhagen City Hall, completed in 1955; its slowest gear completes one full
revolution in 25,735 years (Mortensen, 1957).2

All these examples, as well as many others, show that the impulse for creating
automata is not originally driven by practical needs. It comes from the mythical desire
to understand some of the deepest mechanisms at the origin of life and cosmological
events, a desire that stands at the origin of major developments in mechanical science
and in technology, and especially those at the origin of modern robotics. To qualify
as an automaton, an artificial being does not need to be useful; it does not even need
to move, or to do anything: it just has to be able to provide a convincing enough
illusion of life (Reeves & St-Onge, 2016).

!'In the first mechanical clocks, such as the one built by Richard of Wellington around 1330, the
great astronomical orloj in Prague, or the very rare heliocentric clock at Olomouc, also in Czech
Republic, counting the hours was only one of many different functions: the indication of time
becomes almost anecdotical. Many other dials indicated the sidereal time, the signs of the Zodiac,
the phases and position of the Moon, the movements of the Sun and of the Planets, the solstices
and the equinoxes, the hours of the tides ... Some needed several decades to accomplish a single
revolution.

2 Later devices, such as the eighteenth century Peacock clock in the Hermitage museum in Saint
Petersburg, intimately associates the simulation of life with the measure of time (Zek et al., 2006).
In this incredible piece of mechanics, once a week, a large peacock extends its wings, deploys its tail
and moves its head; a rooster sings; an owl turns its head, blinks its eyes and rings a chime. A small
dial, almost lost in the rest of the device, gives the time of the day: its presence is inconspicuous.
The presence of time and the cycle of the days are mainly evoked by the three animals: the owl is
a symbol of night, the rooster a symbol for the day, the peacock a symbol of rebirth.

1

Genealogy of Atrtificial Beings: From Ancient Automata to Modern ...

An Industry Perspective

Charles Deguire, President and CEO

Kinova inc.

I like to think that I was born an entrepreneur. Both my parents were
entrepreneurs, as some of our family members, and from the day I had to
decide what I was going to become, I knew the path I wanted to follow. But
as in every business case, you need THE idea. In my case, I was raised with
the idea ... When I was younger, I had three uncles living with muscular
dystrophy, all power wheelchair users, and very limited upper-body mobility.
The challenges they faced never stopped them, they even founded a private
company dedicated to the transportation of people with special needs. This
concept evolved to become the public-adapted transport system of Montreal.

One of my uncles, Jacques Forest, had only one finger that he could move.
He was challenged by the idea to develop an arm that could be controlled
by his active finger to allow him to become independent in his functionality
and able to grasp and manipulate objects in his surroundings without external
assistance. He generated various innovative technical ideas for such devices
that were based on his own experience and intuition. The gripping device he
succeeded to build was made from a desk lamp frame and ended by a hot dog
pincer. The manipulator is built by every member of the family. It was put
in motion by bicycle cables attached to windshield wipers motors that were
assembled on plywood and located at the back of his wheelchair. Motors were
activated through 14 electronic switches that he controlled through his unique
moving finger.

While I was studying to become an engineer, I came across all kinds of new
technologies that were all extraordinary. But I realized how having an astronaut
doing remote manipulation with a space robot arm could be an aberration when
people in wheelchairs could not even pour themselves a glass of water alone.
As I was already aware of the reality of people living with physical disabilities,
I decided I would dedicate my life to solving those problems, starting with a
robotic assistive device built from the ground up, specifically for wheelchair
users.

10 N. Reeves and D. St-Onge

‘We move problems through a funnel. We start very wide, sort of chaotic. We
look internally and externally, within our own industry and other industries,
and ask, What process can I use to solve this? Once we’ve selected a few
approaches that we believe have potential, we drill down and get really focused
on executing each of them.

We robotize tasks. We did that for people using wheelchairs, expanding
their reach. In surgery, we expand the capabilities of the surgeon. In hazardous
material handling, we robotized the manipulation of toxic or nuclear waste.
But it’s always the same process, providing better tools to humans.

Creativity is one of Canada’s greatest resources. This is what supports
the growth of Kinova and which propels our Canadian manufacture to the
international scope.

1.3 Early Automata

Ctesibios is considered as the founder of the Greek school of mechanics. After him,
four characters stood up in the nascent field of automata around the Eastern part of the
Mediterranean Sea: Philon of Byzantium; Vitruvius in Rome; Heron of Alexandria;
and later, Ismail Al-Jaziri from Anatolia. By looking at a few examples of their work,
we will see that working in the field of illusion and simulation did not prevent them
to produce a major corpus of knowledge on the behaviour of real physical systems,
to contribute with large instalments in their area and to leave technical writings that
became major sources of inspiration for generations of engineers and scientists. The
machines and automata they conceived are nothing less than technological wonders
of their time.

Philon of Byzantium lived around the third century B.C. He left a number of
treatises that give a very precise account of the technological level of his country. He
invented an automated waitress that was serving wine and water, and that is generally
considered as the first real humanoid robot in history. About three centuries later,
mathematician and engineer Heron of Alexandria designed a series of about eighty
mechanical devices, one of which being considered as the first steam machine, some
others being moved by the sole force of the wind. Since his researches were unknown
to Western scholars for more than a millennium, and since most his machines were
destroyed during the fire of the Alexandria library, the count of his invention can only
be estimated; many may never have been realized. None of them were dedicated to
the implementation of practical tasks: he fostered his knowledge of physics and
mathematics (mostly geometry) in order to impress or to trigger mythological fasci-
nation through mechanisms whose description can be find in his treatises Automata

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 11

Fig. 1.3 Drawings extracted from Chapuis, 1658 of devices made by Dionysus by Heron of
Alexandria, first century A.D (left) and by Ismail Al-Jazari, 1206 (right)

(Murphy, 1995) and Pneumatica (Woodcroft, 1851). In what is known as the first
example of building automation, the doors of a temple would open after a sacrifice
only if the visitors ignited a fire in a receptacle; the fire heated a hidden water reser-
voir; the accumulated pressure caused a part of the water to be transferred in a second
reservoir suspended to a cable and pulleys system attached to the doors; since this
reservoir became progressively heavier, it began to go down, which caused the doors
to open.’

Heron also designed a large animated sculpture of Dionysus (Fig. 1.3, left) in
which water flowing from a reservoir to another triggered a sequence of actions:
pouring “wine” (red-coloured water) from Dionysus’ glass; pouring “milk” (white-
coloured water) from his spear; rotating Dionysus central statue; rotating the statue
of an angel over that of Dionysus; and finally pouring again wine and milk from
opposite outputs. Some versions of the corresponding plans and diagrams include a
group of dancers circling around the main statue, as well as a fire that was ignited
automatically by a lighting device. Another of his treatise, Dioptra (Coulton, 2002), is

3 This mechanism, as well as a number of the automata designed by Heron, have been reconstructed
by the Kotsanas Museum of Ancient Greek Technology. They can be seen in function on a video
produced by the Museum at http://kotsanas.com/gb/exh.php?exhibit=0301001 (accessed Dec 30
21).

http://kotsanas.com/gb/exh.php?exhibit=0301001

12 N. Reeves and D. St-Onge

key to modern roboticists, since it describes several instruments with practical aims,
such as the measure of distances and angles. It includes the first odometer, a device
that worked by counting the rotations of the wheels of a chariot. It was tailored to
the Roman mile unit, which was obtained by adding 400 rotations of a 4-feet wheel,;
a series of gears slowly opened a hatch to release one pebble for each Roman mile.
Such a device obviously does not qualify as a robot nor as an automaton; but the very
idea of gathering information from the external world through a measuring device
is key to modern robotics. It is worth noticing that such a device actually converts
information coming from a continuous phenomenon—the rotation of a wheel—into
a discrete one—the number of pebbles. Odometry is nowadays often computed from
optical encoders fixed to motor wheels, but the measurement concept is similar to
what Heron had imagined two thousand years ago.

Another of Heron’s achievements is an automated puppet theatre. It represents an
impressive example of the level of skills and technological knowledge that was put
to use for the implementation of a device meant only for entertainment. It is also the
first known historical example of a programmable mechanism: the movements of
the puppets were controlled by wires and wheels whose movements followed a pre-
recorded sequence. They were actuated by the movement of a weight suspended to
a wire, just like for the German cuckoo clocks that appeared two millenia later. Any
computer programs that is used today for about every imaginable task is a remote
descendant of this machine that was built only to amuse or to surprise people. It is
all the more stunning to realize that for centuries, the efforts put to work to achieve
such a goal far exceeded those dedicated to the creation of practically useful robots,
a situation that lasted up to the middle of the twentieth century; and that this energy
has led to intellectual and technological achievements that sometimes did not find
any other application for extended periods of time.

About ten centuries later, Ismail Al-Jazari, an engineer and mathematician living
in Anatolia, fulfilled numerous contracts for different monarchs; he was hired to
invent apparatuses aiming at impressing crowds during public parades (Fig. 1.3,
right). By a clever use of hydraulics, levers and weight transfers, he designed several
mechanisms whose parts would move autonomously. In his most famous treatise, The
Book of Knowledge of Ingenious Mechanical Devices (Al-Jazari, 1974), he details
systems ranging from a hydraulic alarm clock that generates a smooth flute sound
to awake the owner after a timed nap, to a musical instrument based on cams that
bumped into levers to trigger percussions. The cams could be modified in order to
generate different percussive sequences, which constituted, ten centuries after Heron,
another implementation of a programmable automaton.

It is to be noted that other devices, such as the Antikythera Machine, an astro-
nomical calculator dated second century B.C. and whose inventor is unknown, has
sometimes been regarded as an automaton; however, according to historians and
scholars, it was operated by a crank, and thus does not meet the autonomy crite-
rion. It remains nonetheless related to the first automata, and in particular to the first
mechanical clocks that appeared almost fifteen years later, by the fact that it does
represent, somewhat like a mechanical clock, a scaled model of a planetary system,
executed with stunning precision and skills for the time.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 13

1.4 Anatomical Analogies: Understanding Through
Replication

1.4.1 Leonardo Da Vinci

It is impossible to recapitulate the history of automata without referring to Leonardo
da Vinci (1452-1519). Some of the works of this visionary artist and inventor are
also heavily grounded into the age-old mythological fascination for the simulation of
human beings. In order to implement them, he explored extensively the anatomy and
kinematics of the human body; but as it is well known, his work spanned about all the
existing disciplines of his time. It would be difficult to say which of his endeavours
had the greatest impact on modern-day arts and sciences. His inventions and practical
treatises on mechanisms triggered and propelled the first industrial revolution that
came more than three centuries later. Some of the pieces and assemblages he managed
to manufacture thanks to his unique craftsmanship skills, such as gear heads and
pulleys, are now mass-produced by complex industrial equipment, but they remain
informed by the same design principles.

For roboticists, the inventions that are most related to contemporary projects are
his mechanical knight on one side, and his self-propelled cart, also sometimes referred
to as Leonardo’s Fiat, most likely the first autonomous vehicle, on the other. The
cart included a differential drive propulsion system with programmable steering for
travel. The whole mechanism was originally seen as powered by wound up springs.
In 1997, researchers understood that their real use was not to propel the cart, but to
regulate its driving mechanism. In 2006, a first working replica, built at scale 1:3,
was successfully made in Florence; all previous attempts have failed because of this
misunderstanding (Gorvett, 2016).

The mechanical knight on its side is a complex machine (Fig. 1.4). It involves
tens of pulleys and gears which allegedly allow him to sit, stand, move its arm and
legs; it was however unable to walk. It is not until 2004 that a first prototype was
implemented. It confirmed the possibility of all these actions, as well as several
others: jaw actuation, neck rotation, visor movement. Way ahead of his time, while
still rooted in the ancient mythology of artificial beings, Da Vinci’s mechanical knight
is connected to the very essence of the automaton. It stands as an ancestor to several
recent humanoids, and its role in the original design of the NASA’s Robonaut is said
to have been influential.

It is not yet possible to account for all of Da Vinci’s robotic endeavours, partly
because many of them have been lost to history. Additionally, as previously stated, not
all of his surviving designs are complete. In some cases, key components regarding
machinery or function are missing; in others, as it was the case with his cart, some
of his designs are simply to complex, and are not yet fully understood.

14 N. Reeves and D. St-Onge

Fig. 1.4 Da Vinci’s Humanoid automaton; circa 1495

1.4.2 The Canard Digérateur, the Writer, the Musician
and the Drawer

As can be seen from these first examples, the will to simulate living beings is every-
where present in the history of automata and robots. All of these entities try to
replicate the main characteristics of life, and to produce, deliberately or not, the
illusion, that they managed to extricated themselves from the nothingness of inert
matter. The efforts and energy invested to generate this illusion implied technolo-
gies that not only systematically accounted for the most advanced of its time, but
also widely contributed to the evolution of these technologies. Beyond a simple
simulation, the automaton was trying to reach the status of an explanative device
endowed with descriptive virtues, making it possible to unveil the secrets of life.
So it is with Vaucanson’s duck, called the digesting duck (canard digérateur) by its
inventor, built at the end of the seventeenth century (Fig. 1.5). As its inventor says
(Vaucanson, 1738):

This whole machine plays without you touching it when you set it up once. I forgot to tell
you that the animal drinks, dabbles in water, croaks like the natural duck. Finally, I tried to
make him do all the gestures according to those of the living animal, which I considered
with attention.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 15

Fig. 1.5 Vaucanson’s
“canard digérateur”
(digesting duck), 1738. This
picture is a fantasy
reproduction published by
the scientific American
magazine (1899). Very few
original pictures of
Vaucanson’s duck have been
found

INTERIOR OF VAUCANSON'S AUTOMATIC DUCK.

A, clockwork; B, pump; €, mill for grinding grain; F, intestinal tube;
J, bill; H, head; M, feet.

Later in the same text, Vaucanson mentions the most unexpected feature of his
automaton, namely the fact that it digests and defecates:

There, in a small space, was built a small chemical laboratory, to break down the main
integral parts, and to bring it out at will, by convolutions of pipes, at one end of its body
quite opposite.

The simulation of the excretive function is clever: very few people would deliber-
ately implement it for the sake of art or illusion. The very idea seems so unusual that
it can only arise, for those who observe it, as a consequence of the will to create an
entity that is to the perfect like of a living duck, including all its metabolic processes.
One is at times left with the impression that the inventor surrenders to the illusion
that the perfect formal simulation of the basic organs of life will fool life itself, so
it will appear and animate the entity. The “small chemical laboratory” wants to be
the equivalent of a digestive system, by which the food absorbed by the beak would
be decomposed into nutritive substances on one side, and on useless substances
evacuated through the cloaca on the other.

As can be expected, it was later revealed that Vaucanson’s duck was a hoax.
Nonetheless, the fact remains that following the Cartesian model, which sees the
Universe moved by a great watchmaker, and living beings as nothing more than
sophisticated mechanics, such attempts exemplify the tendency to systematically
associate living organisms to the most advanced technologies of the time.*

4 Interestingly enough, the idea of evoking life through its less prestigious functions finds a contem-
porary instantiation in his installation series «Cloaca» by Wim Delvoye (Regine, 2008), which
reproduces all the phases of human digestion, from chewing to excretion, through successive cham-
bers in which the food is processed by some of the enzymes, bacteria and biochemicals found in the
digestive system. The installation must be fed twice a day. By observing the device in operation, it
is easy to remain under the impression that the artist, helped by a team of biologists, has perfectly

16 N. Reeves and D. St-Onge

They also mark the beginning of a slow bifurcation by which the evocation and
simulation of life left the domain of formal analogy to join, by a long process,
that of information flows and transfers. Here again, this separation was initiated by
the model of human beings that prevailed at the end of the seventeenth century, a
model that distinguished the body—the material component—from the soul—the
driving and decision-making force. Descartes himself considered man as made from
these two components. It is generally admitted that his model of the animal-machine
(Descartes, 1637) was induced to him when he learned about the existence of a
simple automaton, an idea later extended by La Mettrie’s concept of man—machine
(La Mettrie, 1748): this may be a glimpse on the process by which an object, initially
built as a simple formal simulation of a given phenomenon, can become a model
meant to describe and explain that phenomenon.

The concept of man and of animals as sophisticated mechanisms has led to
the design of more and more sophisticated automata, with a gradual increase in
the complexity of their functions. About a century after Descartes, the automata
built by the Jacquet-Droz family initiated the separation between matter and infor-
mation (Fig. 1.6). Not only were they driven by the equivalent of programs that
were advanced versions of those created by Ctesibios and Heron of Alexandria,
but the program themselves, recorded in rolls, cams or discs, could be changed,
thus modifying the internal states of the automaton: they became independent of its
material moving components. Changing the program opened spaces of possibilities
that remained limited, but nonetheless real (Carrera et al., 1979). One of the given
automata, the Musician Player, could play five pieces of music; the second one, the
Drawer, could create four different drawings; the last one, the Writer, was the most
complex. It can draw forty different characters; the text to be written is encoded
on dented wheels, which makes it a fully programmable automaton. By looking at
these delicate and impressive technological pieces, on can only regret the almost
complete disappearance of automata arts since the nineteenth century. Fortunately,
a few passionate artists still maintain this practice today; some of their most recent
works, such as Frangois Junod’s Fée Ondine, are nothing less than jewellery pieces
in movement. And as can be expected, Junod’s studio is located close the Swiss
town of La Chaux de Fond, the first town ever planned around the activities of the
watchmakers.

grasped the mechanism of several vital functions; but here again there is an illusion, at least partial.
The use of biological substances and living organisms such as bacteria prevents the device to meet
the definition of an automaton, since it does not use only inert materials; it thus cannot claim to
testify for a full understanding of the phenomena involved—which was not anyway the explicit
intention of its author. However, despite all the explanations provided and in spite of the highly
technological appearance of the work, the visitor cannot help feeling the presence of a strange
animal plunged into the torpor of a heavy digestion, like a beast after a too copious meal; and to ask
himself whether or not it presents a risk once awaken: the mere mention of the digestive function
is enough for the visitor to readily accept the image of a living being.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 17

RN
-

Fig. 1.6 Jacquet-Droz’s automata: drawer, musician, writer; 1767-1774

1.4.3 Babbage and the Computer-Robot Schism

The bifurcation that made the automaton and its controlling program two distinct
entities cannot be located at a single moment in time. As we have seen, it can
be traced back to the devices created by early Greek engineers and to Al-Jazari’s
percussive automaton; but several other steps intervened since; and the trajectory
leading to contemporary computer programming has taken an unexpected detour
through music and textiles. Seventy-five years after the Jacquet-Droz’s automata,
Henri Lecoultre created a musical box in which the melodies were recorded on inter-
changeable rolls. Barrel organs, which first appeared during the sixteenth century,
could play melodies that were pre-recorded on rolls, discs, cards or ribbons perfo-
rated with holes that determined the melodies to be played—such instruments were
actually called automatophones.

This principle was almost immediately transposed to create the first Jacquard loom
by Basile Bouchon, the son of an organ maker, and by his assistant Jean-Baptiste
Falcon (Fig. 1.7); they adapted musical boxes mechanisms from his manufacture to
create the card readers that controlled the patterns to be woven (Eymard, 1863). It is
worth noticing that the Jacquard loom also used the cylinder developed by Vaucanson,
in another illustration that the technologies required to implement machines with
practical uses often originated from the artistic realm, where they were developed
with completely different motivations.

The perforated card system lasted for more than two centuries. It was extensively
used for the programming of the first generations of computers. It played an essen-
tial role in the Manhattan project during which the first atomic bomb was created,

18 N. Reeves and D. St-Onge

Fig. 1.7 A Jacquard loom,
1801

establishing an odd and peculiar connection between the delicacy of the melody
played by a musical box, the patterns on a cotton fabric and the thundering apoca-
lypse of a nuclear explosion. It was also by observing the Jacquard loom that Charles
Babbage had the idea to design his Analytical Engine, today considered as the first
full computer in history (Fig. 1.8). This huge machine included all the main elements
of a modern computer: an input device that separated data and instructions, thanks
to two punch card readers; a mechanical “driver” that prepared and organized the
data for processing; a “mill”, made of hundreds of gears that performed the opera-
tions—the mechanical equivalent of a CPU; a “memory” which stored intermediate
and final results; and an output device in the form of a printer.

The Analytical Engine was never completed, due to problems of financing and
manufacturing precision. It however remains, along with the Jacquard loom, the first
example of a device that fully and completely separates the flow of information from
the material processing unit. It is also remarkable for another reason: Ada Lovelace,
the daughter of the poet Byron, was fascinated by mathematics. She wrote for the
Babbage’s machine the first known mathematical algorithm, a sequence of instruc-
tions for computing Bernoulli numbers,” which makes her the first programmer in
history. Her clairvoyance and insights were actually nothing less than visionary. She

5 Bernoulli numbers, named from Swiss mathematician Jakob Bernoulli, were identified in 1713
during the study of sums of powers of integers. If S,, (n) represents the sum of the n first integers
individually raised to power m, then the value of this sum is given by:

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 19

LU

i

g | -.l

Fig. 1.8 Uncompleted prototype of Babbage’s analytical engine, exhibited at the London museum
of science; 1871

foresaw the possibility for such devices to perform not only numerical operations,
but also symbolic calculations, and to use them to associate letters and signs in order
to produce results that had nothing to do with mathematics, such as the composition
of musical pieces, in another loop that reconnected the machine with its musical
box origins (Lovelace, 1843). This is also probably the first known evocation of a
form of artificial creativity, a characteristic which, perhaps more than for many other
automata, testifies for the impulse to bring machines closer to human beings: art
at that time was seen as the prerogative of the human species, an idea still largely
preponderant today. The question of the relations between arts, robots and automata
will be discussed more in detail in Sect. 6.2.

m—+1 _
S = kg o (") i
In which coefficients BX are Bernoulli number. They can be obtained through the following
generating function:
B xk
e*‘xfl = ZIC:O:O ‘lcj‘c
Ada Lovelace’s algorithm was derived from this function.

20 N. Reeves and D. St-Onge

1.5 Industrial (R)evolutions

Technological progress took a new pace over the course of the last two centuries, as
the Western world underwent what we refer to as the “industrial revolutions™; the
plural form is used here because at least four revolutions have been identified (Marr,
2016). The first major change intervened as a result of the use of steam and water to
generate power. The second corresponded to the emergence of mass production and
division of labour, and to the discovery of electricity as a power source. The third
took place at the end of the sixties, with automated production and the exponential
development of computing and electronics. The fourth can also be called the «digital
revolution», and stands as a result of a merging of technologies that broke down the
limits between the digital, physical, and biological spheres. The field of application
of this last revolution is often referred to as “Industry 4.0.”

The first revolution is a direct implementation, at larger scales, of several early
contributions that were mentioned above, but it was also grounded on many works by
Leonardo Da Vinci. It is only in the third one that the first robotic systems (industrial
automata) were widely adopted, though it seems obvious that the second revolution
paved the way for it. This third revolution exploited the discoveries and breakthroughs
made by several inventors, among which Nikola Tesla is certainly not the least. It is
during the third revolution that the lineage of robots branched from the main trunk of
the genealogy of automata. For the first time, artificial entities endowed with a degree
of autonomy were put to work, becoming nothing less than automated servants or
slaves insensitive to fatigue, not vulnerable to health hazards, and hopefully more
robust and durable than human workers. The fourth revolution will not be discussed
in this book, as history is still being written on the impacts of the changes that it
brought, but it will be referred to in the last section of this chapter.

The rise of industrial robots during the twentieth century required several scientific
breakthroughs in power (electric, pneumatic, hydraulic), power transport and tele-
operation (remote control). Nikola Tesla [1856—1943] was an engineer and inventor
who referred to himself as a “discoverer”. He solved most of the requirements and
constraints needed by the third industrial revolution, and stands out, with about three
hundred patents, as of the most proficient inventor of his time. He is widely known
for his contributions on electricity transport and alternative current. These works had
obviously a major impact on robotics; but we will focus here on his contributions to
the use of radio waves.

In November 1898, Tesla demonstrated that a small autonomous boat could be
remotely operated, from distances up to several feet (Fig. 1.9). The instructions were
sent by coded pulses of electromagnetic waves. On demand of his audience, he
instructed the ship to turn left or right, or to stop. This was the first demonstration
of a remotely operated vehicle. It was not a robot in the full sense of the term, but it
was, according to its inventor, “borrowing the mind” of the human operator so that
future, advanced versions could fulfil mission together. A handful of patents, such as
the one on advanced “individualized” (protected) multi-band wireless transmission,
followed this demonstration; another one concerned the first “AND” circuit, a device
that combined two radio frequencies to minimize the risks of interferences.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 21

Ciopem aw)

‘BOR'EID ON

‘SITTIHIA ¥O .
STIESTA DMIAON 40 NEINVHIZN ONITIONLANOD HOd SNLYHYJLY oMY 40 00NLIW
YIS3L N

‘BESI ‘B TAON puiEwey

Fig. 1.9 Nikola Tesla radio-operated vessel plan from his US patent 613809A1, 1898

Tesla’s boat would be hardly more than a toy today; at the time, he was nothing
less than the forerunner of all remotely controlled devices and systems. He tried to
write a list all of its potential application. By reading it, one cannot help to find him
a little bit optimistic about the consequences of the military ones:

Vessels or vehicles of any suitable kind may be used, as life, dispatch, or pilot boats or
the like, or for carrying letters, packages, provisions, instruments, objects, or materials of
any description, for establishing communication with inaccessible regions and exploring the
conditions existing in the same, for killing or capturing whales or other animals of the sea,
and for many other scientific, engineering, or commercial purposes; but the greatest value
of my invention will result from its effect upon warfare and armaments, for by reason of
its certain and unlimited destructiveness it will tend to bring about and maintain permanent
peace among nations.

As for every new technological breakthrough, the militaries were quick to foresee
the uses they could make for this invention. They massively funded the research on
related technologies and quickly deployed remotely operated equipment in operation
fields—without, as could be expected, helping in any noticeable way the pacification
of conflict areas. As he foresaw at the time, the most advanced robotics research
ventures and developments are still funded by the military industry, which is still the
first to deploy these new technologies. From a mythological and largely poetic origin,
robotics became within a few decades a field in which sophisticated war machines
were developed.

Still, while most of the works done in this domain are not publicly available,
some initiatives do contribute to the general advancement of the field. Nowadays,
the United States Defence Advanced Research Projects Agency (DARPA) is hosting
several robotics challenges: autonomous vehicle races (2004—2007), humanoid emer-
gency response (2012-2015), heterogenous robotics swarms’ tactics (2019-2022)

22 N. Reeves and D. St-Onge

Fig. 1.10 Unimate robotic
arm deployed at general
electrics facility to handle
pick-and-place of heavy
parts; 1963

and subterranean exploration (2018-2021). Some of the competitors of these chal-
lenges are funded millions of dollars by the DARPA to push the boundaries of their
research.

If we go back to the industrial realm, mass production in the third revolution has
resulted in a lot of repetitive tasks in manufacturing processes. Most of them were
perfectly fit for simple robust automation: the sixties welcomed the first industrial
robotic arm, the Unimate (Fig. 1.10), designed by Georges Evol. Even if some early
version of digital switches (vacuum tubes) and digital encoders were commercially
available at the time, none of the off-the-shelf parts would fit his design, so every
single component of the first set of Unimates was specifically manufactured for it. It
was deployed at General Motors in 1961, and was the object of the first on-site study
for market, integration, ease of use and safety of industrial robots.

Several lessons were learned from it; two of them proved essential. The first one
is that robot obsolescence is likely to strike well before utter wear-out. It led to the
conclusion that the life of an industrial robot depends on its robustness (ability to
hold together) as well as on its versatility (ability to evolve and to adapt to new jobs).
The second one relates to the fact that the complexity of a robot is so high that it
becomes difficult to guarantee its reliability, a criterium that depends on the owner
programming skills, on the production system into which the robot is integrated,
and on the quality of its maintenance. It is however important to note that, after
the Unimate was used for about a decade, several owners agreed that the financial
benefits of replacing human workers with it were not significant, but they still wanted
to go along with it because it kept their workers away from industrial accidents and
health hazards.

The Unimate featured up to six axes, one of them prismatic (translation), and a
payload of 225 kg. The first one was sold at a loss, but after six years, the company,

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 23

Unimation Inc., started to do profits; it later changed its name for Staubli. Others
then joined the market, such as ASEA with its IRB series. The first commercialized
IRB, the IRB6, had five axes and a payload of six kilograms. ASEA focused on
the ease of integration of its product, whose overall mass was 112 kg, and whose
integrated control electronics, including its DC actuators, was fully integrated within
the enclosure. It then merged with Brown, Boveri & Cie to become ABB, competing
with Staubli to become one of the main robotic arms manufacturers in the world.®

1.6 Modern Robotics

During the last decades, while the industry was trying, through several attempts and
test sites, to robotize manufacturing processes, tremendous progresses on robotic
systems design, kinematics, sensing and control were achieved. The corpus of
knowledge on advanced robotic systems resulting from these breakthroughs consti-
tute the fundamentals of modern robotics, a field that explores the possibility to
deploy reliable robots in unknown dynamic environments. One of the most impor-
tant phenomena of this period is certainly the progressive convergence between
biological and robotic systems that can be observed since the end the 70’s, during
which the age-old attempts of simulating life through formal analogies gave place to
new experiments that tried to reproduce the dynamic aspects of biological processes.

1.6.1 Coping with the Unknown

Managing complex tasks or missions autonomously in unknown, changing contexts
requires a high level of performance in perception, decision-making and agile

61t may be worth noticing that Staubli and Brown Boveri are both Swiss enterprises; Swiss is
widely recognized as the country where watchmaking was born. It is for more than four centuries
the country in which the research and development of mechanical clocks of all scales remains the
most active in the world. It can legitimately be assumed that the unique expertise thus developed
in the field of micro-mechanisms was essential for the development of robotics, leading to the
emergence of a cutting-edge robotic industry. What is less known is that this situation originated,
rather paradoxically, from religious concerns: when Swiss became a protestant country after the
Reform, in the sixteenth century, Calvin banned the wearing of all ornamental objects. Goldsmiths
and jewelers had to find another way to use their skills. They applied them to the realization of
watches and clocks, which, because they had a practical function that could be used as an alibi,
could become miniature artworks and allow people to wear expensive devices that looked like
jewels without incurring the wrath of the church. Watchmakers established themselves in several
cities, most of them being located in an area called the «Jurassian Arc», not far from France, in
the very area where the Jacquet-Droz family built its famous automata. Here again, by a strange
detour, expertise coming from an artistic realm—jewelry—becomes the historical origin of one of
the most important developments in robotics and in the robotic industry.

24 N. Reeves and D. St-Onge

motion control, all elements that can be observed in a wide variety of configura-
tions and biological strategies in nature; this is one of the main reasons why living
systems quickly became a source of inspiration for roboticists. Among the first fully
autonomous robots are a handful of prototypes realized in 1948 by William Grey
Walter, a neurophysiologist fascinated by the complexity of emerging behaviours
manifested by simple biological systems. He was convinced of the possibility to
transpose such strategies in the field of robotics by using elementary devices. In
order to prove his hypothesis, he designed a wheeled robot of the steering tricycle
type which was able to detect light directly through a frontal photodiode sensor,
without any programming (Fig. 1.11, right). It was then instructed by simple elec-
tronic logics to actuate the wheels in order to head towards the strongest light source
in its environment. This very simple instruction led to an emerging behaviour—a
behaviour that was not planned nor programmed, by which it could autonomously
avoid obstacles; emerging behaviours represent one of the essential characteristics of
living beings. When the battery level was getting low, the robots behaviour switched
in order for it to seek the darkest spot around, as if it was trying to burrow in its lair.
The protective shell over Walter’s robots, as well as their slow velocity, led people
to christen them turtles, or tortoises. The latter name was kept by their creator, most
likely because, as mentioned in Alice in Wonderlands, tortoise are wise teachers.
Interestingly enough, the relations of roboticist with turtles extended far beyond
Walter’s prototypes. In the sixties, a new teaching approach, called Logo, was devel-
oped. It was based on recent cognition and learning researches and implemented
into programming languages. One implementation made Logo history: it consisted
in a method to teach the basics of procedural thinking and programming to chil-
dren. Kids would learn either by instructing a turtle icon to move on the screen of a
computer monitor, or a turtle-like robot to move on the floor. Logo remained one of

Fig. 1.11 (left) Stanford Shakey robot, circa 1960; (right) Walter Tortoise (1948-1949)

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 25

the only toolsets for the teaching of procedural programming and thinking until the
late nineties, in primary schools as well as in high schools.

Walter’s tortoises inspired a great deal of other robotic works. Twenty years later,
in 2010, two employees from Willow Garage, Tully Foote and Melonee Wise, started
working on the newly released Microsoft Kinect camera to integrate it with an iRobot
Create platform.” The result was an affordable, easy to use robot, perfectly fit for
teaching and training, to which they gave the name «TurtleBot». Its popularity is
closely intertwined with the one of the Robotic Operating System, or ROS (discussed
in Chap. 5). One of the most important conclusions of these experiments is that plat-
forms with heavy limitations on sensing abilities and processing power can develop
complex behaviours that mimic those of insects (ants, bees, termites, etc.), birds or
fishes; and in particular those of animal societies in which groups of individuals can
implement complex tasks that are out or reach of a single element. This paved the
way for the field of swarm robotics, discussed in Chap. 11.

Since they were using light as their only source of information, the artificial
tortoises became very sensitive to the calibration of their sensor, as well as to their
context; they required a very controlled environment to perform adequately. A first
step in exploring unknown contexts was accomplished by a Stanford-designed robot
named Shakey (1966-1972). Shakey (Fig. 1.11, left) was the first robot able to reason
about its own actions: it could make decisions based on the combination of inputs
from several sensors in order to fulfil a given task (explore, push an object, go to
a location ...). The platform itself consisted in a differential drive actuated vehicle
equipped with cameras, range finders, encoders and bump detectors. Its “brain”
computer was a SDS 940 the size of a room, with which it communicated over a radio
link. Shakey vision system was able to detect and track baseboards, which allowed
it to navigate in its large playground. Working with Shakey allowed the researchers
to produce essential contributions, such as the A* path planning algorithm and the
visibility graph, both introduced in Chap. 8, as well as the Hough transform in
computer vision.

Right after Shakey, Stanford contribution to modern robotics continued with
another autonomous vehicle, called the Stanford Cart (1973-1979). Originally
designed to mimic a lunar rover operated from Earth, which implies a 2.6 s delay
in the transmissions of instructions, it quickly became obvious that such a setup had
only two options to choose between: move really slowly, or make the steering and
navigation autonomous. To detect obstacles, the Cart was equipped with the first
stereovision system (3D imagery). To plan safely its path, it would take a fifteen
minutes break and scan its surrounding after each metre travelled. In 1979, using this
strategy, it managed to cross autonomously in five hours a twenty-metre room filled
with chairs, without any collision.

7 The iRobot Create comes from the same manufacturer that today sells the Roomba vacuum cleaner
robots.

26 N. Reeves and D. St-Onge

These robots, as well many others that we could have presented here, constitute
major milestones in the recent history of technology. As opposed to most of the
automata from which they descend, they have the possibility to move by themselves,
and to adjust their internal sets and behaviour according to the data coming from
their sensors—an elementary form of exteroception. They directly lead to the current
state of research and development in self-driving vehicles and drones. Altogether,
they pave the way to service robots outside of the industrial realm that are able to
cope with challenging dynamic unknown environments.

1.6.2 Robots in Arts and Research—Creation

As anyone may guess, research in robotics is an extremely active field. What is
less known is that robotic arts are also very dynamics. As for many technological
developments, it didn’t take long for artists to take hold of the new knowledge,
methods and tools coming from this rapidly expanding field. This should not come
as a surprise since, as we have seen, automata of all kinds have always maintained
a close relationship with arts. Whereas scientists and engineers were, and still are,
concerned on how robots should be built, artists, as well as researchers from human
sciences, ask the question of why they should be developed. Many of their works
invite us to evaluate the risks, stakes and potential linked to the emergence of more
and more sophisticated machines. As you will see, the border between research and
creation in robotics can be very porous, and sometimes completely blurred. Within
the recent field of research—creation that lies precisely at the intersection of arts,
science and technology, are conceived robotic works that trigger the production of
new knowledge and new technological developments in these three domains.

Just like automata arts, robotic arts do not produce robots with practical purposes.
They nonetheless managed to trigger a wealth of developments and breakthroughs
in mechanics as well as in mechatronics and programming. The impulse that drives
them presents no major differences from the one that drove the Jacquet-Droz family
to build his Writer or his Musician, or Vaucanson to build his duck, by using some of
the most advanced techniques of their time. Furthermore, the often-quoted leitmotiv
stating that the first robotic artists were playing with their contraptions, instead of
working to make them useful, should be seen as a positive statement rather than a
deprecating one: research in any field is first and foremost a ludic activity, driven by
the curiosity and desire for exploration that are inherent to the human nature.

Artists cannot rely, like university researchers, on established research infrastruc-
tures; nor do they have access to the same level of human and material resources. But
as a counterpart, they have a freedom of research and action that would not be possible
in an institutional environment. Not being limited by any calendar constraint, research
trend or industrial need, robotic artists are free to explore unexpected research tracks.
Not being incited by their peers to work at the edge of technology, they can investigate
the potential of low-tech devices with personal sets of motivations, which adds to the
specificity and unicity of their work. This has two consequences. First, major results

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 27

have been obtained by people with limited technological expertise and very limited
means and resources, at times verging on arte povera, demonstrating, if necessary,
that essential breakthroughs can be achieved from elementary devices.® Second, the
association of artists with university researchers, or with industrial partners, is likely
to produce results that could not be possible for artists or researchers alone.

A quick look at artworks from the domain shows that robotic arts are essentially
of hybrid nature. From 1920 on, artificial humanoids began to appear in theatre plays
and performances. They were most of the time remotely controlled, and thus had no
degree of autonomy. It is now commonly accepted that art robots should supprimer
be able to interact in some ways with the audience, or with its environment, so that
their behaviour can change according to the context in which they are presented.

The very concept of interaction is actually related to a potential dialogue with an
artificial being. The occurrence of this dialogue depends on the elements that are used
by the robot to communicate, which is why robotic arts have also played an important
role in the development of intuitive human—robot interfaces. The first computer-
controlled robotic art piece was the Senster (Benthall, 1971). It was equipped with
an interface that gave him a pseudo-human behaviour, in the sense that it was attracted
towards soft movements and sounds, but repelled by sudden gestures and loud noises.
The range and level of technologies that were used to implement it (microphones,
Doppler radars, hydraulic rams, plus an 8§ K memory P9201 computer from Phillips,
whose price at the time exceeded that of a three bedrooms apartment in London)
made it impossible to afford by an independent artist; it was actually commissioned
by the Philips company.

The Senster, who looked somewhat like a three-legged, four metres giraffe whose
movements were derived from that of a lobster’s arm, can be seen as pioneering
the field of research—creation: its main objective was artistic, but its implementation
required a collaboration with experts from several fields and disciplines. Since it
was sensitive to the general ambiance of its context, it was able to trigger emotions
in the people that interacted with it. It looked like worried when the environment
became too agitated or too noisy, which incited people to act so as to make it “feel
better” or “more worried”. This empathic attitude can be observed in many later
works that were designed precisely to trigger it. The Hysterical Machines family by
Bill Vorn were octopus-like mechanical robots hanging from the ceiling. When the
visitors came too close to them, they become extremely agitated, even showing signs
of panics through rapid light effects and frantic movements of their metal tentacles.
In front of such reactions, most of the viewers felt sorry for them and were incited to
walk back to calm them down (Vorn, 2010). The Aerostabiles project by Reeves and
St-Onge consisted in large robotic cubes levitating in wide internal spaces (Reeves &
St-Onge, 2016). They could remain still in the air thanks to sensors, actuators and
ducted fans (Fig. 1.12). A micro-computer permanently readjusted their position,
producing slow oscillations. Despite their high-tech appearance, far remote from

8 This is obviously not limited to artists, as shown by Walter’s tortoises, which are among the
simplest robots that can be imagined; or by a software automaton like the Life Game by John
Conway, a quasi-elementary system that triggered the birth and evolution nothing less than artificial

28 N. Reeves and D. St-Onge

Fig. 1.12 Three Aerostabiles, flying cubic automata by Reeves and Saint-Onge (Moscow, 2010)

that of any living being, they managed to trigger intense emotions, since their very
soft movements were interpreted as a form of hesitation, or breathing; they were seen
by some visitors as large, floating animals that were prisoners in some way of their
technological envelope.

This connexion between the artificial movements of a robot and the emotions
felt by the visitor is of outmost importance on three points. First, it demonstrates
again, if needed, that the essence and potential of any automaton lie in its simulation
abilities. Second, it shows that, even for living beings, powerful impressions and
emotions can be communicated even while considering only the formal components
of movements, displacements and gestures. Third, as a consequence of the second
point, it opens the possibility to develop strictly formal or mechanical vocabularies
for triggering and controlling human impressions and emotions, with all the risks
and potentialities that such a project implies.

Several other aspects of early automata can be observed in robotic artworks.
The puppet theatre built by Heron of Alexandria finds contemporary counterparts
in Szajner’s “The Owl and the Robot” or “Petit Nicolas”, two interactive, theatrical
computer-controlled automata scenes; in Vorn and Demers’ “No Man’s Land”, which
involved more than fifty robots of nine different species detecting the presence of
viewers and reacting to it (Demers & Vorn, 1995); or in Rogers’ «Ballet Robotique»,
a movie showing large industrial robots choreographed so as to evoke animals or

life, a new science that has since the 60’s produced a wealth of theoretical and technological results
in several disciplines.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 29

Fig. 1.13 Human speaker experiment by artist Nataliya Petkova, 2017

plants. “The Robotic Church” by Chico McMurphy involves forty different robots
that play their individual sound-producing sequence (McMurphie, 1989).°

The level of interaction in these pieces is rather elementary, but they still demon-
strate the importance for robotic artists of attempting a dialogue between the robots
and the viewers; or at least, to trigger a reaction or an emotion from the latter. The next
step consisted in conceiving works in which human and robots would act together
in installation or performance scenes, trying to maximize the integration and the
collaboration between human and robotic performers. Among the pioneers of such
projects, Stelarc stands out as the first artist to have experimented robots as advanced
prosthesis of his own body. In his seminal piece “The Third Hand”, he tried to control
arobotic arm affixed to his right forearm through his own muscular impulses, in order
to make it write the same thing as his right hand (Stelarc, 1981). He also designed
pieces in which he reversed the mutual roles of the human and of the robots: in
his “Ping Body” piece, distant viewers located in three different cities could trigger
his body movements through a muscular stimulation device (Stelarc, 1995). A less
known but maybe more radical piece, “The Human Speaker Experiment” (Fig. 1.13),
presents a performer whose tongue, throat, cheeks and lips are actuated by mechanic
and electric devices, so as to allow a computer to make her pronounce different words
and sounds (St-Onge et al., 2017). Such installations convert the body into passive
objects whose only role is to follow the instructions sent by the computer, like human

9 McMurphie’s installation strangely evokes a famous low-tech automated piece from the outsider
arts category, “Le manege de Petit Pierre”, a life-size mechanical fair created and built by Pierre
Avezard, a handicapped farm boy, and which differs from more sophisticated automata theatres
only by the precarity of its materials (Piquemal & Merlin, 2005).

30 N. Reeves and D. St-Onge

interfaces. Just like the self-destructive multi-machine performances in the 80’s by
the Survival Research Laboratories (Pauline, Heckert and Werner), they convey strik-
ingly powerful messages about the risks linked to the expansion of robotic devices
in our daily lives, and the possibility for them to escape all human control (Ballet,
2019).

One cannot evoke robotic arts without mentioning another category of pieces,
namely those that deliberately try to give inanimate objects the appearance of
life. “Robotic Chair” by Max Dean is an ordinary looking chair that disassemble
and reassembles autonomously (Gérin, 2008); Boursier-Mougenot’s Grand Pianos
slowly move in an exhibition space, sometimes bumping into each other (Bianchini &
Quinz, 2016); Mike Phillips Sloth Bot is a white abstract prism, several metres high,
which imperceptibly moves in the atrium of a public building, getting closer and
closer from groups of people who end up noticing his ominous presence and quickly
getting out of its way (Phillips, 2007). Paul Granjon’s sexed robots live in an enclosure
called the “Robotarium”, in which their only concern and objective is to mate with
each other. They are also inspired by Walter tortoises in several ways; for instance,
when low in battery, they seek the darkest spot as their nest (Pitrus, 2013). Such
works are often infused with a dose of humour, which does not prevent them to carry
strong statements about the potential futures of robotics, and the necessity for us to
carefully evaluate the risks involved in some specific development axis.

Other artists propose works that directly address these notions, by entering active
discussions and controversies surrounding the research and development of killer
robots. The ethical problems raised by such machines are nothing less than over-
whelming. In a 2021 piece called Spot’s Rampage, Brooklyn collective MSCHF
has purchased one of the famous yellow dog-shaped robots from Boston Dynamics,
which used to be displayed playing and jumping on videos that became viral. They
equipped it with a paint gun and offered to anyone the possibility to pilot it online,
so as to make more concrete the possibility of armed police robots wandering in the
street of large cities (MSCHEF, 2019).

One common point of the works mentioned in the present section is that they can
hardly be relegated to a single domain: all of them are nurtured by data and infor-
mation coming from the three fields of art, science and technology. They are inher-
ently trans-disciplinary—some authors even qualify them as post-disciplinary, since
arobotic artist can navigate between theatre, performance, music, video, installation,
sculpture, bio-arts, visual arts, and many others, producing equally valuable works
in each of these fields. They can be characterized by the fact that they constantly
cross boundaries between all fields and domains, and by the way they manage to
thrive on these boundaries. Just like former automata makers, researchers-creators
in robotic arts are dedicated to the creation of artworks which constitute their final
objective. Just like them, through the process of conceiving and implementing them,
they develop advanced new skills, expertise and knowledge that can be then trans-
ferred to several other fields; and just like them, the mechanisms they imagine can be
seen as models for some hidden or ill-explained aspects of reality, and help under-
stand these aspects. And last but not least, the interactive nature of most robotic

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 31

artworks directly connects with the age-old impulse to create works that simulate
features of living beings.

1.7 Social Robotics

While several challenges still need to be addressed for robots to be able to robustly
navigate any cluttered terrain, vacuum robots and robotic pets are getting common
in household. Robots in our daily routine can have a significant impact on our
lives and no enough study were conducted yet on this topic. However, opening the
door to psychology, education and sociology over the past decades of research in
robotics also contributed to promote robots as potential good artificial companions
(Fig. 1.14). A handful of companies hit that market with innovative products, but
very few succeeded, in a surprising contradiction to the success of Al start-ups. The
often-quoted refrain in the industry is that “robotics is hard.”

If you think engaging Alexa or Siri in a natural conversation is difficult, just try
building a robotic humanoid that can function in any capacity similar to a human.
Simply put, initiatives in social robots such as Rethink Robotics, Jibo, Nao and
Mayfield Robotics helped to grow and spawn an industry only to find that more
nimble competitors, in the shape of robotic assistants with no mobile components,

Fig. 1.14 A small pack of Nao’s humanoid robots from Jaume I University. Nao is one of the most
popular robotic platform for human-robot interaction in psychology and it has made its place in
the child education market

32 N. Reeves and D. St-Onge

outcompeted them. For whatever reasons, the venture investors determined that these
market forces were more important than any longer-term vision that the robotics
company had and decided not to continue funding it. Anki CEO and co-founder
Boris Sofman gives a clue of the reasons behind that state of affair:

You cannot sell a robot for $800 or $1000 that has capabilities of less than an Alexa.

Roboticist Guy Hoffman adds:

When designers will start their own social robotics companies and hire engineers, rather
than the other way around, we will finally discover what the hidden need for home robots
was in the first place.'?

This does not mean that social robots have no role to play whatsoever. Many
things that are not directly connected with robotics as such can be learned from each
of these experiments. Jibo, for instance, is a major case study for the first large-scale
human grief and mourning for robotic systems, with hundreds of owners sharing
their distress and psychological state after its end of life was announced. There is
obviously a major field of research, centred around the emotions that can be triggered
by an artificial being, to be investigated here. As we have seen, the field of robotic
arts has been considering and exploring these phenomena for several decades now. It
is not unreasonable to suppose that joint research—creation ventures involving human
scientists, psychologists, artists and engineers will be ideally equipped, theoretically
and technologically, to address these questions.

1.8 Robotic Futures and Transrobotics

Throughout this chapter, we encountered several examples of a sequence in which
an entity that evokes more or less precisely the shape of living beings induces the
creation of more sophisticated devices intended to bring this evocation to the level
of a similitude, then to an assimilation, then to a model: the representation becomes
the paradigm. The same situation reoccurred at the procedural level with computers
and computer science, where it stands at the origin of a new model of human beings
in which the antique separation between body and soul is transposed, through an
immediate formal analogy, into a separation between matter and information.
Before exploring the consequences of this model, it should be noticed that the
mechanistic paradigm of the human body readily led to the resurgence of another
primordial myth, through the hope that immortality was at reach. The idea of the
body as a machine implicitly supposes the independence of its various components
and the possibility of remedying the failure of an organ by the transplant of an
identical one, or by the implantation of a prosthesis. From there was born the vision of
human beings gradually transformed into robots through the progressive replacement

10 Stalker and stalked: What Killed Off Jibo, Kuri and Kozmo? in Asian Robotics Review 273,
https://asianroboticsreview.com/home273-html (accessed January 30, 2022).

https://asianroboticsreview.com/home273-html

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 33

of their biological, ephemeral components by artificial ones; and whose longevity
becomes considerable thanks to the use of unalterable materials, such as titanium,
gold, palladium. Moreover, such hybrid beings would progressively become able to
wander in extremely hostile environments, such as deep space or ocean abysses, and
even of surviving intergalactic journeys, indefinitely pushing the borders of territories
colonizable by mankind.

Today we know that no material is eternal. A stable element such as gold that can
remain unchanged for billions of years, but this remains very far from eternity; no
robot can last forever. Information however has no prescribed age limit. Since it can
be transposed from one material entity to another, it can theoretically last as long
as the Universe itself, which is as close to eternity as it is possible to be. Analogies
with certain properties of living matter readily come to mind: if we look today at the
fossil of a fern in a museum, we know immediately what we are looking at, because
we have seen living ferns quite often in our lives. But this fossil is 300 million years
old: the fact that we are able to identify it means that the information that controlled
its morphology has remain unchanged since it was living—it lasted longer than the
highest mountain ranges of the late Paleozoic. We are thus led to the conclusion that
life is the optimal process that Nature has found to preserve information, and to allow
it to travel towards the future: being immaterial, it can jump from one individual to
its offspring when the materiality of the parent degrades. This life-inspired strategy
led to the emergence of a particular class of automata, on which will now focus our
attention, and which tries to embed three characteristics of living beings: self-building
and healing; replication; evolution.

Automata with such abilities are still in their infancy: they are mainly found in
university or industrial labs. However, the development of miniaturized mechatronic
components and of new materials, as well as the availability of cheap and powerful
microcontrollers, allow to foresee their use for practical applications in a not-so-far
future.

Several examples of self-building or self-reconfigurable robotic structures have
been proposed in the two last decades. One of the first examples consists in basic
cubic “bricks” equipped with an arm on each of their faces. Sets of such cubes can
built cubic lattices with various topologies: the cubes can carry one another from one
node of the lattice to the next (Yoshida et al., 2003). These modular robots were rather
heavy and cumbersome, but they prepare the grounds from miniaturized systems in
which such “bricks” could become the basic cells of robots with advanced functions;
moreover, a robot built this way could theoretically self-disassemble and reconfigure
in a completely different one in order to perform different tasks. Such devices may
seem very upstream of potential applications; but their potential is so promising
that they are the object of intensive researches in several labs. Many designs have
been tried, such as the two-hemispheres ATRON robot by Modular (Jorgensen et al.,
2004), chain structured systems such as the CEBOT (Fukuda & Kawauchi, 1990)
made of three different cells (wheel mobile, rotation joint, bending joint), Yim’s
Polypod, made of segments and joints (Yim et al., 1995), truss structured systems
such as Hamlin’s Tetrobots (Hamlin & Sanderson 2012) or Ramchurn’s Ortho-Bot
(2006), which remains at the state of a concept.

34 N. Reeves and D. St-Onge

Self-healing robots are also the object of a lot of attention from researchers. They
can be broadly divided into two categories. The first one consists in mechanical
robots that are able to repair their own components by using tools that are integrated
in their structure, such as the PR2 robot configured at Tokyo University (Murooka
etal., 2019). Such robots would theoretically be able to fix themselves after a failure,
like a surgeon that performs surgery on himself. The second one includes robots that
are made of soft materials («softbots») that self-reconstruct after having accidentally
been damaged or ripped by a collision, like a biological skin (Guo et al., 2020).

Replication and evolution on their side are not independent processes. In both
cases, the robot must carry the information that represents itself, in order to transmit it
to a device that could built an identical copy of itself. This device could be a separated
piece of equipment; but in order to stay closer to the analogy with living processes,
which can be deemed optimal since they have been elaborating and fine-tuning
through billions of years of evolution, the robot itself should be able to produce its own
replicas. Directly evolving a physical robot is out of reach of current technologies;
it should however be mentioned that the first evolution of digital organisms has
been observed in 1984 on a cellular automaton (Langton, 2000; Salzberg & Sayama,
2004), where it appeared, surprisingly enough, as an emergent feature of the system.
A cellular automaton is not a robot; but the fact that an evolution process can take
place in the memories of a computer means that generations of physical robots,
progressively more adapted to a given task, can be successively built along its course.

Lipson and Pollack’s Golem project!! was specifically aimed to create robots with
specific performance specifications, without any human input at the level of design
(Lipson & Pollack 2000). Their morphology resulted from a digital evolution process
whose results were evaluated and selected through computer analysis, simulation and
optimization, before reaching a final shape. The only human intervention consisted in
affixing the actuators on the various components. The final product was an articulated
worm equipped with a triangular arm; it was able to crawl on different surfaces. Such
a result may seem disappointing as compared to the sophistication of the process;
but this opinion can be relativized when considering that it took hundreds of millions
of years to biological life to reach the same result on Earth. Moreover, a close look
at the evolution diagrams reveals striking analogies with biological evolution: both
underwent stable phases, where they seemed not to be able to produce new proposals
or species, followed by phases where the number of such proposals literally exploded.
Knowing that a computer can evolve robots much faster, and maybe more efficiently,
than biological evolution, reminds us that the field of robotics faces us with unlimited
possibilities, but also with risks that must be carefully considered for each of its new
development axis and trends.

We will end up this chapter with a small tale that will briefly take us back to
the first age of automata. Thousand years ago, a craftsman created a human-like
automaton for the Chinese emperor. It was so realistic, and behaving so humanly,
that it almost became a star in the emperor’s court. Everyone wanted to be seen with
him. He behaved very elegantly, and with exquisite politeness towards everyone,

! Note the mythological reference!

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 35

especially young women, with whom it even happened to engage in some form of
flirt. Unfortunately for him, he made the error of flirting with the emperor’s favourite
spouse. The wrath of the emperor was terrible; he feared that the automaton and his
wife could become lovers; he ordered the automaton to be executed, which was done
immediately. The automaton has made the error of entering a territory which was
exclusively reserved to the emperor, namely that of its succession, threatening the
perpetuation of his life and heritage.

Today, the situation is completely reversed. Despite all the mythical worries asso-
ciated with such as project, building an automaton or a robot that could reproduce
itself and evolve by following lifelike processes is an objective that is looked for rather
than feared; the first team to accomplish such a feat would be immediately acclaimed
at the international level. This is illustrated by a very recent project by Kriegman and
Bongard (Kriegman et al., 2021), in which small entities made of skin cells of frogs
are dubbed «biological robots» in the media, a name that looks like a contradiction
in itself, but that translates the perplexity of contemporary commentators in front of
such researches.!? These microscopic entities are able to replicate themselves, not
by regular cellular division (mitosis), but by assembling other cells freely floating in
their environment—the new ones are biological constructions, rather than offspring
of biological «parents».

Most of the robots we know today are dedicated to practical tasks. In that respect,
one can wonder to which extensive research about bio-inspired robots, lifelike robots
or biorobots so remote from our daily concerns can be relevant. The answer lies
in two points. The first one is the observation of the optimal efficiency of living
processes for about all imaginable tasks, and the hope that this efficiency can be
one day transposed in artificial entities. The second one is linked to the fact that
after thousands of years of evolution, the most advanced researches on automata and
robots remain deeply connected with the myths and fears that led to the creation of
the very first ones, thousands of years ago. As shown by Kriegman and Bongard’s
experiments, the convergence with living beings, once seen as an illusory attempt,
is now stronger than ever; and the meaning of the term «robot», as well of that of
the suffix «bot», has expanded far beyond its original significance. New knowledge
about biological and genetic processes led to the emergence of life-inspired automata
and robots, which in turn ended up bringing new knowledge and models for some of
these processes.

It is still too early to know which of these attempts will become successful, and
which ones will remain as milestones in the ongoing genealogy of automata; but
we can legitimately suppose that the future of robotics lies in a more and more
pronounced convergence between artificial and biological entities at all scales, from
a whole organism to cells and molecules; and that we will soon see hybrid robots
involving more and more biological or life-inspired components going out of the lab
to enter industrial and domestic environments.

12 The authors gave the name «Xenobots» to their creatures.

36 N. Reeves and D. St-Onge

Chapter Summary

After examining the difficulties linked to the precise definition of the word “robot”,
the mythical origin of all robots and automata was exposed; it was regularly reminded
in the following sections. Early automata built by the Greek founders of mechanics,
namely Ctesibios, Philon of Tarentum, Heron of Alexandria, were described. They
were followed by the presentation of works from the Renaissance to the Classical
Age, in which automata that tried to simulate life and life processes by replicating
as precisely as possible the form and/or anatomy of living beings. From there, the
genealogy of robotics bifurcated. A new branch appeared, in which the machine and
the information controlling it became fully separated. It can be seen as the origin
of modern computers and robots. Some early automata from Antiquity could be
programmed to modify their behaviour, through different mechanisms; but surpris-
ingly enough, the ancestors of modern programming are to be found in musical boxes
and in the Jacquard loom. They also led to Babbage’s Analytical Engine (1843), the
first device that featured all the components of a modern computer, for which was
written the very first algorithm. The industrial era saw an almost complete loss of
interest for automata. The expressed needs of large-scale manufacturing paved the
way to the implementation of the first industrial robots. It was simultaneously realized
that mobile robots, able to cope with unknown, changing environments, could find
a wealth of potential applications in several fields. Robots became more and more
autonomous; their sensors became more and more efficient; computer and mecha-
tronics equipment became smaller and smaller. Robots could begin to take decisions
on their own by comparing information from different sources and by using processes
inspired from biological organisms. From there, a marked convergence was estab-
lished, and is still going on, between artificial and natural beings. Some of the latest
robots developed in research labs use materials and strategies coming both from
biology and technology. Their potential, as well as the interest they raise, allows to
see them as harbingers of the next phases of robotics. The possible applications of
such machines are impressive, and we can legitimately be fascinated by such techno-
logical achievements. But we must also consider the risks raised by the introduction,
in our daily life as in industry, of autonomous artificial entities increasingly close to
living beings, and whose abilities and power expand almost exponentially with time.

Revisions Questions

1. How do the arts contribute to the development of robotics?
There may be one or more correct answers, please choose them all:

A. By allowing studies to be carried out free from the laboratory environment
and the constraints of research

By prioritizing aesthetic considerations

By making researchers popular

By questioning the present and future emotional implications of technolo-
gies

oaw

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 37

2. Which of the following historical figures is recognized for having produced the
first programmable automaton?
Who is known to have written the first machine algorithm?
4. Can you identify the main impulse(s) that drove the first automata makers to
build their works
There may be one or more correct answers, please choose them all:

»

A. To demonstrate their knowledge and skills

B. To simulate and/or replicate living organisms

C. To help understand phenomena such as life or celestial mechanics through
explicative models

D. To impress, entertain or amaze crowds

Further Reading
Demson M, Clason C R (2020)

Romantic Automata: Exhibitions, Figures, Organisms. Bucknell University
Press

A brilliant collection of essays, most of them based on the eighteenth century liter-
ature about robots and automata, which describe the contradictory feelings that
emerged in the Romantic times, when it was realized that the construction of life-like
artificial entities, once seen as a technological achievement, could actually lead to
the emergence of mechanical beings deprived of the qualities that are inherent to
humanity such as empathy and compassion. A source of fascination and entertain-
ment for centuries, automata began, in a short period of time, to trigger less positive
emotions such as dread and fear, in a pivotal moment that is cleverly apprehended
by the authors.

Herath D, Kroos C, Stelarc (2016)
Robots and Arts: Exploring an Unlikely Symbiosis. Springer, Berlin

A pioneer book about robotic arts of all kinds, Robots and Arts presents, through
some of the most emblematic projects of the field, a thorough and in-depth reflexion
about the role, status and future of robots in a world where these artificial beings are
progressively becoming daily companions and partners. It constitutes an eloquent
demonstration of the essential contribution of artists to the general discourse on the
evolution of technologies. The argument is elaborated through a trans-disciplinary
compendium of texts by artists, scientists and engineers. Though this is not the main
objective of the book, the different contributions also make the case for the importance
of research—creation, by showing the wide number of disciplines, expertises and
skills that are required to produce even simple robotic art pieces, and the necessity
to promote such fruitful collaborations in university labs as well as in artists’ studios
and technological research centres.

38 N. Reeves and D. St-Onge

Foulkes N (2017)
Automata. Xavier Barral, Paris

The epic history of automata, from the oldest to the most recent, in a book profusely
illustrated with documents from all periods. The intimate links of automata with
clocks watchmaking, their parallel evolution with that of technologies, their links
with magic and myths, are clearly exposed, as well as the different roles they have
occupied throughout history, in several regions of the world. A well-argumented
book that can be used as an introduction as well as a reference.

Mayor A (2018)

Gods and Robots: Myths, Machines and Ancient Dreams of Technology.
Princeton University Press

A historical account of the links between the fantastic characters of the earliest myths
in history, recorded in Crete, the Roman Empire, Greece, India and China, and the
first instantiations of these artificial beings and mechanisms that are the ancestors of
all robots and automata that have been designed since. Perhaps one of the clearest
evocations of the origin of automata, all born from this obsession to breathe life into
inanimate beings, and an irrefutable demonstration of the fundamental role of art,
imagination and legends for the greatest scientific and technical developments.

Nocks L (2008)
The Robot: The Life Story of a Technology. John Hopkins, Baltimore

A history of robots mainly centred on the technological aspects of the field. The
argument remains generally more factual than for the previous ones and gives less
prominence to the non-technological roots of automata; but it takes on its full impor-
tance in the light of several elements which will serve as a useful reference: a glossary,
a timeline, an abundant bibliography, as well as information on the state of research
and development of contemporary robotics through statistics on currently operating
laboratories, firms and companies.

