
Foundations
of Robotics
A Multidisciplinary Approach with Python and ROS

Damith Herath & David St-Onge Eds.

Foundations of Robotics

Damith Herath · David St-Onge
Editors

Foundations of Robotics
A Multidisciplinary Approach with Python
and ROS

Editors
Damith Herath
Collaborative Robotics Lab
Human Centred Technology Research
Centre
University of Canberra
Canberra, ACT, Australia

David St-Onge
Department of Mechanical Engineering
École de technologie supérieure
Montreal, QC, Canada

Kinova Inc., Quebec
This open-access book project has been fully funded by Kinova Robotics.
https://www.kinovarobotics.com/

ISBN 978-981-19-1982-4 ISBN 978-981-19-1983-1 (eBook)
https://doi.org/10.1007/978-981-19-1983-1

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license and indicate if you modified the licensed material. You do not have permission
under this license to share adapted material derived from this book or parts of it.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
This work is subject to copyright. All commercial rights are reserved by the author(s), whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Regarding these commercial rights a non-exclusive
license has been granted to the publisher.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover art by Laurent Pinabel (CC-BY-NC-ND)

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://www.kinovarobotics.com/
https://doi.org/10.1007/978-981-19-1983-1
http://creativecommons.org/licenses/by-nc-nd/4.0/

To

Dinendra and Nimali

—Damith Herath

Oscar, Arthur and Josée

—David St-Onge

In memory of Prof. Jean-Paul Laumond
(1953–2021) for his life’s work as a
roboticist, a humanist and a pioneer of robots
and art research-creation.

Foreword by Ken Goldberg

Robots are Mirrors of Ourselves

Man is a robot with defects.

Emile Cioran

Robots will always be fascinating because they reflect our very human fears and
hopes. Robots are a perennial subject for artists and writers, who often wish for an
accessible introduction to understanding how they work. Robots are also of great
interest to engineers, who often wish for an accessible introduction to understanding
their context in history and culture. This book, edited by leading artists and engineers
Damith Herath and David St-Onge, provides both.

The word “robot” emerged in 1920, shortly after the 1918 Pandemic. It was
coined, by playwright Karel Capek, from a Czech word for hard work and central
to his popular script about human-like machines rebelling against unfair working
conditions. Although the word was new, the concept of human-like machines has a
long history, dating back to Egyptian hydraulic machines, Pygmalian’s sculpture in
ancient Greece, the medieval Golem, the alchemists’ automata, and Frankenstein.

In 1942, Isaac Asimov introduced three “Laws” of robotics. Osamu Tezuka’s
Astro Boy emerged in 1952, and artist Nam Jun Paik exhibited a series of sculptural
robots in 1962. Countless robots have appeared in artworks, science fiction books,
films, and television series.

Real robots are of great interest for application in industry, exploration, defence,
healthcare, and service. Robotics research has a long history, dating back to Nikola
Tesla’s demonstration of a radio-controlled boat in 1898 and the emergence of “teler-
obots” to handle radioactive materials during World War II. The IEEE Robotics and
Automation Society held its first conference in 1984 (a significant year for several
reasons), and there are now dozens of conferences and journals devoted to robotics
research.

In 2022, during a huge resurgence of interest in AI and as the 2019 Pandemic
begins to subside, robots continue to attract interest and maintain a strong hold on

vii

viii Foreword by Ken Goldberg

our collective imagination. Books, films, and newspapers promote sensational stories
about human-like robots “stealing” jobs and making humans obsolete. Compa-
nies such as Tesla, Google, GM, and Toyota are actively working on autonomous
driving. Flying drones are being used for cinematography, inspection, and surveil-
lance. Robots that sort packages are being adopted to keep up with skyrocketing
demand for e-commerce.

Although many artists and designers have worked with robots, almost all courses
in robotics today are taught in engineering departments: in computer science or
in engineering: electrical, mechanical, or industrial. As a result, current robotics
textbooks are geared for engineers. They focus onmathematicalmodels of coordinate
frames, wrenchmechanics, and control theory, assuming that readers have completed
coursework in geometry, calculus, physics, and programming.

This book is different. It is written for students of all ages and backgrounds
who want to learn about the broad fundamentals of robotics. This includes artists,
designers, andwriters whowant to learnmore about the technical workings of robots,
and engineers who want to learn more about the cultural history of robots.

The book begins with a review of the rich history of robots. It then introduces
chapters on teaching, designing, and programming, with details on the open access
standard Robot Operating System (ROS) and a concise review of core mathematical
concepts. The book then goes into the details of robot perception and actuation, with
chapters on algorithms for robot control, motion planning, and manipulation. It also
introduces active research topics such as bio-inspired robot design, human–robot
interaction, ethics, and recent advances in robot learning.

This book provides the “foundation” for understanding how robots work.
It is the accessible introduction that artists and engineers have been waiting for.

February 2022 Ken Goldberg
William S. Floyd Jr. Distinguished

Chair in Engineering
UC Berkeley

Berkeley, CA, USA
http://goldberg.berkeley.edu

http://goldberg.berkeley.edu

Foreword by Sue Keay

The world is changing. Robotics and robotics technology is becoming increasingly
pervasive. We have robots in our homes, in the form of things like vacuum cleaner
robots, and in many cases, we don’t even notice their presence. For robots to become
truly useful to humans, to understand us and operate in ways that make sense to us,
and to be able to operate reliably and seamlessly in the cluttered, disorganised and
unstructured world that we live in requires robot-builders that have a deep under-
standing of the complexity of not only technology but of the humans that use it and the
complex environments that we inhabit. For this, traditional engineering-type learning
is no longer sufficient. In the future, the pathway into a career in robotics is likely
to be more complicated than via degrees in mechanical, electrical and mechatronics
engineering, or computer science.Amultidisciplinary approach,more human-centric
design considerations, as well as pedagogy, safety, psychology, research design, and
ethics is needed, all subjects of this text.

The authors have a very human-centred approach to robotics and a keen eye
for how to incorporate arts, creativity, and the social sciences into this tradition-
ally engineering-heavy field. They also combined this with a deep understanding of
industry context, how to meaningfully apply robotics R&D to solve industry prob-
lems, and the importance of keeping human workers engaged in the process through
the use of collaborative robotics. After leading the development of Australia’s first
national robotics roadmap, these are all themes that have come across very strongly
both in case studies of the creation and use of robotics technology as well as in public
consultations that I have been engaged in. The one burning issue for all robotics
companies in Australia (and all around the world) is access to robotics talent, and
that’s where this book, Foundations of Robotics, plays an important role.

Foundation of Robotics provides the tools and building blocks necessary to train
our next generation of robot technologists and equip them with a taste of the multi-
disciplinary considerations that are required to build modern robots. Importantly, the
book also stresses the importance of diversity and culture, if we are to build robotic
technologies that are truly representative of the communities within which they are
used. In many cases, the robots will be used in industrial settings, and this is why the
partnership with Kinova to develop this book is especially important to ensure that

ix

x Foreword by Sue Keay

learning is related to industry best practices and that practical examples and exercises
are given to students to consolidate their learnings.

I highly commend this book to you, whether you are a student of robotics, a
teacher, an experienced researcher, a hobbyist, an enthusiast, or just an interested
observer. Damith, David, and their team of contributing authors are leading the way
in expanding the horizons of future roboticists and smoothing the path for more
extensive deployment of robotics technologies, especially cobots, in the future.

February 2022 Dr. Sue Keay, FTSE
Chair, Board of Directors
Robotics Australia Group

Chair, Advisory Board
Australian Cobotics Centre

Preface

These are exciting times to be engaged in robotics!

Over the last couple of decades, we have had great fun building and programming
some fascinating and interactive robots. Robotics is becoming pervasive, and robots
are evermore in contact with ordinary humans away from research labs andmanufac-
turing confines. However, as exciting as it may be, little has evolved in how robotics
is taught at universities. Increasingly, this is becoming problematic as traditionally
trained engineers are called to develop robots that could have an impact and interac-
tions with the community at large. In our own practice, we have realised the evolving
multidisciplinary nature of robotics. Recently, both of us have been developing new
undergraduate programmes in robotics.While there are several exceptional textbooks
that deal with various facets of robotics (books by such luminaries as Khatib, Sicil-
iano, Thrun, Corke, Dudek comes to mind), we were at a loss in finding a compre-
hensive introductory textbook that touches on some critical elements of modern
robotics that are usually omitted in traditional engineering programmes. Thus, the
initial impetus came almost by necessity to develop a book that we can use in our
courses that is true to our multidisciplinary backgrounds.

Traditionally, robotics is aligned with one of the following foundational disci-
plines, Mechanical, Electrical and Computer Engineering (and these have their roots
in physics). Depending on the alignment of the department, the course you study
will have a flavour that accentuates the particular alignment to the point that some-
times even the terminology will be different (e.g. a robot may be referred to as a
cyber-physical system!). To complicate matters further, you will soon find out that
roboticists possibly do not agree on a singular definition for what a robot is. What
all these allude to is that robotics is still a young and emerging discipline (compared
to its founding roots), and we must collectively develop and contribute to its body
of knowledge in an inclusive and mindful way so as to embrace its ever-expanding
disciplinary boundaries. The book you are holding is our contribution to the field.
We believe that a foundational book in robotics should be broadly multidisciplinary
yet grounded in the fundamentals essential to understanding the standard building
blocks of robotics.

xi

xii Preface

In developing this book, we wanted to approach it not only from designing a robot
from first principles firmly rooted in engineering but also from the point of view of
the human element, present during the design process and throughout the robot’s
journey post-fabrication. We started by asking what should a modern foundational
textbook in robotics look like, particularly tapping into our experience working in the
worlds of robotic art and human–robot interaction research. The natural realisation
was that this book requires collaboration at the highest level with colleagues from
many disciplines. What you are about to read is a fresh new look at robotics based
on our own interactions with students and colleagues tempered by a desire to present
robotics in a more humanistic light.

A second intention has been tomake thematerial relevant to the industrial practice
and accessible.We believe one of the unique aspects of the book is the industry expert
interviews dotted throughout the book. They inspire and provide insider insights as
to what goes into making real robots for real commercial applications. We hope you
enjoy the little personal stories shared by various experts in the field. We are ever
so grateful to be associated with Kinova in this aspect. The Kinova team provided
helpful feedback throughout the book’s development, providing insight into shaping
the academic content of the book. The reader can be assured that the foundational
concepts presented here will not be lost in the practical realities of working in the
real world with real robots. We are also grateful to Kinova for funding1 the project
to publish the book as a Springer open access book. Considering the ever-increasing
cost of student textbooks, we hope that free accessibility to this book provides many
aspiring roboticists access to relevant academic material without hindrance. Modern
robotics is also about entrepreneurship. We like to invite you to read the inspiring
story behind Kinova’s founding as narrated by Charles Deguire, the president and
CEO of Kinova, embedded in the first chapter—we hope the book will ignite a spark
of entrepreneurship in you!

The book is divided into three main parts.
We believe that robot design should be part of an ecosystem influenced by culture,
contemporary thinking, and ancillary technologies of the day. Thus, the first part,
Contextual Design, brings together an eclectic collection of ideas that will lay the
contextual foundation on which the rest of the book is built. This part begins with a
colourful historical perspective highlighting themythological beginnings of robotics,
its trends, and the importance of craft, arts, and creation in evolving modern robotics.
We then explore the parallel pedagogical evolution in robotics. The second chapter
highlights some of its missteps and approaches you can take to learn and teach
robotics as a student or a teacher successfully. Next, the chapter on Design Thinking
provides pointers to useful tools and ways of thinking in solving problems, robotic
or otherwise. The final three chapters in this part provide introductory material
on software, ROS—the Robot Operating System and mathematics, the ancillary
technologies upon which modern robotics is being constructed.

1 Although Kinova Robotics has generously funded this project, they have never interfered with the
academic independence of the editors and the authors in developing the book.

Preface xiii

The second part develops your understanding of the foundational technical
domains: the Embedded design. We start with an introduction to sensors, actua-
tors, and algorithms, the building blocks of a robot. The eighth and ninth chapters
develop the key ideas relevant to mobile robots—robots that can move around in
the world (think self-driving cars!). The tenth chapter is a deep dive into robot arms
that enable them to manipulate the environment. Then we explore how to assemble
a swarm of robots. Concepts and challenges in deploying multi-robot systems are
discussed in detail. Finally, the part concludes with a chapter revolving around proto-
typing and discussing the embedded design process. Topics including 3Dprinting and
computer-aided design are discussed in practical detail, giving you the confidence to
understand how to combine theoretical knowledge with actual implementations of
prototypes that allows you to build and test your robot designs.

While most industrial robots are still destined to be confined in isolated factory
settings where human interaction is minimal, a paradigm shift is happening now in
how we interact with robots. Increasingly, robots are being designed and deployed
to be interactive and to be able to work with humans. The Interaction Design part
explores the implications and some of the emerging new technical domains that
underpin this (r)evolution. It is no longer enough to test your robots for their technical
ability. They now need to be evaluated for their ability to work with or alongside
humans. The first chapter in this part takes you through the emerging domain of
human-robot interactions from a psychological perspective. It provides you with
a thorough guide on developing user studies to test your hypotheses about robots
interacting with humans with helpful case studies and statistical tools. Safety takes
an elevated meaning in this new interactive world. The fourteenth chapter discusses
the existing and emerging international safety standards related to various types of
robots and robot deployments. It provides practical approaches and tools to deploy
robots safely in interactive and collaborative settings.

The robots and techniques we discussed in Part II rely on clearly defined world
models and constraints restricting their use to relatively simple environments or use
cases.While these techniques have allowed us to deploy robots successfully in awide
variety of tasks, we are now starting to see their limitations. As you would imagine,
the human world is highly complex. Such simplistic models are no longer adequate
to deploy robots in natural human-centred interactive settings (think self-driving cars
again!). The chapter onMachine Learning discusses some of the cutting-edge ideas
being developed in robotics. These emerging ideas enable robots to operate in more
complex worlds and to attempt complicated tasks (as humans do) successfully. As
robots begin to interact with us in such complex ways, they can no longer be treated
as mere tools. On the one side, they are increasingly becoming human-like, and
on the other, they are increasingly permeating and challenging our way of life. As a
robot designer, you now have a fundamental responsibility to think about the broader
implications of your robot design. The final chapter on Robot Ethics is a systematic
guide to help you navigate the robot design process with an ethical framework.

As detailed in the second chapter, no amount of theoretical work and instruc-
tions alone is sufficient to properly acquire the skills needed to design and deploy
robots successfully. A hands-on, project-based approach is an essential pedagogical

xiv Preface

component in robotics. Therefore, the book includes two comprehensive projects
that capture most of the theoretical elements covered in the book. In addition, we
have included the necessary software and other resources needed to complete these
projects on the companion website. We hope you make use of these resources to the
fullest.

We have endeavoured to make each chapter relatively self-contained, so if you are
after a specific topic, it is bound to be covered in its entirety within a single chapter.
Each chapter has a section at the beginning that describes the key learning objectives
and a summary at the end. This should enable you to identify a particular topic you
are after quickly. The parts and the chapters are laid out in a way that you can also
read them consecutively, building on from one to the other.

However you use it, we hope that you enjoy the book and be inspired by the truly
interdisciplinary nature of the field.

Please visit the companion website of the book for teaching and learning
resources, updates and errata at: https://foundations-of-robotics.org

Book’s GitHub: https://github.com/Foundations-of-Robotics

Canberra, Australia
Montreal, Canada
January 2022

Damith Herath
David St-Onge

https://foundations-of-robotics.org
https://github.com/Foundations-of-Robotics

Acknowledgements

A book of this nature is simply the result of direct and indirect collaboration and
support of many colleagues, students, family, and friends. So many have inspired
and supported us along the journey to reach this point. Foremost, we want to thank
all the contributing authors to the book. This is an enormous undertaking on their
part, particularly during a pandemic. They have tirelessly worked around the clock
to develop high-quality content within the brief time frame in which this project
was set out. Our authors include early career researchers, graduate students, industry
veterans, and senior academics frommany disciplines. A genuinelymultidisciplinary
and multi-generational effort!

To maintain the academic integrity of the content and make sure the chapters are
presented in the best possible way, we have enlisted the help of several colleagues
both from academia and the industry to carefully review and provide feedback to
the authors of the chapters. In particular, we thank Ilian Bonev, Matt Bower, Jacob
Choi, Jenny L. Davis, Samira Ebrahimi-Kahou, Sabrina Jocelyn, Rami Khushaba,
Sarath Kodagoda, Dominic Millar, Adel Sghaier, Bill Smart, and ElizabethWilliams
for their contributions to the high-quality review of the chapters.

We want to acknowledge the efforts and extend our thanks to the student team
which worked on putting the teaching labs together. The hexapod team includes
Chris Lane, Bryce Cronin, Charles Raffaele, Dylan Morley, and Jed Hodson. The
ROS mobile manipulator projects were built upon the efforts of Nerea Urrestilla
Anguiozar, RafaelGomesBraga, andCorentinBoucher.Without their tireless efforts,
none of this would have been possible.

This book is possible and openly accessible, thanks to the trust and support of our
industrial partner, Kinova Robotics. More specifically, we thank Jonathan Lussier
and Jean Guilbault for jumping into the project early on and sharing their thoughts all
through the production. In addition, Marc-André Brault andMaude Goulet managed
the interviews within each chapter, an essential feature of the book. We also want
to thank all the industrial experts featured in our interviews dotted throughout the
book.

We appreciate the patience and support of the Springer Nature team for their
tireless efforts to bring this book to life and into your hands.

xv

xvi Acknowledgements

And of course, we thank you, the readers of the book. Whether you are a robotics
student or an academic adapting the text for your teaching, we hope this book inspires
you to see robotics in a whole new light. We would love to hear your feedback, so
please feel free to drop us an email or drop in for a cuppa if you are in our part of the
world!

Finally, wewish to dedicate this book to our respective families, for they sustained
us and endured the madness of being academics!

Contents

Part I Contextual Design

1 Genealogy of Artificial Beings: From Ancient Automata
to Modern Robotics . 3
Nicolas Reeves and David St-Onge

2 Teaching and Learning Robotics: A Pedagogical Perspective 43
Eleni Petraki and Damith Herath

3 Design Thinking: From Empathy to Evaluation 63
Fanke Peng

4 Software Building Blocks: From Python to Version Control 83
Damith Herath, Adam Haskard, and Niranjan Shukla

5 The Robot Operating System (ROS1&2): Programming
Paradigms and Deployment . 105
David St-Onge and Damith Herath

6 Mathematical Building Blocks: From Geometry
to Quaternions to Bayesian . 127
Rebecca Stower, Bruno Belzile, and David St-Onge

Part II Embedded Design

7 What Makes Robots? Sensors, Actuators, and Algorithms 177
Jiefei Wang and Damith Herath

8 How to Move? Control, Navigation and Path Planning
for Mobile Robots . 205
Jiefei Wang and Damith Herath

9 Lost in Space! Localisation and Mapping . 239
Damith Herath

xvii

xviii Contents

10 How to Manipulate? Kinematics, Dynamics and Architecture
of Robot Arms . 265
Bruno Belzile and David St-Onge

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts
and Deployment Challenges . 299
Vivek Shankar Varadharajan and Giovanni Beltrame

12 The Embedded Design Process: CAD/CAM and Prototyping 333
Eddi Pianca

Part III Interaction Design

13 Social Robots: Principles of Interaction Design and User
Studies . 377
Janie Busby Grant and Damith Herath

14 Safety First: On the Safe Deployment of Robotic Systems 415
Bruno Belzile and David St-Onge

15 Managing the World Complexity: From Linear Regression
to Deep Learning . 441
Yann Bouteiller

16 Robot Ethics: Ethical Design Considerations . 473
Dylan Cawthorne

Part IV Projects

17 Robot Hexapod Build Labs . 495
David Hinwood and Damith Herath

18 Deployment of Advanced Robotic Solutions: The ROS Mobile
Manipulator Laboratories . 515
David St-Onge, Corentin Boucher, and Bruno Belzile

Index . 537

Editors and Contributors

About the Editors

Damith Herath Associate Professor, Collaborative Robotics Lab, University of
Canberra, Australia.

Damith Herath is an Associate Professor in Robotics and Art at the University of
Canberra. Damith is a multi-award winning entrepreneur and a roboticist with exten-
sive experience leadingmultidisciplinary research teams on complex robotic integra-
tion, industrial and research projects for over two decades. He founded Australia’s
first collaborative robotics startup in 2011 and was named one of the most innovative
young tech companies in Australia in 2014. Teams he led in 2015 and 2016 consecu-
tively became finalists and, in 2016, a top-ten categorywinner in the covetedAmazon
RoboticsChallenge—an industry-focused competition amongst the robotics research
elite. In addition, Damith has chaired several international workshops on Robots
and Art and is the lead editor of the book Robots and Art: Exploring an Unlikely
Symbiosis—thefirst significantwork to feature leading roboticists and artists together
in the field of Robotic Art. e-mail: Damith.Herath@Canberra.edu.au

David St-Onge Associate Professor, Department of Mechanical Engineering, ÉTS
Montréal.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechan-
ical Engineering Department at the École de technologie supérieure and director
of the INIT Robots Lab (initrobots.ca). David’s research focuses on human-swarm
collaboration more specifically with respect to operators’ cognitive load and motion-
based interactions. He has over 10 years’ experience in the field of interactive media
(structure, automatization and sensing) as workshop production director and as R&D
engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in
national training programs for highly qualified personnel for drone services (UTILI),
as well as for the deployment of industrial cobots (CoRoM). He led the team effort

xix

mailto:Damith.Herath@Canberra.edu.au

xx Editors and Contributors

to present the first large-scale symbiotic integration of robotic art at the IEEE Inter-
national Conference on Robotics and Automation (ICRA 2019). e-mail: david.st-
onge@etsmtl.ca

Contributors

Beltrame Giovanni Department of Computer and Software Engineering, Polytech-
nique Montréal, Montreal, Canada

Belzile Bruno Department of Mechanical Engineering, École de Technologie
Supérieure, Montréal, Canada

Boucher Corentin Department of Mechanical Engineering, École de Technologie
Supérieure, Montréal, Canada

Bouteiller Yann Department of Computer and Software Engineering, Polytech-
nique Montréal, Montreal, Canada

Cawthorne Dylan Unmanned Aerial Systems Center, University of Southern
Denmark, Odense, Denmark

Grant Janie Discipline of Psychology, Faculty of Health, University of Canberra,
Academic Fellow, Graduate Research, Canberra, Australia

Haskard Adam Bluerydge, Canberra, ACT, Australia

Herath Damith Collaborative Robotics Lab, University of Canberra, Canberra,
Australia

Hinwood David University of Canberra, Bruce, Australia

Peng Fanke UniSA Creative, University of South Australia, Canberra, Australia

Petraki Eleni Faculty of Education, University of Canberra, Canberra, Australia

Pianca Eddi University of Canberra, Canberra, Australia

Reeves Nicolas School of Design, University of Quebec in Montreal, Montreal,
Canada

Shukla Niranjan Accenture, Canberra, ACT, Australia

St-Onge David Department of Mechanical Engineering, École de Technologie
Supérieure, Montréal, Canada

Stower Rebecca Department of Psychology, Université Vincennes-Paris 8, Saint-
Denis, France

mailto:david.st-onge@etsmtl.ca

Editors and Contributors xxi

Varadharajan Vivek Shankar Department of Computer and Software Engi-
neering, Polytechnique Montréal, Montreal, Canada

Wang Jiefei The School of Engineering and Information Technology, University
of New South Wales, Canberra, Australia

Part I
Contextual Design

Chapter 1
Genealogy of Artificial Beings: From
Ancient Automata to Modern Robotics

Nicolas Reeves and David St-Onge

Learning objectives

• To understand the mythological origins of contemporary robots and automata
• To be able to connect current trends in robotics to the history of artificial beings
• To understand the role of crafts, arts and creation in the evolution of contemporary

robotics.

Introduction

This chapter is an extensive overview of the history of automata and robotics from
the Hellenistic period, which saw the birth of science and technology, and during
which lived the founders of modern engineering, to today. Contemporary robotics
is actually a very young field. It was preceded by a 2000-years period in which
highly sophisticated automata were built for very different purposes—to entertain, to
impress or to amaze—at different times. Youwill see that themethods and techniques
that were used to build these automata, and that largely contributed to the develop-
ment of robotics, were at times imported from unexpected fields—astronomy, music,
weaving, jewellery; and that the impulse that drove automata makers to build their
artificial beings was far from rational, but rather rooted in the age-old mythical desire
to simulate, and even to realize, an entity from inert materials.

N. Reeves (B)
School of Design, University of Quebec in Montreal, Montreal, Canada
e-mail: reeves.nicolas@uqam.ca

D. St-Onge
Department of Mechanical Engineering, ÉTS Montréal, Montreal, Canada
e-mail: david.st-onge@etsmtl.ca

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_1&domain=pdf
mailto:reeves.nicolas@uqam.ca
mailto:david.st-onge@etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_1

4 N. Reeves and D. St-Onge

1.1 What is a Robot?

Whereas most of us would think they know what a robot actually is, a closer look
at the concept will show that a precise definition of the term is actually not that
easy to frame; and that it broadened again in the last decades to encompass a large
variety of devices. From the first appearance of the word in the Czech theatre play
R.U.R (Capek, 2004), in which it was referring to human beings artificially created
to become perfect and servile workers (Fig. 1.1), it is now used for a range of devices
as different as robotic arms in factories, battery-operated toys for kids, androids or
biomorphic machines. It even came to describe entities that lie at the boundary of
technology and biology and that cannot anymore be described as fully artificial.

This evolution is less paradoxical than it seems. As opposed to a common idea,
Capek’s robots where not strictly speaking artificial machines: they were created
with organic materials synthesized by chemical processes. In the scenario, the core
of the project was to build teams of workers that were free from everything that was
not essential to the implementation of their tasks—feelings, emotions, sensibility.
Their role was that of robots, but they were still living biological organisms, which
makes them quite different from the highly sophisticated technological devices that
come to mind when thinking of contemporary robots. They were in a sense much
more related to automata, a word that Capek has actually used in a previous play, but
that was completely replaced by “robots” in this one.