Wilson S (2003)

Information Arts : Intersections of Art, Science, and Technology. MIT Press,
Cambridge

A reference book in the field, Information Arts presents itself as the first interna-
tional survey of these artists who prefigured the development of research—creation
by exploiting data and concepts from all scientific fields, as well as the results of
a large number of technological advances. Soundly argumented from a theoretical
point of view, this essential work, based among other things on the visual and biblio-
graphical analysis of major artistic approaches, shows here again that the artist does
not limit himself to staging these concepts and their developments: through the posi-
tions it takes in front of their social and cultural consequences, it participates in the
discourse on their evolution and becomes a full player in the determination of future
research programs.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 39

References

Al-Jazari, A. (1974). The book of knowledge of ingenious mechanical devices (D. R. Hill Trans.).
D. Reidel.

Ballet, N. (2019). Survival research laboratories: A dystopian industrial performance art. Arts, 8(1),
17. https://doi.org/10.3390/arts8010017

Benthall, J. (1971, November). Edward Inhatowicz’s senster. In Studio International (p. 174).

Bianchini, S., & Quinz, E. (2016). Behavioral objects | A case study: Céleste Boursier-Mougenot.
MIT Press.

Capek, K. (2004). R.U.R., Penguin Classics (tr. C. Novack-Jones).

Carrera, L., Loiseau, D., & Roux, O. (1979). Les automates des Jacquet-Droz. Sciptar—F.M. Ricci

Coulton, J. J. (2002). The dioptra of Heron of Alexandria. In L. Wolpert, J. Tuplin, & T. E. Rihl
(eds.), Science and mathematics in ancient Greek culture, Oxford University Press (pp. 150-164)

Demers, L. P., & Vorn, B. (1995). Real artificial life as an immersive media. In 5th Biennial
Symposium on Arts and Technology (pp. 190-203).

Demson, M., & Clason, C. R. (2020). Romantic automata: Exhibitions, figures. Bucknell University
Press.

Descartes, R. (1637). Discourse on the method of rightly conducting the reason, and seeking truth
in the sciences, part V. Project Gutenberg, https://gutenberg.org/files/59/59-h/59-h.htm#part5.
Accessed 31 Dec 2021.

Eymard, P. (1863). Historique du métier Jacquard. Imprimerie de Barret.

Foulkes, N. (2017). Automata. Xavier Barral.

Fukuda, T., & Kawauchi, Y. (1990). Cellular robotic system (CEBOT) as one of the realiza-
tion of self-organizing intelligent universal manipulator. Proceedings of the IEEE International
Conference on Robotics and Automation, 1, 662—667. https://doi.org/10.1109/ROBOT.1990.
126059

Gérin, A. (2008). The robotic chair: Entropy and sustainability. Espace Sculpture, 83, 40—40.

Gorvett, Z. (2016). Leonardo da Vinci’s lessons in design genius, BBC Future, https://www.bbc.
com/future/article/20160727-leon

Guo, H., Tan, Y. J., & Chen, G. et al. (2020). Artificially innervated self-healing foams as synthetic
piezo-impedance sensor skins. Nature Communication, 11,5747 https://doi.org/10.1038/s41467-
020-19531-0. Accessed 30 Dec 2021.

Hamlin, G. J., & Sandersen, A. C. (2012). Tetrobot: A modular approach to reconfigurable parallel
robotics. Springer Verlag.

Herath, D., Kroos, C., & Stelarc. (2016). Robots and arts: Exploring an unlikely symbiosis. Springer.

Jorgensen, M. W., Ostergaard, E. H., & Lund, H. H. (2004). Modular ATRON: Modules for a
self-reconfigurable robot. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Vol. 2, pp. 2068-2073). https://doi.org/10.1109/IROS.2004.1389702

Kriegman, S., Blackiston, D., Levin, M., & Bongard, J. (2021). Kinematic self-replication in recon-
figurable organisms. PNAS, 118(49), e211267211. https://doi.org/10.1073/pnas.2112672118.
Accessed 30 Dec 2021.

La Mettrie, J. O. (1748). L’homme machine. Elie Luzac Fils.

Langton, C. G. (2000). Evolving physical creatures. In M.A. Bedeau, J.S. McCaskill, N.H.
Packard, & S. Rasmussen (eds.), Artificial Life VII: Proceedings of the Seventh Artificial Life
Conference (pp. 282-287). MIT Press.

Lovelace, A. (1843). Notes on Luigi Menabrea’s paper, autograph letter to Charles Babbage. Add
MS 37192 folios 362v—363, British Library.

Marr, B. (2016). Why everyone must get ready for the 4th industrial revolution. https://www.for
bes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolu
tion/?sh=684919d3f90

Mayor, A. (2018). Gods and robots: Myths. Princeton University Press.

McMurphy, C. (1989). The robotic church. In web site Amorphic Robot Works. http://amorphicr
obotworks.org/the-robotic-church. Accessed 30 Dec 2021

https://doi.org/10.3390/arts8010017
https://gutenberg.org/files/59/59-h/59-h.htm#part5
https://doi.org/10.1109/ROBOT.1990.126059
https://www.bbc.com/future/article/20160727-leon
https://doi.org/10.1038/s41467-020-19531-0
https://doi.org/10.1109/IROS.2004.1389702
https://doi.org/10.1073/pnas.2112672118
https://www.forbes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolution/?sh=6849f19d3f90
http://amorphicrobotworks.org/the-robotic-church

40 N. Reeves and D. St-Onge

MSCHEF. (2019). Spot’s Rampage. https://spotsrampage.com. Accessed 30 Dec 2021

Mortensen, O. (1957). Jens Olsen’s clock: A technical description. Technological Institute.

Murphy, S. (1995). Heron of Alexandria’s “on automaton-making.” History of Technology, 17,
1-44.

Murooka, T., Okada, K., & Inaba, M. (2019). Self-repair and self-extension by tightening screws
based on precise calculation of screw pose of self-body with CAD data and graph search with
regrasping a driver. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids) (pp. 79-84). https://doi.org/10.1109/Humanoids43949.2019.9035045

Nocks, L. (2008) The robot. The life story of a technology. John Hopkins.

Phillips, M. (2007). Sloth-Bot. https://arch-os.com/projects/slothbot/. Accessed 30 Dec 2021

Piquemal, M., & Merlin, C. (2005). Le manege de Petit Pierre. Albin Michel Jeunesse.

Pitrus, A. (2013). No longer Transhuman: Handmade machines by Paul Granjon. International
Journal of Cultural Research, 3(12), 129-133.

Pollack, J. B., & Lipson, H. (2000). The GOLEM project: Evolving hardware bodies and brains.
In Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware (pp. 37—42). https://
doi.org/10.1109/EH.2000.869340

Ramchurn, V., Richardson, R. C., & Nutter, P. (2006). ORTHO-BOT: A modular reconfigurable
space robot concept. In M.O. Tokhi, G.S. Virk, & M.A. Hossain (eds.), Climbing and walking
robots (pp. 659-666). Springer. https://doi.org/10.1007/3-540-26415-9_79

Regine. (2008). Cloaca 2000-2007, We Make Money Not Art, 19/01/2008. https://we-make-money-
not-art.com/wim_delvoye_cloaca_20002007/. Accessed 30 Jan 2022.

Reeves, N. (1992). Syndrome de Geppetto et machine de Tiiring. Agone, 8-9, 139-156.

Reeves, N., & St-Onge, D. (2016). Still and useless: The ultimate automaton. In D. Herath, C.
Kroos, & Stelarc (eds.), Robots and art: Exploring an unlikely symbiosis. Springer.

Salzberg, S., Sayama, H. (2004). Complex genetic evolution of artificial self-replicators in cellular
automata. Complexity, 10(2), 33-39

St-Onge, D., Reeves, N., & Petkova, N. (2017). Robot-Human interaction: A human speaker experi-
ment. In HRI ‘17: Proceedings of the Companion of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction (pp. 30-38). https://doi.org/10.1145/3029798.3034785

Stelarc. (1995). Ping Body. http://www.medienkunstnetz.de/works/ping-body/. Accessed 30 Dec
2021.

Stelarc. (1981). Third Hand. http:/stelarc.org/?catID=20265. Accessed 30 Dec 2021.

Vaucanson, J. (1738). Le mécanisme du fliiteur automate. Jacques Guérin.

Vorn, B. (2010). Mega hysterical machine. Google Arts & Culture. https://artsandculture.google.
com/asset/mega-hysterical-machine-bill-vorn/twEoqSJUmMO0i7A. Accessed 30 Dec 2021.

Wilson, S. (2003). Information arts, intersections of art, science, and technology. MIT Press.

Woodcroft, B. (1851). The pneumatics of Heron of Alexandria from the original greek. Taylor
Walton and Maberly.

Yim, M., Lacombe, J. C., Cutkosky, M., & Kathib, O. (1995). Locomotion with a unit-modular
reconfigurable robot. Dissertation, Stanford University.

Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., & Kokaji, S. (2003). Research
on self-reconfigurable modular robot system. JSME International Journal, 4(46), 1490-1496.
Zek, Y., Balina, A., Guryev, M., & Semionov, Y. (2006). The Peacock clock. https://web.archive.
org/web/20080202131950/http://www.hermitagemuseum.org/html_En/12/2006/hm12_1_22.

html. Accessed 12 Dec 20210.

Nicolas Reeves is Full Professor at the School of Design at University of Quebec in Montreal. A
graduate of U. Montreal, U. Plymouth and MIT, trained in architecture and physics, he has been
developing for thirty years a research and an art practice in the field of science-art/technological
arts. His work is characterized by a highly poetic use of science and technology. Founding
member, then scientific director of the Hexagram Institute (2001-2012), vice-president of the
Montreal Society for Technological Arts for ten years, he heads the NXI Gestatio Design Lab

https://spotsrampage.com
https://doi.org/10.1109/Humanoids43949.2019.9035045
https://arch-os.com/projects/slothbot/
https://doi.org/10.1109/EH.2000.869340
https://doi.org/10.1007/3-540-26415-9_79
https://we-make-money-not-art.com/wim_delvoye_cloaca_20002007/
https://doi.org/10.1145/3029798.3034785
http://www.medienkunstnetz.de/works/ping-body/
http://stelarc.org/?catID=20265
https://artsandculture.google.com/asset/mega-hysterical-machine-bill-vorn/twEoqSJUmM0i7A

1 Genealogy of Artificial Beings: From Ancient Automata to Modern ... 41

which explores the impact of digital technologies in all fields related to creation. Several of his
works have had a major media and public impact: Cloud Harp, Aérostabiles (flying cubic automata
capable of developing autonomous behaviors), Point d.Origine (real-time musical transposition of
remarkable architectures) ... Winner of several awards and grants, he presented his work and gave
lectures on four continents.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the Ecole de technologie supérieure and director of the INIT Robots Lab
(initrobots.ca). David’s research focuses on human-swarm collaboration more specifically with
respect to operators’ cognitive load and motion-based interactions. He has over 10 years’ experi-
ence in the field of interactive media (structure, automatization and sensing) as workshop produc-
tion director and as R&D engineer. He is an active member of national clusters centered on
human-robot interaction (REPARTI) and art-science collaborations (Hexagram). He participates
in national training programs for highly qualified personnel for drone services (UTILI), as well
as for the deployment of industrial cobots (CoRoM). He led the team effort to present the first
large-scale symbiotic integration of robotic art at the IEEE International Conference on Robotics
and Automation (ICRA 2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 2 ®)
Teaching and Learning Robotics: I
A Pedagogical Perspective

Eleni Petraki and Damith Herath

2.1 Learning Objectives

By the end of this chapter, you will be able to:

Understand the current challenges in robotics course design in higher education
Analyse current teaching practices and innovations in robotics teaching

Reflect on the link between learning theories and pedagogies for designing
robotics education

Select and assemble suitable pedagogies and techniques for self-directed learning
and development in the field of robotics.

2.2 Introduction

The previous chapter outlined technological developments and growth in the robotics
field. The advancements and proliferation of robotics applications have had an enor-
mous impact on our daily lives and have changed the skills and competencies of the
emerging workforce (Ahmed & La, 2019). Ahmed and La (2019) argue for robotics
integration into all levels of education to prepare the future workforce for a techno-
logically advanced society. Considering the growth of robotics applications and the
increase in robotics courses in academia, it is vital that the curricula of higher educa-
tion be carefully designed to address graduate workplace demands. In that domain,
there is an absence of systematic discussion and examination of robotics education,

E. Petraki (X))
Faculty of Education, University of Canberra, Canberra, Australia
e-mail: eleni.petraki@canberra.edu.au

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022 43
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_2&domain=pdf
mailto:eleni.petraki@canberra.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_2

44 E. Petraki and D. Herath

both of the syllabus and the pedagogies for addressing graduate student needs at
tertiary level. This systematic discussion of teaching and learning practices is an
imperative dictated not only from an education renewal perspective but also from the
design and product development perspective in the newly developed industries that
will have lasting and far-reaching societal implications.

This chapter aims to review current evidence-based research studies on robotics
in higher education. Due to the expansion of robotics application in numerous fields,
such as mechanical engineering, mechatronics, information technology, artificial
intelligence to name a few, we reviewed research investigating teaching and assess-
ment practices in robotics courses primarily in the last 10 years. This time frame
will capture the current developments and innovations in the field and will provide a
comprehensive understanding of effective teaching practices. These teaching prac-
tices will then be explained in the context of well-established educational theories
and philosophies in adult learning with the goal of assisting teachers and academics
in the design and selection of pedagogies and learning principles to suit robotics
education.

In writing this chapter, we have two primary audiences in mind. First, we hope
this discussion is applicable to teachers, academics and course designers of higher
education robotics courses as it will introduce a bank of resources which they can
use to design effective, pedagogically appropriate and industry-relevant curricula.
Guided by learner-centred educational philosophies, and with an understanding of
the link between educational theories and practices, it will contribute to a principled
approach to the design, reflection and improvement in current educational practices,
pedagogies and assessment in robotics education.

Second, the pedagogical discussion will be immensely valuable to students who
are enrolled in robotics courses or who might want to advance their knowledge
and skills in the field. It will provide them with a comprehensive understanding
of the theories and pedagogies underpinning course design and a clear insight into
interdisciplinary nature of the field. Knowledge and awareness of effective practices
will empower and propel students to pursue their own learning and endow them
with an array of strategies to learn autonomously and enhance their self-directed
learning. Constructivist, constructionist and connectivist education theories (Bower,
2017) discussed in Sect. 6 in more detail, regard teachers as facilitators and guides
of student learning and learning is seen as a continuous co-construction between
learners and teachers. We hope that this chapter will provide them with an incentive
and inspiration to continue their engagement in robotics, develop lifelong learning
skills and exploit opportunities outside the university walls.

2.3 Defining the Body of Knowledge of the Robotics Field

An important starting point for designing an appropriate and relevant curriculum
for any course is clearly delineation of articulating the body (mass) of knowledge,
along with the skills and learning outcomes of any course. This process is guided by

2 Teaching and Learning Robotics: A Pedagogical Perspective 45

curriculum design principles, which view curriculum design as dynamic, comprising
a series of interconnected stages: theoretical and epistemological beliefs about the
nature of learning, needs analysis, definition of aims and learning outcomes, syllabus
design and assessment, methodologies and pedagogies for implementation and the
evaluation plan (Richards, 2017). This process suggests that each of these stages is not
acting independently, but is mutually dependent on one another. In order to address
the research gap in the educational robotics literature and guide the development of
robotics courses in higher education, this chapter will survey the literature to identify
the body of knowledge expected of graduates of robotics and review the current
pedagogies and practices in the robotics field, with a view to suggesting a more
holistic approach to robotics education that transcends the traditional boundaries
and domains.

Despite the wealth of research in the robotics field, there have been few attempts
at describing the body of knowledge expected for those working in the field. To date,
we trace the most recent discussion of the body of knowledge and skills for robotics
to two reviews in 2007 and 2009 which we summarise here in an effort to describe
the state of the art in the field and further illustrate the challenges facing academics
today (Gennert & Tryggvason, 2009; McKee, 2007).

While robotics is a field that is taught in various courses and disciplines such
as engineering, computer science, information technology, it is common knowl-
edge among researchers that the field is highly diverse and draws on a variety of
disciplines (Berry, 2017; McKee, 2007; Wang et al., 2020). According to McKee
(2007), this knowledge goes beyond traditional fields of study such as mathematical
modelling and machine learning but includes key theoretical and practical dimen-
sions that reflect the diversity in the field: it can cover areas such as mathematics,
computing, control engineering, electronic systems, computing systems, program-
ming and algorithms, robotics systems and practice, artificial and computational
intelligence, human—computer interaction, artificial intelligence, algorithmic and
mathematical modelling, machine learning (McKee, 2007). The multidisciplinary
nature of robotics poses several challenges for curriculum developers in the field and
calls for a systematic and theory-driven approach to the design of tertiary curricula.
In the second study, Gennert and Tryggvason (2009) highlight the importance of
defining the body of knowledge necessary for robotics education and preparing ardent
prospective robotics engineers to handle the complex nature of robotics applications.
They argue that robotics education must not simply attempt to transfer knowledge
but attempt to “‘educate innovators who will have the imagination to shape our world”
(p. 20). Discussing their difficulties in their own course design, they identify certain
gaps in robotics education:

e Robotics engineering does not seem to have a firm intellectual basis, which is
necessary for defining the knowledge and skills required for undergraduate courses
in robotics.

e Robotics engineering is not an accredited programme of study and the authors
recommend that researchers identify the body of knowledge expected.

46 E. Petraki and D. Herath

e Robotics engineering should bridge the gaps between the scientific, theoretical
knowledge and hands-on industrial knowledge.

e There is insufficient research on appropriate curricula and syllabi for robotics
engineering education.

Besides the interdisciplinary nature and skills needed in the design of robotics
courses, other compounding factors include the role of robotics courses in different
disciplines, schools and faculties, and the selection of content to meet the level of
prerequisite knowledge expected of students when enrolling in a robotics course
(Berry, 2017; McKee, 2007). These concerns are further compounded by the chal-
lenges of balancing theory and practice (Jung, 2013), the appropriateness of selection
of teaching methods in robotics courses and the design of assessment that evalu-
ates students’ achievement of skills in practical and theoretical understanding (Jung,
2013).

A comprehensive inspection of the educational literature on robotics reveals that
the current teaching of robotics has not changed dramatically, since the studies in
2007 and 2009, despite the wide applications and developments in the research space
(Berry, 2017; Jung, 2013). This is the point of departure for the present chapter
which will review a series of studies that pioneer innovative pedagogies and assess-
ment in robotics and which will guide our subsequent theoretical discussion and
recommendations for pedagogical approaches in the robotics field.

2.4 Review of Research on Pedagogies and Practices
in Robotics Education

Due to the STEM integration in school years, robotics engineering has widespread
appeal among university students (Berengual et al., 2016; Gennert & Tryggvason,
2009; Hamann et al., 2018; McKee, 2007; Wang et al., 2020) and this appeal has
captured the attention of educators. Educational practitioners and researchers in the
field highlight the need to shift away from traditional modes of delivering robotics
education (McKee, 2007) to encapsulate the diverse applications of automata, inte-
grate interdisciplinary research and resolve some of the aforementioned tensions.
Given the technological advancements, innovations have been introduced in the
delivery of courses which include virtual learning environments, virtual robotic labo-
ratories and mobile robotics education to support distance and online courses in
robotics (Gabriele et al., 2012; Khamis et al., 2006).

This section reviews current research on educational robotics and reports on inno-
vative pedagogies and content selection employed in the design and teaching of
robotics courses, especially in the last 10 years. The research studies originate in
courses which received favourable student evaluations and led to improved learning
outcomes (Gabriele et al., 2012; Jung, 2013; Wang et al., 2020). The presentation will
pave the way for revolutionising higher education robotics courses and assist students

2 Teaching and Learning Robotics: A Pedagogical Perspective 47

and teachers in identifying pedagogical tools for autonomous learning development
and teacher curriculum development.

2.4.1 Adaptation of Content from Different Disciplines

One of the key challenges is the selection of suitable content for robotics courses that
target the needs and knowledge of different disciplines and subfields. For instance,
Gennert and Tryggvason (2009) discuss the design of their robotics undergrad-
uate course in a Polytechnic university aiming to teach the basic fundamentals to
students in mechanical engineering, computer science and electrical engineering. In
addressing the different student background knowledge, the syllabus integrated a
unique range of modules on areas such as power, sensing, manipulation, and navi-
gation, adjusting and incorporating content from each of the students’ disciplines.
In another study discussing the review of a robotics course in the faculty of mecha-
tronics at a Korean university, Jung (2013) raised the need to combine theory and
practice by integrating knowledge in Manipulator robots with hands-on experiences
in laboratory practicals. The course incorporated interdisciplinary theoretical content
covering robot kinematics, dynamics, path planning and control, while the laboratory
practical experience made use of a range of robot applications, experimental Kits,
Lego robots and humanoid robots to develop student skills in motor control. Wang
etal. (2020) and Hamann et al. (2018) share these views and stress that, because of the
popularity of robotics as a discipline and its cross-disciplinary nature, new method-
ologies and content need to be developed to allow students to combine hardware
and software implementation and to prepare future engineers to handle unfamiliar
and complex problems. This complies with current educational curriculum princi-
ples, which recommend a thorough analysis of the context and student needs in the
courses to design relevant and student-centred courses.

The development and redesign of new robotics courses and the increasing diversity
of contexts of robotics have led to the emergence and necessity of new pedagogies to
engage students in the field and to design appropriate content effectively (Martinez-
Tenoretal.,2019). Similarly, Wang et al. (2020) argue that new methodologies need to
be developed to allow students to combine hardware and software implementations.

2.4.2 Constructivist Approaches to Learning

An important consideration emerging in this research is the importance of educa-
tional theory in underpinning curriculum design and assessment. Few studies iden-
tified the role of combining instructivist or didactic and constructivist paradigms in
course design (Johnson, 2009; Martinez-Tenor et al., 2019). Instructivist pedago-
gies are associated with traditional forms of learning such as lectures, videos and

48 E. Petraki and D. Herath

examinations where learners aim to gain knowledge. Constructivist modes of instruc-
tion focus on student engagement in active participation and problem solving, where
teachers are facilitators and enablers of student learning. The constructivist paradigm
is typically associated with activities and pedagogies such as task-based learning,
collaborative activities, group tasks in which students engage in problem solving
and learning through collaboration and exchange. A revision of a recent master’s
course (Martinez-Tenor et al., 2019) on cognitive robotics led to the integration
of two approaches using Lego Mindstorm. Students were first exposed to instruc-
tional videos on machine learning and reinforcement learning as a preparation for
their engagement in interactive sessions using reinforcement learning working on
two decision-making problems. Students’ evaluation of the teaching methods in the
course showed that students appreciated and benefitted from autonomous learning
and collaborative learning activities and found the possibility of programming a robot
intensely motivating. They also offered suggestions for improvement, which could be
considered in future courses. These comprise time allocation for analysis and reflec-
tion on the experiments, addition of problem-solving activities, increasing opportu-
nities for collaboration, reflection and retention by students. Martinez-Tenor et al.
(2019) echo Johnson’s suggestion (2009) for a carefully designed programme that
combines instructivist and constructivist approaches to teaching to address diversity
in learning styles.

2.4.3 Situated Learning Methodology

Wang et al. (2020) discuss the implementation of an innovative pedagogy, which they
name situated learning methodology combined with the development of a hands-on,
project-oriented robotics curriculum in an undergraduate and postgraduate unit for
computing students. To address the challenge of combining theory and practice, the
course employed a situated learning-based robotics education pedagogy, guided by
four central principles: content, context, community and participation (Stein, 1998).
The situated learning methodology assumes that learning is a process of participation
and practice for solving real-life authentic problems (Lave & Wagner, 1991). Based
on the belief that knowledge and skills are developed effectively in the context of real
life, situated learning allowed students to work on a real-life application: interacting
with a multimodal collaborative robot who is employed as the students’ classmate.
A classroom-based learning community is established with groups working on solu-
tions to different hands-on tasks. The situated learning approach could be regarded
as a technique belonging to the constructivist education paradigm that promotes
collaboration and co-construction of learning in authentic real life environments
(Selby et al., 2021).

2 Teaching and Learning Robotics: A Pedagogical Perspective 49

2.4.4 Flipped Classroom

Another novel method introduced in a mobile robotics course in a US university
was the flipped classroom (Berry, 2017). This method was adopted to address time
limitations in explaining the theoretical components of robotics and encourage more
student participation (Berry, 2017). The flipped classroom is a new pedagogical
method which distinctively combines instructivist and constructivist approaches to
learning. The term “flipped classroom”, often referred to as “reversed instruction”,
incorporates a switch between in-class and out-of-class time, thus fostering more
interaction between teachers and students during class time. Students spend most
of the time engaged in experiential activities, problem solving and diversified plat-
forms (Nouri, 2016). A meta-analysis of flipped classroom research has demonstrated
the effectiveness of this model over traditional learning on student achievement and
learning motivation (Bergmann & Sams, 2012). The flipped approach was utilised
in the course to allow students to focus on their development of technical skills in
controlling robots, designing and experimentation with the real mobile robots for
laboratory experiments. This model has enormous potential for addressing the chal-
lenges of balancing theory and practice in a university course and allowing adequate
time for problem solving, self-paced learning activities and student negotiation.

2.4.5 Gamification

Another area of increasing interest is the role of gamification in robotics education,
which refers to the addition of play-based elements such as games as a method of
instruction to increase student engagement. Hamann et al. (2018) discuss the gami-
fication in teaching swarm robotics to first-year undergraduate students in computer
science, with a focus on teaching/learning theory and practice. Videogames allowed
student immersion in a simulated environment and inspired student creativity.
Students were presented with several robot manipulator challenges, engaged in
designing fully working prototype robots and models from the start with a gradual
increase in their functionality and complexity. The curriculum integrated robot-based
videogames and student competitions, thus building students’ teamwork skills and
triggering their imagination and engagement. Simultaneously, these learner-centred
methods offer students flexibility in learning and enhance their autonomy in problem
solving and engineering.

2.4.6 Online Interactive Tools

The advances in educational technologies have impacted education worldwide by
creating a variety of online tools and technological affordances. The educational

50 E. Petraki and D. Herath

domain experienced a boom in online learning and hybrid learning modes which
led to the creation of several online and virtual tools. To facilitate online delivery of
robotics courses, virtual laboratories were used engaging students in building and
guiding robots remotely with a range of tools. For instance, Berengual et al. (2016)
employed an array of interactive tools which they defined as “a set of graphics
windows whose components are active, dynamic and clickable ones” in order to
practice the theoretical aspects of the course. The “Mobile Robot Interactive Tool”
(MRIT) aimed at teaching students about robot navigation, allowing students to
explore a variety of parameters, such as robot kinematics, path planning algorithm,
the shape of the obstacles. It assisted students in understanding the basis of mobile
robot navigation and allowed them to modify different characteristics, such as robot
kinematics, path planning algorithm and the shape of the obstacles. The second inter-
active software tool, the slip interactive tool (slip-IT) was used to teach the concept
of slip in off-road mobile robots and last for the teaching of robotics manipulation
MATLAB/SIMULINK and robotics toolbox for conducting robot simulations. The
courses integrated two robots, some of which could be controlled remotely or offline
through Internet connection to the labs allowing students to work remotely. In addi-
tion to the simulation activities, the adoption of a real robot for demonstration and
implementation was a fundamental aspect of the course. Another interactive tool,
called ROBOT DRAW, was discussed by Robinette and Manseur (2001), which has
been widely used in robotics education. The tool was designed to enable students to
easily visualise robots in various configurations and evaluate the effect of a param-
eter variation on the robot. Among others, a popular online platform (https://www.
theconstructsim.com/) provides a range of online robot manipulation tools and can
be used by both students and teachers for autonomous practical learning. It consists
of virtual laboratories allowing students to experiment with manipulating, building
real and virtual robots online using a range of tools. Exposure and interaction with
a range of tools build students’ technological competencies and problem-solving
skills.

2.5 Assessment Practices

Changes in pedagogies and methods in teaching are closely intertwined with transfor-
mative assessment practices that match the learning—teaching philosophies of these
methods. Traditional methods of assessment have been embedded in many higher
education courses and comprised examination-based assessment or/and experimental
work. A few attempts have been made to modify assessment practices to reflect
changes in pedagogical approaches in robotics.

https://www.theconstructsim.com/

2 Teaching and Learning Robotics: A Pedagogical Perspective 51

2.5.1 Collaborative and Individual Project-Based Assessment

The majority of new assessment tasks integrated into some courses comprise project-
based assessment and competition reward systems. Group and individual projects
provide opportunities for authentic and collaborative learning experiences and
enhance student motivation and problem solving. In the design of courses reviewed by
Hamannetal. (2018) and Jung (2013), student assessment consisted of a group project
using competition-based learning, in which students had to engage and collaborate
through a series of tasks in a boxing match, using humanoid robots. Students found
the competition-based assessment a valuable and motivating experience in applying
many theoretical robotics skills although they acknowledged the challenges of the
time requirement of the competitions (Jung, 2013). Similarly, Wang et al. (2020)
employed project-based assessment allowing students to create a complete robot
control architecture in software and hardware during laboratory sessions. This form of
assessment enabled a classroom-based learning community with groups working on
solutions to different hands-on tasks. Consistent with the situated teaching method-
ology, project-based learning was adopted: each student was equipped with a robotics
development kit containing ultrasonic sensors, an Arduino board and other robotics
electronic accessories. The practical hands-on application, combined with the step-
by-step progression part of the syllabus and the teaching methodology, led to student
satisfaction and the effectiveness of this approach in the development of students’
learning outcomes. Berengual et al. (2016) equally employed a project-based group
assessment expecting students to build, programme and navigate a robot, and a series
of online reflections on theory and laboratory participation in a range of tasks that
assisted with the group project. Students identified the project task as one of the
most vital educational experiences that developed their technical and engineering
skills. Last, using a simple to complex curriculum design model, Hamann et al.
(2018) report on the use of group project allowing students to progress the robot
applications through a series of phases from simulation to real robots leading to
a battle royale game. The adoption of games and competitions both as sources of
learning and assessment offer students opportunities for collaboration, development
of student autonomy in problem solving and engineering and allow students to see
and test the effects of their programming and engineering.

2.5.2 Competition-Based Assessment

As mentioned previously, competition-based assessment can be a powerful tool in
engaging students in collaborative assessment. It was integrated into Martinez-Tenor
et al. (2019) and Jung (2013) course design studies and contributed to rich learning
and increase in student engagement and motivation. Some courses used project-based
learning to generate conference presentations which offered multiple opportunities
for student academic development, rich learning and networking with industry.

52 E. Petraki and D. Herath

2.5.3 Reflective Learning

To foster deep processing of learning, reflective writing in the form of continuous
assessment such as reflective posts was also introduced in some robotics courses.
The use of reflective activities is often combined with other forms of assessment
such as group projects which integrate experimental work with reflective writing
where students explain and focus on consolidation of theoretical knowledge. Wang
et al. (2020) designed project-based assessment expecting students to work towards
creating a complete robot control architecture in software and hardware during labo-
ratory sessions. Assessment was redesigned to include weekly literature reflections,
online quizzes on the theory and staged group project assessment conducted in labora-
tories consisting of three graded components: a demonstration, a technical memo and
a code submission. Martinez-Tenor et al. (2019) also incorporated reflections as part
of the group/project assessment focusing on robot manipulation, which resulted in
a valuable learning experience for students. Individual reflections also allow for flex-
ibility and self-paced learning and when shared publicly in online learning platforms
offer rich learning opportunities for all students in the course.

The aforementioned discussion identified some attempts at transforming
teaching/learning practices and assessment in robotics higher education courses
based on a review of educational research in the last decade. To truly transform
education practices and to identify effective teaching pedagogies in robotics educa-
tion and beyond, it is vital for teachers and students to develop an advanced aware-
ness of the relationship between education theories, curriculum design principles and
methods of learning and teaching. Equipped with these skills, academics, teachers
and students can make systematic and theory-driven selections to revise, adapt and
refine robotics education.

2.6 Paving the Way for Innovative Pedagogies
and Assessment in Robotics Education

To address the call for more diverse and current educational practices, to tackle the
current diverse applications of robotics and the growth of the industry, it is important
that robotics education prepares future engineers adequately to cope with arising
challenge in the field (Wang et al., 2020). This section will provide a guide to novel
pedagogical practices and assessment in teaching robotics, relying on research in
educational literature and the challenges facing robotics education at the academic
level. Important caveats for applying these suggestions will be discussed at the end
of this section.

First, we will begin with a discussion of educational theories/epistemologies
that drive pedagogical practices, as this is an integral aspect of any teaching and
curriculum design process (Richards, 2017). Research on adult learning and educa-
tion theory is well-established, highly researched and has undergone many transfor-
mations. Educational theories and ideologies are defined as a set of epistemological

2 Teaching and Learning Robotics: A Pedagogical Perspective 53

beliefs concerning the nature and value of learning, teaching and the role of educa-
tion and serve as a justification for particular approaches, pedagogies and methods
to teaching (Richards, 2017).

Historically, one of the first theories which influenced educational processes
was behaviourism which viewed learning as habitual behaviour, that is, observ-
able, conditioned upon a stimulus-reward action and reinforced through habitual
learning (Skinner, 1974). Influenced by a series of experiments on dogs, Skinner
(1974) concluded that learning is observable through actions and is shaped by the
environment and instructional design. He continued to suggest that learning can be
achieved through a series of teacher questions and student responses, where positive
and negative feedbacks determined the learning process. The behaviourist learning
theory influenced educational design, by emphasising that teaching is an objective
body of knowledge that s to be delivered and measured though performance measures
and outcomes (Bower, 2017; Howell, 2012). The behaviourist approach is associated
with the transmission-based model of teaching placing teachers as the authority of
knowledge, organisers and planners of learning and learners as passive recipients of
this knowledge. This is evident in traditional and authoritative models of teaching
and classical forms of assessment such as examinations, quizzes, not acknowledging
the role of the learners in the process or other environmental or psychological factors
(Bower, 2017). Despite the early successes of the behaviourist paradigms, one of its
drawbacks was the lack of consideration of the complexity of human cognition and
the individual learner processes.

In addressing the limitations with the behaviourist theory, another group of
researchers examined the role of mental and information processing in the learning
process, which LD to the development of cognitivism. Within the theory of cogni-
tivism, learning is an internal mental process of storing, receiving, consolidating
and reorganising information and knowledge structures or schemata (Bower, 2017).
Cognitivism could be seen as an extension of behaviourism, with attention to the
workings of the brain. Proponents and researchers in the field focused on aspects of
selection, organisation and retrieval of information and used some of this research to
design a curriculum with learner conditions in mind. These included aspects of knowl-
edge sequencing, information load, staged instruction to improve learning compre-
hension and consolidation. However, within cognitivism the transmission model of
education and the focus on demonstration of learning outcomes prevailed.

This gave way to the theory of constructivism, one of the most influential
paradigms that focused on learning as a process rather than learning as a product.
Constructivist paradigms have dominated modern educational practices at all educa-
tion levels (Jones & Brader-Araje, 2002). The paradigm is based on the idea that
learning is not static but dynamic and is a process of reflection, negotiation and
individual or collaborative discussion through interaction with other learners, inter-
action with social and cultural influences. Individual constructivism was pioneered
by Piaget (1970), who considered learning as a result of processes of assimila-
tion and accommodation of new knowledge to existing knowledge, while social
constructivism, introduced by Vygotsky (1978) focused on sociocultural influences
on learners and their learning. Within Vygotsky’s social constructivism (1978),

54 E. Petraki and D. Herath

group activities and collaborative learning are preconditions and must precede any
individual learning. Learning is regarded as a continuous interplay between others
and the self through internal assimilation and extension/addition of new knowl-
edge. Intrinsic to the social constructivist model, which has had tremendous impact
on learning, is the idea of scaffolding, which is defined as additional assistance
and support which can gradually be removed after the learner has gained indepen-
dence. Based on the constructivist perspective, the teachers are considered guides
and facilitators and providers of the conditions, tools and prompts enabling students
to discover principles and engage in knowledge construction by themselves (Bruner,
1990). The constructivist paradigm gave birth to several teaching methodologies
that promote co-construction, negotiation of learning and self-discovery, comprising
students’ engagement in self-directed learning but also and most importantly collabo-
rative learning, project-based learning and competitions-games and tournament tasks
(Jones & Brader-Araje, 2002).

Constructionism is regarded as an extension of constructivism which considered
the impact of technologies and artefacts on the learning process. The origins of
this theory can be traced to Papert (1980) who observed that learners create their
own reflections through experimentation with tangible objects, which were initially
referred to Lego, Logo and Mindstorms. It was suggested that learning takes place
when people are active during their creation of tangible objects in the real world. It
further assumes that learning is reinforced through engagement in authentic tasks,
creation of tangible objects, collaborative learning or other design activities in the real
world such as authentic and situated learning experiences (Howell, 2012; Papert &
Harel, 1991).

With similar roots to constructionism and inspired by the digital networking,
researchers introduced connectivism as the new epistemology based on the domi-
nance of digital learning. Connectivism subscribes to the views that learning takes
place in an organic fashion and is a result of building connections and skills in
connecting the digital world, technologies and platforms with social networks,
knowledge and information (Siemens, 2005). It centres on the metaphor of networks
with nodes and connections as the basis for learning. Influenced by construc-
tivist principles, connectivism is a novel approach, adopted in technology-enhanced
learning and online learning, and aims to develop students’ skills in critical thinking,
connecting and collaborating through interactions with technologies and connectivist
learning environments (Bower, 2017; Howell, 2012; Siemens, 2005).

It is evident in the above review that there has been exponential growth in educa-
tional theory, which in turn generated new methods and pedagogies that could be inte-
grated into robotics education. Some of these new methods employed in the course
design literature identified in Sect. 4 were influenced by constructivist, construc-
tionist and connectivist ideologies and were considered effective. Given the role
of robotics education in preparing the undergraduate students in handling complex
real-life problems, curriculum design in the field could benefit from integrating such
novel methodologies.

While traditional didactic learning is an integral aspect of acquiring key knowl-
edge, admittedly, to align with current research developments in learning theories

2 Teaching and Learning Robotics: A Pedagogical Perspective 55

and to address today’s global challenges and to develop competitive and multi-skilled
graduates, it is vital that robotics education be enriched to bring about more educa-
tional benefits. Instructivist, behaviourist and cognitivist methods have dominated
the delivery and implementation of higher education courses but they are limited and
inadequate in improving learning outcomes. This section will highlight novel and
evidence-based pedagogies that could improve robotics course design and facilitate
graduates’ self-directed learning.

Some of the most effective pedagogies that are consistent with constructivist
and constructionism theories are collaborative learning, project-based learning and
competition-framed tasks. These methods should play a significant role in the
delivery of robotics education in academic as well as other educational levels. There
is abundant research to suggest that social engagement and collaboration with peers
have positive impact on individual development, problem solving as well as social
collaboration skills, skills and attributes expected of university graduates (Zheng
et al., 2020). Collaborative learning can be enhanced through discussion forums,
web-conferencing systems, virtual worlds, project-based learning during experi-
mental work. Collaborative learning allows students to treat their collaborators as
resources and guides for their own growth and development. It also provides oppor-
tunities for scaffolding by allowing for information exchange and learning from one
another and teamwork skills on problem-solving activities. It needs to be mentioned
that project-based learning comprising group collaboration comes with several chal-
lenges. These challenges can be frustrating for students, but with sufficient guidance,
they can empower students, help them develop student independence, creativity and
equip them with innovative problem-solving skills.

Project-based learning can sometimes take the form of problem-based learning
and design-based learning, which all align with constructivist and constructionist
principles. Design-based learning is a novel learning approach encouraging students
to work collaboratively on authentic real-life design tasks with the aim of advancing
their design skills, problem-solving abilities, reasoning and critical thinking skills
and develop attitudes to continuously tackle emerging challenges (Howell, 2012;
Kim et al., 2015). Problem-based learning is a pedagogical technique that provides
students with an authentic problem, with the aim of advancing student engage-
ment and motivation and supporting student-centeredness, self-regulation, devel-
opment of cognitive and metacognitive strategies, autonomy and student indepen-
dence (Stefanou et al., 2013). It has also been suggested that project-based learning is
easily combined with other methods such as flipped classroom models, inquiry-based
learning, collaborative learning, and the combination of such methods maximises the
effectiveness on student learning (Zheng et al., 2020).

Last but not least, competitions, games, tournaments combined with or incor-
porated in collaborative projects enhance students’ motivation and interest to learn
and encourage independence and further learning. Games are built on construc-
tivist principles and promote cognitive and social interaction, and build risk-taking,
strategic negotiation, problem solving, collaboration, reflection and lateral thinking
(Gee, 2005). They can increase student engagement, motivation and promote a high

56 E. Petraki and D. Herath

sense of achievement and competition (Stefanou et al., 2013). Gamification prin-
ciples could be used as learning approaches or as assessment tools and have the
potential to increase students’ continuous engagement and excitement in the course
and the range of activities (Hwang & Chang, 2016).

Changes in learning methods and pedagogies implicate changes in assessment
practices. An effective curriculum expects consistency between the syllabus, peda-
gogies and assessment practices, a notion known as “constructive alignment” (Biggs,
2014, p. 5). The aforementioned literature has paved the way for integrating a wide
range of assessment items that align with constructivist and project-based approaches
to learning.

Educational research points to the significance of project-based assessment, as
it offers authentic learning experiences for students, builds their collaborative skills
and develops their problem-solving skills. It is consistent with the new pedagogies
promoted in the previous review and would also endow students with skills for the
real world where teams work together to build, design and manipulate robots.

Due to the multidisciplinary aspects of robotics and its contribution to a range
of fields, robotics courses could benefit from online reflections on the literature
and theory. This was assumed and encouraged in the early work by Papert (1980)
who suggested that knowledge is created through reflection and engagement with
people and artefacts. These online reflections could be used as formative assessments
to engage students’ reflective, critical learning skills and problem solving abilities
(Merlo-Espino et al., 2018). Reflective activities and discussions can also be inte-
grated into project-related work to assist students in resolving these challenges and
offer a mechanism of getting support from lecturers (Serrano et al., 2018).

Admittedly, authentic assessment should be an indispensable component of
robotics assessment in higher education. Authentic learning is a suitable pedagogy
that operates within the theory of constructionism, hypothesising that learning takes
place during students’ interaction with practical tasks and robots. Authentic assess-
ment, therefore, refers to assessment requiring students to build/design/create arte-
facts or robotics applications and provides them with opportunities to develop real-
world skills. Gulikers et al. (2004) highlight a number of aspects of authenticity in
assessment: the task, the physical, virtual and social context, the artefact produced (or
behaviour assessed) or/and, the criteria and expected standard. Authentic assessment
assists the students with developing competencies appropriate for the workforce and
is often requirements for meeting professional accreditation standards. Project-based
assessment that enables students to design a robot-based application is paramount
to developing students’ real-life skills and foster effective human-robot interac-
tion (Gurung et al., 2021). They further enhance situated learning/learning by doing
(Wang et al., 2020) as they provide the environment for students to learn from one
another and develop collaborative skills.

An important caveat needs to be mentioned here. The choice of assessment tasks,
formative, summative, group and/or individual need to be closely linked with the
pedagogy and epistemology of the course, syllabus and the teaching, something
known as epistemological alignment to improve the course success. There must
be an effective triadic relationship between epistemology (the nature of learning),

2 Teaching and Learning Robotics: A Pedagogical Perspective 57

pedagogy an assessment for the course to be successful and meet its objectives
(Knight et al., 2014).

It is important to highlight that these suggestions are pertinent to students who are
studying in robotics and robotics adjacent fields. Students interested in advancing
their knowledge and skills can seek opportunities, extra-curricular and industry
opportunities to be involved in authentic projects, collaborative activities and pursue
conference or industry presentations. Reflective learning activities and participation
in discussions can create valuable learning opportunities for students to advance their
skills and be competitive in the field (Fig. 2.1).

» Associated pedagogies, methods of teaching and assessment

Major Learning theories i

* Qutcomes based learning

+ Conditioned and habitual learning

Behaviourism « Transmission model of teaching using lectures

* Performance and measurable assessmet: tests and exams

+ Learning involves internal mental processing of receiving and
reorganising information

* Transmission model of teaching

* Emphasis on prior knowledge and design of learning to
consider background knowledge

* Learning is a dynamic process of reflection and negotiation
with other learners

Collaborative learning, group activities, project based
learning, competition based learning

Constructivism (individual

and social) Assessment: competition based assessment, team based
and group project assessment; reflective thinking

* Situated and authentic learning;

= Learning through interaction with technology

Constructionism * Group and project engagement using computer networks

* Assessment: authentic assessment, online tournaments,
project based assessment

+ Learning through interaction and connections with social and

s digital networks

Connectivism * Learning is dynamic and situated

. A t: authentic t, online tournaments,
project based assessment

Fig. 2.1 Learning theories, principles and pedagogies

58 E. Petraki and D. Herath

2.7 Chapter Summary

In addressing the absence of systematic reviews of research and recommendations
in teaching robotics, this chapter offered an overview of the current challenges in
teaching and learning robotics and reviewed pedagogical trends in robotics education
at higher education institutions. The need for a systematic presentation of current
educational practices is further enhanced when considering that the purpose of the
book is to introduce the theory, design and applications of robotics for students and
academics, and to advance students’ skills to handle complex problems. This chapter
firsthighlighted several challenges facing designers of robotics courses which include
lack of systematic research in robotics education and the complex network of disci-
plines which need to be synthesised to design robotics courses. Next, it reviewed
current innovations in higher education course design and pedagogy, specifically
focusing on the last ten years, which were found to lead to improved learning
outcomes. This aimed to raise students’ awareness of the history and theoretical
principles underlying the teaching of robotics at the academic level. To address the
challenges and complexities in designing appropriate syllabus and instruction, and
the need to shift away from traditional forms of learning, the last section offered a
comprehensive understanding of learning theories and relevant pedagogies that have
the potential to improve educational practices and lead to learning benefits if used
appropriately in robotics education.

To shape the future of robotics education, it is imperative that academics, teachers
and industry practitioners work collaboratively and be involved in negotiating and
co-designing the syllabus and assessment of academic robotics courses. In addressing
the chasm in the knowledge, we hope this chapter developed their in-depth awareness
of the theoretical basis of teaching pedagogies and advances in learning theory which
should guide course design, syllabus and assessment. Learner-centred, constructivist
and connectivist learning theories should be the basis for selecting suitable methods
which address the challenges embedded in the multidisciplinary nature of robotics,
and the diverse skills engineers need in today’s technologically advanced society.
These pedagogies comprise project-based learning, problem-based and collaborative
learning, reflective writing and authentic assessment, to name a few.

Revolutionising robotics education and building work-ready graduates are not
simple tasks. Recognising the complexity of the robotics field and the diversity in
educational processes is a starting point which can assist in our definition of roles,
responsibilities and identities as learners and teachers. It requires changes in beliefs
and practices that both students and teachers implement and manage effectively.
Zhou et al. (2020) argue that students’ dissatisfaction in academic courses is often
ascribed to their lack of understanding of their role in the learning process and,
of the epistemological beliefs underpinning learning and assessment (Zhou et al.,
2020). Teachers should be willing to adopt such roles as guides, facilitators, moder-
ators of learning and enablers of change, and invite students in negotiations and
co-constructions of their learning experiences. Armed with tools and strategies to
improve their learning, students should be co-creators and active participants of

2 Teaching and Learning Robotics: A Pedagogical Perspective 59

classroom realities (Harmer, 2015). Students need to engage in sociocultural and
professional practices in robotics, shaping and negotiating their identities and social
relations in this academic community of practice (Saltmarsh & Saltmarsh, 2008). It
is hoped that with the discussion in this chapter, students are empowered and inspired
in taking charge of their own learning and armed with a multitude of tools to continue
their professional development and lifelong learning.

2.8 Quiz

According to this chapter,

What are some key challenges facing robotics education course design?
What were some of the pedagogical innovations discussed and reviewed in the
robotics literature in this chapter?

e Name some interactive tools which have been incorporated in teaching robotics
in higher education.

e What is the learning theory which espoused the idea that knowledge is built when
we interact, experiment and reflect on our experience by building and creating
artefacts?

e What are some methods that you can employ to advance your skills in robotics?

Acknowledgement The contribution of the first author is funded by the Australian Research
Council Discovery Grant DP200101211.

References

Ahmed, H., & La, H. M. (2019). Education-robotics symbiosis: An evaluation of challenges and
proposed recommendations. In /EEE Integrated STEM Education Conference (ISEC) (pp. 222—
229). https://doi.org/10.1109/ISECon.2019.8881995

Berenguel, M., Rodriguez, F., Moreno, J. C., Guzman, J. L., & Gonzélez, R. (2016). Tools and
methodologies for teaching robotics in computer science and engineering studies. Computer
Applications in Engineering Education,24(2), 202-214. https://doi.org/10.1002/cae.21698

Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every
day. Internal Society for Technology in Education.

Berry, C. A. (2017). Robotics education online flipping a traditional mobile robotics classroom.
IEEE Frontiers in Education Conference (FIE),2017, 1-6. https://doi.org/10.1109/FIE.2017.819
0719

Biggs, J. (2014). Constructive alignment in university teaching, HERDSA Review of Higher
Education, 1,5-22 .

Bower, M. (2017). Design of technology-enhanced learning: Integrating research and practice.
Emerald Publishing Limited.

Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.

https://doi.org/10.1109/ISECon.2019.8881995
https://doi.org/10.1002/cae.21698
https://doi.org/10.1109/FIE.2017.8190719

60 E. Petraki and D. Herath

Gabriele, L., Tavernise, A., & Bertacchini, F. (2012). Active learning in a robotics laboratory
with university students. In C. Wankel & P. Blessinger (Eds.), Increasing student engagement
and retention using immersive interfaces: Virtual worlds, gaming, and simulation, Cutting-edge
technologies in higher education (Vol. 6 Part C, pp. 315-339). Emerald Group Publishing Limited,
Bingley. https://doi.org/10.1108/S2044-9968(2012)000006C014

Gee, J. P. (2005). Good video games and good learning. Paper presented at the Phi Kappa Phi
Forum.

Gennert, M. A., & Tryggvason, G. (2009). Robotics engineering: A discipline whose time has come
[education]. IEEE Robotics & Automation Magazine, 16(2), 18-20. https://doi.org/10.1109/MRA.
2009.932611

Gulikers, J. T. M., Bastiaens, T. J., & Kirschner, P. A. (2004). A five-dimensional framework for
authentic assessment. Educational Technology Research and Development,52(3), 67-86.

Gurung, N., Herath, D., & Grant, J. (2021, March 8-11). Feeling safe: A study on trust with an
interactive robotic art installation. HRI "21 Companion. Boulder, CO, USA.

Hamann, H., Pinciroli, C., & Mammen, S. V. (2018). A gamification concept for teaching swarm
robotics. In 12th European Workshop on Microelectronics Education (EWME) (pp. 83-88).
https://doi.org/10.1109/EWME.2018.8629397

Harmer, J. (2015). The practice of English language teaching (5th ed.). Longman.

Howell, J. (2012). Teaching with ICT: Digital pedagogies for collaboration and creativity. Oxford
University Press.

Hwang, G.-J., & Chang, S.-C. (2016). Effects of a peer competition-based mobile learning approach
on students’ affective domain exhibition in social studies courses. British Journal of Educational
Technology,47(6), 1217-1231.

Johnson, G. M. (2009). Instructionism and constructivism: Reconciling two very good ideas.
International Journal of Special Education, 24(3), 90-98.

Jones, M. G., & Brader-Araje, L. (2002). The impact of constructivism on education: Language,
discourse, and meaning. American Communication Journal, 5(3).

Jung, S. (2013). Experiences in developing an experimental robotics course program for under-
graduate education. IEEE Transactions on Education,56(1), 129-136. https://doi.org/10.1109/
TE.2012.2213601

Khamis, A., Rodriguez, F., Barber, R and Salichs, M. (2006). An approach for building innovative
educational environments for mobile robotics. Special Issue on Robotics Education, International
Journal of Engineering Education, 22(4), 732-742.

Kim, P,, Suh, S., & Song, S. (2015). Development of a design-based learning curriculum through
design-based research for a technology enabled science classroom. Educational Technology
Research Development,63(4), 575-602.

Knight, S. B., Shum, S., & Littleton, K. (2014). Epistemology, assessment, pedagogy: where learning
meets analytics in the middle space. Journal of Learning Analytics,1(2), 23-47.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge
University Press.

Martinez-Tenor, A., Cruz-Martin, A., & Ferndndez-Madrigal, H-A. (2019). Teaching machine
learning in robotics interactively: The case of reinforcement learning with Lego® Mindstorms.
Interactive Learning Environments, 27(3), 293-306. https://doi.org/10.1080/10494820.2018.152
5411.

McKee, G. T. (2007). The robotics body of knowledge [Education]. IEEE Robotics & Automation
Magazine, 14(1), 18-19. https://doi.org/10.1109/MRA.2007.339621

Merlo-Espino, R. D., Villareal-Rodgriguez, M., Morita-Aleander, A., Rodriguez-Reséndiz, J.,
Pérez-Soto, G. I., & Camarillo-Gémez, K. A. (2018). Educational robotics and its impact in the
development of critical thinking in higher education students. In 2018 XX Congreso Mexicano
de Robotica (COMRob) (pp. 1-4). https://doi.org/10.1109/COMROB.2018.8689122

https://doi.org/10.1108/S2044-9968(2012)000006C014
https://doi.org/10.1109/MRA.2009.932611
https://doi.org/10.1109/EWME.2018.8629397
https://doi.org/10.1109/TE.2012.2213601
https://doi.org/10.1080/10494820.2018.1525411
https://doi.org/10.1109/MRA.2007.339621
https://doi.org/10.1109/COMROB.2018.8689122

2 Teaching and Learning Robotics: A Pedagogical Perspective 61

Nouri, J. (2016). The flipped classroom: For active, effective and increased learning—especially
for low achievers. International Journal of Educational Technology in Higher Education, 13, 33.
https://doi.org/10.1186/s41239-016-0032-z

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. Basic Books Publishers.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36, 1-11.

Piaget, J. (1970). The science of education and the psychology of the child. Grossman.

Richards, J. (2017). Curriculum development in language teaching. CUP.

Robinette, M. F., & Manseur, R. (2001). Robot-draw, an Internet-based visualization tool for robotics
education. [EEE Transactions on Education,44(1), 29-34. https://doi.org/10.1109/13.912707
Saltmarsh, D., & Saltmarsh, S. (2008). Has anyone read the reading? Using assessment to promote

academic literacies and learning cultures. Teaching in Higher Education,13(6), 621-632.

Selby, N.S.,Ng,J., Stump, G. S., Westerman, G., Traweek, C., & Harry Asada, H. (2021). TeachBot:
Towards teaching robotics fundamentals for human-robot collaboration at work. Heliyon, 7(7).
https://doi.org/10.1016/j.heliyon.2021.e07583

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of
Instructional Technology and Distance Learning, 2(1), 3—-10.

Skinner, B. F. (1974). About behaviourism. Penguin.

Stefanou, C., Stolk, J.D., Prince, M., Chen, J.C., & Lord, S.M. (2013). Self-regulation and autonomy
in problem- and project-based learning environments. Active Learning in Higher Education,
14(2), 109-122. https://doi.org/10.1177/1469787413481132

Stein, D. (1998). Situated learning in adult education. ERIC Clearinghouse on Adult, Career, and
Vocational Education.

Vygotsky, L. S. (1978). Tool and symbol in child development. In M. Cole, V. John-Steiner, S.
Scribner, & E. Souberman (Eds.), Mind in society: The development of higher psychological
processes. Harvard University Press.

Wang, W., Coutras, C., & Zhu, M. (2020). Situated learning-based robotics education. In 2020 I[EEE
Frontiers in Education Conference (FIE) (pp. 1-3). https://doi.org/10.1109/FIE44824.2020.927
4168

Zheng, L., Bhagat, K. K., Zhen, Y., & Zhang, X. (2020). The effectiveness of the flipped class-
room on students’ learning achievement and learning motivation: A meta-analysis. Educational
Technology & Society,23(1), 1-15.

Zhou,J.,Zhao, K., & Dawson, P. (2020). How first-year students perceive and experience assessment
of academic literacies. Assessment & Evaluation in Higher Education,45(2), 266-278. https://
doi.org/10.1080/02602938.2019.1637513

Eleni Petraki is an Associate Professor at the University of Canberra. She is an applied linguist
with close to three decades of experience in language teaching, discourse analysis and intercultural
communication. Her experience in teaching English has been accumulated in different countries
including Vietnam, Greece, UK, USA and Australia. In addition to her research in these fields,
she has evolved a research program on artificial intelligence, where she is applying educational
curriculum theories and pedagogies to new fields including machine education.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra. He is
a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial and research projects for over
two decades. He founded Australia’s first collaborative robotics start-up in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015
and 2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted
Amazon Robotics Challenge—an industry-focused competition among the robotics research elite.
In addition, he has chaired several international workshops on Robots and Art and is the lead
editor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first significant work
to feature leading roboticists and artists together in the field of robotic art.

https://doi.org/10.1186/s41239-016-0032-z
https://doi.org/10.1109/13.912707
https://doi.org/10.1016/j.heliyon.2021.e07583
https://doi.org/10.1177/1469787413481132
https://doi.org/10.1109/FIE44824.2020.9274168
https://doi.org/10.1080/02602938.2019.1637513

62 E. Petraki and D. Herath

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 3 ®
Design Thinking: From Empathy s
to Evaluation

Fanke Peng

3.1 Learning Objectives

This chapter introduces methods and approaches for design thinking as the main
drivers in developing the ability to identify critical problems in a given situation.
This problem identification represents the opportunities for design intervention and
creative solutions to a range of possible scenarios and practical applications. The
chapter also develops the students’ understanding of design as an iterative process
involving empathy, ideation and prototypes to test and evaluate concepts and solutions
to a wide variety of identified problems.
By the end of this chapter, you will be able to:

e Discover the history of the “designerly way of thinking” as the origin of design
thinking

e Understand what design thinking is and why it is so important

e Reflect on a human-centred design (HCD) process through empathy, collaboration
and creative thinking

e Select and assemble suitable design thinking models and tools for self-directed
learning and problem-based learning.

3.2 Introduction

The need for design thinking in robotics is becoming the catalyst for digital trans-
formation (Automeme, n.d.). Design thinking applies from the origin of a robotic
system for industry through interactive robotic art and ongoing research. It helps

F. Peng (I<)
UniSA Creative, University of South Australia, Canberra, Australia
e-mail: Fanke.Peng @unisa.edu.au

© The Author(s) 2022 63
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_3&domain=pdf
mailto:Fanke.Peng@unisa.edu.au
https://doi.org/10.1007/978-981-19-1983-1_3

64 F. Peng

designers and non-designers empathise, learn, develop and deliver creative possibil-
ities. To understand the importance of design thinking in robotics, we need first to
understand what design thinking is and why it is so important?

3.2.1 What Is Design Thinking

Design thinking was introduced in the 1960s to the “design science decade” (Cross,
2001, 62). The theories evolved from the understanding that wicked problems are at
the centre of design thinking. Buchanan’s (1992) article about “wicked problems” in
design has become a foundational reference for the discourse about design thinking
and the whole design area. When designers engage in design processes, Buchanan
(1992) stated that they face wicked and indeterminate problems. The designer is not
merely discovering, uncovering and explaining the phenomenon in question (which
is undeterminate) but is also suggesting other possibilities and creating and trans-
forming the matter. Dewey (1938) defined the process of inquiry as a transformation
process beginning from an indeterminate problem. Inquiry is a process that begins
with doubt and ends with knowledge and a set of beliefs so concrete that they can be
acted upon, either overtly or in one’s imagination (Dewey, 1938). To engage in this
process, one must ask questions and seek answers to eliminate the initial doubt.

‘These complex and multidimensional problems require a collaborative method-
ology that involves gaining a deep understanding of humans’ (Dam & Siang, 2020,
par 7). Nonetheless, the main strength of this design process is that it can introduce
novel approaches that the key stakeholders directly inform.

3.2.2 Design Thinking Models (Double Diamond Model,
IDEO Design Thinking and d.school Methods)

The design thinking as a process model has an established ground for both divergent
and convergent thinking. Various design thinking models divide the design process
into different stages (see Table 3.1). According to Kueh and Thom’s review, there
are 15 design thinking models. For example, according to the Double Diamond
design framework developed by the British Design Council, there are four steps
in the creative process—Discover, Define, Develop and Deliver (Design Council,
n.d.). Like this, the Hasso Plattner Institute of Design at Stanford d.school encour-
ages empathising, defining, ideating, prototyping and testing in a completed design
process. Ambrose and Harris (2009) divided the design process into seven stages:
Define, Research, Ideate, Prototype, Select, Implement and Learn. IDEO Educa-
tion (2012), a leader in design thinking techniques, breaks the design process
into five steps: Discovery, Interpretation, Ideation, Experimentation and Evolution.
Brown (2009) opined that design thinking covers three stages: inspiration-identifying

3 Design Thinking: From Empathy to Evaluation 65

Table 3.1 Comparison of design thinking models (Kueh & Thom, 2018)
Model Steps in the process

Human Centred Design Toolkit Hear Create
(IDED, n.d.}

Acumen HCD Workshop Discover Ideate

{Acumen Fund, n.d.)

Design thinking - Business Immersion In-depth Analysis and Prototyping
Tnnovation Immersion synthesis

{Vianna, Vianna, Adler, Lucena, &
Russo, 2012)

Design thinking Cruantify Gienerate Refine Select a concept
(Cross, 2011} problem concepts concepts

Design thinking for Educators Discover Interpretation Ideation Experimentations
{IDEQ, 2012)

Basics Design 08 Design Define Rescarch Tdeate Prottype
Thinking

{Ambrose, 2010)

Double Dinmond Discover Define Develop Deliver

{Design Council, 2015)

IDEC Observations | Bramstorming [Refining

(Myerson, 2001} Profotyping

Leading Public Sector Knowing Analysing Synthesising ISEIITEE

Innovation

(Bason, 2010}

Service Design Exploration Creation Reflection Implem

(Stickdom & Schneider, 2011)

Collective Action toolkit Seck Imagine Make lan Build

(Frog, 2013)

Bootleg Bootcamp Empathise Define Ideate Prototype Test
{dschool, n.d.)

dSchool Understand Observe Point of Prototype
(dSchool, 2009) Vivw

Designing for growth What is? What if? What wows?