This last point is worth noticing. At the time R.U.R. was written, the word
“robot” was a neologism forged from slavish roots referring to work, chore, forced
labour. Nothing in its original meaning implied that a robot should be a machine:
an automaton created to help human beings in the implementation of some task

Fig. 1.1 Scene from Capek’s play Rossum’s universal robots, with three robots on the right; 1920

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 5

becomes a robot. In that respect, it actually contradicts the original meaning of the
word “automaton”, which, etymologically, refers to an animated device which acts
by itself . The word decomposes in the Greek roots auto, which precisely means
“by itself”, whose origin, strangely enough, is unknown; and matos, “thinking” or
“endowed with will”, from the older proto-Indo-European * mens, “to think”. It
therefore designates an animated artificial being that is able to make decisions and to
act autonomously, whereas “robot” is frequently associated with a machine that has
been designed for the sole purpose of blindly executing sets of instructions crafted
by a human being—the opposite of an autonomous entity. What is hardly disputable
however is the fact that every contemporary robot finds its place in the age-old
genealogy of automata. It might also be interesting to note that the oldest origins
of the root “rob”, from which “robot” was created, evokes the fact of being orphan,
which corresponds surprisingly well to these artificial beings which, as a matter of
fact, never had a biological father or a mother.

Since its first occurrence, the meaning and signification of “robot” have extended
well beyond this gloomy etymology. A lot of robots are today created for research,
experimentation or entertainment, without any practical use; but current roboticists
do not yet agree on a single definition. Two elements however strike out as reaching
a broad consensus: first, the device must present some form of intelligence; second,
it must be embodied. As it is well known, “intelligence” is in itself a tricky notion to
define. In this context, it does not indeed refer to human intelligence, less again does
it correspond to the common perception of artificial intelligence, better represented
by the concept of machine learning. Intelligence for a robot is only about taking
decision on its own, based on the limited information it has from its context or
from its internal states. Here again, etymology comes to help: the word comes from
the Latin inter ligere—«to link between». The links can be elementary—a bumper
sensing a wall makes the robot wheels stop—or more complex—the robot takes a
decision by comparing information coming from multiple sources. The concept of
embodiment refers to the physicality of the robot, as opposed to software “bots.” On
its side, «automaton» today refers indifferently to a hardware or a software device.

For the sake of the present chapter, we will tighten the meaning the word “robot”
in order to encompass essentially hardware automata fulfilling two criteria: first,
they must be dedicated to the autonomous implementation of DDD (Dangerous,
Dull or Dirty) tasks, or to facilitate the implementation of such tasks for human
beings; second, they must be able to take decisions through some form of interaction
with their context. As we will see below, this definition itself has undergone several
variations in the last decades, but we will keep it for the moment.

1.2 A Mythical Origin

The genealogy of robots, as well as the history of robotics, are then intimately linked
to that of automata. An extensive recapitulation of this history would be far beyond
the scope of this chapter, all the more since several books have already been written

6 N. Reeves and D. St-Onge

on it (among many others: Demson & Clason, 2020; Mayor, 2018; Nocks, 2008;
Foulkes, 2017 …). However, an efficient way to understand the fundamentals of
human motivation and fascination for robots and robotic systems is to recapitulate
some of its main chapters, and to locate in time the bifurcations that progressively
separated robots from automata: the evolution of historical trends in robotics is of the
greatest help to understand why some aspects of robotic research are better known,
and better developed, than others.

The first and likely most important point to consider is that the roots of robotics
are not anchored in technology or science, but rather in a mythological ground that
extends far beyond these fields, and that can be broadly divided in two layers. The first
one is concerned by the myth of a being with supernatural power and unpredictable
intentions, an image that still hovers over any robot or automaton.The second involves
all the attempts that have been made along history to replicate through artificial
mechanisms two natural phenomena that escape human understanding, namely life
and cosmological events.

These two layers are intricated at many levels, but they differ by their basic
intentions. The first one is most likely at the origin of all humanoid or animal-like
automata. It led to the pursuit of creating artificial beings whose power surpass those
of human beings: autonomous entities that can be made insensitive to pain, fear,
boredom, and to any form of emotion, less again empathy. A lot of examples of
inventors who try to build such entities can be found in tales, science-fiction stories,
movies and video games, covering all the spectrum of intentions towards mankind—
from help, assistance and protection to destruction and domination. However, once
it is built, because it should possess, as an automaton, a kind of free will, it can
become uncontrollable and behave in unpredictable ways, even for its creator. This
is illustrated by Capek’s play, but also by the wealth of works that has emanated from
the Jewish myth of the Golem, first mentioned in the Talmudic literature. Being an
artificial creature made of clay, the Golem was an embryonic form of life created
for the sole purpose of helping or protecting his creator. It should be noted that
historically speaking, Golem is most likely the first entity that corresponds to the
above definition of a robot: an artificial entity built specifically for a implementing a
practical task or function.

Despite the highly functional and technological nature of most contemporary
robotic systems, the evolution of automata and the emergence of robots cannot be
fully understood without realizing that most of them originate from the will to simu-
late life; that automata makers have been developed highly advanced skills, and
have been spending tremendous amounts of time and resources, in order to achieve
this goal with the highest possible precision; and last but not least, that in every
automaton maker rests the secret and hidden dream of seeing one day his own inan-
imate creatures come to life—a dream to which, in a previous work, we gave the
name «Geppetto syndrome» (Reeves, 1992).

From their very beginnings, automata were created to simulate. Their main—and
often only—objective was to dissimulate what that they actually were: assemblages
of inanimate matter pretending to act by themselves. It is not a coincidence if the
first automata appeared at time during which a first, elementary understanding of

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 7

physics was slowly emerging. Since only a tiny part of the population had access to
it, its mastering was often perceived as magical by common people. Even if one of
the main objectives of the new-born Greek science was to explain natural events by
natural causes, that is, to get rid of supernatural explanation, its power could easily be
confused with that of entities found in myths, tales or religious texts. Several works
exploited it in order to create devices whose purpose was either to entertain, or to
siderate crowds by simulating the intervention of supernatural forces. Automata built
for practical purposes were virtually non-existent.

This was not always obvious. At first glance, the perpetual clepsydra built by
Ctesibios from Alexandria (Fig. 1.2), of whom we will talk below, could claim
to be a primordial robot, since it has the function of giving the time of the day.
An ordinary clepsydra cannot be considered as an automaton: it is akin to that of
an hourglass that uses water instead of sand, and as such, it does not feature any
autonomous component. But Ctesibios’ device, built three centuries BC,was coupled
with a mechanism that refilled its tanks every day with water coming from a source,
and that reconfigured its internal states in order to indicate the time for each day
of the year. Being completely autonomous, it qualifies as an automaton. Since it

Fig. 1.2 Ctesibio’s
clepsydra, circa 250 B.C, as
represented in the French
translation of Vitruvius’
treatise “ten books on
architecture” by Claude
Perrault (1864)

8 N. Reeves and D. St-Onge

was built for a practical purpose, since it incorporates some kind of intelligence by
reacting to the amount of water in its tanks, and since it was embodied, it could
claim to be a first instantiation of a robot in the modern sense of the term. But this
interpretation only holds when considering it with our contemporary eyes. Like most
time-measuring devices, Ctesibios’ clepsydra was more an astronomical model than
a clock: it transposed the movements of the Sun into an autonomous mechanism.
Just like humanoid or zoomorphic automata were trying to describe, comprehend
and replicate the functions and behaviour of living beings, the first clocks, up to
the beginning of the scientific revolution, were mainly planetary or cosmological
models built to translate a partial understanding of celestial mechanics.1 Vitruvius
himself, while referring to Ctesibios’ clepsydra in the 10th book of its treatise De
Architectura, does not attribute to it any practical function. The design and building of
such instruments usually requestedworkers and craftsmen thatwere the best skilled of
their generation. The technological challenges implied by suchmechanisms triggered
the development of fully new technological and theoretical knowledge, and often
requested massive amounts of money that could be provided only by the wealthiest
members of the society. They became symbols of prestige, and testified for the level
of expertise achieved in their country of origin. Even today, building a clock with
a very long revolution period is everything but a simple venture. It took more than
fifteen years to design and twelve years to build the astronomical clock located at
the Copenhagen City Hall, completed in 1955; its slowest gear completes one full
revolution in 25,735 years (Mortensen, 1957).2

All these examples, as well as many others, show that the impulse for creating
automata is not originally driven by practical needs. It comes from themythical desire
to understand some of the deepest mechanisms at the origin of life and cosmological
events, a desire that stands at the origin of major developments in mechanical science
and in technology, and especially those at the origin of modern robotics. To qualify
as an automaton, an artificial being does not need to be useful; it does not even need
to move, or to do anything: it just has to be able to provide a convincing enough
illusion of life (Reeves & St-Onge, 2016).

1 In the first mechanical clocks, such as the one built by Richard of Wellington around 1330, the
great astronomical orloj in Prague, or the very rare heliocentric clock at Olomouc, also in Czech
Republic, counting the hours was only one of many different functions: the indication of time
becomes almost anecdotical. Many other dials indicated the sidereal time, the signs of the Zodiac,
the phases and position of the Moon, the movements of the Sun and of the Planets, the solstices
and the equinoxes, the hours of the tides … Some needed several decades to accomplish a single
revolution.
2 Later devices, such as the eighteenth century Peacock clock in the Hermitage museum in Saint
Petersburg, intimately associates the simulation of life with the measure of time (Zek et al., 2006).
In this incredible piece of mechanics, once a week, a large peacock extends its wings, deploys its tail
and moves its head; a rooster sings; an owl turns its head, blinks its eyes and rings a chime. A small
dial, almost lost in the rest of the device, gives the time of the day: its presence is inconspicuous.
The presence of time and the cycle of the days are mainly evoked by the three animals: the owl is
a symbol of night, the rooster a symbol for the day, the peacock a symbol of rebirth.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 9

An Industry Perspective

Charles Deguire, President and CEO

Kinova inc.

I like to think that I was born an entrepreneur. Both my parents were
entrepreneurs, as some of our family members, and from the day I had to
decide what I was going to become, I knew the path I wanted to follow. But
as in every business case, you need THE idea. In my case, I was raised with
the idea … When I was younger, I had three uncles living with muscular
dystrophy, all power wheelchair users, and very limited upper-body mobility.
The challenges they faced never stopped them, they even founded a private
company dedicated to the transportation of people with special needs. This
concept evolved to become the public-adapted transport system of Montreal.

One of my uncles, Jacques Forest, had only one finger that he could move.
He was challenged by the idea to develop an arm that could be controlled
by his active finger to allow him to become independent in his functionality
and able to grasp and manipulate objects in his surroundings without external
assistance. He generated various innovative technical ideas for such devices
that were based on his own experience and intuition. The gripping device he
succeeded to build was made from a desk lamp frame and ended by a hot dog
pincer. The manipulator is built by every member of the family. It was put
in motion by bicycle cables attached to windshield wipers motors that were
assembled on plywood and located at the back of his wheelchair. Motors were
activated through 14 electronic switches that he controlled through his unique
moving finger.

While I was studying to become an engineer, I came across all kinds of new
technologies that were all extraordinary. But I realized how having an astronaut
doing remotemanipulation with a space robot arm could be an aberration when
people in wheelchairs could not even pour themselves a glass of water alone.
As I was already aware of the reality of people living with physical disabilities,
I decided I would dedicate my life to solving those problems, starting with a
robotic assistive device built from the ground up, specifically for wheelchair
users.

10 N. Reeves and D. St-Onge

Wemove problems through a funnel.We start very wide, sort of chaotic.We
look internally and externally, within our own industry and other industries,
and ask, What process can I use to solve this? Once we’ve selected a few
approaches that we believe have potential, we drill down and get really focused
on executing each of them.

We robotize tasks. We did that for people using wheelchairs, expanding
their reach. In surgery, we expand the capabilities of the surgeon. In hazardous
material handling, we robotized the manipulation of toxic or nuclear waste.
But it’s always the same process, providing better tools to humans.

Creativity is one of Canada’s greatest resources. This is what supports
the growth of Kinova and which propels our Canadian manufacture to the
international scope.

1.3 Early Automata

Ctesibios is considered as the founder of the Greek school of mechanics. After him,
four characters stood up in the nascent field of automata around the Eastern part of the
Mediterranean Sea: Philon of Byzantium; Vitruvius in Rome; Heron of Alexandria;
and later, Ismail Al-Jaziri fromAnatolia. By looking at a few examples of their work,
we will see that working in the field of illusion and simulation did not prevent them
to produce a major corpus of knowledge on the behaviour of real physical systems,
to contribute with large instalments in their area and to leave technical writings that
became major sources of inspiration for generations of engineers and scientists. The
machines and automata they conceived are nothing less than technological wonders
of their time.

Philon of Byzantium lived around the third century B.C. He left a number of
treatises that give a very precise account of the technological level of his country. He
invented an automated waitress that was serving wine and water, and that is generally
considered as the first real humanoid robot in history. About three centuries later,
mathematician and engineer Heron of Alexandria designed a series of about eighty
mechanical devices, one of which being considered as the first steam machine, some
others beingmoved by the sole force of the wind. Since his researches were unknown
to Western scholars for more than a millennium, and since most his machines were
destroyed during the fire of the Alexandria library, the count of his invention can only
be estimated; many may never have been realized. None of them were dedicated to
the implementation of practical tasks: he fostered his knowledge of physics and
mathematics (mostly geometry) in order to impress or to trigger mythological fasci-
nation through mechanisms whose description can be find in his treatises Automata

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 11

Fig. 1.3 Drawings extracted from Chapuis, 1658 of devices made by Dionysus by Heron of
Alexandria, first century A.D (left) and by Ismail Al-Jazari, 1206 (right)

(Murphy, 1995) and Pneumatica (Woodcroft, 1851). In what is known as the first
example of building automation, the doors of a temple would open after a sacrifice
only if the visitors ignited a fire in a receptacle; the fire heated a hidden water reser-
voir; the accumulated pressure caused a part of the water to be transferred in a second
reservoir suspended to a cable and pulleys system attached to the doors; since this
reservoir became progressively heavier, it began to go down, which caused the doors
to open.3

Heron also designed a large animated sculpture of Dionysus (Fig. 1.3, left) in
which water flowing from a reservoir to another triggered a sequence of actions:
pouring “wine” (red-coloured water) from Dionysus’ glass; pouring “milk” (white-
coloured water) from his spear; rotating Dionysus central statue; rotating the statue
of an angel over that of Dionysus; and finally pouring again wine and milk from
opposite outputs. Some versions of the corresponding plans and diagrams include a
group of dancers circling around the main statue, as well as a fire that was ignited
automatically by a lighting device.Another of his treatise,Dioptra (Coulton, 2002), is

3 This mechanism, as well as a number of the automata designed by Heron, have been reconstructed
by the Kotsanas Museum of Ancient Greek Technology. They can be seen in function on a video
produced by the Museum at http://kotsanas.com/gb/exh.php?exhibit=0301001 (accessed Dec 30
21).

http://kotsanas.com/gb/exh.php?exhibit=0301001

12 N. Reeves and D. St-Onge

key to modern roboticists, since it describes several instruments with practical aims,
such as the measure of distances and angles. It includes the first odometer, a device
that worked by counting the rotations of the wheels of a chariot. It was tailored to
the Roman mile unit, which was obtained by adding 400 rotations of a 4-feet wheel;
a series of gears slowly opened a hatch to release one pebble for each Roman mile.
Such a device obviously does not qualify as a robot nor as an automaton; but the very
idea of gathering information from the external world through a measuring device
is key to modern robotics. It is worth noticing that such a device actually converts
information coming from a continuous phenomenon—the rotation of a wheel—into
a discrete one—the number of pebbles. Odometry is nowadays often computed from
optical encoders fixed to motor wheels, but the measurement concept is similar to
what Heron had imagined two thousand years ago.

Another of Heron’s achievements is an automated puppet theatre. It represents an
impressive example of the level of skills and technological knowledge that was put
to use for the implementation of a device meant only for entertainment. It is also the
first known historical example of a programmable mechanism: the movements of
the puppets were controlled by wires and wheels whose movements followed a pre-
recorded sequence. They were actuated by the movement of a weight suspended to
a wire, just like for the German cuckoo clocks that appeared two millenia later. Any
computer programs that is used today for about every imaginable task is a remote
descendant of this machine that was built only to amuse or to surprise people. It is
all the more stunning to realize that for centuries, the efforts put to work to achieve
such a goal far exceeded those dedicated to the creation of practically useful robots,
a situation that lasted up to the middle of the twentieth century; and that this energy
has led to intellectual and technological achievements that sometimes did not find
any other application for extended periods of time.

About ten centuries later, Ismail Al-Jazari, an engineer and mathematician living
in Anatolia, fulfilled numerous contracts for different monarchs; he was hired to
invent apparatuses aiming at impressing crowds during public parades (Fig. 1.3,
right). By a clever use of hydraulics, levers and weight transfers, he designed several
mechanismswhose parts wouldmove autonomously. In hismost famous treatise,The
Book of Knowledge of Ingenious Mechanical Devices (Al-Jazari, 1974), he details
systems ranging from a hydraulic alarm clock that generates a smooth flute sound
to awake the owner after a timed nap, to a musical instrument based on cams that
bumped into levers to trigger percussions. The cams could be modified in order to
generate different percussive sequences, which constituted, ten centuries after Heron,
another implementation of a programmable automaton.

It is to be noted that other devices, such as the Antikythera Machine, an astro-
nomical calculator dated second century B.C. and whose inventor is unknown, has
sometimes been regarded as an automaton; however, according to historians and
scholars, it was operated by a crank, and thus does not meet the autonomy crite-
rion. It remains nonetheless related to the first automata, and in particular to the first
mechanical clocks that appeared almost fifteen years later, by the fact that it does
represent, somewhat like a mechanical clock, a scaled model of a planetary system,
executed with stunning precision and skills for the time.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 13

1.4 Anatomical Analogies: Understanding Through
Replication

1.4.1 Leonardo Da Vinci

It is impossible to recapitulate the history of automata without referring to Leonardo
da Vinci (1452–1519). Some of the works of this visionary artist and inventor are
also heavily grounded into the age-old mythological fascination for the simulation of
human beings. In order to implement them, he explored extensively the anatomy and
kinematics of the human body; but as it is well known, his work spanned about all the
existing disciplines of his time. It would be difficult to say which of his endeavours
had the greatest impact onmodern-day arts and sciences. His inventions and practical
treatises on mechanisms triggered and propelled the first industrial revolution that
camemore than three centuries later. Someof the pieces and assemblages hemanaged
to manufacture thanks to his unique craftsmanship skills, such as gear heads and
pulleys, are now mass-produced by complex industrial equipment, but they remain
informed by the same design principles.

For roboticists, the inventions that are most related to contemporary projects are
hismechanical knight onone side, andhis self-propelled cart, also sometimes referred
to as Leonardo’s Fiat, most likely the first autonomous vehicle, on the other. The
cart included a differential drive propulsion system with programmable steering for
travel. The whole mechanism was originally seen as powered by wound up springs.
In 1997, researchers understood that their real use was not to propel the cart, but to
regulate its driving mechanism. In 2006, a first working replica, built at scale 1:3,
was successfully made in Florence; all previous attempts have failed because of this
misunderstanding (Gorvett, 2016).

The mechanical knight on its side is a complex machine (Fig. 1.4). It involves
tens of pulleys and gears which allegedly allow him to sit, stand, move its arm and
legs; it was however unable to walk. It is not until 2004 that a first prototype was
implemented. It confirmed the possibility of all these actions, as well as several
others: jaw actuation, neck rotation, visor movement. Way ahead of his time, while
still rooted in the ancientmythology of artificial beings,DaVinci’smechanical knight
is connected to the very essence of the automaton. It stands as an ancestor to several
recent humanoids, and its role in the original design of the NASA’s Robonaut is said
to have been influential.

It is not yet possible to account for all of Da Vinci’s robotic endeavours, partly
becausemany of themhave been lost to history.Additionally, as previously stated, not
all of his surviving designs are complete. In some cases, key components regarding
machinery or function are missing; in others, as it was the case with his cart, some
of his designs are simply to complex, and are not yet fully understood.

14 N. Reeves and D. St-Onge

Fig. 1.4 Da Vinci’s Humanoid automaton; circa 1495

1.4.2 The Canard Digérateur, the Writer, the Musician
and the Drawer

As can be seen from these first examples, the will to simulate living beings is every-
where present in the history of automata and robots. All of these entities try to
replicate the main characteristics of life, and to produce, deliberately or not, the
illusion, that they managed to extricated themselves from the nothingness of inert
matter. The efforts and energy invested to generate this illusion implied technolo-
gies that not only systematically accounted for the most advanced of its time, but
also widely contributed to the evolution of these technologies. Beyond a simple
simulation, the automaton was trying to reach the status of an explanative device
endowed with descriptive virtues, making it possible to unveil the secrets of life.
So it is with Vaucanson’s duck, called the digesting duck (canard digérateur) by its
inventor, built at the end of the seventeenth century (Fig. 1.5). As its inventor says
(Vaucanson, 1738):

This whole machine plays without you touching it when you set it up once. I forgot to tell
you that the animal drinks, dabbles in water, croaks like the natural duck. Finally, I tried to
make him do all the gestures according to those of the living animal, which I considered
with attention.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 15

Fig. 1.5 Vaucanson’s
“canard digérateur”
(digesting duck), 1738. This
picture is a fantasy
reproduction published by
the scientific American
magazine (1899). Very few
original pictures of
Vaucanson’s duck have been
found

Later in the same text, Vaucanson mentions the most unexpected feature of his
automaton, namely the fact that it digests and defecates:

There, in a small space, was built a small chemical laboratory, to break down the main
integral parts, and to bring it out at will, by convolutions of pipes, at one end of its body
quite opposite.

The simulation of the excretive function is clever: very few people would deliber-
ately implement it for the sake of art or illusion. The very idea seems so unusual that
it can only arise, for those who observe it, as a consequence of the will to create an
entity that is to the perfect like of a living duck, including all its metabolic processes.
One is at times left with the impression that the inventor surrenders to the illusion
that the perfect formal simulation of the basic organs of life will fool life itself, so
it will appear and animate the entity. The “small chemical laboratory” wants to be
the equivalent of a digestive system, by which the food absorbed by the beak would
be decomposed into nutritive substances on one side, and on useless substances
evacuated through the cloaca on the other.

As can be expected, it was later revealed that Vaucanson’s duck was a hoax.
Nonetheless, the fact remains that following the Cartesian model, which sees the
Universe moved by a great watchmaker, and living beings as nothing more than
sophisticated mechanics, such attempts exemplify the tendency to systematically
associate living organisms to the most advanced technologies of the time.4

4 Interestingly enough, the idea of evoking life through its less prestigious functions finds a contem-
porary instantiation in his installation series «Cloaca» by Wim Delvoye (Regine, 2008), which
reproduces all the phases of human digestion, from chewing to excretion, through successive cham-
bers in which the food is processed by some of the enzymes, bacteria and biochemicals found in the
digestive system. The installation must be fed twice a day. By observing the device in operation, it
is easy to remain under the impression that the artist, helped by a team of biologists, has perfectly

16 N. Reeves and D. St-Onge

They also mark the beginning of a slow bifurcation by which the evocation and
simulation of life left the domain of formal analogy to join, by a long process,
that of information flows and transfers. Here again, this separation was initiated by
the model of human beings that prevailed at the end of the seventeenth century, a
model that distinguished the body—the material component—from the soul—the
driving and decision-making force. Descartes himself considered man as made from
these two components. It is generally admitted that his model of the animal-machine
(Descartes, 1637) was induced to him when he learned about the existence of a
simple automaton, an idea later extended by La Mettrie’s concept of man–machine
(LaMettrie, 1748): this may be a glimpse on the process by which an object, initially
built as a simple formal simulation of a given phenomenon, can become a model
meant to describe and explain that phenomenon.

The concept of man and of animals as sophisticated mechanisms has led to
the design of more and more sophisticated automata, with a gradual increase in
the complexity of their functions. About a century after Descartes, the automata
built by the Jacquet-Droz family initiated the separation between matter and infor-
mation (Fig. 1.6). Not only were they driven by the equivalent of programs that
were advanced versions of those created by Ctesibios and Heron of Alexandria,
but the program themselves, recorded in rolls, cams or discs, could be changed,
thus modifying the internal states of the automaton: they became independent of its
material moving components. Changing the program opened spaces of possibilities
that remained limited, but nonetheless real (Carrera et al., 1979). One of the given
automata, the Musician Player, could play five pieces of music; the second one, the
Drawer, could create four different drawings; the last one, the Writer, was the most
complex. It can draw forty different characters; the text to be written is encoded
on dented wheels, which makes it a fully programmable automaton. By looking at
these delicate and impressive technological pieces, on can only regret the almost
complete disappearance of automata arts since the nineteenth century. Fortunately,
a few passionate artists still maintain this practice today; some of their most recent
works, such as François Junod’s Fée Ondine, are nothing less than jewellery pieces
in movement. And as can be expected, Junod’s studio is located close the Swiss
town of La Chaux de Fond, the first town ever planned around the activities of the
watchmakers.

grasped the mechanism of several vital functions; but here again there is an illusion, at least partial.
The use of biological substances and living organisms such as bacteria prevents the device to meet
the definition of an automaton, since it does not use only inert materials; it thus cannot claim to
testify for a full understanding of the phenomena involved—which was not anyway the explicit
intention of its author. However, despite all the explanations provided and in spite of the highly
technological appearance of the work, the visitor cannot help feeling the presence of a strange
animal plunged into the torpor of a heavy digestion, like a beast after a too copious meal; and to ask
himself whether or not it presents a risk once awaken: the mere mention of the digestive function
is enough for the visitor to readily accept the image of a living being.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 17

Fig. 1.6 Jacquet-Droz’s automata: drawer, musician, writer; 1767–1774

1.4.3 Babbage and the Computer-Robot Schism

The bifurcation that made the automaton and its controlling program two distinct
entities cannot be located at a single moment in time. As we have seen, it can
be traced back to the devices created by early Greek engineers and to Al-Jazari’s
percussive automaton; but several other steps intervened since; and the trajectory
leading to contemporary computer programming has taken an unexpected detour
through music and textiles. Seventy-five years after the Jacquet-Droz’s automata,
Henri Lecoultre created a musical box in which the melodies were recorded on inter-
changeable rolls. Barrel organs, which first appeared during the sixteenth century,
could play melodies that were pre-recorded on rolls, discs, cards or ribbons perfo-
rated with holes that determined the melodies to be played—such instruments were
actually called automatophones.

This principlewas almost immediately transposed to create the first Jacquard loom
by Basile Bouchon, the son of an organ maker, and by his assistant Jean-Baptiste
Falcon (Fig. 1.7); they adapted musical boxes mechanisms from his manufacture to
create the card readers that controlled the patterns to be woven (Eymard, 1863). It is
worth noticing that the Jacquard loomalso used the cylinder developed byVaucanson,
in another illustration that the technologies required to implement machines with
practical uses often originated from the artistic realm, where they were developed
with completely different motivations.

The perforated card system lasted for more than two centuries. It was extensively
used for the programming of the first generations of computers. It played an essen-
tial role in the Manhattan project during which the first atomic bomb was created,

18 N. Reeves and D. St-Onge

Fig. 1.7 A Jacquard loom,
1801

establishing an odd and peculiar connection between the delicacy of the melody
played by a musical box, the patterns on a cotton fabric and the thundering apoca-
lypse of a nuclear explosion. It was also by observing the Jacquard loom that Charles
Babbage had the idea to design his Analytical Engine, today considered as the first
full computer in history (Fig. 1.8). This huge machine included all the main elements
of a modern computer: an input device that separated data and instructions, thanks
to two punch card readers; a mechanical “driver” that prepared and organized the
data for processing; a “mill”, made of hundreds of gears that performed the opera-
tions—the mechanical equivalent of a CPU; a “memory” which stored intermediate
and final results; and an output device in the form of a printer.

The Analytical Engine was never completed, due to problems of financing and
manufacturing precision. It however remains, along with the Jacquard loom, the first
example of a device that fully and completely separates the flow of information from
the material processing unit. It is also remarkable for another reason: Ada Lovelace,
the daughter of the poet Byron, was fascinated by mathematics. She wrote for the
Babbage’s machine the first known mathematical algorithm, a sequence of instruc-
tions for computing Bernoulli numbers,5 which makes her the first programmer in
history. Her clairvoyance and insights were actually nothing less than visionary. She

5 Bernoulli numbers, named from Swiss mathematician Jakob Bernoulli, were identified in 1713
during the study of sums of powers of integers. If Sm(n) represents the sum of the n first integers
individually raised to power m, then the value of this sum is given by:

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 19

Fig. 1.8 Uncompleted prototype of Babbage’s analytical engine, exhibited at the London museum
of science; 1871

foresaw the possibility for such devices to perform not only numerical operations,
but also symbolic calculations, and to use them to associate letters and signs in order
to produce results that had nothing to do with mathematics, such as the composition
of musical pieces, in another loop that reconnected the machine with its musical
box origins (Lovelace, 1843). This is also probably the first known evocation of a
form of artificial creativity, a characteristic which, perhaps more than for many other
automata, testifies for the impulse to bring machines closer to human beings: art
at that time was seen as the prerogative of the human species, an idea still largely
preponderant today. The question of the relations between arts, robots and automata
will be discussed more in detail in Sect. 6.2.

Sm(n) = 1
m+1

∑m
k=0

(
m + 1

k

)

Bknm−k+1

In which coefficients Bk are Bernoulli number. They can be obtained through the following
generating function:

x
ex −1 = ∑∞

k=0
Bk xk

k!
Ada Lovelace’s algorithm was derived from this function.

20 N. Reeves and D. St-Onge

1.5 Industrial (R)evolutions

Technological progress took a new pace over the course of the last two centuries, as
the Western world underwent what we refer to as the “industrial revolutions”; the
plural form is used here because at least four revolutions have been identified (Marr,
2016). The first major change intervened as a result of the use of steam and water to
generate power. The second corresponded to the emergence of mass production and
division of labour, and to the discovery of electricity as a power source. The third
took place at the end of the sixties, with automated production and the exponential
development of computing and electronics. The fourth can also be called the «digital
revolution», and stands as a result of a merging of technologies that broke down the
limits between the digital, physical, and biological spheres. The field of application
of this last revolution is often referred to as “Industry 4.0.”

The first revolution is a direct implementation, at larger scales, of several early
contributions that were mentioned above, but it was also grounded onmanyworks by
Leonardo Da Vinci. It is only in the third one that the first robotic systems (industrial
automata) were widely adopted, though it seems obvious that the second revolution
paved theway for it. This third revolution exploited the discoveries and breakthroughs
made by several inventors, among which Nikola Tesla is certainly not the least. It is
during the third revolution that the lineage of robots branched from the main trunk of
the genealogy of automata. For the first time, artificial entities endowedwith a degree
of autonomy were put to work, becoming nothing less than automated servants or
slaves insensitive to fatigue, not vulnerable to health hazards, and hopefully more
robust and durable than human workers. The fourth revolution will not be discussed
in this book, as history is still being written on the impacts of the changes that it
brought, but it will be referred to in the last section of this chapter.

The rise of industrial robots during the twentieth century required several scientific
breakthroughs in power (electric, pneumatic, hydraulic), power transport and tele-
operation (remote control). Nikola Tesla [1856–1943] was an engineer and inventor
who referred to himself as a “discoverer”. He solved most of the requirements and
constraints needed by the third industrial revolution, and stands out, with about three
hundred patents, as of the most proficient inventor of his time. He is widely known
for his contributions on electricity transport and alternative current. These works had
obviously a major impact on robotics; but we will focus here on his contributions to
the use of radio waves.

In November 1898, Tesla demonstrated that a small autonomous boat could be
remotely operated, from distances up to several feet (Fig. 1.9). The instructions were
sent by coded pulses of electromagnetic waves. On demand of his audience, he
instructed the ship to turn left or right, or to stop. This was the first demonstration
of a remotely operated vehicle. It was not a robot in the full sense of the term, but it
was, according to its inventor, “borrowing the mind” of the human operator so that
future, advanced versions could fulfil mission together. A handful of patents, such as
the one on advanced “individualized” (protected) multi-band wireless transmission,
followed this demonstration; another one concerned the first “AND” circuit, a device
that combined two radio frequencies to minimize the risks of interferences.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 21

Fig. 1.9 Nikola Tesla radio-operated vessel plan from his US patent 613809Al, 1898

Tesla’s boat would be hardly more than a toy today; at the time, he was nothing
less than the forerunner of all remotely controlled devices and systems. He tried to
write a list all of its potential application. By reading it, one cannot help to find him
a little bit optimistic about the consequences of the military ones:

Vessels or vehicles of any suitable kind may be used, as life, dispatch, or pilot boats or
the like, or for carrying letters, packages, provisions, instruments, objects, or materials of
any description, for establishing communication with inaccessible regions and exploring the
conditions existing in the same, for killing or capturing whales or other animals of the sea,
and for many other scientific, engineering, or commercial purposes; but the greatest value
of my invention will result from its effect upon warfare and armaments, for by reason of
its certain and unlimited destructiveness it will tend to bring about and maintain permanent
peace among nations.

As for every new technological breakthrough, the militaries were quick to foresee
the uses they could make for this invention. They massively funded the research on
related technologies and quickly deployed remotely operated equipment in operation
fields—without, as could be expected, helping in any noticeable way the pacification
of conflict areas. As he foresaw at the time, the most advanced robotics research
ventures and developments are still funded by the military industry, which is still the
first to deploy these new technologies. From amythological and largely poetic origin,
robotics became within a few decades a field in which sophisticated war machines
were developed.

Still, while most of the works done in this domain are not publicly available,
some initiatives do contribute to the general advancement of the field. Nowadays,
the United States Defence Advanced Research Projects Agency (DARPA) is hosting
several robotics challenges: autonomous vehicle races (2004–2007), humanoid emer-
gency response (2012–2015), heterogenous robotics swarms’ tactics (2019–2022)

22 N. Reeves and D. St-Onge

Fig. 1.10 Unimate robotic
arm deployed at general
electrics facility to handle
pick-and-place of heavy
parts; 1963

and subterranean exploration (2018–2021). Some of the competitors of these chal-
lenges are funded millions of dollars by the DARPA to push the boundaries of their
research.

If we go back to the industrial realm, mass production in the third revolution has
resulted in a lot of repetitive tasks in manufacturing processes. Most of them were
perfectly fit for simple robust automation: the sixties welcomed the first industrial
robotic arm, the Unimate (Fig. 1.10), designed by Georges Evol. Even if some early
version of digital switches (vacuum tubes) and digital encoders were commercially
available at the time, none of the off-the-shelf parts would fit his design, so every
single component of the first set of Unimates was specifically manufactured for it. It
was deployed at General Motors in 1961, and was the object of the first on-site study
for market, integration, ease of use and safety of industrial robots.

Several lessons were learned from it; two of them proved essential. The first one
is that robot obsolescence is likely to strike well before utter wear-out. It led to the
conclusion that the life of an industrial robot depends on its robustness (ability to
hold together) as well as on its versatility (ability to evolve and to adapt to new jobs).
The second one relates to the fact that the complexity of a robot is so high that it
becomes difficult to guarantee its reliability, a criterium that depends on the owner
programming skills, on the production system into which the robot is integrated,
and on the quality of its maintenance. It is however important to note that, after
the Unimate was used for about a decade, several owners agreed that the financial
benefits of replacing humanworkers with it were not significant, but they still wanted
to go along with it because it kept their workers away from industrial accidents and
health hazards.

The Unimate featured up to six axes, one of them prismatic (translation), and a
payload of 225 kg. The first one was sold at a loss, but after six years, the company,

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 23

Unimation Inc., started to do profits; it later changed its name for Staubli. Others
then joined the market, such as ASEA with its IRB series. The first commercialized
IRB, the IRB6, had five axes and a payload of six kilograms. ASEA focused on
the ease of integration of its product, whose overall mass was 112 kg, and whose
integrated control electronics, including its DC actuators, was fully integrated within
the enclosure. It then merged with Brown, Boveri & Cie to become ABB, competing
with Staubli to become one of the main robotic arms manufacturers in the world.6

1.6 Modern Robotics

During the last decades, while the industry was trying, through several attempts and
test sites, to robotize manufacturing processes, tremendous progresses on robotic
systems design, kinematics, sensing and control were achieved. The corpus of
knowledge on advanced robotic systems resulting from these breakthroughs consti-
tute the fundamentals of modern robotics, a field that explores the possibility to
deploy reliable robots in unknown dynamic environments. One of the most impor-
tant phenomena of this period is certainly the progressive convergence between
biological and robotic systems that can be observed since the end the 70’s, during
which the age-old attempts of simulating life through formal analogies gave place to
new experiments that tried to reproduce the dynamic aspects of biological processes.

1.6.1 Coping with the Unknown

Managing complex tasks or missions autonomously in unknown, changing contexts
requires a high level of performance in perception, decision-making and agile

6 It may be worth noticing that Staubli and Brown Boveri are both Swiss enterprises; Swiss is
widely recognized as the country where watchmaking was born. It is for more than four centuries
the country in which the research and development of mechanical clocks of all scales remains the
most active in the world. It can legitimately be assumed that the unique expertise thus developed
in the field of micro-mechanisms was essential for the development of robotics, leading to the
emergence of a cutting-edge robotic industry. What is less known is that this situation originated,
rather paradoxically, from religious concerns: when Swiss became a protestant country after the
Reform, in the sixteenth century, Calvin banned the wearing of all ornamental objects. Goldsmiths
and jewelers had to find another way to use their skills. They applied them to the realization of
watches and clocks, which, because they had a practical function that could be used as an alibi,
could become miniature artworks and allow people to wear expensive devices that looked like
jewels without incurring the wrath of the church. Watchmakers established themselves in several
cities, most of them being located in an area called the «Jurassian Arc», not far from France, in
the very area where the Jacquet-Droz family built its famous automata. Here again, by a strange
detour, expertise coming from an artistic realm—jewelry—becomes the historical origin of one of
the most important developments in robotics and in the robotic industry.

24 N. Reeves and D. St-Onge

motion control, all elements that can be observed in a wide variety of configura-
tions and biological strategies in nature; this is one of the main reasons why living
systems quickly became a source of inspiration for roboticists. Among the first fully
autonomous robots are a handful of prototypes realized in 1948 by William Grey
Walter, a neurophysiologist fascinated by the complexity of emerging behaviours
manifested by simple biological systems. He was convinced of the possibility to
transpose such strategies in the field of robotics by using elementary devices. In
order to prove his hypothesis, he designed a wheeled robot of the steering tricycle
type which was able to detect light directly through a frontal photodiode sensor,
without any programming (Fig. 1.11, right). It was then instructed by simple elec-
tronic logics to actuate the wheels in order to head towards the strongest light source
in its environment. This very simple instruction led to an emerging behaviour—a
behaviour that was not planned nor programmed, by which it could autonomously
avoid obstacles; emerging behaviours represent one of the essential characteristics of
living beings. When the battery level was getting low, the robots behaviour switched
in order for it to seek the darkest spot around, as if it was trying to burrow in its lair.
The protective shell over Walter’s robots, as well as their slow velocity, led people
to christen them turtles, or tortoises. The latter name was kept by their creator, most
likely because, as mentioned in Alice in Wonderlands, tortoise are wise teachers.

Interestingly enough, the relations of roboticist with turtles extended far beyond
Walter’s prototypes. In the sixties, a new teaching approach, called Logo, was devel-
oped. It was based on recent cognition and learning researches and implemented
into programming languages. One implementation made Logo history: it consisted
in a method to teach the basics of procedural thinking and programming to chil-
dren. Kids would learn either by instructing a turtle icon to move on the screen of a
computer monitor, or a turtle-like robot to move on the floor. Logo remained one of

Fig. 1.11 (left) Stanford Shakey robot, circa 1960; (right) Walter Tortoise (1948–1949)

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 25

the only toolsets for the teaching of procedural programming and thinking until the
late nineties, in primary schools as well as in high schools.

Walter’s tortoises inspired a great deal of other robotic works. Twenty years later,
in 2010, two employees fromWillowGarage, Tully Foote andMeloneeWise, started
working on the newly releasedMicrosoft Kinect camera to integrate it with an iRobot
Create platform.7 The result was an affordable, easy to use robot, perfectly fit for
teaching and training, to which they gave the name «TurtleBot». Its popularity is
closely intertwinedwith the one of the Robotic Operating System, or ROS (discussed
in Chap. 5). One of the most important conclusions of these experiments is that plat-
forms with heavy limitations on sensing abilities and processing power can develop
complex behaviours that mimic those of insects (ants, bees, termites, etc.), birds or
fishes; and in particular those of animal societies in which groups of individuals can
implement complex tasks that are out or reach of a single element. This paved the
way for the field of swarm robotics, discussed in Chap. 11.

Since they were using light as their only source of information, the artificial
tortoises became very sensitive to the calibration of their sensor, as well as to their
context; they required a very controlled environment to perform adequately. A first
step in exploring unknown contexts was accomplished by a Stanford-designed robot
named Shakey (1966–1972). Shakey (Fig. 1.11, left) was the first robot able to reason
about its own actions: it could make decisions based on the combination of inputs
from several sensors in order to fulfil a given task (explore, push an object, go to
a location …). The platform itself consisted in a differential drive actuated vehicle
equipped with cameras, range finders, encoders and bump detectors. Its “brain”
computer was a SDS 940 the size of a room, with which it communicated over a radio
link. Shakey vision system was able to detect and track baseboards, which allowed
it to navigate in its large playground. Working with Shakey allowed the researchers
to produce essential contributions, such as the A* path planning algorithm and the
visibility graph, both introduced in Chap. 8, as well as the Hough transform in
computer vision.

Right after Shakey, Stanford contribution to modern robotics continued with
another autonomous vehicle, called the Stanford Cart (1973–1979). Originally
designed to mimic a lunar rover operated from Earth, which implies a 2.6 s delay
in the transmissions of instructions, it quickly became obvious that such a setup had
only two options to choose between: move really slowly, or make the steering and
navigation autonomous. To detect obstacles, the Cart was equipped with the first
stereovision system (3D imagery). To plan safely its path, it would take a fifteen
minutes break and scan its surrounding after each metre travelled. In 1979, using this
strategy, it managed to cross autonomously in five hours a twenty-metre room filled
with chairs, without any collision.

7 The iRobot Create comes from the samemanufacturer that today sells the Roomba vacuum cleaner
robots.

26 N. Reeves and D. St-Onge

These robots, as well many others that we could have presented here, constitute
major milestones in the recent history of technology. As opposed to most of the
automata from which they descend, they have the possibility to move by themselves,
and to adjust their internal sets and behaviour according to the data coming from
their sensors—an elementary form of exteroception. They directly lead to the current
state of research and development in self-driving vehicles and drones. Altogether,
they pave the way to service robots outside of the industrial realm that are able to
cope with challenging dynamic unknown environments.

1.6.2 Robots in Arts and Research–Creation

As anyone may guess, research in robotics is an extremely active field. What is
less known is that robotic arts are also very dynamics. As for many technological
developments, it didn’t take long for artists to take hold of the new knowledge,
methods and tools coming from this rapidly expanding field. This should not come
as a surprise since, as we have seen, automata of all kinds have always maintained
a close relationship with arts. Whereas scientists and engineers were, and still are,
concerned on how robots should be built, artists, as well as researchers from human
sciences, ask the question of why they should be developed. Many of their works
invite us to evaluate the risks, stakes and potential linked to the emergence of more
and more sophisticated machines. As you will see, the border between research and
creation in robotics can be very porous, and sometimes completely blurred. Within
the recent field of research–creation that lies precisely at the intersection of arts,
science and technology, are conceived robotic works that trigger the production of
new knowledge and new technological developments in these three domains.

Just like automata arts, robotic arts do not produce robots with practical purposes.
They nonetheless managed to trigger a wealth of developments and breakthroughs
in mechanics as well as in mechatronics and programming. The impulse that drives
them presents no major differences from the one that drove the Jacquet-Droz family
to build his Writer or his Musician, or Vaucanson to build his duck, by using some of
the most advanced techniques of their time. Furthermore, the often-quoted leitmotiv
stating that the first robotic artists were playing with their contraptions, instead of
working to make them useful, should be seen as a positive statement rather than a
deprecating one: research in any field is first and foremost a ludic activity, driven by
the curiosity and desire for exploration that are inherent to the human nature.

Artists cannot rely, like university researchers, on established research infrastruc-
tures; nor do they have access to the same level of human and material resources. But
as a counterpart, they have a freedomof research and action thatwould not be possible
in an institutional environment.Not being limited by any calendar constraint, research
trend or industrial need, robotic artists are free to explore unexpected research tracks.
Not being incited by their peers towork at the edge of technology, they can investigate
the potential of low-tech devices with personal sets of motivations, which adds to the
specificity and unicity of their work. This has two consequences. First, major results

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 27

have been obtained by people with limited technological expertise and very limited
means and resources, at times verging on arte povera, demonstrating, if necessary,
that essential breakthroughs can be achieved from elementary devices.8 Second, the
association of artists with university researchers, or with industrial partners, is likely
to produce results that could not be possible for artists or researchers alone.

A quick look at artworks from the domain shows that robotic arts are essentially
of hybrid nature. From 1920 on, artificial humanoids began to appear in theatre plays
and performances. They were most of the time remotely controlled, and thus had no
degree of autonomy. It is now commonly accepted that art robots should supprimer
be able to interact in some ways with the audience, or with its environment, so that
their behaviour can change according to the context in which they are presented.

The very concept of interaction is actually related to a potential dialogue with an
artificial being. The occurrence of this dialogue depends on the elements that are used
by the robot to communicate, which is why robotic arts have also played an important
role in the development of intuitive human–robot interfaces. The first computer-
controlled robotic art piece was the Senster (Benthall, 1971). It was equipped with
an interface that gave him a pseudo-human behaviour, in the sense that it was attracted
towards soft movements and sounds, but repelled by sudden gestures and loud noises.
The range and level of technologies that were used to implement it (microphones,
Doppler radars, hydraulic rams, plus an 8 K memory P9201 computer from Phillips,
whose price at the time exceeded that of a three bedrooms apartment in London)
made it impossible to afford by an independent artist; it was actually commissioned
by the Philips company.

The Senster, who looked somewhat like a three-legged, four metres giraffe whose
movements were derived from that of a lobster’s arm, can be seen as pioneering
the field of research–creation: its main objective was artistic, but its implementation
required a collaboration with experts from several fields and disciplines. Since it
was sensitive to the general ambiance of its context, it was able to trigger emotions
in the people that interacted with it. It looked like worried when the environment
became too agitated or too noisy, which incited people to act so as to make it “feel
better” or “more worried”. This empathic attitude can be observed in many later
works that were designed precisely to trigger it. The Hysterical Machines family by
Bill Vorn were octopus-like mechanical robots hanging from the ceiling. When the
visitors came too close to them, they become extremely agitated, even showing signs
of panics through rapid light effects and frantic movements of their metal tentacles.
In front of such reactions, most of the viewers felt sorry for them and were incited to
walk back to calm them down (Vorn, 2010). The Aerostabiles project by Reeves and
St-Onge consisted in large robotic cubes levitating in wide internal spaces (Reeves &
St-Onge, 2016). They could remain still in the air thanks to sensors, actuators and
ducted fans (Fig. 1.12). A micro-computer permanently readjusted their position,
producing slow oscillations. Despite their high-tech appearance, far remote from

8 This is obviously not limited to artists, as shown by Walter’s tortoises, which are among the
simplest robots that can be imagined; or by a software automaton like the Life Game by John
Conway, a quasi-elementary system that triggered the birth and evolution nothing less than artificial

28 N. Reeves and D. St-Onge

Fig. 1.12 Three Aerostabiles, flying cubic automata by Reeves and Saint-Onge (Moscow, 2010)

that of any living being, they managed to trigger intense emotions, since their very
soft movements were interpreted as a form of hesitation, or breathing; they were seen
by some visitors as large, floating animals that were prisoners in some way of their
technological envelope.

This connexion between the artificial movements of a robot and the emotions
felt by the visitor is of outmost importance on three points. First, it demonstrates
again, if needed, that the essence and potential of any automaton lie in its simulation
abilities. Second, it shows that, even for living beings, powerful impressions and
emotions can be communicated even while considering only the formal components
of movements, displacements and gestures. Third, as a consequence of the second
point, it opens the possibility to develop strictly formal or mechanical vocabularies
for triggering and controlling human impressions and emotions, with all the risks
and potentialities that such a project implies.

Several other aspects of early automata can be observed in robotic artworks.
The puppet theatre built by Heron of Alexandria finds contemporary counterparts
in Szajner’s “The Owl and the Robot” or “Petit Nicolas”, two interactive, theatrical
computer-controlled automata scenes; inVorn andDemers’ “NoMan’s Land”, which
involved more than fifty robots of nine different species detecting the presence of
viewers and reacting to it (Demers & Vorn, 1995); or in Rogers’ «Ballet Robotique»,
a movie showing large industrial robots choreographed so as to evoke animals or

life, a new science that has since the 60’s produced a wealth of theoretical and technological results
in several disciplines.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 29

Fig. 1.13 Human speaker experiment by artist Nataliya Petkova, 2017

plants. “The Robotic Church” by Chico McMurphy involves forty different robots
that play their individual sound-producing sequence (McMurphie, 1989).9

The level of interaction in these pieces is rather elementary, but they still demon-
strate the importance for robotic artists of attempting a dialogue between the robots
and the viewers; or at least, to trigger a reaction or an emotion from the latter. The next
step consisted in conceiving works in which human and robots would act together
in installation or performance scenes, trying to maximize the integration and the
collaboration between human and robotic performers. Among the pioneers of such
projects, Stelarc stands out as the first artist to have experimented robots as advanced
prosthesis of his own body. In his seminal piece “The Third Hand”, he tried to control
a robotic arm affixed to his right forearm through his ownmuscular impulses, in order
to make it write the same thing as his right hand (Stelarc, 1981). He also designed
pieces in which he reversed the mutual roles of the human and of the robots: in
his “Ping Body” piece, distant viewers located in three different cities could trigger
his body movements through a muscular stimulation device (Stelarc, 1995). A less
known but maybemore radical piece, “The Human Speaker Experiment” (Fig. 1.13),
presents a performer whose tongue, throat, cheeks and lips are actuated by mechanic
and electric devices, so as to allow a computer tomake her pronounce different words
and sounds (St-Onge et al., 2017). Such installations convert the body into passive
objects whose only role is to follow the instructions sent by the computer, like human

9 McMurphie’s installation strangely evokes a famous low-tech automated piece from the outsider
arts category, “Le manège de Petit Pierre”, a life-size mechanical fair created and built by Pierre
Avezard, a handicapped farm boy, and which differs from more sophisticated automata theatres
only by the precarity of its materials (Piquemal & Merlin, 2005).

30 N. Reeves and D. St-Onge

interfaces. Just like the self-destructive multi-machine performances in the 80’s by
the Survival Research Laboratories (Pauline, Heckert andWerner), they convey strik-
ingly powerful messages about the risks linked to the expansion of robotic devices
in our daily lives, and the possibility for them to escape all human control (Ballet,
2019).

One cannot evoke robotic arts without mentioning another category of pieces,
namely those that deliberately try to give inanimate objects the appearance of
life. “Robotic Chair” by Max Dean is an ordinary looking chair that disassemble
and reassembles autonomously (Gérin, 2008); Boursier-Mougenot’s Grand Pianos
slowlymove in an exhibition space, sometimes bumping into each other (Bianchini&
Quinz, 2016); Mike Phillips Sloth Bot is a white abstract prism, several metres high,
which imperceptibly moves in the atrium of a public building, getting closer and
closer from groups of people who end up noticing his ominous presence and quickly
getting out of itsway (Phillips, 2007). PaulGranjon’s sexed robots live in an enclosure
called the “Robotarium”, in which their only concern and objective is to mate with
each other. They are also inspired by Walter tortoises in several ways; for instance,
when low in battery, they seek the darkest spot as their nest (Pitrus, 2013). Such
works are often infused with a dose of humour, which does not prevent them to carry
strong statements about the potential futures of robotics, and the necessity for us to
carefully evaluate the risks involved in some specific development axis.

Other artists propose works that directly address these notions, by entering active
discussions and controversies surrounding the research and development of killer
robots. The ethical problems raised by such machines are nothing less than over-
whelming. In a 2021 piece called Spot’s Rampage, Brooklyn collective MSCHF
has purchased one of the famous yellow dog-shaped robots from Boston Dynamics,
which used to be displayed playing and jumping on videos that became viral. They
equipped it with a paint gun and offered to anyone the possibility to pilot it online,
so as to make more concrete the possibility of armed police robots wandering in the
street of large cities (MSCHF, 2019).