(Liedtka & Ogilvie, 2011)

Business Model Generation Mobilise Understand Design

(Dsterwalder, Pigneur, & Clark,
2010)

DC(\!]ICK‘ Framing Phase D Ideation Phase . Prototyping Phase . Implementation Phase . Reframing Phase

a problem/an opportunity; ideation-conceive general concepts and solutions; and
implementing, producing and launching the final solutions (products or services).
Kueh and Thom (2018) reviewed the design processes that are most commonly used
and summarised that there are five main phases: 1. Context or problem framing
phase; 2. Ideation generation phase; 3. Prototyping phase; 4. Implementation phase;
5. Reframing phase.

Itis of value to point out that none of the design thinking models represents a linear
process. “Cyclical icons” (as seen in Fig. 3.1) are always added to design thinking
models, meaning that you could shift back and forth between these states, generating
the new, analysing it, shifting and often, starting the whole process again. Our mode
of thinking shifts among design stages and mental states: divergent and convergent
thinking, and analysis and synthesis (Brown, 2008, 2009). No matter which model
is adopted for the design practice, each step in the design process leads to a creative
solution that addresses a known or otherwise unknown problem. For this chapter, we
use the Double Diamond model (Fig. 3.1) as an example to demonstrate the process,
from information extraction to decision-making.

66

F. Peng

ENGAGEMENT

DESIGN
PRINCIPLES

F i,
CHALLENGE

METHODS
BANK

LEADERSHIP

Fig. 3.1 Double Diamond model (Design Council, 2019)

3.2.3 Design 1.0-4.0 and Its Alignment with Robotics

A design approach and mindset to learning encourage understanding the complexity
of a given situation. According to Jones (2013, 23-28) and Jones and VanPatter
(2009), there are four levels of the design approach that are aligned with the levels
of complexity in problems:

Design 1.0 Traditional “form-giving”” Design: This design approach focuses on
creating design solutions in the form of websites, logos and posters. This deals
mainly with a discrete problem that can be solved with an obvious solution. It
aligns with embodied design in robotics and robotic product design.

Design 2.0 Service and Product Design: This design approach seeks to explore
complicated problems associated with human experiences through products and
services. Designers often seek collaboration with stakeholders to explore possi-
bilities in innovating experiences. Design 2.0 also aligns with embodied design
in robotics and robotic product design.

Design 3.0 Organisational Transformation Design: Commonly engaged in
complex organisational challenges, designers engage in activities such as co-
design of change processes for organisations and business systems. Challenges
that are facing designers here are bounded by systems and strategies. Co-creation
is the focus to achieve change-making processes in organisations.

3 Design Thinking: From Empathy to Evaluation 67

e Design 4.0 Social Transformation Design: This design approach focuses on ill-
defined wicked problems and can be challenging to solve. Design activities include
iteration of prototyping interventions, observing their impact on the commu-
nity and reframing the design problem. Projects in this phase involve social and
systemic challenges that are difficult to define. Design 3.0 and 4.0 seem to align
with the broader question of robots transforming human lives outside of industrial
environments, such as caregiving robots and hospital robots—these social robots
might displace human workers. This helps to understand automation in its broader
context—the impact of automation and loss of work, ethics in design and broad
acceptance.

Design approaches and mindsets that focus on the levels of complexity allow
people to cultivate the attitude of questioning challenging situations and experi-
mentation with opportunities. This attitude is different from the “problem-solving”
mindset that was appropriate in producing products. According to Medley and Kueh
(2015), the “problem-solving” approach focuses on the simple and discrete problem
that sees designers being detached from stakeholder’s needs, while the “experimental
approach” allows designers to emphasise on empathic and reflective exploration that
would contribute to more complex problems in design levels 3.0 and 4.0. Therefore,
an experimental design paradigm is an approach that encourages students to under-
stand complexity in a holistic manner. An experimental design mindset encourages
students to see outcomes as interventions applied in a more extensive system.

An Industry Perspective

Alexandre Picard
Mechanical Designer, Senior

Kinova Inc.

I'have a technical degree in composite material transformation and a mechanical
engineering bachelor’s degree. I got into the robotic industry by total coinci-
dence. I spent the first years of my career as a product designer for a design
firm playing with anything ranging from airplane components to household
products. Eventually moved on to designing patient simulators (aka manikins)
for the healthcare industry. About three years later, and with a baby on the way,
I got sick of spending three hours a day stuck in traffic so I decided it was time

68 F. Peng

for something new. I started looking for an opportunity that checked all the
boxes in terms of my professional interests without the transportation hassle. I
was lucky enough to stumble upon a small robotic company’s job post, hi-tech
designs, dynamic team, free coffee and robots! Why not? So yeah, I got the job
and I've been there ever since ... In short, I stumbled upon robotics because
of a baby and traffic jams.

I think the most challenging portion of designing robots, and probably any
product, is the constant “compromise negotiation” that is taking place between
all the parties involved. It always starts with the idea of a product that can
do anything at a budget price and, for fiscal reasons, that said product has
to be completed and sold within a fixed timeframe. In a list of wishes and
requirements, often the most rigid ones are linked to money and/or time. When
designing you just have to deal with it and find ways of meeting the needs in a
satisfactory manner without all the sparkles and refinements you initially had
in mind. In my career, I think the most obvious example is when we designed
a robot that needed to be dirt cheap compared to the competition but still at a
professional quality grade. Of course, the initial drafts and requirements did
not give a good perspective of achievability but, the “compromise negotiation”
eventually led to what I believe was the first professional robot with a structure
entirely made of plastic even with one-piece articulated fingers!

From what I see, with the design and prototyping tools expanding it will get
much easier to iterate through ideas and concepts, especially for parts requiring
complex or expensive production processes. It is already possible to test plastic
components out of 3D printers prior to investing in tooling, and in some cases,
it has become more cost-effective if the part remained printed. Also, in recent
years, we have been using metal laser sintering (metal 3D printing) to produce
entire robots out of aluminium to use as fully functional prototypes. I imagine
that as these technologies continue to evolve and the materials offering expands,
we will eventually be able to print robots using robots.

3.3 Design Thinking Process: Discover, Define, Develop
and Deliver

Numerous design methods could be adopted and applied to the design thinking
process to support this iterative process. This section will unfold the concept and
definition of each design stage. Among the different design thinking models, we
choose the Double Diamond model as a framework to demonstrate the critical concept
and methods of design thinking. We will also introduce practical design methods for

3 Design Thinking: From Empathy to Evaluation 69

each stage in the design thinking process. You should know what these models and
stages are, why they are helpful, and how to implement these methods at each stage.

3.3.1 What Is the Discover Mode, Why Empathise and How

According to the Double Diamond model, the discover mode is the first step in the
design thinking process. The first step helps designers and non-designers understand
and empathise, rather than simply assume, what the problem is (Design Council,
n.d.). Empathy is the foundation of the discover stage and the core for a human-
centred design (HCD) process. HCD is a systematic approach to problem-solving
that focuses on empathy and encourages its practitioners to explore and understand
the key stakeholders’ emotions, needs and desires for which they are developing their
solutions (Matheson et al., 2015). In order to empathise, you can observe, engage
and immerse (d.school, n.d.).

e Observe: Observe your users and understand their behaviour in the context of
their daily lives.

e FEngage: Interact with your users through scheduled and short “intercept”
encounters, such as interviews, focus groups and co-design workshops.

e Immerse: Put yourself into the shoes of your users and gain an “immersive”
experience of what your users experience.

In order to design for the users, human-centred designers need to build empathy
for who they are and what is important to them. The design tools help remove bias
from the design process and help the team build a shared understanding of the users.

HCD denotes that the professionals involved consider the users’ needs when
designing a product. HCD is a form of innovation occasioned by developing a knowl-
edge of people and then creating a product specifically for them, with the designer
driving the process involved (Desmet & Pohlmeyer, 2013). In addition, HCD has
much evidence in providing a solid approach to robotics.

Good HCD is generated from deep insights into human behaviour and a solid
understanding of the users’ beliefs and values. However, learning to recognise those
insights, beliefs and values isn’t easy. This is partly due to our minds automatically
filtering out much information in ways we aren’t even aware of (d.school, n.d.). To
achieve this “enlightenment”, you need to learn to put yourself into the users’ shoes
and see things “with a fresh set of eyes”. Design tools for empathy, along with a
human-centred mindset, could help you to tackle the problems with those fresh eyes
(d.school).

Through discovering and empathise, you could engage others to

e uncover needs that people have which they may or may not be aware of
e guide innovative efforts
e identify the right users to design for

70 F. Peng

e discover the emotions that guide behaviours.

As you learn more and more about our users and their needs, ideas or possible
solutions would then spring to mind. You document these ideas to make the process
more tangible and generate conversation with users and stakeholders about solutions
(DHW Lab, 2017).

3.3.1.1 Design Tools and Methods for Discover Mode: To Translate
Ideas into Action

As identified in the framework of “Design tools and methods in the design thinking
process” (Table 3.2), there are many design tools to guide innovative mind at the
discover stage, including Empathy Mapping, Personas, Cultural Probes, Feedback
Stations and Photo Boards. Due to the length of this chapter, we selected two essential
design tools and methods for this section, they are 1. Visualising empathy and 2.
Persona.

Visualising empathy

Brown (2009) and Vianna et al. (2012) identified a key element of design as having
empathy and understanding for those affected by the problem. To tackle complex
challenges, designers must identify, understand, reflect upon, challenge and possibly
change their frame of reference, and habits of thinking. There are various empathy
mapping canvases you can use, such as d.school’s four-quadrant layout “Say, Do,
Think and Feel” (d.school, n.d.) and Grey’s “empathy mapping template” (Gray,
2017) (Table 3.3).

A simple “traditional” empathy map has a four-quadrant layout (Say, Do, Feel and
Think). Table 3.1 gives a detailed explanation of the four traits. It’s also an analysis

Table 3.2 Design tools and

] . Discover Define Develop Deliver

methods in the design

thinking process (Double Project How might we? | Tomorrow’s | Decision

Diamond model) brief narratives matrix
Empathy Theming and Science fiction | Low volume
mapping coding prototypes production
Personas Design Low-fi Feedback

principles prototypes station

Visual Journey Hi-fi Beta testing
probes mapping prototypes
Cultural User goals Role-play Quantitative
probes evaluation
Feedback Rose, bud, CAD models | Full-scale
stations thorn testing
Photo Comparing Review survey | Role-play
boards notes

3 Design Thinking: From Empathy to Evaluation 71

Table 3.3 A traditional empathy mapping tool (adapted from d.school, n.d.)

SAY Do

What are some quotes and defining words your | What actions and behaviours did you notice?
user said?
FEEL THINK

‘What might your user be thinking? What does | What emotions might your subject be feeling?
this tell you about his or her beliefs?

tool to review your primary data from your user workshop, interview and fieldwork
(Fig. 3.2).

Personas: composite character profile

The information you collected through the empathy mapping will help to create
personas. What are personas? Personas are reference models, representing a subgroup
of users. Technically, they can be called behavioural archetypes when they focus on
capturing the different behaviours (e.g. “the conscious chooser”) without expressing
a defined personality or socio-demographics. The more the archetypes assume a
realistic feeling (e.g. name, age, household composition, etc.), the more they become
real personas, fully expressing the needs, desires, habits and cultural backgrounds
of specific groups of users. Creating personas help designers to get inspired by their
specific life and challenges (sdt, 2021) (Fig. 3.3).

EMPATHY MAP

u l fike chES MT'H‘I' "-j h@f Jﬁ‘—"ds r .u'_ P :;‘,_',.-:‘ +o Scheel .I.,r See T—":t_'#‘d‘@
* Parent chiid &C-ﬁw-f)» .’-{;\ o LTkes fo learn new skilfs %%
o]’ d’omj S becale weryore rus e what iS5 my place in “the |

s 1 want 4¢ Tnd ouwd Hhings

e JMB H .f‘q'? . I want -

1 wank a'-hy that i ﬁlﬂ. @l o What’s bess for me
e How de 1 Sfarl. . Lgmg«uqe‘ ard
e 1 Nkes Leaming - Commleication

é] %@ SAYS

. , DOES
e [Tkes Celowrs o Draw’s ¥ «Qing

ot sun ClHoQHy
thele own CUReEITY

o« Creotivity Ima.hnatien

‘GL THINKS

FEELS

* JumpS , lun & moves

. 3 N o
o [fkes animadg « buillding Henships
o Plays « Makes new diScoveries guny |+ 1 war

@ A ny S §
>’ OJJ?SE’ZS Other people Qg@ g

o

+ Social Ipteraction ehear & Teuch . Hadl .

Fig. 3.2 Empathy map example (Master of Design Strategies student’s coursework by Boon Khun
Ooi)

72 F. Peng

Exploration of Service Design Sclations

Persona Profile 1

Max was born blind due to genetic mutations. He is an only child. His
parents want a braille learning toy, farpnmnmnldmviqnhom At
the same time they can is
skills.

Age : & years old

Gender: Male

Living Condition:

Lives with parents

School: Kindergarten
Hobbies:

Loves animals and Learning

Persona Profile 2

Emelia was around two years when she was diagnosed as having Retinopathy of
ﬁu!nlhlnghnddwmﬂlbwlpmmuﬂmd&lrdblm

She interacts well with her siblings but is fortable in social situati

side the family unit.

Age : 5 years old

Gender: Female

Living Condition:

Lives with parents

School: Kindergarten
Hobbies:

Loves School and Learning

Fig. 3.3 Personas examples (Master of Design Strategies student’s coursework by Boon Khun Ooi)

3 Design Thinking: From Empathy to Evaluation 73

Quiz: key questions to ask for reflective designers at this stage

What problem are you solving? What solutions already exist?

What are your assumptions about the problem?

Whom are you designing for? What types of users are involved?
What are the constraints of the project?

Who are the stakeholders could be involved?

What are the needs, pain points and desires of different users?

How might this idea solve problems or pain points for different users?

3.3.2 What Is the Define Mode, Why Ideate and How

Data collected through research and investigation during the discover phase helps
us build a clearer picture of the problem. The design team group, theme and distil
qualitative and quantitative findings into insights that will guide the development of
design solutions.

The define mode is “convergent thinking” rather than “divergent thinking”. Two
goals of the define mode are 1. To develop a deep understanding of your users and the
design space and 2. Based on those deep insights into human behaviour and a solid
understanding of their beliefs and values, to develop an actionable problem statement.
The problem statement focuses on targeted users, insights and needs uncovered
during the discover mode.

At this mode, you understand the “why” is the key to addressing the “wicked
problems” and provide the insights that be leveraged in design concepts to create a
“how” towards a successful solution.

3.3.2.1 Design Tools and Methods for Define: To Translate Ideas
into Action

Possible design tools at this stage include: Design Principles, User Journey Mapping,
Theming and Coding; How Might We? Card Sorting; Hypothesis Generation.

Design principles

Design principles are fundamental laws, guidelines and strategies to solve a design
challenge independent of a specific solution (d.school, n.d.). You can articulate these
principles, translating your findings into design directives, such as needs and insights.
These principles represent the accumulated wisdom and knowledge in design and
related disciplines, including behavioural science, sociology, physics, occupational
therapy and ergonomics. Many well-established design principles are critical to
defining your problem-based learning. From simple to complicated, Common Prin-
ciples of Design & Global Health (Design for Health, n.d.) are principles where the
Bill & Melinda Gates foundation attempts to build a shared understanding, language
and a shared sense of purpose between designers and global health practitioners.

74 F. Peng

SOURCES

COMMON PRINCIPLES OF DESIGN & GLOBAL HEALTH

Fig. 3.4 Common principles of design & global health (Design for Health, n.d.)

This set of simple statements, some more aspirational than others, demonstrates the
alignment and commitment by designers to longstanding global health principles and
values. This resource outlines a code of practice for design in global health (Fig. 3.4).

User journey mapping

The journey map is a synthetic representation that describes step-by-step how a user
interacts with a service. The process is mapped from the user perspective, describing
what happens at each stage of the interaction, what touchpoints are involved, what
obstacles and barriers they may encounter. The journey map is often integrated with
additional layers representing the level of positive/negative emotions experienced
throughout the interaction (sdt, 2021) (Fig. 3.5).

Stages

Touchpoints

P & & rd rd
P Y &4 8 srerss i
oo 0 0o o0 0 o o0 000 o -

Fig. 3.5 A touchpoint diagram is a graphical representation of how the user interacts with the
service (Master of Design Strategies student’s coursework by Jordan Mckibbin)

3 Design Thinking: From Empathy to Evaluation 75

Recap: key questions to ask for reflective practitioners at this stage

What are the common needs or pain points for users?
Where in the journey are they experienced or desired?
How did users or stakeholders respond to ideas presented?
Who might benefit most from the ideas presented?

3.3.3 What Is the Develop Mode, Why Ideate and Prototype
and How

Once you’ve defined your insights and identified areas to improve the user experience,
you begin developing design concepts explored during discover mode or generate
further ideas in response to our insights. There are two key concepts in the develop
mode: 1. Ideate and 2. Prototype.

Ideation is a mode of divergent thinking rather than convergent thinking. You
ideate to generate radical design ideas, concepts and alternatives. The goal of ideation
is to explore both a large number of ideas and a diversity among those ideas (d.school).

To further develop the diverse and large quantity of ideas during ideation, proto-
types are built to test with users from this vast depository of ideas. Prototypes are “any
representation of a design idea, regardless of the medium” (Houde & Hill, 1997, 369).
Prototyping is a process of “building, visualising and translating a rough concept into
collectively understandable, defined and defendable ideas” (Kocsis, 2020, 61).

Prototypes traverse from low-fidelity representations in the initial stages (discover and define)
of designing to high-fidelity realisations when design outcomes near finalisation (develop
and deliver) and can include haptic, oral, digital, spatial, virtual, visual, graphical and also
modes beyond a purely technical functional scope through embodied representations of
communication such as art, dance and performance. (Kocsis, 2020, 61)

Prototyping facilitates an iterative, interactive communication process. A proto-
type tests if parts work together for the intended design. This allows further explo-
ration of risks, opportunities and refining of the iterative prototype into the next phase
(deliver). “Practices oscillate between creation and feedback: creative hypotheses
lead to prototypes, leading to open questions, leading to observations of failures,
leading to new ideas and so on” (Dow et al., 2009, 26).

3.3.3.1 Design Tools and Methods for Develop Mode: To Translate
Ideas into Action

There are various prototyping tools for this stage, including the low-fi prototype,
high-fi prototype, desktop walkthrough, role-play, science fiction prototype and 3D
printed prototype. (Chapter 2.7 in the Embodied Design section will discuss 3D
Printed Prototypes and CAD in more detail.)

76 F. Peng

Role-playing

Role-play is a representation tool often used during co-design sessions; it explains a
service or product idea by acting out an exemplificatory scenario. Role-playing could
be applied at different stages of the design thinking process, not limited to develop
mode. Role-playing is a popular technique for building empathy in the discover
mode and demonstrating the user experience in the develop mode. It typically requires
defining some roles or personas (e.g. Max and Emelia in Fig. 3.3, the service provider,
etc.) and preparing rough prototypes (e.g. paper prototypes) or other materials that
can facilitate the performance. While a team is acting out their story with given
scenarios, the rest of the participants learn about the idea, understand the high-level
sequence of actions required, and gain an immersive experience of the actual user
experience (sdt, 2021 and Stickdorn & Schneider 2011) (Fig. 3.6).

»

Fig. 3.6 Role-playing from the co-design for healthy ageing workshop at Nanyang Polytechnic
2019

3 Design Thinking: From Empathy to Evaluation 77

Recap: key questions to ask for reflective practitioners at this stage

e How do users respond or interact with solutions?
e What do users find easy or difficult about our solutions?
e What can we do to improve the prototype?

3.3.4 What Is the Deliver Mode, Why and How

The final stage is delivering the design solutions. Following design develop-
ment/prototyping, concept testing and review sessions, potential solutions are
narrowed down based on assessment criteria. “The process of designing, building
and testing continues to go through iterations until you achieve the final solution”
(Automeme, n.d.). The process of prototype testing and looping in feedback also
provides continuity to create a seamless way forward in the HCD. The final solution
(e.g. robot) delivered should be created to empathise with the customer require-
ments and concerns. The validation and evaluation process is crucial so organisa-
tions spend a good chunk of time testing the prototype against business objectives and
metrics. Upon completion of detailed design and production, the realised solution
will be physically installed or digitally implemented into the business environment,
depending on the type of project.

3.3.4.1 Design Tools and Methods for Deliver Mode: To Translate Ideas
into Action

Possible design tools and methods at this step: decision matrix, full-scale testing,
system map and feedback stations.

Decision matrix

A decision matrix is an analysis tool to compare and evaluate to select the best option
between different options. Through the develop mode, you developed several design
prototypes and there are several factors you need to consider. Decision matrix can
help you to make your final decision. Between more than one option in order to make
your final decision.

There are various formats and styles that you can adopt. Using the sample decision
matrix as an example, you can list each of the criteria/metrics you evaluate against
in the left column of the table. You then place the options available to you across
the top row of your table. For the scoring system, you can choose different systems.
Table 3.4 chooses the scale of 1-5, with 5 being a good score and 1 being a very
poor score. In the bottom row, you can sum all the scores for each option for your
decision-making.

Recap: key questions to ask for reflective practitioners at this stage

e What will it cost to manufacture a high-fidelity prototype?

78 F. Peng

Table 3.4 Simple decision

matrix Criteria Options
Option 1 Option 2 Option 3

Criteria 1 X X X
Criteria 2 X X X
Criteria 3 X X X
Criteria 4 X X X
Criteria 5 X X X
Total X X X
x: choose the scale of 1-5, with 5 being a good score and 1 being
a very poor score

e What additional capability might you need to deliver the design?

e What existing channels can you leverage to implement our solution?

e What is change management required to implement our solution?

e What criteria are you evaluating against?

e What is the best way to measure the success of this solution?

3.4 Conclusion

This chapter provides valuable and practical guidance on design thinking models
and tools for people interested in applying design thinking in their projects. Design
thinking is an iterative process, which encourages people to empathise, collabo-
rate and prototype. Doing so helps to generate user-centred design to tackle wicked
problems in our society.

This chapter covered the history of the “designerly way of thinking” to introduce
the origin of design thinking. The development of Design 1.0—4.0, in comparison to
the field of robotic, helped provide a context for the past, present and future.

The design thinking process was then deconstructed into different stages to
provide a practical toolkit for people from non-design backgrounds to adopt. Many
existing design methods can be used for different stages in the design thinking
process. Some of them would be applied from the start to the end, such as service
blueprint and prototyping. Due to the length of the chapter, we could not include all the
existing design methods. However, the key design methods included in this chapter
provided a solid ground for the entry level of design thinking. Design thinking in
robotics allows practitioners and researchers to seek opportunities through which they
can discover, define, develop and deliver value to their stakeholders and additionally,
get them engaged, and create ripples of change.

3 Design Thinking: From Empathy to Evaluation 79
3.5 Quiz

What is the difference between divergent and convergent thinking?

What are some key stages in the design thinking process?

Name some design tools incorporated in achieving iterative processes in design
thinking.

What design methods can you adopt to advance your empath in the discover stage?
What methods can you employ to test your concepts in the second diamond stages?

References

Ambrose, G., & Harris, P. (2009). Basic design: Design thinking. Fairchild Books AVA.

Automeme. (n.d.). Why is design thinking important in robotics automation? Retrieved November
9, 2021, from https://autome.me/why-is-design-thinking-important-in-robotics-automation/#:~:
text=The%20impending%20need %20for%20Design,learn%20and %20develop%20amiable%
20personalities

Brown, T. (2008). Design thinking. Harvard Business Review,86(6), 84-92.

Brown, T. (2009). Change by design. Harper Collins.

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues,8(2), 5-21.

Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design
Issues, 17(3), 49-55.

Dam, R., & Siang, T. (2020). What is design thinking and why is it so popular? Retrieved June
9, 2020, from https://www.interaction-design.org/literature/article/what-is-design-thinking-and-
why-is-it-so-popular

Design Council. (n.d.). What is the framework for innovation? Design Council’s evolved Double
Diamond (online). Retrieved November 9, 2021, from https://www.designcouncil.org.uk/news-
opinion/what-framework-innovation-design-councils-evolved-double-diamond

Design Council. (2019). Double Diamond model. Retrieved May 9, 2022, from https://www.des
igncouncil.org.uk/our-work/news-opinion/double-diamond-15-years/

Design for Health. (n.d.). Common principles of design & global health. Bill & Melinda Gates
foundation.

Desmet, P. M. A., & Pohlmeyer, A. E. (2013). Positive design: An introduction to design for
subjective well-being. International Journal of Design,7(3), 5-19.

Dewey, J. (1938). Logic: The theory of inquiry. Holt, Rinehart and Winston.

DHW Lab. (2017). How we design: Better healthcare experiences at Auckland City Hospital. Design
for Health & Wellbeing Lab.

Dow, S. P., Heddleston, K., & Klemmer, R. S. (2009). The efficacy of prototyping under time
constraints. In Proceedings of the Seventh ACM Conference on Creativity and Cognition.

d.school. (n.d.). Bootcamp bootleg. Institute of Design at Stanford.

Frog. (2013). Frog collective action toolkit. Retrieved June 20, 2016, from http://www.frogdesign.
com/work/frog-collective-action-toolkit.html

Gray, D. (2017). Empathy map (online). Retrieved November 9, 2021, from Xplane.com

Houde, S., & Hill, C. (1997). What do prototypes prototype? In Handbook of human-computer
interaction (pp. 367-381). North-Holland.

IDEO Education. (2012). Design thinking for educators. IDEO.

Johnson, B. D. (2011). Science fiction prototyping: Designing the future with science fiction.
Synthesis Lectures on Computer Science,3(1), 1-190.

Jones, P. H. (2013). Design for care: Innovating healthcare experience. Rosenfeld.

https://autome.me/why-is-design-thinking-important-in-robotics-automation/#:~:text=The%20impending%20need%20for%20Design,learn%20and%20develop%20amiable%20personalities
https://www.interaction-design.org/literature/article/what-is-design-thinking-and-why-is-it-so-popular
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
http://www.frogdesign.com/work/frog-collective-action-toolkit.html

80 F. Peng

Jones, P. H., & VanPatter, G. K. (2009). Design 1.0, 2.0, 3.0, 4.0: The rise of visual sensemaking.
NextDesign Leadership Institute.

Kocsis, A. (2020). Prototyping: The journey and the ripple effect of knowledgeability. Fusion
Journal (18).

Kueh, C., & Thom, R. (2018). Visualising empathy: A framework to teach user-based innovation
in design. In S. Griffith, K. Carruthers, & M. Bliemel (Eds.), Visual tools for developing student
capacity for cross-disciplinary collaboration, innovation and entrepreneurship. Common Ground
Publishing.

Liedtka, J., & Ogilvie, T. (2011). Designing for growth: A design thinking tool kit for managers.
Columbia Business School Pub., Columbia University Press.

Matheson, G. O., Pacione, C., Shultz, R. K., & Kliigl, M. (2015). Leveraging human-centred design
in chronic disease prevention. American Journal of Preventive Medicine,48(4), 472—479. https://
doi.org/10.1016/j.amepre.2014.10.014

Medley, S., & Kueh, C. (2015). Beyond problem solving: A framework to teach design as an
experiment in the university environment. Paper presented at the Ministry of Design: From Cottage
Industry to State Enterprise, St Augustine.

Myerson, J. (2001). Ideo: Masters of innovation. Laurence King.

Osterwalder, A., Pigneur, Y., & Clark, T. (2010). Business model generation. Wiley.

sdt. (2021). Journey map: Describe how the user interact with the service, throughout its touchpoints.
Retrieved November 15, 2021, from https://servicedesigntools.org/tools/journey-map

Stickdorn, M., & Schneider, J. (2011). This is service design thinking. Wiley.

Vianna, M., Vianna, Y., Adler, 1., Lucena, B., & Russo, B. (2012). Design thinking business
innovation. MJV Press.

Fanke Peng is an Associate Professor and Enterprise Fellow at the University of South Australia.
She is an award-winning educator, designer and researcher in design-led innovation, design for
health, digital fashion and cross-cultural design. She has been heavily involved in extensive
research projects in the UK and Australia, including Australian Council for the Arts project: Home
Economix, ACT Government Seniors Grants Programme project: ACT Intergenerational Pen Pal
Service, Economic and Social Research Council (ESRC) project: E-Size, Technology Strategy
Board (TSB) project: Monetising Fashion Metadata and Fashioning Metadata Production Tools,
Engineering and Physical Science Research Council (EPSRC) project: Body Shape Recognition
for Online Fashion, and an Arts & Humanities Research Council (AHRC) project: Past Present
and Future Craft Practice.

Fanke is passionate about design-led innovation and design for health and wellbeing. To share
this passion with students and inspire them. She has developed new courses and units, estab-
lished innovative work-integrated learning opportunities and international faculty-led programmes
(FLP). In 2020, she was awarded Senior Fellow of the Higher Education Academy (SFHEA).

https://doi.org/10.1016/j.amepre.2014.10.014
https://servicedesigntools.org/tools/journey-map

3 Design Thinking: From Empathy to Evaluation 81

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 4 m)
Software Building Blocks: From Python s
to Version Control

Damith Herath, Adam Haskard, and Niranjan Shukla

4.1 Learning Objectives

Software is an essential part of robotics. In this chapter, we will be looking at some
of the key concepts in programming and several tools we use in robotics. At the end
of the chapter, you will be able to:

Develop a familiarity with common programming languages used in robotics
Learn about the fundamental programming constructs and apply them using the
Python programming language

e Understand the importance of version control and how to use basic commands in
Git

e Select appropriate tools and techniques needed to develop and deploy code
efficiently

4.2 Introduction

Whether working with an industrial-grade robot or building your hobby robot, it
is difficult to avoid coding. Coding or programming is how you instruct a robot
to perform a task. In robotics, you will encounter many different programming
languages, including programming languages such as C++, Python, and scientific

D. Herath (<)
Collaborative Robatics Lab, University of Canberra, Canberra, ACT, Australia
e-mail: Damith.Herath@Canberra.edu.au

A. Haskard
Bluerydge, Canberra, ACT, Australia
e-mail: Adam.Haskard @blurydge.com

N. Shukla
Accenture, Canberra, ACT, Australia

© The Author(s) 2022 33
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_4&domain=pdf
mailto:Damith.Herath@Canberra.edu.au
mailto:Adam.Haskard@blurydge.com
https://doi.org/10.1007/978-981-19-1983-1_4

84 D. Herath et al.

languages like MATLAB®. While many of the examples in this book will utilise
Python, there will be instances where we will use code examples in C/C++ or
MATLAB®. While we do not assume any prior programming knowledge, previous
coding experience will undoubtedly help you advance quicker.

The following section will briefly outline some of the essential programming
constructs. By any means, this is neither exhaustive nor comprehensive. It is simply
to introduce you to some fundamental programming concepts that will be useful to
get started if you do not already have any programming experience. We will begin
with a few essential programming tools such as flowcharts and pseudocode and then
expand into fundamental building blocks in programming. If you already have some
experience in programming, you may skip this section.

In the subsequent sections, we will discuss two important software tools that would
be extremely useful in programming robots, version control and containerisation.
While these are all great starting points, there is no better way to build your confidence
and skills than to practice and dive into coding. So, we will introduce many case
studies and provide code snippets throughout the book for you to follow and try
and a comprehensive set of projects at the end of the book. Once you have some
confidence, you must explore new problems to code to develop your skills.

4.2.1 Thinking About Coding

As you may have already noticed, we use programming and coding interchangeably,
and they both mean instructing your robot to do something logically. Before you start
programming, it is essential to understand the problem you are going to address and
develop an action plan for how to construct the code. Flowcharts and pseudocode
are two useful tools that will help you with this planning phase. Once you have the
programme’s general outline, you will need to select the appropriate programming
language for the task. For tasks where execution speed is important or low-level
hardware is involved, this is usually a language like C or C++. However, when the
intention is rapid prototyping, a language like Python comes in handy. Robotics
researchers also tend to use languages like MATLAB® that are oriented towards
mathematical programming. MATLAB® is a proprietary language developed by
MathWorks' and provides a set of toolboxes with commonly used algorithms, data
visualisation tools, allowing for testing complex algorithms with minimal coding.
In addition to such code-based languages, several visual programming languages
such as Max/MSP/Jitter, Simulink, LabVIEW, LEGO NXT-G are regularly used
by roboticists, artists and enthusiasts for programming robots and robotic systems.
Whatever language you use, the basic programming constructs are the same.
Irrespective of the programming language used, it is common to think of a
programme as a set of inputs to be processed to deliver the desired output (Fig. 4.1).

U https://www.mathworks.com/.

https://www.mathworks.com/

4 Software Building Blocks: From Python to Version Control 85

Input Process
. (Sense) | (Think)

\\

rd

/" Output
(Act)

e

Fig. 4.1 A simple program flows from input to output after processing in the middle

In robotics, a similar framework is used called the sense—think—act loop, which we

will explore further in Chap. 7.

4.2.1.1 Flowcharts

Flowcharts are a great way to think about and visualise the flow of your program and
the logic. They are geometric shapes connected by arrows (see Figs. 1 and 2. The
geometric shapes represent various activities that can be performed, and the arrows
indicate the order of operation (flowline). Generally, the flowcharts flow from top
to bottom and left to right. Flowcharts are a handy tool to have when first starting
in programming. They give you a visual representation of the programme without
needing to worry about the language-specific syntax. However, they are cuambersome

to use in large programmes.

In the following sections, we will explore the meaning of these symbols further.

) Start/End (Terminal)

Input/Output

Process

Decision

N Flowline

Fig. 4.2 Common flowchart elements

Indicates the beginning and the end of
a programme.

Indicates input and output operations.
For example, this could be sensory
input or keyboard input and a display
output or a command to a motor.

This is where the upcoming
information is processed.

Indicates when a logical decision must
be made. It contains one input and two
outputs.

Order of operation.

86 D. Herath et al.

Fig. 4.3 A simple

pseudocode example with a Program iHPUt—proceSS—OutPUt
repetitive read, process,
output loop repeat

read input data

process input data

output the processed data
until user exit

4.2.1.2 Pseudocode

Pseudocode is another tool that you can use to plan your code. You could think of
them as simply replacing the geometric shapes discussed in the previous section
in flowcharts with instruction based on simple English language statements. As the
name suggests, pseudocode is programming code without aligning with a specific
programming language. Therefore, pseudocode is a great way to write your program-
ming steps in a code-like manner without referring to any particular language. For
example, the input, process, output idea could be presented in simple pseudocode
form, as shown in Fig. 4.3. In this example, we have extended the previous program
by encompassing the read, process, output block within a repetitive loop structure,
discussed later in the chapter. In this variation of the program, the input, process,
output sequence repeats continually until the user exits the program. The equivalent
flowchart is shown in Fig. 4.4.

4.3 Python and Basics of Programming

First released in the 1990s, Python? is a high-level programming language. Python
is an interpreted language meaning it is processed while being executed compared to
a compiled language which needs to be processed before it is executed. Python has
become a popular language for programming robots. This may be due to its easily
readable language, the visually uncluttered and dynamically typed nature, and the
availability of many ready-to-use libraries that provide common functionalities such
as mathematical functions. Python is useful when you want to rapidly prototype as
it requires minimal lines of code to realise complex tasks. It also alleviates another
major headache for beginner programmers by being a garbage collecting language.
Garbage collection is the automatic process by which memory is managed and used
by the program.

Python uses indentation (whitespace or a tab inserted at the beginning of a line
of code) to identify blocks of code. Unlike languages like C/C++ and Java that uses
curly brackets {} to delimit code blocks, it is vital to maintain proper indentation

2 https://www.python.org/.

https://www.python.org/

4 Software Building Blocks: From Python to Version Control 87

Fig. 4.4 Flowchart diagram /
of a simple read, process, i Start
output loop A

Read input
data

v

Process input data

v

Output the
processed
data

— User exit?

End

in Python for your code to work correctly. This requirement also improves code
readability and aesthetics.

Let us now explore some of the common programming constructs with the help
of Python as the example language.

4.3.1 Variables, Strings and Assignment Statements

Python is a dynamically typed language, which means that the variables are not
statically typed (e.g. string, float, integer). Therefore, developers do not need to
declare variables before using them or declare their type. In Python, all variables are
an object.

A typical component of many other programming languages is that variables are
declared from the outset with a specific data type, and any value assigned to it during
its lifetime must always have that type. One of the accessibility components of Python

88 D. Herath et al.

is that its variables are not subject to this restriction. In Python, a variable may be
assigned a value of one type and later reassigned a new value of a different type.
Every value in Python has a datatype. Other data types in Python include Numbers,
Strings, Dictionary and many more. Variables are quickly declared by any name or
even alphabets like a, ab, abc, so on and so forth.

Strings are a useful and widely used data type in Python. We create them by
enclosing characters in quotes. Python treats single quotes and double quotes the
same. Creating strings is as simple as assigning a value to a variable. For example,

varl = 'Hello World!"’
var2 = ”"Banana Robot”

We see two variables notated by the ‘varl’ and ‘var2’ labels in the example above.
A simple way is to think of a variable as a name attached to a particular object. To
create a variable, you just assign it a value and then start using it. The assignment is
achieved with a single equal sign (=).

4.3.2 Relational and Logical Operators

To manage the flow of any program and in every programming language, including
Python, conditions are required. Relational and logical operators define those
conditions.

As an example, and for context, when you are asked if 3 is greater than 2, the
response is yes. In programming, the same logic applies.

When the compiler is provided with some condition based on an expression,
it computes the expression and executes the condition based on the output of the
expression. In the case of relational and logical expressions, the answer will always
be either True or False.

Operators are conventional symbols that bring operands together to form an
expression. Thus, operators and operands are the deciding factors of the output.

Relational operators are used to define the relationship between two operands.
Examples are less than, greater than or equal to operators. Python understands these
types of operators and accordingly returns the output, which can be either True or
False.

1<10
True

1 is Less Than 10, so the Output Returned is True.
A simple list of the most common operators:

Less than — used with <
Greater than — used with >
Equal to — used with = =
Not equal to — used with | =

bl

4

5.
6.

Software Building Blocks: From Python to Version Control 89

Less than or equal to — used with <=
Greater than or equal to — used with >=

Logical operators are used in expressions where the operands are either True or

False. The operands in a logical expression can be expressions that return True or
False upon evaluation.

There are three basic types of logical operators:

AND: For AND operation, the result is True if and only if both operands are
True. The keyword used for this operator is and.

OR: For OR operation, the result is True if either of the operands is True. The
keyword used for this operator is or.

NOT: The result is True if the operand is False. The keyword used for this
operator is not.

4.3.3 Decision Structures

Decision structures allow a program to evaluate a variable and respond in a scripted
manner. Atits core, the decision-making process is a response to conditions occurring
during the execution of the program, with consequential actions taken according to
the conditions. Basic decision structures evaluate a series of expressions that produce
TRUE or FALSE as the output. The Python programming language provides you with
the following types of decision-making sequences.

1.

2.

if statements: An if statement consists of a Boolean expression followed by one
or more statements.

if...else statements: An if statement can be followed by an optional else
statement, which executes when the Boolean expression is FALSE.

nested if statements: You can use one if or else if statement inside another if or
else if statement(s).

Below is an example of a one-line if clause,

this is a comment (beginning with the # symbol) .

Comments are important documentation element in programming

var = 1300#a variable assignment

if (var == 1300): print ”"Value of expression is 1300” #decision
structure in a single line

print “Bye!”#display the word Bye!

When the above code runs, the following is the output,

Value of expression is 1300
Bye!

In general, statements are executed sequentially. The first statement in a function

is executed first, followed by the second, and so on. It is good to think of code as just
a set of instructions, not too different from a favourite cooking recipe. There may be

90 D. Herath et al.

a situation when you need to execute a block of code several times. A loop statement
allows us to execute a statement or group of statements multiple times.

4.3.4 Loops

There are typically three ways for executing loops in Python. They all provide similar
functionality; however, they differ in their syntax and condition checking time.

1. While loop: Repeats a statement or group of statements while a given condition
is TRUE. It tests the condition before executing the loop body.

2. For loop: Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

3. Nested loops: You can use one or more loops inside any another while, for or
do..while loop.

while loop.
count = 0.
while (count < 3):
count = count 4+ l#note the indentation to indicate this section
of the code is inside the loop.
print (”"Hello Robot”)

When the code above is run, we would expect to see the following output.

Hello Robot
Hello Robot
Hello Robot

4.3.5 Functions

A function is a block of code designed to be reusable which is used to perform a
single action. Functions give developers modularity for the application and a high
degree of reusable code blocks. A well-built function library lowers development
time significantly. For example, Python provides functions like print(), but users can
develop their own functions. These functions are called user-defined functions.

e.g.

def robot_function() :

print ("Robot function executed”)

You can then call this function in a different part of your program;
robot_function()

When you execute the code, the following will be displayed.

Robot function executed

4 Software Building Blocks: From Python to Version Control 91

You can pass external information to the function as arguments. Arguments are
listed inside the parentheses that come after the function name.

e.g.

def robot_function (robot_name) :
print ("Robot function executed for robot named ” + robot_name)

We have modified the previous function to include an argument called robot_name.
When we call the new function, we can now include the name of the robot as an
argument:

robot_function(‘R2-D2')
which will result in the following output.
Robot function executed for robot named R2-D2

4.3.6 Callback Function

A callback function is a special function that can be passed as an argument to another
function. The latter function is designed to call the former callback function in its
definition. However, the callback function is executed only when it is required. You
will find many uses for such functions in robotics. Particularly, when using ROS,
you will see the use of callback functions to read and write various information to
and from robotic hardware which may happen asynchronously. A simple example
illustrates the main elements of a callback function implementation.

def callbackFunction (robot_status) :

print ("Robot’s current status is ” + robot_status)

def displayRobotStatus (robot_name, callback) :

This function takes robot_name and a callback function as
arguments

The code to read the robot status (stored in the variable
robot_status) goes here

the read status is then passed to the callback function
callback (robot_status)

You can now call the displayRobotStatus function in your main program.

if __name_ == '_ _main__':
displayRobotStatus (”"R2-D2”, callbackFunc)

4.4 Object-Oriented Programming

Object-oriented programming (OOP) is a programming paradigm based on the
concept of ‘objects’, which may contain data in the form of fields, often known

92 D. Herath et al.

as attributes, and code in the form of procedures, often known as methods. Here is a
simple way to think about this idea;

1. A person is an object which has certain properties such as height, gender and
age.
2. The person object also has specific methods such as move, talk and run.

Object—The base unit of object-oriented programming that combines data and
function as a unit.

Class—Defining a class is defining a blueprint for an object. Describes what the
class name means, what an object of the class will consist of and what operations
can be performed on such an object. A class sets the blank canvas parameters for an
object.

OOP has four basic concepts,

1. Abstraction—It provides only essential information and hides their background
details. For example, when ordering pizza from an application, the back-end
processes for this transaction are not visible to the user.

2. Encapsulation—Encapsulation is the process of binding variables and func-
tions into a single unit. It is also a way of restricting access to certain properties
or components. The best example for encapsulation is the generation of a new
class.

3. Inheritance—Creating a new class from an existing class is called inheritance.
Using inheritance, we can create a child class from a parent class such that it
inherits the properties and methods of the parent class and can have its own
additional properties and methods. For example, if we have a class robot with
properties like model and type, we can create two classes such as Mobile_robot
and Drone_robot from those two properties, and additional properties specific
to them such that Mobile_robot has a number of wheels while a Drone_robot
has a number of rotors. This also applies to methods.

4. Polymorphism—The definition of polymorphism means to have many forms.
Polymorphism occurs when there is a hierarchy of classes, and they are related
by inheritance.

4.5 Error Handling

A Python program terminates as soon as it encounters an error. In Python, an error
can be a syntax (typo) error or an exception. Syntax errors occur when the python
parser detects an incorrect statement. Observe the following example:

>>>print(0/ 0))

1~

SyntaxError: invalid syntax

The arrow character points to where the parser has run into a syntax error. In
this example, there was one bracket too many. When it is removed, the code will run
without any error:

4 Software Building Blocks: From Python to Version Control 93

>>>print (0 / 0)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

This time, Python has ‘thrown’ an exception error. This type of error occurs
whenever correct Python code results in an error. The last line of the message
indicated what type of exception error was thrown. In this instance, it was a
ZeroDivisionError. Python has built-in exceptions. Additionally, the possi-
bility exists to create user-defined exceptions.

4.6 Secure Coding

Writing secure code is essential for protecting data and maintaining the correct
behaviour of the software. Writing secure code is a relatively new discipline, as typi-
cally developers have been commissioned to write functions and outputs, not neces-
sarily in a secure manner. However, given the prevalence of exploits, it is important
developers build in sound security practices from the outset.

Python development security practices to consider:

1. Use an up-to-date version of Python: Out of date versions have since been
rectified with vulnerability updates. Not incorporating the updates into the
python environment ensures vulnerabilities are available to exploit.

2. Build the codebase in a sandbox environment: Using a sandbox environment
prevents malicious Python dependencies pushed into production. If malicious
packages are present in Python environments, using a virtual environment will
prevent having the same packages in the production codebase as it is isolated.

3. Import packages correctly: When working with external or internal Python
modules, ensure they are imported using the right paths. There are two types of
import paths in Python, and they are absolute and relative. Furthermore, there
are two types of relative imports, implicit and explicit. Implicit imports do not
specify the resource path relative to the current module, while Explicit imports
specify the exact path of the module you want to import. Implicit import has
been disapproved and removed from Python 3 onwards because if the module
specified is found in the system path, it will be imported, and that could be very
dangerous, as it is possible for a malicious module with an identical name to be
in an open-source library and find its way to the system path. If the malicious
module is found before the real module, it will be imported and used to exploit
applications in their dependency tree. Ensure either absolute import or explicit
relative imports as it guarantees the authentic and intended module.

4. Use Python HTTP requests carefully: When you send HTTP requests, it is
always advisable to do it carefully by knowing how the library you are using
handles security to prevent security issues. When you use a common HTTP
request library like Requests, you should not specify the versions down in

94 D. Herath et al.

P Pythen 3.7 (32-bit) - o =

Fig. 4.5 Python command line

your requirements.txt because in time that will install outdated versions of the
module. To prevent this, ensure you use the most up-to-date version of the library
and confirm if the library is handling the SSL verification of the source.

5. Identify exploited and malicious packages.

Packages save you time as you don’t need to build artefacts from scratch each time.
Packages can be easily installed through the Pip package installer. Python Packages
are published to PyPI® in most cases, which essentially is code repository for Python
Packages which is not subject to security review or check. This means that PyPI can
easily publish malicious code.

Verify each Python package you are importing to prevent having exploited pack-
ages in your code. Additionally, use security tools in your environment to scan your
Python dependencies to screen out exploited packages.

4.7 Case Study—Writing Your First Program in Python

To start experimenting with Python, you can install the current version of the Python
program from the Python website.* Follow the instruction on this website to download
the recommended current version of your operating system. Once installed, you can
call the Python (command line) shell for an interactive programming environment
(see Fig. 4.5).

In any programming language, the Hello World program is a shared bond between
all coders. You can go ahead and make your own "hello world’ program. Look at the
classic example below. Note that the # symbol is a comment line, which means Python
does not read this as code to execute. Instead, it is intended for human audiences, so
coders can easily see what each line of code is supposed to do. Commenting well
and regularly is key to good collaboration and development hygiene.

This program prints Hello, world!
print (’Hello, world!"’)

Output.

Hello, world!

3 https://pypi.org/.
4 https://www.python.org/downloads/.

https://pypi.org/
https://www.python.org/downloads/

4 Software Building Blocks: From Python to Version Control 95

Fig. 4.6 Hello, World program interactively executed in a Python command line window

4.7.1 A Note on Migrating from MATLAB® to Python

As you dwell into robotics programming and writing algorithms, you will notice that
many examples are written in MATLAB®, particularly in academia due to previously
mentioned reasons. However, there are compelling reasons to use Python instead of a
proprietary language like MATLAB. One of the main reasons is the cost of acquiring
MATLAB and related toolboxes. Python allows you to easily distribute your code
without worrying about your end-users needing to purchase MATLAB® licences to
run your code. In addition, Python being a general-purpose programming language
offers you a better development environment for projects targeting a wide use and
deployment audience.

If you are thinking of migrating any code from MATLAB® to Python, the good
news is that the two languages are ’very similar’. This allows for relatively easy
transitioning from MATLAB to Python. One of the key reasons for MATLAB’s
popularity has been its wide array of well-crafted toolboxes by experts in the field.
For example, there are several popular toolboxes related to robotics including the
Robotics Toolbox developed by Peter Corke.’ These toolboxes provide specific math-
ematical functions reducing the time it takes to develop new code when building or
testing new ideas for your robot. Python also offers a similar mechanism to expand
its capabilities through Python packages. For example, one of the powerful elements
of MATLAB is its native ability to work with matrices and arrays (side note: matrices
and arrays will play a major role in robotics programming!). Python, being a general-
purpose language does not have this capability built-in. But a package available in
Python called NumPy® provides a way to address this through multidimensional
arrays allowing you to write fast, efficient, and concise matrix operators comparable
to MATLAB. As your knowledge in robotics and programming matures, it would be
a worthwhile investment to spend some time to explore the similarities and differ-
ences between the two languages and to understand when to utilise one or the other.
Figure 4.7 shows our humble Hello world program being executed in a MATLAB®
command line window. Can you spot the differences between the syntaxes from our
Python example in Fig. 4.6?.

3 https://petercorke.com/toolboxes/robotics-toolbox/.
6 https://numpy.org/.

https://petercorke.com/toolboxes/robotics-toolbox/
https://numpy.org/

96 D. Herath et al.

Command Window ®
MNew to MATLAB? See resources for Getting Started. x
>> %Hello, world! example written in MATLAB(r)

>> disp('Hello, world!
Hello, world!

i 5> |

Fig. 4.7 Hello, World program interactively executed in a MATLAB command line window

4.8 Version Control Basics

Version control is the practice of managing changes to the codebase over time and
potentially between multiple developers working on the same project. It is alter-
natively called source control. Version control provides a snapshot of development
and includes tracking of code commits. It also provides features to merge the code
contributions arising from multiple sources, including managing merge conflicts.

A version control system (or source control management system) allows the devel-
oper to provide a suite of features to track code changes and switch to previous
versions of the codebase. Further, it provides a collaborative platform for teamwork
while enabling you to work independently until you are ready to commit your work.
A version control system aims to help you streamline your work while providing a
centralised home for your code. Version control is critical to ensure that the tested
and approved code packages are deployed to the production environment.

4.8.1 Git

Git is a powerful open-source distributed version control system.” Unlike other
version control systems, which think of version control as a list of file-based changes,
Git thinks of its data more like a series of snapshots of a miniature filesystem. A snap-
shot is a representation of what all the files look like at a given moment. Git stores
reference to snapshots as part of its version management.

Teams of developers use Git in varying forms because of Git’s distributed and
accessible model. There is no policy on how a team uses Git. However, projects will
generally develop their own processes and policies. The only imperative is that the
team understands and commits to the workflow process that maximises their ability
to commit code frequently and minimise merge conflicts.

A Git versioned project consists of three areas: the working tree, the staging area
and the Git directory.

7 https:/git-scm.com/.

https://git-scm.com/

4 Software Building Blocks: From Python to Version Control 97

As you progress with your work, you typically stage your commits to the staging
area, followed by committing them to the Git directory (or repository). At any time,
you may checkout your changes from the Git directory.

4.8.1.1 Install Git
To check if Git has already been bundled with your OS, run the following command
(at the command prompt):

git --version

To install Git, head over to the download site® and select the appropriate version
for your operating system and follow the instructions.

4.8.1.2 Setting up a Git Repository
To initialise a Git repository in a project folder on the file system, execute the
following command from the root directory of your folder:

git init

Alternatively, to clone a remote Git repository into your file system, execute the
following command:

git clone <remote_repository_url>

Git repositories provide SSH URLs of the format
git@host:user_name/repository_name. git.

Git provides several commands for this syncing with a remote repository:

Git remote: This command enables you to manage connections with a remote
repository, i.e. create, view, update, delete connections to remote repositories.
Further, it provides you with an alias to reference these connections instead of using
their entire URL.

The below command would list the connections to all remote repositories with
their URL.

git remote -v

The below command creates a new connection to a remote repository.
git remote add <repo_name> <repo_url>

The below command removes a connection to a remote repository.

git remote rm <repo_name>

8 https:/git-scm.com/download/.

https://git-scm.com/download/

98 D. Herath et al.
The below command renames a remote connection from repo_name_l to
repo_name_2
git remote rename <repo_name_1> <repo_name_2>

Upon cloning a remote repository, the connection to the remote repository is called
origin.

To pull changes from a remote repository, use either Git fetch or git pull.

To fetch a specific branch from the remote repository, execute the below command:

git fetch <repo_url> <branch_name>

where repo_url is the name of the remote repository, and branch_name is the name
of the branch.
Alternatively, to fetch all branches, use the below command:

git fetch —all

To pull the changes from the remote repository, execute the following command:

git pull <repo_url>

The above command will fetch the remote repository’s copy of your current branch
and will merge the changes into your current branch.

If you would like to view this process in detail, use the verbose flag, as shown
below

git pull —verbose

As git pull uses merge as a default strategy, if you would like to use rebase instead,
execute the below command:

git pull —rebase <repo_url>
To push changes to a remote repository, use git push, as described below:
git push <repo_name> <branch_name>

Where repo_name is the name of the remote repository, and branch_name is the
name of the local branch.

4.8.1.3 GitSSH

An SSH key is an access credential for the secure shell network protocol. SSH uses
a pair of keys to initiate a secure handshake between remote parties—a public key
and a private key.

SSH keys are generated using a public key cryptography algorithm.

1. To generate an SSH key on Mac, execute the following command:

ssh-keygen -t rsa -b 4096 -C "your_email@domain”

4 Software Building Blocks: From Python to Version Control 99

2. Upon being promoted to enter the file path, enter a file path to which you would
like the key to be stored.

Enter a secure passphrase.

4. Add the generated SSH key to the ssh-agent

»

ssh-add -K <file_path_from_ step_2>

4.8.1.4 Git Archive

To export a Git project to an archive, execute the following command:

git archive --output=<output_archive_name> --format=tar HEAD

The above command generates an archive from the current HEAD of the
repository. The HEAD refers to the current commit.

4.8.1.5 Saving Changes

As you make changes to your local codebase, for instance, feature development
or bug fixes, you will want to stage them. To do so, please execute the following
command for each file you would like to add to the staging area:

git add <file_name>
git commit -m <commit_message>"

The first command puts your changes to the staging area while the second
command creates a snapshot of these changes, which can then be pushed to the
remote repository.

If you would like to add all files in one go, consider using the variation of Git add
with the—all option.

Once you add the file(s) to the staging area, they are tracked.

4.8.1.6 Syncing

Upon committing changes to the local repository, it is time to update the Git remote
repository with the commits from the local repository. Please refer to the syncing
commands listed at the start of this section.

100 D. Herath et al.

'Bugfh:

Rale

Fig. 4.8 Examples of pull requests

4.8.1.7 Making a Pull Request

A pull request is used to notify the development of changes, such as a new feature or
a bug fix so that the development team (or assigned reviewers) can review the code
changes (or commits) and either approve/decline them entirely or ask for further
changes.

As part of this process:

1. A team member creates a new local branch (or creates their local branch from
an existing remote branch) and commits their changes in this branch.

2. Upon finalising the changes, the team member pushes these changes to their
own remote branch in the remote repository.

3. The team member creates a pull request via the version control system. As part
of this process, they select the source and destination branches and assign some
reviewers.

4. The assigned reviewer(s) discuss the code changes in a team, using the collabo-
ration platform that is integrated into the version control system, and ultimately
either accepts or declines the changes in full or part.

5. The above step #4 may go through more cycles or reviews.

6. Upon completing the review process, when all changes have been accepted (or
approved), the team member merges the remote branch into the code repository,
closing the pull request (Fig. 4.8).

4.8.1.8 Common Git Commands

The table lists some commonly used Git commands that are useful to remember.
Figure 4.9 depicts the relative execution direction of some of these commands.

4 Software Building Blocks: From Python to Version Control 101

o
=
(G
=T
fes
wy

git reset --hard

=
S
=
o
w
i
(=]
L)
=
i
o
2
=

git checkout

i it
it heciont

>
[
o
=
vy
o
a
i
e
o
=
(-]
5

git pull

git fetch

REMOTE REPOSITORY

Fig. 4.9 Common git commands and relative execution directions

Configure your username and email address with

Git

git config —global user.name “<user_name>"

Initialise a Git repository

git init

Clone a Git repository

git clone <repo_url>

Connect to a remote Git repository

git remote add origin <remote_server>

Add files to a Git repository

git add <file_name>

Check the status of the files

git status

Commit changes to the local repository

git commit —m “<message>"

Push changes to the remote repository

git push origin master

Switch across branches

git checkout —b <branch_name>
git checkout<branch_name>

git branch

git branch —d <branch_name>

Update from the remote repository

git pull
git merge <branch_name>
git diff

Overwrite local changes

git checkout -- <file_name>
git reset --hard origin/master

4.9 Containerising Applications

A minor difference in the version of a library can alter the functionality of your appli-
cation, resulting in an unintended outcome. Fortunately, containerising an application
allows it to execute in the same way regardless of the workspace or computer that it

102 D. Herath et al.

is deployed on. You can think of containerisation as an efficient alternative to virtual
machines.

Docker® is a great tool to consider for containerisation. A key reason why the
development community has adopted Docker is that if you containerise your appli-
cation and transfer the image to a teammate’s environment, the application will have
the same performance on both devices. This is because the container includes all the
dependencies needed by the application.

4.10 Chapter Summary

The chapter began with an introduction to common constructs found in programming
and discussed using Python as an example language. The intention has been to provide
a starting point for readers who are not familiar with the basics of programming or
as a quick refresher for those picking up coding after some lapse in practice. We also
discussed a few useful tools in aiding computational thinking, such as flowcharts
and pseudocode. We then covered several important concepts, including OOP, error
handling, secure coding and version control. Any robotics programmer worth their
salt must be well versed in these aspects. Again, we have aimed to provide you with
pointers to essential concepts to explore further and build on. Finally, we discussed
containerisation as an efficient way to deploy your code on multiple platforms and
operating systems. The projects section of the book will provide further opportunities
to practice and explore these ideas further.

4.11 Revision Questions

—_

What are some of the common programming languages used in robotics?
2. You are required to display the following pattern on a screen. Write the
pseudocode of a suitable algorithm for this task.

* %

* % %

* % %k kX

* % k* %

et

Convert the pseudocode developed in 2. above to a Python implementation.
What are the four basic concepts of OOP?
5. What is Git and why is it important?

>

9 https://www.docker.com/.

https://www.docker.com/

4 Software Building Blocks: From Python to Version Control 103

4.12 Further Reading

It is far too numerous to suggest a set of suitable reading for this chapter as there
are many online resources as well as excellent books were written on each of the
topics covered in this chapter. You may head over to the book’s website for a list of
up-to-date resources. The following have served as useful online resources in writing
this chapter:

e Python programming (Phython.org, 2019; Python Application, 2021; Python
Exceptions, 2021; Python Security, 2020; Python Tutorial, 2021)

e Git (Atlassian, 2021)

e Containerisation (Docker, 2013)

References

Atlassian. Git Tutorials and Training | Atlassian Git Tutorial. Atlassian. https://www.atlassian.com/
git/tutorials (Accessed 2021, December 22).

Docker, What is a Container? | Docker. Docker. (2013). https://www.docker.com/resources/what-
container

How to Containerize a Python Application. Engineering Education (EngEd) Program
| Section. https://www.section.io/engineering-education/how-to-containerize-a-python-applic
ation/ (Accessed 2021, December 22).

Python Exceptions: An Introduction—Real Python. https://realpython.com/python-exceptions
(Accessed 2021, December 22).

Python Security Practices You Should Maintain. SecureCoding. (2020, May 18). https://www.sec
urecoding.com/blog/python-security-practices-you-should-maintain/

Python Tutorial. www.tutorialspoint.com. https://www.tutorialspoint.com/python. (Accessed 2021,
December 22).

Welcome to Python.org. (2019, May 29). https://www.python.org/

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra.
Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading
multidisciplinary research teams on complex robotic integration, industrial and research projects
for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and
was named one of the most innovative young tech companies in Australia in 2014. Teams he
led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in
the coveted Amazon Robotics Challenge—an industry-focused competition amongst the robotics
research elite. In addition, Damith has chaired several international workshops on Robots and Art
and is the lead editor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first
significant work to feature leading roboticists and artists together in the field of Robotic Art.

Adam Haskard is a cyber security and technology professional with over 16 years’ experi-
ence within the Department of Defence. Adam has led GRC and Security Engineering activities
in Defence Gateway Operations, JP2047, AIR6000, 1771 and L4125 as the DIE ITSM. Adam
possesses a strong understanding of information systems, cross domain solutions, the certification

https://www.atlassian.com/git/tutorials
https://www.docker.com/resources/what-container
https://www.section.io/engineering-education/how-to-containerize-a-python-application/
https://realpython.com/python-exceptions
https://www.securecoding.com/blog/python-security-practices-you-should-maintain/
http://www.tutorialspoint.com
https://www.tutorialspoint.com/python
https://www.python.org/

104 D. Herath et al.

and accreditation process and the military and wider technology landscape. He has in-depth tech-
nical and GRC experience leading multi-disciplinary teams on sensitive and complex cyber secu-
rity activities. Adam has gained significant work experience from his various roles in the ADF and
Industry, which included Cyber Security Professional, Engineer and Network Security Adminis-
trator, that enabled him to develop his cyber security and ICT skills. He was a member of the
ADF between 20062013 where he progressed through information system (CIS) and leadership-
based trainings. Adam’s expertise includes evaluating, designing, monitoring, administering and
implementing cybersecurity systems, protections and capabilities.

Niranjan Shukla has 15 years of prior experience working as a Software Engineer, Team Lead
and TechnoloArchitect with experience in Data-driven development, API Design, Frontend tech-
nologies, Data Visualization, Virtual Reality and Cloud. He practices Design thinking through
digital-Art on-the-side.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 5 ®)
The Robot Operating System (ROS1&2): | e
Programming Paradigms and

Deployment

David St-Onge and Damith Herath

5.1 Learning Objectives

The objective at the end of this chapter is to be able to:

e to know how to use (run and launch) ROS nodes and packages;

e to understand the messaging structure, including topics and services;

e to know about some of the core modules of ROS, including the Gazebo simulator,
ROSbags, Movelt! and the navigation stack.