One common point of the works mentioned in the present section is that they can
hardly be relegated to a single domain: all of them are nurtured by data and infor-
mation coming from the three fields of art, science and technology. They are inher-
ently trans-disciplinary—some authors even qualify them as post-disciplinary, since
a robotic artist can navigate between theatre, performance, music, video, installation,
sculpture, bio-arts, visual arts, and many others, producing equally valuable works
in each of these fields. They can be characterized by the fact that they constantly
cross boundaries between all fields and domains, and by the way they manage to
thrive on these boundaries. Just like former automata makers, researchers-creators
in robotic arts are dedicated to the creation of artworks which constitute their final
objective. Just like them, through the process of conceiving and implementing them,
they develop advanced new skills, expertise and knowledge that can be then trans-
ferred to several other fields; and just like them, the mechanisms they imagine can be
seen as models for some hidden or ill-explained aspects of reality, and help under-
stand these aspects. And last but not least, the interactive nature of most robotic

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 31

artworks directly connects with the age-old impulse to create works that simulate
features of living beings.

1.7 Social Robotics

While several challenges still need to be addressed for robots to be able to robustly
navigate any cluttered terrain, vacuum robots and robotic pets are getting common
in household. Robots in our daily routine can have a significant impact on our
lives and no enough study were conducted yet on this topic. However, opening the
door to psychology, education and sociology over the past decades of research in
robotics also contributed to promote robots as potential good artificial companions
(Fig. 1.14). A handful of companies hit that market with innovative products, but
very few succeeded, in a surprising contradiction to the success of AI start-ups. The
often-quoted refrain in the industry is that “robotics is hard.”

If you think engaging Alexa or Siri in a natural conversation is difficult, just try
building a robotic humanoid that can function in any capacity similar to a human.
Simply put, initiatives in social robots such as Rethink Robotics, Jibo, Nao and
Mayfield Robotics helped to grow and spawn an industry only to find that more
nimble competitors, in the shape of robotic assistants with no mobile components,

Fig. 1.14 A small pack of Nao’s humanoid robots from Jaume I University. Nao is one of the most
popular robotic platform for human–robot interaction in psychology and it has made its place in
the child education market

32 N. Reeves and D. St-Onge

outcompeted them. For whatever reasons, the venture investors determined that these
market forces were more important than any longer-term vision that the robotics
company had and decided not to continue funding it. Anki CEO and co-founder
Boris Sofman gives a clue of the reasons behind that state of affair:

You cannot sell a robot for $800 or $1000 that has capabilities of less than an Alexa.

Roboticist Guy Hoffman adds:

When designers will start their own social robotics companies and hire engineers, rather
than the other way around, we will finally discover what the hidden need for home robots
was in the first place.10

This does not mean that social robots have no role to play whatsoever. Many
things that are not directly connected with robotics as such can be learned from each
of these experiments. Jibo, for instance, is a major case study for the first large-scale
human grief and mourning for robotic systems, with hundreds of owners sharing
their distress and psychological state after its end of life was announced. There is
obviously amajor field of research, centred around the emotions that can be triggered
by an artificial being, to be investigated here. As we have seen, the field of robotic
arts has been considering and exploring these phenomena for several decades now. It
is not unreasonable to suppose that joint research–creation ventures involving human
scientists, psychologists, artists and engineers will be ideally equipped, theoretically
and technologically, to address these questions.

1.8 Robotic Futures and Transrobotics

Throughout this chapter, we encountered several examples of a sequence in which
an entity that evokes more or less precisely the shape of living beings induces the
creation of more sophisticated devices intended to bring this evocation to the level
of a similitude, then to an assimilation, then to a model: the representation becomes
the paradigm. The same situation reoccurred at the procedural level with computers
and computer science, where it stands at the origin of a new model of human beings
in which the antique separation between body and soul is transposed, through an
immediate formal analogy, into a separation between matter and information.

Before exploring the consequences of this model, it should be noticed that the
mechanistic paradigm of the human body readily led to the resurgence of another
primordial myth, through the hope that immortality was at reach. The idea of the
body as a machine implicitly supposes the independence of its various components
and the possibility of remedying the failure of an organ by the transplant of an
identical one, or by the implantation of a prosthesis. From therewas born the vision of
human beings gradually transformed into robots through the progressive replacement

10 Stalker and stalked: What Killed Off Jibo, Kuri and Kozmo? in Asian Robotics Review 273,
https://asianroboticsreview.com/home273-html (accessed January 30, 2022).

https://asianroboticsreview.com/home273-html

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 33

of their biological, ephemeral components by artificial ones; and whose longevity
becomes considerable thanks to the use of unalterable materials, such as titanium,
gold, palladium. Moreover, such hybrid beings would progressively become able to
wander in extremely hostile environments, such as deep space or ocean abysses, and
even of surviving intergalactic journeys, indefinitely pushing the borders of territories
colonizable by mankind.

Today we know that no material is eternal. A stable element such as gold that can
remain unchanged for billions of years, but this remains very far from eternity; no
robot can last forever. Information however has no prescribed age limit. Since it can
be transposed from one material entity to another, it can theoretically last as long
as the Universe itself, which is as close to eternity as it is possible to be. Analogies
with certain properties of living matter readily come to mind: if we look today at the
fossil of a fern in a museum, we know immediately what we are looking at, because
we have seen living ferns quite often in our lives. But this fossil is 300 million years
old: the fact that we are able to identify it means that the information that controlled
its morphology has remain unchanged since it was living—it lasted longer than the
highest mountain ranges of the late Paleozoic. We are thus led to the conclusion that
life is the optimal process that Nature has found to preserve information, and to allow
it to travel towards the future: being immaterial, it can jump from one individual to
its offspring when the materiality of the parent degrades. This life-inspired strategy
led to the emergence of a particular class of automata, on which will now focus our
attention, andwhich tries to embed three characteristics of living beings: self-building
and healing; replication; evolution.

Automata with such abilities are still in their infancy: they are mainly found in
university or industrial labs. However, the development of miniaturized mechatronic
components and of new materials, as well as the availability of cheap and powerful
microcontrollers, allow to foresee their use for practical applications in a not-so-far
future.

Several examples of self-building or self-reconfigurable robotic structures have
been proposed in the two last decades. One of the first examples consists in basic
cubic “bricks” equipped with an arm on each of their faces. Sets of such cubes can
built cubic lattices with various topologies: the cubes can carry one another from one
node of the lattice to the next (Yoshida et al., 2003). Thesemodular robots were rather
heavy and cumbersome, but they prepare the grounds from miniaturized systems in
which such “bricks” could become the basic cells of robots with advanced functions;
moreover, a robot built this way could theoretically self-disassemble and reconfigure
in a completely different one in order to perform different tasks. Such devices may
seem very upstream of potential applications; but their potential is so promising
that they are the object of intensive researches in several labs. Many designs have
been tried, such as the two-hemispheres ATRON robot by Modular (Jorgensen et al.,
2004), chain structured systems such as the CEBOT (Fukuda & Kawauchi, 1990)
made of three different cells (wheel mobile, rotation joint, bending joint), Yim’s
Polypod, made of segments and joints (Yim et al., 1995), truss structured systems
such as Hamlin’s Tetrobots (Hamlin & Sanderson 2012) or Ramchurn’s Ortho-Bot
(2006), which remains at the state of a concept.

34 N. Reeves and D. St-Onge

Self-healing robots are also the object of a lot of attention from researchers. They
can be broadly divided into two categories. The first one consists in mechanical
robots that are able to repair their own components by using tools that are integrated
in their structure, such as the PR2 robot configured at Tokyo University (Murooka
et al., 2019). Such robots would theoretically be able to fix themselves after a failure,
like a surgeon that performs surgery on himself. The second one includes robots that
are made of soft materials («softbots») that self-reconstruct after having accidentally
been damaged or ripped by a collision, like a biological skin (Guo et al., 2020).

Replication and evolution on their side are not independent processes. In both
cases, the robotmust carry the information that represents itself, in order to transmit it
to a device that could built an identical copy of itself. This device could be a separated
piece of equipment; but in order to stay closer to the analogy with living processes,
which can be deemed optimal since they have been elaborating and fine-tuning
throughbillions of years of evolution, the robot itself should be able to produce its own
replicas. Directly evolving a physical robot is out of reach of current technologies;
it should however be mentioned that the first evolution of digital organisms has
been observed in 1984 on a cellular automaton (Langton, 2000; Salzberg & Sayama,
2004), where it appeared, surprisingly enough, as an emergent feature of the system.
A cellular automaton is not a robot; but the fact that an evolution process can take
place in the memories of a computer means that generations of physical robots,
progressively more adapted to a given task, can be successively built along its course.

Lipson and Pollack’s Golem project11 was specifically aimed to create robots with
specific performance specifications, without any human input at the level of design
(Lipson&Pollack 2000). Their morphology resulted from a digital evolution process
whose results were evaluated and selected through computer analysis, simulation and
optimization, before reaching a final shape. The only human intervention consisted in
affixing the actuators on the various components. The final product was an articulated
worm equipped with a triangular arm; it was able to crawl on different surfaces. Such
a result may seem disappointing as compared to the sophistication of the process;
but this opinion can be relativized when considering that it took hundreds of millions
of years to biological life to reach the same result on Earth. Moreover, a close look
at the evolution diagrams reveals striking analogies with biological evolution: both
underwent stable phases, where they seemed not to be able to produce new proposals
or species, followed by phaseswhere the number of such proposals literally exploded.
Knowing that a computer can evolve robots much faster, and maybe more efficiently,
than biological evolution, reminds us that the field of robotics faces us with unlimited
possibilities, but also with risks that must be carefully considered for each of its new
development axis and trends.

We will end up this chapter with a small tale that will briefly take us back to
the first age of automata. Thousand years ago, a craftsman created a human-like
automaton for the Chinese emperor. It was so realistic, and behaving so humanly,
that it almost became a star in the emperor’s court. Everyone wanted to be seen with
him. He behaved very elegantly, and with exquisite politeness towards everyone,

11 Note the mythological reference!

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 35

especially young women, with whom it even happened to engage in some form of
flirt. Unfortunately for him, he made the error of flirting with the emperor’s favourite
spouse. The wrath of the emperor was terrible; he feared that the automaton and his
wife could become lovers; he ordered the automaton to be executed, which was done
immediately. The automaton has made the error of entering a territory which was
exclusively reserved to the emperor, namely that of its succession, threatening the
perpetuation of his life and heritage.

Today, the situation is completely reversed. Despite all the mythical worries asso-
ciated with such as project, building an automaton or a robot that could reproduce
itself and evolve by following lifelike processes is an objective that is looked for rather
than feared; the first team to accomplish such a feat would be immediately acclaimed
at the international level. This is illustrated by a very recent project by Kriegman and
Bongard (Kriegman et al., 2021), in which small entities made of skin cells of frogs
are dubbed «biological robots» in the media, a name that looks like a contradiction
in itself, but that translates the perplexity of contemporary commentators in front of
such researches.12 These microscopic entities are able to replicate themselves, not
by regular cellular division (mitosis), but by assembling other cells freely floating in
their environment—the new ones are biological constructions, rather than offspring
of biological «parents».

Most of the robots we know today are dedicated to practical tasks. In that respect,
one can wonder to which extensive research about bio-inspired robots, lifelike robots
or biorobots so remote from our daily concerns can be relevant. The answer lies
in two points. The first one is the observation of the optimal efficiency of living
processes for about all imaginable tasks, and the hope that this efficiency can be
one day transposed in artificial entities. The second one is linked to the fact that
after thousands of years of evolution, the most advanced researches on automata and
robots remain deeply connected with the myths and fears that led to the creation of
the very first ones, thousands of years ago. As shown by Kriegman and Bongard’s
experiments, the convergence with living beings, once seen as an illusory attempt,
is now stronger than ever; and the meaning of the term «robot», as well of that of
the suffix «bot», has expanded far beyond its original significance. New knowledge
about biological and genetic processes led to the emergence of life-inspired automata
and robots, which in turn ended up bringing new knowledge and models for some of
these processes.

It is still too early to know which of these attempts will become successful, and
which ones will remain as milestones in the ongoing genealogy of automata; but
we can legitimately suppose that the future of robotics lies in a more and more
pronounced convergence between artificial and biological entities at all scales, from
a whole organism to cells and molecules; and that we will soon see hybrid robots
involving more and more biological or life-inspired components going out of the lab
to enter industrial and domestic environments.

12 The authors gave the name «Xenobots» to their creatures.

36 N. Reeves and D. St-Onge

Chapter Summary

After examining the difficulties linked to the precise definition of the word “robot”,
themythical origin of all robots and automatawas exposed; it was regularly reminded
in the following sections. Early automata built by the Greek founders of mechanics,
namely Ctesibios, Philon of Tarentum, Heron of Alexandria, were described. They
were followed by the presentation of works from the Renaissance to the Classical
Age, in which automata that tried to simulate life and life processes by replicating
as precisely as possible the form and/or anatomy of living beings. From there, the
genealogy of robotics bifurcated. A new branch appeared, in which the machine and
the information controlling it became fully separated. It can be seen as the origin
of modern computers and robots. Some early automata from Antiquity could be
programmed to modify their behaviour, through different mechanisms; but surpris-
ingly enough, the ancestors of modern programming are to be found inmusical boxes
and in the Jacquard loom. They also led to Babbage’s Analytical Engine (1843), the
first device that featured all the components of a modern computer, for which was
written the very first algorithm. The industrial era saw an almost complete loss of
interest for automata. The expressed needs of large-scale manufacturing paved the
way to the implementation of the first industrial robots. It was simultaneously realized
that mobile robots, able to cope with unknown, changing environments, could find
a wealth of potential applications in several fields. Robots became more and more
autonomous; their sensors became more and more efficient; computer and mecha-
tronics equipment became smaller and smaller. Robots could begin to take decisions
on their own by comparing information fromdifferent sources and by using processes
inspired from biological organisms. From there, a marked convergence was estab-
lished, and is still going on, between artificial and natural beings. Some of the latest
robots developed in research labs use materials and strategies coming both from
biology and technology. Their potential, as well as the interest they raise, allows to
see them as harbingers of the next phases of robotics. The possible applications of
such machines are impressive, and we can legitimately be fascinated by such techno-
logical achievements. But we must also consider the risks raised by the introduction,
in our daily life as in industry, of autonomous artificial entities increasingly close to
living beings, and whose abilities and power expand almost exponentially with time.

Revisions Questions

1. How do the arts contribute to the development of robotics?
There may be one or more correct answers, please choose them all:

A. By allowing studies to be carried out free from the laboratory environment
and the constraints of research

B. By prioritizing aesthetic considerations
C. By making researchers popular
D. By questioning the present and future emotional implications of technolo-

gies

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 37

2. Which of the following historical figures is recognized for having produced the
first programmable automaton?

3. Who is known to have written the first machine algorithm?
4. Can you identify the main impulse(s) that drove the first automata makers to

build their works
There may be one or more correct answers, please choose them all:

A. To demonstrate their knowledge and skills
B. To simulate and/or replicate living organisms
C. To help understand phenomena such as life or celestial mechanics through

explicative models
D. To impress, entertain or amaze crowds

Further Reading

Demson M, Clason C R (2020)

Romantic Automata: Exhibitions, Figures, Organisms. Bucknell University
Press

A brilliant collection of essays, most of them based on the eighteenth century liter-
ature about robots and automata, which describe the contradictory feelings that
emerged in the Romantic times, when it was realized that the construction of life-like
artificial entities, once seen as a technological achievement, could actually lead to
the emergence of mechanical beings deprived of the qualities that are inherent to
humanity such as empathy and compassion. A source of fascination and entertain-
ment for centuries, automata began, in a short period of time, to trigger less positive
emotions such as dread and fear, in a pivotal moment that is cleverly apprehended
by the authors.

Herath D, Kroos C, Stelarc (2016)

Robots and Arts: Exploring an Unlikely Symbiosis. Springer, Berlin

A pioneer book about robotic arts of all kinds, Robots and Arts presents, through
some of the most emblematic projects of the field, a thorough and in-depth reflexion
about the role, status and future of robots in a world where these artificial beings are
progressively becoming daily companions and partners. It constitutes an eloquent
demonstration of the essential contribution of artists to the general discourse on the
evolution of technologies. The argument is elaborated through a trans-disciplinary
compendium of texts by artists, scientists and engineers. Though this is not the main
objective of the book, the different contributions alsomake the case for the importance
of research–creation, by showing the wide number of disciplines, expertises and
skills that are required to produce even simple robotic art pieces, and the necessity
to promote such fruitful collaborations in university labs as well as in artists’ studios
and technological research centres.

38 N. Reeves and D. St-Onge

Foulkes N (2017)

Automata. Xavier Barral, Paris

The epic history of automata, from the oldest to the most recent, in a book profusely
illustrated with documents from all periods. The intimate links of automata with
clocks watchmaking, their parallel evolution with that of technologies, their links
with magic and myths, are clearly exposed, as well as the different roles they have
occupied throughout history, in several regions of the world. A well-argumented
book that can be used as an introduction as well as a reference.

Mayor A (2018)

Gods and Robots: Myths, Machines and Ancient Dreams of Technology.
Princeton University Press

Ahistorical account of the links between the fantastic characters of the earliest myths
in history, recorded in Crete, the Roman Empire, Greece, India and China, and the
first instantiations of these artificial beings and mechanisms that are the ancestors of
all robots and automata that have been designed since. Perhaps one of the clearest
evocations of the origin of automata, all born from this obsession to breathe life into
inanimate beings, and an irrefutable demonstration of the fundamental role of art,
imagination and legends for the greatest scientific and technical developments.

Nocks L (2008)

The Robot: The Life Story of a Technology. John Hopkins, Baltimore

A history of robots mainly centred on the technological aspects of the field. The
argument remains generally more factual than for the previous ones and gives less
prominence to the non-technological roots of automata; but it takes on its full impor-
tance in the light of several elementswhichwill serve as a useful reference: a glossary,
a timeline, an abundant bibliography, as well as information on the state of research
and development of contemporary robotics through statistics on currently operating
laboratories, firms and companies.

Wilson S (2003)

Information Arts : Intersections of Art, Science, and Technology. MIT Press,
Cambridge

A reference book in the field, Information Arts presents itself as the first interna-
tional survey of these artists who prefigured the development of research–creation
by exploiting data and concepts from all scientific fields, as well as the results of
a large number of technological advances. Soundly argumented from a theoretical
point of view, this essential work, based among other things on the visual and biblio-
graphical analysis of major artistic approaches, shows here again that the artist does
not limit himself to staging these concepts and their developments: through the posi-
tions it takes in front of their social and cultural consequences, it participates in the
discourse on their evolution and becomes a full player in the determination of future
research programs.

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 39

References

Al-Jazari, A. (1974). The book of knowledge of ingenious mechanical devices (D. R. Hill Trans.).
D. Reidel.

Ballet, N. (2019). Survival research laboratories: A dystopian industrial performance art. Arts, 8(1),
17. https://doi.org/10.3390/arts8010017

Benthall, J. (1971, November). Edward Inhatowicz’s senster. In Studio International (p. 174).
Bianchini, S., & Quinz, E. (2016). Behavioral objects | A case study: Céleste Boursier-Mougenot.
MIT Press.

Capek, K. (2004). R.U.R., Penguin Classics (tr. C. Novack-Jones).
Carrera, L., Loiseau, D., & Roux, O. (1979). Les automates des Jacquet-Droz. Sciptar—F.M. Ricci
Coulton, J. J. (2002). The dioptra of Heron of Alexandria. In L. Wolpert, J. Tuplin, & T. E. Rihl
(eds.), Science and mathematics in ancient Greek culture, Oxford University Press (pp. 150–164)

Demers, L. P., & Vorn, B. (1995). Real artificial life as an immersive media. In 5th Biennial
Symposium on Arts and Technology (pp. 190–203).

Demson,M., &Clason, C. R. (2020). Romantic automata: Exhibitions, figures. Bucknell University
Press.

Descartes, R. (1637). Discourse on the method of rightly conducting the reason, and seeking truth
in the sciences, part V. Project Gutenberg, https://gutenberg.org/files/59/59-h/59-h.htm#part5.
Accessed 31 Dec 2021.

Eymard, P. (1863). Historique du métier Jacquard. Imprimerie de Barret.
Foulkes, N. (2017). Automata. Xavier Barral.
Fukuda, T., & Kawauchi, Y. (1990). Cellular robotic system (CEBOT) as one of the realiza-
tion of self-organizing intelligent universal manipulator. Proceedings of the IEEE International
Conference on Robotics and Automation, 1, 662–667. https://doi.org/10.1109/ROBOT.1990.
126059

Gérin, A. (2008). The robotic chair: Entropy and sustainability. Espace Sculpture, 83, 40–40.
Gorvett, Z. (2016). Leonardo da Vinci’s lessons in design genius, BBC Future, https://www.bbc.
com/future/article/20160727-leon

Guo, H., Tan, Y. J., & Chen, G. et al. (2020). Artificially innervated self-healing foams as synthetic
piezo-impedance sensor skins.Nature Communication, 11, 5747. https://doi.org/10.1038/s41467-
020-19531-0. Accessed 30 Dec 2021.

Hamlin, G. J., & Sandersen, A. C. (2012). Tetrobot: A modular approach to reconfigurable parallel
robotics. Springer Verlag.

Herath, D., Kroos, C.,&Stelarc. (2016). Robots and arts: Exploring an unlikely symbiosis. Springer.
Jorgensen, M. W., Ostergaard, E. H., & Lund, H. H. (2004). Modular ATRON: Modules for a
self-reconfigurable robot. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Vol. 2, pp. 2068–2073). https://doi.org/10.1109/IROS.2004.1389702

Kriegman, S., Blackiston, D., Levin, M., & Bongard, J. (2021). Kinematic self-replication in recon-
figurable organisms. PNAS, 118(49), e211267211. https://doi.org/10.1073/pnas.2112672118.
Accessed 30 Dec 2021.

La Mettrie, J. O. (1748). L’homme machine. Elie Luzac Fils.
Langton, C. G. (2000). Evolving physical creatures. In M.A. Bedeau, J.S. McCaskill, N.H.
Packard, & S. Rasmussen (eds.), Artificial Life VII: Proceedings of the Seventh Artificial Life
Conference (pp. 282–287). MIT Press.

Lovelace, A. (1843). Notes on Luigi Menabrea’s paper, autograph letter to Charles Babbage. Add
MS 37192 folios 362v–363, British Library.

Marr, B. (2016). Why everyone must get ready for the 4th industrial revolution. https://www.for
bes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolu
tion/?sh=6849f19d3f90

Mayor, A. (2018). Gods and robots: Myths. Princeton University Press.
McMurphy, C. (1989). The robotic church. In web site Amorphic Robot Works. http://amorphicr
obotworks.org/the-robotic-church. Accessed 30 Dec 2021

https://doi.org/10.3390/arts8010017
https://gutenberg.org/files/59/59-h/59-h.htm#part5
https://doi.org/10.1109/ROBOT.1990.126059
https://www.bbc.com/future/article/20160727-leon
https://doi.org/10.1038/s41467-020-19531-0
https://doi.org/10.1109/IROS.2004.1389702
https://doi.org/10.1073/pnas.2112672118
https://www.forbes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolution/?sh=6849f19d3f90
http://amorphicrobotworks.org/the-robotic-church

40 N. Reeves and D. St-Onge

MSCHF. (2019). Spot’s Rampage. https://spotsrampage.com. Accessed 30 Dec 2021
Mortensen, O. (1957). Jens Olsen’s clock: A technical description. Technological Institute.
Murphy, S. (1995). Heron of Alexandria’s “on automaton-making.” History of Technology, 17,
1–44.

Murooka, T., Okada, K., & Inaba, M. (2019). Self-repair and self-extension by tightening screws
based on precise calculation of screw pose of self-body with CAD data and graph search with
regrasping a driver. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids) (pp. 79–84). https://doi.org/10.1109/Humanoids43949.2019.9035045

Nocks, L. (2008) The robot. The life story of a technology. John Hopkins.
Phillips, M. (2007). Sloth-Bot. https://arch-os.com/projects/slothbot/. Accessed 30 Dec 2021
Piquemal, M., & Merlin, C. (2005). Le manège de Petit Pierre. Albin Michel Jeunesse.
Pitrus, A. (2013). No longer Transhuman: Handmade machines by Paul Granjon. International

Journal of Cultural Research, 3(12), 129–133.
Pollack, J. B., & Lipson, H. (2000). The GOLEM project: Evolving hardware bodies and brains.
In Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware (pp. 37–42). https://
doi.org/10.1109/EH.2000.869340

Ramchurn, V., Richardson, R. C., & Nutter, P. (2006). ORTHO-BOT: A modular reconfigurable
space robot concept. In M.O. Tokhi, G.S. Virk, & M.A. Hossain (eds.), Climbing and walking
robots (pp. 659–666). Springer. https://doi.org/10.1007/3-540-26415-9_79

Regine. (2008). Cloaca 2000–2007,WeMakeMoneyNotArt, 19/01/2008. https://we-make-money-
not-art.com/wim_delvoye_cloaca_20002007/. Accessed 30 Jan 2022.

Reeves, N. (1992). Syndrome de Geppetto et machine de Türing. Agone, 8–9, 139–156.
Reeves, N., & St-Onge, D. (2016). Still and useless: The ultimate automaton. In D. Herath, C.
Kroos, & Stelarc (eds.), Robots and art: Exploring an unlikely symbiosis. Springer.

Salzberg, S., Sayama, H. (2004). Complex genetic evolution of artificial self-replicators in cellular
automata. Complexity, 10(2), 33–39

St-Onge, D., Reeves, N., & Petkova, N. (2017). Robot-Human interaction: A human speaker experi-
ment. InHRI ‘17: Proceedings of the Companion of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction (pp. 30–38). https://doi.org/10.1145/3029798.3034785

Stelarc. (1995). Ping Body. http://www.medienkunstnetz.de/works/ping-body/. Accessed 30 Dec
2021.

Stelarc. (1981). Third Hand. http://stelarc.org/?catID=20265. Accessed 30 Dec 2021.
Vaucanson, J. (1738). Le mécanisme du flûteur automate. Jacques Guérin.
Vorn, B. (2010). Mega hysterical machine. Google Arts & Culture. https://artsandculture.google.
com/asset/mega-hysterical-machine-bill-vorn/twEoqSJUmM0i7A. Accessed 30 Dec 2021.

Wilson, S. (2003). Information arts, intersections of art, science, and technology. MIT Press.
Woodcroft, B. (1851). The pneumatics of Heron of Alexandria from the original greek. Taylor
Walton and Maberly.

Yim, M., Lacombe, J. C., Cutkosky, M., & Kathib, O. (1995). Locomotion with a unit-modular
reconfigurable robot. Dissertation, Stanford University.

Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., & Kokaji, S. (2003). Research
on self-reconfigurable modular robot system. JSME International Journal, 4(46), 1490–1496.

Zek, Y., Balina, A., Guryev, M., & Semionov, Y. (2006). The Peacock clock. https://web.archive.
org/web/20080202131950/http://www.hermitagemuseum.org/html_En/12/2006/hm12_1_22.
html. Accessed 12 Dec 20210.

Nicolas Reeves is Full Professor at the School of Design at University of Quebec in Montreal. A
graduate of U. Montreal, U. Plymouth and MIT, trained in architecture and physics, he has been
developing for thirty years a research and an art practice in the field of science-art/technological
arts. His work is characterized by a highly poetic use of science and technology. Founding
member, then scientific director of the Hexagram Institute (2001–2012), vice-president of the
Montreal Society for Technological Arts for ten years, he heads the NXI Gestatio Design Lab

https://spotsrampage.com
https://doi.org/10.1109/Humanoids43949.2019.9035045
https://arch-os.com/projects/slothbot/
https://doi.org/10.1109/EH.2000.869340
https://doi.org/10.1007/3-540-26415-9_79
https://we-make-money-not-art.com/wim_delvoye_cloaca_20002007/
https://doi.org/10.1145/3029798.3034785
http://www.medienkunstnetz.de/works/ping-body/
http://stelarc.org/?catID=20265
https://artsandculture.google.com/asset/mega-hysterical-machine-bill-vorn/twEoqSJUmM0i7A

1 Genealogy of Artificial Beings: From Ancient Automata to Modern … 41

which explores the impact of digital technologies in all fields related to creation. Several of his
works have had a major media and public impact: Cloud Harp, Aérostabiles (flying cubic automata
capable of developing autonomous behaviors), Point d.Origine (real-time musical transposition of
remarkable architectures) …Winner of several awards and grants, he presented his work and gave
lectures on four continents.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the École de technologie supérieure and director of the INIT Robots Lab
(initrobots.ca). David’s research focuses on human-swarm collaboration more specifically with
respect to operators’ cognitive load and motion-based interactions. He has over 10 years’ experi-
ence in the field of interactive media (structure, automatization and sensing) as workshop produc-
tion director and as R&D engineer. He is an active member of national clusters centered on
human-robot interaction (REPARTI) and art-science collaborations (Hexagram). He participates
in national training programs for highly qualified personnel for drone services (UTILI), as well
as for the deployment of industrial cobots (CoRoM). He led the team effort to present the first
large-scale symbiotic integration of robotic art at the IEEE International Conference on Robotics
and Automation (ICRA 2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 2
Teaching and Learning Robotics:
A Pedagogical Perspective

Eleni Petraki and Damith Herath

2.1 Learning Objectives

By the end of this chapter, you will be able to:

– Understand the current challenges in robotics course design in higher education
– Analyse current teaching practices and innovations in robotics teaching
– Reflect on the link between learning theories and pedagogies for designing

robotics education
– Select and assemble suitable pedagogies and techniques for self-directed learning

and development in the field of robotics.

2.2 Introduction

The previous chapter outlined technological developments and growth in the robotics
field. The advancements and proliferation of robotics applications have had an enor-
mous impact on our daily lives and have changed the skills and competencies of the
emerging workforce (Ahmed & La, 2019). Ahmed and La (2019) argue for robotics
integration into all levels of education to prepare the future workforce for a techno-
logically advanced society. Considering the growth of robotics applications and the
increase in robotics courses in academia, it is vital that the curricula of higher educa-
tion be carefully designed to address graduate workplace demands. In that domain,
there is an absence of systematic discussion and examination of robotics education,

E. Petraki (B)
Faculty of Education, University of Canberra, Canberra, Australia
e-mail: eleni.petraki@canberra.edu.au

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_2&domain=pdf
mailto:eleni.petraki@canberra.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_2

44 E. Petraki and D. Herath

both of the syllabus and the pedagogies for addressing graduate student needs at
tertiary level. This systematic discussion of teaching and learning practices is an
imperative dictated not only from an education renewal perspective but also from the
design and product development perspective in the newly developed industries that
will have lasting and far-reaching societal implications.

This chapter aims to review current evidence-based research studies on robotics
in higher education. Due to the expansion of robotics application in numerous fields,
such as mechanical engineering, mechatronics, information technology, artificial
intelligence to name a few, we reviewed research investigating teaching and assess-
ment practices in robotics courses primarily in the last 10 years. This time frame
will capture the current developments and innovations in the field and will provide a
comprehensive understanding of effective teaching practices. These teaching prac-
tices will then be explained in the context of well-established educational theories
and philosophies in adult learning with the goal of assisting teachers and academics
in the design and selection of pedagogies and learning principles to suit robotics
education.

In writing this chapter, we have two primary audiences in mind. First, we hope
this discussion is applicable to teachers, academics and course designers of higher
education robotics courses as it will introduce a bank of resources which they can
use to design effective, pedagogically appropriate and industry-relevant curricula.
Guided by learner-centred educational philosophies, and with an understanding of
the link between educational theories and practices, it will contribute to a principled
approach to the design, reflection and improvement in current educational practices,
pedagogies and assessment in robotics education.

Second, the pedagogical discussion will be immensely valuable to students who
are enrolled in robotics courses or who might want to advance their knowledge
and skills in the field. It will provide them with a comprehensive understanding
of the theories and pedagogies underpinning course design and a clear insight into
interdisciplinary nature of the field. Knowledge and awareness of effective practices
will empower and propel students to pursue their own learning and endow them
with an array of strategies to learn autonomously and enhance their self-directed
learning. Constructivist, constructionist and connectivist education theories (Bower,
2017) discussed in Sect. 6 in more detail, regard teachers as facilitators and guides
of student learning and learning is seen as a continuous co-construction between
learners and teachers. We hope that this chapter will provide them with an incentive
and inspiration to continue their engagement in robotics, develop lifelong learning
skills and exploit opportunities outside the university walls.

2.3 Defining the Body of Knowledge of the Robotics Field

An important starting point for designing an appropriate and relevant curriculum
for any course is clearly delineation of articulating the body (mass) of knowledge,
along with the skills and learning outcomes of any course. This process is guided by

2 Teaching and Learning Robotics: A Pedagogical Perspective 45

curriculum design principles, which view curriculum design as dynamic, comprising
a series of interconnected stages: theoretical and epistemological beliefs about the
nature of learning, needs analysis, definition of aims and learning outcomes, syllabus
design and assessment, methodologies and pedagogies for implementation and the
evaluation plan (Richards, 2017). This process suggests that each of these stages is not
acting independently, but is mutually dependent on one another. In order to address
the research gap in the educational robotics literature and guide the development of
robotics courses in higher education, this chapter will survey the literature to identify
the body of knowledge expected of graduates of robotics and review the current
pedagogies and practices in the robotics field, with a view to suggesting a more
holistic approach to robotics education that transcends the traditional boundaries
and domains.

Despite the wealth of research in the robotics field, there have been few attempts
at describing the body of knowledge expected for those working in the field. To date,
we trace the most recent discussion of the body of knowledge and skills for robotics
to two reviews in 2007 and 2009 which we summarise here in an effort to describe
the state of the art in the field and further illustrate the challenges facing academics
today (Gennert & Tryggvason, 2009; McKee, 2007).

While robotics is a field that is taught in various courses and disciplines such
as engineering, computer science, information technology, it is common knowl-
edge among researchers that the field is highly diverse and draws on a variety of
disciplines (Berry, 2017; McKee, 2007; Wang et al., 2020). According to McKee
(2007), this knowledge goes beyond traditional fields of study such as mathematical
modelling and machine learning but includes key theoretical and practical dimen-
sions that reflect the diversity in the field: it can cover areas such as mathematics,
computing, control engineering, electronic systems, computing systems, program-
ming and algorithms, robotics systems and practice, artificial and computational
intelligence, human–computer interaction, artificial intelligence, algorithmic and
mathematical modelling, machine learning (McKee, 2007). The multidisciplinary
nature of robotics poses several challenges for curriculum developers in the field and
calls for a systematic and theory-driven approach to the design of tertiary curricula.
In the second study, Gennert and Tryggvason (2009) highlight the importance of
defining the body of knowledge necessary for robotics education and preparing ardent
prospective robotics engineers to handle the complex nature of robotics applications.
They argue that robotics education must not simply attempt to transfer knowledge
but attempt to “educate innovators whowill have the imagination to shape our world”
(p. 20). Discussing their difficulties in their own course design, they identify certain
gaps in robotics education:

• Robotics engineering does not seem to have a firm intellectual basis, which is
necessary for defining the knowledge and skills required for undergraduate courses
in robotics.

• Robotics engineering is not an accredited programme of study and the authors
recommend that researchers identify the body of knowledge expected.

46 E. Petraki and D. Herath

• Robotics engineering should bridge the gaps between the scientific, theoretical
knowledge and hands-on industrial knowledge.

• There is insufficient research on appropriate curricula and syllabi for robotics
engineering education.

Besides the interdisciplinary nature and skills needed in the design of robotics
courses, other compounding factors include the role of robotics courses in different
disciplines, schools and faculties, and the selection of content to meet the level of
prerequisite knowledge expected of students when enrolling in a robotics course
(Berry, 2017; McKee, 2007). These concerns are further compounded by the chal-
lenges of balancing theory and practice (Jung, 2013), the appropriateness of selection
of teaching methods in robotics courses and the design of assessment that evalu-
ates students’ achievement of skills in practical and theoretical understanding (Jung,
2013).

A comprehensive inspection of the educational literature on robotics reveals that
the current teaching of robotics has not changed dramatically, since the studies in
2007 and 2009, despite the wide applications and developments in the research space
(Berry, 2017; Jung, 2013). This is the point of departure for the present chapter
which will review a series of studies that pioneer innovative pedagogies and assess-
ment in robotics and which will guide our subsequent theoretical discussion and
recommendations for pedagogical approaches in the robotics field.

2.4 Review of Research on Pedagogies and Practices
in Robotics Education

Due to the STEM integration in school years, robotics engineering has widespread
appeal among university students (Berengual et al., 2016; Gennert & Tryggvason,
2009; Hamann et al., 2018; McKee, 2007; Wang et al., 2020) and this appeal has
captured the attention of educators. Educational practitioners and researchers in the
field highlight the need to shift away from traditional modes of delivering robotics
education (McKee, 2007) to encapsulate the diverse applications of automata, inte-
grate interdisciplinary research and resolve some of the aforementioned tensions.
Given the technological advancements, innovations have been introduced in the
delivery of courses which include virtual learning environments, virtual robotic labo-
ratories and mobile robotics education to support distance and online courses in
robotics (Gabriele et al., 2012; Khamis et al., 2006).

This section reviews current research on educational robotics and reports on inno-
vative pedagogies and content selection employed in the design and teaching of
robotics courses, especially in the last 10 years. The research studies originate in
courses which received favourable student evaluations and led to improved learning
outcomes (Gabriele et al., 2012; Jung, 2013;Wang et al., 2020). The presentationwill
pave theway for revolutionising higher education robotics courses and assist students

2 Teaching and Learning Robotics: A Pedagogical Perspective 47

and teachers in identifying pedagogical tools for autonomous learning development
and teacher curriculum development.

2.4.1 Adaptation of Content from Different Disciplines

One of the key challenges is the selection of suitable content for robotics courses that
target the needs and knowledge of different disciplines and subfields. For instance,
Gennert and Tryggvason (2009) discuss the design of their robotics undergrad-
uate course in a Polytechnic university aiming to teach the basic fundamentals to
students in mechanical engineering, computer science and electrical engineering. In
addressing the different student background knowledge, the syllabus integrated a
unique range of modules on areas such as power, sensing, manipulation, and navi-
gation, adjusting and incorporating content from each of the students’ disciplines.
In another study discussing the review of a robotics course in the faculty of mecha-
tronics at a Korean university, Jung (2013) raised the need to combine theory and
practice by integrating knowledge in Manipulator robots with hands-on experiences
in laboratory practicals. The course incorporated interdisciplinary theoretical content
covering robot kinematics, dynamics, path planning and control, while the laboratory
practical experience made use of a range of robot applications, experimental kits,
Lego robots and humanoid robots to develop student skills in motor control. Wang
et al. (2020) andHamann et al. (2018) share these views and stress that, because of the
popularity of robotics as a discipline and its cross-disciplinary nature, new method-
ologies and content need to be developed to allow students to combine hardware
and software implementation and to prepare future engineers to handle unfamiliar
and complex problems. This complies with current educational curriculum princi-
ples, which recommend a thorough analysis of the context and student needs in the
courses to design relevant and student-centred courses.

The development and redesign of new robotics courses and the increasing diversity
of contexts of robotics have led to the emergence and necessity of new pedagogies to
engage students in the field and to design appropriate content effectively (Martínez-
Tenor et al., 2019). Similarly,Wanget al. (2020) argue that newmethodologies need to
be developed to allow students to combine hardware and software implementations.

2.4.2 Constructivist Approaches to Learning

An important consideration emerging in this research is the importance of educa-
tional theory in underpinning curriculum design and assessment. Few studies iden-
tified the role of combining instructivist or didactic and constructivist paradigms in
course design (Johnson, 2009; Martínez-Tenor et al., 2019). Instructivist pedago-
gies are associated with traditional forms of learning such as lectures, videos and

48 E. Petraki and D. Herath

examinationswhere learners aim to gain knowledge. Constructivist modes of instruc-
tion focus on student engagement in active participation and problem solving, where
teachers are facilitators and enablers of student learning. The constructivist paradigm
is typically associated with activities and pedagogies such as task-based learning,
collaborative activities, group tasks in which students engage in problem solving
and learning through collaboration and exchange. A revision of a recent master’s
course (Martínez-Tenor et al., 2019) on cognitive robotics led to the integration
of two approaches using Lego Mindstorm. Students were first exposed to instruc-
tional videos on machine learning and reinforcement learning as a preparation for
their engagement in interactive sessions using reinforcement learning working on
two decision-making problems. Students’ evaluation of the teaching methods in the
course showed that students appreciated and benefitted from autonomous learning
and collaborative learning activities and found the possibility of programming a robot
intenselymotivating. They also offered suggestions for improvement, which could be
considered in future courses. These comprise time allocation for analysis and reflec-
tion on the experiments, addition of problem-solving activities, increasing opportu-
nities for collaboration, reflection and retention by students. Martinez-Tenor et al.
(2019) echo Johnson’s suggestion (2009) for a carefully designed programme that
combines instructivist and constructivist approaches to teaching to address diversity
in learning styles.

2.4.3 Situated Learning Methodology

Wang et al. (2020) discuss the implementation of an innovative pedagogy, which they
name situated learning methodology combined with the development of a hands-on,
project-oriented robotics curriculum in an undergraduate and postgraduate unit for
computing students. To address the challenge of combining theory and practice, the
course employed a situated learning-based robotics education pedagogy, guided by
four central principles: content, context, community and participation (Stein, 1998).
The situated learningmethodology assumes that learning is a process of participation
and practice for solving real-life authentic problems (Lave & Wagner, 1991). Based
on the belief that knowledge and skills are developed effectively in the context of real
life, situated learning allowed students to work on a real-life application: interacting
with a multimodal collaborative robot who is employed as the students’ classmate.
A classroom-based learning community is established with groups working on solu-
tions to different hands-on tasks. The situated learning approach could be regarded
as a technique belonging to the constructivist education paradigm that promotes
collaboration and co-construction of learning in authentic real life environments
(Selby et al., 2021).

2 Teaching and Learning Robotics: A Pedagogical Perspective 49

2.4.4 Flipped Classroom

Another novel method introduced in a mobile robotics course in a US university
was the flipped classroom (Berry, 2017). This method was adopted to address time
limitations in explaining the theoretical components of robotics and encourage more
student participation (Berry, 2017). The flipped classroom is a new pedagogical
method which distinctively combines instructivist and constructivist approaches to
learning. The term “flipped classroom”, often referred to as “reversed instruction”,
incorporates a switch between in-class and out-of-class time, thus fostering more
interaction between teachers and students during class time. Students spend most
of the time engaged in experiential activities, problem solving and diversified plat-
forms (Nouri, 2016).Ameta-analysis of flipped classroom research has demonstrated
the effectiveness of this model over traditional learning on student achievement and
learning motivation (Bergmann & Sams, 2012). The flipped approach was utilised
in the course to allow students to focus on their development of technical skills in
controlling robots, designing and experimentation with the real mobile robots for
laboratory experiments. This model has enormous potential for addressing the chal-
lenges of balancing theory and practice in a university course and allowing adequate
time for problem solving, self-paced learning activities and student negotiation.

2.4.5 Gamification

Another area of increasing interest is the role of gamification in robotics education,
which refers to the addition of play-based elements such as games as a method of
instruction to increase student engagement. Hamann et al. (2018) discuss the gami-
fication in teaching swarm robotics to first-year undergraduate students in computer
science, with a focus on teaching/learning theory and practice. Videogames allowed
student immersion in a simulated environment and inspired student creativity.
Students were presented with several robot manipulator challenges, engaged in
designing fully working prototype robots and models from the start with a gradual
increase in their functionality and complexity. The curriculum integrated robot-based
videogames and student competitions, thus building students’ teamwork skills and
triggering their imagination and engagement. Simultaneously, these learner-centred
methods offer students flexibility in learning and enhance their autonomy in problem
solving and engineering.

2.4.6 Online Interactive Tools

The advances in educational technologies have impacted education worldwide by
creating a variety of online tools and technological affordances. The educational

50 E. Petraki and D. Herath

domain experienced a boom in online learning and hybrid learning modes which
led to the creation of several online and virtual tools. To facilitate online delivery of
robotics courses, virtual laboratories were used engaging students in building and
guiding robots remotely with a range of tools. For instance, Berengual et al. (2016)
employed an array of interactive tools which they defined as “a set of graphics
windows whose components are active, dynamic and clickable ones” in order to
practice the theoretical aspects of the course. The “Mobile Robot Interactive Tool”
(MRIT) aimed at teaching students about robot navigation, allowing students to
explore a variety of parameters, such as robot kinematics, path planning algorithm,
the shape of the obstacles. It assisted students in understanding the basis of mobile
robot navigation and allowed them to modify different characteristics, such as robot
kinematics, path planning algorithm and the shape of the obstacles. The second inter-
active software tool, the slip interactive tool (slip-IT) was used to teach the concept
of slip in off-road mobile robots and last for the teaching of robotics manipulation
MATLAB/SIMULINK and robotics toolbox for conducting robot simulations. The
courses integrated two robots, some of which could be controlled remotely or offline
through Internet connection to the labs allowing students to work remotely. In addi-
tion to the simulation activities, the adoption of a real robot for demonstration and
implementation was a fundamental aspect of the course. Another interactive tool,
called ROBOT DRAW, was discussed by Robinette and Manseur (2001), which has
been widely used in robotics education. The tool was designed to enable students to
easily visualise robots in various configurations and evaluate the effect of a param-
eter variation on the robot. Among others, a popular online platform (https://www.
theconstructsim.com/) provides a range of online robot manipulation tools and can
be used by both students and teachers for autonomous practical learning. It consists
of virtual laboratories allowing students to experiment with manipulating, building
real and virtual robots online using a range of tools. Exposure and interaction with
a range of tools build students’ technological competencies and problem-solving
skills.

2.5 Assessment Practices

Changes in pedagogies andmethods in teaching are closely intertwinedwith transfor-
mative assessment practices that match the learning–teaching philosophies of these
methods. Traditional methods of assessment have been embedded in many higher
education courses and comprised examination-based assessment or/and experimental
work. A few attempts have been made to modify assessment practices to reflect
changes in pedagogical approaches in robotics.

https://www.theconstructsim.com/

2 Teaching and Learning Robotics: A Pedagogical Perspective 51

2.5.1 Collaborative and Individual Project-Based Assessment

Themajority of new assessment tasks integrated into some courses comprise project-
based assessment and competition reward systems. Group and individual projects
provide opportunities for authentic and collaborative learning experiences and
enhance studentmotivation andproblemsolving. In the design of courses reviewedby
Hamannet al. (2018) and Jung (2013), student assessment consisted of a groupproject
using competition-based learning, in which students had to engage and collaborate
through a series of tasks in a boxing match, using humanoid robots. Students found
the competition-based assessment a valuable and motivating experience in applying
many theoretical robotics skills although they acknowledged the challenges of the
time requirement of the competitions (Jung, 2013). Similarly, Wang et al. (2020)
employed project-based assessment allowing students to create a complete robot
control architecture in software andhardware during laboratory sessions. This formof
assessment enabled a classroom-based learning community with groups working on
solutions to different hands-on tasks. Consistent with the situated teaching method-
ology, project-based learningwas adopted: each studentwas equippedwith a robotics
development kit containing ultrasonic sensors, an Arduino board and other robotics
electronic accessories. The practical hands-on application, combined with the step-
by-step progression part of the syllabus and the teaching methodology, led to student
satisfaction and the effectiveness of this approach in the development of students’
learning outcomes. Berengual et al. (2016) equally employed a project-based group
assessment expecting students to build, programme and navigate a robot, and a series
of online reflections on theory and laboratory participation in a range of tasks that
assisted with the group project. Students identified the project task as one of the
most vital educational experiences that developed their technical and engineering
skills. Last, using a simple to complex curriculum design model, Hamann et al.
(2018) report on the use of group project allowing students to progress the robot
applications through a series of phases from simulation to real robots leading to
a battle royale game. The adoption of games and competitions both as sources of
learning and assessment offer students opportunities for collaboration, development
of student autonomy in problem solving and engineering and allow students to see
and test the effects of their programming and engineering.

2.5.2 Competition-Based Assessment

As mentioned previously, competition-based assessment can be a powerful tool in
engaging students in collaborative assessment. It was integrated intoMartínez-Tenor
et al. (2019) and Jung (2013) course design studies and contributed to rich learning
and increase in student engagement andmotivation. Some courses used project-based
learning to generate conference presentations which offered multiple opportunities
for student academic development, rich learning and networking with industry.

52 E. Petraki and D. Herath

2.5.3 Reflective Learning

To foster deep processing of learning, reflective writing in the form of continuous
assessment such as reflective posts was also introduced in some robotics courses.
The use of reflective activities is often combined with other forms of assessment
such as group projects which integrate experimental work with reflective writing
where students explain and focus on consolidation of theoretical knowledge. Wang
et al. (2020) designed project-based assessment expecting students to work towards
creating a complete robot control architecture in software and hardware during labo-
ratory sessions. Assessment was redesigned to include weekly literature reflections,
online quizzes on the theory and stagedgroupproject assessment conducted in labora-
tories consisting of three graded components: a demonstration, a technical memo and
a code submission. Martínez-Tenor et al. (2019) also incorporated reflections as part
of the group/project assessment focusing on robot manipulation, which resulted in
a valuable learning experience for students. Individual reflections also allow for flex-
ibility and self-paced learning and when shared publicly in online learning platforms
offer rich learning opportunities for all students in the course.

The aforementioned discussion identified some attempts at transforming
teaching/learning practices and assessment in robotics higher education courses
based on a review of educational research in the last decade. To truly transform
education practices and to identify effective teaching pedagogies in robotics educa-
tion and beyond, it is vital for teachers and students to develop an advanced aware-
ness of the relationship between education theories, curriculum design principles and
methods of learning and teaching. Equipped with these skills, academics, teachers
and students can make systematic and theory-driven selections to revise, adapt and
refine robotics education.

2.6 Paving the Way for Innovative Pedagogies
and Assessment in Robotics Education

To address the call for more diverse and current educational practices, to tackle the
current diverse applications of robotics and the growth of the industry, it is important
that robotics education prepares future engineers adequately to cope with arising
challenge in the field (Wang et al., 2020). This section will provide a guide to novel
pedagogical practices and assessment in teaching robotics, relying on research in
educational literature and the challenges facing robotics education at the academic
level. Important caveats for applying these suggestions will be discussed at the end
of this section.

First, we will begin with a discussion of educational theories/epistemologies
that drive pedagogical practices, as this is an integral aspect of any teaching and
curriculum design process (Richards, 2017). Research on adult learning and educa-
tion theory is well-established, highly researched and has undergone many transfor-
mations. Educational theories and ideologies are defined as a set of epistemological

2 Teaching and Learning Robotics: A Pedagogical Perspective 53

beliefs concerning the nature and value of learning, teaching and the role of educa-
tion and serve as a justification for particular approaches, pedagogies and methods
to teaching (Richards, 2017).

Historically, one of the first theories which influenced educational processes
was behaviourism which viewed learning as habitual behaviour, that is, observ-
able, conditioned upon a stimulus-reward action and reinforced through habitual
learning (Skinner, 1974). Influenced by a series of experiments on dogs, Skinner
(1974) concluded that learning is observable through actions and is shaped by the
environment and instructional design. He continued to suggest that learning can be
achieved through a series of teacher questions and student responses, where positive
and negative feedbacks determined the learning process. The behaviourist learning
theory influenced educational design, by emphasising that teaching is an objective
bodyof knowledge that is to bedelivered andmeasured thoughperformancemeasures
and outcomes (Bower, 2017; Howell, 2012). The behaviourist approach is associated
with the transmission-based model of teaching placing teachers as the authority of
knowledge, organisers and planners of learning and learners as passive recipients of
this knowledge. This is evident in traditional and authoritative models of teaching
and classical forms of assessment such as examinations, quizzes, not acknowledging
the role of the learners in the process or other environmental or psychological factors
(Bower, 2017). Despite the early successes of the behaviourist paradigms, one of its
drawbacks was the lack of consideration of the complexity of human cognition and
the individual learner processes.

In addressing the limitations with the behaviourist theory, another group of
researchers examined the role of mental and information processing in the learning
process, which LD to the development of cognitivism. Within the theory of cogni-
tivism, learning is an internal mental process of storing, receiving, consolidating
and reorganising information and knowledge structures or schemata (Bower, 2017).
Cognitivism could be seen as an extension of behaviourism, with attention to the
workings of the brain. Proponents and researchers in the field focused on aspects of
selection, organisation and retrieval of information and used some of this research to
design a curriculumwith learner conditions inmind.These included aspects of knowl-
edge sequencing, information load, staged instruction to improve learning compre-
hension and consolidation. However, within cognitivism the transmission model of
education and the focus on demonstration of learning outcomes prevailed.