5.2 Introduction

We expect most readers of this book to aim at the development of a new robot or
at adapting one for specific tasks. As we mentioned in the introduction, the content
of this book covers all of the required grounds to know “what has to be done” with
an overview of several ways to address “how can it be done”. If you do not know
it already, you will quickly understand through this book that robot design calls to
many different disciplines. The amount of knowledge needed to deploy a robotic sys-
tem can sometimes feel overwhelming. However, many individual problems were
solved already, including software ecosystems to simulate and then deploy our robots
seamlessly. Advanced toolset and libraries are certainly integrated in the proprietary
solution stack of the main robotic system manufacturers (such as ABB RobotStudio
and DJI UAV simulator), but can everybody benefit of the last decades of public
research for their own robots? This is a recurrent issue in many fields, and several
libraries have been created in specific domains, such as to gather vision algorithms

D. St-Onge (X)) ;
Department of Mechanical Engineering, ETS Montréal, Montreal, Canada
e-mail: david.st-onge @etsmtl.ca

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022 105
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_5&domain=pdf
mailto:david.st-onge@etsmtl.ca
 854 53550 a 854 53550 a

mailto:david.st-onge@etsmtl.ca
mailto:Damith.Herath@Canberra.edu.au
 854 57535
a 854 57535 a

mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_5
 -2047 61852 a -2047 61852 a

https://doi.org/10.1007/978-981-19-1983-1_5

106 D. St-Onge and D. Herath

(OpenCV) and machine learning algorithms (TensorFlow). The Robot Operating
System (ROS) is an open-source solution addressing this critical sharing need for
robotic sensing, control, planning, simulation, and deployment. Not to be confused
with a library, it is a software ecosystem (the concept of an operating system might
be too strong) facilitating the integration, maintenance, and deployment of new func-
tionalities and hardware from simulations to physical deployment. While ROS can
run code the same from several popular languages, in order to use it you will need
good knowledge of the infrastructure’s underlying concepts (and honestly quite a
bit of practice). ROS is renowned to have a steep learning curve and even more so
for developers not familiar with software engineering. This chapter aims at giving
you an overview of ROS and setting the bases to use it without being specific to any
version (only few code examples are provided).

Since ROS is made to run predominantly on Linux operating system, we will end
the chapter with a quick overview of Linux fundamental tools useful for roboticists
and ROS developers.

An Industry Perspective

Alexandre Vannobel, Team Lead,
Kortex Applications Team

Kinova inc.

I'have a bachelor’s degree in biomedical engineering from Polytechnique Mon-
tréal. I was especially interested in software development through my studies,
most especially newer technologies such as Al, robotics, and cloud comput-
ing. I had the chance to work as an intern for one summer at Kinova. Needless
to say, I learned a lot about robots during those four months I never really
learned the basics of robotics in a classroom. It was more of a learn-by-doing
experience (and it still is).

Learning the details and intricacies of ROS, Gazebo, and Movelt was certainly
a challenge! I have also been responsible for interfacing our robots with this
framework, and there were some development and integration issues, as the
goals and objectives of people who create robots and those who use robots do

5 The Robot Operating System (ROS1&2): Programming . . . 107

sometimes differ. It is of importance in those cases to consider what users want
and how they want to use the robot, but also to consider implementation costs
and time of features.

I'have witnessed the acceleration of ROS2’s development in the last few month-
s/years, and I think this is where the field is going. ROSI is a centralized
framework made to “unite” all of the robotics paradigms and tools in one big
system, but it suffers from a lot of legacy design choices that make the indus-
try really refractory from using it, starting with communication layers and the
lack of real-time support. I think ROS2, which was designed with the same
paradigms as ROS1 but with an emphasis on addressing those issues will bring
the industrial and the research worlds closer.

5.3 Why ROS?

Before you dive into ROS usage, you must understand its roots, as they motivated
several design decisions along the way, up to the need to redefine the whole ecosystem
for industrial and decentralized applications in ROS2. ROS is a big part of the recent
advances in robotics and its history is as important as any of the works presented in
Chap. 1.

It all started with two PhDs students at Stanford: Eric Berger and Keenan Wyrobek.
Early in their research, around 2005, they both needed a robotic platform to deploy
and test their scientific contributions: the design of an intrinsically safe personal
robot (Wyrobek et al., 2008). In their search for the best robotic platform, they ended
up talking to several researchers, each developing their own hardware and software.
The amount of duplicated work stunned them. They will later argue that 90% of the
roboticists work involve re-writing code and building prototypes, as illustrated in
Fig. 5.1. They made it their mission to change how things worked by developing a
new common software stack and a versatile physical robot, the PR1. The fund-raising
and marketing of their idea are out of scope here, but let us just mention that they
had to work hard in order to gain some credibility (Wyrobek, 2017). While still at
Stanford, they made the first PR1 prototype, alongside its modular software stack
(inspired from Switchyard by Nate Koenig) and validated its versatility with a student
coding competition and an in-house demonstration (a living room cleaning robot).

Berger and Wyrobek’s vision of a universal operating system for robots defi-
nitely stroke right in the ambitious work of Scott Hassan (Silicon Valley billion-
aire). At the time, Scott Hassan was directing a research laboratory, Willow Garage,
focused on autonomous vehicles. Over time, ROS (Willow Garage new name for
Berger—Wyrobek—Koenig-inspired software stack) and PR became the main activ-
ity of Willow Garage, involving investments of several millions of dollars. These
considerable resources clearly contributed to the rapid growth of ROS, namely by
financially supporting a great team of engineers. However, there was already a hand-

http://dx.doi.org/10.1007/978-981-19-1983-1_1
 843 28269 a 843 28269 a

http://dx.doi.org/10.1007/978-981-19-1983-1_1

108 D. St-Onge and D. Herath

ics
How RObDE; KeepS™=**

— Re-Inventing
the lWheel

---a paper with
a proof-of-
concept robot.

This prompts

another lab to
try to build on
this result...

»ssand they write
code that barely
vorks but lets
them publish...

--:but they can't

But inevitablys get any details
time runs out... on the software
used to make it

uork. ..

«++and countless
sleepless nights ««sand all the
are spent caualusea by
writing code So. a grandiose previous lab
from scratch. plan is formed nembers is a mess.
to write a new
software API...

Fig. 5.1 Comic commissioned at Willow Garage, from Jorge Cham, to illustrate the wasted time
in robotics R&D

ful of open-source projects for robotics at the time, including Player/Stage (Gerkey
et al., 2003), the Carnegie Mellon Navigation Toolkit (CARMEN) (Montemerlo
et al., 2003), Microsoft Robotics Studio (Jackson, 2007), OROCOS (Bruyninckx,
2001), YARP (Metta et al., 2006), and more recently the Lightweight Communica-
tions and Marshalling (LCM) (Huang et al., 2010), as well as other systems (Kramer
and Scheutz, 2007). These systems provide common interfaces that allow code shar-
ing and reuse, but did not survive as strong as ROS did. Money itself could not ensure
ROS success, they needed a community.

In Silicon Valley, people are in a secret place working on something that may or may not ever
see the light of day. They may or may not ever be able to talk about it. It’s a very different
experience to be able to - as we do here - all day, every day, just write code and put it out in
the world—Brian Gerkey, chief executive officer at Open Robotics (Huet, 2017)

5 The Robot Operating System (ROS1&2): Programming . . . 109

The ROS community is nowadays clearly what makes ROS unique,' powerful, and
impossible to avoid when working in robotics. Following Berker testimony (Wyrobek,
2017), they built that community over three strategies:

1. They secured the support of the other major players in open-source robotics by
involving them from the start in the definition of what ROS must be. These people
became early ambassadors of ROS.

2. They started a wide internship program, hosting PhD students, postdoctoral fel-
lows, professors, and industry engineers from all over the world, all contributing
to ROS and then using it in their own work. Berker mentions that Willow Garage
was hosting at some point more interns than employees, counting hundreds of
them.

3. They gave away 11 of their first PR2 prototypes, running exclusively on ROS, to
major research laboratories around the world as the result of a competitive call.
The new owners had to commit to contribute significantly to the ROS code base
and to provide a proof that their institution allows them to share their research
publicly.

Unfortunately, after Willow Garage skyrocketed ROS popularity and usage world-
wide, the company was dissolved in 2013. It was never meant to be the end of ROS
and PR2: the hardware customer service was taken over by Clearpath Robotics and
the open-source software development by a new entity, the Open Source Robotics
Foundation (non-profit). Under OSRF, they developed the first set of ROS distri-
butions (Distro), from Medusa Hydro (2013) to Melodic Morenia (2018), but the
foundation was growing with more requests for commercial contracts. In 2017, it
splits to create the Open Source Robotics Corporation (known as Open Robotics,”)
while the foundation still maintains the ROS code base. Open robotics released the
last version of ROS1, Noetic, the first to be based on Python 3 (all previous versions
used Python 2) and a whole new version, ROS2.

5.4 What Is ROS?

Now you may wonder if ROS is not just a glorified library. . . What is so special about
it? The minimal answer is twofold: 1. It provides mechanisms for code maintenance
and extensibility (adding new features), and 2. it connects a large community. The
ROS wiki provides a more complete answer:>
ROS is an open-source, meta-operating system for your robot. It provides the services you
would expect from an operating system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between pro-

cesses, and package management. It also provides tools and libraries for obtaining, building,
writing, and running code across multiple computers.

1 ROS users” world map: http://metrorobots.com/rosmap.html.
2 https://www.osrfoundation.org/welcome-to-open-robotics/.
3 http://wiki.ros.org/ROS/Introduction.

http://metrorobots.com/rosmap.html
 7587 55962 a 7587 55962 a

http://metrorobots.com/rosmap.html
https://www.osrfoundation.org/welcome-to-open-robotics/
 -1461 57290 a -1461 57290
a

https://www.osrfoundation.org/welcome-to-open-robotics/
http://wiki.ros.org/ROS/Introduction
 -1461 58619
a -1461 58619 a

http://wiki.ros.org/ROS/Introduction

110

Fig. 5.2 ROS workspace
folder structure from the
assignments detailed in
Chap. 18

D. St-Onge and D. Herath

~] mobile_manip_ws

N
>Rt
> [doc
> [l scripts
~ [sc
> @ common_gazebo_models
> | dingo
> [dingo_robot
> @ industrial_core
> Il jackal

~ i@ mobile_manip

> i config

> Il include

> il launch

> @ maps

> @ models

> [params

> il rviz

> [l scripts

> il sc

> il sV

> W urdf

> @ worlds
E) CMakeLists.txt
B package.xml

> [puma_motor_driver
> [l realsense_simulator
> [realsense-occupancy

> [l ros_kortex

[® CMakeLists.txt

We will stick to our two-item list and just scratch the surface of some core concepts
of software engineering to understand a bit better how they unfold in ROS. Imple-
menting software engineering best practices is at the core of ROS, from a modular
architecture to a full code-building workflow. The concept of an operating system
may be a bit stretched as ROS is closer to a middleware: the abstract interface to the

hardware (POSIX of robots).

As users (i.e., not developers) of ROS, we usually do not need to know the details
of the building structure, but it is mandatory to learn the basics in order to know how

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 409 2651 a 409 2651 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

5 The Robot Operating System (ROS1&2): Programming . . . 111

to properly use it. ROS provides a meta-builder, a uniform set of tools to build code
in several languages for several different computer’s environments and architecture.
In ROSI, this is done by catkin (formerly by rosbuild); while in ROS2 ament
takes over. In the end, they are really similar things, both just wrappers around CMake
(Cross-platform Makefile system).* If you are a Python developer, you may think
this kind of structure is unnecessary, but that is notwithstanding how it contributes
to the portability and modularity of ROS. Portability here refers to the deployment
of your code easily in different environments, as long as it follows the ROS building
structure. Different environments can be for other users, new robots, but also in
order to be seamlessly compatible with a testing environment. We will discuss more
in details the simulation infrastructure provided by ROS in Sect. 5.6.3. Using the
ROS build tools helps integrate your code with the rest of the ROS ecosystem. The
meta-builder will generate the custom messages (topics), services, and actions your
node requires (described in Sect. 5.5.1) and make them available to other executable
(alike libraries). It will also add several paths and files to the environment in order
to execute your code and quickly find your files (e.g., configuration files). The meta-
builder will organize your work space over build, devel and src folders, as
shown in Fig. 5.2.

Let us have a quick look at this ROS folder structure. In a glimpse, the build
folder will host all the final files generated from the meta-builder while the devel
folder keeps track of the files generated by the process for testing and debug-
ging purpose. The devel folder will also include the essential setup . bash file,
which, when sourced (#source devel/setup.bash), adds the location of the
packages built to your ROS environment. Sourcing the system ROS (#source
/opt/<ROS Distro>/setup.bash) and your local work space is mandatory
to run any executable using ROS commands. This is usually part of any ROS instal-
lation procedures, both for maintained packages and third-party ones. The folder
src is the one you will end up using the most. It contains a separated folder for each
package of your work space. Software in ROS is organized in packages. A package
might contain ROS nodes, a ROS-independent library, a dataset, configuration files,
a third-party piece of software, or anything else that logically constitutes a useful
module. The goal of these packages is to provide their intended functionality in an
easy-to-consume manner so that software can be easily reused.

Each of the package’s folders must respect a structure, as shown in Fig. 5.2,
with the subfolders: include, launch, src as well as optional ones related
to the use of Python code (script) and simulation (models, urdf, worlds).
The include and src folders are part of common C/C++ code structure, the
first for headers (declarations) and the second for content (definitions). launch
contains the launched files discussed in Sect. 5.5.2. The src folder contains
one or more nodes. The nodes are executable with dedicated functionalities
and specific inputs and outputs (when applicable). The work space shown in
Fig. 5.2 is extracted from the assignments in Project Chap. 18. It combines third-
party packages from Intel for the cameras (realsense-occupancy), from

4 https:/cmake.org/.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 24969 53882 a 24969 53882 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://cmake.org/
 -1461 58323 a -1461 58323
a

https://cmake.org/

112 D. St-Onge and D. Herath

Kinova for the Gen3 lite arm (ros_kortex), from Clearpath for the wheeled
base (dingo, dingo_robot, jackal, puma_motor_driver) and pack-
ages specific to the assignments (mobile_manip, realsense_simulator,
common_gazebo_models).

To deploy a ROS work space, you must follow the ROS installation instructions,’
and then either copy a third-party node (clone a Git repository) in order to work on
it, or make your own fresh work space.® In both cases, you will end up writing code
inside the package folder, for instance insidemobile_manip_ws/src/mobile_
manip shown in Fig. 5.2. Inside of your package, if a node (an executable file in
script or C/C++ code in src) is new, you need to add it to the CMakelist . txt
building configuration file at the root of your work space for your meta-builder to be
aware of the node existence. When setting up a new ROS environment, be aware that
there is a compatibility matrix to fit each ROS distribution with Linux distributions.’

Now that we have a better idea of how the meta-builder works to provide portabil-
ity (dealing with different environments) and modularity (packages and nodes), we
can look into how modularity help connects the ROS community. ROS developers
can share their nodes on any online platform (e.g., GitHub), or make it official by
including it to a ROS distribution (indexed). A ROS indexed package must follow
perfectly the ROS structure standard as well as programming best practices (unit tests,
well commented, etc.). After a bit of training, it becomes easy to download, build,
and run nodes made by any contributor around the world. This helped strengthen a
community, one so enthusiast that it creates its own annual event, entitled ROSCon
(ROSWorld in 2021 for the Virtual version), gathering hundreds of developers and
users. ROS community is growing pretty fast, with new groups emerging, such as
ROS Industrial® focused on developing industry-relevant capability in ROS. Where
the community can easily exchange, their software must also be able to commu-
nicate. A large part of the modularity of ROS is provided by its communication
infrastructure. A library of message types, extendable, guarantees the data format is
compatible between all users nodes. The messages, i.e., simple data structures, can
then be called in the form of topics or as part of services, as will be explained in
Sect. 5.5.1.

5.4.1 ROS1&2: ROSCore Versus DDS

ROS distributions are frequently released with major updates (enhancements). Since
2017, the core of ROS was revisited, leading to the release of a first stable ROS2
distribution in 2020, Foxy Fitzroy. The last distribution of ROS1, Noetic, will be

3 https://wiki.ros.org/ROS/Installation.

6 https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#
Create_a_ROS_Workspace.

7 https://www.ros.org/reps/rep-0003.html#platforms-by- distribution.
8 https://rosindustrial.org/.

https://wiki.ros.org/ROS/Installation
 -1461 53009
a -1461 53009 a

https://wiki.ros.org/ROS/Installation
https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
 -1461 54338 a -1461 54338 a

https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
 -1461 56773
a -1461 56773 a

https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
https://rosindustrial.org/
 -1461 58101
a -1461 58101 a

https://rosindustrial.org/

5 The Robot Operating System (ROS1&2): Programming . . . 113

Fig. 5.3 ROS Core role: the ROS
librarian connecting the Core
nodes’ topics and services Advertising Subscribing

' Callback

Publishing Topic 3

Node 2

Request=
Service
Response

officially supported until May 2025 and may very well be active longer than that, but
at some point all ROS users are expected to transit to ROS2. We quickly mentioned
the new building mechanism of ROS2, ament, and we will discuss some format
changes (e.g., launch files) in the upcoming sections, but the main difference is at
the core, the roscore. In ROS1, roscore is a collection of nodes and programs
that are prerequisites of a ROS-based system. You must have a roscore running in
order for ROS nodes to communicate. Launching the roscore (either automatically
with a launch file or manually with the roscore command) starts the ROS Core,
i.e., the ROS1 librarian. As shown in Fig. 5.3, the ROS Master (i.e. ROS Core)
is the one responsible for indexing all nodes running (the slaves) along with their
communication modality. In other words, in ROS 1, without the ROS Core, the nodes
cannot be aware of the others, let alone start to communicate with one another.
However, when all nodes are launched and aware of the others, theoretically the
ROS Core could be killed without any node noticing.

Ataglimpse: roscoreisdead in ROS2, no more master and slaves. The commu-
nication infrastructure is fundamentally decentralized in ROS2, based on a peer-to-
peer strategy, the Data Distribution Service (DDS). Where ROS1 had a critical single
point of failure, no node can block the others from running in ROS2. DDS includes
packet transport protocol and a distributed discovery service to grab information
from the other running nodes.” This paves the way to facilitating the development
and deployment of multi-robot systems, maybe even so-called robotic swarms.

Before getting into the ROS world, you need to pick your version. If you are
looking for more existing packages and a more stable API, use ROSI. If you are

® For more information: https:/design.ros2.org/articles/ros_on_dds.html.

https://design.ros2.org/articles/ros_on_dds.html
 7176 57867 a 7176 57867 a

https://design.ros2.org/articles/ros_on_dds.html

114 D. St-Onge and D. Herath

looking for long-term stability, better performance, and newer algorithms, use ROS2.
Just do not try to learn both from scratch! If you are still in doubt about which one
to go for, ignore ROS1 and use ROS2, since ROS 1 will be going away in a couple
of years.

5.4.2 ROS Industrial

While we will be limiting our discussions to ROS 1 & ROS 2 in this book, it is
worth noting that another flavor of ROS exists called ROS Industrial or ROS-I for
short. ' As the name suggests, ROS-I is a concerted effort to bring the best of ROS
to industrial-scale robotics. While, in general, research robotics systems such as the
PR2 follow an open-source ethos, most commercial robotic systems use closed and
proprietary software. This makes it extremely difficult to develop cross-platform
projects using them or adapt existing commercial hardware systems outside their
intended ecosystems. Frustrated by this situation, Shaun Edwards, in 2012, created
the initial ROS-I repository in collaboration with Yaskawa Motoman Robotics com-
pany and Willow Garage while he was at Southwest Research Institute to facilitate
the adoption of ROS in manufacturing and automation. Since then, many commer-
cial robotic platforms have been integrated within ROS-1. Core developments of
ROS-I are independently managed through several industrial consortia that require
a paid membership to participate. A good understanding of ROS should set you up
for a relatively easy transition to ROS-I if you eventually venture into commercial
robotics.

5.5 Key Features from the Core

The following sections will give an overview of the main features included in ROS.
While the focus is on ROS1 (the assignments presented in Project Chap. 18 run
on Noetic), the concepts are shared with ROS2, but some format differences are
discussed when applicable.

5.5.1 Communication Protocols

Whether it is decentralized (ROS2) or centralized (ROS1), the communication
between nodes is structured in messages.!! Figure 5.4 shows the Odometry mes-

10 https://rosindustrial.org/.
1 http://wiki.ros.org/Messages.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 31811 40598 a 31811 40598 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://rosindustrial.org/
 -1104 55666 a -1104 55666 a

https://rosindustrial.org/
http://wiki.ros.org/Messages
 -1104 56994 a -1104 56994 a

http://wiki.ros.org/Messages

5 The Robot Operating System (ROS1&2): Programming . . . 115

Fig. 5.4 Content of ROS ODOMETRY MESSAGE :

topic Odometry STD MSGS/HEADER HEADER
STRING CHILD_FRAME_ID
GEOMETRY MSGS/POSEWITHCOVARIANCE POSE
GEOMETRY _MSGS/TWISTWITHCOVARIANCE TWIST

POSE WITH COVARIANCE MESSAGE:
GEOMETRY _MSGS/POSE POSE
FLOAT 64[36] COVARIANCE

POSE MESSAGE:
GEOMETRY _MSGS/POINT POSITION
GEOMETRY MSGS/QUATERNION ORIENTATION

POINT MESSAGE: ~—
FLOAT 64 X
FLOAT64 Y
FLOAT64 Z

sage with some of the message types it contains. Several message libraries come
along with a ROS installation, but developers can also generate custom messages for
their node. At run time, the availability of these data structure can be advertised over
topics. Topics are barely names, i.e., labels, put on a given data structure (message)
from a given node. A node may publish data to any number of topics and simultane-
ously have subscriptions to any number of topics. Topics are one of the main ways
in which data is exchanged between nodes and therefore between different parts of
the system (between robots and with a monitoring ground station). In order to share
information, a node needs to advertise a topic and then publish content (messages)
into it. The first part is done in the initialization part of the node’s code, while the
latter is done each time new data must be shared, commonly inside the code’s main
loop at a fixed frequency. On the other side, the node(s) that needs a topic’s content
will subscribe to it. The subscriber will associate a callback function triggered for
each new incoming message.

ROS comes with a really handy debugging tool for topics, the terminal command
rostopic (ros2 topic in ROS2). It can be used to show all available topics
from the nodes running: rostopic list (ros2 topic list), to print the
content (message) of a given topic: rostopic echo odom (ros2 topic
echo odom) and to show the publishing frequency of a topic: rostopic hz
odom (ros2 topic hz odom).

Topics are connectionless communication (classic publisher/subscriber system)
in the sense that the publisher of the message does not know if any other node is
listening. ROS also provides with a connection-oriented protocol (synchronous RPC
calls), the services. Services have a client and a server, and both will acknowledge
the information received by the other at each transaction. Topics and services use the
same containers (message types) for information, but are better suited to different
applications. For instance, topics are useful to stream the reading from a sensor,
while services are better suited to share the configuration of a node or change a

116 D. St-Onge and D. Herath

alue="$(arg use_sim_time)™ /»
(arg headless)” />
* values"$(arg world_nase)* />

ehe

Fig. 5.5 Example of a launch file for: left is the XML format for ROS1 and right, the Python format
new to ROS2

node’s state. Finally, ROS provides the actions protocol (asynchronous RPC calls),
combining topics and services. A basic action includes a goal service, a result service,
and a feedback topic. Its format is well suited to interface with mission planners, such
as QGroundControl.'?

5.5.2 Launch and Run

To deploy a ROS system means to start several executable files, i.e., nodes. The most
basic command to do sois rosrun <package name> <node name> (ros2
run <package name> <node name>), which is most often run in a different
terminal for each node. However, in ROS1 you need a roscore before any node can be
run, so you must use the command roscore beforehand. Using this strategy to start
the nodes individually will lead to numerous terminal tabs that must be monitored
simultaneously. ROS provides another way to launch several nodes altogether: the
launch files. In ROS1, using a launch file will also automatically start the roscore.

The format of the launch file differs between ROS1 and ROS2, as shown in Fig. 5.5.
ROSI1 uses an XML file while ROS2 encourages the use of Python scripts (ROS2
still supports XML format). Nevertheless, both serve to call nodes with parameters
and can nest other launch files. Calling several nodes simultaneously is great, but
what happens if you need twice the same node, for instance to process images from
two cameras? You can always use the rosrun command to launch nodes afterward
that are not in the launch file; they will connect to the same ecosystem automatically.
However, a powerful feature of launch files is the group tag to force nodes into
a given namespace: the same node can then be launched several times in different
parallel namespaces without interfering with one another. This is essential to simulate
multi-robot systems.

12 hitp://qgroundcontrol.com/.

http://qgroundcontrol.com/
 -1104 57867 a -1104 57867 a

http://qgroundcontrol.com/

5 The Robot Operating System (ROS1&2): Programming . . . 117

5.5.3 ROS Bags

Now say you developed a new collision avoidance algorithm, based on the data of
several sensors. You deploy it on your robot and go for a run with it. No matter how
well it goes, you will want to extract performance metrics and assess afterward the
issues you faced. This calls for a logging system, luckily ROS provides a robust and
versatile one out-of-the-box! The ROS bag format is a logging format for storing
ROS messages in files. Files using this format are called bags and have the file
extension .bag. Bags are recorded, played back, and generally manipulated by
tools in the rosbag (ros2 bag) and rgt_bag (no counterpart yet available in
ROS2) packages. You can replay your field experiments: republish all sensor data
at their real frequency (or simulate different publishing rates), including packet loss
or any disturbance from the experiment. rosbags also has an API that provides
features to quickly parse and analyze or export your data. For instance in Python, it
may look like:

import rosbag bag = rosbag.Bag(’test.bag’) for topic, msg, t
in bag.read_messages(topics=’'odom’):
print ("Odometry is x={}, y={} and z={} at time {} sec".

format (

msg.pose.pose.position.x, msg.pose.pose.position.y,
msg.pose.pose.position.z,

t.toSec())
bag.close()

Rosbags are key to tuning your algorithms and sharing your time-consuming
experimental data with your peers.

5.5.4 Transforms and Visualization

Can you imagine a useful, physical robot that does not move or watch something
else move? Any useful application in ROS will inevitably have some component
that needs to monitor the position of a part, a robot link, or a tool. The ROS way of
dealing with relative motion is encompassed in TF (transforms). TF allows seeking
the geometrical transformation between any connected frames, even back through
time. It allows you to ask questions like “What was the transform between A and B
10 seconds ago?"

One possible example is a camera, mounted on a robot, tracking markers in the
scene, as shown in Fig. 5.6. This example shows the robot odometry frame (the mobile
base motion—camera_odom_frame), the camera pose (fixed to the base—
camera_fisheye2_frame), and the frame of the tag detected (ETS_target).
The tag is detected in the camera_fisheye2_frame, and its pose is extracted
and transformed directly in camera_odom_ frame to visualize all frames together.

118 D. St-Onge and D. Herath

L onplays

= @ Global Options

Fined Frame camers_odom frame
Background Color W a4k 48
Frame Rate

ETS_ ‘arget

camel a-Tishvye2_frame

camera~odom_frame

Fig. 5.6 Visualization in RViz of a fish-eye camera feed and the reference frames resulting from a
fiducial marker detection

As long as you have the position and orientation of an object (six degrees of
freedom), you can broadcast its TF in ROS. For instance in Python, it may look like:

import tf2_ros # import the TF library br =
tf2_ros.TransformBroadcaster() # create de broadcaster t =
geometry_msgs.msg.TransformStamped() # create the message
container

fill the message: t.header.stamp = rospy.Time.now()
.header. frame_id = "world"

.child_frame_id = "myrobotframe"

.transform.translation.x = x

.transform. translation.y =y

.transform. translation.z = z

= tf_conversions.transformations.quaternion_from_euler
psi, phi, theta)
.transform.rotation.

q[0]
= q[1]
= ql2]
.transform.rotation. ql3]
br.sendTransform(t) # broadcast the transform

.transform.rotation.
.transform.rotation.

+ +t + + ~NQ + + + + + FH

= N < M
|

Notice in the snippet above the format of the orientation (rotation): ROS, by default,
requires to use quaternions. t f__conversions library provides the tool to convert
rotation matrices and Euler angles to quaternions and back, but for more information
about the mathematical representation of the quaternions, read Chap. 6. Often TF are
used to define the fixed geometrical relations between a robot’s parts. You can then

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 28126 57070 a 28126 57070 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

5 The Robot Operating System (ROS1&2): Programming . . . 119

rather easily use the pose of an object detected by a camera mounted somewhere
on your robot to feed the wheels motors with appropriate commands, such as “my
camera sees the door 2 m ahead, but is positioned 50cm from the wheel axis, so let’s
go forward by only 1.5 m”.

The viewer shown in Figs. 5.6, 5.7, and 5.8 is RViz, short for ROS Visualization.
It is a 3D viewer supporting almost all types of topics, namely 2D and 3D LiDAR
point clouds, camera stream, and dynamic reference frames motion. The viewer is
launched simply with rosrun rviz rviz (or simply rviz). Then using the
graphical interface Add button, you can select the topic you want to monitor. While
RViz was made to monitor your robot’s topics, it can also host interactive markers that
can be moved in the visualization window and will broadcast their updated position
out in ROS. An example used to command a robotic arm is shown in Fig. 5.8.

5.6 Additional Useful Features

Several community contributions went into the essential toolset of ROS and greatly
contribute to its popularity. This section covers a handful of what we consider to be
the most important for mobile robots and manipulators. All of these packages are
leveraged in at least one of the assignments of Project Chap. 18.

5.6.1 ROS Perception and Hardware Drivers

When dealing with your hardware integration, the same logic applies as for the soft-
ware parts discussed previously: you do not want to waste time in reproducing what
was done already to interface with each component. Manufacturers have their coun-
terpart to this logic: it can be really expensive to develop drivers for several different
operating systems and software solutions to accommodate potential clients. ROS
acts here again as a standard, connecting the manufacturers to a large community.
Hundreds of hardware manufacturers deliver ROS nodes with their products, namely
SICK, Clearpath, Kinova, Velodyne, Bosch, and Intel. The driver node made by the
manufacturer most often deals only with low-level communication into ROS com-
patible topics and services. From that point, the meta-package ROS perception helps
with filtering, synchronizing, and visualization of the data. For instance, ROS per-
ception includes pc1l_ros to manage point clouds. It includes filters such as voxel
grid filter and pass-through filter, but also geometrical segmentation of the data to
extract planes or polygons from the point cloud. An example point cloud published
as aROS topic is shown in Fig. 5.7. For dealing with images (cameras), cv_bridge
and several other packages bring the powerful features of the open library OpenCV
to process images within ROS code. This provides the classic algorithms for contours
detection, images filtering (blur, etc.), and histogram generation. From there, many

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 24902 25986 a 24902 25986 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

120 D. St-Onge and D. Herath

BOSTeme 101281158 BOSElpsed ML T VEMTIENIT el lagant 784157 Eaperemantai

neist e Tasam ShiE e sptiom. N

Fig. 5.7 DARPA subterranean 2021 spot-1 finals map made by CTU-CRAS-NORLAB team

machine learning algorithms have ROS wrappers, such as the powerful You Only
Look Once (YOLO)'? for object recognition.

Finally, ROS perception also contains a package integrating several of the
most up-to-date algorithms for simultaneously localization and mapping (SLAM),
gmapping. Based on either on 2D LiDAR, 3D LiDAR, stereo camera, or a single
camera, the package outputs a rough map of the environment explored by the robot
without any a priori knowledge of the robot position in the map. These powerful
algorithms are nowadays essential to any mobile robot deployment in GPS-denied
environment. Several other, and more recent, SLAM solutions are also available on
GitHub from research laboratories around the world, but gmapping is maintained
by OSRF. When the environment is known (a 2D map is available), you may prefer
to use the ROS package for adaptive Monte Carlo localization (AMCL). This one
uses a particle filter to find the best candidates in position when simulating your laser
scan from the map provided. This is the strategy deployed in the assessments 4 and
5 of Project Chap. 18.

5.6.2 ROS Navigation and Movelt!

Let us assume that the perception stack grants us with the position of the robot
and a map of its environment. In order to fulfill any mission, the robot will need to
move in this environment, either by finding an optimal trajectory (mobile robot) or
by computing an optimal posture for a manipulator to reach a given pose with its
tool (i.e., gripper). For mobile robots, conventional methods of indoor path planning

13 https://github.com/leggedrobotics/darknet_ros.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 6285 40505 a 6285 40505 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://github.com/leggedrobotics/darknet_ros
 -1104 56901
a -1104 56901 a

https://github.com/leggedrobotics/darknet_ros

5 The Robot Operating System (ROS1&2): Programming . . .

121

moveit.rviz® - RViz

File Panels Help

Sinteract

© Displays
+ = Global Options

* « Global Status: Ok

= Grid
+ » MotionPlanning

Add
* MationPlanning
Context
Commands

Plan

Plan and Execute

Path Constraints

Move Camera

Planning

Select

Manipulation

Query

Planning Group:
arm

Start State:
<gurrents>

Goal State:
<current=

Clear octomap

<

Scene Objects Stored Scenes
Options.

Planning Time (s): 5.00

Planning Attempts: 10.00

Velocity Scaling: 1.00

Acceleration Scaling: 1.00
Allow Replanning
Allow Sensor Positioning
Allow External Comm.
Use Cartesian Path

' Use Collision-Aware K

Storet *

None Allow Approx IK Solutions

Goal Telerance: 0.00

Reset

31fps

Fig. 5.8 Kinova Gen3 lite manipulator controlled by interactive markers and Movelt! planner from
RViz

often refer to the optimal path as the shortest path that can be obtained from various
algorithms such as A*, Dijkstra’s (Palacz et al., 2019) or rapid-exploring random
trees (RRT). These algorithms, and a lot more, are available out of the box from
public ROS packages.

For manipulators, many numerical solvers for multibody dynamics have been
proposed over the past decades and along with them path planners that either use
sampling-based algorithms or optimization-based algorithms. These algorithms and
several others were integrated in the Open Motion Planning Library,'* itself integrated
in the Movelt! ROS planning package.'

Figure 5.8 shows Movelt! in action through RViz using interactive markers. These
markers can simply be dragged to the desired goal and then the left menu grants the
user access to different planners and their configurable parameters. Movelt! can also
consider static objects in the scene to plan a solution considering collision avoidance.
These objects can be added manually or imported from the Gazebo simulator.

5.6.3 Gazebo Simulator

Robot simulation is an essential tool in every roboticist’s toolbox. A well-designed
simulator makes it possible to rapidly test algorithms, design robots, perform regres-
sion testing, and train artificial intelligence systems using realistic scenarios. Gazebo

14 https:// ompl.kavrakilab.org/.
13 https://moveit.ros.org/.

https://ompl.kavrakilab.org/
 -1104 59195
a -1104 59195 a

https://ompl.kavrakilab.org/
https://moveit.ros.org/
 -1104 60523 a -1104 60523 a

https://moveit.ros.org/

122 D. St-Onge and D. Herath

TR T 1 IC e LRIl
[=

Fig. 5.9 View from Gazebo simulator with the mobile manipulator of the assignment in Project
Chap. 18

offers the ability to accurately and efficiently simulate robots in complex indoor and
outdoor environments. It encompasses a robust physics engine, with convenient pro-
grammatic and graphical interfaces. Best of all, alike ROS, Gazebo is free, open
source, and has a vibrant community.

Gazebo simulator can load any mesh in obj or dae format and then use it with
realistic dynamics to simulate robot motion and collisions. Alike ROS, Gazebo is
modular, so the simulation plugins for dynamics, can be customized as well as any
sensor data. Several manufacturers provide plugins (e.g., Intel cameras) and models
(e.g., Kinova robots) to simulate their hardware within Gazebo. Figure 5.9 shows
a simulation environment from the Project Chap. 18, including Intel cameras, the
fully actuated Kinova Gen3 lite manipulator, the differential drive Clearpath Dingo
mobile base, and a world made out of walls, furniture, and functional doors.

Gazebo is by far the most popular simulator for ROS users, but it lacks realistic
rendering and can be pretty heavy to run for a large number of robots (swarms).
To address the first limitation, Gazebo is being phased out in favor of Ignition.'¢
Nevertheless, developers in vision-based machine learning will prefer more realistic
environments such as Unreal'” and Unity'® (which has a ROS plugin'?). For the latter,
swarm roboticists will use dedicated simulators, such as ARGoS? (which also has
a ROS plugin?!).

16 https://ignitionrobotics.org/.

17 https://www.unrealengine.com/.

18 https://unity.com/.

19 hitps://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/.
20 https://www.argos-sim.info/

21 https://github.com/BOTSlab/argos_bridge/.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 409
21934 a 409 21934 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
http://dx.doi.org/10.1007/978-981-19-1983-1_18
 20488 37857 a 20488 37857 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://ignitionrobotics.org/
 -1104 53882
a -1104 53882 a

https://ignitionrobotics.org/
https://www.unrealengine.com/
 -1104 55210 a -1104 55210 a

https://www.unrealengine.com/
https://unity.com/
 -1104 56538 a -1104 56538 a

https://unity.com/
https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/
 -1104 57867
a -1104 57867 a

https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/
https://www.argos-sim.info/
 -1104 59195
a -1104 59195 a

https://www.argos-sim.info/
https://github.com/BOTSlab/argos_bridge/
 -1104 60523 a -1104 60523 a

https://github.com/BOTSlab/argos_bridge/

5 The Robot Operating System (ROS1&2): Programming . . . 123

5.7 Linux for Robotics

‘We mentioned previously that ROS is not exactly an operating system, but rather a
middleware. Still, many people are referring to it as the Linux for robotics (Wyrobek,
2017). There is some truth in this name, as ROS is extending the Linux operating
system to robotic applications. Until ROS2, it was only able to run properly on
Linux. It means that the majority of ROS users must know their way around in a
Linux environment.

We will take for granted that you start on a computer already set up with Linux
(Dell sells certified computers preloaded with Linux??) or that you know how to
launch a Linux virtual machine in Windows or OSX (although virtual machines are
not recommended for hardware experiments and computer-intense simulations).

As we mentioned earlier, when installing ROS on a Linux system, look into the
ROS-Linux compatibility matrix first.® In all of Linux distributions, you will need
to input some terminal commands to get things done. Knowing the basic commands
in a Linux terminal is also rather essential for embedded development, as the most
popular on-board computers (e.g., Raspberry Pi, NVidia) will run a version of Linux
and can be accessed through a remote terminal session (e.g., ssh). The most essentials
terminal commands are as follows:

e cd: Change Directory. cd . . is used to get to the parent directory.

1s:ListFiles.1s -la:willlistall files (hidden ones too) along with the properties

(permissions and size).

mv: MoVe file.

cp: CoPy file.

rm: ReMove file.

df: Disk Filesystem (disk usage). df -h allows to see the memory usage on all

disks in human readable format.

e reset: to remove all output from the terminal screen and remove any local
environment variables changes.

To edit and compile your ROS code, you want an integrated development envi-
ronment (IDE) that can help you find the right names and definitions of functions,
as well as compile and even debug your code. IDEs are like glasses: you need to try
them to find the one that fits you best. A lot of IDEs are available for Python (Atom,
Eclipse, PyCharm, etc.) and C/C++ (Visual Code, CLion). Linux experts sometimes
prefer the highly configurable text editors such as Sublime, Emacs, and Vim, for
which plugins and tutorials are available for ROS. However, the majority of the ROS
developers seems to prefer Eclipse, for its user-friendly interface, its support for sev-
eral programming languages, and its ROS plugin seamlessly integrated. Other more
recent options are drawing attention: Microsoft Visual Code, or its open-source ROS
version, Roboware, and the web-based ROS Development Studio (RDS). While they

22 hitps://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/.
23 https://www.ros.org/reps/rep-0003.html#platforms-by-distribution.

https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/
 -1104 56538 a -1104 56538
a

https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/
https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
 -1104 57867
a -1104 57867 a

https://www.ros.org/reps/rep-0003.html#platforms-by-distribution

124 D. St-Onge and D. Herath

all have pros and cons, they also all do essentially the same thing. If you are looking
for an IDE, we suggest VS Code. If you just want a code editor, we like Sublime
Text.

5.8 Chapter Summary

This chapter introduced the Robotic Operating System, ROS. We first discussed
the motivation for its conception by going through its origin and then we gave an
overview of its core advantages, leading to its current popularity. The chapter covered
both ROS1 and ROS2, with a short stopover on the centralized versus decentralized
differences between them. We then covered the essential features from the ROS Core
and third-party additions. Finally, we gave essential hints to new Linux users, as this
operating system is still the best suited one for ROS development.

5.9 Revision Questions

Question #1
In ROS1, what is the result of the command rosrun robot_manip dingo_
control?

1. It launches the robot_manip node of the dingo_control package, but a
roscore must have been started beforehand.

2. It launches the dingo_control node of the robot_manip package, but a
roscore must have been started beforehand.

3. It launches the robot_manip node of the dingo_control package and a
roscore if none is present.

4. It launches the dingo_control node of the robot_manip package and a
roscore if none is prese[]nt.

Question #2
Associate the following ROS concepts:

1. Topic
2. Service
3. Message

with their definition:

A A link created by a node to post information to those who subscribe to it.
B A standardized container for the exchange of information between nodes.
C A blocking communication that awaits the response of the called node.

Question #3
Is ROS1 a completely decentralized software ecosystem? Explain why.

5 The Robot Operating System (ROS1&2): Programming . . . 125

Question #4
Give the relative path in the ROS workspace to a C++ node source file (doit . cpp)
of a package named realsense_occupancy.

5.10 Further Reading

The best way to learn ROS is to play with it. ROS wiki’** is a great place to start
learning more about the core packages. ROS wiki also contains several basic tutorials
to practice with topics, services, actions, and launch file either in C++ or in Python.
If you are looking for an extension to this chapter, including more explanations on
the functionalities of ROS, the open access online book of Jason M. O’Kane, A
Gentle Introduction to ROS® is a perfect resource. For the one that prefers physical
books, going in depth in all of the ROS components, along with detailed example,
look into the book of Quigley, Gerkey, and Smart, Programming Robots with ROS.
Unfortunately, there is still a lack of good books specific to ROS2, but the online
official documentation is always a great resource.®

References

Bruyninckx, H. (2001). Open robot control software: The orocos project. In Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 3, pp.
2523-2528, vol. 3. https://doi.org/10.1109/ROBOT.2001.933002

Gerkey, B. P., Vaughan, R. T., & Howard, A. (2003). The player/stage project: Tools for multi-robot
and distributed sensor systems. In Proceedings of the 11th International Conference on Advanced
Robotics, pp. 317-323.

Huang, A. S., Olson, E., & Moore, D. C. (2010). LCM: lightweight communications and mar-
shalling. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
4057-4062. https://doi.org/10.1109/IROS.2010.5649358

Huet, E. (2017). The not-so-secret code that powers robots around the globe. Bloomberg The Quint.

Jackson, J. (2007). Microsoft robotics studio: A technical introduction. IEEE Robotics Automation
Magazine, 14(4), 82-87. https://doi.org/10.1109/M-RA.2007.905745

Kramer, J., & Scheutz, M. (2007). Development environments for autonomous mobile robots: A
survey. Autonomous Robots, 22(2), 101-132. https://doi.org/10.1007/s10514-006-9013-8

Metta, G., Fitzpatrick, P., & Natale, L. (2006). Yarp: Yet another robot platform. International
Journal of Advanced Robotic Systems, 3(1), 8.

Montemerlo, M., Roy, N., & Thrun, S. (2003). Perspectives on standardization in mobile robot
programming: The carnegie mellon navigation (carmen) toolkit. In Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
vol. 3, pp. 2436-2441. https://doi.org/10.1109/TIROS.2003.1249235

24 https://docs.ros.org/.

25 hitps://www.cse.sc.edu/~jokane/agitr.

26 such as https://docs.ros.org/en/rolling/.

https://doi.org/10.1109/ROBOT.2001.933002
 6114 31964 a 6114 31964 a

https://doi.org/10.1109/ROBOT.2001.933002
https://doi.org/10.1109/IROS.2010.5649358
 3519 38606 a 3519 38606 a

https://doi.org/10.1109/IROS.2010.5649358
https://doi.org/10.1109/M-RA.2007.905745
 8317
41926 a 8317 41926 a

https://doi.org/10.1109/M-RA.2007.905745
https://doi.org/10.1007/s10514-006-9013-8
 15982 44140 a 15982 44140
a

https://doi.org/10.1007/s10514-006-9013-8
https://doi.org/10.1109/IROS.2003.1249235
 7526 50782 a 7526 50782 a

https://doi.org/10.1109/IROS.2003.1249235
https://docs.ros.org/
 -1104 55210 a -1104 55210
a

https://docs.ros.org/
https://www.cse.sc.edu/protect unhbox voidb@x penalty @M {}jokane/agitr
 -1104 56538 a -1104 56538 a

https://www.cse.sc.edu/~jokane/agitr
https://docs.ros.org/en/rolling/
 1875 57867
a 1875 57867 a

https://docs.ros.org/en/rolling/

126 D. St-Onge and D. Herath

Palacz, W., Slusa.rczyk, G., Strug, B., & Grabska, E. (2019). Indoor robot navigation using graph
models based on bim/ifc. In International Conference on Artificial Intelligence and Soft Com-
puting, Springer, pp 654—665.

Wyrobek, K. (2017). The origin story of ros, the linux of robotics. In IEEE Spectrum.

Wyrobek, K. A., Berger, E. H., Van der Loos, H. M., & Salisbury, J. K. (2008). Towards a personal
robotics development platform: Rationale and design of an intrinsically safe personal robot. In
2008 IEEE International Conference on Robotics and Automation, pp. 2165-2170. https://doi.
org/10.1109/ROBOT.2008.4543527

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the Ecole de technologie supérieure and director of the INIT Robots Lab (ini-
trobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect
to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the
field of interactive media (structure, automatization and sensing) as workshop production director
and as R&D engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in national training
programs for highly qualified personnel for drone services (UTILI), as well as for the deployment
of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic inte-
gration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA
2019).

Damith Herath is an associate professor in Robotics and Art at the University of Canberra. He is
a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial, and research projects for over
two decades. He founded Australia’s first collaborative robotics start-up in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015 and
2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted Ama-
zon Robotics Challenge—an industry-focused competition among the robotics research elite. In
addition, he has chaired several international workshops on Robots and Art and is the lead edi-
tor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first significant work to
feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1109/ROBOT.2008.4543527
 30714 6061 a 30714 6061 a

https://doi.org/10.1109/ROBOT.2008.4543527
https://doi.org/10.1109/ROBOT.2008.4543527
http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 6 ®
Mathematical Building Blocks: From s
Geometry to Quaternions to Bayesian

Rebecca Stower @, Bruno Belzile ®, and David St-Onge

6.1 Learning Objectives

The objective at the end of this chapter is to be able to:

use vector and matrix operations;

represent translation, scaling, and symmetry in matrix operations;
understand the use and limitation of Euler’s angles and quaternions;
use homogeneous transformations;

use derivatives to find a function optimums and linearize a function;
understand the importance and the definition of a Gaussian distribution;
use t-tests and ANOVAs to validate statistical hypothesis.

6.2 Introduction

Several of the bodies of knowledge related to robotics are grounded in physics and
statistics. While this book tries to cover each topic in an accessible manner, the large
majority of these book chapters expect a minimal background in mathematics. The
following pages summarize a wide range of mathematical concepts from geometry
to statistics. Throughout this chapter, relevant Python functions are included.

R. Stower (X))
Department of Psychology, Université Vincennes-Paris 8, Saint-Denis, France
e-mail: becstower@gmail.com

B. Belzile - D. St-Onge
Department of Mechanical Engineering, ETS Montréal, Montreal, Canada
e-mail: bruno.belzile.1 @ens.etsmtl.ca

D. St-Onge
e-mail: david.st-onge @etsmtl.ca

© The Author(s) 2022 127
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_6&domain=pdf
http://orcid.org/0000-0002-6158-4818
 5565 7713 a 5565 7713 a

http://orcid.org/0000-0002-6158-4818
http://orcid.org/0000-0003-3247-9362
 13640 7713 a 13640 7713 a

http://orcid.org/0000-0003-3247-9362
http://orcid.org/0000-0002-0587-8598
 24301 7713 a 24301 7713 a

http://orcid.org/0000-0002-0587-8598
mailto:becstower@gmail.com
 854 50671 a 854 50671
a

mailto:becstower@gmail.com
mailto:bruno.belzile.1@ens.etsmtl.ca
 854
54656 a 854 54656 a

mailto:bruno.belzile.1@ens.etsmtl.ca
mailto:david.st-onge@etsmtl.ca
 854
57535 a 854 57535 a

mailto:david.st-onge@etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_6
 -2047 61833 a -2047
61833 a

https://doi.org/10.1007/978-981-19-1983-1_6

128 R. Stower et al.

Fig. 6.1 Different
coordinate systems in 3D
space

6.3 Basic Geometry and Linear Algebra

In this section, a brief non-exhaustive summary of basic concepts in Euclidean geom-
etry is given. Moreover, some linear algebra operations, useful for the manipulations
of components in different arrays, are recalled.

6.3.1 Coordinate Systems

A coordinate system is a “system for specifying points using coordinates measured
in some specified way.”! The most common, which you have most probably used in
the past is the Cartesian coordinate system, is shown in Fig. 6.1. In this case, more
precisely in 3D space, we have an origin, i.e., the point from where the coordinates
are measured, and three independent and orthogonal axes, X, Y, and Z. Three axes
are needed and they must be independent, but they do not need to be orthogonal.
However, for practical reasons in most (but not all) applications, orthogonal axes are
preferred (Hassenpflug, 1995).

You may encounter some common alternatives to Cartesian coordinates that can be
more appropriate for some applications, such as spherical and cylindrical coordinates.
In the former, the coordinates are defined by a distance p from the origin and two
angles, i.e., 6 and ¢. In the latter, which is an extension of polar coordinates in 2D, a
radial distance r, an azimuth (angle) 6, and an axial coordinate (height) z are needed.
While a point is uniquely defined with Cartesian coordinates, it is not totally the case
with spherical and cylindrical coordinates; more precisely, the origin is defined by
an infinite set of coordinates with those two systems, as the angles are not defined at
the origin. Moreover, you can add/subtract multiples of 360° to every angle and you
will end up with the same point, but different coordinates. Moreover, you should be

! https://mathworld.wolfram.com/CoordinateSystem.html.

https://mathworld.wolfram.com/CoordinateSystem.html
 -1461 57867
a -1461 57867 a

https://mathworld.wolfram.com/CoordinateSystem.html

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 129

careful with cylindrical and spherical coordinates, as the variables used to define the
individual coordinates may be switched, depending on the convention used, which
usually differs if you are talking to a physicist, a mathematician, or an engineer.’

6.3.2 Vector/Matrix Representation

In mathematics, a vector is “a quantity that has magnitude and direction and that
is commonly represented by a directed line segment whose length represents the
magnitude and whose orientation in space represents the direction.”® As you may
wonder, this definition does not refer to components and reference frames, which we
often come across when vectors are involved. This is because there is a common con-
fusion between the physical quantity represented by a vector and the representation
of that same quantity in a coordinate system with one-dimensional arrays. The same
word, vector, is used to refer to these arrays, but you should be careful to distinguish
the two. Commonly, an arrow over a lower case letter defines a vector, the physical
quantity, for example @ , and a lower case bold letter represents a vector defined in a
coordinate system, i.e., with components, for example, a. You should note, however,
that authors sometimes use different conventions. In this book, the coordinate system
used to represent a vector is denoted by a superscript. For example, the variable b%
is the embodiment of 7 in frame S, while b7 is the embodiment of 7 in frame 7.
They do not have the same components, but they remain the same vector.

Vectors @ and _b) in a n-dimensional Euclidean space can be displayed with their
components as

a by
az by
as b3
a=| . |, b=| . (6.1)
ap—1 bnfl
L al’l _ L bn .

—
—_ . .

For example, vectors ¢ and d are shown in Fig. 6.2. As can be seen, two reference
frames are also displayed. Their components in these frames are

s M1 - T o0 s 1 7 [-14142
¢ —M’ ¢ —[1.4142’ =13 € =1 284 62)

2 See https:/mathworld.wolfram.com/SphericalCoordinates.html.
3 https://www.merriam-webster.com/dictionary/vector.

https://mathworld.wolfram.com/SphericalCoordinates.html
 133 56538 a 133 56538
a

https://mathworld.wolfram.com/SphericalCoordinates.html
https://www.merriam-webster.com/dictionary/vector
 -1461 57867
a -1461 57867 a

https://www.merriam-webster.com/dictionary/vector

130 R. Stower et al.

Fig. 6.2 Planar vectors and
their components in different
frames

import numpy as np # Import library
arrays
a = np.array ([1,1]) # vector
A = np.array ([1,2],
[3,4]) # matrix

Similarly, tensors are used to represent physical properties of a body (and many
other things). More formally, tensors are algebraic objects defining multilinear rela-
tionships between other objects in a vector space. Do not focus to much on the
mathematical definition, but instead on what you already know. You have already
encountered some tensors in this chapter, since scalars and vectors (the physical
quantity, not the array) are, respectively, rank-0 and rank-1 tensors.* Therefore, ten-
sors can be seen as their generalization. One example of rank-2 tensors is the inertia
tensor of a rigid body, which basically represents how the mass is distributed in a
rigid body (which does not depend on a reference frame). For the sake of numerical
computation, the representation of a rank-2 tensor in a coordinate system can be done
with what we call a matrix. You should be careful, however, not to confuse matrices
and rank-2 tensors. Indeed, all rank-2 tensors can be represented by a matrix, but
not all matrices are rank-2 tensors. In other words, matrices are just boxes (arrays)
with numbers inside (components) that can be used to represent different objects,
rank-2 tensors among them. Matrices are generally represented by upper case bold
letters, eg. A. Matrices, which have components, can also be defined in specific ref-
erence frames. Therefore, the superscript to denote the reference frame also applies
to matrices in the book, e.g., HS is a homogeneous transformation matrix (will be
seen in Sect. 6.4.4) defined in S.

Other common matrices with typical characteristics include:

e the square matrix, which is a matrix with an equal number of rows and columns;

e the diagonal matrix, which only has nonzero components on its diagonal, i.e.,
components (1, 1), (2,2), ..., (n, n);

e the identity matrix 1, which is a (n x n) matrix with only 1 on the diagonal, the
other components all being equal to 0.

4 For more information on tensors and their rank: https://mathworld.wolfram.com/Tensor.html.

https://mathworld.wolfram.com/Tensor.html
 16714 58266 a 16714 58266 a

https://mathworld.wolfram.com/Tensor.html

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 131

6.3.3 Basic Vector/Matrix Operations

Vectors and matrices are powerful and versatile mathematical tools with several
handful properties and operations. We will recall the most useful in robotics in the
following.

Dot Product

The addition and the multiplication with a scalar operations with vectors are simply
distributed over the components. Otherwise, two most relevant operations in robotics
are the dot and cross products. The dot product is also known as the scalar product,

. . -
as the result of the dot product of two arbitrary vectors is a scalar. Let @ and b be

two arbitrary vectors and their corresponding magnitude’ be || @ || and || & ||, then
the dot product of these two vectors is

DD =7 || cos (6.3)

where 6 is the angle between those two vectors. If the two vectors are orthogonal,
by definition, the result will be zero. If components are used, then we have

a'bzalbl +a2b2+a3b3+"'+an—lbn—l +anbn (64)

iﬂport numpy as np # Import library

dot product

np.dot (a, b) # dot product of two array-like inputs
np.linalg.multi_dot(a,b,c) # dot product of two or more arrays in a single call
magnitude of a vector

np.linalg.norm(a)

Using the numerical values previously given in (6.2), the dot product of @ and b
is:

- -
d - b =1.4142-3.1623 cos(0.4636) =4 (6.5)
a® b’ =1-14+1-3=4 (6.6)

a? b7 =0-—1.4142 +1.4142 - 2.8284 =4 (6.7)

As you can see from this example, both the geometric and algebraic definitions of
the dot product are equivalent.

Cross Product

The other type of multiplication with vectors is the cross product. Contrary to the
dot product, the cross product of two vectors results in another vector, not a scalar.
Again, both vectors must have the same dimension. With @ and _b) used above, the
cross product is defined as

5 Length, always positive.

132 R. Stower et al.
— - .
A x b =|d|lb]|sin6e (6.8)

where, as with the dot product, 6 is the angle between 4 and Z} and @ is a unit
vector® orthogonal to the first two. Its direction is established with the right-hand
rule. In 3D space, the components of the resulting vector can be computed with the
following formula:

arb3 — azby
axb= (13b1 — a1b3 (69)
a1b2 — 02171

where a = [Cll ap a3]T andb = [b1 b2 b3]T.

.

The right-hand rule is used to easily determine the direction of a vector
resulting from the cross product of two others. First, you point in the direction
of the first vector with your remaining fingers, then curl them to point in the
direction of the second vector. According to this rule, the thumb of the right
hand will point along the direction of the resulting vector, which is normal
to the plane formed by the two initial vectors.

\.

mmport numpy as np # Import library
cross product
np.cross (a,b)

Again, using the numerical values used above in (6.2), we can compute the cross
product. Of course, since these two vectors are planar and the cross product is defined
over 3D space, the third component in Z is assumed equal to zero. The result is given
below:

- . — —
d x b =1.4142-3.1623sin(0.4636) k =2k (6.10)
1-0-0-37 [0]
a’xbS=]0-1—-1-0[=]0 (6.11)
1:3-1-1] |2]
1.4142-0—0-2.8284 0]
aZ xb? = | 0--1.41421356 — 1.4142-0 | = |0 (6.12)
0-2.8284 — 1.4142- —1.4142 | | 2]

—
where k is the unit vector parallel to the Z-axis. By this definition, you can observe
that the unit vector defining the Z-axis of a Cartesian coordinate frame is simply
the cross product of the unit vectors defining the X- and Y -axes, following the order

- —
given by the right-hand rule. These three unit vectors are commonly labeled i , j
and k , as shown in Fig. 6.3. You should note that the cross product of unit vector
— —
a with J also results in k , since @ is also in the X Y-plane. Moreover, as you

6 With a magnitude of 1.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 133

Fig. 6.3 Unit vectors ?
defining a Cartesian frame T

can see with the cross product of _1> and ? illustrated in the same figure, a vector
is not attached to a particular point in space. As mentioned before, it is defined by
a direction and a magnitude, thus the location where it is represented does not have
any impact on the cross product result.

Matrix Multiplication

Similarly to vectors, the addition and multiplication by a scalar are also distributed
over the components for matrices. On the other hand, the matrix multiplication is
a little more complicated. Let matrix A be defined by row vectors and matrix B be
defined by column vectors, i.e.,
may]
az

a3
A= . , B= [b1 b, b; ... b,_; bn] (6.13)

a4,
a,

Then, the matrix multiplication is defined as

a1~b| a1~b2 a1'b3 al-bn_l al'b,,
az-bl az-bz 32~b3 az-bn_l az~bn
a3-b1 a3-b2 33-b3 a3-b,,,1 a3~bn
AB =)) . : (6.14)

: . bl a1 b2 a1 b3 R bn—l a1 bn
| a,-b;y a,-by a,-b; ... a,-b,_1 a,-b,

While this result may seem scary at first, you can see that the (i, j) component’ is
simply the dot product of the ith row of the first matrix and the jth column of the

7The (i, j) component is the component on the ith row and jth column.

134 R. Stower et al.

second matrix. The number of columns of the first matrix (A) must be equal to the
number of rows of the second matrix (B).

import numpy as np # Import library

matrix multiplication

np.matmul (A,B) # for array-like inputs
A @ B # for ndarray inputs

To illustrate this operation, let A and B be (2 x 2) matrices, i.e.,

12 10
A= [3 4}, B= [_] 2] (6.15)

then, the result of the matrix multiplication is

—14
- [_1 8} (6.16)

It is critical that you understand that matrix multiplication is not commutative,
which means the order matters, as you can see in the following example with matrices
A and B used above:

CM11=2-11-042-2
AB—[3-1—4.13.0+4-2}

14 12
AB = [_1 8], but BA = [5 6} (6.17)

Transpose of a Matrix

Another common operation on a matrix is the computation of its transpose, namely
an operation which flips a matrix over its diagonal. The generated matrix, denoted
AT has the row and column indices switched with respect to A. For instance, with a
(3 x 3) matrix C, its transpose is defined as

T
C1,1 €12 C1 3 C1,1 C2,1 €31
T
C =103 =|c2020: (6.18)
€31 €32 €33 €13 €32 €33

import numpy as np # Import library

matrix transpose

np . transpose (A) # function for array-like input
A.transpose () # method for ndarray

A.T # attribute for ndarray

Since vectors (array of components) are basically (1 x n) matrices, the transpose can
be used to compute the dot product of two vectors with a matrix multiplication, i.e.,

a-b=a"b=ab +ab,+ -+ a,b, (6.19)

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 135

Determinant and Inverse of a Matrix

Finally, a brief introduction to the inverse of a matrix is necessary, as it is quite
common in robotics, from the mechanics to control to optimization. Let A be a
(n x n) square matrix;® this matrix is invertible if

AB=1, and BA=1 (6.20)

Then, matrix B is the inverse of A and therefore can be written as A~'. The compo-
nents of A~! can be computed formally with the following formula:

1
Al = r 21
det(A) C ©6.21)

where det(A) is called the determinant of A and C is the cofactor matrix® of A. The
determinant of a matrix, a scalar sometimes labeled ||A ||, is equal to, in the case of
a (2 x 2) matrix,

det(A) = ad — be, where A = [‘; Z] (6.22)

Similarly, for a 3 x 3 matrix, we have

abc
det(A) = a(ei — fh) —b(di — fg) +c(dh —eg), where A= |de f
ghi
(6.23)
The determinant of a matrix is critical when it comes to the computation of its
inverse, as a determinant of 0 corresponds to a singular matrix, which does not have
an inverse. The inverse of a (2 x 2) matrix can be computed with the following

formula |
Al = [d _b] . where A= [“ b} (6.24)
ad —bc |—c a cd

Similarly, for a 3 x 3 matrix, we have

1 (ei — fg) —(bi —ch) (bf —ce) abc
Al = TotA —di— fg) (ai—cg) —(af —cd)|, where A= |de f
et(A) (dh —eg) —(ah —bg) (ae —bd) ghi

(6.25)

8 Same number of rows and columns.

9 The cofactor matrix will not be introduced here for the sake brevity, but its definition can be found
in any linear algebra textbook.

136 R. Stower et al.

import numpy as np # Import library
matrix determinant
np.linalg.det (A)

matrix inverse

np.linalg.inv (A)

As you can see from Eq. (6.25), you cannot inverse a matrix with a determinant
equal to zero, since it would result in a division by zero. The inverse of a matrix is
a useful tool to solve a system of linear equations. Indeed, a system of n equations
with n unknowns can be casted in matrix form as

Ax=b (6.26)

where the unknowns are the components of x, the constants are the components of b
and the factors in front of each unknowns are the components of matrix A. Therefore,
we can find the solution of this system, namely the values of the unknown variables,
as

x=A"b (6.27)

Generalized Inverses

However, if we have more equations (m) than the number of unknowns (n), the
system is overdetermined, and thus A is no longer a square matrix. Its dimensions are
(m x n). An exact solution to this system of equations cannot generally be found. In
this case, we use a generalized inverse; a strategy to find an optimal solution. Several
generalized inverse, or pseudo-inverse, can be found in the literature (Ben-Israel and
Greville, 2003), each with different optimization criterion. For the sake of this book,
only one type is presented here, the Moore—Penrose generalized inverse (MPGI).
In the case of overdetermined systems, the MPGI is used to find the approximate
solution that minimized the Euclidean norm of the error, which is defined as

€y = b— AX() (628)

where X and ey are the approximate solution and the residual error, respectively.
The approximate solution is computed with

xo = Alb, AL = (ATA)'AT (6.29)

where AL is named the left Moore—Penrose generalized inverse (LMPGI), since
A’A = 1. As an exercise, you can try to prove this equation.

There is another MPGI that can be useful in robotics, but not quite as common
as the LMPGI, the right Moore—Penrose generalized inverse (RMPGI). The right
generalized inverse is defined as

AR =ATAAT)™!, AAR=1 (6.30)

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 137

where A isam X n matrix withm < n, i.e., representing a system of linear equations
with more unknowns than equations. In this case, this system admits infinitely many
solutions. Therefore, we are not looking for the best approximate solution, but one
solution with the minimum-(Euclidean) norm. For example, in robotics, when there is
an infinite set of joint configurations possible to perfectly reach an arbitrary position
with a manipulator, the RMPGI can give you the one minimizing the joint rotations.

With both generalized inverses presented here, we assume that A is full rank,
which means that its individual columns are independent if m > n, or its individual
rows are independent if m < n. In the case of a square matrix (m = n), a full rank
matrix is simply non-singular.

6.4 Geometric Transformations

It is crucial in robotics to be able to describe geometric relations in a clear and
unambiguous way. This is done with coordinate systems and reference frames as
mentioned above. You may have studied already four kinds of geometric transfor-
mation: translation, scaling, symmetry (mirror), and rotation. We will quickly go
over each of them, as they all are useful for computer-assisted design. However,
keep in mind that transformations used to map coordinates in one frame into another
use only translation and rotation.

For clarity, we will present all geometric transformations in matrix form, to lever-
age the powerful operations and properties as well as their condensed format. Using
the vector introduction above (Sect. 6.3.2), the simplest geometric element will be
used to introduce the transformation, the point:

X

Pip(x, y) = B] , Pip(x,y,2) = |y (6.31)
Z

In fact, you only need to apply transformations to point entities in order to trans-
form any 2D and 3D geometry. From a set of points, you can define connected pairs,
i.e., edges or lines, and from a set of lines you can define loops, i.e., surfaces. Finally,
a set of selected surfaces can define a solid (Fig. 6.4).

6.4.1 Basic Transformations

Let’s start with a numerical example: given a pointinx = 1 and y = 2 that we intend
to move by 2 units toward x positive and by 4 units toward y positive. The algebraic
form of this operation is simply x" = x + 2 and y’ = y + 4, which can be written in
matrix form:

138 R. Stower et al.

(0,0) X P X X

Fig. 6.4 Basic geometrical transformations, from left to right: translation, scaling and mirror (sym-
metry)

, 1 2
j2 =P+T=M+M (6.32)

Similar reasoning applies in three dimensions. Now imagine we use point P to define

0 - . .
0 and that we want to stretch this line with a scaling
factor of 2. The algebraic form of this operationis x’ = x x 2and y’ = y x 2, which
can be written in matrix form:

Cep 2071
P_SP_[OZ} M (6.33)

This scaling operation is referred to as proportional, since both axes have the same
scaling factor. Using different scaling factors will deform the geometry. If, instead
of scaling the geometry, we use a similar diagonal matrix to change the sign of one
or more of its components, it will generate a symmetry. For instance, a symmetry

with respect to y is written:
;o _|-10](1
P =SSP = [0 1} |:2] (6.34)

These operations are simple and do not change with increasing the dimensions from
two to three. The rotations, however, are not as such.

a line with the origin Py =

6.4.2 2D/3D Rotations

A rotation is a geometric transformation that is more easily introduced with polar
coordinates (see Fig. 6.5):

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 139

Fig. 6.5 Planar rotation and Y
polar coordinates
P'(a, o)
7 0 .
P(z,y)
‘ a
(0,0) X
| x| _ [rcos(a)
p=f] =[] 69
Then a rotation 6 applied to this vector consists in:
;_ (rcos(a+0)
P= (r sin(e +6))’ (6.36)

which can be split with respect to the angles using common trigonometric identities

leading to
s _ [xcos(®) — ysin(@) | _ [cos(@) —sin(0) | [x
P = |:x sin(@) + ycos(@):| - |:Sin(9) cos(0)] |:y:| (6.37)

The resulting 2 x 2 matrix is referred to as the rotation matrix, and its format is
unique in 2D. Any rotation in the plane can be represented by this matrix, using the
right-hand rule for the sign of 6. This matrix is unique because a single rotation axis
exists for planar geometry: the perpendicular to the plane (often set as the z-axis). For
geometry in three-dimensional space, there is an infinite number of potential rotation
axis; just visualize the rotational motions you can apply to an object in your hand.
One approach to this challenge consists in defining a direction vector in space and a
rotation angle around it, since Leonhard Euler taught us that “in three-dimensional
space, any displacement of a rigid body such that a point on the rigid body remains
fixed, is equivalent to a single rotation about some axis that runs through the fixed
point.” While this representation is appealing to humans fond of geometry, it is not
practical to implement in computer programs for generalized rotations. Instead, we
can decompose any three-dimensional rotation into a sequence of three rotations
around principal axis. This approach is called the Euler’s Angles and is the most
common representation of three-dimensional rotation. We only need to define three
matrices:

140 R. Stower et al.

1 0 0
R, = [0 cos(¥) —sin(yr) |, (6.38)
0 sin(yr) cos(y)

[cos(¢p) 0 sin(¢)
R, = 0 1 0

| — sin(¢) 0 cos(¢)

) (6.39)

cos(8) —sin(®) 0
R, = | sin(@) cos(@) O]. (6.40)
0 0 1

If these matrices are the only ones required to represent any rotation, they still leave
two arbitrary definitions: 1. the orientation of the principal axes (x — y — z) in space,
2. the order of the rotations. Rotation matrices are multiplication operations over
geometry features, and, as mentioned above, these operations are not commutative.
The solution is to agree over a universal set of conventions:

XYX, XYZ, XZX, XZY, YXY, YXZ, YZX,
YZY, ZXY, ZXZ, ZYX, and ZY Z. (6.41)

These twelves conventions still need their axes orientation to be defined: Each axis
can either be fixed to the inertial frame (often referred to as extrinsic rotations) or
attached to the body rotating (often referred to as intrinsic rotations). For instance,
the fixed rotation matrix for the XY Z convention is:

COSg COSy COSp SiNg Siny — Sing COSy, COSp SiNg COSy, + Sing siny,
R:R R, = | sing cosy sing sing siny, — c0Sy COSy, Sing sing cosy, — €OSy Siny
—sing COSg Siny, COSg COSy;
(6.42)
While using a fixed frame may seem easier to visualize, most embedded controllers
require their rotational motion to be expressed in the body frame; one attached to the
object and moving with it. The same convention XY Z, but in mobile frame is:

COSy COSy — COoS ¢ sing sing
R R/ R’ = | cosy sing + siny sing cosy cosy coss — siny sing sing — siny, cos
siny sing — coSy, Sing COSy Siny COSy + COSy SiNg Siny COSy COSy

(6.43)

In aviation, the most common convention is the ZYX (roll-pitch—yaw) also

called the Tait—Bryan variant. In robotics, each manufacturer and software devel-

oper decides on the convention they prefer to use, for instance, FANUC and KUKA

use the fixed XYZ Euler angle convention, while ABB uses the mobile ZYX Euler

angle convention. As for computer-assisted design, the Euler angles used in CATIA
and SolidWorks are described by the mobile ZYZ Euler angles convention.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 141

Fig. 6.6 Vector i
representation of planar

rotation using the imaginary I 2= _1
axis i

Euler’s angle representation is known to have a significant limitation: gimbal lock.
In a glimpse, each convention suffers from singular orientation(s), i.e., orientation
at which two axes are overlaid, thus both having the same effect on rotation. With
two axes generating the same rotation, our three-dimensional space is no longer fully
reachable; i.e., one rotation is not possible anymore. Gimbal lock has become a rather
popular issue in spacecraft control since Apollo’s mission suffered from it (Jones
and Fjeld, 2006). Nevertheless, Euler’s angles stay the most common and intuitive
representation of three-dimensional rotation and orientation, but others, often more
complex, representation were introduced to cope with this limitation.

6.4.3 Quaternion

One such gimbal-lock-free representation is the quaternion. Quaternion is a rather
complex mathematical concept with respect to the level required for this textbook. We
will not try to define exactly the quaternion in terms of their mathematical construc-
tion, and we will not detail all of their properties and operations. Instead, you should
be able to grasp the concept thanks to a comparison with the imaginary numbers, a
more common mathematical concept.

We recall that the imaginary axis (i) is orthogonal to the real numbers one (see
Fig. 6.6), with the unique property i> = —1. Together they create a planar reference
frame that can be used to express rotations:

R(0) = cos() + sin(8)i. (6.44)

In other words, we can write a rotation in the plane as a vector with an imaginary
part. Now, imagine adding two more rotations as defined above with Euler’s angles:
we will need two more “imaginary” orthogonal axes to represent these rotations.
Equation 6.44 becomes:

R(©) = cos(0) + sin(0)(xi +yj + zk). (6.45)

142 R. Stower et al.

While this can be easily confused with a vector-angle representation, remember that
i — j — k define “imaginary” axes; not coordinates in the Cartesian space. These
axes hold similar properties as the more common i/ imaginary axis:

i, j, kll =1, ji ==k, ij =k, i*=—1. (6.46)

For most people, quaternions are not easy to visualize compared to Euler angles, but
they provide a singularity-free representation and several computing advantages. This
is why ROS (see Chap. 5) developers selected this representation as their standard.

In Python, the scipy library contains a set of functions to easily change from one
representation to another:

Import the library
from scipy.spatial.transform mport rotation as R
Create a rotation with Euler angles

mat = R.from_euler (’'yxz’, [45, 0, 30], degrees=True)
print(”Euler: ", mat.as_euler (’'yxz’', degrees=True))
Print the resulting gquaternion

print(”ouaternion: ", mat.as_quat ())

6.4.4 Homogeneous Transformation Matrices

A standardized way to apply a transformation from one coordinate system to another,
i.e., to map a vector from one reference frame to another, is to use homogeneous
transformation matrices. Indeed, a homogeneous transformation matrix can be used
to describe both the position and orientation of an object.

The (4 x 4) homogeneous transformation matrix is defined as

HI = [Q p] (6.47)

where Q is the (3 x 3) rotation (orientation) matrix, p is the three-dimensional vec-
tor defining the Cartesian position [x, 1y, z] of the origin and 0 is the three-
dimensional null vector. As can be seen with the superscript and subscript of H, the
matrix defines the reference frame 7 in the reference frame S. While being composed
of 9 components, there are not all independent, since the position and orientation in
the Cartesian space add up to 6 degrees-of-freedom (DoF). Whereas the translation
introduced above were defined as additions, the homogeneous matrix merges it with
rotation and makes it possible to use only multiplications.

http://dx.doi.org/10.1007/978-981-19-1983-1_5
 8480 10046 a 8480 10046 a

http://dx.doi.org/10.1007/978-981-19-1983-1_5

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 143

6.5 Basic Probability

6.5.1 Likelihood

When we talk about probability, we are typically interested in predicting the likeli-
hood of some event occurring, expressed as P (event). On the most basic level, this
can be conceptualized as a proportion representing the number of event(s) we are
interested in (i.e., that fulfill some particular criteria), divided by the total number of
equally likely events.

Below is a summary of the notation for describing the different kinds and combi-
nations of probability events which will be used throughout the rest of this section
(Table 6.1).

As an example, imagine we have a typical (non-loaded) 6-sided die. Each of the
six sides has an equal likelihood of occurring each time we roll the die. So, the
total number of possible outcomes on a single dice roll, each with equal probability
of occurring is 6. Thus, we can represent the probability of any specific number
occurring on a roll as a proportion over 6.

For example, the probability of rolling a 3 is expressed as:

1
PG) = ¢ (6.48)

The probability of an event not occurring is always the inverse of the probability
of it occurring, or 1 — P (event). This is known as the rule of subtraction.

P(A)=1-P(A) (6.49)
So in the aforementioned example, the probability of not rolling a 3 is:

P3 1 L_2 6.50
(3) = 5§ ¢ (6.50)
We could also change our criteria to be more general, for example to calculate
the probability of rolling an even number. In this case, we can now count 3 possible
outcomes which match our criteria (rolling a 2, 4, or 6), but the total number of
possible events remains at 6. So, the probability of rolling an even number is:

Table 6.1 Common probability notations

P(A) Probability of A occurring

P(A") Probability of A not occurring

P(ANB) Probability of both A and B occurring
P(AUB) Probability of either A or B occurring
P(A|B) Probability of A occurring given B occurs

144 R. Stower et al.

3 1
P(even) =) (6.51)

Now, imagine we expanded on this criterion of rolling even numbers, to calculate
the probability of rolling either an even number OR a number greater than 3. We
now have two different criteria which we are interested in (being an even number
or being greater than 3) and want to calculate the probability that a single dice roll
results in either of these outcomes.

To begin with, we could try simply adding the probability of each individual
outcome together:

6
=-=1 6.52
g (6.52)

AN W

3
P(evenU > 3) = 8+

We have ended up with a probability of 1, or in other words, a 100% chance of
rolling a number which is either even or greater than 3. Since we already know there
are numbers on the die which do not meet either of the criteria, we can deduce that
this conclusion is incorrect.

The miscalculation stems from the fact that there are numbers which are both
even numbers AND greater than 3 (namely 4 and 6). By just adding the probabilities
together, we have “double-counted” their likelihood of occurring. In Fig. 6.7, we can
see that if we create a Venn diagram of even numbers and numbers > 3, they overlap
in the middle with the values of 4 and 6. If we think of probability as calculating the
total area of these circles, then we only need to count the overlap once.

So to overcome this double-counting, we subtract the probability of both events
occurring simultaneously (in this example, the probability of rolling a number which
is both an even number AND greater than 3) from the summed probability of the
individual events occurring;

33 2 4 2
P(CVGHU>3)=8+8—626=§ (653)

More generally, this is known as the rule of addition and takes the general form:
P(AUB)=P(A)+ P(B)— P(ANB) (6.54)
Fig. 6.7 Venn diagram of Even Numbers ~ Numbers >3

even numbers and numbers
greater than 3

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 145

In the case where two outcomes cannot happen simultaneously (i.e., there is no
overlap in the venn diagram), then P(AU B) = P(A) + P(B),as P(AN B) = 0.
This is known as mutually exclusive events.

Finally, imagine we slightly changed our criteria again, so that we are now inter-
ested in the probability of rolling both an even number AND a number greater than
3. You might have noticed we actually already used the probability of both an even
number and a number greater than three occurring in the previous equation to calcu-
late the probability of either of the two events occurring, P(even N > 3) = = = %
This is because in this example we have a small number of outcomes, meamng it
is relatively easy to just count the number of outcomes which match our criteria.
However, in more complicated scenarios the calculation is not as straightforward.

So, to begin thinking about the question of how to calculate the probability of two
events happening simultaneously, we can first ask what is the probability of one of
the events occurring, given the other event has already occurred. In this example,
we could calculate the probability of rolling a number greater than 3, given that the
number rolled is already even. That is, if we have already rolled the die and know that
the outcome is an even number, what is the likelihood that it is also greater than 3?

We already know that there are three sides of the die which have even numbers
(2, 4, or 6). This means our number of possible outcomes, if we know the outcome
is even, is reduced from 6 to 3. We can then count the number of outcomes from
this set which are greater than 3. This gives us two outcomes (4 and 6). Thus, the
probability of rolling a number greater than 3, given that it is also even is:

2
P(> 3leven) = 3 (6.55)

However, this calculation still overestimates the probability of both events occur-
ring simultaneously, as we have reduced our scenario to one where we are 100% sure
one of the outcomes has occurred (we have already assumed that the outcome of the
roll is an even number). So, to overcome this, we can then multiply this equation
by the overall probability of rolling an even number, which we know from before is
P=2

3 2 6 1
PevenN>3)=-x-=— = — (6.56)
6 3 18 3
This gives us the same value, P(AN B) = 3 that we saw in our previous equation.

This is also called the rule of multiplication, w1th the general form:
P(ANB) = P(A)P(B|A) (6.57)

One additional factor to consider when calculating probability is whether events
are dependent or independent. In the dice example, these events are dependent, as
one event happening (rolling an even number) affects the probability of the other
event happening (rolling a number greater than 3). The overall probability of rolling

146 R. Stower et al.

a number greater than 3 is %, but increases to % if we already know that the number
rolled is even.
If events are independent, i.e., do not affect each other’s probability of occurring,

the rule of multiplication reduces to:
P(ANB) = P(A) x P(B) (6.58)

The rule of multiplication also forms the basis for Bayes’ theorem, to be discussed
in the next section.

6.5.2 Bayes’ Theorem

Bayes’ rule is a prominent principle used in artificial intelligence to calculate the
probability of a robot’s next steps given the steps the robot has already executed.
Bayes’ theorem is defined as:

P(ANB) = % (6.59)

Robots (and sometimes humans) are equipped with noisy sensors and have limited
information on their environment. Imagine a mobile robot using vision to detect
objects and its own location. If it detects an oven it can use that information to infer
where it is. What you know is that the probability of seeing an oven in a bathroom is
pretty low, whereas it is high in a kitchen. You are not 100% sure about this, because
you might have just bought it and left it in the living room, or your eyes are “wrong”
(your vision sensors are noisy and erroneous), but it is probabilistically more likely.
Then, it seems reasonable to guess that, given you have seen an oven, you are “more
likely” to be in a kitchen than in bathroom. Bayes’ theorem provides one (not the
only one) mechanism to perform this reasoning.

P(room) is the “prior” belief before you’ve seen the oven, P(oven|room) pro-
vides the likelihood of seeing an oven in some room, and P (room|oven) is your
new belief after seeing the oven. This is also called the “posterior” probability, the
conditional probability that results after considering the available evidence (in this
case an observation of the oven).

6.5.3 Gaussian Distribution

Moving away from our dice example, we know that in real-life things do not always
have an equal probability of occurring. When different outcomes have different prob-
abilities of occurring, we can think about these probabilities in terms of frequencies.
That is, in a given number of repetitions of an event, how frequently is a specific

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 147

-3o 20 1o [Tl +1g +20 +30

Fig. 6.8 Normal distribution

outcome likely to occur? We can plot these frequencies on a frequency histogram,
which counts the number of times each event has occurred. This logic forms the basic
of frequentist statistics, which we discuss more of in Sect. 6.7.

The Gaussian, or normal, distribution (aka the “Bell Curve”) refers to a fre-
quency distribution or histogram of data where the data points are symmetrically
distributed—that is, there is a “peak” in the distribution (representing the mean)
under which most values in the dataset occur, which then decreases symmetrically
on either side as the values become less frequent (see Fig. 6.8). Many naturally
occurring datasets follow a normal distribution, for example, average height of the
population, test scores on many exams, and the weight of lubber grasshoppers. In
robotics, we can see a normal distribution on the output of several sensors. In fact, the
central limit theorem suggests that, with a big enough sample size, many variables
will come to approximate a normal distribution (even if they were not necessar-
ily normally distributed to begin with), making it a useful starting point for many
statistical analyses.

We can use the normal distribution to predict the likelihood of a data point falling
within a certain area under the curve. Specifically, we know thatif our data is normally
distributed, 68.27% of data points will fall within 1 standard deviation of the mean,
95.45% will fall within 2 standard deviations, and 99.73% will fall within 3 standard
deviations. In probability terms, we could phrase this as “there is a 68.27% likelihood
that a value picked at random will be within one standard deviation of the mean.”
The further away from the mean (the peak of the curve) a value is, the lower its
probability of occurring. The total probability of all values in the normal distribution
(i.e., the total area under the curve) is equal to 1.

Mathematically, the area under the curve is represented by a probability density
function, where the probability of falling within a given interval is equal to the area
under the curve for this interval. In other words, we can use the normal distribution to
calculate the probability density of seeing a value, x, given the mean, w, and standard

deviation, o2,

1 ,
p(xlp, 0%) = ——=e 2 »* (6.60)
2102

148 R. Stower et al.

Fig. 6.9 Derivative of a flx)
function gives the

instantaneous slope of that

function. Locations with null

derivative are in green: the

optimums

We can see that there are actually only two parameters which need to be input,
w, and o2, The simplicity of this representation is also relevant to computer science
and robotics applications.

In a classic normal distribution, the mean is equal to 0, and the standard deviation
is 1. The mean and standard deviation of any normally distributed dataset can then
be transformed to fit these parameters using the following formula:

X —

7= (6.61)
o

These transformed values are known as z-scores. Thus, if we have the mean and
standard deviation of any normally distributed dataset, we can convert it into z-
scores. This process is called standardization, and it is useful because it means we
can then use the aforementioned properties of the normal distribution to work out the
likelihood of a specific value occurring in any dataset which is normally distributed,
independent of its actual mean and standard deviation. This is because each z-score is
associated with a specific probability of occurring (we already know the probabilities
for z-scores at exactly 1, 2, and 3 standard deviations above/below the mean). You
can check all z-score probabilities using z-tables.'” From these, we can calculate the
percentage of the population which falls either above or below a certain z-score. A
z-score can then be considered a fest statistic representing the likelihood of a specific
result occurring in a (normally distributed) dataset. This becomes important when
conducting inferential statistics, to be discussed later in this chapter.

6.6 Derivatives

Differential calculus is an essential tool for most of the mathematical concepts in
robotics: from finding optimal gains to the linearization of complex dynamic systems.

10 https://www.ztable.net/.

https://www.ztable.net/
 -1104 58331 a -1104 58331 a

https://www.ztable.net/

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 149

The derivative of a function f(x) is the rate at which its value changes. It can be
approximated by f’(x) = %. However, several algebraic functions have known
exact derivatives, such as vx"x = nx"~!. In robotics, we manipulate derivatives for
physical variables such as the velocity (x), the derivative of the position (x), and
the acceleration (X), the derivative of the velocity. On top of this, derivative can be
helpful to find a function optimum: when the derivative of a function is equal to
zero we are either at a (local) minimum or a (local) maximum (see Fig. 6.9). Several
properties are useful to remember, such as the derivative operator can be distributed
over addition:

[f () + g0 = f'(x) + &' (x), (6.62)

and distributed over nested functions:

f(g() = f'(g(x)g'(x). (6.63)

Finally, derivative operators can be distributed over a multivariate function, using
partial derivatives, i.e., derivatives with respect to each variable independently. For
instance:

d[Ax; + Bxy]x; = A. (6.64)

6.6.1 Taylor Series

Robotics is all about trying to control complex dynamic systems in complex dynamic
environments. Most often these systems and models present nonlinear dynamics. For
instance, airplane and submarines drag forces impact the vehicle acceleration with
regard to the (square of) its velocity. One way to cope with this complexity is to sim-
plify the equation using polynomial (an addition of various powers) approximation.
The most popular is certainly the Taylor series:

f'(a) r—a)+ f"(a) x—a) + f"(a)

3
T 21 3 @At

(6.65)
which approximate f(x) around the point x = @ using a combination of its deriva-
tives. If we want our approximation to linearize the function, we will keep only the
first two terms:

f®la = fla)+

f@) = f@@)+ f@x —a) (6.66)

6.6.2 Jacobian

Now instead of a single function depending of a single variable, you will often find
yourself with a set of equations each depending of several variables. For instance,

150 R. Stower et al.
fi=Axy, L =Cy*+ Dz, and f3 = E/x + Fy + Gz (6.67)

which can be written as a vector:

fi
F=|/ff. (6.68)

f

You can linearize this system of equations using Taylor’s series:

X — X,
F~F@)+J|y—ya|, (6.69)
Z_Za

where J is the matrix of partial derivatives of the functions, often referred to as the
Jacobian, in this case:

df1x 8 f1y 0 fiz Ay Ax 0
J=|ofxofydfiz|=| 0 2cyD]. (6.70)
df3x df3y df3z —E/x> F G

In Chap. 10, the Jacobian is leveraged as a matrix to relate the task space (end effector
velocities) to the joint space (actuator velocities). A Jacobian matrix derived for a
single function, i.e., a single row matrix, is called a gradient, noted (for a geometric
function in Cartesian space):

Vf=[arx afy afz]. (6.71)

The gradient is a useful tool to find the optimum of a function by traveling on it; a
stochastic approach very useful in machine learning (see Chap. 15).

6.7 Basic Statistics

When conducting research in robotics, and especially user studies, you will often
have data you have collected in pursuit of answering a specific research question.
Typically, such research questions are framed around the relationship between an
independent variable and a dependent variable. For example, you might ask how the
number of drones (independent variable) in a mission affects the operator’s cognitive
workload (dependent variable). Being able to analyze the data you have collected
is then necessary to communicate the outcomes from your research. Chapter 13
gives more detail on how to design and conduct user studies, for now we will begin
explaining some of the analyses you can perform once you have obtained some data!

http://dx.doi.org/10.1007/978-981-19-1983-1_10
 1877 26604 a 1877 26604 a

http://dx.doi.org/10.1007/978-981-19-1983-1_10
http://dx.doi.org/10.1007/978-981-19-1983-1_15
 26157 37231 a 26157
37231 a

http://dx.doi.org/10.1007/978-981-19-1983-1_15
http://dx.doi.org/10.1007/978-981-19-1983-1_13
 33696 53171 a 33696 53171 a

http://dx.doi.org/10.1007/978-981-19-1983-1_13

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 151

Table 6.2 Common parameter notations for samples versus populations

Parameter Sample Population
Mean X %
Standard deviation s o
Variance 52 o?
Number of data points n N

The first step of analyzing any dataset is usually to describe its properties in a way
that is meaningful to your audience (descriptive statistics). This involves taking the
raw data and transforming it (e.g., into visualizations or summary statistics). The
second step is then to determine how you can use your data to answer a specific
research question and/or generalize the results to a broader population (inferential
statistics). Here, it is important to distinguish between a sample of data collected,
and the population the data is intended to generalize to (see also Chap. 13). Criti-
cally, descriptive statistics only relate to the actual sample of data you have collected,
whereas inferential statistics try to make generalizations to the population. Typically,
formulas relating to calculating values of a sample use Greek letters, whereas for-
mulas relating to a population use Roman letters. Below is a table with some of the
most common notations for both samples and populations (Table 6.2).

When we collect data our samples can either be independent (the data is from two
different groups of people) or repeated (from the same group). For example, imagine
we wanted to test robotics students’ knowledge of basic geometry and linear algebra.
We could either take a single sample of students, and test their knowledge before and
after reading this chapter—this would be a within-groups study, as the same students
were tested each time. Alternatively, we could take a sample of students who have
read this book chapter and compare them against a sample who have not read this
chapter. There is no overlap between these two groups; thus, it is a between-groups
study design.

You can first begin describing the properties of your sample using three different
measures of central tendency; the mean, the median, and the mode. The mode
represents the most common response value in your data . That is, if you took all of
the individual values from your dataset and counted how many times each occurred,
the mode is the value which occurred the most number of times. For example, imagine
we asked 10 robotics professors how many robots they have in their laboratory (see
Table 6.3).

We can see that the most common value reported is 12 robots—this is the mode.
The mode can be most easily identified by creating a frequency distribution of the
values in your dataset (see Fig. 6.10).

The median is the value which is in the middle of your range of values. Using the
aforementioned example, if we ranked the number of robots in each laboratory from
smallest to largest, the median is the value which falls exactly in the middle (or, if
there is an even number of data points, the sum of the two middle values divided by

http://dx.doi.org/10.1007/978-981-19-1983-1_13
 30313 19659 a 30313 19659
a

http://dx.doi.org/10.1007/978-981-19-1983-1_13

152

R. Stower et al.

Table 6.3 Sample data of robots per professor

Professor ID

Number of Robots

1

5

7

10

10

12

12

12

O| 0 [Q| ||| N —

15

—_
]

20

Frequency

1

0

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Robots

Fig. 6.10 Frequency distribution of the number of robots per laboratory

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 153

2). In this case, we have 10 values, so the median is the average of the 5th and 6th
values, % =11.

However, the median and the mode both rely on single values, and thus, ignore
much of the information which is available in a dataset. The final measure of central
tendency is then the mean, which takes into account all of the values in the data
by summing the total of all the values, and dividing them by the total number of

observations. The formula to calculate the mean of a sample is expressed as:

PIREY
5= &=t (6.72)
n
where x represents the mean of the sample, x represents an individual value, and
n represents the number of values in the dataset.
In our example, this would be:

I1+5+74+104+104+12+124+12415420
X robots = Rkl s +10+ Al =104 (6.73)

Conversely to the median and the mode, this value does not actually have to exist
in the dataset (e.g., if the average number of robots in the laboratory is actually 10.4,
some students probably have some questions to answer . . .)

Many basic statistics can be computed in Python using the numpy library:

import numpy as np # Import the library

mu = np.mean (data) # Mean of the sample ‘'‘data’’
mod = np.mode (data) # Mode of the sample ‘'‘data’’
med = np.median (data) # Mode of the sample ‘‘data’

In the classic normal distribution, the mean, the median, and the mode are equal
to each other. However, in real life, data often does not conform perfectly to this
distribution, thus, these measures can differ from each other. In particular, while the
median and the mode are relatively robust to extreme values (outliers), the value of
the mean can change substantially. For example, imagine our sample included one
professor who works with microrobots who reported having hundreds of robots in
their lab. This would obviously skew the mean by a lot while not being representative
of the majority of the sample.

Let’s say we asked another 90 robotics professors about the number of robots they
have, so we now have sampled a total of 100 robotics professors. Our results now
show the frequency distribution shown in Fig. 6.11.

We can see that although the mean is still 10.4, the mode is now 8 robots, and
the median is 10. These values, although similar to each other, are not identical,
although the data is normally distributed. We can check this using the probability
density function. Again, this is not perfectly represented by the normal distribution,
but it makes a very good approximation of the data.

154 R. Stower et al.

' <
! o
i £ 020
9- S
w
§ 2 0.15-
0
t‘D
3 6- S
g (=]
2 >, 0.10
w £
3 y
3- <
8 0.05: g X
III I g |
o i il 000 |
123456 7 8 910111213 14151617 18 19 20 12345678 91011121314151617181920
Number of Robots Number of Robots

Fig. 6.11 Frequency histogram and probability density function for a normally distributed dataset.
The graph on the left shows the measures of central tendency, with the dark purple bar representing
the model, the dashed purple line representing the median, and the solid black line representing the
mean. The graph on the right shows the actual probability distribution of the data contrasted with
the normal distribution

6.7.1 Variance

The sensitivity of our dataset descriptive metrics to new data points can be grasped in
terms of its variability. We can measure the amount of variance in any given sample,
as well as detect outliers, in multiple different ways. The first one is the standard
deviation. This represents on average, how far away values are from the mean. The
smaller the standard deviation, the closer the values in the sample are on average to
the mean, and the more accurate the mean is at representing the sample. We can also
use the standard deviation to create a cutoff for extreme values—any value which
falls above or below 3 standard deviations from the mean is likely to be an outlier
(i.e., not representative of the population) and can often be excluded.

To calculate the standard deviation of a variable, we first take each individual
value and subtract the mean from it, resulting in a range of values representing the
deviances from the mean. The total magnitude of these deviances is equal to the
total variance in the sample. However, given that some individual values will be
above the mean, and some below, we need to square these values so that they are
all positive, to avoid positive and negative values canceling each other out. We then
sum the squared deviances to get a total value of the error in the sample data (called
the sum of squares). Next, we divide by the number of data points in the sample
(n), minus one. Because we are calculating the sample mean, and not the population
mean, n — 1 represents the degrees of freedom in the sample. This is because we
know both, the sample mean and the number of data points. Thus, if we have the
values of all the data points bar one, the last data point can only be whatever value
is needed to get that specific mean. For example, if we go back to our first sample of
10 robotics professors, and took the values of the first 9, knowing that the mean is
10.4 and that we sampled 10 robotics professors total, the number of robots in the
laboratory of the last professor must have a fixed value.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 155

1+5+7+10+10+ 124+ 124124+ 15+x
10 (6.74)

104 =
x =20

That is, this value of x is not free to vary. So, the degrees of freedom are always
one less than the number of data points in the sample.

Finally, since we initially squared our deviance values, we then take the square
root of the whole equation so that the standard deviation is still expressed in the same
units as the mean.

The full formula for calculating the standard deviation of a sample is described
below. Note that if we were to calculate the standard deviation of the population

mean instead, the first part would be replaced with %, rather than ﬁ

n
1)2
s = E (x; — X) (6.75)
n—1~4
i=1
In Python, we can compute this using:
import numpy as np # Import the library
stddev = np.std(data) # Standard deviation of the sample ‘'‘data’’

If we don’t take the square root of the equation, and instead leave it as is, this is
known as the variance, denoted by s2.

In statistical testing, we are interested in explaining what causes this variance
around the mean. In this context, the mean can be considered as a very basic model
of the data, with the variance acting as an indicator of how well this model describes
our data. Means with a very large variance are a poor representation of the data,
whereas means with a very small variance are likely to be a good representation.

The variance for any given variable is made up of two different sources; systematic
variance, which is variance that can be explained (potentially by another variable),
and unsystematic variance, which is due to error in our measurements.

We therefore often in our experiments have more than one variable, and we might
be interested in describing the relationship between these variables—that is, as the
values in one variable change, do the values for the other variable also change? This
is known as covariance.

The total variance of a sample with two variables is then made up of the vari-
ance attributed to variable x, the variance attributed to variable y, and the variance
attributed to both. Remembering that variance is simply the square of the formula
for the standard deviation, or s2, we can frame the sum of the total variance for two
variables as:

(Sx + 5% =52 + 5,2 4 2854y (6.76)

It is this last term, 2s,, that we are interested in, as this represents the covariance
between the two variables. To calculate this, we take the equation for variance, but

156 R. Stower et al.
rather than squaring the deviance of x, (x — x), we multiply it by the deviance of the
other variable, y — y. This ensures we still avoid positive and negative deviations

canceling each other out. These combined deviances are called the cross product
deviation.

l n
Cov(x, y) = — 3 (i = D) — F) 6.77)
i=1

To get the covariance between two variables in Python, we can use:

:I.mport numpy as np # Import the library
cov = np.cov(data,ddof=0) #compute the covariance matrix

6.7.2 General Population and Samples

In the aforementioned example, we have a specific population that we are interested
in robotics professors. However, as it would be difficult to test every single robotics
professor in the world, we took only a subset of robotics professors and asked them
about the number of robots they have in their laboratories. In this case, the mean
number of robots is an estimation of the general population mean. This is different
from the true population mean, which is the mean we would get if we actually were
able to ask every single robotics professor how many robots they have. In an ideal
world, the sample you have collected would be perfectly representative of the entire
population, and thus, the sample mean would be equal to the true mean. However,
as there is always some error associated with the data, the sample mean will likely
always vary slightly from the true mean.

If we were to take several different samples of different robotics professors, these
samples would each have their own mean and standard deviation, some of which
might over or underestimate the true population mean. If we were to plot the means
of each of our samples in a frequency distribution, the center of this distribution
would also be representative of the population mean. Importantly, if the population
is normally distributed, the distribution of samples will also be normally distributed.
Thus, knowing the variance in a distribution of samples would allow us to know
how likely it is that any one specific sample is close to the true population mean,
exactly the same as the standard deviation of individual values around a sample mean
allows to estimate the error in that sample. The standard deviation of a distribution
of samples around the population mean is then known as the standard error and is
expressed as.

(6.78)

o =

Jn

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 157

The standard error allows us to determine how far away, on average, the mean
of a sample taken at random from the population is likely to be from the population
mean. Of course, when we conduct experiments, we cannot actually repeatedly take
different samples from the population—normally we only have one sample. However,
the concept of the standard error is theoretically important to understand how we can
generalize our results from our sample to a population. Going back to the central limit
theorem, if you have a large enough sample size, the sample mean will become more
similar to the true population mean. Similarly, the standard error will also come to
approximate the standard error of the population. For this reason, the standard error
is often used in place of the standard deviation when using inferential statistics.

6.7.3 The Null Hypothesis

Hypothesis testing involves generating some prediction about our data and then
testing whether this prediction is correct. Normally, these predictions relate to the
presence or absence of an effect (i.e., there is some relationship between variables,
or not).

The null hypothesis, typically denoted as Hy, is the assumption that there will be
no effect present in the data. For example, if you are comparing two different robots
on some feature (e.g., appearance) and how much appearance affects the robots’
likability, Hy would state that there is no difference between the two robots. Relating
this back to our normal distribution, Hy is the assumption that the data from the two
groups come from the same population (i.e., are represented by the same distribution,
with the same mean). That is, do we happen to have two samples that vary in their
mean and standard deviation by chance, but are actually from the same population,
or, is their a systematic difference between the two (see Fig 6.12)?

In contrast, the alternative hypothesis, or H\, relates to the presence of some
effect (in the aforementioned example, H; would be that there is an effect of robot
appearance on likeability). Again putting this in context of the normal distribution,
H; is the idea that the data comes from two different population distributions, with
different means and standard deviations. In this context the “populations” can also
refer to an experimental manipulation—e.g., is a population of people who saw a
robot with glowing red buttons and aggressive beeping more likely, on average, to
rank this robot as less likeable than a population of people who saw a robot with
colorful lights and calm beeping?

In inferential testing, we work on the basis that Hj is true by default. Thus, the
goal is not to prove that H; is true, but rather to try and demonstrate that Hj is false.
That is, we want to show that it is very unlikely that the two (or more) groups come
from the same population distribution.

So, when we have two sample means of different values, we can test whether
the differences in these values are due to chance (i.e., random variation), or, if
they actually come from different populations. The likelihood that we would have
obtained these data, given the null hypothesis is true, is represented by the p-value,

158 R. Stower et al.

— Sample 1
— Sample 2

Fig. 6.12 Two overlapping bell curves from different samples

Fig. 6.13 p-values in relation to the normal distribution

see Fig. 6.13. Typically, the threshold for this likelihood is set at 95%. That is, if
we assume the null hypothesis is true, and the results from our model indicate that
the likelihood of observing these results is 5% or less, then the null hypothesis is
likely not the correct explanation for the data. In this case, we would reject Hy and
accept H;. In other words, we call the result statistically significant. The smaller the
p-value, the lower the probability that Hj is true. Although p < .05 is the minimum
threshold that is typically accepted, p < .01 and p < .001 may also be used.

Note that all these thresholds still leave some margin for error—it is possible that
we could observe these results even if Hj is true, just unlikely. That is, by chance
we have picked two samples that differ substantially from each other (remember
that our distribution of samples from the general population also follows a normal
distribution, thus, there is always the chance to have a sample that is not actually
representative of the population). This is called a Type-I error, or a false positive—we
have incorrectly deduced that the samples come from different populations, when in
fact they come from the same one. The inverse of this, if we incorrectly conclude
that the samples come from the same population, when in reality they come from
different ones, is called a Type-II error; see Table 6.4.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 159

Table 6.4 Type I and II errors

Hy is true Hj is false
Reject Hy Type I error « Correct 1 — B
Accept Hy Correct 1 — o Type-II error B

An additional factor to consider when setting the p-value threshold is the direc-
tionality of our test. If we predict that there will be a significant difference between
our two sample means, we could choose to test precisely whether one of the two sam-
ples, specifically, will have a higher mean than the other. For example, we could test
whether an older versus newer model of a robot have different levels of battery per-
formance, or we could test specifically whether the newer model has a better battery
performance than the older model. In the former scenario, we would use two-tailed
hypothesis testing. That is, we don’t know which side of the normal distribution our
test statistic (e.g., the z-value) will fall, so we consider both. In the latter scenario, we
are specifically saying that the mean for the newer robot model will be higher than
the mean of the old model, thus, we only look at the probabilities for that side of the
distribution with a test statistic in that direction, called one-tailed hypothesis testing.
However, one-tailed hypothesis testing is generally used sparingly, and usually only
in contexts where it is logistically impossible or irrelevant to have results in both
directions. That is, even if we have a directional hypothesis (e.g., that the newer
model has a better battery performance), if it is theoretically possible that the older
model has a better battery performance, we need to test both sides of the probability
distribution. In this example, if we used a one-tailed hypothesis test assuming that the
newer model is better, and in fact it is actually worse than the older model, we would
likely get a non-significant result and incorrectly conclude that there is no difference
in battery performance between the two models. For this reason, most hypothesis
testing in robotics is two-sided.

6.7.4 The General Linear Model

So far, we have discussed measures of central tendency and different measures of
variance as ways of describing variables. However, as mentioned at the beginning
of this section, we are usually interested in not only describing our data, but using
it to predict some outcome. That is, we want to create a model of our data so that
we can accurately predict the outcome for any given set of parameters. We can then
conceptualize any outcome or variable we are trying to predict as a function of both
the true value of the model and the error, such that:

outcome; = model; + error; (6.79)

160 R. Stower et al.

Where model; can be replaced with any number of predictor variables. This forms
the basis for the general linear model. Mathematically, this model can be expressed
as:

Where Y; represents the outcome variable, b is where all predictors are 0, and w
represents the strength and direction of an effect.

As mentioned before, this can then be expanded to any number of predictor vari-
ables:

Yi=bo+ b X; +bX; +---+b,X; +¢ (6.81)

Once we have defined a model, we want to test how well it actually predicts the
data that we have. We can do this by comparing the amount of variance in the data that
is explained by our model, divided by the unexplained variance (error) to get different
test statistics. We can then use the normal distribution to check the likelihood that
we would have obtained a specific test statistic, given the null hypothesis is true.

.. variance explained by model
test statistic =

; ; (6.82)
unexplained variance (error)

To get the ratio of explained to unexplained variance, we start by calculating the
total variance in our sample. To do this, we need to go back to the formula for the
sum of squares, which is simply:

n

SSiotal = Z(xi -)_Cgrand)z (6.83)

i=1

Where x; is an individual data point, X gang 18 the grand mean, or the mean of the
total dataset, and » is the number of datapoints.

We also know that variance is equal to the sum of squares divided by the degrees
of freedom, so, the sum of squares can be rearranged as:

1 n
2 = 2
s = E (xi _xgrand)

n—1~4 -

=

1 (6.84)
SStolal

52:

n—1
S S0t =s*(n — 1)

This gives us the total amount of variation in the data (the sum of the deviation
of each individual data point from the grand mean). We are interested in how much
of this variation can be explained by our model (remembering that total variation =
explained variation + unexplained variation).

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 161

To get the amount of variation explained by our model, we then need to look at
our group means, rather than the grand mean. In this case, our model predicts that
an individual from Group A will have a value equal to the mean of Group A, an
individual from Group B will have a value equal to the mean of Group B, etc.

We can then take the deviance of each group mean from the grand mean, and
square it (exactly the same as calculating normal sums of squares). We then multiply
each value by the number of participants in that group. Finally, we add all of these
values together.

So, if we have three groups, this would look like:

SSmodel = Nq(Xq — Xgrand)z + np(xp — J_Cgrand)z +ne(xe — Xgrand)z (6.85)

Where n, represents the number of datapoints in group A, X, is the mean of group
A, and Xgrang 1s the grand mean.
This can be expanded to k number of groups with the general form:

k
SSmodel = an ()-Ck -)Egrand)z (686)

n=1

Where k is the number of groups, 7, is the number of datapoints in group k, X is
the mean of group k, and X granq 1S the grand mean.

So, now we have the total variance, and the variance explained by our model. Intu-
itively, the variance that is left must be the error variance, or variance not explained
by the model. This residual variance is the difference between what our model pre-
dicted (based on the group means) and our actual data. Although in theory we can
get this value by subtracting the model variance from the total variance, we can also
calculate it independently.

Remember that our model predicts that an individual from Group A will have a
score equal to the mean of Group A. So, to get the residual variance we first calculate
the deviance of each individual in Group A from the mean of Group A, and the same
for Group B and so on and so forth. This can be expressed as:

n

S Sresidual = Y (Xit — X1 (6.87)
i=1

Where n is the total number of data points, i is an individual datapoint, x;; is the
value of an individual, i in group k, and Xy, is the mean of that group.

This takes the deviance of each individual datapoint from its associated group
mean and sums them together. However, we could also conceptualize residual vari-
ance as the sum of the variance of Group A, plus the variance of Group B and so on
for k number of groups. We also saw before how the sum of squares can be expressed
in terms of the variance (see Eq. 6.84). The same logic can be applied here for adding
the group variances together to give us:

162 R. Stower et al.

S8, residual

) Ssmodet

X

Fig. 6.14 Illustration of total sum of squares, the model sum of squares, and the residual sum
of squares. The solid red line represents the grand mean, the dashed red lines indicate a specific
data point (or group mean), and the solid blue line represents the predicted value of y for a given
value of x

S Sresiaual = Y 8¢ (0 — 1) (6.88)

Where s,% is the variance of group k, and n; is the number of data points for that
group.

Visually, the total sum of squares (SSi), the model sum of squares (SSmoder)s
and the residual sum of squares (S Siesigqua) can be represented by the three values
illustrated in Fig. 6.14.

However, right now these are biased by the number of data points used to calculate
them—the model sum of squares is based on the number of groups (e.g., 3), whereas
the total and residual sum of squares are based on individual data points (which could
be 5, or 15, or 50, or 500). To rectify this, we can divide each sum of squares by
the degrees of freedom to get the mean squares (MS). For MSp0q4e1 the degrees of
freedom are equal to the number of groups minus one, whereas for the MS,csigual they
are calculated by the number of total data points minus the number of groups.

SS
Msmodel = Z iodlel
T (6.89)
MS esidual :ﬂ
n—k

Where £ is the total number of groups and n is the total number of data points.

From here, we are able to compare the variance explained by our model to the
residual, or error variance and test whether this ratio is significant. Although there
are many different kinds of test statistics that we can use to see whether our model
is significant or not, we will focus on only two of them: the t-test and the ANOVA.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 163

Fig. 6.15 Comparison of ¢
and z distributions

[t-distribution
|| z-distribution

Probability Density Function

6.7.5 T-test

The t-test is used to compare the means of two different samples, to test whether there
is a statistically significant difference between the two (i.e., a less than 5% chance
of observing this difference in means, given the null hypothesis is true).

As we discussed before in Sect. 6.7.2, when sample sizes are sufficiently large,
the sampling distribution of a population will approximate the normal distribution,
and we can use z-scores to calculate probabilities (using p-values associated with
specific z-scores). However, if we have small sample sizes (which can often be the
case in user studies), then we cannot reliably estimate the variance of the population.
In this case, we use a ¢-distribution, which is a more conservative estimate of the
normal distribution. It is the z-distribution that we use to calculate our p-values for
the #-test. See Fig. 6.15 for a comparison between the z and t distributions.

The value of the ¢-test is then a function of the mean and the standard error of
the two samples we are comparing. If we have a difference between two means,
then intuitively the larger this difference is, the more likely it is there is an actual
difference between the samples. However, if the standard error is also very large, and
the difference in means is equal to or smaller than this value, then it is unlikely that
it represents a true difference between the samples—the difference between means
could simply be accounted for by a large variance in a single population.

So, to perform a 7-test, we want to compare the difference in means we actually
saw, to the difference in means we would expect if they come from the same popu-
lation (which is typically 0). Going back to the previous section, we also saw that in
general the test statistic (which in this case, is the t-test) can be calculated by dividing
variance explained by the model by the error variance (see Eq. 6.82). In this case, the
model we are testing is the difference between the actual and expected means. So,
we take this value (which, as the expected difference between means is 0, is actually
just the value of the observed difference) and divide it by the standard error of the
differences between the means.

(X1 — X2) — (U1 — p2) _ (X1 — X2)

= = 6.90
standard error of the difference standard error of the difference ()

164 R. Stower et al.

To get the standard error of the differences between means, we first start by
summing together the variance for each sample, divided by the sample size of each.
This is based on the variance sum law, which states that the variance of the difference
between two samples is equal to the sum of their individual variances.

S12 S22

+ — (6.91)
ni na

We then take the square root of this value to get the standard error of the difference.

(6.92)
So, Eq. 6.90 becomes:
t = G —x) (6.93)
a2 4 8?2
np ny

However, this assumes that the sample sizes of each group are equal. In the case
that they are not (which is often), we replace s; and s, with an estimate of the pooled
variance, which weights each sample’s variance by its sample size.

= Dsi+(ny— 1)s3
spooled - ny4+ny—2 (694)
In turn, the t-test statistic becomes:
Spo;lledz + Spo;lvlzedz

Note that we are also assuming the data comes from two different groups (i.e., an
independent groups t-test). When we have a within-groups design, we instead use a
dependent t-test.

In Python, t-tests for both within- and between-groups samples can be computed
with:

from scipy 1MPOrt stats # Import library
res = stats.ttest_rel(xl, x2) # Run test for dependent sample
res = stats.ttest_ind(xl, x2) # Run test for independent sample

print(res [11)

We can then calculate the probability that we would have seen this ¢-value if the
samples actually did come from the same population, which gives us the p-value.
We can do this using t-distribution tables, or, since you are likely using some form
of statistical software, read this value from the output. The important thing to know
is that, because our data is normally distributed, the p-values for each #-value remain

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 165

Table 6.5 Independent groups t-test
Mean (SD) ‘ Estimate
Own algorithm Competing algorithm
1055 (408) 4042 (605) | —2986.9 | —28.94 | <.001

t-value ‘ p-value

0.00100 -

0.00075 -

0.00050 -

0.00025 -

Probability Density Function

0.00000 -
0 2000 4000 6000

Time to Solve Maze Puzzle (ms)

Fig. 6.16 Probability density function for each algorithm

consistent. That is, if we conducted two completely different experiments and ended
up with the same or similar 7-values, the p-values would also be the same.

As a practical example, imagine we want to compare two different navigation
algorithms, one we have developed and one a competing laboratory has developed,
in terms of how fast they can solve a maze puzzle (in milliseconds). We run an
independent t-test comparing the two algorithms and find the following results in
Table 6.5:

From this, we can see that our algorithm solves the puzzle significantly faster. We
can also compare the probability distributions of the two groups; see Fig. 6.16. This
also confirms that there is only a very small overlap in the values that occur in both
samples and that these values have a very low probability of occurring.

For more t-test examples, a set of Python examples based on a public dataset of
task load surveys is available online.'!

6.7.6 ANOVA

ANOVA stands for “Analysis of Variance” and is an extension of the ¢-test when we
have more than two groups. That is, we are again interested in comparing the means of

" hitps://github.com/Foundations-of-Robotics/Stats-examples.

https://github.com/Foundations-of-Robotics/Stats-examples
 -1104 57867
a -1104 57867 a

https://github.com/Foundations-of-Robotics/Stats-examples

166 R. Stower et al.

different samples to determine if there is a statistically significant difference between
them (i.e., whether they come from the same or different population distributions).
To do this, we use the F-test. This is simply another test statistic, which, as we have
seen before, is a measure of the total variance explained by our model divided by the
amount of error in the model.

To explain more about the difference between a t-test, and an F-test, imagine we
have three different groups (A, B, and C). We then have multiple different possible
outcomes for the results: First, there could be no significant difference between any
of the three groups. Second, A, B, and C could all be significantly different from
each other. Alternatively, A and B could be different from each other, but not from
C, and so on for all possible combinations of A, B, and C. So, we can already see
that this is quite a few more options compared to the z-test where we have only two
groups and the outcome is binary—there is either a significant difference between
the groups or not.

An ANOVA is therefore conducted in two stages: First, we conduct an omnibus
test to determine if there is any difference between the means at all. However, this
does not tell us which groups, specifically, might be different from each other. Thus,
if the result of this test is significant, then we conduct a series of z-tests for each of
the possible two-way combinations of the groups. The reason that we do not start
straight away with 7-tests is because this inflates our chance of making a type I error
(incorrectly stating that the samples come from different populations, when in fact
they come from the same one). This is because if we set our significance threshold
to 95%, then we are still allowing for a 5% chance of incorrectly rejecting the null
hypothesis. If we perform three t-tests independently of each other, each with a
significance threshold of 95%, then we can see how this error compounds: 0.95° =
0.8571 and 1 — 0.857 = 14.3%. So, instead of having a 5% chance of incorrectly
rejecting the null hypothesis, we now have a 14.3% chance. This is known as the
familywise error rate and increases with the more comparisons we make. By starting
our analysis with an omnibus test, we are trying to mitigate this error.

To get the omnibus F-statistic, we need to go back to Eq. 6.89, where we can see
that we actually can calculate values for our model variance and residual variance!
Thus, the F-statistic can be expressed as:

F = M Smoder. (6.96)
MSresidual

Any value greater than 1 means that our model explains more variance than
random individual differences (which is a good thing!) However, it still does not tell
us whether this value is significant. To check this, we again go back to our p-values
to determine, with a given F'-statistic and associated degrees of freedom, what the
likelihood of obtaining this value is, if the null hypothesis is true. To get the degrees
of freedom, we need to consider the two parts that make up our ratio: our model
variance and the residual variance. We also mentioned before about how the sum
of squares for each of these was calculated using their respective number of data
points—for the model variance this is equal to the number of groups, and for the

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 167

Table 6.6 Mean and SD for perceived task difficulty in each task environment

Environment Mean (SD)
Land 3.12 (1.00)
Water 5.16 (0.95)
Air 5.38 (1.28)

residual variance this is equal to the number of data points. It is these values which
we use to get the degrees of freedom.

df = (6.97)

Where k is equal to the number of groups and # is equal to the sample size. This
is also why k — 1 is sometimes called the numerator degrees of freedom, whereas
n — k is called the denominator degrees of freedom.

Having determined our degrees of freedom and our F-statistic, we then need to
use F-distribution tables (or our statistics software) to look up the corresponding
p-value. Again, the p-value for all F-values with specific degrees of freedom will
always be the same.

Following a significant ANOVA, the next step is to conduct individual #-tests
between each pair of groups, called pairwise comparisons. Again, however, we have
to be a bit cautious of inflating our type I error. When the number of comparisons is
less than 5, it is generally considered okay to use the p-values as-is. Anything above
this however, and it is recommended to use an adjustment method. This typically
involves applying a correction to the p-values to make their estimates more conser-
vative, see (Bender and Lange, 2001) for an explanation of the different types of
corrections.

Now that we have covered some of the logic underpinning the ANOVA, we can
consider what this looks like in practice. Imagine we have a sample of robot opera-
tors, and we are interested in understanding the difficulty of using unmanned robots
to explore different types of environments. So, we design an experiment into how the
type of environment affects the perceived task difficulty. Here, our independent vari-
able is task environment (land, water, air) and our dependent variable is the perceived
task difficulty, measured on a 7-point scale from 1 (very easy) to 7 (very difficult).
We test a total of 150 robot operators, 50 in each environment.

In this case, the null hypothesis (Hy) is that there will be no difference between
the three task environments. The alternative hypothesis (H) is that the perceived
task difficulty will change according to the task environment.

After running our descriptive statistics, we observe the following means and stan-
dard deviations for each group; see Table 6.6.

As our first step of the ANOVA, we conduct the omnibus F-test, to determine if
there is any overall difference between the groups, Table 6.7.

168 R. Stower et al.

Table 6.7 Results of Omnibus F-test for one-way ANOVA

DF Sums of Mean squares | F-value P
squares
Environment |2 155.3 77.65 65.68 <.001
Residuals 147 173.8 1.18

Table 6.8 Post-hoc pairwise comparisons for each task environment with no correction

Estimate SE t-value p-value
Land versus —2.04 0.22 —9.38 <.001
Water
Land versus Air | —2.26 0.22 —10.39 <.001
Water versus Air | —0.22 0.22 —1.01 313

What you might be able to see from these tables is that the values for each column
match exactly the formulas we discussed for the general linear model. That is, the
mean squares are equal to the sums of squares divided by the DF for each row, and
the F-value is the ratio of the mean squares. So, in case you are ever stuck in a
room with only your experimental data and no Internet access or statistics software
downloaded, you can still calculate your ANOVAs by hand!

From looking at the p-value, we can see that the overall F-test is significant (p <
.001). However, we don’t yet know where this difference lies (i.e., we don’t know
which of the environments are perceived as significantly more or less difficult). So,
the next step is to compare the groups, using our pairwise comparisons; see Table 6.8.

From these results, we can now determine that both air and water environments
are perceived as more difficult to explore than land environments, but that there is
no difference between these two. We could then write up the results from this test as
follows:

The results from a one-way between-groups ANOVA revealed a signifi-
cant effect of task environment on perceived task difficulty, F (2, 147) =
65.68, p < .001. Post-hoc pairwise comparisons with no correction indicate
that the land environment was perceived as significantly less difficult than
both the water (r = —9.38, p < .001) and air (t = —10.39, p < .001) envi-
ronments, respectively. However, there was no difference in perceived task
difficulty between the water and air environments (¢ = —1.01, p = .313).

In the aforementioned example, we only had one independent variable, task envi-
ronment, and thus, it is a one-way ANOVA. Now, imagine we expanded our experi-
mental design to include not only the task environment, but also the type of robot being
used for exploration, unmanned aerial vehicles (UAVs) versus unmanned ground
vehicles (UGVs). Now we have two independent variables, task environment (again

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 169

with three levels, land, water, and air) and robot type (UAV versus UGV). Our depen-
dent variable, perceived task difficulty, remains the same. This is called a two-way
ANOVA.

In this case, we now have two different main effects we are interested in; the effect
of robot type on task difficulty, and the effect of task environment. However, there is
also a third effect—the interaction between the two variables. An interaction effect
indicates that at different levels of one variable, the effect of the other variable on
the dependent variable changes. To keep things simple, these kinds of effects are
called . .. simple effects. The directionality of the interaction hypotheses is normally
theoretically driven and specified before conducting the analysis. However, usually
we only conduct one set (i.e., either the effect of variable A at different levels of
variable B, or the effect of variable B at different levels of variable A, but not both).
This again has to do with minimizing our chances of making a type I error—remember
that every analysis we run comes with a small chance of incorrectly rejecting the
null, so the more analyses we run, the more this chance compounds.

In this case, we will look at the simple effects of robot type over the levels of task
environment. That is, at each level of task environment (land, water, air) we will run
an analysis of the effect of robot type on perceived task difficulty. However, we could
just as equally say that depending on the type of robot, the effect of task environment
on perceived task difficulty changes.

The syntax to compute this analysis in python looks like:

Import libraries

from statsmodels.formula.api]'.mport ols

from statsmodels.stats.anova import anova_lm

Create the model (two factors - last term is interaction)

formula = 'task_difficulty ~ C(environment) + C(robot) + C(environment):C(robot) "’
Test the model against the data (must have column headers as in the model)
model = ols(formula, data).fit()

Run a two-way ANOVA

aov_table = anova_lm(model, typ=2)

print(aov_table.round (4))

We can see the means and standard deviations for our new dataset below
in Table 6.9:

So to recap, we now have two main effects which we are looking at, and an
interaction effect. Each main effect has an F-value associated with it, as does the
interaction. We can see these and their associated significance’s in the table below
(Table 6.10).

Table 6.9 Means and SDs for task environment and Robot type

Environment Robot type Mean (SD)
Land UAV 5.12(1.47)
Land uGv 3.20 (1.34)
Water UAV 6.16 (0.79)
Water UuGv 6.00 (0.70)
Air UAV 2.92(1.45)
Air uGv 5.08 (1.42)

170

Table 6.10 Results of Omnibus F-test for two-way ANOVA

R. Stower et al.

DF Sums of Mean squares | F-value P
squares
Environment |2 133.97 66.99 4391 <.001
Robot type 1 0.03 0.03 0.017 .900
Environment * | 2 104.69 52.35 34.31 <.001
Robot type
Residuals 144 219.68 1.53

Table 6.11 Post-hoc pairwise comparisons for two-way ANOVA with no correction

Estimate t-value p-value
Land 1.92 4.78 <.001
Air -2.16 —5.41 <.001
Water 0.16 0.749 457

We can see, based on this table, that there is still the main effect of task envi-
ronment, but no main effect of robot type. However, the interaction between task
environment and robot type is significant.

As with the previous one-way ANOVA, we can follow up the significant F-test for
the interaction with pairwise comparisons. In this case, however, we take each level
of environment (land, water, air) and look at the effect of robot type on task difficulty
within each of these conditions. As we only have two levels of robot type, we can
go straight to t-tests comparing UAVs and UGVs within each task environment.
However, if we had more than two levels (e.g., if we had also tested unmanned
underwater vehicles), we would need to conduct another one-way ANOVA for each
environment type, then conduct the pairwise comparisons between the robot types
depending on which environment was significant.

The results of the pairwise comparisons for the effect of robot type within each
task environment are in Table 6.11.

Now things are starting to get a little bit interesting. From this table, we can see
that, in the water environment, there is no difference between UGVs and UAVs.
In fact, the mean perceived task difficulty for both of these groups is quite high
(probably because neither UAVs nor UGVs are suited for underwater exploration).
Conversely, in the land environment, the UGV is rated as having a significantly lower
task difficulty than the UAV, and vice versa for the air environment, where the UAV
has a lower task difficulty.

We can plot a graph of this interaction as seen in Fig. 6.17.

Looking at this graph, we can begin to get an idea of why the main effect for robot
type was non-significant. Because the means for the UAV and UGV were flipped for
the land and air environments, and similar for the water environment, when averaged
all together, they cancel each other out. So when we look at the aggregated means for
the two robot types (see Fig .6.18), ignoring whether they were in a land, water, or

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 171

7_
6_
2
S5 5- S
o >
E
(=) Robot Type
5 4 B uAv
e - =QeY
c
3 3.
=
2_
1_

Air
Task Environment

Fig. 6.17 Two-way interaction between task environment and robot type

Fig. 6.18 Two-way
interaction between task
environment and robot type

[}

[$,]

Mean Task Difficulty
w ~

N

UAV uGgv
Robot Type

air environment, there does not appear to be a big difference between them. We can
also see, if we plot some lines connecting the means (the dashed purple and green
lines), that they intersect. This usually indicates the presence of an interaction.

Thus, when we find an interaction, the results from this interaction supersede the
results of the main effects. That is, we can say that the main effects were qualified
by the presence of an interaction. If we have no significant interaction, then we
can follow up any significant main effects exactly the same way as for the one-way
ANOVA.