This gave way to the theory of constructivism, one of the most influential
paradigms that focused on learning as a process rather than learning as a product.
Constructivist paradigms have dominated modern educational practices at all educa-
tion levels (Jones & Brader-Araje, 2002). The paradigm is based on the idea that
learning is not static but dynamic and is a process of reflection, negotiation and
individual or collaborative discussion through interaction with other learners, inter-
action with social and cultural influences. Individual constructivism was pioneered
by Piaget (1970), who considered learning as a result of processes of assimila-
tion and accommodation of new knowledge to existing knowledge, while social
constructivism, introduced by Vygotsky (1978) focused on sociocultural influences
on learners and their learning. Within Vygotsky’s social constructivism (1978),

54 E. Petraki and D. Herath

group activities and collaborative learning are preconditions and must precede any
individual learning. Learning is regarded as a continuous interplay between others
and the self through internal assimilation and extension/addition of new knowl-
edge. Intrinsic to the social constructivist model, which has had tremendous impact
on learning, is the idea of scaffolding, which is defined as additional assistance
and support which can gradually be removed after the learner has gained indepen-
dence. Based on the constructivist perspective, the teachers are considered guides
and facilitators and providers of the conditions, tools and prompts enabling students
to discover principles and engage in knowledge construction by themselves (Bruner,
1990). The constructivist paradigm gave birth to several teaching methodologies
that promote co-construction, negotiation of learning and self-discovery, comprising
students’ engagement in self-directed learning but also andmost importantly collabo-
rative learning, project-based learning and competitions-games and tournament tasks
(Jones & Brader-Araje, 2002).

Constructionism is regarded as an extension of constructivism which considered
the impact of technologies and artefacts on the learning process. The origins of
this theory can be traced to Papert (1980) who observed that learners create their
own reflections through experimentation with tangible objects, which were initially
referred to Lego, Logo and Mindstorms. It was suggested that learning takes place
when people are active during their creation of tangible objects in the real world. It
further assumes that learning is reinforced through engagement in authentic tasks,
creation of tangible objects, collaborative learning or other design activities in the real
world such as authentic and situated learning experiences (Howell, 2012; Papert &
Harel, 1991).

With similar roots to constructionism and inspired by the digital networking,
researchers introduced connectivism as the new epistemology based on the domi-
nance of digital learning. Connectivism subscribes to the views that learning takes
place in an organic fashion and is a result of building connections and skills in
connecting the digital world, technologies and platforms with social networks,
knowledge and information (Siemens, 2005). It centres on the metaphor of networks
with nodes and connections as the basis for learning. Influenced by construc-
tivist principles, connectivism is a novel approach, adopted in technology-enhanced
learning and online learning, and aims to develop students’ skills in critical thinking,
connecting and collaborating through interactionswith technologies and connectivist
learning environments (Bower, 2017; Howell, 2012; Siemens, 2005).

It is evident in the above review that there has been exponential growth in educa-
tional theory,which in turn generated newmethods and pedagogies that could be inte-
grated into robotics education. Some of these new methods employed in the course
design literature identified in Sect. 4 were influenced by constructivist, construc-
tionist and connectivist ideologies and were considered effective. Given the role
of robotics education in preparing the undergraduate students in handling complex
real-life problems, curriculum design in the field could benefit from integrating such
novel methodologies.

While traditional didactic learning is an integral aspect of acquiring key knowl-
edge, admittedly, to align with current research developments in learning theories

2 Teaching and Learning Robotics: A Pedagogical Perspective 55

and to address today’s global challenges and to develop competitive andmulti-skilled
graduates, it is vital that robotics education be enriched to bring about more educa-
tional benefits. Instructivist, behaviourist and cognitivist methods have dominated
the delivery and implementation of higher education courses but they are limited and
inadequate in improving learning outcomes. This section will highlight novel and
evidence-based pedagogies that could improve robotics course design and facilitate
graduates’ self-directed learning.

Some of the most effective pedagogies that are consistent with constructivist
and constructionism theories are collaborative learning, project-based learning and
competition-framed tasks. These methods should play a significant role in the
delivery of robotics education in academic as well as other educational levels. There
is abundant research to suggest that social engagement and collaboration with peers
have positive impact on individual development, problem solving as well as social
collaboration skills, skills and attributes expected of university graduates (Zheng
et al., 2020). Collaborative learning can be enhanced through discussion forums,
web-conferencing systems, virtual worlds, project-based learning during experi-
mental work. Collaborative learning allows students to treat their collaborators as
resources and guides for their own growth and development. It also provides oppor-
tunities for scaffolding by allowing for information exchange and learning from one
another and teamwork skills on problem-solving activities. It needs to be mentioned
that project-based learning comprising group collaboration comes with several chal-
lenges. These challenges can be frustrating for students, but with sufficient guidance,
they can empower students, help them develop student independence, creativity and
equip them with innovative problem-solving skills.

Project-based learning can sometimes take the form of problem-based learning
and design-based learning, which all align with constructivist and constructionist
principles. Design-based learning is a novel learning approach encouraging students
to work collaboratively on authentic real-life design tasks with the aim of advancing
their design skills, problem-solving abilities, reasoning and critical thinking skills
and develop attitudes to continuously tackle emerging challenges (Howell, 2012;
Kim et al., 2015). Problem-based learning is a pedagogical technique that provides
students with an authentic problem, with the aim of advancing student engage-
ment and motivation and supporting student-centeredness, self-regulation, devel-
opment of cognitive and metacognitive strategies, autonomy and student indepen-
dence (Stefanou et al., 2013). It has also been suggested that project-based learning is
easily combinedwith othermethods such as flipped classroommodels, inquiry-based
learning, collaborative learning, and the combination of suchmethods maximises the
effectiveness on student learning (Zheng et al., 2020).

Last but not least, competitions, games, tournaments combined with or incor-
porated in collaborative projects enhance students’ motivation and interest to learn
and encourage independence and further learning. Games are built on construc-
tivist principles and promote cognitive and social interaction, and build risk-taking,
strategic negotiation, problem solving, collaboration, reflection and lateral thinking
(Gee, 2005). They can increase student engagement, motivation and promote a high

56 E. Petraki and D. Herath

sense of achievement and competition (Stefanou et al., 2013). Gamification prin-
ciples could be used as learning approaches or as assessment tools and have the
potential to increase students’ continuous engagement and excitement in the course
and the range of activities (Hwang & Chang, 2016).

Changes in learning methods and pedagogies implicate changes in assessment
practices. An effective curriculum expects consistency between the syllabus, peda-
gogies and assessment practices, a notion known as “constructive alignment” (Biggs,
2014, p. 5). The aforementioned literature has paved the way for integrating a wide
range of assessment items that alignwith constructivist and project-based approaches
to learning.

Educational research points to the significance of project-based assessment, as
it offers authentic learning experiences for students, builds their collaborative skills
and develops their problem-solving skills. It is consistent with the new pedagogies
promoted in the previous review and would also endow students with skills for the
real world where teams work together to build, design and manipulate robots.

Due to the multidisciplinary aspects of robotics and its contribution to a range
of fields, robotics courses could benefit from online reflections on the literature
and theory. This was assumed and encouraged in the early work by Papert (1980)
who suggested that knowledge is created through reflection and engagement with
people and artefacts. These online reflections could be used as formative assessments
to engage students’ reflective, critical learning skills and problem solving abilities
(Merlo-Espino et al., 2018). Reflective activities and discussions can also be inte-
grated into project-related work to assist students in resolving these challenges and
offer a mechanism of getting support from lecturers (Serrano et al., 2018).

Admittedly, authentic assessment should be an indispensable component of
robotics assessment in higher education. Authentic learning is a suitable pedagogy
that operates within the theory of constructionism, hypothesising that learning takes
place during students’ interaction with practical tasks and robots. Authentic assess-
ment, therefore, refers to assessment requiring students to build/design/create arte-
facts or robotics applications and provides them with opportunities to develop real-
world skills. Gulikers et al. (2004) highlight a number of aspects of authenticity in
assessment: the task, the physical, virtual and social context, the artefact produced (or
behaviour assessed) or/and, the criteria and expected standard. Authentic assessment
assists the students with developing competencies appropriate for the workforce and
is often requirements for meeting professional accreditation standards. Project-based
assessment that enables students to design a robot-based application is paramount
to developing students’ real-life skills and foster effective human–robot interac-
tion (Gurung et al., 2021). They further enhance situated learning/learning by doing
(Wang et al., 2020) as they provide the environment for students to learn from one
another and develop collaborative skills.

An important caveat needs to be mentioned here. The choice of assessment tasks,
formative, summative, group and/or individual need to be closely linked with the
pedagogy and epistemology of the course, syllabus and the teaching, something
known as epistemological alignment to improve the course success. There must
be an effective triadic relationship between epistemology (the nature of learning),

2 Teaching and Learning Robotics: A Pedagogical Perspective 57

pedagogy an assessment for the course to be successful and meet its objectives
(Knight et al., 2014).

It is important to highlight that these suggestions are pertinent to students who are
studying in robotics and robotics adjacent fields. Students interested in advancing
their knowledge and skills can seek opportunities, extra-curricular and industry
opportunities to be involved in authentic projects, collaborative activities and pursue
conference or industry presentations. Reflective learning activities and participation
in discussions can create valuable learning opportunities for students to advance their
skills and be competitive in the field (Fig. 2.1).

Fig. 2.1 Learning theories, principles and pedagogies

58 E. Petraki and D. Herath

2.7 Chapter Summary

In addressing the absence of systematic reviews of research and recommendations
in teaching robotics, this chapter offered an overview of the current challenges in
teaching and learning robotics and reviewed pedagogical trends in robotics education
at higher education institutions. The need for a systematic presentation of current
educational practices is further enhanced when considering that the purpose of the
book is to introduce the theory, design and applications of robotics for students and
academics, and to advance students’ skills to handle complex problems. This chapter
first highlighted several challenges facing designers of robotics courseswhich include
lack of systematic research in robotics education and the complex network of disci-
plines which need to be synthesised to design robotics courses. Next, it reviewed
current innovations in higher education course design and pedagogy, specifically
focusing on the last ten years, which were found to lead to improved learning
outcomes. This aimed to raise students’ awareness of the history and theoretical
principles underlying the teaching of robotics at the academic level. To address the
challenges and complexities in designing appropriate syllabus and instruction, and
the need to shift away from traditional forms of learning, the last section offered a
comprehensive understanding of learning theories and relevant pedagogies that have
the potential to improve educational practices and lead to learning benefits if used
appropriately in robotics education.

To shape the future of robotics education, it is imperative that academics, teachers
and industry practitioners work collaboratively and be involved in negotiating and
co-designing the syllabus and assessment of academic robotics courses. In addressing
the chasm in the knowledge, we hope this chapter developed their in-depth awareness
of the theoretical basis of teaching pedagogies and advances in learning theory which
should guide course design, syllabus and assessment. Learner-centred, constructivist
and connectivist learning theories should be the basis for selecting suitable methods
which address the challenges embedded in the multidisciplinary nature of robotics,
and the diverse skills engineers need in today’s technologically advanced society.
These pedagogies comprise project-based learning, problem-based and collaborative
learning, reflective writing and authentic assessment, to name a few.

Revolutionising robotics education and building work-ready graduates are not
simple tasks. Recognising the complexity of the robotics field and the diversity in
educational processes is a starting point which can assist in our definition of roles,
responsibilities and identities as learners and teachers. It requires changes in beliefs
and practices that both students and teachers implement and manage effectively.
Zhou et al. (2020) argue that students’ dissatisfaction in academic courses is often
ascribed to their lack of understanding of their role in the learning process and,
of the epistemological beliefs underpinning learning and assessment (Zhou et al.,
2020). Teachers should be willing to adopt such roles as guides, facilitators, moder-
ators of learning and enablers of change, and invite students in negotiations and
co-constructions of their learning experiences. Armed with tools and strategies to
improve their learning, students should be co-creators and active participants of

2 Teaching and Learning Robotics: A Pedagogical Perspective 59

classroom realities (Harmer, 2015). Students need to engage in sociocultural and
professional practices in robotics, shaping and negotiating their identities and social
relations in this academic community of practice (Saltmarsh & Saltmarsh, 2008). It
is hoped that with the discussion in this chapter, students are empowered and inspired
in taking charge of their own learning and armedwith amultitude of tools to continue
their professional development and lifelong learning.

2.8 Quiz

According to this chapter,

• What are some key challenges facing robotics education course design?
• What were some of the pedagogical innovations discussed and reviewed in the

robotics literature in this chapter?
• Name some interactive tools which have been incorporated in teaching robotics

in higher education.
• What is the learning theory which espoused the idea that knowledge is built when

we interact, experiment and reflect on our experience by building and creating
artefacts?

• What are some methods that you can employ to advance your skills in robotics?

Acknowledgement The contribution of the first author is funded by the Australian Research
Council Discovery Grant DP200101211.

References

Ahmed, H., & La, H. M. (2019). Education-robotics symbiosis: An evaluation of challenges and
proposed recommendations. In IEEE Integrated STEM Education Conference (ISEC) (pp. 222–
229). https://doi.org/10.1109/ISECon.2019.8881995

Berenguel, M., Rodríguez, F., Moreno, J. C., Guzmán, J. L., & González, R. (2016). Tools and
methodologies for teaching robotics in computer science and engineering studies. Computer
Applications in Engineering Education,24(2), 202–214. https://doi.org/10.1002/cae.21698

Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every
day. Internal Society for Technology in Education.

Berry, C. A. (2017). Robotics education online flipping a traditional mobile robotics classroom.
IEEE Frontiers in Education Conference (FIE),2017, 1–6. https://doi.org/10.1109/FIE.2017.819
0719

Biggs, J. (2014). Constructive alignment in university teaching, HERDSA Review of Higher
Education, 1, 5–22 .

Bower, M. (2017). Design of technology-enhanced learning: Integrating research and practice.
Emerald Publishing Limited.

Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.

https://doi.org/10.1109/ISECon.2019.8881995
https://doi.org/10.1002/cae.21698
https://doi.org/10.1109/FIE.2017.8190719

60 E. Petraki and D. Herath

Gabriele, L., Tavernise, A., & Bertacchini, F. (2012). Active learning in a robotics laboratory
with university students. In C. Wankel & P. Blessinger (Eds.), Increasing student engagement
and retention using immersive interfaces: Virtual worlds, gaming, and simulation, Cutting-edge
technologies in higher education (Vol. 6 PartC, pp. 315–339). EmeraldGroupPublishingLimited,
Bingley. https://doi.org/10.1108/S2044-9968(2012)000006C014

Gee, J. P. (2005). Good video games and good learning. Paper presented at the Phi Kappa Phi
Forum.

Gennert, M. A., & Tryggvason, G. (2009). Robotics engineering: A discipline whose time has come
[education]. IEEERobotics&AutomationMagazine,16(2), 18–20. https://doi.org/10.1109/MRA.
2009.932611

Gulikers, J. T. M., Bastiaens, T. J., & Kirschner, P. A. (2004). A five-dimensional framework for
authentic assessment. Educational Technology Research and Development,52(3), 67–86.

Gurung, N., Herath, D., & Grant, J. (2021, March 8–11). Feeling safe: A study on trust with an
interactive robotic art installation. HRI ’21 Companion. Boulder, CO, USA.

Hamann, H., Pinciroli, C., & Mammen, S. V. (2018). A gamification concept for teaching swarm
robotics. In 12th European Workshop on Microelectronics Education (EWME) (pp. 83–88).
https://doi.org/10.1109/EWME.2018.8629397

Harmer, J. (2015). The practice of English language teaching (5th ed.). Longman.
Howell, J. (2012). Teaching with ICT: Digital pedagogies for collaboration and creativity. Oxford
University Press.

Hwang, G.-J., &Chang, S.-C. (2016). Effects of a peer competition-basedmobile learning approach
on students’ affective domain exhibition in social studies courses. British Journal of Educational
Technology,47(6), 1217–1231.

Johnson, G. M. (2009). Instructionism and constructivism: Reconciling two very good ideas.
International Journal of Special Education, 24(3), 90–98.

Jones, M. G., & Brader-Araje, L. (2002). The impact of constructivism on education: Language,
discourse, and meaning. American Communication Journal, 5(3).

Jung, S. (2013). Experiences in developing an experimental robotics course program for under-
graduate education. IEEE Transactions on Education,56(1), 129–136. https://doi.org/10.1109/
TE.2012.2213601

Khamis, A., Rodriguez, F., Barber, R and Salichs, M. (2006). An approach for building innovative
educational environments formobile robotics. Special Issue on Robotics Education, International
Journal of Engineering Education, 22(4), 732–742.

Kim, P., Suh, S., & Song, S. (2015). Development of a design-based learning curriculum through
design-based research for a technology enabled science classroom. Educational Technology
Research Development,63(4), 575–602.

Knight, S.B., Shum,S.,&Littleton,K. (2014).Epistemology, assessment, pedagogy:where learning
meets analytics in the middle space. Journal of Learning Analytics,1(2), 23–47.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge
University Press.

Martínez-Tenor, A., Cruz-Martín, A., & Fernández-Madrigal, H-A. (2019). Teaching machine
learning in robotics interactively: The case of reinforcement learning with Lego® Mindstorms.
Interactive Learning Environments, 27(3), 293–306. https://doi.org/10.1080/10494820.2018.152
5411.

McKee, G. T. (2007). The robotics body of knowledge [Education]. IEEE Robotics & Automation
Magazine, 14(1), 18–19. https://doi.org/10.1109/MRA.2007.339621

Merlo-Espino, R. D., Villareal-Rodgríguez, M., Morita-Aleander, A., Rodríguez-Reséndiz, J.,
Pérez-Soto, G. I., & Camarillo-Gómez, K. A. (2018). Educational robotics and its impact in the
development of critical thinking in higher education students. In 2018 XX Congreso Mexicano
de Robótica (COMRob) (pp. 1–4). https://doi.org/10.1109/COMROB.2018.8689122

https://doi.org/10.1108/S2044-9968(2012)000006C014
https://doi.org/10.1109/MRA.2009.932611
https://doi.org/10.1109/EWME.2018.8629397
https://doi.org/10.1109/TE.2012.2213601
https://doi.org/10.1080/10494820.2018.1525411
https://doi.org/10.1109/MRA.2007.339621
https://doi.org/10.1109/COMROB.2018.8689122

2 Teaching and Learning Robotics: A Pedagogical Perspective 61

Nouri, J. (2016). The flipped classroom: For active, effective and increased learning—especially
for low achievers. International Journal of Educational Technology in Higher Education,13, 33.
https://doi.org/10.1186/s41239-016-0032-z

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. Basic Books Publishers.
Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36, 1–11.
Piaget, J. (1970). The science of education and the psychology of the child. Grossman.
Richards, J. (2017). Curriculum development in language teaching. CUP.
Robinette,M. F.,&Manseur,R. (2001).Robot-draw, an Internet-based visualization tool for robotics
education. IEEE Transactions on Education,44(1), 29–34. https://doi.org/10.1109/13.912707

Saltmarsh, D., & Saltmarsh, S. (2008). Has anyone read the reading? Using assessment to promote
academic literacies and learning cultures. Teaching in Higher Education,13(6), 621–632.

Selby, N. S., Ng, J., Stump,G. S.,Westerman,G., Traweek, C.,&HarryAsada, H. (2021). TeachBot:
Towards teaching robotics fundamentals for human-robot collaboration at work. Heliyon, 7(7).
https://doi.org/10.1016/j.heliyon.2021.e07583

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of
Instructional Technology and Distance Learning, 2(1), 3–10.

Skinner, B. F. (1974). About behaviourism. Penguin.
Stefanou, C., Stolk, J.D., Prince,M., Chen, J.C., &Lord, S.M. (2013). Self-regulation and autonomy
in problem- and project-based learning environments. Active Learning in Higher Education,
14(2), 109–122. https://doi.org/10.1177/1469787413481132

Stein, D. (1998). Situated learning in adult education. ERIC Clearinghouse on Adult, Career, and
Vocational Education.

Vygotsky, L. S. (1978). Tool and symbol in child development. In M. Cole, V. John-Steiner, S.
Scribner, & E. Souberman (Eds.), Mind in society: The development of higher psychological
processes. Harvard University Press.

Wang,W., Coutras, C., & Zhu,M. (2020). Situated learning-based robotics education. In 2020 IEEE
Frontiers in Education Conference (FIE) (pp. 1–3). https://doi.org/10.1109/FIE44824.2020.927
4168

Zheng, L., Bhagat, K. K., Zhen, Y., & Zhang, X. (2020). The effectiveness of the flipped class-
room on students’ learning achievement and learning motivation: A meta-analysis. Educational
Technology & Society,23(1), 1–15.

Zhou, J., Zhao,K.,&Dawson, P. (2020).Howfirst-year students perceive and experience assessment
of academic literacies. Assessment & Evaluation in Higher Education,45(2), 266–278. https://
doi.org/10.1080/02602938.2019.1637513

Eleni Petraki is an Associate Professor at the University of Canberra. She is an applied linguist
with close to three decades of experience in language teaching, discourse analysis and intercultural
communication. Her experience in teaching English has been accumulated in different countries
including Vietnam, Greece, UK, USA and Australia. In addition to her research in these fields,
she has evolved a research program on artificial intelligence, where she is applying educational
curriculum theories and pedagogies to new fields including machine education.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra. He is
a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial and research projects for over
two decades. He founded Australia’s first collaborative robotics start-up in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015
and 2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted
Amazon Robotics Challenge—an industry-focused competition among the robotics research elite.
In addition, he has chaired several international workshops on Robots and Art and is the lead
editor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first significant work
to feature leading roboticists and artists together in the field of robotic art.

https://doi.org/10.1186/s41239-016-0032-z
https://doi.org/10.1109/13.912707
https://doi.org/10.1016/j.heliyon.2021.e07583
https://doi.org/10.1177/1469787413481132
https://doi.org/10.1109/FIE44824.2020.9274168
https://doi.org/10.1080/02602938.2019.1637513

62 E. Petraki and D. Herath

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 3
Design Thinking: From Empathy
to Evaluation

Fanke Peng

3.1 Learning Objectives

This chapter introduces methods and approaches for design thinking as the main
drivers in developing the ability to identify critical problems in a given situation.
This problem identification represents the opportunities for design intervention and
creative solutions to a range of possible scenarios and practical applications. The
chapter also develops the students’ understanding of design as an iterative process
involving empathy, ideation andprototypes to test and evaluate concepts and solutions
to a wide variety of identified problems.

By the end of this chapter, you will be able to:

• Discover the history of the “designerly way of thinking” as the origin of design
thinking

• Understand what design thinking is and why it is so important
• Reflect on a human-centred design (HCD) process through empathy, collaboration

and creative thinking
• Select and assemble suitable design thinking models and tools for self-directed

learning and problem-based learning.

3.2 Introduction

The need for design thinking in robotics is becoming the catalyst for digital trans-
formation (Automeme, n.d.). Design thinking applies from the origin of a robotic
system for industry through interactive robotic art and ongoing research. It helps

F. Peng (B)
UniSA Creative, University of South Australia, Canberra, Australia
e-mail: Fanke.Peng@unisa.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_3

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_3&domain=pdf
mailto:Fanke.Peng@unisa.edu.au
https://doi.org/10.1007/978-981-19-1983-1_3

64 F. Peng

designers and non-designers empathise, learn, develop and deliver creative possibil-
ities. To understand the importance of design thinking in robotics, we need first to
understand what design thinking is and why it is so important?

3.2.1 What Is Design Thinking

Design thinking was introduced in the 1960s to the “design science decade” (Cross,
2001, 62). The theories evolved from the understanding that wicked problems are at
the centre of design thinking. Buchanan’s (1992) article about “wicked problems” in
design has become a foundational reference for the discourse about design thinking
and the whole design area. When designers engage in design processes, Buchanan
(1992) stated that they face wicked and indeterminate problems. The designer is not
merely discovering, uncovering and explaining the phenomenon in question (which
is undeterminate) but is also suggesting other possibilities and creating and trans-
forming the matter. Dewey (1938) defined the process of inquiry as a transformation
process beginning from an indeterminate problem. Inquiry is a process that begins
with doubt and ends with knowledge and a set of beliefs so concrete that they can be
acted upon, either overtly or in one’s imagination (Dewey, 1938). To engage in this
process, one must ask questions and seek answers to eliminate the initial doubt.

‘These complex and multidimensional problems require a collaborative method-
ology that involves gaining a deep understanding of humans’ (Dam & Siang, 2020,
par 7). Nonetheless, the main strength of this design process is that it can introduce
novel approaches that the key stakeholders directly inform.

3.2.2 Design Thinking Models (Double Diamond Model,
IDEO Design Thinking and d.school Methods)

The design thinking as a process model has an established ground for both divergent
and convergent thinking. Various design thinking models divide the design process
into different stages (see Table 3.1). According to Kueh and Thom’s review, there
are 15 design thinking models. For example, according to the Double Diamond
design framework developed by the British Design Council, there are four steps
in the creative process—Discover, Define, Develop and Deliver (Design Council,
n.d.). Like this, the Hasso Plattner Institute of Design at Stanford d.school encour-
ages empathising, defining, ideating, prototyping and testing in a completed design
process. Ambrose and Harris (2009) divided the design process into seven stages:
Define, Research, Ideate, Prototype, Select, Implement and Learn. IDEO Educa-
tion (2012), a leader in design thinking techniques, breaks the design process
into five steps: Discovery, Interpretation, Ideation, Experimentation and Evolution.
Brown (2009) opined that design thinking covers three stages: inspiration-identifying

3 Design Thinking: From Empathy to Evaluation 65

Table 3.1 Comparison of design thinking models (Kueh & Thom, 2018)

a problem/an opportunity; ideation-conceive general concepts and solutions; and
implementing, producing and launching the final solutions (products or services).
Kueh and Thom (2018) reviewed the design processes that are most commonly used
and summarised that there are five main phases: 1. Context or problem framing
phase; 2. Ideation generation phase; 3. Prototyping phase; 4. Implementation phase;
5. Reframing phase.

It is of value to point out that none of the design thinkingmodels represents a linear
process. “Cyclical icons” (as seen in Fig. 3.1) are always added to design thinking
models, meaning that you could shift back and forth between these states, generating
the new, analysing it, shifting and often, starting the whole process again. Our mode
of thinking shifts among design stages and mental states: divergent and convergent
thinking, and analysis and synthesis (Brown, 2008, 2009). No matter which model
is adopted for the design practice, each step in the design process leads to a creative
solution that addresses a known or otherwise unknown problem. For this chapter, we
use the Double Diamond model (Fig. 3.1) as an example to demonstrate the process,
from information extraction to decision-making.