172 R. Stower et al.

The write-up for this analysis would look something like:

The results of the two-way analysis of variance revealed a significant main
effect of task environment, F (2, 144) = 43.91, p < .001, but no signifi-
cant main effect of robot type F (1, 144) = 0.017, p = .900. However, these
effects were qualified by the presence of an interaction between task envi-
ronment and robot type, F(2, 144) = 34.31, p < .001. Follow up tests for
the simple effect of robot type at each level of environment indicates that
in land environments, UGVs were rated significantly lower for perceived
task difficulty than UAVs t = 4.78, p < .001, whereas for air environments
the opposite is true, with UAVs being rated significantly lower for perceived
task difficulty r = —5.41, p < .001. However, in underwater environments,
there was no difference between UAVs and UGVs—each of them was rated
equally as difficult for exploration (t = 0.75.p = .457).

In sum, ANOVAs follow the same logic for test statistics that we have consistently
seen throughout this chapter; that is, they rely on the ratio of explained to unex-
plained variance. This logic can be extended to more complex analyses, for example
if you have three independent variables (three-way ANOVA), or a within-groups
experimental design (repeated measures ANOVA), or a design which combines both
within- and between-groups variables (mixed ANOVA). The math to compute these
is slightly more complicated, but they all stem from the same basic principles of the
general linear model. Thus, if you understand the content from this chapter, you will
be well placed to conduct other more advanced statistical analyses in the future.

6.8 Chapter Summary

In this chapter, we covered a lot of ground on various mathematical tools essential to
modern roboticists. We expect most of it to be merely a reminder for most readers,
but with a twist toward how we need and use these tools in robotics. From geometry
to matrix calculus to quaternions and inference statistics, this chapter is meant to be
a reference you will come back to when reading the rest of this book.

6.9 Revision Questions

Question #1
Consider the following system of equations:
2x +3y =12 (6.98)

y—2z=0 (6.99)
x—y+27=3 (6.100)

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 173

Write this system in matrix form (Ax = b), compute the determinant of A, its inverse
and finally, find the values of x, y, and z.

Question #2

Demonstrate the equality in Eq. 6.37.

Question #3

Define what a p-value is and explain how it is related to the normal distribution.
Question #4

State the ratio needed to compute a test statistic and why.
More examples and exercises on statistical tests are available online.'?

6.10 Further Reading

While the theory behind basic linear algebra was presented in this chapter, some
practical limitations must be known before solving a numerical problem. For instance,
even if the determinant of a square matrix is not equal to zero, it may not be a good
idea to inverse it to solve a system of linear equation. This is where you must consider
the conditioning of a matrix, quantified by the condition number, which should not be
close to 1. If it is, numerical approximations during the computation will be amplified
and this will result in significant errors on the obtained solution. Moreover, to solve
a numerical system of equations, the inverse (and generalized inverse) of a matrix
is generally only of theoretical value, as algorithms such as the LU-decomposition,
the Gram—Schmidt orthogonalization procedure, and the Householder reflections are
used to avoid numerical errors. For further information, you can refer to a textbook
on numerical analysis (Gilat and Subramaniam, 2008; Kong et al., 2020).13

The statistics covered in this chapter are only a starting point for many other tech-
niques for analysing experimental data. If you are interested in learning more about
the theory behind different statistical methods, you can read Discovering Statistics
Using R by Field et al. (2012), also available online.'*

References

Ben-Israel, A., & Greville, T. N. (2003). Generalized inverses: Theory and applications (Vol. 15).
Springer Science & Business Media.

Bender, R., & Lange, S. (2001). Adjusting for multiple testing-when and how? Journal of Clinical
Epidemiology, 54(4), 343-349.

Field, A. P, Miles, J., & Field, Z. C. (2012). Discovering statistics using R. SAGE Publications.

Gilat, A., & Subramaniam, V. (2008). Numerical methods for engineers and scientists: An intro-
duction with applications using MATLAB. Wiley.

12 https://github.com/Foundations-of-Robotics/Stats-examples.

13 python ~ Programming —and Numerical ~Methods also available online: https:/
pythonnumericalmethods.berkeley.edu/notebooks/Index.html.

14 https://www.discoveringstatistics.com/.

https://github.com/Foundations-of-Robotics/Stats-examples
 -1104 56760 a -1104 56760
a

https://github.com/Foundations-of-Robotics/Stats-examples
https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html
 32152 58088 a 32152 58088 a

https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html
https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html
https://www.discoveringstatistics.com/
 -1104 60523 a -1104 60523 a

https://www.discoveringstatistics.com/

174 R. Stower et al.

Hassenpflug, W. (1995). Matrix tensor notation part ii. skew and curved coordinates. Computers &
Mathematics with Applications, 29(11), 1-103. https://doi.org/10.1016/0898-1221(95)00050-9,
https://www.sciencedirect.com/science/article/pii/0898122195000509

Jones, E. M., & Fjeld, P. (2006). Gimbal angles, gimbal lock and a fourth gimbal for Christmas.
Apollo Lunar Surface Journal. http://history.nasa.gov/alsj/gimbals.html

Kong, Q., Siauw, T., & Bayen, A. (2020). Python programming and numerical methods: A guide
for engineers and scientists. Academic Press.

Rebecca Stower is a postdoctoral research fellow at the CHArt Laboratory at Paris 8 in collab-
oration with the INIT lab at ETS, Montreal. She holds a PhD in Psychology and a Bachelor of
Psychological Science (Honours First Class). Her PhD centred on the occurrence of robot errors
during child-robot-interactions and how this impacts children’s attitudes and behaviours towards
robots. Separately, she is also interested in the conceptualisation of social intelligence in robots
and the design and measurement of social robot behaviour. More generally, she is passionate about
the intersection of psychology and technology and how psychological research methods can be
applied to robotics. She is also highly involved with open science and has contributed to the organ-
isation of multiple interdisciplinary and cross-industry events.

Bruno Belzile is a postdoctoral fellow at the INIT Robots Lab. of ETS Montréal in Canada.
He holds a B.Eng. degree and Ph.D. in mechanical engineering from Polytechnique Montréal.
His thesis focused on underactuated robotic grippers and proprioceptive tactile sensing. He then
worked at the Center for Intelligent Machines at McGill University, where his main areas of
research were kinematics, dynamics and control of parallel robots. At ETS Montréal, he aims at
creating spherical mobile robots for planetary exploration, from the conceptual design to the pro-
totype.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the Ecole de technologie supérieure and director of the INIT Robots Lab (ini-
trobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect
to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the
field of interactive media (structure, automatization and sensing) as workshop production director
and as R&D engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTTI) and art-science collaborations (Hexagram). He participates in national training
programs for highly qualified personnel for drone services (UTILI), as well as for the deployment
of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic inte-
gration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA
2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1016/0898-1221(95)00050-9
 16695 526 a 16695 526 a

https://doi.org/10.1016/0898-1221(95)00050-9
https://www.sciencedirect.com/science/article/pii/0898122195000509
 -1185 1633 a -1185 1633 a

https://www.sciencedirect.com/science/article/pii/0898122195000509
http://history.nasa.gov/alsj/gimbals.html
 10579 3847 a 10579 3847 a

http://history.nasa.gov/alsj/gimbals.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891 a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Part 11
Embedded Design

Chapter 7 ®)
What Makes Robots? Sensors, Actuators, | oo
and Algorithms

Jiefei Wang and Damith Herath

7.1 Learning Objectives

This chapter explores a framework and some of the main building blocks in
developing robots. You will learn about:

The Sense, Think, Act loop.

Different types of sensors that make robots ‘feel’ the world and find suitable
sensors for use in specific scenarios.

Algorithms that make the robots’ ‘intelligent’.

Actuators that make robots move.

Commonly used computer vision algorithms that make robots ‘see’.

7.2 Introduction

In Chap. 4, we discussed that programming could be thought of as input, process,
and output. Sense, Think, Act is a similar paradigm used in robotics. A robot could
be thought of rudimentarily as analogous to how a human or an animal responds to
environmental stimuli. For example, we humans perceive the environment through
the five senses (e.g. sight). We might then ‘decide’ the following action based on these
incoming signals and, finally, execute the action through our limbs. For example, you

J. Wang ()

The School of Engineering and Information Technology, University of New South Wales,
Canberra, Australia

e-mail: Jiefei.wang @adfa.edu.au

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022 177
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_7&domain=pdf
mailto:Jiefei.wang@adfa.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_7

178 J. Wang and D. Herath

Fig. 7.1 Sense, Think, Act loop in robotics

might see (sense) a familiar face in the crowd and think it would be good to grab
their attention and then act on this thought by waving your hand.

Similarly, a robot may have several sensors through which it could sense the
environment. An algorithm could then be used to interpret and decide on an action
based on the incoming sensory information. This computational process could be
thought of as analogous to the thinking process in humans. Finally, the algorithm
sends out a set of instructions to the robot’s actuators to carry out the actions based
on the sensor information and goals (Fig. 7.1).

The current configuration of the robot is called the robot’s state. The robot state
space is all possible states a robot could be in. Observable states are the set of fully
visible states to the robot, while other states might be hidden or partly visible to the
robot. Such states are called partially observable states. Some states are discrete (e.g.
motor on or off), and others could be continuous (e.g. rotational speed of the motor).
In the above paradigm, the sense element observes the state, and the Act element
proceeds to alter the state.

An Industry Perspective

Vitaliy Khomko, Vision Application Developer

Kinova Inc.
My journey into robotics started when I joined JCA Technologies, Manitoba, in
2015. At that time, the maturity of sensors and controllers technology allowed
innovators to create smart agricultural and construction equipment capable of
performing many complex operations autonomously with very little input from
a machine operator. Frankly speaking, I did not get to choose robotics. I simply
got sucked into the technological vortex because the industry was screaming
for innovation as well as researchers and developers to drive it. In 2018, I was
welcomed by the team of very passionate roboticists at Kinova, Quebec, in the
position of Vision Technology Developer. The creative atmosphere fuelled by
Kinova’s employees kept driving me for many months. I worked hard during
the day trying my best to fit in and kept learning new stuff in the evening to fill
in the blanks. All this hard work paid off well in the end. I must admit, now, |
can wield magic with a vision-enabled robot.

Continuous learning and keeping up with all the industry trends is by far
the most challenging and time-consuming. The theoretical knowledge alone,

7 What Makes Robots? Sensors, Actuators, and Algorithms 179

though, can only help with being on the right track. In reality, when working
on delivering a real consumer product, an enormous effort goes into research
and evaluation, work planning, development/coding, and testing. Maintaining
a good relationship with your coworkers is essential. At the end of the day,
it is your teammates who give you a hand when you get stuck, who share
your passion and excitement, who appreciate your effort, and who let you feel
connected. Nothing really compares with the satisfaction of joint accomplish-
ment when you can pop a beer by the end of a long day with your colleagues
after delivering the next milestone, watching the robot finally doing its thing
over and over again.

With regard to evolution, I certainly noticed a shift from simple auto-
mated equipment controlled by human experts into very efficient autonomous
machines capable of making decisions. Sensors have been around for a long
time. By strategically placing them into a machine, one can achieve an unprece-
dented amount of feedback from a machine to allow better control and oper-
ation precision. The amount of information and real-time constraints, though,
can be too much even for an expert human operator to process through. What
really made a difference now is the availability of algorithms and computa-
tional devices to enable a certain degree of machine autonomy. For example,
camera technology is widely available these days. But it is not the camera alone
that enables vision-guided robotics. Its robot—camera calibration, 2D/3D object
matching and localisation grasping clearance validation, etc. Some can argue
that recent advancements in artificial intelligence mainly contributed to that
evolution. I think Al is just another tool. And by no means an ultimate solution
to every problem.

7.3 Sense: Sensing the World with Sensors

Everything changes in the real world. Some changes are notable while others are
subtle, some are induced, and some are provoked. However, these changes always
reveal information hidden from the initial perception. Sensing the changes in the
environment are particularly meaningful and allow perception and interaction with
the surrounding world. For example, humans perceive the displacements of the colour
patterns on the retina and compute those displacements to understand the changes.
Some animals, such as bats, can use echolocation to estimate their environment
changes and localise themselves. Unlike humans or animals, robots do not have
naturally occurring senses. Therefore, robots need extra sensors to help them sense
the environment and use algorithms to process and understand the information. For
example, a typical sensor such as a video camera can be considered the robot’s ‘eyes’.
A sonar sensor could be thought of as equivalent to echolocation in a bat. By having

180 J. Wang and D. Herath

different sensors integrated with robots, they can achieve various tasks like the one
human being can do.

7.3.1 Typical Sensor Characteristics

Sensors could be characterised in various ways. Let us look at some of the common
characteristics and their definitions first.

7.3.1.1 Proprioceptive and Exteroceptive

As humans perceive aches and pains internal to their body, so could robots sense
various internal states of the robot, such as the speed of its wheels/motors or the
current drawn by its internal power circuitry. Such sensors are called proprioceptive
sensors. On the other hand, sensors that provide information about the robot’s external
environment are called exteroceptive sensors.

7.3.1.2 Passive and Active Sensors

A sensor that only has a detector to observe or measure the physical properties of
the environment is categorised as a passive sensor. A light sensor is an example.
In contrast, active sensors emit their own signal or energy to the environment and
employ a detector to observe the reaction resulting from the emitted signal. A sonar
sensor is a typical example.

7.3.1.3 Sensor Errors and Noise

However well made a sensor is, they are susceptible to various manufacturing errors
and environmental noise. However, some of these errors could be anticipated and
understood. Such errors that are deterministic and reproducible are called system-
atic errors. Systematic errors could be modelled and integrated as part of the sensor
characteristics. Other errors are difficult to pinpoint. These could be due to envi-
ronmental effects or other random processes. Such errors are called random errors.
Understanding these errors is crucial to deploying a successful robotics system.
When this information is not readily available for the sensor selected, you will need
to conduct a thorough error analysis to isolate and quantify the systematic errors and
figure out how to capture the random errors.

7 What Makes Robots? Sensors, Actuators, and Algorithms 181
7.3.1.4 Other Common Sensor Characteristics

You may encounter the following terms describing various other characteristics of
a sensor. It is important to understand what they mean in a given context to use the
appropriate sensor for the job.

Resolution The minimum difference between two values that the sensor can measure.

Accuracy The uncertainty in a sensor measurement with respect to an absolute
standard.

Sensitivity The smallest absolute change that a sensor can measure.
Linearity Whether the output produced by a sensor depends linearly on the input.
Precision The reproducibility of the sensor measurement.

Bandwidth The speed at which a sensor can provide measurements. Usually
expressed in Hertz (Hz)readings per second.

Dynamic range Under normal operation, this is the ratio between the limits of the
lower and upper sensor inputs. This is usually expressed in decibels (dB):

upper limit)

Dynamic Range = 101loglog,, (ﬁ
ower limi

7.3.2 Common Sensors in Robotics

7.3.2.1 Light Sensors

Light sensors are used to detect light that creates a difference in voltage signal to
feedback to the robot’s system. The two common light sensors that are widely used in
the field of robotics are photoresistors and photovoltaic cells. The change in incident
light intensity changes the photoresistor’s resistance in a photoresistor. More light
leads to less resistance, vice versa. Photovoltaic cells, on the other hand, convert
solar radiation into electricity. This is especially helpful when planning a solar robot.
While the photovoltaic cell is considered an energy source, a smart implementation
combined with transistors and capacitors can convert this into a sensor. Other light
sensors, such as phototransistors, phototubes, and charge-coupled devices (CCD),
are also available (Fig. 7.2).

182 J. Wang and D. Herath

Fig. 7.2 A common light
sensor (a photoresistor)

7.3.2.2 Sonar (Ultrasonic) Sensors

Sonar sensors (also called ultrasonic sensors) utilise acoustic energy to detect objects
and measure distances from the sensor to the target objects. Sonar sensors are
composed of two main parts, a transmitter and receiver.

The transmitter sends a short ultrasonic pulse, and the receiver receives what
comes back of the signal after it has reflected from the surface of nearby objects.
The sensor measures the time from signal transmission to reception, namely the
time-of-flight (TOF).

Knowing the transmission rate of an ultrasonic signal, the distance to the target
that reflects the signal can be calculated using the following equation.

Distance = (Time x Speed Of Sound) /2

where ‘2” means the sound has to travel back and forth.

Sonar sensors can be used for mobile robot localisation through model matching
or triangulation by computing the pose change between the inputs acquired at two
different poses (Jiménez & Seco, 2005). Sonar sensors could also be used in detecting
obstacles (see Fig. 7.3).

One of the challenges of using these sensors is that they are sensitive to noise from
the surrounding and other sonar sensors with the same frequency. Moreover, they are
highly dependent on the material and orientation of the object surface as these sensors
make use of the reflection of the signal waves (Kreczmer, 2010). New techniques such

7 What Makes Robots? Sensors, Actuators, and Algorithms 183

Fig. 7.3 Four sonar sensors are embedded in the chest of this NAO robot to help detect any obstacles
in front of it. A tactile sensor is embedded on its head

as compressed high-intensity radar pulse (CHIRP) have been developed to improve
sonar performance.

Sonar signals have a characteristic 3D beam pattern. This makes them suitable for
detecting obstacles in a wide area when the exact geometric location is not needed.
However, laser sensors provide a better solution for situations where precise geometry
needs to be inferred.

7.3.2.3 Laser and LIDAR

Laser sensors can be utilised in several applications related to positioning. It is a
remote sensing technology for distance measurement that involves transmitting a
laser beam towards the target and analysing the reflected light. Laser-based range
measurements depend on either TOF or phase-shift techniques. Like the sonar sensor,
a short laser pulse is sent out in a TOF system, and the time, until it returns, is
measured. A low-cost laser range finder popular in robotics is shown in Fig. 7.4.
Also see Fig. 7.10.

LIDAR Light Detection And Ranging (LIDAR) has found many applications in
robotics, including object detection, obstacle avoidance, mapping, and 3D motion
capture. LIDAR can be integrated with GPS and INS to enhance the performance
and accuracy of outdoor positioning applications (Aboelmagd et al., 2013).

One of the disadvantages of using LIDAR is that it requires high computational
ability to process the data, which may affect mobile robot applications’ real-time
performance. Moreover, scanning can fail when the object’s material appears trans-
parent, such as glass, as the reflections on these surfaces can bring misleading and
unreliable data (Takahashi, 2007).

184 J. Wang and D. Herath

Fig. 7.4 Hokuyo URG-04LX range finder

7.3.2.4 Visual Sensors

Compared with proximity sensors we mentioned above, optical cameras are low-cost
sensors that provide a large amount of meaningful information.

The images captured by a camera can provide rich information about the robot’s
environment once processed using appropriate image processing algorithms. Some
examples include localisation, visual odometry, object detection, and identification.
There are different types of cameras, such as stereo, monocular, omnidirectional, and
fisheye, that suit all manner of robotic applications.

Monocular cameras (Fig. 7.5) are especially suitable for applications where
compactness and minimum weight are critical. Moreover, low cost and easy deploy-
ment are the primary motivations for using monocular cameras for mobile robots.
However, monocular cameras can only obtain visual information and are not able to
obtain depth information. On the other hand, a stereo camera is a pair of identical
monocular cameras mounted on a rig. It provides everything that a single camera
can offer and extra information that benefits from two views. Based on the parallax
principle, the stereo camera can estimate the depth map (a 2D image that depicts
the depth relationship between the objects in the scene and the camera’s viewpoint)

7 What Makes Robots? Sensors, Actuators, and Algorithms 185

Fig. 7.5 A popular
monocular camera

by utilising the two views of the same scene slightly shifted. Fisheye cameras are
a variant of monocular cameras that provide wide viewing angles and are attrac-
tive for obstacle avoidance in complex environments, such as narrow and cluttered
environments.

7.3.2.5 RGB-D Sensors

RGB-D sensors are unconventional visual sensors that can simultaneously obtain a
visible image (RGB image) and depth map of the same scene. They have been very
popular in the robotics community for real-time image processing, robot localisation,
obstacle avoidance. However, due to the limited range and sensitivity to noise, they
are mostly used in indoor environments.

The Kinect sensor is one of the most well-known RGB-D sensors (Yes! The same
sensor you use when playing video games on the Xbox), introduced to the market
in November 2010 and has gained great popularity since then. The computer vision
community quickly discovered that this depth-sensing technology could be used for
other purposes while costing much less than some traditional three-dimensional (3D)

186 J. Wang and D. Herath

Fig. 7.6 A newer version of the Microsoft® Kinect sensor

cameras, such as time-of-flight-based ones. In June 2011, Microsoft released an SDK
for the Kinect to be used as a tool for non-commercial products (Fig. 7.6).

The basic principle behind the Kinect depth sensor is the emission of an IR speckle
pattern (invisible to the naked eye) and the simultaneous capture of an IR image by a
CMOS camera fitted with an IR-pass filter. An image processing algorithm embedded
inside the Kinect uses the relative positions of the dots in the speckle pattern (see
Fig. 7.7) to calculate the depth displacement at each pixel position in the imagethe
technique is called structured light. Hence, the depth sensor can provide the x-, y-,
and z-coordinates of the surface of 3D objects.

The Kinect sensor consists of an IR laser emitter and IR and RGB cameras. It
simultaneously captures depth and colour images at frame rates of up to 30 Hz. The
RGB colour camera delivers images at 640 x 480 pixels and 24 bits at the highest
frame rate. In contrast, the 640 x 480 and 11 bits per pixel IR camera provides
2048 levels of sensitivity with a field-of-view of 50° horizontal and 45° vertical. The
operational range of the Kinect sensor is from 50 to 400 cm.

Fig. 7.7 A view from an RGB-D camera (from left to right—RGB image, depth image, IR image
showing the projected pattern)

7 What Makes Robots? Sensors, Actuators, and Algorithms 187
7.3.2.6 Inertial Measurement Units

An inertial measurement unit (IMU) utilises gyroscopes and accelerometers (and
optionally magnetometers and barometers) to sense motion and orientation. An
accelerometer is a device for measuring acceleration and tilt. Two types of forces
affect an accelerometer: gravity which helps determine how much the robot tilts.
This measurement helps balance the robot or determine whether a robot is driving
on a flat or uphill surface—the other is the dynamic force which is the accelera-
tion required to move an object. These sensors are useful in inferring incremental
changes in motion and orientation. However, they suffer from bias, drift, and noise.
This requires regular calibration of the system before use or sophisticated sensor
fusion and filter techniques (such as the EKF described in Chap. 9). You will often
see IMU units used with computer vision systems or combined with Global Navi-
gation Satellite System (GNSS) information. Such systems are commonly called
INS/GNSS systems (Intertial Navigation Systems/GNSS).

7.3.2.7 Encoders

Simply put, encoders record movement metrics in some form. There are three types
of encoders: linear encoders, rotary encoders, and angle encoders.

Linear encoders measure straight-line motion. Sensor heads that attach to the
moving piece of machinery run along guideways. Those sensors are linked to a
scale inside the encoder that sends digital or analog signals to the control system.
Rotary encoders measure rotational movement. They typically surround a rotating
shaft, sensing and communicating changes in its angular motion. Traditionally,
rotary encoders are classified as having accuracies above +10" (arcseconds). Rotary
encoders are also available, equipped with important functional safety capabilities.
Similar to their rotary counterpart, angle encoders measure rotation. These, however,
are most often used in applications when a precise measurement is required.

Mobile robots often use encoders to calculate their odometry. Odometry is the
use of motion sensors to determine the robot’s temporal change in position relative
to some known position. A simple example of using a rotary incremental encoder
to calculate the robot’s travel distance could be illustrated using Fig. 7.8. A light is
shone through a slotted disc (usually made of metal or glass). As the disc rotates, the
light passing through the slots is picked up by a light sensor mounted on the other
side of the disc. This signal could be converted into a sinusoidal or square wave using
electronic circuitry. If this encoder is attached to the axis of the robot’s wheel, we
can use the output signal to calculate the velocity at which the robot is moving.

To calculate the length travelled L (cm) using the output from an incremental
encoder, we start by calculating the number of pulses per cm (PPCM):

PPR
PPCM = —
2nr

188 J. Wang and D. Herath

Fig. 7.8 A simplified rotary incremental encoder with 16 slots
where PPR is the pulses per revolutionwhich in the example in Fig. 7.8 is 16.
Then the length L is given by:

. Pulses
~ PPCM

The speed (S) is then calculated as:

_ L
" Time Taken

It is worth noting that the need to have these sensors closer to the motors often
results in them being subject to electromagnetic noise. Therefore to improve the
encoder’s performance as well as to decipher the direction of rotation, a second set
of light and sensor pair is included with a 90° a phase shift (Fig. 7.9).

7.3.2.8 Force and Tactile Sensors

Both these types of sensors measure physical interactions between the robot and
the external environment. A typical force sensor is usually used to measure external
mechanical force input, such as in the form of a load, pressure, or tension. Sensors
such as strain gauges and pressure gauges fall into this category. On the other hand,
tactile sensors are generally used to mimic the sense of touch. Usually, tactile sensors
are expected to measure small variations in force or pressure with high sensitivity.
Robots designed to be interactive integrate many tactile sensors so they can respond
to touch (e.g. Fig. 7.3). Sophisticated sensors are emerging that could mimic skin-
like sensitivity to touch. A more primitive version could be seen in most vacuum
cleaning robots, where the front bumper acts as a collision detector (Fig. 7.10).

7 What Makes Robots? Sensors, Actuators, and Algorithms 189

GND

e

®Oipuino®
. .

Fig. 7.9 A popular hobby rotary incremental encoder with two outputs (quadrature encoder)

7.3.2.9 Other Common Sensors in Robotics

Many other sensors are used in robotics, and new ones are developed in various
research laboratories and commercialised regularly. These include microphones
(auditory signals), compasses, temperature sensors (thermal and infrared sensors),
chemical sensors, and many more. Therefore, it is prudent to research suitable sensors
for your next project as new and more capable sensors may better suit your needs.
Can you think of all the sensors that may be used in the robot shown in Fig. 7.10?

7.4 Think: Algorithms

A critical component of a robotic system is its ability to make control decisions based
on the available sensory information and to realise the tasks and goals allocated to
it. If the brains of a robot are the computers embedded in the robotic system, the
algorithms are the software components that enable a robot to ‘think’ and make
decisions. Algorithms interpret the environment based on sensory input and decide

190 J. Wang and D. Herath

Fig. 7.10 A modern vacuum cleaning robot integrates many sensors. On the top is a time-of-flight
laser scanner. The front bumper includes several tactile sensors to detect any frontal collisions.
What other sensors do you think this robot may have?

what needs to be done at what given time and what is happening in the environment
based on the allocated tasks.

In the most general sense, an algorithm is a finite list of instructions used to
solve problems or perform tasks. To get a feel for the concept of algorithms, think
about baking a sponge cake. How would you write down your whole process to
make a sponge cake to a person who does not know baking at all? Answering these
questions in a detailed and ordered way makes an algorithm. One of the attributes of
an algorithm is that there is a systematic process that occurs in a specific order. The
wrong order of the steps can result in a big difference. For example, if we change
the order of steps in making sponge cake, for instance, put eggs and flour in the oven
for half an hour before preheating the oven. That would not make any sense!

For a robotic system, algorithms are the specific recipes that help them
‘think’. They are precise sequences of instructions implemented using programming
languages. The essential elements of an algorithm are input, sequence, selection,
iteration, and output.

e InputData, information or signals collected from the sensors or a command from
a human operator.

e Sequence—The order in which behaviours and commands are combined to
produce the desired result.

7 What Makes Robots? Sensors, Actuators, and Algorithms 191

e Selection—Is the use of conditional statements in a process. For example,
conditional statements such as [If then] or [If then else] can affect the process.

e [teration—Algorithms can use repetition to execute steps a certain number of
times or until a specific condition is reached. It is also known as ‘looping’.

e OutputDesired result or expected outcome, such as the robot reaching the targeted
location or avoiding the collision with certain obstacles.

Robotics is rife with all kinds of algorithms, from simple obstacle avoidance
to complex scene understanding using multiple sensors. Among these, computer
vision algorithms play a significant role in their ability to infer the rich information
generated through various optical camera systems discussed earlier. Therefore, we
discuss some common vision algorithms found in robotics next.

7.5 Act: Moving About with Actuators

We identify robots as things that move around or with moving parts. In the Sense,
Think, Act paradigm, the Actrefers to this dynamic aspect of robots. The robot acts on
the environment by manipulating it using various appendages called manipulators
(arm-type robots) or traversing it (mobile robots). In order to act, a robot needs
actuators. An actuator is a device that requires energy, such as electric, hydraulic,
pneumatic, and external signal input, then convert them to a form of motion that can
be controlled as desired.

7.5.1 Common Actuators in Robotics

7.5.1.1 Motors

The electric motor is a typical example of an electrically driven actuator. As they
can be made in different sizes, types, and capacities, they are suitable for use in a
wide range of robotic applications. There are various electric motors, such as servo
motors, stepper motors, and linear motors.

Servo motors

A servo motor is controlled with an electric signal, either analog or digital, which
determines the amount of movement. It provides control of position, speed, and
torque. Servo motors are classified into different types based on their application,
such as the AC servo motor and DC servo motor.

The speed of a DC motor is directly proportional to the supply voltage with a
constant load, whereas, in an AC motor, speed is determined by the frequency of the
applied voltage and the number of magnetic poles. AC motors are commonly used

192 J. Wang and D. Herath

Fig. 7.11 Hobby DC servo motors (left) and a high-end actuator (right) used in an industrial robot
arm (courtesy of Kinova Robotics)

in servo applications in robotics and in, in-line manufacturing, and other industrial
applications where high repetitions and high precision are required.

DC servo motors are commutated mechanically with brushes, using a commutator,
or electronically without brushes. Brushed motors are generally less expensive and
simpler to operate, while brushless motors are more reliable, have higher efficiency,
and are less noisy (Fig. 7.11).

Stepper motors

A stepper motor is a brushless synchronous DC motor that features precise discrete
angular motions. A stepper motor is designed to break up a single complete rotation
into a number of much smaller and essentially equal part rotations. For practical
purposes, these can be used to instruct the stepper motor to move through set degrees
or angles of rotation. The end result is that a stepper motor can be used to transfer
accurate movements to mechanical parts that require a high degree of precision.
Stepper motors are very versatile, reliable, cost-effective and provide precise motor
movements, allowing users to increase the dexterity and efficiency of programmed
movements across a huge variety of applications and industries. Most 3D printers,
for example, use multiple stepper motors to precisely control the 3D print head.

Linear motors

A linear motor operates on the same principle as an electric motor but provides linear
motion. Unlike a rotary machine, a linear motor moves the object in a straight line
or along a curved track. Linear motors can reach very high acceleration, up to 6 g,
and travel speeds of up to 13 m/s. Due to this character, they are especially suitable
for use in machine tools, positioning and handling systems, and machining centres.

7 What Makes Robots? Sensors, Actuators, and Algorithms 193
7.5.1.2 Hydraulic Actuators

Hydraulic actuators are driven by the pressure of the hydraulic fluid. It consists of a
cylinder, piston, spring, hydraulic supply and return line, and stem. They can deliver
large amounts of power. As such, they can be used in construction machinery and
other heavy-duty equipment.

There are some advantages to using hydraulic actuators. A hydraulic actuator
can hold force and torque constant without the pump supplying more fluid or
pressure due to the incompressibility of fluids. Hydraulic actuators can have their
pumps and motors located a considerable distance away with minimal loss of power.
Comparing the pneumatic cylinder of equal size, the forces generated by hydraulic
actuators are 25 times greater, ensuring they operate well in heavy-duty settings.
One of the disadvantages of using hydraulic actuators is that they may leak fluid,
leading to reduced efficiency and, in extreme cases, damage to nearby equipment
due to spillage. Hydraulic actuators require many complementary parts, including a
fluid reservoir, motor, pump, release valves, and heat exchangers, along with noise
reduction equipment.

7.5.1.3 Pneumatic Actuators

Pneumatic actuators have been known for being highly reliable, efficient, and safe
sources of motion control. These actuators are driven by pressurised air that can
convert energy in the form of compressed air into linear or rotary mechanical motion.
They feature both simple mechanical design and flexible operation. They are widely
used in combustible automobile engines, railway applications, and aviation. Most of
the benefits of choosing pneumatic actuators over alternative actuators, such as elec-
tric ones, boil down to the reliability of the devices and the safety aspects. Pneumatic
actuators are also highly durable, requiring less maintenance and long operating
cycles.

7.5.1.4 Modern Actuators

Many new actuation methods and actuators have emerged in recent times. These
include pneumatic tendons (Fig. 7.12) and other biologically inspired actuators, such
as fish fins or octopus tentacles. Soft robotics is an emerging field that explores some
of these developments. However, the compliance requirements and morphology of
soft robots prevent the use of many conventional sensors seen in hard robots. As a
result, there has been active research into stretchable electronic sensors. Elastomer
sensors allow for minimal impact on the actuation of the robot.

194 J. Wang and D. Herath

Fig. 7.12 Pneumatic rubber muscles used in animating this giant robotic structure during a perfor-
mance by the artist, Stelarc (Reclining StickMan, 2020 Adelaide Biennial of Australian Art: Monster
Theatres, Photographer—Saul Steed, Stelarc)

7.6 Computer Vision in Robotics

Computer vision techniques have been the subject of heightened interest and rigorous
research for decades now as a way of sensing the world in all its complexity. Computer
vision attempts to achieve the function of understanding the scene and the objects
of the environment. Furthermore, the increasing computational power and progress
in computer vision methods have made making robots ‘see’ a popular trend. As
computer vision combines both sensors and algorithms, it deserves its own unique
section within this chapter.

Computer vision in robotics refers to the capability of a robot to visually perceive
and interact with the environment. Typical tasks are to recognise objects, detect
ground planes, traverse to a given target location without colliding with obstacles,
interact with dynamic objects, and respond to human intents.

Vision has been used in various robotic applications for more than three decades.
Examples include applications in industrial settings, service, medical, and underwater
robotics, to name a few. The following section will introduce some classic computer
vision algorithms widely used in robotics, such as plane detection, optical flow, and
visual odometry.

7 What Makes Robots? Sensors, Actuators, and Algorithms 195

7.6.1 Plane Detection

For an autonomous mobile robot system, detecting the dominant plane is a funda-
mental task for obstacle avoidance and trajectory finding. The dominant plane can be
considered a planar area occupying the largest region on the ground towards which
the robot is moving. It provides useful information about the environment, particu-
larly whether objects above the detected dominant plane and along the direction of
the robot’s movement can be viewed as obstacles. A ground mobile robot or micro-
aerial vehicle operating in an unknown environment must identify its surroundings
before the system can conduct its mission. These vehicles should recognise obstacles
within their operating area and avoid detected obstacles or travel over them where
possible. There are various plane detection techniques such as RANSAC and the
region growth method.

7.6.1.1 RANSAC

The random sample consensus (RANSAC) (Fischler & Bolles, 1981) method is
an iterative method to estimate parameters of a mathematical model from a set of
observed data that contains outliers. It is a very useful tool to find planes, with its
principle to search for the best plane among three-dimensional (3D) point clouds. At
the same time, it is computationally efficient even when the number of points is vast.
Plane detection using RANSAC starts by randomly selecting three points from the
point cloud and calculating the parameters of the corresponding plane. The next step
detects all the points of the original cloud belonging to the calculated plane based on
the given threshold. Repeating this procedure for N rounds, each time, it compares
the obtained result with the last saved one, and if the new one is better, it replaces
the saved one (see Algorithm 1).
The four types of data needed as input for this algorithm are:

e a 3D point cloud which is a matrix of the three coordinate columns X, ¥, and Z;

e atolerance threshold of distance t between the chosen plane and other points;

e a probability (o) which lies typically between 0.9 and 0.99 and is the minimum
probability of finding at least one good set of observations in N rounds; and

e the maximum probable number of points belonging to the same plane.

196 J. Wang and D. Herath
// Algorithm 1: RANSAC for plane fitting
Input: 3D points data;
For all N;-oynas DO
Select three random points (P, P,, P3) from the input data;
Fit a plane through the points;
Set: Ninjiers = 0;
For all pints do
If point distance to plane is within a threshold then ;
Increment Nijiers;
If Niniers is larger than the best plane then;
Update plane estimation using all points;
Update best plane;
End
End

Output: Dominant plane;

As one of the most well-known methods for plane detection, RANSAC has been
shown to be capable of detecting planes in both 2D and 3D. For example, in Fig. 7.13,

b

104

0~
10+
20 4
304

404
b
] bl — % e -2
0 ~ < L R — £l
N < o 15 " B
L - 10 0 e " 1

Fig. 7.13 Two groups of 3D points representing two planes detected using the RANSAC method

7 What Makes Robots? Sensors, Actuators, and Algorithms 197

two groups of noisy 3D points (blue and red) with two planes detected successfully
using the RANSAC method.

7.6.1.2 Region Growth Method

The region growth method for plane detection was first introduced by Hihnel et al.,
(2003) with the goal of creating a low complexity model that can be implemented in
real time. It works from a seed chosen randomly from the point cloud, which consists
of sufficient information to fit a plane and adds more points based on specific selection
conditions, such as if three points are needed or whether a point with a corresponding
normal can be used. Then, when the neighbouring points are consistent with the plane,
they are considered part of it. This procedure is repeated until no more points can be
found, and then the algorithm stops and adds the plane if it contains enough points.
Finally, the points are removed from the point set, and a new seed is selected. A brief
outline of this algorithm is presented in Algorithm 2.

// Algorithm 2: Region growing method for plane fitting
Input: 3D points data;

For all point DO
S=two random neighbouring point Py, P,;
Select nearest point P, within the certain distance;

If the new added point B, does not change the plane estimation, then add this point
P, into the selected date set S;

If the size of S > certain threshold;
The add plane estimate to set of planes;
End

Output: Set of planes;

7.6.2 Optical Flow

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a
visual scene caused by the relative motion between an observer and the scene. It is
believed that insects and birds frequently use optical flow for short-range navigation
and obstacle avoidance. For example, biologists have reported that birds use optical
flow to avoid obstacles and manoeuvre landings. In addition, many mammals possibly

198 J. Wang and D. Herath

use optical flow to detect the motions of objects. All these discoveries regarding
optical flow provide new ideas for roboticists to develop visual-based robots with
the capability to navigate safely and quickly in unknown environments.

Optical flow can be treated as the apparent motions of objects, brightness patterns
or feature points observed by eyes or cameras. Based on this definition, it can be
computed from the difference between two sequences, which is usually expressed
as:

lit, V]7 = f(u, v), where its unit is pix/sec or pix/frame.

Optical flow can also be defined as the projection of the relative 3D motion between
an observer and scene into the image plane. As an image consisting of many pixels
with unique coordinates, it can be described as a two-dimensional (2D) vector in
image sequences. Therefore, the motion field model can be described as:

Vv
OF = —
d

where OF is the optical flow field, V is the observer velocity vector, and d is the
distance between the observer and the image plane with the unit normally rad/s or
°/s. The two definitions above mentioned are the same for an ideal situation after a
coordinate transformation.

For a short duration, the intensity structures of local time-varying image regions
are approximately constant. Based on this assumption, if / (x, ¢) is the image intensity
function, we have:

I(x,1) = I(x+8x,y+5y),

where §, is the displacement of the local image region at (x, ¢) at time ¢ + §,. This
equation expanded in a Taylor series yields:

[(x, 1) =1(x, 1)+ V)-8 + 8,1, + O*

where V; = (I, I;) and I, are the first-order partial derivatives of I (x, 1) and O?
the second-and higher-order terms, which are negligible. The previous equation can
be rewritten as:

V1V+I,:0

dividing by §,, where V; = (IX, Iy) is the spatial intensity gradient, and V = (u, v)
is the image velocity. This is known as the optical flow constraint equation, which
defines a single local constraint on image motion (Fig. 7.14).

Many methods have been proposed for detecting the optical flow. Some techniques
are briefly discussed next.

7 What Makes Robots? Sensors, Actuators, and Algorithms 199

Fig. 7.14 Detected optical flow indicated by red arrows, longer the arrow length faster movement
of the pixel patch (translation on the left, rotation on the right)

7.6.2.1 Lucas-Kanade Method and Horn—-Schunck Method

The Lucas—Kanade method (Lucas & Kanade, 1981) and Horn—Schunck method
(Horn & Schunk, 1981) are widely used classical differential methods for optical
flow estimation. Lucas—Kanade method assumes that the flow is constant in a local
neighbourhood of the pixel under consideration and solves the basic optical flow
equations for all the pixels in that neighbourhood by the least-squares criterion.
By combining information from several nearby pixels, the Lucas—Kanade method
can often resolve the inherent ambiguity of the optical flow equation. It is also less
sensitive to image noise compared with other methods.

Horn—Schunck method is another classical optical flow estimation algorithm. It
assumes smoothness in the flow over the whole (global) image. Thus, it tries to
minimise distortions in flow and prefers solutions that show more smoothness. As a
result, it is more sensitive to noise than the Lucas and Kanade method. Many current
optical flow algorithms are built upon these frameworks.

7.6.2.2 Energy-Based Methods

Energy-based optical flow calculation methods are also called frequency-based
methods because they use the energy output from velocity-tuned filters. Under certain
conditions, these methods can be mathematically equivalent to differential methods
mentioned previously. However, it is more difficult for differential and correlation
methods to deal with sparse patterns of moving dots than energy-based methods.

200 J. Wang and D. Herath
7.6.2.3 Phase-Based Methods

A phase-based technique is a classical method calculating the optical flow using the
phase behaviours of band-pass filter outputs. It was first introduced by Fleet and
Jepson (1990) and has been shown to be more accurate than other local methods
mainly because phase information is robust to changes, in contrast, scale orientation
and speed (Fleet & Jepson, 1990). However, the main drawback of phase-based
techniques is the high computational load associated with their filtering operations.

Correlation methods

Correlation-based methods find matching image patches by maximising some simi-
larity measure between them under the assumption that the image patches have not
been overly distorted over a local region. Such methods may work in cases of high
noise and low temporal support where numerical differentiation methods are not as
practical. These methods are typically used for finding stereo matches for the task
of recovering depth.

7.6.3 Visual Odometry

Visual odometry (VO) is a method for estimating the position and orientation of
mobile robots, such as a ground robot or flying platform, using the input from a single
or multiple cameras attached to it (Scaramuzza & Fraundorfer, 2011). It estimates a
position by integrating the displacements obtained from consecutive images observed
from onboard vision systems. It is vital in environments in which a GPS is not
available for absolute positioning (Weiss et al., 2011).

Many conventional odometry solutions produce unpredictable errors in the
measurements delivered by gyroscopes, accelerometers, and wheel encoders. It has
been found that, for Mars exploration Rovers experiencing small translations over
the sandy ground, large rocks or steep slopes, the visual odometry needs to be
corrected for errors arising from motions and wheel slip (Maimone et al., 2007).
A vehicle’s position can be estimated by either stereo or monocular cameras using
feature matching or tracking technologies. In Garratt and Chahl (2008), the trans-
lation and rotation are estimated using the image interpolation algorithm with a
downward-facing camera. Methods for computing ego-motion directly from image
intensities have also been suggested (Hanna, 1991; Heeger & Jepson, 1992). The
issue with using just one camera is that only the direction of motion, not the absolute
velocity scale, can be determined, known as the scaling factor problem. However,
using an omnidirectional camera can solve this problem; for example, safe corridor
navigation for a micro air vehicle) (MAV) using an optical flow method is achieved
in Conroy et al., (2009), but this operation requires a great deal of computational
time.

7 What Makes Robots? Sensors, Actuators, and Algorithms 201

7.7 Review Questions

What is the difference between an AC motor and a DC motor?

What is the difference between a camera and an RGB-D sensor?

A typical rotary encoder used in a wheeled mobile robot to measure the distance
it travels has 40 slots. The robot’s wheel to which this sensor is mounted has a
diameter of 7 cm. If the sensor gives out a steady 7 Hz square pulse, what is the
robot’s speed in cm/s?

7.8 Further Reading

Although a little dated, the Sensors for Mobile Robots by Everett and Robot Sensors
and transducers by Ruocco provide comprehensive coverage of classical sensors
used in robotics. Computer Vision: Algorithms and Applications by Szeliski is
an excellent introductory book on computer vision in general. For more robotics-
related concepts in computer vision as well for those interested in reading more
advanced topics in robotics, Corke’s Robotics, Vision and Control are highly recom-
mended. The book includes many code samples and associated toolboxes in Matlab®.
Programming Computer Vision with Python: Tools and algorithms for analysing
images by Solem provide many Python-based examples of vision algorithm imple-
mentations. Algorithms by Sedgewick and Wayne is one of the best books on the
topic.

References

Aboelmagd, N., Karmat, T. B., & Georgy, J. (2013). Fundamentals of inertial navigation, satellite-
based positioning and their integration. Springer.

Chum, O., & Matas, J. (2005). Matching with prosac-progressive sample consensus. In /EEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005
(Vol. 1, pp. 220-226). IEEE.

Conroy, J., Gremillion, G., Ranganathan, B., & Humbert, J. (2009). Implementation of wide-field
integration of optic flow for autonomous quadrotor navigation. Autonomous Robots,27(3), 189—
198.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communications of the
ACM,24(6), 381-395.

Fleet, D. J., & Jepson, A. D. (1990). Computation of component image velocity from local phase
information. International Journal of Computer Vision,5(1), 77-104.

Garratt, M. A., & Chahl, J. S. (2008). Vision-based terrain following for an unmanned rotorcraft.
Journal of Field Robotics,25(4), 284.

Hihnel, D., Burgard, W., & Thrun, S. (2003). Learning compact 3D models of indoor and outdoor
environments with a mobile robot. Robotics and Autonomous Systems, 44(1), 15-27.

Hanna, K. (1991). Direct multi-resolution estimation of ego-motion and structure from motion. In
Proceedings of the IEEE Workshop on Visual Motion (pp. 156-162). IEEE.

202 J. Wang and D. Herath

Heeger, D. J., & Jepson, A. D. (1992). Subspace methods for recovering rigid motion I: Algorithm
and implementation. International Journal of Computer Vision,7(2), 95-117.

Horn, B. K. P., & Schunk, B. G. (1981). Determining optical flow. Artificial Intelligence,17, 185—
203.

Jiménez, A., & Seco, F. (2005). Ultrasonic localisation methods for accurate positioning. Instituto
de Automatica Industrial.

Kreczmer, B. (2010). Objects localisation and differentiation using ultrasonic sensors. INTECH
Open Access Publisher.

Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an application to
stereo vision. In Proceedings of DARPA 1U Workshop (pp. 121-130).

Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of visual odometry on the mars
exploration rovers. Journal of Field Robotics,24(3), 169-186.

Matas, J., & Chum, O. (2005). Randomised RANSAC with sequential probability ratio test. In Tenth
1EEE International Conference on Computer Vision, 2005. ICCV 2005 (Vol. 2, pp. 1727-1732).
IEEE.

Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry [tutorial]. IEEE Robotics & Automation
Magazine, 18(4), 80-92.

Schnabel, R., Wessel, R., Wahl, R., & Klein, R. (2008). Shape recognition in 3D point-clouds. In
The 16th International Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision (Vol. 8). Citeseer.

Sutton, M., Wolters, W., Peters, W., Ranson, W., & McNeill, S. (1983). Determination of
displacements using an improved digital correlation method. Image and Vision Computing,1(3),
133-1309.

Takahashi, T. (2007). 2D localisation of outdoor mobile robots using 3D laser range data (Doctoral
dissertation). Carnegie Mellon University.

Tarsha-Kurdi, F., Landes, T., & Grussenmeyer, P. (2007). Hough-transform and extended RANSAC
algorithms for automatic detection of 3D building roof planes from lidar data. In ISPRS Workshop
on Laser Scanning 2007 and SilviLaser 2007 (Vol. 36, pp. 407-412).

Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Monocular-SLAM-based navigation for
autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics,28(6),
854-874.

Jiefei Wang research focuses on sensing, real-time image processing, guidance, and control for
autonomous systems. He received the master’s degree in electrical engineering from Australian
National University in 2011, and the Ph.D. degree in electrical engineering from the University
of New South Wales in 2016. His research interests include sensing and image processing, scene
understanding for obstacle avoidance, control of autonomous systems, and aerial robotics.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra. He
is a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial and research projects for over
two decades. He founded Australia’s first collaborative robotics startup in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015
and 2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted
Amazon Robotics Challenge—an industry-focused competition among the robotics research elite.
In addition, he has chaired several international workshops on Robots and Art and is the lead
editor of the book ‘Robots and Art: Exploring an Unlikely Symbiosis’—the first significant work
to feature leading roboticists and artists together in the field of robotic art.

7 What Makes Robots? Sensors, Actuators, and Algorithms 203

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 8 ®)
How to Move? Control, Navigation s
and Path Planning for Mobile Robots

Jiefei Wang and Damith Herath

8.1 Learning Objectives

You will learn about:

e Controllers and control techniques used in robotics, including the PID controller
e Mobile robot locomotion types
® Robot path planning and obstacle avoidance.

8.2 Introduction

When we think of robots, we think of them as manipulators, such as in manufac-
turing facilities where they are fixed to a location or robots that are moving about
(Fig. 8.1). Robots that move around in the environment are called mobile robots.
This chapter looks at mobile robots, how to control them, different locomotion types
and algorithms used for planning paths, and obstacle avoidance while navigating.

J. Wang ()

The School of Engineering and Information Technology, University of New South Wales,
Canberra, Australia

e-mail: Jiefei.wang @adfa.edu.au

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022 205
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_8&domain=pdf
mailto:Jiefei.wang@adfa.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_8

206 J. Wang and D. Herath

Bogan™

Fig. 8.1 A Kinova Gen3 lite robot arm mounted on a Clearpath Dingo Indoor mobile robotic
platform (left) alongside a Jackal Unmanned Ground Vehicle used for outdoor navigation. (right)
(Credits Clearpath/Kinova)

An Industry Perspective

Dana Leslie
Former Clearpath Robotics’ Employee

£ o L
Like many young engineers, I have my parents to thank for enabling me to
explore the world through robotics. The enjoyment of playing with lego, elec-
tronics kits, and computer programming at a young age, was undoubtedly the
catalyst that resulted in my career trajectory.

After studying electrical engineering at the University of Victoria, I was
fortunate to get a start in the industry by landing my first job at Cellula Robotics,
a subsea robotics company. It was here that our team designed, manufactured,
and deployed robots to the darkest depths of the ocean, studying and learning
about the undersea world!

8 How to Move? Control, Navigation and Path Planning ... 207

From water onto land, the robots I've helped design continued to evolve;
developing wheeled terrestrial systems at Clearpath Robotics in Ontario, and
most recently legged humanoids at Agility Robotics in Oregon.

During the design of a mobile robot, diodes were incorporated into the power
system to enable battery hot-swapping. Consequently, the energy generated by
back-EMF from the motors (while braking or being pushed) could not be
absorbed by the battery. The result was an uncontrolled increase in voltage,
causing various subsystems to glitch, with the robot lifelessly rolling to a halt...

This type of challenge is trivial to conceptualise, but much harder to quantify.
It’s only apparent in a fully integrated system, is correlated to things outside
of your control, and is intensified when carrying heavy payloads or traveling
down ramps. (Increased mechanical to electrical energy conversion.)

In the end, through comprehensive and iterative testing, the solution was a
combination of reducing deceleration rates, varying system capacitance, and
utilising transient-voltage-suppression diodes.

It’s nice to be able to power your robot by giving it a push, but it’s critical
that your robot behaves when it’s in a hurry to stop.

Innovation in embedded sensing, processing, power electronics, and battery
chemistries have collectively advanced the robotics industry throughout my
career.

Precise and energy-dense servo-actuators have recently enabled cutting-
edge humanoid robotic development that is poised to redefine the workforce;
automating the dullest and dangerous of human tasks.

These same actuators have advanced robotic manipulation, enabling the
technology to emerge from the factory line and onto the front lines. Robotic
arms are no longer just being used to assemble cars, they’re being used to flip
hamburgers and pack your groceries!

8.3 Mobile Robots

Mobile robots have received much attention in the last few decades due to their ability
to explore complex environments such as space, rescue operations, and accomplish
tasks autonomously without human effort. Mobile robots can be broadly categorised
as wheeled, legged, and flying robots.

208 J. Wang and D. Herath

8.3.1 Wheeled Robots

Wheeled robots traverse around the ground using motorised wheels to propel them-
selves and a comparatively easier to design, build, and operate for movement in flat
or rocky terrain than robots that use legs or wings. They are also better controlled
as they have fewer degrees of freedom than flying robots. One of the challenges of
wheeled robots is that they cannot operate well over certain ground surfaces, such
as sharp declines, rugged terrain, or areas with low friction. Nevertheless, wheeled
robots are the most popular in the consumer market due to the low cost and simplicity
of differential steering mechanisms they employ. Although wheeled robots can have
any number of wheels, the mechanisms need to be modified to keep dynamic balance
based on the number of wheels. Three or four wheels are the most popular and suffi-
cient for static and dynamic balance among all wheeled robots, which are widely
used in research projects.

8.3.1.1 Kinematic Modelling

This book primarily discusses two types of robots and their motions, mobile robots
and arm type robots. In either type, we need to understand how the movements
generated by the actuators translate into complex body movements. To design a
robot to act in the environment, we need to understand these geometric relationships
of motion.

Kinematics is the study of motions of points, bodies, and systems of bodies (such
as robots) without considering the forces acting on these systems. In this chapter,
we will discuss some common wheel configurations and their respective kinematic
models used in mobile robots that use motors to drive them around. Then, Chap. 10
will delve into modelling kinematics of arm-type robots.

8.3.1.2 Holonomic Drive

Holonomic refers to the relationship between controllable and total degrees of
freedom of a robot. If the controllable degree of freedom is equal to the total degrees
of freedom, then the robot is said to be Holonomic. A robot built on castor wheels
or omniwheels is a good example of a holonomic drive. It can freely move in any
direction, and the controllable degrees of freedom is equal to total degrees of freedom.

If the controllable degree of freedom is less than the total degrees of freedom, it
is known as non-holonomic drive. For example, a car has three degrees of freedom:
its position in two axes and orientation. However, there are only two controllable
degrees of freedom: acceleration (or braking) and the turning angle of the steering
wheel. This makes it difficult for the driver to turn the car in any direction (unless it
skids or slides).

8 How to Move? Control, Navigation and Path Planning ... 209

For a typical differential drive robot (see Fig. 8.4), the non-holonomic constraint
could be written as:

Xsing —ycos¢p =0

8.3.1.3 Three-Wheeled Robots

One of the most common actuator configurations to drive a mobile robot is the
three-wheeled configuration (also known as the tricycle model).
There are two types of three-wheeled robots:

e Differentially steered—two separately powered wheels with an extra free rotating
wheel. The robot direction can be changed by varying the relative rate of rotation
of the two separately driven wheels. If both the wheels are driven in the same
direction and speed, the robot will go straight. Otherwise, depending on the speed
of rotation and its direction (Fig. 8.2).

e Two wheels powered by a single actuator and a powered steering wheel.

The centre of gravity in this type of robot has to lay inside the triangle formed by the
wheels. If too much weight is allocated to the side of the free rotating wheel, it will
cause an imbalance that could make the robot tip over.

Let us now explore how a differentially steered three-wheeled robot could be
modelled kinematically.

The model presented in Fig. 8.3 introduces a virtual wheel for the front set of
differential drive wheels. The two wheels along the centreline of the robot essentially
represent the whole system. With the said constraints, the robot can only exercise
two degrees of freedom. Thus, the derivation of the kinematic model refers to the
robot’s simplified model. The instantaneous centre of rotation (also known as the
instantaneous velocity centre) in this model refers to an imaginary point attached to
the robot where at a given point in time has zero velocity while the rest of the robot
body is in planar motion. You could imagine the robot to be rotating around this
point at the time instance being considered.

It can be shown that the continuous time form of the vehicle model (with respect
to the centre of the front wheel) can be derived as follows:

(1) = V(1) cos(@(t) + y (1))
(0 = V() sin(@@) + y (1))
 V)sin (1)

o) = ———

where x(¢) and y(¢) denote the position of the vehicle, the angle ¢(¢) is the orientation
of the robot with respect to the x-axis, and V(¢) represents the linear velocity of the

210 J. Wang and D. Herath

[S

Fig. 8.2 Differentially steered three-wheeled robot. The front two wheels (top) are powered by
two DC motors. A back castor wheel is free to rotate around and is not powered

front wheel. The angle y is defined as the steer angle of the vehicle. B is the base
length between the two sets of wheels.

A simpler kinematic model can be derived from the model discussed earlier in
many simple robot configurations where the system makes the velocity of the robot
V(#) and the angular velocity of the robot (j&(t) directly available (e.g. via wheel
encoders). Then the process model for the corresponding system can be represented
as follows (Fig. 8.4):

Following simpler equations can be derived then:

x(t) = V(1) cos(¢())
y(t) = V(1) sin(g(t))
o) = ()

8 How to Move? Control, Navigation and Path Planning ... 211

v

~_ T~ ~.o Instantaneous centre of
ST rotation

~
. L.
~._~._'~
T~ TS
SO>S
N
NN
<N

g
~x
O

XN
e
Y M

<

A
=~
y

Fig. 8.3 Vehicle geometry of a typical three-wheeled robot

Fig. 8.4 Simplified robot V(t)
model

#(t)

v (xy)

8.3.1.4 Two-Wheeled Robots

Two-wheeled robots are harder to balance than other types because they must keep
moving to maintain upright. The centre of gravity of the robot body is kept below the
axle. Usually, this is accomplished by mounting the batteries below the body. They
can have their wheels parallel to each other, and these vehicles are called dicycles,
or one wheel in front of the other, tandemly placed wheels (bicycle). Two-wheeled
robots must keep moving to remain upright, and they can do this by driving in the
direction the robot is falling. To balance, the base of the robot must stay under its
centre of gravity. For a robot that has left and right wheels, it needs at least two

212 J. Wang and D. Herath

»l
g

Instantaneous centre of
rotation

Y
~
v

Fig. 8.5 Wheel configuraiton of a two-wheeled bicycle robot

sensors. A tilt sensor is used to determine tilt angle and wheel encoders that keep
track of the position of the robot’s platform (Fig. 8.5).

where R,, = £, o + ¢ + 90° = 180°.

tan g’

8.3.1.5 Four-Wheeled Robots

There are several configurations possible with four wheels.
e Two powered and two free rotating wheels

Same as the differentially steered ones mentioned previously but with two free
rotating wheels for extra balance.

Four-wheeled robots are more stable than three-wheeled ones as the centre of
gravity has to remain inside the rectangle formed by the four wheels instead of
a triangle. Still, it is advisable to keep the centre of gravity to the middle of the
rectangle as this is the most stable configuration, especially when taking sharp turns
or moving over a non-even surface.

e Two-by-two powered wheels for tank-like movement

This type of robot uses two pairs of powered wheels, and each pair turns in the same
direction. The tricky part of this kind of propulsion is getting all the wheels to turn
with the same speed. If the wheels in a pair are not running at the same speed, the

8 How to Move? Control, Navigation and Path Planning ... 213

)|
|
U

~_ T~ ~o Instantaneous centre of
<. ~<._ > rotation

~.
I~
~

///

\
~
T~

‘~
\\
\\
\\\
NS
RN
g

<
|

T
S

Igi____

Z
A

A
A

Fig. 8.6 Ackerman drive

slower one will slip. If the pairs do not run at the same speed, the robot is not able to
drive straight. A good design has to incorporate some form of car-like steering.

e Car-like steering (Ackerman drive)

This method allows the robot to turn the same way a car does (Fig. 8.6). However,
this system does have an advantage over previous methods where it only needs one
motor to drive the rear wheels and a servo for steering. The previous methods would
require either two motors or a highly complex gearbox since they require two output
axles with independent speed and direction of rotation.

B

where R,, = Tng

8.3.1.6 Omnidirectional Wheels

Omnidirectional (Omni) wheeled robots fall under a class of unconventional mobile
robots (Fig. 8.7).

An omniwheel could be thought of as having many smaller wheels making up a
large one, and the smaller ones are mounted at an angle to the axis of the core wheel.
This allows the wheels to move in two directions and move holonomically, which
means it can instantaneously move in any direction, unlike a car, which moves non-
holonomicallly and has to be in motion to change heading. In addition, omniwheeled
robots can move in at any angle in any direction without rotating beforehand. Some
omniwheel robots use a triangular platform, with the three wheels spaced at 60-
degree angles. The advantage of using omniwheels is that they make it easier for

214 J. Wang and D. Herath

e

Fig. 8.7 A set of Mecanum wheels (a type of omniwheel) on a home robot

robots to be designed with wheels mounted on an unaligned axis. The disadvantage
of using omniwheels is that they have poor efficiency due to not all the wheels
rotating in the direction of movement, which also causes loss from friction, and are
more computationally complex because of the angle calculations of movement.

8.3.2 Walking Robots

Legged robots are inspired by human beings, legged animals or insects which
use leg mechanisms to provide locomotion. Compared with wheeled robots, they
are more versatile. They can traverse extreme environments such as unstructured,
uneven, unstable, rugged terrain and complex confined spaces such as underground
environments and industrial structures.

Legged robots can be categorised by the number of limbs they use. Robots with
more legs tend to be more stable, while fewer legs lend themselves to greater manoeu-
vrability. For a legged robot to keep its balance, it requires maintaining its centre
of gravity within its polygon of stability. The polygon of stability is the horizontal
surface defined by the leg-ground contact points made by the robot. These multide-
grees of freedom legs are usually modelled as kinematics chains which is covered in
Chap. 10.

8 How to Move? Control, Navigation and Path Planning ... 215
8.3.2.1 Robot Gait

The periodic contact of the robot’s legs with the ground is called the gait of the walker.
The specific gait depends on the leg configuration of the robot and parameters such
as the speed, terrain the robot is moving, intended task and power limitations of the
robot. Milton Hildebrand was one of the earliest zoologists to study animal gaits.
Various researchers have since adopted his method for gait-pattern specification in
robotics, providing a formal method for studying and improving robot gait.

8.3.2.2 Two-Legged Robots

Two-legged robots are also called bipedal robots. The fundamental challenges for
two-legged robots are stability and motion control, which refers to balance and move-
ment control. In advanced systems, accelerometers or gyroscopes provide dynamic
feedback to control the balance. Such sensors are also used for motion control,
walking, jumping, and even running, combined with technologies such as machine
learning. On the other hand, the passive walker is a bipedal mechanism that “walks”
without actuation, simply using gravity as its energy source (Fig. 8.8).