66 F. Peng

Fig. 3.1 Double Diamond model (Design Council, 2019)

3.2.3 Design 1.0–4.0 and Its Alignment with Robotics

A design approach and mindset to learning encourage understanding the complexity
of a given situation. According to Jones (2013, 23–28) and Jones and VanPatter
(2009), there are four levels of the design approach that are aligned with the levels
of complexity in problems:

• Design 1.0 Traditional “form-giving” Design: This design approach focuses on
creating design solutions in the form of websites, logos and posters. This deals
mainly with a discrete problem that can be solved with an obvious solution. It
aligns with embodied design in robotics and robotic product design.

• Design 2.0 Service and Product Design: This design approach seeks to explore
complicated problems associated with human experiences through products and
services. Designers often seek collaboration with stakeholders to explore possi-
bilities in innovating experiences. Design 2.0 also aligns with embodied design
in robotics and robotic product design.

• Design 3.0 Organisational Transformation Design: Commonly engaged in
complex organisational challenges, designers engage in activities such as co-
design of change processes for organisations and business systems. Challenges
that are facing designers here are bounded by systems and strategies. Co-creation
is the focus to achieve change-making processes in organisations.

3 Design Thinking: From Empathy to Evaluation 67

• Design 4.0 Social Transformation Design: This design approach focuses on ill-
definedwickedproblems and can be challenging to solve.Design activities include
iteration of prototyping interventions, observing their impact on the commu-
nity and reframing the design problem. Projects in this phase involve social and
systemic challenges that are difficult to define. Design 3.0 and 4.0 seem to align
with the broader question of robots transforming human lives outside of industrial
environments, such as caregiving robots and hospital robots—these social robots
might displace humanworkers. This helps to understand automation in its broader
context—the impact of automation and loss of work, ethics in design and broad
acceptance.

Design approaches and mindsets that focus on the levels of complexity allow
people to cultivate the attitude of questioning challenging situations and experi-
mentation with opportunities. This attitude is different from the “problem-solving”
mindset that was appropriate in producing products. According to Medley and Kueh
(2015), the “problem-solving” approach focuses on the simple and discrete problem
that sees designers being detached from stakeholder’s needs, while the “experimental
approach” allows designers to emphasise on empathic and reflective exploration that
would contribute to more complex problems in design levels 3.0 and 4.0. Therefore,
an experimental design paradigm is an approach that encourages students to under-
stand complexity in a holistic manner. An experimental design mindset encourages
students to see outcomes as interventions applied in a more extensive system.

An Industry Perspective

Alexandre Picard
Mechanical Designer, Senior

Kinova Inc.

I have a technical degree in compositematerial transformation and amechanical
engineering bachelor’s degree. I got into the robotic industry by total coinci-
dence. I spent the first years of my career as a product designer for a design
firm playing with anything ranging from airplane components to household
products. Eventually moved on to designing patient simulators (aka manikins)
for the healthcare industry. About three years later, and with a baby on the way,
I got sick of spending three hours a day stuck in traffic so I decided it was time

68 F. Peng

for something new. I started looking for an opportunity that checked all the
boxes in terms of my professional interests without the transportation hassle. I
was lucky enough to stumble upon a small robotic company’s job post, hi-tech
designs, dynamic team, free coffee and robots! Why not? So yeah, I got the job
and I’ve been there ever since … In short, I stumbled upon robotics because
of a baby and traffic jams.

I think the most challenging portion of designing robots, and probably any
product, is the constant “compromise negotiation” that is taking place between
all the parties involved. It always starts with the idea of a product that can
do anything at a budget price and, for fiscal reasons, that said product has
to be completed and sold within a fixed timeframe. In a list of wishes and
requirements, often the most rigid ones are linked to money and/or time.When
designing you just have to deal with it and find ways of meeting the needs in a
satisfactory manner without all the sparkles and refinements you initially had
in mind. In my career, I think the most obvious example is when we designed
a robot that needed to be dirt cheap compared to the competition but still at a
professional quality grade. Of course, the initial drafts and requirements did
not give a good perspective of achievability but, the “compromise negotiation”
eventually led to what I believe was the first professional robot with a structure
entirely made of plastic even with one-piece articulated fingers!

From what I see, with the design and prototyping tools expanding it will get
much easier to iterate through ideas and concepts, especially for parts requiring
complex or expensive production processes. It is already possible to test plastic
components out of 3D printers prior to investing in tooling, and in some cases,
it has become more cost-effective if the part remained printed. Also, in recent
years, we have been using metal laser sintering (metal 3D printing) to produce
entire robots out of aluminium to use as fully functional prototypes. I imagine
that as these technologies continue to evolve and thematerials offering expands,
we will eventually be able to print robots using robots.

3.3 Design Thinking Process: Discover, Define, Develop
and Deliver

Numerous design methods could be adopted and applied to the design thinking
process to support this iterative process. This section will unfold the concept and
definition of each design stage. Among the different design thinking models, we
choose theDoubleDiamondmodel as a framework to demonstrate the critical concept
and methods of design thinking. We will also introduce practical design methods for

3 Design Thinking: From Empathy to Evaluation 69

each stage in the design thinking process. You should know what these models and
stages are, why they are helpful, and how to implement these methods at each stage.

3.3.1 What Is the Discover Mode, Why Empathise and How

According to the Double Diamond model, the discover mode is the first step in the
design thinking process. The first step helps designers and non-designers understand
and empathise, rather than simply assume, what the problem is (Design Council,
n.d.). Empathy is the foundation of the discover stage and the core for a human-
centred design (HCD) process. HCD is a systematic approach to problem-solving
that focuses on empathy and encourages its practitioners to explore and understand
the key stakeholders’ emotions, needs and desires for which they are developing their
solutions (Matheson et al., 2015). In order to empathise, you can observe, engage
and immerse (d.school, n.d.).

• Observe: Observe your users and understand their behaviour in the context of
their daily lives.

• Engage: Interact with your users through scheduled and short “intercept”
encounters, such as interviews, focus groups and co-design workshops.

• Immerse: Put yourself into the shoes of your users and gain an “immersive”
experience of what your users experience.

In order to design for the users, human-centred designers need to build empathy
for who they are and what is important to them. The design tools help remove bias
from the design process and help the team build a shared understanding of the users.

HCD denotes that the professionals involved consider the users’ needs when
designing a product. HCD is a form of innovation occasioned by developing a knowl-
edge of people and then creating a product specifically for them, with the designer
driving the process involved (Desmet & Pohlmeyer, 2013). In addition, HCD has
much evidence in providing a solid approach to robotics.

Good HCD is generated from deep insights into human behaviour and a solid
understanding of the users’ beliefs and values. However, learning to recognise those
insights, beliefs and values isn’t easy. This is partly due to our minds automatically
filtering out much information in ways we aren’t even aware of (d.school, n.d.). To
achieve this “enlightenment”, you need to learn to put yourself into the users’ shoes
and see things “with a fresh set of eyes”. Design tools for empathy, along with a
human-centred mindset, could help you to tackle the problems with those fresh eyes
(d.school).

Through discovering and empathise, you could engage others to

• uncover needs that people have which they may or may not be aware of
• guide innovative efforts
• identify the right users to design for

70 F. Peng

• discover the emotions that guide behaviours.

As you learn more and more about our users and their needs, ideas or possible
solutions would then spring to mind. You document these ideas to make the process
more tangible and generate conversation with users and stakeholders about solutions
(DHW Lab, 2017).

3.3.1.1 Design Tools and Methods for Discover Mode: To Translate
Ideas into Action

As identified in the framework of “Design tools and methods in the design thinking
process” (Table 3.2), there are many design tools to guide innovative mind at the
discover stage, including Empathy Mapping, Personas, Cultural Probes, Feedback
Stations and PhotoBoards. Due to the length of this chapter, we selected two essential
design tools and methods for this section, they are 1. Visualising empathy and 2.
Persona.

Visualising empathy

Brown (2009) and Vianna et al. (2012) identified a key element of design as having
empathy and understanding for those affected by the problem. To tackle complex
challenges, designers must identify, understand, reflect upon, challenge and possibly
change their frame of reference, and habits of thinking. There are various empathy
mapping canvases you can use, such as d.school’s four-quadrant layout “Say, Do,
Think and Feel” (d.school, n.d.) and Grey’s “empathy mapping template” (Gray,
2017) (Table 3.3).

A simple “traditional” empathymap has a four-quadrant layout (Say, Do, Feel and
Think). Table 3.1 gives a detailed explanation of the four traits. It’s also an analysis

Table 3.2 Design tools and
methods in the design
thinking process (Double
Diamond model)

Discover Define Develop Deliver

Project
brief

How might we? Tomorrow’s
narratives

Decision
matrix

Empathy
mapping

Theming and
coding

Science fiction
prototypes

Low volume
production

Personas Design
principles

Low-fi
prototypes

Feedback
station

Visual
probes

Journey
mapping

Hi-fi
prototypes

Beta testing

Cultural
probes

User goals Role-play Quantitative
evaluation

Feedback
stations

Rose, bud,
thorn

CAD models Full-scale
testing

Photo
boards

Comparing
notes

Review survey Role-play

3 Design Thinking: From Empathy to Evaluation 71

Table 3.3 A traditional empathy mapping tool (adapted from d.school, n.d.)

SAY
What are some quotes and defining words your
user said?

DO
What actions and behaviours did you notice?

FEEL
What might your user be thinking? What does
this tell you about his or her beliefs?

THINK
What emotions might your subject be feeling?

tool to review your primary data from your user workshop, interview and fieldwork
(Fig. 3.2).

Personas: composite character profile

The information you collected through the empathy mapping will help to create
personas.What are personas?Personas are referencemodels, representing a subgroup
of users. Technically, they can be called behavioural archetypes when they focus on
capturing the different behaviours (e.g. “the conscious chooser”) without expressing
a defined personality or socio-demographics. The more the archetypes assume a
realistic feeling (e.g. name, age, household composition, etc.), the more they become
real personas, fully expressing the needs, desires, habits and cultural backgrounds
of specific groups of users. Creating personas help designers to get inspired by their
specific life and challenges (sdt, 2021) (Fig. 3.3).

Fig. 3.2 Empathy map example (Master of Design Strategies student’s coursework by Boon Khun
Ooi)

72 F. Peng

Fig. 3.3 Personas examples (Master of Design Strategies student’s coursework by BoonKhunOoi)

3 Design Thinking: From Empathy to Evaluation 73

Quiz: key questions to ask for reflective designers at this stage

• What problem are you solving? What solutions already exist?
• What are your assumptions about the problem?
• Whom are you designing for? What types of users are involved?
• What are the constraints of the project?
• Who are the stakeholders could be involved?
• What are the needs, pain points and desires of different users?
• How might this idea solve problems or pain points for different users?

3.3.2 What Is the Define Mode, Why Ideate and How

Data collected through research and investigation during the discover phase helps
us build a clearer picture of the problem. The design team group, theme and distil
qualitative and quantitative findings into insights that will guide the development of
design solutions.

The define mode is “convergent thinking” rather than “divergent thinking”. Two
goals of the definemode are 1. To develop a deep understanding of your users and the
design space and 2. Based on those deep insights into human behaviour and a solid
understanding of their beliefs and values, to develop an actionable problem statement.
The problem statement focuses on targeted users, insights and needs uncovered
during the discover mode.

At this mode, you understand the “why” is the key to addressing the “wicked
problems” and provide the insights that be leveraged in design concepts to create a
“how” towards a successful solution.

3.3.2.1 Design Tools and Methods for Define: To Translate Ideas
into Action

Possible design tools at this stage include: Design Principles, User JourneyMapping,
Theming and Coding; How Might We? Card Sorting; Hypothesis Generation.

Design principles

Design principles are fundamental laws, guidelines and strategies to solve a design
challenge independent of a specific solution (d.school, n.d.). You can articulate these
principles, translating your findings into design directives, such as needs and insights.
These principles represent the accumulated wisdom and knowledge in design and
related disciplines, including behavioural science, sociology, physics, occupational
therapy and ergonomics. Many well-established design principles are critical to
defining your problem-based learning. From simple to complicated, Common Prin-
ciples of Design & Global Health (Design for Health, n.d.) are principles where the
Bill &Melinda Gates foundation attempts to build a shared understanding, language
and a shared sense of purpose between designers and global health practitioners.

74 F. Peng

Fig. 3.4 Common principles of design & global health (Design for Health, n.d.)

This set of simple statements, some more aspirational than others, demonstrates the
alignment and commitment by designers to longstanding global health principles and
values. This resource outlines a code of practice for design in global health (Fig. 3.4).

User journey mapping

The journey map is a synthetic representation that describes step-by-step how a user
interacts with a service. The process is mapped from the user perspective, describing
what happens at each stage of the interaction, what touchpoints are involved, what
obstacles and barriers they may encounter. The journey map is often integrated with
additional layers representing the level of positive/negative emotions experienced
throughout the interaction (sdt, 2021) (Fig. 3.5).

Fig. 3.5 A touchpoint diagram is a graphical representation of how the user interacts with the
service (Master of Design Strategies student’s coursework by Jordan Mckibbin)

3 Design Thinking: From Empathy to Evaluation 75

Recap: key questions to ask for reflective practitioners at this stage

• What are the common needs or pain points for users?
• Where in the journey are they experienced or desired?
• How did users or stakeholders respond to ideas presented?
• Who might benefit most from the ideas presented?

3.3.3 What Is the Develop Mode, Why Ideate and Prototype
and How

Onceyou’ve definedyour insights and identified areas to improve the user experience,
you begin developing design concepts explored during discover mode or generate
further ideas in response to our insights. There are two key concepts in the develop
mode: 1. Ideate and 2. Prototype.

Ideation is a mode of divergent thinking rather than convergent thinking. You
ideate to generate radical design ideas, concepts and alternatives. The goal of ideation
is to explore both a large number of ideas and a diversity among those ideas (d.school).

To further develop the diverse and large quantity of ideas during ideation, proto-
types are built to test with users from this vast depository of ideas. Prototypes are “any
representation of a design idea, regardless of themedium” (Houde&Hill, 1997, 369).
Prototyping is a process of “building, visualising and translating a rough concept into
collectively understandable, defined and defendable ideas” (Kocsis, 2020, 61).

Prototypes traverse from low-fidelity representations in the initial stages (discover anddefine)
of designing to high-fidelity realisations when design outcomes near finalisation (develop
and deliver) and can include haptic, oral, digital, spatial, virtual, visual, graphical and also
modes beyond a purely technical functional scope through embodied representations of
communication such as art, dance and performance. (Kocsis, 2020, 61)

Prototyping facilitates an iterative, interactive communication process. A proto-
type tests if parts work together for the intended design. This allows further explo-
ration of risks, opportunities and refining of the iterative prototype into the next phase
(deliver). “Practices oscillate between creation and feedback: creative hypotheses
lead to prototypes, leading to open questions, leading to observations of failures,
leading to new ideas and so on” (Dow et al., 2009, 26).

3.3.3.1 Design Tools and Methods for Develop Mode: To Translate
Ideas into Action

There are various prototyping tools for this stage, including the low-fi prototype,
high-fi prototype, desktop walkthrough, role-play, science fiction prototype and 3D
printed prototype. (Chapter 2.7 in the Embodied Design section will discuss 3D
Printed Prototypes and CAD in more detail.)

76 F. Peng

Role-playing

Role-play is a representation tool often used during co-design sessions; it explains a
service or product idea by acting out an exemplificatory scenario. Role-playing could
be applied at different stages of the design thinking process, not limited to develop
mode. Role-playing is a popular technique for building empathy in the discover
mode anddemonstrating the user experience in the developmode. It typically requires
defining some roles or personas (e.g.Max andEmelia in Fig. 3.3, the service provider,
etc.) and preparing rough prototypes (e.g. paper prototypes) or other materials that
can facilitate the performance. While a team is acting out their story with given
scenarios, the rest of the participants learn about the idea, understand the high-level
sequence of actions required, and gain an immersive experience of the actual user
experience (sdt, 2021 and Stickdorn & Schneider 2011) (Fig. 3.6).

Fig. 3.6 Role-playing from the co-design for healthy ageing workshop at Nanyang Polytechnic
2019

3 Design Thinking: From Empathy to Evaluation 77

Recap: key questions to ask for reflective practitioners at this stage

• How do users respond or interact with solutions?
• What do users find easy or difficult about our solutions?
• What can we do to improve the prototype?

3.3.4 What Is the Deliver Mode, Why and How

The final stage is delivering the design solutions. Following design develop-
ment/prototyping, concept testing and review sessions, potential solutions are
narrowed down based on assessment criteria. “The process of designing, building
and testing continues to go through iterations until you achieve the final solution”
(Automeme, n.d.). The process of prototype testing and looping in feedback also
provides continuity to create a seamless way forward in the HCD. The final solution
(e.g. robot) delivered should be created to empathise with the customer require-
ments and concerns. The validation and evaluation process is crucial so organisa-
tions spend a good chunk of time testing the prototype against business objectives and
metrics. Upon completion of detailed design and production, the realised solution
will be physically installed or digitally implemented into the business environment,
depending on the type of project.

3.3.4.1 Design Tools and Methods for Deliver Mode: To Translate Ideas
into Action

Possible design tools and methods at this step: decision matrix, full-scale testing,
system map and feedback stations.

Decision matrix

A decision matrix is an analysis tool to compare and evaluate to select the best option
between different options. Through the develop mode, you developed several design
prototypes and there are several factors you need to consider. Decision matrix can
help you to make your final decision. Between more than one option in order to make
your final decision.

There are various formats and styles that you can adopt. Using the sample decision
matrix as an example, you can list each of the criteria/metrics you evaluate against
in the left column of the table. You then place the options available to you across
the top row of your table. For the scoring system, you can choose different systems.
Table 3.4 chooses the scale of 1–5, with 5 being a good score and 1 being a very
poor score. In the bottom row, you can sum all the scores for each option for your
decision-making.

Recap: key questions to ask for reflective practitioners at this stage

• What will it cost to manufacture a high-fidelity prototype?

78 F. Peng

Table 3.4 Simple decision
matrix

Criteria Options

Option 1 Option 2 Option 3

Criteria 1 x x x

Criteria 2 x x x

Criteria 3 x x x

Criteria 4 x x x

Criteria 5 x x x

Total x x x

x: choose the scale of 1–5, with 5 being a good score and 1 being
a very poor score

• What additional capability might you need to deliver the design?
• What existing channels can you leverage to implement our solution?
• What is change management required to implement our solution?
• What criteria are you evaluating against?
• What is the best way to measure the success of this solution?

3.4 Conclusion

This chapter provides valuable and practical guidance on design thinking models
and tools for people interested in applying design thinking in their projects. Design
thinking is an iterative process, which encourages people to empathise, collabo-
rate and prototype. Doing so helps to generate user-centred design to tackle wicked
problems in our society.

This chapter covered the history of the “designerly way of thinking” to introduce
the origin of design thinking. The development of Design 1.0–4.0, in comparison to
the field of robotic, helped provide a context for the past, present and future.

The design thinking process was then deconstructed into different stages to
provide a practical toolkit for people from non-design backgrounds to adopt. Many
existing design methods can be used for different stages in the design thinking
process. Some of them would be applied from the start to the end, such as service
blueprint andprototyping.Due to the lengthof the chapter,we couldnot include all the
existing design methods. However, the key design methods included in this chapter
provided a solid ground for the entry level of design thinking. Design thinking in
robotics allowspractitioners and researchers to seekopportunities throughwhich they
can discover, define, develop and deliver value to their stakeholders and additionally,
get them engaged, and create ripples of change.

3 Design Thinking: From Empathy to Evaluation 79

3.5 Quiz

• What is the difference between divergent and convergent thinking?
• What are some key stages in the design thinking process?
• Name some design tools incorporated in achieving iterative processes in design

thinking.
• What designmethods can you adopt to advance your empath in the discover stage?
• Whatmethods can you employ to test your concepts in the second diamond stages?

References

Ambrose, G., & Harris, P. (2009). Basic design: Design thinking. Fairchild Books AVA.
Automeme. (n.d.). Why is design thinking important in robotics automation? Retrieved November
9, 2021, from https://autome.me/why-is-design-thinking-important-in-robotics-automation/#:~:
text=The%20impending%20need%20for%20Design,learn%20and%20develop%20amiable%
20personalities

Brown, T. (2008). Design thinking. Harvard Business Review,86(6), 84–92.
Brown, T. (2009). Change by design. Harper Collins.
Buchanan, R. (1992). Wicked problems in design thinking. Design Issues,8(2), 5–21.
Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design
Issues,17(3), 49–55.

Dam, R., & Siang, T. (2020). What is design thinking and why is it so popular? Retrieved June
9, 2020, from https://www.interaction-design.org/literature/article/what-is-design-thinking-and-
why-is-it-so-popular

Design Council. (n.d.). What is the framework for innovation? Design Council’s evolved Double
Diamond (online). Retrieved November 9, 2021, from https://www.designcouncil.org.uk/news-
opinion/what-framework-innovation-design-councils-evolved-double-diamond

Design Council. (2019). Double Diamond model. Retrieved May 9, 2022, from https://www.des
igncouncil.org.uk/our-work/news-opinion/double-diamond-15-years/

Design for Health. (n.d.). Common principles of design & global health. Bill & Melinda Gates
foundation.

Desmet, P. M. A., & Pohlmeyer, A. E. (2013). Positive design: An introduction to design for
subjective well-being. International Journal of Design,7(3), 5–19.

Dewey, J. (1938). Logic: The theory of inquiry. Holt, Rinehart and Winston.
DHWLab. (2017).Howwe design: Better healthcare experiences at AucklandCityHospital. Design
for Health & Wellbeing Lab.

Dow, S. P., Heddleston, K., & Klemmer, R. S. (2009). The efficacy of prototyping under time
constraints. In Proceedings of the Seventh ACM Conference on Creativity and Cognition.

d.school. (n.d.). Bootcamp bootleg. Institute of Design at Stanford.
Frog. (2013). Frog collective action toolkit. Retrieved June 20, 2016, from http://www.frogdesign.
com/work/frog-collective-action-toolkit.html

Gray, D. (2017). Empathy map (online). Retrieved November 9, 2021, from Xplane.com
Houde, S., & Hill, C. (1997). What do prototypes prototype? In Handbook of human-computer
interaction (pp. 367–381). North-Holland.

IDEO Education. (2012). Design thinking for educators. IDEO.
Johnson, B. D. (2011). Science fiction prototyping: Designing the future with science fiction.
Synthesis Lectures on Computer Science,3(1), 1–190.

Jones, P. H. (2013). Design for care: Innovating healthcare experience. Rosenfeld.

https://autome.me/why-is-design-thinking-important-in-robotics-automation/#:~:text=The%20impending%20need%20for%20Design,learn%20and%20develop%20amiable%20personalities
https://www.interaction-design.org/literature/article/what-is-design-thinking-and-why-is-it-so-popular
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
http://www.frogdesign.com/work/frog-collective-action-toolkit.html

80 F. Peng

Jones, P. H., & VanPatter, G. K. (2009). Design 1.0, 2.0, 3.0, 4.0: The rise of visual sensemaking.
NextDesign Leadership Institute.

Kocsis, A. (2020). Prototyping: The journey and the ripple effect of knowledgeability. Fusion
Journal (18).

Kueh, C., & Thom, R. (2018). Visualising empathy: A framework to teach user-based innovation
in design. In S. Griffith, K. Carruthers, & M. Bliemel (Eds.), Visual tools for developing student
capacity for cross-disciplinary collaboration, innovation and entrepreneurship. CommonGround
Publishing.

Liedtka, J., & Ogilvie, T. (2011). Designing for growth: A design thinking tool kit for managers.
Columbia Business School Pub., Columbia University Press.

Matheson, G. O., Pacione, C., Shultz, R. K., & Klügl, M. (2015). Leveraging human-centred design
in chronic disease prevention. American Journal of Preventive Medicine,48(4), 472–479. https://
doi.org/10.1016/j.amepre.2014.10.014

Medley, S., & Kueh, C. (2015). Beyond problem solving: A framework to teach design as an
experiment in the university environment. Paper presented at theMinistry ofDesign: FromCottage
Industry to State Enterprise, St Augustine.

Myerson, J. (2001). Ideo: Masters of innovation. Laurence King.
Osterwalder, A., Pigneur, Y., & Clark, T. (2010). Business model generation. Wiley.
sdt. (2021). Journeymap:Describe how the user interactwith the service, throughout its touchpoints.
Retrieved November 15, 2021, from https://servicedesigntools.org/tools/journey-map

Stickdorn, M., & Schneider, J. (2011). This is service design thinking. Wiley.
Vianna, M., Vianna, Y., Adler, I., Lucena, B., & Russo, B. (2012). Design thinking business
innovation. MJV Press.

Fanke Peng is an Associate Professor and Enterprise Fellow at the University of South Australia.
She is an award-winning educator, designer and researcher in design-led innovation, design for
health, digital fashion and cross-cultural design. She has been heavily involved in extensive
research projects in the UK and Australia, including Australian Council for the Arts project: Home
Economix, ACT Government Seniors Grants Programme project: ACT Intergenerational Pen Pal
Service, Economic and Social Research Council (ESRC) project: E-Size, Technology Strategy
Board (TSB) project: Monetising Fashion Metadata and Fashioning Metadata Production Tools,
Engineering and Physical Science Research Council (EPSRC) project: Body Shape Recognition
for Online Fashion, and an Arts & Humanities Research Council (AHRC) project: Past Present
and Future Craft Practice.

Fanke is passionate about design-led innovation and design for health and wellbeing. To share
this passion with students and inspire them. She has developed new courses and units, estab-
lished innovative work-integrated learning opportunities and international faculty-led programmes
(FLP). In 2020, she was awarded Senior Fellow of the Higher Education Academy (SFHEA).

https://doi.org/10.1016/j.amepre.2014.10.014
https://servicedesigntools.org/tools/journey-map

3 Design Thinking: From Empathy to Evaluation 81

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 4
Software Building Blocks: From Python
to Version Control

Damith Herath, Adam Haskard, and Niranjan Shukla

4.1 Learning Objectives

Software is an essential part of robotics. In this chapter, we will be looking at some
of the key concepts in programming and several tools we use in robotics. At the end
of the chapter, you will be able to:

• Develop a familiarity with common programming languages used in robotics
• Learn about the fundamental programming constructs and apply them using the

Python programming language
• Understand the importance of version control and how to use basic commands in

Git
• Select appropriate tools and techniques needed to develop and deploy code

efficiently

4.2 Introduction

Whether working with an industrial-grade robot or building your hobby robot, it
is difficult to avoid coding. Coding or programming is how you instruct a robot
to perform a task. In robotics, you will encounter many different programming
languages, including programming languages such as C++, Python, and scientific

D. Herath (B)
Collaborative Robatics Lab, University of Canberra, Canberra, ACT, Australia
e-mail: Damith.Herath@Canberra.edu.au

A. Haskard
Bluerydge, Canberra, ACT, Australia
e-mail: Adam.Haskard@blurydge.com

N. Shukla
Accenture, Canberra, ACT, Australia

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_4

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_4&domain=pdf
mailto:Damith.Herath@Canberra.edu.au
mailto:Adam.Haskard@blurydge.com
https://doi.org/10.1007/978-981-19-1983-1_4

84 D. Herath et al.

languages like MATLAB®. While many of the examples in this book will utilise
Python, there will be instances where we will use code examples in C/C++ or
MATLAB®. While we do not assume any prior programming knowledge, previous
coding experience will undoubtedly help you advance quicker.