Fig. 8.8 A bipedal robot

216 J. Wang and D. Herath

E3=T/(KO%F [HAP-1]

Fig. 8.9 Pepper robot (left)—a wheeled semi-humanoid robot used in retail marketing. The HRP-
1 (right)—an early Humanoid Robot Prototype developed by the National Institute of Advanced
Industrial Science and Technology (AIST), Japan, on public display at its premises

8.3.2.3 Humanoid Robots

If you close your eyes and think about a robot, what would you picture in your mind?
Most likely a fictional creature like Arnold Schwarzenegger in the Terminator series
movies or C-3PO from Star Wars. It is likely a humanoid—a humanlike robot with
a head and body with arms and legs, probably painted metallic silver. Humanoid
robots are expected to imitate human motion and interaction (Fig. 8.9) and have their
roots in longing and mythmaking, as discussed in our first chapter. With years of
research, they are becoming commercially available in several application domains,
including in competitive game-playing (such as in the RoboCup humanoid league')
and social and interactive robots such as the Pepper (Fig. 8.9) by Softbank Robotics.
Strictly speaking, Pepper is a semi-humanoid robot with a wheeled robot base and
not a bipedal robot. As mentioned earlier, a wheeled robot is much simpler, stable

! https://humanoid.robocup.org/.

https://humanoid.robocup.org/

8 How to Move? Control, Navigation and Path Planning ... 217

and economical to produce. How these robots are deployed are constantly expanding,
and with the development of new technology, the market will follow suit.

8.3.2.4 Four-Legged Robots

Four-legged robots are also called quadruped robots. They have better stability
compared to two-legged robots during movement. Also, the lower centre of gravity
and four legs keep them well balanced when they are not moving. They can move
either by moving one leg at a time or by moving the alternate pair of legs (Fig. 8.10).

Types of Gait for Four-Legged Robots

Four-legged robots can walk with statically and dynamically stable gaits. In the
statically stable gait, each leg of the robot is lifted up and down sequentially, and
there are three stance legs at least at any moment. This type of gait is called creeping
gait (Zhao et al., 2012). Dynamically stable gaits are often used in four-legged robots
to walk and run due to their efficiencies, such as trotting, pace, bounce, and gallop
gait (Fukuoka & Kimura, 2009). In trotting gait, two of the legs are in the same
diagonal lift, and the two legs are in contact with the ground until the other two legs
lift off, and then repeat the motion two by two in order.

Fig. 8.10 Sony Aibo robot dog—One of the early versions of Sony’s four-legged robot dog series

218 J. Wang and D. Herath

Fig. 8.11 A robot hexapod (Credit Bryce Cronin)

8.3.2.5 Six-Legged Robots

Six-legged robots are also called hexapods. They are designed to mimic the
mechanics of insects. Their legs move in a “wave” form from the back to the front. As
aresult, six-legged robots offer greater stability while moving and standing, they can
operate just on three legs, and the remaining legs provide flexibility and increase their
capabilities. In Chaps. 12 and 17, you will explore the design and implementation of
a hexapod robot (Fig. 8.11).

Types of Gait for Six-Legged Robots

One by one is the simplest gait, which moves each leg forward one after the other
in a clockwise or anticlockwise direction while the remaining five legs are in the
stance phase—not moving. For a quadruped gait (Fig. 8.11), the robot moves the
front two legs (1 and 2) forward, and the rest (3, 4, 5, 6) support the body, then the
robot moves the middle two legs (3, 6) to push the body forward while the rest of
the legs (1, 2, 4, 5) support, then swing the last two legs (4 and 5) forward while
the other legs support (1, 2, 3, 6) the robot. The pattern is then repeated. The tripod
gait uses two legs on one side and another on the other side (e.g. 1, 5, and 3), as in
a tripod, to hold the robot steady while moving the three remaining legs forward (2,
4, and 6) together.

8.3.2.6 Eight-Legged Robot

Spiders and other arachnids inspire eight-legged robots. Compared with other legged
robots, eight-legged robots offer the greatest stability with potential use in more

8 How to Move? Control, Navigation and Path Planning ... 219

challenging environments such as in hazardous areas to perform reconnaissance,
identify structural damages, and perform maintenance tasks.

8.3.3 Flying Robots

Much effort has been devoted to improving the flight endurance and payload of
Unmanned Aerial Vehicles (UAVs), commonly known as drones, which has resulted
in various configurations in different sizes, capabilities, and endurance. Unlike legged
and wheeled robots, flying robots are free to utilise the full six degrees of freedom,
allowing for different types of flight for a drone. These are known as Yaw, Pitch, and
Roll (Fig. 8.12).

Yaw () — This is the rotation of the drone’s head to either right or left. It is the basic
movement to spin the drone. In a remotely piloted drone, this is usually achieved using the
left throttle stick by moving to either the left or right.

Pitch (@) — This is the drone’s movement, either forward or backward. The forward pitch is
generally achieved in a remotely piloted drone by pushing the throttle stick forward, making
the drone tilt and move forward, away from you. Backward pitch is achieved by moving the
throttle stick backwards.

Roll (@) — Roll makes the drone fly sideways to either left or right. The right throttle stick
controls the roll in a remotely piloted drone.

8.3.3.1 Multicopters
A multicopter is a type of flying vehicle with propellers driven by motors (Fig. 8.13).
The main rotor blade(s) produces a forceful thrust used for both lifting and propelling

the vehicle. Multirotor uncrewed aerial vehicles are capable of vertical take-off and
landing (VTOL) and may hover at a place, unlike fixed-wing aircraft. Their hovering

Fig. 8.12 Roll, pitch, and Roll

yaw

L

-/ Yaw

Pitch

-

220 J. Wang and D. Herath

Fig. 8.13 Different types of multicopper (clockwise from top left—A quadrotor—DJI MAVIC
PRO, A hexacopter—Custom built model, DJI Phantom Model and An octocopter—Custom built
model)

capability and ability to maintain speed make them ideal for civilian fields, moni-
toring, surveillance, and aerial photography work. One of the challenges with multi-
copters is that they consume more power, leading to limited endurance. Also, multi-
copters, unlike fixed-winged counterparts, are inherently aerodynamically unstable
and requires an on-board flight controller (an autopilot) to maintain stability.

Multicopters can be divided into specific categories based on the number and
positioning of motors, and each category has its own mission (Fig. 8.14). And based
on the mission requirements, they are classified in various configurations such as
Monocopter (1 rotor), Tricopter (3 rotors), quadcopter (4 rotors), hexacopter (6
rotors) (X/ + configurations), Octacopter (8 rotors) (X/ + configurations), X8-rotor,
and Y6-rotor. A quadrotor is a multirotor helicopter lifted and propelled by four
rotors. It is a useful tool for university researchers to test and evaluate new ideas in
several fields, including flight control theory, navigation, real-time systems.

8.3.3.2 A Quadrotor Example
A quadrotor (drone) is able to perform three manoeuvres in the vertical plane: hover,
climb, or descend.

Hover—To hover, the net thrust of the four rotors push the drone up and must be
exactly equal to the gravitational force pulling it down.

8 How to Move? Control, Navigation and Path Planning ... 221

FRONT FRONT FRONT
QUAD-ROTOR QUAD-ROTOR HEXA-ROTOR
(“+"CONFIGURATION) (“x" CONFIGURATION)
FRONT FRENT FRONT
OCTO-ROTOR e X8-ROTOR Lowen Y6-ROTOR

Fig. 8.14 Various configurations possible with the hoverfly multirotor control board (Ed Darack,
2014)

Climb (Ascend)—Increasing the thrust (speed) of the four rotors so that the upward
force is greater than the weight and pull of gravity.

Descend—Dropping back down requires doing the exact opposite of the climb,
decreasing the rotor thrust (speed) so the net force is downward.

To fly forward, an increase in the quadcopter motor rpm (rotation rate) of rotors
3 and 4 (rear motors) and a decrease in the rate of rotors 1 and 2 (front motors) is
required. The total thrust force will remain equal to the weight so that the drone will
stay at the same vertical level. To rotate the drone without creating imbalances, a
decrease in the spin of motors 1 and 3 with an increase in the spin of rotors 2 and 4
is required (Fig. 8.15).

Mathematical Model of a Quadcopter

The structure of the quadcopter is presented in the below figure, including the
corresponding angular velocities, torques and forces created by the rotors (Fig. 8.16).

The absolute linear position & of the quadcopter is defined in the inertial frame.
Angular position is defined with three Euler angles 5. Vector ¢ contains the linear
and angular position vectors.

222 J. Wang and D. Herath

Fig. 8.15 A quadcopter
rotor configuration

&2

Fig. 8.16 Inertial and body frames of a quadcopter

X a
E=|y|, n=]90 ,q=[€}
Z v g

The origin of the body frame is in the centre of mass of the quadcopter. In the
body frame, the linear velocities are determined by Vp and the angular velocities by
v

vy, B p
VB = Uy,B s V= q
v, B r

The rotation matrix from the body frame to the inertial frame is

C\],CQ Cq,SgSQ - SQ,CQ Cll,SgCQ) + Sq,Sg
R = Sll,Cg S\‘ISQSQ + Cq,Cg SLUSQCQ — Cq,Sg
-8y CySg CoCy

8 How to Move? Control, Navigation and Path Planning ... 223

where S, = sin(x) and C, = cos(S). The rotation matric R is orthogonal thus R~! =
RT which is the rotation matrix from the inertial frame to the body frame. The
transformation matric for angular velocities from the inertial frame to the body frame
is W,, and from the body frame to the inertial frame is Wn_ L.

n= Wn’lv then v = W,

The quadcopter is assumed to have a symmetric structure with the four arms
aligned with the body x- and y-axes. Thus, the inertia matrix is diagonal matrix [in
which I, = I,

Iy 00
I=| 01,0
0 0 I

The inverse of the following equation could be used to solve for the required
rotor speeds to achieve the desired thrust (7%) and moments T = (13, 1, 73) of the
quadcopter (Mahony et al., 2012);

Ts Cr Cr Cr Cr w?
Tl _ 0 dCTO —dCT 0)%
n | | =der 0 der O w%
2 -c, ¢, —-C,C, wﬁ

where Cr (>0) and C, are two coefficients that can be experimentally determined
for the considered quadcopter using thrust tests.

8.3.3.3 Fixed Wings

Fixed-wing UAVs require a runway for take-off and landing and also, unlike multi-
copters, cannot hover and maintain flight at low speeds. However, they have longer
endurance and can fly at high cruising speeds because of the successful generalisation
of larger fixed-wing planes with slight modifications and improvements.

Fixed wings are the main lift generating elements in response to forward accel-
erating speed. The velocity and steeper angle of air flowing over the fixed wings
controls the lift produced. Fixed-wing drones require a higher initial speed and a
thrust to load ratio of less than 1 to initiate a flight. If fixed-wing and Multirotor are
compared for the same amount of payload, fixed-wing drones are more comfortable
with less power requirement and thrust loading of less than 1. Rudder, ailerons, and
elevators control aircraft orientation in yaw, roll, and pitch angles.

224 J. Wang and D. Herath
8.3.3.4 Other Flying Robots

There are also some non-conventional configurations of UAVs used for scientific
research. They include hybrid, convertible and flapping wing drones that can take off
vertically or act as an insect for spying missions. Flapping wing drones inspired by
insects such as small dragonflies? and birds® have regularly appeared in the research
literature and at times as commercial prototypes. Due to the lightweight and flexible
wings, the flapping drones can contribute well to stable flight in a windy environment.
A large amount of research work on flapping wing drones has been carried out
by researchers and biologists because of their exclusive manoeuvrability benefits.
Blimps and airships are other categories of flying robots that utilise a lifting gas that
is less dense than the environment it is operating.

8.4 Controlling Robots

Using the Sense, Think, Act framework, the robot’s controller can be thought of as
the component within the Think element responsible for the robot’s movements. It
is usually a microcontroller or an onboard computer or a mix of these used to store
information about the robot and its surrounding environment and execute designated
programmes that operate the robot. The control system includes data processing,
control algorithms, logic analysis, and other processing activities which enable the
robot to perform as designed. Based on the different requirements, more sophisticated
robots have more sophisticated control systems.

The control system involves all three aspects of the sense, think, and act loop
during execution. First, the perception system provides information about the envi-
ronment, the robot itself, and the relationship between the robot and the environment.
Based on the information from the sensors and the robot’s objectives, the cognition
and control system must then decide on how to act and what to do to achieve its
objectives. The appropriate commands are then sent to the actuators, which move
the mechanical structure. The control system coordinates all the input data and plans
the robot’s motion towards the desired goal.

Various control techniques have been proposed and are being researched. The
control strategies of mobile robots can be divided into open-loop and closed-loop
feedback strategies. When it comes to open-loop control, human operators are
involved in sending instructions. The robot relays information to the operator only to
perform as instructed. An example of such a system is piloting a drone using a drone
controller. The robot’s success in achieving its mission is essentially dependent on
your piloting skills—the controller simply relays your “intent” to the drone. Most
of the time, control commands such as velocities or torques are calculated before-
hand, based on the knowledge of the initial and end position (“Goal pose”) of the

2 https://spectrum.ieee.org/somehow-an-incredible-robotic-dragonfly-is-now-on-indiegogo.
3 https://spectrum.ieee.org/festo-bioinspired-robots-bionicswift.

https://spectrum.ieee.org/somehow-an-incredible-robotic-dragonfly-is-now-on-indiegogo
https://spectrum.ieee.org/festo-bioinspired-robots-bionicswift

8 How to Move? Control, Navigation and Path Planning ... 225

Input Output

?Goal Pose? ?Current Pose?

Motor
+ Error m Command

Sensors

Feedback

?Distance Travelled?

Fig. 8.17 A typical closed-loop feedback controller

robot. However, this strategy cannot compensate for disturbances and model errors
(“Error”).

On the other hand, closed-loop control strategies could provide the required
compensation since the inputs are functions of the actual state of the system and not
only of the initial and endpoints. Therefore, disturbances and errors causing devia-
tions from the predicted state are compensated by real-time sensor data (“Feedback”)
(Fig. 8.17). Formally, we could define a feedback controller as enabling a robot to
reach and maintain the desired state (called a set point) by repeatedly comparing its
current state with the desired goal state. Here, feedback refers to the information that
is literally “fed back” into the system’s controller. When a system is operating at the
desired state, it is said to be operating at the steady state.

8.4.1 PID Controllers

A PID controller is a control loop feedback mechanism that calculates the difference
between a desired value (sefpoint) and the actual output from a process and use that
result to apply a correction to the process. The term PID stands for Proportional—
Integral-Derivative feedback control, and it is one of the most commonly used
controllers in the industry. It is the best starting point when designing an autonomous
control system and is very popular in commercial autopilot systems and open-source
developments.

The main goal of this process is to maintain a specified setpoint value. For example,
you may want a DC motor to maintain a setpoint value r(t) of 600 encoder pulses per
second. The actual motor speed y(t), called the process variable, is subtracted from
the setpoint value 600 to find the error value e(¢). The PID controller then computes
the new control value u(t) to apply to the motor based on the computed error value. In
the case of a DC motor, the control value would be a pulse-width-modulated (PWM)
signal. The (7) represents a time parameter being passed into the process (Fig. 8.18).

Let us now look at how each of the three elements, P, I, D, contributes to the
overall controller.

226 J. Wang and D. Herath

P Kpe(t)
{l Klfﬁ(l]dl‘ . E n Process
D Kdde(t)/dt .

Fig. 8.18 A PID controller—r(t) is the reference setpoint, e(t) is the difference between the process
output and the desired setpoint, u(#) is the process input control value, y(¢) is the process output

8.4.1.1 Proportional Control (P)

This element takes some proportion of the current error value. The proportion is
specified by a constant called the gain value, and a proportional response is repre-
sented by the letters Kp. As an example, Kp may be set to 0.25, which will compute
a value of 25% of the error value. This is used to compute the corrective response
to the process. Since it requires an error to generate the proportional response, there
is no proportional part of the corrective response if there is no error. For example,
when controlling a drone autonomously, increasing the P gain Kp typically leads
to shorter rise time (i.e. the drone reaches the required altitude quickly) and larger
overshoots. Although it can decrease the system’s settling time, it can also lead the
drone to display highly oscillatory or unstable behaviour (Fig. 8.19).

8.4.1.2 Derivative Control (D)

The derivative term is used to estimate the future trends of the error based on its
current rate of change. It is used to add a dampening effect to the system such that
the quicker the change rate, the greater the controlling or dampening effect. In that
sense, increasing the D gain Kd typically leads to smaller overshoot and a better-
damped behaviour. However, increasing Kd could lead to larger steady-state errors
(Fig. 8.20).

8.4.1.3 Integral Control (I)

Element I takes all past error values and integrates them over time. The term integrates
simply means to accumulate or add up. This results in the integral term growing
until the error goes to zero. When the error is eliminated, the integral term will
stop growing. If an error still exists after the application of proportional control, the
integral term tries to eliminate the error by adding in its accumulated error value.
This will result in the proportional effect diminishing as the error decreases, and
the growing integral effect compensates for this. Increasing the I gain Ki leads to a

8 How to Move? Control, Navigation and Path Planning ... 227

Desired State
@
-
2
=4
B bl b e e e s e e el
<
Steady-state
error |
Y
Kp
increasing
direction

Time (seconds)

Fig. 8.19 An example showing the effects of increasing Kp—shorter rise time but oscillatory
behaviour increasing. (No Integral and Derivative control)

reduction in the steady-state error (often elimination) but also could lead to larger
oscillations (Fig. 8.21).

Another issue to be mindful of when using the integral term in a controller refers
to Integral windup. This is common in most physical systems (nonlinear systems),
where a significant change in the setpoint (either positive or negative) results in the
integral term accumulating significant errors that cannot be offset by errors in the
opposite direction leading to a loss of control. Researchers have developed several
anti-windup techniques over the years to counter the phenomenon. One common
technique is setting boundaries for the integral term depending on the known system
limitations, such as actuator operational range.

8.4.1.4 Tuning a PID Controller

As understood from this brief overview of the role of each element of the PID
controller, it is not possible to independently tune the three different gains. Each of
them aims to offer the desired response characteristic (e.g. faster response, damped
and smooth oscillations, near-zero steady-state error) but has a negative effect that
must be compensated by re-tuning another gain. Therefore, PID tuning is a highly

228 J. Wang and D. Herath

Desired State
__ 5 ——
L e = —
f !
Steady-state

| ‘\ error
®]
B
= /1 Kd
E | increasing

direction

Time (seconds)

Fig. 8.20 Anexample showing the effects of increasing Kd with a constant Kp (No Integral control)

coupled and iterative procedure. The PID controller consists of the additive action of
the Proportional, the Integral, and the Derivative component. Not all of them have to
be present; therefore, we often employ P controllers, PI controllers or PD controllers
when a simpler controller yields the desired result.

8.4.2 Fuzzy Logic Controllers

The fuzzy logic theory was developed in the mid-1960s as a way to deal with the
imprecision and uncertainty inherent to perception systems. Since then, it has been
used in many engineering applications. Designers consider it one of the simpler
solutions available for many nonlinear control problems, including most robotics
navigation and control problems. Fuzzy logic is more advantageous than traditional
solutions because it allows computers to act more like humans, responding effectively
to complex inputs to deal with linguistic notions such as “too hot”, “too cold” or
“just right”. Furthermore, fuzzy logic is well suited to low-cost implementations
based on cheap sensors, low-resolution analog-to-digital converters, and 4-bit or 8-
bit microcontroller chips. Such systems can be easily upgraded by adding new rules
to improve performance or by adding new features. In many cases, fuzzy control can

8 How to Move? Control, Navigation and Path Planning ... 229

1.2

08} _Ki y Desired State
increasing
direction
7]
5=
=
-—'é 0.6
<
04
0.2
ol 1 1 I 1 I
1] 1 2 3 4 5 5] T
Time (seconds)

Fig. 8.21 An example showing the effects of increasing Ki with a constant Kp and Kd

improve existing traditional control systems by adding an extra layer of intelligence
to the current control method.

8.4.2.1 A Simple Example

Consider a ground robot moving towards a target.

The fuzzy logic controller (FLC) used has two inputs: error in distance (Ae,) and
error in the angle of orientation (Ae,) of the robot. The controller’s output (that is,
the control signals) would be pulse-width-modulated signals to control the angular
velocity of the two servo wheels. Therefore, the fuzzy logic controller is a two-input,
two-output system. The block diagram of the robotic system is shown in Fig. 8.22.

8.5 Path Planning

Path planning is the means of finding a suitable (optimal) path for a moving platform
to travel from its starting point to the goal point in a given environment. Early work on
path planning focused on planning paths for robotic manipulators, where a perfect

230 J. Wang and D. Herath

Fig. 8.22 Fuzzy logic Calculation of FLC
control system
Aey and Ae, >
L J
Sensor Robot
Readings |«

world model and precise knowledge of the joint angles were assumed. However,
these assumptions cannot be made for mobile robots operating in partly known or
unknown environments and with localisation uncertainties.

Classical algorithms, such as Dijkstra’s algorithm (Dijkstra, 1959), A and A*
algorithms (Hart et al., 1968), apply a global graph search to find the least-cost
path from the starting point to the target point. There are also other methods for
sampling the local environment to determine the least-cost path (Kuffner & LaValle,
2000). The main purpose of obtaining the best path is to find the shortest path with
minimal energy usage and maximum coverage of an area or optimised predicted
perception quality. In some situations, it is beneficial to choose from a given set
of trajectories that can be followed by the robot’s controller rather than planning
a specific and maybe impossible path (Dey et al., 2011). Therefore, different path
planning algorithms are used for different situations, with most algorithms relying
on heuristic and probabilistic techniques.

8.5.1 Heuristic Path Planning Algorithms

Heuristic methods use an estimated cost function for target-oriented path searching
which considerably reduces the computational time. These algorithms calculate the
path based on the fewest number of grid cells in the queue by assigning a cost to each
node with respect to the difference of its distance from that of the minimal distance
between the starting and goal nodes.

8.5.1.1 A¥* Algorithm

The most well-known path planning algorithm is the A* algorithm (Hart et al., 1968)
which uses a best-first search method to find the least-cost path from the starting
to the goal node. Unlike other path planning techniques, we can consider that the

8 How to Move? Control, Navigation and Path Planning ... 231

A* algorithm has a “brain” that can do the calculations. It is widely used for games
and web-based maps to find the shortest path in a very efficient way. The vehicle
traverses towards the goal node until it either reaches it or determines that there is no
available path with a heuristic function used to evaluate the goodness of each node.

Considering a graph map with multiple nodes, what the A* algorithm does is that
at each step, it picks the node according to the value “f”’, which is equal to the sum of
“g” and “h”. At each step, it picks the node having the lowest “f”” value and proceeds
to the next until it finds the goal point.

f(node) = g(node) + h(node)

where:

g(node) is the travelling cost from the initial point to the current point; #(node) is the
heuristic function that includes the cost from the starting node to the current location,
¢(n, ") and estimated cost from the current location to goal h(n').

A* (star) Pathfinding Pseudocode

// Initialise both open and closed list
let the openList and closedList equal empty list of nodes

/I Add the start node
put the startNode on the openList (leave it’s f at zero)

/' loop until find the end
while the openList is not empty

/I Get the current node

let the currentNode equal the node with the least f value
remove the currentNode from the openList

add the currentNode to the closedList

// Found the goal
if currentNode is the goal
Goal found! Backtrack to get path

/l Generate children
let the children of the currentNode equal the adjacent nodes
for each child in the children

232 J. Wang and D. Herath

// Child is on the closedList
if child is in the closedList
continue to beginning of for loop

/I Create the f, g, and h values

child.g = currentNode.g + distance between child and current
child.h = distance from child to end

child.f = child.g + child.h

// Child is already in openList

if child.position is in the openList’s nodes positions
if the child.g is higher than the openList node’s g
continue to beginning of for loop

// Add the child to the openList
add the child to the openList

For example:
We would like to find the shortest path between A to K in the following map. The
number written with red is the distance between the nodes, and the number in the
blue circle written in black is the heuristics value. A* uses f(n) = g(n) + h(n) to find
the shortest path.

Let’s start with start point A. A has three nodes: B, E, and F, then we can start
calculate f(B), f(E), and f (F):

f(B)=3+8=11
f(Ey=14+1=2
f(F)=54+4=9

f(E) <f(F)<f(B), so we will choose E as the new start node.

Fornode E, ittwonodes F and H, f(F) =7 (1 +6)+4=11,f(H)=3 (1 +2)
+4=17,f(H)<f(F), so we will choose H as the new start node.

For node H, it has twonodes J and I, f(J) =5(1+2+2)+3=8,f(I) =4 (1
+2+1)+4+2=6,fI)<f(J), so we will choose I as the new start node.

For node 7, it has twonodes D and K, f(D) =10 (1 +2+ 14+ 6) + 5 =15, f(K)
=6(1+24+14+2)+0=6,f(K)<f(D),sowe will choose K as the next node, as
K is the goal point, the algorithm stop here.

The shortest path from A to K is A—E—H—I—K (Fig. 8.23).

The A* algorithm is similar to Dijkstra’s algorithm (Dijkstra, 1959), except that
it guides its search towards the most promising states, which can save a significant
amount of computational effort. The limitation of the above approaches is that they
need a complete map of the area under exploration. However, when operating in
real-world scenarios, as new information might be added to the map, replanning is

8 How to Move? Control, Navigation and Path Planning ... 233

5 e
o

Fig. 8.23 A* algorithm example

\®"

essential. While A s could be used to plan from scratch for every update, this is
computationally expensive.

Instead, the D* Lite (Koenig & Likhachev, 2005) and Focussed Dynamic A* (D¥*)
(Stentz et al., 1995) algorithms search for a path from the goal towards the start and
update nodes only when changes occur. An updated path is calculated based on the
previous path, which is much more effective than the A * algorithm and Dijkstra’s
algorithm. D* Lite algorithm is one of the most popular goal-directed navigation
algorithms that is widely used for mobile robot navigation in unknown environments.
It is a reverse searching method and can replan from the current position when new
obstacles are blocking the path.

Finally, Field D* is an interpolation based path planning and replanning algorithm
(Ferguson & Stentz, 2006). In contrast to other methods in which nodes are defined as
the centres of grids, it defines nodes on the corners of grids. Then linear interpolation
is used to create waypoints along the edges of grids which allows the planning of
direct, low-cost, smooth paths in non-uniform environments. D* and its variants are
widely used for autonomous robots, including Mars rovers and autonomous cars
(Stentz & Hebert, 1995; Urmson et al., 2008).

234 J. Wang and D. Herath

8.5.2 Probabilistic Path Planning Algorithms

Probabilistic approaches sample the configuration space randomly, which helps
to decrease the path planning time and memory usage. However, their main
disadvantage is that they cannot always be guaranteed to find the optimal path.

Much work has been conducted based on probabilistic path planning methods.
One of the most popular approaches is the probabilistic roadmap (PRM) algorithm
(Kavraki & Latombe, 1998; Kavraki et al., 1996) which generally consists of two
phases: firstly, it randomly samples points in the configuration space to build a
roadmap graph and then connects the sampled configurations to their neighbours; and
secondly, in the query phase, the starting and goal nodes are connected to their neigh-
bours in the graph and the path calculated using a heuristic method. Although any
existing path can be found if there is a sufficiently increasing number of samples,
as situations such as narrow corridors in large environments can rapidly increase
the path planning time, deliberate sampling strategies are necessary. While multiple
queries can be executed on the same graph-based on PRMs, some pre-processing is
needed during which, in some cases, obstacles are defined.

8.6 Obstacle Avoidance

In mobile robotics, the goal of obstacle avoidance is generally to navigate from one
location to the goal location while avoiding collisions with obstacles during the robot
motion in a known or unknown environment. Therefore, obstacle avoidance is almost
always is combined with path planning. The process requires an understanding of the
environment, such as a full map or partial map, a target location and robot’s location
(localisation) (discussed in the next chapter), and sensors such as cameras or laser
sensors to provide obstacle information.

Obstacle avoidance is always comprised of obstacle detection and collision avoid-
ance. There are varieties of algorithms that use different kinds of sensors and tech-
niques to achieve the goal of obstacle detection. The processed data received from
sensors are then sent to the controller to operate the robot to avoid obstacles. There
are some widely used obstacle avoidance algorithms such as bug algorithms, VFH,
and other proximity-based techniques (e.g. sonar, bumper sensors).

8.6.1 Bug Algorithm

The bug algorithms are the simplest obstacle avoidance method among all obstacle
avoidance methods. In the bug algorithm, the main idea is to track the contour of the
obstacles found in the robot’s path and make the robot circumnavigate it (Lumelsky,

8 How to Move? Control, Navigation and Path Planning ... 235

2005; Lumelsky & Stepanov, 1987). There are several modified versions of the bug
algorithm, such as Bug 1, Bug 2, DistBug, and Tangential Bug algorithm.

Bug 1 algorithm is the simplest of all Bug algorithm variations. It reaches the goal
almost all the time with high reliability. But the matter of concern with this method
is efficiency. The robot moves on the shortest path joining the robot’s position X and
goal location until it encounters a hurdle in the path. When an obstacle confronts it,
it starts revolving around its surface and calculates the distance from the destination
point. After one complete revolution, it figures out the point of departure closest to
the goal. Then, it maintains or changes the direction of motion depending on the
distance of leaving point from the hit point. This method can be illustrated in the
following steps:

Head towards the goal
If an obstacle is encountered, circumnavigate it and remember how close you get
to the goal

e Return to that closest point and continue

Robot revolves around every obstacle on the way towards the goal, increasing
the computational efforts. But ease of implementation makes it worth it when only
completion of the task is required irrespective of time.

Generally speaking, the bug algorithms work well with single obstacle avoidance.
However, these bug algorithms are not very reliable in a more complex and cluttered
environment, and in some tricky conditions, one version works better than the other
version.

8.6.2 The Vector Field Histogram (VFH)

Vector field histogram is a real-time obstacle avoidance method for mobile robots
developed by Borenstein and Koren (1991). This method contains three major compo-
nents that help to achieve obstacle avoidance. Firstly, the robot generates a two-
dimensional sensory histogram around its body or within a limited angle and starts
updating the histogram data at every stage. Secondly, the two-dimensional histogram
data are converted into a one-dimensional polar histogram. Finally, it selects the lower
polar dense area and moves the vehicle, calculating the direction.

This approach overcomes the issue of sensor noise. A histogram is a graph between
probabilities of the presence of obstacles to the angle associated with the sensor
reading. The probabilities are obtained by creating a local occupancy grid map (see
Chap. 9) of the environment of the robot’s surroundings. The histogram is used
to discover all the passages large enough to allow the robot to pass through. The
selection of path is based on a cost function which is a function of the alignment
of the robot’s path with the goal and on the difference between the current wheel
orientation and the new direction. A minimum cost function is desirable. One of
the advantages of using VFH is that it conquers the problem of sensor noise by
making a polar histogram that represents the probability of obstacle of a particular

236 J. Wang and D. Herath

angular direction. Some demerits need to be taken into consideration when using this
technique, such as VFH does not guarantee the completeness, which can lead to an
unfinished task. It can be problematic to pass through a narrow passage using this
method. Moreover, it does not consider the robot’s dynamics and its environment,
making it not ideal for use in a complex dynamic environment.

8.7 Chapter Summary

Robots that move around in the environment instead of being fixed to a single location
are called mobile robots. These can be categorised according to the type of locomotion
they utilise, such as wheeled, legged, or flying.

A robot controller essentially provides the controlling commands to its actuators
to drive the robot towards the desired goal. A common control loop is the PID
(proportional—integral-derivative) controller, which uses sensor feedback to update
the control signal in a repeated manner. Essentially the controller applies a correction
to a control function where the correction could be proportional to the error (P) or
reflective of the cumulative error (/) or the change in the error rate (D). A PID
controller requires tuning of its parameters, which usually requires an iterative trial
and error approach or sophisticated tuning algorithms to realise optimal performance.

For a robot to move from a given point to the desired goal point, it needs to plan
a path between the two points using some optimal criteria, for example, shortest
distance, the lowest energy consumption, or the largest area coverage. Many tech-
niques have evolved over the years, including heuristic and probabilistic techniques,
each having its own merits and concerns. Additionally, a complimentary problem in
path planning is the obstacle avoidance problem. Again, researchers have come up
with various strategies and techniques to solve the problem.

As a roboticist developing a mobile robot, your task is to select, develop, and
implement techniques, algorithms, and platforms based on the ideas discussed in
this chapter to suit the requirements of the job at hand.

8.8 Review Questions

e If using a PID controller for a drone, increasing the P gain Kp typically leads to
shorter or longer rise times?

e If using a PID controller for a drone, increasing the I gain KI, would it result in
smaller or larger oscillations?

e Comparing two-wheeled, three-wheeled, four-wheeled robots, which one is the
most unstable type?

e What does pitch, yaw and roll mean in a drone?
What is the difference between classic and heuristic path planning algorithms?

8 How to Move? Control, Navigation and Path Planning ... 237

8.9 Further Reading

The chapter covered introductory material on several related topics. Once the basic
concepts are well understood, you can explore these topics in more depth and expand
onto advanced topics. Following titles, Introduction to Robotics: Mechanics and
Control (3rd Edition) by John Craig, Modern Robotics Mechanics, Planning, and
Control by Kevin M. Lynch and Robotics Modelling, Planning and Control by Bruno
Siciliano provide some excellent reading. Another highly recommended book on
mobile robots is the book by Roland Siegwart, Introduction to autonomous mobile
robots.

References

Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for mobile
robots. IEEE Transactions on Robotics and Automation, 7(3), 278-288.

da Silva, L. R., Flesch, R. C. C., & Normey-Rico, J. E. (2018). Analysis of anti-windup techniques
in PID control of processes with measurement noise. IFAC-PapersOnLine 51(4), 948-953.

Dey, D., Liu, T. Y., Sofman, B., & Bagnell, D. (2011). Efficient optimisation of control libraries.
Technical report, DTIC Document.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1(1),269-271.

Ed, Darack, https://www.airspacemag.com/flight-today/build-your-own-drone-180951417, 2014.

Ferguson, D., & Stentz, A. (2006). Using interpolation to improve path planning: The field D*
algorithm. Journal of Field Robotics, 23(2), 79-101.

Fukuoka, Y., & Kimura, H. (2009). Dynamic locomotion of a biomorphic quadruped “Tekken”
robot using various gaits: Walk, trot, free-gait and bound. Applied Bionics & Biomechanics, 6(1),
63-71.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107.

https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled, 2021.

Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4), 566-580.

Kavraki, L. E., & Latombe, J. -C. (1998). Probabilistic roadmaps for robot path planning.

Koenig, S., & Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. /EEE
Transactions on Robotics, 21(3), 354-363.

Kuftner, J. J., & LaValle, S. M. (2000). Rrt-connect: An efficient approach to single-query path
planning. In Proceedings. ICRA’00 IEEE international conference on robotics and automation,
2000, (vol 2, pp. 995-1001). IEEE.

Lumelsky, V. J. (2005). Sensing, Intelligence, Motion: How Robots and Humans Move in an
Unstructured World. John Wiley & Sons.

Lumelsky, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2, 403-430.

Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor aerial vehicles: Modeling, estimation, and
control of quadrotor. IEEE Robotics & Automation Magazine, 19(3), 20-32. https://doi.org/10.
1109/MRA.2012.2206474

Stentz, A., et al. (1995). The focussed D* algorithm for real-time replanning. In IJCAI, 95, 1652—
1659.

https://www.airspacemag.com/flight-today/build-your-own-drone-180951417
https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled
https://doi.org/10.1109/MRA.2012.2206474

238 J. Wang and D. Herath

Stentz, A., & Hebert, M. (1995). A complete navigation system for goal acquisition in unknown
environments. Autonomous Robots, 2(2), 127-145.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D.,
Galatali, T., Geyer, C., et al. (2008). Autonomous driving in urban environments: Boss and the
urban challenge. Journal of Field Robotics, 25(8), 425-466.

Zhao, D., Jing, X., Dan, W., et al. (2012). Gait Definition and successive gait-transition method
based on energy consumption for a quadruped. Chinese Journal of Mechanical Engineering,
25(1), 29-317.

Jiefei Wang ’s research focuses on sensing, guidance, and control for autonomous systems. He
received the master’s degree in electrical engineering from Australian National University in 2011,
and the Ph.D. degree in electrical engineering from the University of New South Wales in 2016.
His research interests include sensing and image processing, scene understanding for obstacle
avoidance, control of autonomous systems, and aerial robotics.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra.
Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading
multidisciplinary research teams on complex robotic integration, industrial and research projects
for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and
was named one of the most innovative young tech companies in Australia in 2014. Teams he
led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in
the coveted Amazon Robotics Challenge—an industry-focused competition amongst the robotics
research elite. In addition, Damith has chaired several international workshops on Robots and Art
and is the lead editor of the book Robots and Art: Exploring an Unlikely Symbiosis—the first
significant work to feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 9 ®)
Lost in Space! Localisation and Mapping | @

Damith Herath

9.1 Learning Objectives

In this chapter, you will learn about:

The robot localisation problem

The robot mapping problem

The Simultaneous Localisation and Mapping (SLAM) problem

Common probabilistic state estimation techniques

The Kalman filter and the role of the extended Kalman filter as a recursive state
estimator in nonlinear systems.

9.2 Introduction

Imagine you are visiting a new city or country. Perhaps, if you are like me, one of
the first things you might do is download or print a copy of the local area map. Or,
perhaps make sure that the navigation app or the GPS on your phone is up to date with
the latest map. But, while you are travelling across the new city, do you remember
the time when you got lost? Even with the latest maps?

Similarly, have you ever wondered how a self-driving car knows where it is going?

A typical mobile robotic system architecture is shown in Fig. 9.1. It consists of
several sensors, planning and control modules and actuators. While specific instan-
tiations of these components will be application and platform-dependent, a typical
mobile robotic system requires these building blocks to function. First of all, internal
and external sensors provide information about the robot and the physical world it
inhabits. Next, this information is interpreted by various algorithms to estimate the

D. Herath (<)
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022 239
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_9&domain=pdf
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_9

240 D. Herath

Sense Think Act

!
| T
Vehicle ¥
._|-_-’

State

BN Observation [Estinate
Model

Obstacle
Avoidance

Fig. 9.1 A high-level overview of a mobile robot system from the sensors to algorithms to actuators

vehicle’s state and its environment. The state estimate is then used to plan the robot’s
actions and generate commands for the actuators. We looked at sensors, control, path
planning and obstacle avoidance in the previous chapters.

This chapter explores localisation and mapping, once considered the holy grail of
robotics, which are two fundamental capabilities that any autonomous mobile robot
requires to navigate in the wild, including self-driving cars (and Mars rovers, too!).

An Industry Perspective

Guillaume Charland-Arcand
ARA Robotics

I was exposed first during my CEGEP years in a small club where we were
building sumo robots for robotics competitions. The competition was simple,
2 robots faced each other on a circular black ring with a small white bar that
delimited the edge, the goal was for one robot to push the other one out of
the ring. My robot was very simple, big motors, big wheels, a few sensors, an
8-bit microcontroller, my own circuit board, and a few lines of codes. I was not
very successful in the competitions, but building a thing on your own, mixing
mechanics, electronics, software, and seeing something move on its own, was
pretty cool. But I felt I did not know enough, so at the university, I decided to
join a scientific club focusing on multirotor UAVs, which was pretty new at the

9 Lost in Space! Localisation and Mapping 241

time. I fell in love with this branch of robotics instantly. It was mobile robots,
like my good old sumo robot, but on steroids. Everything was harder; more
vibration, complicated nonlinear dynamics, limited payload capacity and it’s
flying!

At the time of doing my master’s, working with UAV was hard because
of the lack of resources. I had convinced my supervisor to buy equipment,
but based on the budget, we could only afford 1 UAV. This made things a
lot more complicated for me, because, one mistake, one line of code in error,
and the UAV crashes. Working on control law design made this even more
problematic. Everybody that worked a bit in control theory has experienced
this: it’s always fine on paper and in simulations, but there is always the small
caveat of finding the controller gains, which is done through experimentation
typically. The challenge was to tune my controller and validate my controller
software without breaking the only UAV I had. This is where I got introduced
to safety-critical engineering and its practices, i.e., how to design software and
hardware in a systematic fashion to guarantee that it won’t fail. I did not go
as far as following DO-178 standards, but it provided new insight on how to
develop robotic products and applications.

When I started, SLAM was starting to be applied on UAVs. A few ROS pack-
ages existed, but it was mostly in 2D, using Hokuyo scanning laser rangefinder.
There were also a few successful demonstrations of autonomous UAVs oper-
ating in GNSS denied environments, but it was mainly prototyped in exper-
imental settings. Now, companies such as Exyn Technologies and Skydio,
provide products for industrial applications that have a very high level of
autonomy. These systems can generate extremely precise 3D maps, detect
static and dynamic obstacles and plan paths through unknown environments at
high velocities. I would say the last 5 years’ technological improvements are
major and are a great bedrock from the innovation to come because the task of
autonomy is very complex and not completely solved yet.

9.3 Robot Localisation Problem

For any autonomous mobile robot to be successfully deployed, it requires to answer
the question ‘where am 1?°. For example, in Fig. 9.2 a robot travelling in a local
coordinate frame. In Fig. 9.2, a robot is shown at time ¢ = k at an unknown location.
The robot localisation problem is to find the current coordinates and the heading
(the direction which the robot is facing) of the robot with respect to a given local
coordinate frame. The local coordinate frame is usually fixed at the location where

242 D. Herath

Coordinuate
Frame -~ -~

Local
Coordinute
Frame

Fig. 9.2 A robot travelling in a local coordinate frame

the robot was at time ¢t = 0, though this could be arbitrarily selected. The robot
also carries its own coordinate frame. The heading is usually defined as the angular
difference between the x-axis of the local coordinate frame and the x-axis of the robot
coordinate frame. The localisation problem is said to be solved for a given time r = k
when the current (x, y, z) coordinates and the heading (W) of the robot with respect
to the given local coordinate frame are fully known.

In the example shown, the robot knows its starting position. The localisation
problem could then be thought of as a tracking problem, where the requirement is to
track the robot’s movement from the beginning with respect to its initial position. On
the other hand, if the initial position is not known, then the localisation problem is
considered to be a global positioning problem. An example of this could be a robot
being turned on at an arbitrary location without knowing its initial position.

Another related problem is the ‘kidnapped’ robot problem, where a properly
localised robot suddenly gets moved to a different location without being aware of
the move. An example of this could be a vacuum cleaning robot starting from its
charging station (known local coordinate frame) and suddenly being picked up by a
user and placed in another room (who would do that?).

9 Lost in Space! Localisation and Mapping 243

1.2

0.6 4

Robot path/(m)

0.2 b

0.2 ! ! ! ! ! !
0 0.5 1 1.5 2 2.5 3 3.5

Fig. 9.3 True path of a robot (blue) compared to the odometry-based estimate of the path

9.3.1 Odometry-Based Localisation

One of the most common techniques used in robotics to extract the current loca-
tion of a robot is to use wheel encoders. Odometry, the word derived from Greek
roots (odos—street and metron—to measure) simply refers to any technique that
uses motion information to derive relative position estimates of the robot. Similar to
the odometer available on a vehicle that indicates the distance the vehicle has trav-
elled (either the absolute distance since its manufacture or the relative distance from
an arbitrary starting point), the wheel encoders could be used to calculate relative
travel distances and heading of the robot based on the known wheel geometry and
dynamics. This process is sometimes referred to as dead reckoning. However, due to
sensor errors, slippage and other noise elements inherent in such systems, odometry
accumulates errors over time. As shown in Fig. 9.3, a robot could lose track of its
location relatively quickly if it only relied on odometry. Nevertheless, odometry is
extensively used in robotics to acquire short-term localisation information.

9.3.2 IMU-Based Odometry

Inertial measurement units (IMU) are devices that integrate several sensors in a single
package, including accelerometers and gyroscopes. IMUs could be used to measure
the robot’s linear acceleration in three dimensions (using a tri-axial accelerometer)
and rotational rate (using gyroscopes). By appropriately integrating this information,
it is possible to derive the robot’s speed and travel distance so the robot’s relative

244 D. Herath

location and heading information can be worked out. However, IMU units suffer
from ‘drift’ where they accumulate errors over time.

9.3.3 Visual Odometry

Visual odometry is an alternate technique that uses cameras and computer vision to
derive odometric information. Various computer vision techniques have been used
to estimate the motion of robots. Generally, these techniques attempt to understand
the relative changes in images between subsequent frames due to movement. A
common approach is to track a set of image features across frames (see Chap. 7).
These techniques are sometimes coupled with an IMU to improve the estimates.
Such systems are usually called visual inertial odometry.

9.3.4 Map-Based Localisation

The previous techniques described for solving the localisation problem only provide
relative information. In other words, these techniques require the integration of a
series of measurements to derive the robot’s current location. An alternative technique
is to use an external map to make direct observations to a series of external landmarks
(also called beacons or features) using a sensor mounted on the robot to infer the
robot’s current location with respect to these landmarks based on a-priori map.
That is if you know the locations of a set of previously identified landmarks in
the environment with respect to a global/local coordinate frame (i.e. someone has
already built a local map of the environment) and if you have a sensor capable of
re-identifying and measuring relative location of these landmarks with respect to its
position, then it is possible to localise your robot within the given coordinate frame
using triangulation. Triangulation uses two known locations to ‘triangulate’ or work
out the location of a third point using geometry. In order to triangulate, the distances
and the angles to the known locations (landmarks) with respect to the unknown
location must be measured (see Fig. 9.4).

Consider a robot observing n landmarks in the environment with known locations
using a noisy sensor where the current location of the robot is unknown;

The current robot location (unknown) is: X, = [x,, y,]

Measured bearings to the known landmarks: 6 = [0y, 65, ..., 0,1]T

Actual locations of the landmarks (known) x; = [x;, yi]T

Actual bearings to the landmarks (unknown): 6(x,) =
[61(x,), 02(x,), ..., 6, (x))]"

where tanf; (x,) = o

Assuming the measurement error to be (86;), we can write a relationship between
the measured bearing and the actual bearing for each observed feature: 6; = 6; (x,) +

9 Lost in Space! Localisation and Mapping 245

Fig. 9.4 Map-based localisation

d6; or

0=0(x,) + 50

where
36 = [561, 865, ...,86,]"

and assuming the measurement noise to be zero-mean Gaussian and independent,
the covariance matrix is given by

Y = diag(o*lz, o3, ...,ornz)

We can then construct the maximum likelihood (ML) estimator of the robot
location:

&, = agmin [0(5,) — 6] [A(2,) ~ 0]

This could now be solved recursively using a technique such as the Gauss—Newton
algorithm as a nonlinear least-squares problem.

246 D. Herath

Most common localisation algorithms assume landmarks to be stationary during
the entire robot operation. This is called the static environment assumption. An
environment is considered dynamic if it contains map elements (except for the robot)
that are moving, such as humans, vehicles and other robots. Obviously, such dynamic
elements are not suitable as landmarks for localisation and are treated as noise.
In robotics, such landmarks could be visually salient features naturally occurring
in the given environment (e.g. corners and edges) or artificially placed (e.g. laser
retroreflective beacons). A suitable sensor (e.g. a camera for the former and a laser
range finder for the latter) along with relevant signal processing techniques should
be used to detect and measure the distance and the angle (bearing) to these features
with respect to the sensor coordinate frame.

The Global Positioning System (GPS) uses the distance information between the
robot and the satellite (via time-of-flight and satellite-specific data) to localise, using
a slight variation of the triangulation technique called trilateration which requires
knowing only the distances to the landmarks (or the satellites). Ideally, having more
than two landmarks will help to improve the accuracy of the location estimate. The
same applies to the previously described triangulation scenario.

A related problem called the data association problem deals with the disambigua-
tion of detected features and the correct association with the known map features.
This problem does not arise with GPS, as each satellite on the constellation sends
uniquely identifiable information to the receiver.

9.4 The Robot Mapping Problem

In the previous section, we discussed how objects within the robot’s environ-
ment could be used to localise a robot. Of particular interest was the availability
of maps. How are these maps generated? Figure 9.5 shows an ancient map of
Taprobana, modern-day Sri Lanka, drawn by the ancient mathematician and cartogra-
pher Claudius Ptolemy. The map was drawn using geographical coordinates derived
from tools and techniques available at the time. Today, such maps are drawn using
modern surveying techniques using modern tools and GPS location data. The general
idea, however, remains the same. Measurements are made to features of interest (e.g.
contours, trees, structures) and are plotted against a fixed coordinate frame. As you
would notice, Ptolemy’s map has only a passing resemblance to today’s maps of the
country. During ancient times, in the absence of GPS to localise, sailors and cartogra-
phers relied on observing the sun and the stars using such instruments as the sextant
resulting in significant errors in measurements and localisation. To create such maps
accurately, one would need to make relative measurements to these features accu-
rately and be able to localise the instrument that is making the measurements within
the coordinate frame accurately.

When deploying robots, it is possible to access a priori maps on many occasions.
For example, in indoor structures, it may be possible to refer to the architect drawn
blueprints of the building or place artificial beacons (e.g. retroreflective markers that

9 Lost in Space! Localisation and Mapping 247

_ M|

=

e

EQVINOCTIALIS 50

[=f=Twlufb[zja]N[=]|o]3]
+E|-
i :

A" 8.7

{

o

]
t

EEEIEE
[

]
L

P A
L R e e s el GG s e S

[[SI=[ES e[-T=["["[¥ [= o[N[=[o]5]

[uslud [ineli=ofm 2= Trzsliag

Fig. 9.5 Ptolemy’s Taprobana as published in Cosmographia Claudii Ptolomaei Alexandrini, 1535
(modern-day Sri Lanka) (Image by Laurent Fries—(Bailey and Durrant-Whyte (2006)), Public
Domain, https://commons.wikimedia.org/w/index.php?curid=16165526)

respond to laser light) at known and fixed locations. However, this assumes that
the structure has not been changed from the original blueprints, which may not be
accurate in the former and for large environments, placement and measurement of
artificial beacons become a cumbersome proposition. In addition, there are semi-
permanent elements within the building, such as furniture, that will change their
locations over time, increasing the transient nature of maps. Also, it might be that
the robot needs to be deployed in an environment where a pre-built map does not
exist. In such situations, the robot is required to build a map. While the localisation
problem is a relatively easier problem to tackle due to its low-dimensional nature,
the map building problem is much harder, especially if the environment is large.

9.4.1 Occupancy Grid Maps

One of the simpler techniques used in robotics to create a map is the occupancy grid
map. Occupancy grid maps are commonly used in 2D mapping scenarios to describe
the floor plan of a robot’s environment using a grid layout. Figure 9.6 shows a small
occupancy grid map of an indoor environment. The grey shadings indicate where
the sensor (a laser range finder in this case) has detected obstacles. Less dense areas
of the ‘map’ indicate lower certainty of an obstacle at those locations. The blue line

https://commons.wikimedia.org/w/index.php?curid=16165526

248 D. Herath

i

—

Fig. 9.6 An occupancy grid map (left) and the actual plan of the mapped area (right) (image credit:
Rafael Gomes Braga)

indicates the robot’s path during the mapping exercise. If you are wondering how the
robot’s path was generated, we used a separate localisation algorithm with known
laser beacons placed in the environment. If we used the odometric data to generate
the occupancy grid map, the results would have been as bad as Ptolemy’s map.

9.4.2 Other Types of Maps

Maps such as the occupancy grid maps (Fig. 9.6) that represent the environment
using a geometric representation are called metric maps. Other types of maps include
feature maps that represent the environment using a set of salient features such as
edges and corners; semantic maps that combine geometric information with high-
level semantic information such as human identifiable objects in the environment
(e.g. Books, tables) and their relationship to each other. Metric and feature maps
are relatively less intuitive to humans. Semantic maps provide a more data-rich
environment that humans can interpret. Such maps are helpful when humans and
robots need to interact. For example, a semantic map implementation is better suited
in a self-driving car situation, whereas a metric map might be more efficient for an
underground mining application.

9.5 The Simultaneous Localisation and Mapping (SLAM)
Problem

When the robot is provided with a priori map, it is possible to localise the robot in
the environment—Ilike our example at the beginning of the chapter of you visiting
a new city with a map. Conversely, if the robot’s pose is known, it is possible to
construct a map of the environment—such as when surveyors create new maps using
GPS location information. But, what happens if the robot does not have a map and

9 Lost in Space! Localisation and Mapping 249

does not know the location? This is the dreaded chicken and the egg problem in
robotics. The question is, how do you construct a map while using the same map
to localise simultaneously. The problem is commonly known as the Simultaneous
Localisation and Mapping (SLAM) problem. In the late ‘90s, it was shown that it
is indeed possible for a robot to start from an unknown location in an unknown
environment to incrementally build a map of the environment while simultaneously
computing the pose of the robot using the map being built.

9.5.1 An Estimation Theoretic Approach to the Localisation,
Mapping and SLAM Problems

However, as we have seen in previous chapters, the sensors used in a robot could be
noisy, and the environment could be unpredictable, resulting in inherent uncertainties
in the measurements made about the environment. Therefore, it is required to consider
these uncertainties in any canonical formulation of the problem.

In order to accommodate the underlying uncertainties of the system, it is possible
to explore a class of algorithms that explicitly model system uncertainty using theo-
ries of probability. Thus, the localisation, mapping or the SLAM problem could be
formulated as a multivariate state estimation problem with noisy measurements:

A A
Xmap = argmax p(x|z)
X

where x represents the state variable and z is the measurement vector. We assume
each multivariate state as a normal distribution.

If we can further assume a prior distribution p over x exists, then the above
problem could be restated using Bayes’ theorem (see Chap. 6):

Kmap = argmax p(z/x) p(x)
X

Here, p(z|x) is the measurement likelihood and p(x) is the prior. This sets up the
problem in a way that it is possible to solve it in a recursive manner, as was the case
with the simple triangulation problem discussed earlier. We can now estimate the
states of the robot and the map repeatedly from a given starting point. To do so, we
should first define the relevant state vectors of the robot and the environment

The robot’s state for a mobile robot operating in 2D could be expressed as

Xr

250 D. Herath

where x, and y, denote the current location of the origin of the robot’s coordinate
frame with respect to the local coordinate frame and ¢, is the robot’s heading with
respect to the x-axis of the robot’s coordinate frame.

Assuming that our map is to be constructed using a metric feature map, the location
of the ith map feature could be defined as the vector,

Xi
Xri = | i
Zi

where (x;, y;, z;) are the 3D coordinates of the ith feature with respect to the local
coordinate frame. If we assume that the entire map of the environment will constitute
an n number of such features, then the map vector could be defined as,
X ri
X, =
X fn
Then, depending on the specific problem, we can assemble the state vector x to

be estimated for a given time ¢ = k, as follows,

e For the localisation problem,

x(k) = [x,(k)]

e For the mapping problem,

x(k) = [%m (k)]
e For the Simultaneous Localisation and Mapping problem,

x(k) = [Xr(k)]

X (k)

Once the state vector is defined, the estimation process occurs in three steps at
any given time step t = k (see Fig. 9.8):
1. The Prediction Stage

In the prediction stage, we will use a model of the robot’s motion (control input) to
predict how the states of the robot would evolve over the considered time step.

2. The Observation Stage

9 Lost in Space! Localisation and Mapping 251

In this stage, the robot uses its on-board sensors to make measurements to the map
features in the environment. For example, a depth camera and computer vision algo-
rithm could be used to detect salient features in the environment and measure their
location with respect to the robot’s coordinate frame. It is important to note that
the algorithms used should be able to identify the features repeatedly and match
them correctly over time (i.e. newly observed features should be correctly matched
to features already on the map). This ability to match observations to corresponding
map features is called data association (Fig. 9.7). Of course, if an observed feature
is not already on the map, such a feature will need to be initialised first (i.e. added
to the map vector).

These measurements are inherently noisy due to their physical nature and the
limitations of the algorithms. The estimates of the states based on these sensor inputs
are, therefore, limited by the accuracy of the sensors used for observations. However,
during the final stage of the estimation process, such noise will be filtered out.

3. The Update Stage

Fig. 9.7 A vision algorithm
is used to detect salient
features in the environment.
The top and bottom images
show two views of the same
environment captured at two
different time intervals of the
robot’s journey. The lines
indicate matched features
between the two images
(data association). Can you
spot any instances of failed
data association?

252 D. Herath

=k

taki D

aking S T e S
measurements ')ﬁf“}‘x'/ o
21(k),z2(k), ... B

With controlinput -

Fig. 9.8 Unknown states could be recursively estimated using sensor information within a Bayesian
framework

During the update stage, the prediction information and observations are combined
to produce an improved estimate of the states. The process could be represented as:

X = (1 - w)Xpredicted + WXgbserved

where w is a weighing factor used to determine the relative importance of the obser-
vation and the prediction. If the sensors used in the robot provide highly accurate
observation measurements, this parameter will be set closer to 1. If the sensors are
noisier and you have to rely on the predictions, this value needs to be set closer
to 0. In order to select the best value for the weighting factor, it is important to
understand the nature of your observation measurements (called the sensor model)
and the robot’s motion model (also called the vehicle model or the control model).
Suppose this is not appropriately ‘tuned’ to the system. In that case, the estimates
could be either conservative, in which case the state estimates will carry large uncer-
tainties or optimistic, therefore being overly confident about estimation where it is
not warranted. Either scenario leads to state estimates that are not useful in the worst
case, outright dangerous. An example of the latter could be observed when using
GPS systems for localisation in densely constructed environments such as passing
through a narrow pathway amidst tall buildings. Here, you would notice that your
GPS location estimate suddenly starts to jump around and sometimes appears to

9 Lost in Space! Localisation and Mapping 253

be inside the buildings. However, it might still indicate high confidence in the esti-
mate (usually denoted by a circle or an ellipse around the estimated location—the
smaller the circle, the higher the confidence). This occurs because of the multi-path
problem with GPS signals. Here, GPS signals are bounced off the tall structures
before reaching the GPS receiver leading to large errors in the time-of-flight calcu-
lations. Since the built-in algorithms are unaware of what is happening outside, it
continues to trust the observations leading to these erroneous state estimates. For a
self-driving car or similar robot, this could be catastrophic, to say the least!

Various algorithms have been proposed to solve the multivariate state estimation
problem. One of the most popular algorithms is the Kalman filter.

9.6 The Kalman Filter

The Kalman filter is a recursive linear statistical method for estimating the states of
interest. The basic Kalman filter deals with linear systems, and nonlinear systems are
treated by a linear approximation using the extended Kalman filter (EKF). Kalman
filter has various applications in varying disciplines. For example, in robotic naviga-
tion and data fusion, Kalman filter is one of the methods frequently discussed in the
literature with various adaptations and modifications.

9.6.1 Linear Discrete-Time Kalman Filter

For a linear system subject to Gaussian, uncorrelated, zero-mean measurement and
process noises, the Kalman filter is the optimal minimum mean squared error esti-
mator. To derive the filter for such a system, its model and the model of the observation
must be defined. Then the problem can be stated as a recursive linear estimator with
unknown gains. The gains can be determined using the minimum mean-squared error
criterion (MMS).

The Kalman filter consists of the same three recursive stages discussed in the
previous section.

1. Prediction stage
2. Observation stage
3. Update stage.

For a linear, discrete-time system, the state transition equation can be written as
follows:

x(k) = F(k)x(k — 1) + Blk)yu(k) + Gk)v(k)

254 D. Herath

where

x(k) state at time k

u(k) control input vector at time k
v(k) additive motion noise

B (k) control input transition matrix
G (k) noise transition matrix

F (k) state transition matrix

And the linear measurement equation can be written as follows:
z(k) = H(k)x(k) + w(k)

where

z(k) observation made at time k
x(k) state at time k

H(k) measurement model

w(k) additive observation noise

As mentioned earlier, system and measurement noise is assumed to be zero-mean
and independent. Thus,

E[v(k)] = E[w(k)] = 0, ¥k
and,
E[vihw' (j)] =0, Vi, j

Motion noise and the measurement noise will have the following corresponding
covariance:

E[v()v" ()]= 8;Q0). E[whw" (/)] = 8; R ()

The estimate of the state at a time k given all information up to time k is written as
x(k|k) and the estimate of the state at a time k given information up to time k — 1 is
written as X (k|k — 1) and is called the prediction. Thus, given the estimate at (k — 1)th
time step, the prediction equation for the state at kth time step can be written,

x(k/k—1) =F(k)x(k — 1|k — 1) + B(k)u(k)

And the corresponding covariance prediction:

P(klk — 1) = F)P(k — 1|k — DF” (k) + G(k)Q(k)G” (k)

Then the unbiased linear estimate is:

9 Lost in Space! Localisation and Mapping 255
X(k|k) = x(k|k — 1) + W(k)[z(k)—H(k)X(k|k — 1)]

Note that the conditional expected error between the estimate and the true state is
zero.
W (k) is called the Kalman gain at time step k. This is calculated as:

W (k) = P(klk — DHT (k)S™' (k)
where S(k) is called the innovation variance at time step k and given by:
S(k) = H(k)P(k|k — DH” (k) + R(k)
and the covariance estimate is:
P(k|k) = A—W(k)H(K))Pk|k — 1) — W(E)HK)" + WEk)R(K)WT (k)

Essentially, the Kalman filter takes a weighted average of the prediction X (k|k—1),
based on the previous estimate X(k — 1|k — 1), and a new observation z(k) to estimate
the state of interest X(k|k).

Case study: We can illustrate this process with a simple 1-D toy example (Fig. 9.9).
Let us assume that the robot can only move in one direction (x). At time t = k — 1
the robot is at the location x (k — 1). Though the robot is not privy to this exact value,
it has an estimate of its location, given by X(k — 1|k — 1). As this is an estimate of
the true value, it has uncertainty about its location, represented by the curve above
it—the spread indicating the extent of the uncertainty. Now, the robot moves forward
to the location x(k) at time ¢ = k using a control input u(k). Using these pieces of
information, the robot can now predict its location at the new time step as X(k|k — 1).
However, this leads to increased error in the estimated location as represented by

x(k-1) x(k) Xstar

Fig. 9.9 A 1-D robot localisation example

256 D. Herath

the new curve. The robot observes a landmark (represented by the star) at this stage
using its onboard sensor. Let us assume that the exact location of the star, xgp, is
known to the robot (i.e. a map is available). The robot measures the distance z(k)
between the star and its current location using an internal sensor. As we now have an
additional piece of information about the robot’s location at time ¢ = k, it is possible
to integrate the new information to come up with a better estimate of the current
location. If we trust the sensor that made the distance measure, we could weigh that
information more. The previous derivation of the Kalman filter helps us make this
decision and integrate the new sensor information weighted by the ‘trust’ we place
on the sensor. Finally, an improved location estimate could be worked out as X(k|k)
resulting in a reduction in the uncertainty of the robot location. This new estimate
then could be used to predict the robot’s location at # = k + 1, and the process could
be repeated.

9.6.2 The Extended Kalman Filter (EKF)

Although the Kalman filter is the optimal minimum mean squared error estimator for
alinear system, any real robot is nonlinear. A solution is found in the extended Kalman
filter (EKF), which uses a linearised approximation to nonlinear models. However,
linear approximations for nonlinear functions must be treated with care, and if treated
properly, the EKF will generate very good results in many applications. The extended
Kalman filter algorithm is very similar to the linear Kalman filter algorithm with the
substitutions:

F(k) — Vix(k)and H (k) — Vhx(k)

where Vfx (k) and Vhy (k) are nonlinear functions of both state and time step. These
are called the Jacobians, or the partial derivates of the state transition and measure-
ment functions, respectively (see Chap. 6). This implies that these functions are
differentiable.

Then, the main equations can be summarised as follows:

1. Prediction equations:
x(k/k —1) =f((k — 1]k — 1), u(k))
P(k|k — 1) = VEx(k)P(k — 1|k — 1)V fx (k) + Q(k)
2. Update equations:

X((klk) = x(klk — 1) + W(k)[z(k)—h(X(k|k — 1))]

9 Lost in Space! Localisation and Mapping 257
P(k|k) = P(klk — 1) — W(k)S(k)W7 (k)
where

S(k) = Vhx (k)P(klk — 1)V hx (k) + R(k)

9.6.3 Data Association

One of the issues that arise during data fusion in a robotic navigation scenario is
identifying the sensor observations with the observed. As mentioned earlier, this
problem is commonly referred to as the data association problem. There are several
methods available for discerning the observations. The most obvious way of doing
this is to make the observations self-identifying. An example of this was presented
earlier using computer vision, where a feature matching algorithm is used for the
data association.

Statistical methods also exist to determine how likely a given observation is of the
object thought to be observed. Derivation of equations for one such method referred
to as the Mahalanobis distance is discussed below.

The difference between the observed and the predicted observation for a set of
sensor data is called the innovation (v) and could be represented with the notations
introduced earlier in the Kalman filter section as follows:

v(k) = z(k) — 2(k|k — 1)

where Z(k|k — 1) is the predicted observation for time step k given the observation
information up to time step k — 1. It can be proven that the innovation is white with
a mean of zero and variance S(k) given below:

S(k) = R(k) + H(k)P(k|k — DH (k)

The above information can then be used in the problem of data association. The
normalised innovation squared q(k) is defined as:

qk) = v (S~ 'v(k)

If the associated filter is assumed to be consistent, the above equation can be shown
to be a x2 random distribution with m degrees of freedom, where m = dim(z(k)),
which is the dimension of the observation sequence.

A confidence value can be chosen from the x? tables and compared against the
value of q for each observation in the observation sequence. If the value of q for
a given observation is less than the threshold, then that observation is likely to be
associated with the correct object of observation. If multiple observations satisfy the

258 D. Herath

above condition, it is safer to ignore such observations as improper data association
could lead to unstable filter performance.

9.7 A Case Study: Robot Localisation Using the Extended
Kalman Filter

Let us now consider a real-world application of the extended Kalman filter in solving
the localisation problem.

9.7.1 Assumptions

The motion model used is a very important parameter in deciding the success of
the filter to be used. Therefore, it needs proper consideration along with the choice
of sensors. The algorithm used in this case study uses the rigid body and rolling
motion constraints to simplify the analysis. The rigid body constraint assumes that
the robot’s frame is rigid, and the rolling motion constraint assumes that all points
on the vehicle rotate about the instantaneous centre of rotation with the same angular
velocity. This could be a reasonable model for a simple structure like the TurtleBot.
In order to further simplify the analysis, it is assumed that there is no slip between
tyres and the ground and that vehicle motion may be adequately be represented as a
two-dimensional model whose motion is restricted to a plane.

9.7.2 Derivation of the EKF-Based Localisation Algorithm

Derivation follows the equations in Sect. 6. A state prediction for the (k 4+ 1) time
step can be derived from the information available up to time step :

X(k +1) = f(X(k), u(k))

Note the abbreviated representation used where X (k + 1) represents the prediction
of state at (k + 1) time step given the information up to time step (k). X (k) represents
the best estimate available at time step (k). u (k) represents the control inputs to the

robot driver at time step (k):
V (k)
uk) = |:a)(k):|

9 Lost in Space! Localisation and Mapping 259

Fig. 9.10 Sensor mounted O ith feature
on the robot observes the ith)
feature /I Bi(X:,Yi)

1

ri

(x(k+1),y(k+1))

where V (k) is the robot’s forward velocity at time step (k) and w(k) is the turning
rate (angular velocity) at time step (k). Thus, the complete process model can be
described as below:

x(k+1) x(k) + ATV (k) cos(gp(k))
yk+1) | = | yk) + ATV (k) sin(gp(k))
ok +1) k) + ATw

Assume that the robot makes an observation at time step (k + 1) with its onboard
sensor to a particular feature in the environment. The sensor is mounted on the robot
with an offset of a-units in the centreline, and the observation results in range (r;) and
bearing (6;) information pertaining to the feature observed, as depicted in Fig. 9.10.

There are n-number of features scattered in the environment for which absolute
position coordinates are known a priori (i.e. the maps is given). A general observation
of the ith feature B;(Xj, ¥;) can be represented as follows:

rite+ 1) = VX0 = x(k+ 1)+ (¥ =y (k+ D)2

Yi —yk+1

X _ —1
a@+n_mn<65j;@16

)—¢&+D
where

xr = x(k) +a cos(d(k))

yr = (k) + a sin(d(k))

260 D. Herath

The best estimate for this observation Z(k + 1|k) derived from previous informa-
tion can be represented in the following form;

VXi = 2k + 11k)% + (Y — §(k + 1]k))?
= “1 (Gi=50t11K)
tan l((x,—§<k+1\k>)

The prediction of covariance can be obtained as

Z,(k+ 1]k
Z(k+1)=[(k + |)}

Zo(k + 11k)

Pk + 1k) = V. (k) PKIV FL (k) + V £,) SRV £] (k)

where V f, represents the gradient of Jacobean of f(.) evaluated at time k with
respect to the states, V f,, is the Jacobean of f(.) with respect to the noise sources,
and X (k) is the noise strength given by

2
— GV 0
- [3]

10 ATV (k) sin((k|k))
Vi) =01 ATV (k) cos(@klk))
00 1

AT cos(p(klk)) 0O
V fwk) = | AT sin(p(k|k)) 0
0 AT

The innovation (observation prediction error) covariance S(k), which is used in
the calculation of the Kalman gains, can be calculated by squaring the estimated
observation error and taking the expectations of the measurements up to kth time
step and can be written as follows

Sk +1) = Vh,(k +)Pk + 1|k)VAT (k + 1) + R(k + 1)

where R(k 4 1) is the observation variance (which is diagonal in most robotics
applications due to the independent nature of the measurements)

R(E) — arZO
) = 0 092

HHD=X; Je+l=Y
1

Vh(k+1) = |:—9<k+d1k>—x- serifo-x,
d? d?

where

9 Lost in Space! Localisation and Mapping 261

d=+(X; =%k + 1))2+ (¥; — 3, (k + 1))?

Finally, the state update equations for the EKF are given by (adapting general
equations in the previous section)

Rk+1/k+1) =%k + 11k) + Wk + D[z(k + 1)—h(& (k + 1]k))]
where
Wk +1)= Pk + 11k)VA (k+ DSk +1)~"

is the Kalman gain.

The algorithm is now complete, and as the robot proceeds from time + = 0
observing the environment, it can be applied recursively to determine the current
location. A set of map features must be first initialised. In the example in Fig. 9.11,
we have used a set of retroreflective beacons spread out in the environment. The
locations of these beacons were surveyed and recorded for initialisation. A SICK
laser range finder was used to detect and measure the range and bearing to these
beacons.

Fig. 9.11 Animplementation of the EKF-based localisation algorithm. The solid blue line indicates
the EKF estimate of the robot path. The red dotted line is odometry. The * denotes the locations of
the surveyed beacons

262 D. Herath

9.8 Summary

This chapter looked briefly at a set of fundamental problems in robot navigation. The
localisation problem answers the question ‘where am I?” and the mapping problem
asks the question ‘how to generate a map of the robot’s environment?” when the
robot’s location is known. The Simultaneous Localisation and Mapping (SLAM)
problem involves solving both the localisation and the mapping problem concur-
rently. We discussed an estimation theoretic approach to solving these problems using
probabilistic techniques. The extended Kalman filter was presented as an implemen-
tation of this approach using a linear approximation to the nonlinear system models.
In combination, these algorithms and techniques should enable your robot never to
get lost in space (or earth!).

9.9 Review Questions

e Assume a robot equipped with a sensor that can detect the state of a door. For
simplicity, let us assume that the door could be in only one of two possible states,
open or closed. Let us now assume the robot’s sensors are noisy. The noise is
characterised by the following conditional probabilities: (Z-observation, X-door
state)

p(Z = sense_open|X = is_open) = 0.63

p(Z = sense_closed|X = is_closed) = 0.95

What is the value of the conditional probability
p(Z = sense_closed|X = is_open).

e What is meant by the robot localisation problem?
e Why is data association important for successful localisation?

9.10 Further Reading

This chapter only scratched the surface of the localisation and mapping problem.
Considerable research has happened since the ‘90s, with many successful implemen-
tations now in various production platforms operating at large-scale environments.
An excellent book on the subject by (Thrun et al., 2005) provides an excellent deep
dive into the subject. The essential tutorial on SLAM by Bailey and Durrant-Whyte
(Bailey & Durrant-Whyte, 2006; Durrant-Whyte & Bailey, 2006) provides a great
quick reference to the SLAM problem. The seminal work by (Dissanayake et al.,
2001; Durrant-Whyte, & Csorba, 2001) provides proof of the existence of a solu-
tion to the SLAM problem. If you are interested in understanding the underlying

9 Lost in Space! Localisation and Mapping 263

probabilistic estimation techniques and theories (Bar-Shalom et al., 2001) is highly
recommended.

References

Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II.
IEEE Robotics & Automation Magazine, 13(3), 108—117. Retrieved from https://doi.org/10.1109/
MRA.2006.1678144.

Bar-Shalom, Y., Li, X.-R., & Kirubarajan, T. (2001). Estimation with applications to tracking and
navigation. Wiley InterScience.

Dissanayake, M. W. M. G., Newman, P,, Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A
solution to the simultaneous localization and map building (SLAM) problem. /IEEE Transactions
on Robotics and Automation, 17(3), 229-241.

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localisation and mapping (SLAM): Part I
the essential algorithms.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer,
22(6), 46-57.

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34—46. Retrieved from
https://doi.org/10.1109/TRO.2006.889486.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics cambridge. MIT Press.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra.
Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading
multidisciplinary research teams on complex robotic integration, industrial and research projects
for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and
was named one of the most innovative young tech companies in Australia in 2014. Teams he
led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in
the coveted Amazon Robotics Challenge—an industry-focused competition amongst the robotics
research elite. In addition, Damith has chaired several international workshops on Robots and Art
and is the lead editor of the book Robots and Art: Exploring an Unlikely Symbiosis—the first
significant work to feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/MRA.2006.1678144.
https://doi.org/10.1109/TRO.2006.889486.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 10 ®)
How to Manipulate? Kinematics, Qs
Dynamics and Architecture of Robot

Arms

Bruno Belzile ® and David St-Onge

Learning Objectives

The objective at the end of this chapter is to be able to:

e recognize the architecture and mobilities of a robot arm;

e solve the forward and inverse kinematics problem of serial and parallel manipu-
lators;

e obtain the Jacobian relating the velocities of the joints to the end-effector;

e analyze the Jacobian to obtain the different singularities and understand their
physical meaning;

e obtain the equations defining the dynamics of a robotic manipulator.

Introduction

Manipulators are not fundamentally different than any other robotic systems regard-
ing their kinematics and dynamics. They are defined by their number of degrees-
of-freedom (DoF) and their architecture, which are critical for the envisioned appli-
cation. This chapter will provide you with an overview of the kinematics of robot
arms, including the direct kinematics problem (DKP), the inverse kinematics problem
(IKP) and the different types of singularities and how to find them. As kinematics
alone is not sufficient for advanced control, you will need to understand also the
dynamics of a robotic manipulator; we will cover it briefly.

B. Belzile (<) - D. St-Onge

Department of Mechanical Engineering, ETS Montréal, 1100 Notre-Dame Street West,
Montreal, QC H3C 1K3, Canada

e-mail: bruno.belzile.1 @ens.etsmtl.ca

D. St-Onge
e-mail: david.st-onge @etsmtl.ca
© The Author(s) 2022 265

D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_10&domain=pdf
http://orcid.org/0000-0003-3247-9362
 4473 9705
a 4473 9705 a

http://orcid.org/0000-0003-3247-9362
http://orcid.org/0000-0002-0587-8598
 14857 9705 a 14857 9705 a

http://orcid.org/0000-0002-0587-8598
mailto:bruno.belzile.1@ens.etsmtl.ca
 854 55179
a 854 55179 a

mailto:bruno.belzile.1@ens.etsmtl.ca
mailto:david.st-onge@etsmtl.ca
 854
58057 a 854 58057 a

mailto:david.st-onge@etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_10
 -2047 61852 a -2047
61852 a

https://doi.org/10.1007/978-981-19-1983-1_10

266 B. Belzile and D. St-Onge

An Industry Perspective

Juxi Leitner, Co-Founder

LYRO Robotics.

My background is in computer science. I started programming computers when
I was young (and there was not much else to do in my very tiny hometown in
the middle of the alps).

When I was about 15-16, I realised that most of my code lives in a computer
and did not really interact or change things in the real world. I started to become
more and more interested in robotics and getting inspired by the movies coming
out then, such as The Matrix, I robot, and Minority Report (I wanted to build
those spider robots!) So, [looked for ways to learn more about it, and I enrolled
in a Joint European Master Degree in Space Robotics.

I have researched robotics in academic settings for over a decade before trying
to transfer the technology into real-world applications with our current startup
LYRO Robotics.

Initially, I was looking at robot swarms and multi-robot coordination (for space
exploration particularly), but I got lucky and was able to attend a summer
programme in Lisbon to work with the then in-development iCub European
Humanoid. I was fascinated by how easy certain tasks come to us, yet how
hard they are for robotic systems, like detecting the world around the robot
(even how to decide what to focus your "eyes"/cameras on) or how hard it is
to pick up an object, even a simple one from a table in front of the robot.

That was eye-opening, and I got excited by the topic of embodiment and how
to integrate perception and smarts with the physicality of the robotic system
to enable physical interaction with the world! I still find it fascinating, and it
is more than 17 years later :)

Another pivotal moment for me was entering and eventually winning the Ama-
zon Robotics Challenge in 2017. There are specific things that industrial robots
were designed for, and it’s not picking random objects out of dynamic clutter.
Building the team (we were 20+) and designing the robotic system was really

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms

just a lot of fun. The part of solving a real-world problem with fundamental
tech we researched for years was particularly exciting (and frustrating at the
same time ;)

The win showed that thinking about all the options from hardware to software,
is important for designing robots that work. So, we started looking for real-
world applications and founded LYRO in 2019 to bring robots to markets that
are currently underserved due to various reasons (robots too expensive or too
incapable is a big one).

Lot of the theory discussed in this chapter are relevant in the real world. For
example, the iCub was inspired by the kinematics of a young child. In particular,
the hand has a lot of degrees of freedom, three in the shoulder, two in the elbow,
and two in the wrist. Then the hand has nine more (given it has five digits).
It highlighted an interesting issue for me that the forward kinematics is pretty
straightforward (if you have correct measurements), but inverse kinematics,
like when I have a position of an object I want to grasp, how do I need to
move my various joints, is a very hard and tricky problem with singularities
and non-linearities everywhere.

During my PhD, we regularly had to fix the cables in the iCub’s arm due to us
running into (or over) limits and breaking things!

I work in Robotic Grasping, and the advent of machine learning 20 years
ago, and deep learning ten years ago has clearly had an impact. However,
while “grasping is solved” is an often-cited quote, it is still non-trivial to get
a robotic arm to pick up any random object in any random configuration and
perform some useful task with it.

The area is expanding, which is good, but it lacks reproducibility which is
slowing down progress.

On the other hand, it is a very exciting time to enter as the whole field shifts
more towards robots that perform tasks in a smart fashion rather than "simply"
perform the same action over and over again.

Architectures

267

The physical embodiment of a robotic manipulator (we will use the term robot loosely
for this chapter) is a kinematic chain composed by a set of rigid bodies, called links,
connected in series together by joints (formally known as kinematic pairs). In other
words, a joint constrains the motion between two bodies. There are two types of
joints, namely lower kinematic pairs (LKP) and higher kinematic pairs (HKP). By
definition, the former involves “a contact taking place along a surface common to
the two bodies” (Angeles, 2014). You most likely encountered already the two most
common joints that belong to this category: the revolute (rotation, R) and prismatic

268 B. Belzile and D. St-Onge

(translation, P) joints. While there are also four other types of LKP, helical (screw,
H), cylindrical (C), universal (U) and spherical (S), all of them can be obtained
with a combination of revolute and prismatic joints. Therefore, the content of this
chapter will nearly exclusively focus on those two types of joints. While most joints
commonly used in robots only have a single degree-of-freedom (DoF), namely the
revolute and prismatic joints mentioned above, other types of joints, such as the
spherical and cylindrical joints, exist, with, respectively, three and two DoFs. As it
will be seen in the subsection on wrist-partitioned serial manipulators, the last three
revolute joints of this type of robot are equivalent to a spherical joint.

The architectures of robotic manipulators can be classified into two main cate-
gories: serial and parallel. The former, more common in the manufacturing industry,
consist of manipulators made of simple and open kinematic chains. They are known
for their reach and simplicity. The Kinova Gen3 lite, shown in Fig. 10.1, falls into
this category with its 6R kinematic chain,' i.e., an open loop of six actuated revolute
joints in a serial array. The latter, parallel manipulators, are based on complex kine-
matic chains made of at least one loop. They are known for their structural rigidity,
speed and the ability to lift a larger payload with respect to the robot mass. While for
the serial manipulator, most actuators need to be moved during the robots’ motion,
the actuators of a parallel manipulator can all be attached rigidly to the base.

Manipulators can also be classified by their mobility, which include their DoFs
and the type of motion they can generate. For instance, one of the most important type
of robotic manipulators is the Schonflies-motion generators (SMG). These 4-DoF
robots, capable of three translations and one rotation about an axis of fixed direction
(usually the vertical axis), are commonly called SCARA-like robot, after one of
the first and well-known SMG, the Selective-Compliance Assembly Robot Arm
(SCARA), a serial robot with one prismatic and three revolute joints (Makino et al.,
2007). These manipulators can have a serial or a parallel architecture. Nowadays,
most industrial manipulator will have 5—7 DoFs, such as the Kinova Gen3 and Gen3
lite.

Kinematics of Serial Manipulators

Serial manipulators are considered simple kinematic chains, i.e., each link can be
coupled via one or two joints, to one or two links. The first link is the base and the
last link is the end-effector (EE), sometimes called tool. In the sequel, we will take
a closer look to the direct and inverse kinematics of serial manipulators.

Direct Kinematics

Kinematics are used to describe the motion of a robot without considering the dynam-
ics, namely the forces and the torques causing the motion. Therefore, kinematics

! An underline letter representing a joint means it is actuated.

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 269

Fig. 10.1 Kinova Gen3 lite,
a serial 6-DoF robotic
manipulator

é"
$
€

problems are geometric problems. First, we consider the direct kinematics (DK),
sometimes called forward kinematics (FK), of a serial robot. The DK equations are
used to map the joint variables, called the posture or configuration of the robot,
into the position and the orientation of the EE, namely its pose. In the end, you
will obtain an explicit system of nonlinear equations to compute p = [p, p, p.l’,
the three-dimensional vector representing the Cartesian position of the EE, as well as
a3 x 3 orthogonal orientation (rotation) matrix Q made of three unit vectors parallel
to the X -, Y- and Z-axes of the EE (expressed in the base reference frame). Both p
and Q can be assembled into a single 4 x 4 homogeneous matrix, as you will see.

Denavit-Hartenberg Convention

It is impossible to discuss the subject of direct kinematics of serial robots without
bringing up the Denavit-Hartenberg convention. It is a powerful tool that will help
you solve the forward kinematics of a serial manipulator in a systematic way. Since
this method was first introduced by Hartenberg and Denavit (Hartenberg and Denavit,
1964), some variations were proposed. Here, we use Paul’s notation, also known as

270 B. Belzile and D. St-Onge

the distal variant (Lipkin, 2008). Each link is numbered from O to n, 0 being the base,
while 7 is the nth link, namely the flange of the robot to which the end-effector is
attached. The ith joint is defined as the one connecting the (i — 1)th and ith links.
While the forward kinematics of a serial robot can be solved without the use of the
DH convention (or any other), it simplifies considerably the process and can be easy
understood by other engineers familiar with the DH notation. Brace yourself, the
following lines cover several definitions and formulas, but the procedure quickly
become easy to use after trying some examples. For each link, a Cartesian frame is
defined. Two such frames are shown in Fig. 10.2. You should note that the (X;, ¥;, Z;)
axes are rigidly attached to the (i — 1)th link. The following convention is used:

1. Z; is the axis of the ith kinematic pair/joint.

2. X; is the common normal between Z;_y and Z;. Contrary to Z;, which does
not have a prescribed direction, X; is oriented from Z;_;) toward Z;. If they
intersect, resulting in an undefined direction for X;, the convention is to use the
cross product of unit vectors parallel to Z;_1y and Z; i; = k;—1) x k;. In the case
the former and the latter are parallel, X; is arbitrarily chosen to complete the
Cartesian frame, i.e., orthogonal to Z;_) and Z;.

3. with the right-hand rule,? Y; is defined.

With these frames and their respective axes, four parameters are defined for i =
l1...n:6;, @5, d;,a;,i = 1...n, being respectively the joint angle, the link twist, the
link offset and the link length. They are defined below:

1. @ is the distance® between Z; and Z 1y along X;1).

2. d; is the coordinate,* along Z;, from the origin of the ith frame to the intersection
with X(i+1) .

3. «; is the angle between Z; and Z,), measured with respect to the positive
direction of X1 1).

4. 6; is the angle between X; and X;;+1), measured with respect to the positive
direction of Z;.

An homogeneous transformation matrix, as defined in Chap. 6 (Section 6.4.4), is
obtained from these parameters, i.e.,

cosf; —sinf; cosa; sinb;sinw; a;cos6;
sinf; cosf;cosb; — cosb;sina; a;sinb;
0 sin o; COS d;
0 0 0 1

H571 = (D

2 As explained in Chap. 4 the thumb of the right hand points along the direction of the Z-axis; the
curl of the fingers while closing the hand represents a motion from the X -axis toward the Y -axis.

3 Always positive by definition.
4 Being a signed distance, it can be negative.

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 26188 39270 a 26188 39270
a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_6
 30947 39270 a 30947 39270 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_4
 7158 51446 a 7158 51446 a

http://dx.doi.org/10.1007/978-981-19-1983-1_4

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 271

Xit1

Fig. 10.2 Frames’ representation in the DH convention

where subscript refers to the reference frame in which the coordinates are given,
(i — 1) in this notation. It can also be separated into the rotation matrix Q;_; and the
displacement vector a;, i.e.,

H | = [Q(ff' aﬂ @

The orientation and position of the EE are thus obtained by multiplying the indi-
vidual transformation matrices associated with the DH parameters, giving us

Q = Q)QTQQ3Q;Q8 (3a)
6
p=) aj or (3b)
i=1
P = a5 + Qpa; + QQ7a; + Qi Qa3 + QpQTQ3Q%a; + QQiQ;Q5Q;as
3c)
H— |] - mmmm g Ga)

where H is the homogeneous transformation matrix representing both the position
and orientation of the EE. For the sake of brevity, in the sequel, if only a subscript is
given for a rotation/transformation matrix, it is given in the previous reference frame.

272 B. Belzile and D. St-Onge

Actuator 6

Actuator 5

Actuator &4

Actuator 3

Actuator 2

Actuator 1 . <

Base frame :g X 4—i y

Fig. 10.3 DH frames for each joint for the Kinova Gen3 lite (extracted from the manipulator user
manual)

For a joint with a single DoF, such as a revolute or a prismatic joint, only one of
the four parameters (a;, d;, 6;, ;) is a variable, the others are constant. As previously
mentioned, a homogeneous transformation matrix is characterized by six parameters
in 3D space. Here, this number is reduced to four since, with the DH convention,
the location of the origin of frame i is not arbitrarily chosen. Indeed, we have two
constraints for the X-axis of each subsequent frame: (1) X; must be normal to Z;
and (2) it must also intersect it. The frame is rigidly attached to link #, but it is
not necessarily located at the end of the link, as one may expect. In fact, it may lie
outside the link itself. The reduced number of parameters defining the transformation
matrices is one of the main assets of the DH notation.

The DH frames applied to the Kinova Gen3 lite are shown in Fig. 10.3, and the
corresponding DH parameters are detailed in Table 10.1. Since the six joints of the
Gen3 lite are revolute, all 6; are unknowns. In Chap. 18, more precisely in Project 3,
you will have to find the DH parameters of a 3-DoF version of this manipulator,’ as
well as compute its forward and inverse kinematics.

5 Three of its six joints will be locked.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 21061 49139 a 21061
49139 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 273

Table 10.1 DH parameters of the Kinova Gen3 lite

i 1 2 3 4 5 6

a; 0 a 0 0 0

d; d dy d3 dy ds dg
o; /2 b4 /2 /2 /2 0

Inverse Kinematics

As mentioned at the beginning of this chapter, solving the IKP allows the engi-
neer to obtain the set of joint coordinates, namely the posture of the robot, from a
position and orientation of the end-effector, namely the pose. Contrary to the DKP,
which give only one EE pose from a set of joint coordinates, there may be more
than one solution to the IKP, i.e., more than one posture that corresponds to a posi-
tion/orientation of the EE. However, an analytical (symbolic and exact) solution to
the inverse kinematics is not necessarily always obtainable, depending on the archi-
tecture of the robotic manipulator. In some cases, a numerical approach is preferable.
Numerical approaches are also better fit for simulator compatible with various manip-
ulator architectures. The different solutions to the IKP are called configuration types.
Usually, while moving, a manipulator will keep the same configuration type, as alter-
nating from one configuration type to another requires large joint angle variations to
obtain, in the end, the same EE coordinates. Switching configuration can also risk
passing through a singularity, which we will discuss later. The controller of commer-
cially available manipulators takes these elements into account while computing the
positions and velocities of the joints.

To solve the IKP symbolically for the explicit equations, we start with the same
equations used above, i.e., the ones defined by the 4 x 4 homogeneous transformation
matrix, i.e., H. Since the last line is always [0 0 0 1], we thus have 12 nonlinear
equations, but only six unknowns in the case of a non-redundant® spatial manipulator.
Of course, if the robot has additional joints, for example, to reach a target within
a cluttered workspace (ex. welding operations), the number of potential solutions
increases. Within this chapter, only non-redundant manipulators are considered.

As previously mentioned, while we have nine equations for the orientation of
the EE, only thhree are independent, giving us a system of six equations with six
unknowns (three for the orientation, three for the position). Solving the IKP for a
general serial manipulator is thus a challenging mathematical problem considering
the nonlinearity of the equations. However, you will find that most commercially

6 A spatial serial redundant manipulator has more than six joints. Notwithstanding the mechanical
limits of the joints, the limits of the reachable workspace and singularities, only six joints are needed
to reach any point with any orientation of the EE. You should be careful if you come across the
term “redundant,” as it can have different meanings depending on the context. A parallel robot can
be redundantly actuated, i.e., more actuators than DoFs, and any manipulator can be kinematically
redundant with respect to its task, for example, pointing tasks, which only require two DoFs.

274 B. Belzile and D. St-Onge

available manipulators fall in the special category of wrist-partitioned, greatly sim-
plifying the problem, as we will show below.

Wrist-Partitioned Manipulators

The architecture of decoupled serial manipulator (wrist-partitioned) makes it possible
to separate the orientation problem from the position problem. Therefore, we obtain
explicit equations, avoiding the need for a numerical method to solve the IKP. The
problem is thus split into the inverse position kinematics and the inverse orientation
kinematics. By definition, the axes of the last three joints of decoupled manipulators
intersect. This point is known as the wrist center. Looking back to the DH parameters,
this means thatay = as = ag = 0. This also means that the last three DH frames share
the same origin. The coordinates of the latter are given by vector p,, in frame 0, i.e.,

Py =a; + Qiax + Q;Qa3 + QQ2Qza4 4

Since a4 = 0, a4 is not a function of 84, as the equation of p,, above. With Eq. (3b),
we can rewrite the above equation as

pv =P — Q1Q2Q3Qsa5 — Q:Q2Q30Q4Qs5a6 &)

which can be simplify, knowing that with a decoupled wrist, as = 0, as

P =P — QQ/ ag (6)

This equation is solely function of constant DH parameters and the target position
and orientation coordinates of the EE in the case of an IKP. Therefore, the location
of the wrist, p,,, can be computed in the base frame without the joint coordinates,
decoupling the position from the orientation.

In short, we solve the position problem by first computing the location of the wrist
with Eq. (6), then by isolating the first three joint coordinates in Eq. (4), which is a
simpler 3-DoF problem with three equations and three unknowns.

Example: 3-DoF Serial Manipulator

As an example, we can solve 3-DoF inverse position problem for a generic serial
manipulator with three revolute joints. It should be noted that the procedure below
may need to be slightly adapted in certain special cases (null DH parameters, certain
angles, division by zero, etc.). First, we need to rewrite Eq. (4):

Q{ (p» —a1) = a; + Qua; + Q:Qsa, @)

This can be done because rotation matrices are orthogonal, thus Q; I = QiT. Devel-
oping the above equation in terms of its components, we have

Acosb, + Bsin6, = x,, cos0; + y,, sinf; — a; (8a)
Asin6, — Bcosf, = cosay(y, cosf; — x,, sin) + (z,, — by) sina (8b)

C = sinay(x, sinf; — y,, cos6y) + (z,, — by) cos a; (8¢)

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 275

with
A =ay + a3 cos 03 + by sin o3 sin 65 (8d)
B = — azcosay sin 03 + b sinay + by cos o sin a3 cos 63 + by sin o cosaz (8e)

C =b, + az sin o sin 63 + bz cos ay — by sin o sin a3 cos 63 + by cOS oy COS &3
(3f)

We can see that the right-hand side of Eqs (8a—8c) is only function of 6, the
position of the wrist and the DH parameters. Let

D =x,,cos6; + y,, sinb; — a 9
E =cosa;(y,, cosb; — x,, sin6) + (z,, — by) sina; (10)

we can cast Eq. (8a—8b) in matrix form, i.e.,

A —Bf|cos6| |D
W i< 17 an

We are now able to compute explicit functions of sin 6, and cos 8;:

cos6, = (AD — BE)/(A> + B?) (12)
sin6, = (BD — AE)/(A* + B) (13)

which leads to
6, = arctan2(sin 6,, cos 6,) (14)

Obviously, 6, cannot be computed right away since the values of the other two
joint angles are needed. To this aim, we need to make 6, disappear. This is done
by calculating the sum of squares of each side of Eq. (8a—8c). Knowing sin® 6, +
cos? 6, = 1, we obtain

A?+ B>+ C?* =x2 +y* + (2w — b1)* + a? — 2a1x,, cosO; — 2ayy, sin6; (15)

The left-hand side of the above equation is only a function of DH parameters and
63, while the right-hand side is only dependent on DH parameters and 6. Moreover,
Eq. (15) is linear in sin 6, sin 63, cos 6, and cos 63. Computing the sum of the squares
of Eq. (8a—8b) would not have been useful, here, to eliminate 6,, as the resulting
equation would not have been linear in the terms mentioned above, which is necessary
for the following steps. Therefore, Eq. (15) is rewritten as

Ficos6; + Gisinf; + HycosOs +1;sinf; +J; =0 (16)

where F|, G, Hy, I; and J; are only functions of DH parameters and the position of
the wrist, all these terms being known at this stage. Then, Eq. (8c) is rewritten in a

276 B. Belzile and D. St-Onge
similar form, i.e.,

F>cos0; + G,sin0; + Hycos 03 + I sinf3 +J, =0 (17
Again, F,, G, Hy, I, and J, are only functions of DH parameters and the position of

the wrist. Having two linear equations and four unknowns, the next step is obtaining
explicit expressions of cos 8; and sin 6}, as we did with 6,. Thus, we obtain

—Gy(HycosO3 + I1sinds +Jy) + G1(Hycos 03 + I sin 0z + J,)

cosf; = (18)
F1G, — F»,G,
. F>(HycosO3 + 1 sin6; + J;) — Fi(H cos 03 + I, sin 63 + J,)
sinf; = (19)
F,G, — F,G,
6, = arctan2(sin 6y, cos ;) (20)

Finally, we eliminate 6, by computing the sum of the sin? §; and cos? 6;, which
results in

K cos? 03 + Lsin® 63 + M cos 65 sin 63 + N cos 05 + P sin 63 +0=0 201

where the coefficients in front of the trigonometric functions of 65 are functions of
Fi, G;, H;, I; and J»i, for i = 1, 2, which are in turn functions of DH parameters
and the position of the wrist. We, therefore, have a nonlinear equation with known
coefficients where the only unknown is 65. To solve this implicit equation, we use
a well-known identity in the field of kinematics, the Weierstrass substitution (also
known as the tangent half-angle substitution):

1-T7 275
cosf; = T2 sin 03 = W’ T; = tan(03/2) 22)
3 3

With this substitution, Eq. (21) is rewritten as an equation of degree four in 75:
RT{ + ST +UT; + VI3 + W =0 (23)

All four possible values for T3 are thus obtained by computing the roots of the above
equation. These values are then used to calculate the solutions for 83 with

03 = 2 arctan T3 24)

The values for the remaining joint coordinates are then computed with first Eq. (20)
then Eq. (14), for 6, and 6,, respectively. Therefore, we have solve the inverse position
problem for a 3-DoF serial manipulator, obtaining four sets of joint coordinates.
If we replace the revolute joints with prismatic joints, the problem becomes less
challenging to solve, as two prismatic joints (and one revolute) lead to a maximum
of two solutions to the inverse position problem and three prismatic joints lead to

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 277

only one solution to the inverse position problem. The position of the wrist now
known; the next step is to find the solutions for the remaining three joints.

Spherical Wrist

The first three rotation matrices Q;, Q,, Qs now fully known; the next step is to
compute the solutions for the last three transformation matrices, which are function of
the last three joint coordinates. First, we recall Eq. (3a) and rewrite it with everything
known on the right, i.e.,

Q4Q5Qs =R (25a)
riprig ns
R=QQIQ{Qu=|rirnr (25b)
31 32 133

Now you should remember that according to the DH notation, the angle between
the axes Zs and Zg is «s. These two axes are defined by the unit vectors es and eg.
Therefore, according to the dot product, we have

€5 - € = COS U5 (26)
We need to express these two vectors in one single reference frame. The DH frame 4
is chosen since it simplifies the equations. In this frame, e5 is simply the last column

of Q4. As for eg is the last column of Q4Qs. To avoid introducing more than one
unknown in the equation, we use the fact that

Q4Qs = RQ{ Q7

We thus obtain an equation where 6, is the only unknown variable:

X cosOy+Ysinby =27 (28a)
where
X = — sinay(r sin ag + 23 COS &g (28b)
Y =sin a4 (r; sinag + 3 coS o) (28¢)
Z = — cos a4 (r3; Sin ag + 33 COS &g) + COS s (28d)

Using the Wieirstrass substitution introduced previously, the above equation is then
transformed into a quadratic equation in 74, where the roots are computed and sub-
stituted in 6, = 2 arctan T4. To find the possible values for the remaining to joint
angles, we need to go back to Eq. (25a). We keep only the unknown terms on the
lefthand side by premultiplying by QJ, resulting in

QsQs = QIR (29)

278 B. Belzile and D. St-Onge

By developing the components of the above equation and by simple inspection, we
find

712 Sin @y Sin 64 — rpy Sin o4 COS B4 + 132 COS 0ty — COS (5 SIN K¢
cos g = (30a)

Sin o5 COS Qg

. 711 Sin oy Sin 64 — 171 sin oy cOS B4 + 131 COS 0y
sin 0 = (30b)

sin o5

As previously done, we put both values into
0 = arctan2(sin 6, cos 6¢) 31

Finally, 65 is found in a similar fashion but with Eq. (27) instead. By inspection, we
find

COS (X4 COS (X5 — F3p SIN Olg — 133 COS O
cosfs = - - (32a)
sin oy sin o5
. 31 €OS B — r3p COS g Sin Bg + r33 sin o cos Gg
sin 05 = - (32b)
S1n oy

and we compute
65 = arctan2(sin 65, cos 05) 33)

Other Manipulators

In the case of a serial manipulator without a decoupled wrist, there is no simple
recipe to solve the IKP. In some case, a numerical solver is necessary to obtain the
joint coordinates from a set of EE coordinates. In other cases, explicit equations can
be obtained, for instance, the Kinova Gen3 lite, but they are unique to the robots
with the same architecture. However, while the solutions are different, the approach
to solve the IKP of non-wrist-partitioned manipulators is generally similar, which
is reducing the number of unknowns to only one to obtain the roots of a univariate
polynomial equation to compute the values for one joint coordinate, then computing
those for the other joints by backsubstitution, as we did with the inverse position
problem of the wrist-partitioned manipulator. Indeed, this approach relies mostly on
trigonometric identities, e.g.:

sin? 6 4 cos? 6 = 1

sin sin B 4 cos o cos B = cos(o — B)
cosa cos B — sina sin 8 = cos(a + B)
sina cos B 4 cosa sin B = sin(a + B)
sina cos B — cosa sin B = sin(a — B)

and the concept of dyalitic elimination. The latter is used to reduce the number of
unknowns in a system of non-homogeneous equations. The procedure consists of
four steps:

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 279

1. Rewrite the equations as polynomial expressions where one of the variables is
included into the coefficients; this variable is dubbed the eliminated variable.

2. As many equations as the number of unknowns is needed; therefore, we may
need to generate a new one by multiplying one of the equations by one of the
unknowns, for instance, the equations are then casted into matrix form Ax = 0,
where A is a function of powers of the eliminated variable only, and x of the
other unknowns; it should be noted that the last component of x is equal to 1.

3. Since one component of X is not equal to zero by definition, A must be singular;
thus, its determinant has to be equal to zero; the next step is thus to compute the
roots of det(A) = 0 to find the possible values of the eliminated variable.

4. The last step is to compute the null space of A; knowing the last component
must be equal to 1, we simply need to scale the obtain vector to make sure its
last component is equal to 1.

Example: IKP of the Kinova Gen3 lite

The inverse kinematics problem of the Kinova Gen3 lite can be solved without
the use of a numerical approach. Considering the number of joints, a large set of
solutions are obtained for each feasible position and orientation of the end-effector.
The methodology to solve the IKP of the Kinova Jaco manipulator, which shares an
architecture similar to the Gen3 Lite, can be found in the literature (Gosselin and
Liu, 2014). The feasible solutions for an arbitrarily chosen pose of the EE are shown
in Fig. 10.4. Four are shown here, but more solutions could have been obtained if
we did not take into account the joint rotational limitations. One unique solution can
be chosen with a particular criterion, for instance, to minimize the joint rotations,
to minimize the torque generated by joint actuator to lift a payload, to simply avoid
obstacle, etc. While the topic of the optimal solution to the IKP will not be covered
in this chapter, numerous criteria can be found in the literature.

Numerical Approach to the IKP
The method presented above to find the symbolic solution to the IKP is not necessarily
adequate to all practical use cases. For instance, computing the roots of a high-degree
polynomial, which is often the case with manipulators with several DoFs, may lead
to numerical instabilities; thus, imprecision on the values of the joint coordinates
obtained. The analytical approach may not be fast enough as well. Therefore, to
avoid numerical instabilities and finding the symbolic solution to a challenging IKP,
the numerical approach is often used in the industry. To this regards, we introduce the
Newton-Gauss algorithm, but other avenues are possible. You first need to use the
orientation and position of the end-effector to obtain a system of nonlinear equations
that can be written as

fx)=0 (34)

Let the desired orientation matrix (defined for instance by Euler angles) and desired
position vector

Qi =[941 Y42 9a3], Pa = [Pra Pya pz,d]T (35)

280 B. Belzile and D. St-Onge

Fig. 10.4 Possible postures
for the same EE pose

(a) Solution #1 (b) Solution #2

(c) Solution #3 (d) Solution #4

and the solution to the forward kinematics defined in Eq. (3a—3b). The former can
also be shown in a format similar to Qy and py:

Q=[awa], p=[pprr] (36)

For a generic 6-DoF serial manipulator, we thus have a system of 12 equations:

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 281

qi —qa,1
f= |72 _ 37)
q3 — qa3
P — Pa

where f is a 12-dimensional vector, 0 is the null vector of the same dimension and
the six unknowns are the joint coordinates we are looking for. The Newton-Gauss
algorithm can now be applied to find x. Through this process, we will find a sequence
of approximations of x, denoted x;, X», . .., X; converging toward the solution of the
IKP. The next estimation is denoted X, ;. This algorithm is based on the Taylor series
of the first degree; therefore, we have

X1 = Xp + AX (38a)

and
f(xi1) =%k + Axp) =f(xp) + I (X)) AX = 0 (38b)

where J; (x;) is the mathematical Jacobian of f with respect to x (Section 6.6.2), i.e.,
Jr = 0f /x), evaluated at x;. It should not be confused with the Jacobian(s) of the
manipulator, which will be introduced later in this chapter. Equation (38b) can be
rewritten as

Jr(x) Ax = —f(x) (39)

To be able to compute the next increment Ax;, to obtain Axy 1, we thus need to solve
the overdetermined system of equation defined by the above equation (J; being a
tall matrix, i.e., more rows than columns). Since you nearly never have an exact
solution for an overdetermined system, we will find the solution minimizing the
least squares of the error, known as the least square solution. This is done with the
left Moore-Penrose generalized inverse J fL (Section 6.3.3), i.e.,

I =A7I)~"3] (402)
Axy = — JF(x0f (xi) (40b)

You should not compute the generalized inverse per se with the equation above,
since it is known to generate numerical issues (the condition number of J]Z Jyr s,
roughly, the square of that of matrix J; itself, resulting into a badly conditioned
system (Forsythe, 1970)). Instead, algorithms such as the QR decomposition and
the householder reflections are used, achieving the same results while minimizing
potential numerical issues.’” Depending on the value of x;, the algorithm will converge
toward one feasible solution (if any). To obtain at least some of the other potential
solutions (thus different configuration types), several starting points x; must be tested.

7 Section 6.10.

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 30080 21753 a 30080
21753 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_6
 20890 36365 a 20890
36365 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_6
 1597 57867 a 1597 57867 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

282 B. Belzile and D. St-Onge

Jacobian

The forward and inverse kinematics derived in the previous sections relate the joints
coordinates to the position and orientation of the end-effector and vice-versa. Now,
we consider the velocity of the EE and the joint rates. Mathematically, the relationship
between both is the Jacobian of the function defining the FKP. The Jacobian is useful
to plan smooth trajectory, to compute the wrench applied by the EE, to determine
singular postures, etc. For your understanding, a wrench is the six-dimensional vector
representation of forces and moments. Similarly, a twist is the six-dimensional vector
representation of linear and angular velocities. The expressions of the twist and the

wrench are, respectively,
® n
=[] [t 0

where P, o, f and n are the 3-dimensional linear velocity, angular velocity, force and
moment, respectively.

The Jacobian for a n-link serial manipulator is a (6 x n) matrix mapping the n
joint velocities into the six-dimensional vector consisting of the linear and angular
velocities of the EE, i.e., the twist mentioned above. Let uss assume only revolute
joints for now. Given the angular velocity vector of each link

wy)=0 (42a)
W] = g€ (42b)
w2 = 2€2 + W (42c)
®3 = §3€3 + w; (424d)
Wy = Gnen + 01 (42¢)

where ¢; is the velocity of the ith joint, e; is a unit vector parallel to the axis of the
ith joint, namely the Z;-axis of the ith DH frame, and 0 is the three-dimensional
null vector. The angular velocity of the end-effector, w, is simply equal to w,,. As
previously mentioned, the position of the EE is

p=) 2 (43)
i=1

Differentiating the above equation with respect to time, we obtain

p=) & whered; =w; xa;, i=1....n (44)

i=1

Substituing Egs. (42a) into (44), and with some manipulation, we obtain

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 283

p = Xn:q,‘ei XTr, Ii= Xn:aj (45)
i=1 J=i

where r; is defined as the vector from the ith DH frame to the last DH frame attached
to the EE. We can rewrite the previous equations in a more compact matrix form:

©=Ad4, p=Bq (46)

with
A=leje;...e], B=[e;xriexr...e xr,] 47)

Therefore, the Jacobian mapping q into t is

A i
J= [B} =[id2.-dn). di= [eiiri] (48)

where (3 x 6) submatrices A and B are, respectively, known as the orientation and
position Jacobians.

Earlier in this section, we assumed only revolute joints to compute the Jacobian of
a serial manipulator. If a ith joint is prismatic instead, the angular and linear velocities
of the ith link are written as

© =01, A=, xa;+de (49)

We can then prove that the contributing member of the ith joint to the Jacobian, i.e.,
the ith column, is expressed as

. 0

i = M (50)

Example: Jacobian of a 6-DoF Wrist-Partitioned Serial Manipulator
Since the axes of the last joints of a wrist-partitioned serial manipulator intersect at
one point, known as the spherical wrist, its Jacobian matrix is simplified, resulting

in
R IY
J—|:J21 0:| (51)

where 0, J1, Ji2 and J,; are (3 x 3) matrices. You should note that to simplify the
equations, the Jacobian matrix given here maps the joint rates into the twist of P,
namely the location of the intersection of the axes of the last three joints. Therefore,
we have

wheret, = [@” PT]7. Asyoucan see, the angular velocity vector @ is not a function
of the location of P,,. The linear velocity of P,,, which is only a function of the first
three joint velocities, is computed with the following equation, i.e.,

284 B. Belzile and D. St-Onge

Pw = q1€1 X 1 + @2€) X Iy + g3€3 X I3 (53)
where r; is defined as the vector from the ith DH frame to the P,, and e; is the unit
vector parallel to the axis of the ith joint, as mentioned above. The angular velocity
of the EE is computed with the formula given earlier in this section, i.e.,

® = gi1e; + ¢2€; + q3€3 + gae4 + gses + goes (54)

Therefore, we can determine that the submatrices included in expression (51) are

Jii = [e1 e, €3] (55a)
Ji2 = [eq €5 eq] (55b)
Jo = [e1 X1 € x 1) €3 X 13] (55¢)

Singularities

In robotics, when a manipulator is in a singular posture, or simply in a singularity, it
cannot displace its EE along at least one direction. Mathematically, this corresponds
to a singular Jacobian matrix use to compute joint velocities. We assumed previ-
ously this matrix was non-singular, i.e., for a robot with six DoFs, its Jacobian is
inversible and its determinant is not equal to zero (Section 6.4). It might not be the
case for certain configurations. Beyond the numerical issue of inverting a singular
matrix, the corresponding posture of the robot also has a physical meaning related
to the limits of the workspace of the robot or a loss of mobility, as mentioned
above. Moreover, if we refer back to the configuration types discussed earlier in this
chapter, the singularities correspond to boundaries between these entities within the
workspace of the robot.

A posture close to a singularity is also problematic for a manipulator and a robot
in general, as the determinant of its Jacobian matrix will be close to zero, yielding
a division by a number close to zero. This will result in significantly high joint
velocities, which raises safety concerns and reduces the trajectory-tracking accuracy.
Let

t=1J(q)q (56)

where q, t and J(q) are, respectively, the n-dimensional joint-rate vector, the six-
dimensional EE twist and the 6 x n Jacobian matrix, where n is the number of joints.
It is thus trivial to see that any given feasible EE twist, namely its linear and angular
velocity, as defined in Sect. 10.4.4, is a linear combination of the joint velocities. To
be able to achieve any arbitrary value of t, the rank of J, which is a function of the
posture of the robot, i.e. ¢, must be equal to six for a robot in 3D space. If it is the
case, any given twist of the EE is feasible. However, it should be noted that since
the Jacobian is posture-dependent, it is not always the case. If the rank(J) becomes

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 24200 31322 a 24200 31322 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 285

lower than six, this is call a singular posture, or, for brevity, a singularity. Depending
on which part of the Jacobian matrix generates a singularity, we can have a position
or an orientation singularity, each having a different physical interpretation.

Singularity of the Position Jacobian

For a 6-DoF wrist-partitioned serial manipulator, a singularity of the submatrix J»,
causes a position singularity, corresponding to the impossibility of computing the
joint rates for this location. This occurs when the determinant of J,; is equal to zero.
Considering Eq. (51), the determinant can be written as

det(Jo1) = (€1 xry) x (€2 X 12) X (€3 x1r3) =0 (57)

This situation occurs in two situations. First, you will find this type of singularity
when one column of J,; is equal to zero, for instance, when e; and r; are parallel,
which is commonly called a shoulder singularity. This particular case corresponds
physically to the wrist center being located on the first joint axis, resulting in the
instantaneous loss of one DoF. It can also be true for the second or third joint (wrist
center being located on the ith joint axis), but this is usually avoided by carefully
designing the manipulator.

Otherwise, we can also have det(J,;) = 0 when two columns of J,; become
coplanar, resulting in a rank-deficiency. Multiple postures/configurations of the robot
can lead to this, notably, but not only, a fully extended arm at the limit of the reachable
workspace. This includes elbow singularities, which occurs for vertically articulated®
manipulators such as the Meca500 sold by Mecademics.” when the wrist center lies
on the plane passing through the second and third axes. This can also happen in theory
with the manipulator folded on itself, but mechanical limits normally prevents this
situation from occurring.

Singularity of the Orientation Jacobian

In the case of a wrist-partitioned manipulator, an orientation singularity occurs when
det(J;2) = 0. This can only happen when ey, es and e¢ are coplanar. In this con-
figuration, only angular velocity vector on the plane generated by the three vectors
mentioned above are possible at the EE. Considering the typical kinematic chain of
a serial wrist-partitioned manipulator, it generally occurs when the axes of the fourth
and sixth revolute joints are coincident. This type of singularity is sometimes called
a wrist singularity.

Singularities with a Non-Wrist-Partitioned Manipulators
We now have seen the different singularities within the workspace of a serial wrist-
partitioned manipulator thought an analysis of its Jacobian. Mathematically, you

8 A vertically articulated architecture is common for commercially available wrist-partitioned six-
axis serial manipulators: the axes of the second and third joints are parallel, the axes of the first and
fourth joints are orthogonal to the axes of the second and third joints and the axis of fifth joint is
orthogonal to the axes of fourth and sixth joints.

? https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm.

https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm
 -1461 56538 a -1461 56538 a

https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm

286 B. Belzile and D. St-Onge

Fig. 10.5 Singular postures of the Kinova Gen3 lite (extracted from user manual)

can apply the same process to find singularities in the workspace of a non-wrist-
partitioned manipulator. However, we will look at the full Jacobian matrix in this
case, since we do not have decoupled kinematics for the orientation and position.
To this aim, we will use the Kinova Gen3 lite previously mentioned to illustrate the
process. Potential singular postures are shown in Fig. 10.5.

In this figure, from left to right, we have four different configurations correspond-
ing to singularities of Jacobian matrix that differ from a fully extended arm, another
singular configuration. We have, from left to right (all axes mentioned are illustrated
in red in the figure),

1. The axis of the first joint and the X -axis of the third DH frame, i.e., the common
perpendicular between the axes of joints 2 and 3, are parallel; the axes of joints
4 and 6 are also parallel.

2. The axes of the first and fourth joints are both parallel to the common perpen-
dicular between the axes of joints 2 and 3.

3. The axes of the third and fifth joints are parallel; the fourth joint is also parallel
to the common perpendicular between the axes of joints 2 and 3.

4. The axis of the third joint is parallel with the fifth joint axis and the fourth joint
axis is parallel with the sixth joint axis.

All four cases illustrated above involve a double alignment in the posture of the Gen3
Lite, which loses a DoF momentarily. For example, in the second case, the EE cannot
move in the direction of the fourth joint axis. In the third and fourth cases, motion is
impossible in the direction of the axis of the third joint.

Kinematics of Parallel Manipulators

As we mentioned at the beginning of this chapter, parallel manipulators are known
for their structural rigidity, speed and the ability to lift a larger payload compared to
serial manipulators with similar mass and size. While their architecture is composed
of at least one loop, they commonly have more. Among the well-known parallel
architectures, the three-limb Delta (sometimes with a telescopic Cardan shaft to add
a fourth DoF) (Clavel, 1990) as well as the four-limb Par4 (Pierrot et al., 2003)

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 287

14 II"\]
s ¢ |monorail guide

-

/

Fig. 10.6 PPR-2PRP parallel robot, from (Joubair et al., 2012)

(Adept Quattro) have been patented and commercialized. Before starting with the
kinematics of parallel manipulators, you should know that the EE of a parallel robot
is commonly called the mobile (or moving) platform, considering it is attached to
the base with several limbs.

Direct and Inverse Kinematics

While solving the forward kinematics of a serial kinematic chain is generally a simple
task, it is not the case with parallel robots. Indeed, the tool we used in Sect. 10.4.2,
the Denavit-Hartenberg convention, is not appropriate for parallel manipulators, as
it only accepts a maximum of two joints for each link. In general, it is not possible
to obtain an explicit function of the Cartesian coordinates of the EE with respect to
the joint coordinates, even for a simple parallel robot. Therefore, iterative methods
are commonly used for this purpose.

Contrary to the forward kinematics, solving the IKP of a parallel robot is usually
less challenging than with a serial robot. We will obtain an implicit function equal
to zero where q and p are the variables, i.e.,

f(q.p) =0 (58)

Example: Kinematics of a PPR-2PRP Parallel Robot
Here is a planar parallel robot with three prismatic actuated joints connected to three
limbs attached to the mobile platform, shown in Figs. 10.6 and 10.7. One is a PPR

288 B. Belzile and D. St-Onge

Fig. 10.7 Geometry of a d, o
PPR-2PRP parallel robot,
from (Joubair et al., 2012) 1 Lo —F

chain, while the other two are PRP chains. The mobile platform’s coordinates are
(x,y, 0), and the joint coordinates are (p1, p2, p3). We thus need to find expressions
of the former as a function of the latter. Using simple geometric relationships, we
have:

dv —
6 = arctan (M) (59a)
s
x =p +d (59b)
For the last Cartesian coordinate, knowing
h
- =- (60)
x s
we can compute
p3+ds —p
y=pt (o +d) = (61)

These three expressions above represent the solution to the FKP. The solution to
the IKP is straightforward from this point:

p1 =x —di (62a)
p2 =y — xtan6 (62b)
P03 =y+ (s —x)tan6 — ds (62¢)

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 289

Jacobians

As mentioned above, the kinematics model of a parallel robot is generally expressed
as an implicit function, namely Eq. (58). By differentiating it with respect to time,
we have

Jp =Kq (63)

where both J and K are Jacobian matrices.

Singularities

From these two Jacobian matrices, we can define three types of singularities:

1. Type I: When K is singular, i.e., det(K) = 0. This usually corresponds to a limit
of the reachable workspace or an internal limit of the workspace where two
branches of solutions to the IKP meet. Therefore, certain Cartesian velocities at
the EE will not be possible to generate.

2. Typell: When Jis singular, i.e., det(J) = 0. These singularities occur atlocations
within the reachable workspace where two branches of solutions to the FKP
meet. Therefore, even for a fixed joint coordinates, an infinitesimal motion of
the end-effector is possible. This also means that the robot cannot balance certain
external wrenches applied to the EE, thus resulting in a loss of control, which
must be absolutely avoided.

3. Type III: A combination of both types above, thus when det(J) = det(K) = 0.
In this case, Eq. (58) degenerates, resulting in an unusable EE. This kind of
singularity only exists for certain architectures.

Figure 10.8 depicts singular postures of a pantograph, a common five-bar mech-
anism that can be used as a planar parallel manipulator. The EE is on the middle
revolute joint and the two revolute joints attached to the base are actuated. As can
be seen in this figure, the EE cannot move further up since the mechanism is fully
extended for the illustrated type-I singularity. In the case of the type II singular pos-
ture depicted, it is impossible to control the vertical motion of the EE. With a small
perturbation, the EE could move up or down for the same velocities of the actuated
base joints.

Dynamics

According to the Merriam-Webster dictionary, dynamics is “a branch of mechanics
that deals with forces and their relation primarily to the motion but sometimes also to
the equilibrium of bodies.”!” Forces can be linear, but also rotational, namely torque.

290 B. Belzile and D. St-Onge

@ end-effector

@ actuated joint

Type-I singularity Type-1I singularity

non-singular posture

Fig. 10.8 Pantograph, a 2-DoF planar parallel manipulator

The second Newton’s law is particularly significant when it comes to the quantitative
analysis of the dynamics of a system, as it states that “the time rate of change of the
momentum of a body is equal in both magnitude and direction to the force imposed
on it.”!! Similarly to kinematics, we can define two different problem:

e forward dynamics, from the actuators to the motion, useful for simulations;
e inverse dynamics, from the motion to the actuators, essential for control.

In this chapter, a brief overview of two approaches to compute the dynamics model
of a robot is given, namely the Euler-Lagrange and the Newton-Euler methods.

Euler-Lagrange

The Euler-Lagrange method is based on energy. The Lagrangian is defined as
L=T-YV (64)

where T and V are, respectively, the total kinetic and potential energies in the sys-
tem. From the Lagrangian, the dynamics equations defining the robot’s motion are

computed with
d /oL oL
(=) -Z==x (65)
dr \ 9g; 9g;

www.merriam-webster.com/dictionary/dynamics.

10

I Definition from www.britannica.com/science/Newtons-laws-of-motion.

www.merriam-webster.com/dictionary/dynamics
 -1104 57867 a -1104 57867
a

www.merriam-webster.com/dictionary/dynamics
www.britannica.com/science/Newtons-laws-of-motion
 5012 59195
a 5012 59195 a

www.britannica.com/science/Newtons-laws-of-motion

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 291

Fig. 10.9 Geometry of a
2-DoF serial robot

® center of mass

O

where the individual g; and 7; are, respectively, the generalized joint coordinates and
torque (or force for a prismatic joint).

Example: Euler-Lagrange Applied to a 2-DoF Planar Manipulator

A simple 2-DoF serial planar manipulator is illustrated in Fig. 10.9. For the purpose
of this example, only the mass of each link is considered and not their moment of
inertia. The expression of total kinetic is

1 1
K=K +K,= Emﬂ/% + §m2v§ (66)

where v; and v, are the magnitude of the linear velocity of masses m; and m;,
respectively. We know, considering the geometry, that

vi =i + 31 = 16} (67a)
vy =13 + 33 (67b)
%o =(—1; sinO; — > sin(0; + 62))6, — r3 sin(6; + 65)6> (67¢)

y2 =(I; cos 0; + 5 cos(8; + 62))8; + > cos(6) + 62)6, (67d)

292 B. Belzile and D. St-Onge

where my, ry, l1, I, ry, mp and g are, respectively, the masses, distances between
the origin of each link and its CoM and lengths of the first and second links and the
gravitational acceleration. The total kinetic energy is thus

1 o1 . . .
K= Emlrlsz +3m ((1} + 2l11> cos 0y + 15)67 + 2(5 + (11, cos 62)0,60, + 1363))
(68)

Finally, again considering the geometry, the total potential energy is
T = T1 + T2 = mlgh sin 91 + nmyg (l] sin 61 + lz sin(@l + 92)) (69)

You can complete the procedure as an exercise.

Newton-Euler

The Newton-Euler approach is a recursive method. You first compute the angular
and linear velocities and accelerations of each link individually in the inertial frame,
starting from the base. Then, the forces and torques applied by each link on the
previous one are computed, starting from the end-effector. It is used here to solve
the inverse dynamics of serial manipulators.

Velocities and Accelerations

First, it should be noted that in this procedure, it is the velocity and acceleration
of the center of mass (CoM) of each body, not frame, that you need to compute.
The velocities and accelerations are obtained with the Algorithm 1. In this table, the
components of vectors a; and e; (cf. Fig. 10.2) in frame (i 4 1) are

[ei]i+1 = [0 sina; cos a,-]T (70a)

[ai]i+1 = [a,» b,’ sin o bi COS Ol,']T (70b)

Forces and Moments
The next step is to compute the forces and moments on each link, starting with the
EE. The wrench applied by the (i — 1)th link on the ith link is defined as

w, = o] £7] (71)

where the three-dimensional vectors nl.T and fl.T, are, respectively, the force and
moment associated to this wrench. One component of each wrench is the actua-
tion associated to the corresponding joint, namely the third component for a revolute
joint and the sixth joint for a prismatic joint. The remaining components are the
reaction force and moment between the two links. The procedure to compute the

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 293

Algorithm 1 Velocities and accelerations
Require: [@o]1, [€o]1, [@o]1 and [Eo];
for i =1tondo
if ith joint is revolute then
[@ili+1 < QF [wi—11i + Bileilir1
(&)1 < QT [&i—11i + [@ilit1 x [(@; +5D)i41 — QT [@i—1 x si—1];
[@iliv1 < QT [@i—1); + Fileilir1 + 6;(QY [wi—11i) x [eili1
€11 < QT [Ei—11i + [0ilir1 x [@; +5)]ig1 + [@i1 x [@i]it1 x [@; +8)]ig1 —
Q/ [@i-1 x (wi—1 X si—1)];
else if ith joint is prismatic then
[wiliv1 < QF [wi—1]; .
[&it1 < QT [&i—11i + [@ilit1 x [(@; +5))ix1 + dileilivt — QF [wi—1 x si—1];
[&i)i+1 < QF [@i—11;
€11 < QT [Ei—11i + [dii1 x @i +s)]i+1 + [@ili1 X [@ili1 ¥ [@; +8)]i+1 —
Ql [@i—1 x (@i—1 x si—1)]i + 2[@;li+1 x bileilir1 + bileiliv1
end if
end for

wrench on each link is detailed in Algorithm 2. You may wonder where the effect of
gravity appears in the algorithm. To simplify the procedure while still obtaining an
equivalent solution, we use a simple trick. Here, we suppose a virtual acceleration
—g at the base of the robot, namely the first link. Therefore, even though the base is

fixed and not moving, we have
[Co]i = [—gh (72)

where —g is the gravitational acceleration.

Algorithm 2 Wrench on each link
[£uln < Qn[mn.én _f]n+l
], < Qullh@y + @y X Liw, — 0+ (ay +8,) X £]n41
fori=n—1to1do
[fil; < Qilmi€; + fix1lin1
[filiv1 < Qulfil;
[n;]; < Qilliw; + @; x L