The following section will briefly outline some of the essential programming
constructs. By any means, this is neither exhaustive nor comprehensive. It is simply
to introduce you to some fundamental programming concepts that will be useful to
get started if you do not already have any programming experience. We will begin
with a few essential programming tools such as flowcharts and pseudocode and then
expand into fundamental building blocks in programming. If you already have some
experience in programming, you may skip this section.

In the subsequent sections,wewill discuss two important software tools thatwould
be extremely useful in programming robots, version control and containerisation.
While these are all great starting points, there is no betterway to build your confidence
and skills than to practice and dive into coding. So, we will introduce many case
studies and provide code snippets throughout the book for you to follow and try
and a comprehensive set of projects at the end of the book. Once you have some
confidence, you must explore new problems to code to develop your skills.

4.2.1 Thinking About Coding

As you may have already noticed, we use programming and coding interchangeably,
and they both mean instructing your robot to do something logically. Before you start
programming, it is essential to understand the problem you are going to address and
develop an action plan for how to construct the code. Flowcharts and pseudocode
are two useful tools that will help you with this planning phase. Once you have the
programme’s general outline, you will need to select the appropriate programming
language for the task. For tasks where execution speed is important or low-level
hardware is involved, this is usually a language like C or C++. However, when the
intention is rapid prototyping, a language like Python comes in handy. Robotics
researchers also tend to use languages like MATLAB® that are oriented towards
mathematical programming. MATLAB® is a proprietary language developed by
MathWorks1 and provides a set of toolboxes with commonly used algorithms, data
visualisation tools, allowing for testing complex algorithms with minimal coding.
In addition to such code-based languages, several visual programming languages
such as Max/MSP/Jitter, Simulink, LabVIEW, LEGO NXT-G are regularly used
by roboticists, artists and enthusiasts for programming robots and robotic systems.
Whatever language you use, the basic programming constructs are the same.

Irrespective of the programming language used, it is common to think of a
programme as a set of inputs to be processed to deliver the desired output (Fig. 4.1).

1 https://www.mathworks.com/.

https://www.mathworks.com/

4 Software Building Blocks: From Python to Version Control 85

Fig. 4.1 A simple program flows from input to output after processing in the middle

In robotics, a similar framework is used called the sense–think–act loop, which we
will explore further in Chap. 7.

4.2.1.1 Flowcharts

Flowcharts are a great way to think about and visualise the flow of your program and
the logic. They are geometric shapes connected by arrows (see Figs. 1 and 2. The
geometric shapes represent various activities that can be performed, and the arrows
indicate the order of operation (flowline). Generally, the flowcharts flow from top
to bottom and left to right. Flowcharts are a handy tool to have when first starting
in programming. They give you a visual representation of the programme without
needing to worry about the language-specific syntax. However, they are cumbersome
to use in large programmes.

In the following sections, we will explore the meaning of these symbols further.

Fig. 4.2 Common flowchart elements

86 D. Herath et al.

Fig. 4.3 A simple
pseudocode example with a
repetitive read, process,
output loop

4.2.1.2 Pseudocode

Pseudocode is another tool that you can use to plan your code. You could think of
them as simply replacing the geometric shapes discussed in the previous section
in flowcharts with instruction based on simple English language statements. As the
name suggests, pseudocode is programming code without aligning with a specific
programming language. Therefore, pseudocode is a great way towrite your program-
ming steps in a code-like manner without referring to any particular language. For
example, the input, process, output idea could be presented in simple pseudocode
form, as shown in Fig. 4.3. In this example, we have extended the previous program
by encompassing the read, process, output block within a repetitive loop structure,
discussed later in the chapter. In this variation of the program, the input, process,
output sequence repeats continually until the user exits the program. The equivalent
flowchart is shown in Fig. 4.4.

4.3 Python and Basics of Programming

First released in the 1990s, Python2 is a high-level programming language. Python
is an interpreted language meaning it is processed while being executed compared to
a compiled language which needs to be processed before it is executed. Python has
become a popular language for programming robots. This may be due to its easily
readable language, the visually uncluttered and dynamically typed nature, and the
availability of many ready-to-use libraries that provide common functionalities such
as mathematical functions. Python is useful when you want to rapidly prototype as
it requires minimal lines of code to realise complex tasks. It also alleviates another
major headache for beginner programmers by being a garbage collecting language.
Garbage collection is the automatic process by which memory is managed and used
by the program.

Python uses indentation (whitespace or a tab inserted at the beginning of a line
of code) to identify blocks of code. Unlike languages like C/C++ and Java that uses
curly brackets {} to delimit code blocks, it is vital to maintain proper indentation

2 https://www.python.org/.

https://www.python.org/

4 Software Building Blocks: From Python to Version Control 87

Fig. 4.4 Flowchart diagram
of a simple read, process,
output loop

in Python for your code to work correctly. This requirement also improves code
readability and aesthetics.

Let us now explore some of the common programming constructs with the help
of Python as the example language.

4.3.1 Variables, Strings and Assignment Statements

Python is a dynamically typed language, which means that the variables are not
statically typed (e.g. string, float, integer). Therefore, developers do not need to
declare variables before using them or declare their type. In Python, all variables are
an object.

A typical component of many other programming languages is that variables are
declared from the outset with a specific data type, and any value assigned to it during
its lifetimemust always have that type.One of the accessibility components of Python

88 D. Herath et al.

is that its variables are not subject to this restriction. In Python, a variable may be
assigned a value of one type and later reassigned a new value of a different type.
Every value in Python has a datatype. Other data types in Python include Numbers,
Strings, Dictionary and many more. Variables are quickly declared by any name or
even alphabets like a, ab, abc, so on and so forth.

Strings are a useful and widely used data type in Python. We create them by
enclosing characters in quotes. Python treats single quotes and double quotes the
same. Creating strings is as simple as assigning a value to a variable. For example,

var1 = ’Hello World!’
var2 = ”Banana Robot”

We see two variables notated by the ‘var1’ and ‘var2’ labels in the example above.
A simple way is to think of a variable as a name attached to a particular object. To
create a variable, you just assign it a value and then start using it. The assignment is
achieved with a single equal sign (=).

4.3.2 Relational and Logical Operators

To manage the flow of any program and in every programming language, including
Python, conditions are required. Relational and logical operators define those
conditions.

As an example, and for context, when you are asked if 3 is greater than 2, the
response is yes. In programming, the same logic applies.

When the compiler is provided with some condition based on an expression,
it computes the expression and executes the condition based on the output of the
expression. In the case of relational and logical expressions, the answer will always
be either True or False.

Operators are conventional symbols that bring operands together to form an
expression. Thus, operators and operands are the deciding factors of the output.

Relational operators are used to define the relationship between two operands.
Examples are less than, greater than or equal to operators. Python understands these
types of operators and accordingly returns the output, which can be either True or
False.

1 < 10
True

1 is Less Than 10, so the Output Returned is True.
A simple list of the most common operators:

1. Less than → used with <
2. Greater than → used with >
3. Equal to → used with = =
4. Not equal to → used with ! =

4 Software Building Blocks: From Python to Version Control 89

5. Less than or equal to → used with <=
6. Greater than or equal to → used with >=

Logical operators are used in expressions where the operands are either True or
False. The operands in a logical expression can be expressions that return True or
False upon evaluation.

There are three basic types of logical operators:

1. AND: For AND operation, the result is True if and only if both operands are
True. The keyword used for this operator is and.

2. OR: For OR operation, the result is True if either of the operands is True. The
keyword used for this operator is or.

3. NOT: The result is True if the operand is False. The keyword used for this
operator is not.

4.3.3 Decision Structures

Decision structures allow a program to evaluate a variable and respond in a scripted
manner. At its core, the decision-making process is a response to conditions occurring
during the execution of the program, with consequential actions taken according to
the conditions. Basic decision structures evaluate a series of expressions that produce
TRUEor FALSE as the output. The Python programming language provides youwith
the following types of decision-making sequences.

1. if statements: An if statement consists of a Boolean expression followed by one
or more statements.

2. if…else statements: An if statement can be followed by an optional else
statement, which executes when the Boolean expression is FALSE.

3. nested if statements: You can use one if or else if statement inside another if or
else if statement(s).

Below is an example of a one-line if clause,

this is a comment (beginning with the # symbol).
Comments are important documentation element in programming
var = 1300#a variable assignment
if (var == 1300): print ”Value of expression is 1300” #decision
structure in a single line
print ”Bye!”#display the word Bye!

When the above code runs, the following is the output,

Value of expression is 1300
Bye!

In general, statements are executed sequentially. The first statement in a function
is executed first, followed by the second, and so on. It is good to think of code as just
a set of instructions, not too different from a favourite cooking recipe. There may be

90 D. Herath et al.

a situation when you need to execute a block of code several times. A loop statement
allows us to execute a statement or group of statements multiple times.

4.3.4 Loops

There are typically three ways for executing loops in Python. They all provide similar
functionality; however, they differ in their syntax and condition checking time.

1. While loop: Repeats a statement or group of statements while a given condition
is TRUE. It tests the condition before executing the loop body.

2. For loop: Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

3. Nested loops: You can use one or more loops inside any another while, for or
do..while loop.

while loop.
count = 0.
while (count < 3):

count = count + 1#note the indentation to indicate this section
of the code is inside the loop.

print(”Hello Robot”)

When the code above is run, we would expect to see the following output.

Hello Robot
Hello Robot
Hello Robot

4.3.5 Functions

A function is a block of code designed to be reusable which is used to perform a
single action. Functions give developers modularity for the application and a high
degree of reusable code blocks. A well-built function library lowers development
time significantly. For example, Python provides functions like print(), but users can
develop their own functions. These functions are called user-defined functions.

e.g.

def robot_function():
print(”Robot function executed”)
You can then call this function in a different part of your program;
robot_function()

When you execute the code, the following will be displayed.

Robot function executed

4 Software Building Blocks: From Python to Version Control 91

You can pass external information to the function as arguments. Arguments are
listed inside the parentheses that come after the function name.

e.g.

def robot_function(robot_name):
print(”Robot function executed for robot named ” + robot_name)

Wehavemodified the previous function to include an argument called robot_name.
When we call the new function, we can now include the name of the robot as an
argument:

robot_function(‘R2–D2’)
which will result in the following output.
Robot function executed for robot named R2-D2

4.3.6 Callback Function

A callback function is a special function that can be passed as an argument to another
function. The latter function is designed to call the former callback function in its
definition. However, the callback function is executed only when it is required. You
will find many uses for such functions in robotics. Particularly, when using ROS,
you will see the use of callback functions to read and write various information to
and from robotic hardware which may happen asynchronously. A simple example
illustrates the main elements of a callback function implementation.

def callbackFunction(robot_status):
print(”Robot’s current status is ” + robot_status)
def displayRobotStatus(robot_name, callback):
This function takes robot_name and a callback function as
arguments
The code to read the robot status (stored in the variable
robot_status) goes here
the read status is then passed to the callback function
callback(robot_status)

You can now call the displayRobotStatus function in your main program.

if __name__ == ’__main__’:
displayRobotStatus (”R2-D2”, callbackFunc)

4.4 Object-Oriented Programming

Object-oriented programming (OOP) is a programming paradigm based on the
concept of ‘objects’, which may contain data in the form of fields, often known

92 D. Herath et al.

as attributes, and code in the form of procedures, often known as methods. Here is a
simple way to think about this idea;

1. A person is an object which has certain properties such as height, gender and
age.

2. The person object also has specific methods such as move, talk and run.

Object—The base unit of object-oriented programming that combines data and
function as a unit.

Class—Defining a class is defining a blueprint for an object. Describes what the
class name means, what an object of the class will consist of and what operations
can be performed on such an object. A class sets the blank canvas parameters for an
object.

OOP has four basic concepts,

1. Abstraction—It provides only essential information andhides their background
details. For example, when ordering pizza from an application, the back-end
processes for this transaction are not visible to the user.

2. Encapsulation—Encapsulation is the process of binding variables and func-
tions into a single unit. It is also a way of restricting access to certain properties
or components. The best example for encapsulation is the generation of a new
class.

3. Inheritance—Creating a new class from an existing class is called inheritance.
Using inheritance, we can create a child class from a parent class such that it
inherits the properties and methods of the parent class and can have its own
additional properties and methods. For example, if we have a class robot with
properties like model and type, we can create two classes such as Mobile_robot
and Drone_robot from those two properties, and additional properties specific
to them such that Mobile_robot has a number of wheels while a Drone_robot
has a number of rotors. This also applies to methods.

4. Polymorphism—The definition of polymorphism means to have many forms.
Polymorphism occurs when there is a hierarchy of classes, and they are related
by inheritance.

4.5 Error Handling

A Python program terminates as soon as it encounters an error. In Python, an error
can be a syntax (typo) error or an exception. Syntax errors occur when the python
parser detects an incorrect statement. Observe the following example:

>>> print(0 / 0))
1ˆ
SyntaxError: invalid syntax

The arrow character points to where the parser has run into a syntax error. In
this example, there was one bracket too many. When it is removed, the code will run
without any error:

4 Software Building Blocks: From Python to Version Control 93

>>> print(0 / 0)
Traceback (most recent call last):
File ”<stdin>”, line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

This time, Python has ‘thrown’ an exception error. This type of error occurs
whenever correct Python code results in an error. The last line of the message
indicated what type of exception error was thrown. In this instance, it was a
ZeroDivisionError. Python has built-in exceptions. Additionally, the possi-
bility exists to create user-defined exceptions.

4.6 Secure Coding

Writing secure code is essential for protecting data and maintaining the correct
behaviour of the software. Writing secure code is a relatively new discipline, as typi-
cally developers have been commissioned to write functions and outputs, not neces-
sarily in a secure manner. However, given the prevalence of exploits, it is important
developers build in sound security practices from the outset.

Python development security practices to consider:

1. Use an up-to-date version of Python: Out of date versions have since been
rectified with vulnerability updates. Not incorporating the updates into the
python environment ensures vulnerabilities are available to exploit.

2. Build the codebase in a sandbox environment:Using a sandbox environment
prevents malicious Python dependencies pushed into production. If malicious
packages are present in Python environments, using a virtual environment will
prevent having the same packages in the production codebase as it is isolated.

3. Import packages correctly: When working with external or internal Python
modules, ensure they are imported using the right paths. There are two types of
import paths in Python, and they are absolute and relative. Furthermore, there
are two types of relative imports, implicit and explicit. Implicit imports do not
specify the resource path relative to the current module, while Explicit imports
specify the exact path of the module you want to import. Implicit import has
been disapproved and removed from Python 3 onwards because if the module
specified is found in the system path, it will be imported, and that could be very
dangerous, as it is possible for a malicious module with an identical name to be
in an open-source library and find its way to the system path. If the malicious
module is found before the real module, it will be imported and used to exploit
applications in their dependency tree. Ensure either absolute import or explicit
relative imports as it guarantees the authentic and intended module.

4. Use Python HTTP requests carefully: When you send HTTP requests, it is
always advisable to do it carefully by knowing how the library you are using
handles security to prevent security issues. When you use a common HTTP
request library like Requests, you should not specify the versions down in

94 D. Herath et al.

Fig. 4.5 Python command line

your requirements.txt because in time that will install outdated versions of the
module. To prevent this, ensure you use themost up-to-date version of the library
and confirm if the library is handling the SSL verification of the source.

5. Identify exploited and malicious packages.

Packages save you time as you don’t need to build artefacts from scratch each time.
Packages can be easily installed through the Pip package installer. Python Packages
are published to PyPI3 in most cases, which essentially is code repository for Python
Packages which is not subject to security review or check. This means that PyPI can
easily publish malicious code.

Verify each Python package you are importing to prevent having exploited pack-
ages in your code. Additionally, use security tools in your environment to scan your
Python dependencies to screen out exploited packages.

4.7 Case Study—Writing Your First Program in Python

To start experimenting with Python, you can install the current version of the Python
program from thePythonwebsite.4 Follow the instructionon thiswebsite to download
the recommended current version of your operating system. Once installed, you can
call the Python (command line) shell for an interactive programming environment
(see Fig. 4.5).

In any programming language, the HelloWorld program is a shared bond between
all coders. You can go ahead and make your own ’hello world’ program. Look at the
classic example below.Note that the # symbol is a comment line,whichmeans Python
does not read this as code to execute. Instead, it is intended for human audiences, so
coders can easily see what each line of code is supposed to do. Commenting well
and regularly is key to good collaboration and development hygiene.

This program prints Hello, world!
print(’Hello, world!’)

Output.

Hello, world!

3 https://pypi.org/.
4 https://www.python.org/downloads/.

https://pypi.org/
https://www.python.org/downloads/

4 Software Building Blocks: From Python to Version Control 95

Fig. 4.6 Hello, World program interactively executed in a Python command line window

4.7.1 A Note on Migrating from MATLAB® to Python

As you dwell into robotics programming and writing algorithms, you will notice that
many examples arewritten inMATLAB®, particularly in academia due to previously
mentioned reasons. However, there are compelling reasons to use Python instead of a
proprietary language likeMATLAB. One of the main reasons is the cost of acquiring
MATLAB and related toolboxes. Python allows you to easily distribute your code
without worrying about your end-users needing to purchase MATLAB® licences to
run your code. In addition, Python being a general-purpose programming language
offers you a better development environment for projects targeting a wide use and
deployment audience.

If you are thinking of migrating any code from MATLAB® to Python, the good
news is that the two languages are ’very similar’. This allows for relatively easy
transitioning from MATLAB to Python. One of the key reasons for MATLAB’s
popularity has been its wide array of well-crafted toolboxes by experts in the field.
For example, there are several popular toolboxes related to robotics including the
Robotics Toolbox developed by Peter Corke.5 These toolboxes provide specificmath-
ematical functions reducing the time it takes to develop new code when building or
testing new ideas for your robot. Python also offers a similar mechanism to expand
its capabilities through Python packages. For example, one of the powerful elements
ofMATLAB is its native ability to work with matrices and arrays (side note: matrices
and arrays will play a major role in robotics programming!). Python, being a general-
purpose language does not have this capability built-in. But a package available in
Python called NumPy6 provides a way to address this through multidimensional
arrays allowing you to write fast, efficient, and concise matrix operators comparable
to MATLAB. As your knowledge in robotics and programming matures, it would be
a worthwhile investment to spend some time to explore the similarities and differ-
ences between the two languages and to understand when to utilise one or the other.
Figure 4.7 shows our humble Hello world program being executed in a MATLAB®
command line window. Can you spot the differences between the syntaxes from our
Python example in Fig. 4.6?.

5 https://petercorke.com/toolboxes/robotics-toolbox/.
6 https://numpy.org/.

https://petercorke.com/toolboxes/robotics-toolbox/
https://numpy.org/

96 D. Herath et al.

Fig. 4.7 Hello, World program interactively executed in a MATLAB command line window

4.8 Version Control Basics

Version control is the practice of managing changes to the codebase over time and
potentially between multiple developers working on the same project. It is alter-
natively called source control. Version control provides a snapshot of development
and includes tracking of code commits. It also provides features to merge the code
contributions arising from multiple sources, including managing merge conflicts.

A version control system (or source controlmanagement system) allows the devel-
oper to provide a suite of features to track code changes and switch to previous
versions of the codebase. Further, it provides a collaborative platform for teamwork
while enabling you to work independently until you are ready to commit your work.
A version control system aims to help you streamline your work while providing a
centralised home for your code. Version control is critical to ensure that the tested
and approved code packages are deployed to the production environment.

4.8.1 Git

Git is a powerful open-source distributed version control system.7 Unlike other
version control systems, which think of version control as a list of file-based changes,
Git thinks of its data more like a series of snapshots of aminiature filesystem. A snap-
shot is a representation of what all the files look like at a given moment. Git stores
reference to snapshots as part of its version management.

Teams of developers use Git in varying forms because of Git’s distributed and
accessible model. There is no policy on how a team uses Git. However, projects will
generally develop their own processes and policies. The only imperative is that the
team understands and commits to the workflow process that maximises their ability
to commit code frequently and minimise merge conflicts.

A Git versioned project consists of three areas: the working tree, the staging area
and the Git directory.

7 https://git-scm.com/.

https://git-scm.com/

4 Software Building Blocks: From Python to Version Control 97

As you progress with your work, you typically stage your commits to the staging
area, followed by committing them to the Git directory (or repository). At any time,
you may checkout your changes from the Git directory.

4.8.1.1 Install Git

To check if Git has already been bundled with your OS, run the following command
(at the command prompt):

git --version

To install Git, head over to the download site8 and select the appropriate version
for your operating system and follow the instructions.

4.8.1.2 Setting up a Git Repository

To initialise a Git repository in a project folder on the file system, execute the
following command from the root directory of your folder:

git init

Alternatively, to clone a remote Git repository into your file system, execute the
following command:

git clone <remote_repository_url>

Git repositories provide SSH URLs of the format
git@host:user_name/repository_name. git.

Git provides several commands for this syncing with a remote repository:
Git remote: This command enables you to manage connections with a remote

repository, i.e. create, view, update, delete connections to remote repositories.
Further, it provides you with an alias to reference these connections instead of using
their entire URL.

The below command would list the connections to all remote repositories with
their URL.

git remote -v

The below command creates a new connection to a remote repository.

git remote add <repo_name> <repo_url>

The below command removes a connection to a remote repository.

git remote rm <repo_name>

8 https://git-scm.com/download/.

https://git-scm.com/download/

98 D. Herath et al.

The below command renames a remote connection from repo_name_1 to
repo_name_2

git remote rename <repo_name_1> <repo_name_2>

Upon cloning a remote repository, the connection to the remote repository is called
origin.

To pull changes from a remote repository, use either Git fetch or git pull.
To fetch a specific branch from the remote repository, execute the belowcommand:

git fetch <repo_url> <branch_name>

where repo_url is the name of the remote repository, and branch_name is the name
of the branch.

Alternatively, to fetch all branches, use the below command:

git fetch —all

To pull the changes from the remote repository, execute the following command:

git pull <repo_url>

The above commandwill fetch the remote repository’s copy of your current branch
and will merge the changes into your current branch.

If you would like to view this process in detail, use the verbose flag, as shown
below

git pull —verbose

As git pull uses merge as a default strategy, if you would like to use rebase instead,
execute the below command:

git pull —rebase <repo_url>

To push changes to a remote repository, use git push, as described below:

git push <repo_name> <branch_name>

Where repo_name is the name of the remote repository, and branch_name is the
name of the local branch.

4.8.1.3 Git SSH

An SSH key is an access credential for the secure shell network protocol. SSH uses
a pair of keys to initiate a secure handshake between remote parties—a public key
and a private key.

SSH keys are generated using a public key cryptography algorithm.

1. To generate an SSH key on Mac, execute the following command:

ssh-keygen -t rsa -b 4096 -C ”your_email@domain”

4 Software Building Blocks: From Python to Version Control 99

2. Upon being promoted to enter the file path, enter a file path to which you would
like the key to be stored.

3. Enter a secure passphrase.
4. Add the generated SSH key to the ssh-agent

ssh-add -K <file_path_from_step_2>

4.8.1.4 Git Archive

To export a Git project to an archive, execute the following command:

git archive --output=<output_archive_name> --format=tar HEAD

The above command generates an archive from the current HEAD of the
repository. The HEAD refers to the current commit.

4.8.1.5 Saving Changes

As you make changes to your local codebase, for instance, feature development
or bug fixes, you will want to stage them. To do so, please execute the following
command for each file you would like to add to the staging area:

git add <file_name>
git commit -m <commit_message>“

The first command puts your changes to the staging area while the second
command creates a snapshot of these changes, which can then be pushed to the
remote repository.

If you would like to add all files in one go, consider using the variation of Git add
with the—all option.

Once you add the file(s) to the staging area, they are tracked.

4.8.1.6 Syncing

Upon committing changes to the local repository, it is time to update the Git remote
repository with the commits from the local repository. Please refer to the syncing
commands listed at the start of this section.

100 D. Herath et al.

Fig. 4.8 Examples of pull requests

4.8.1.7 Making a Pull Request

A pull request is used to notify the development of changes, such as a new feature or
a bug fix so that the development team (or assigned reviewers) can review the code
changes (or commits) and either approve/decline them entirely or ask for further
changes.

As part of this process:

1. A team member creates a new local branch (or creates their local branch from
an existing remote branch) and commits their changes in this branch.

2. Upon finalising the changes, the team member pushes these changes to their
own remote branch in the remote repository.

3. The team member creates a pull request via the version control system. As part
of this process, they select the source and destination branches and assign some
reviewers.

4. The assigned reviewer(s) discuss the code changes in a team, using the collabo-
ration platform that is integrated into the version control system, and ultimately
either accepts or declines the changes in full or part.

5. The above step #4 may go through more cycles or reviews.
6. Upon completing the review process, when all changes have been accepted (or

approved), the teammember merges the remote branch into the code repository,
closing the pull request (Fig. 4.8).

4.8.1.8 Common Git Commands

The table lists some commonly used Git commands that are useful to remember.
Figure 4.9 depicts the relative execution direction of some of these commands.

4 Software Building Blocks: From Python to Version Control 101

Fig. 4.9 Common git commands and relative execution directions

Configure your username and email address with
Git

git config –global user.name “<user_name>”

Initialise a Git repository git init

Clone a Git repository git clone <repo_url>

Connect to a remote Git repository git remote add origin <remote_server>

Add files to a Git repository git add <file_name>

Check the status of the files git status

Commit changes to the local repository git commit –m ”<message>”

Push changes to the remote repository git push origin master

Switch across branches git checkout –b <branch_name>
git checkout<branch_name>
git branch
git branch –d <branch_name>

Update from the remote repository git pull
git merge <branch_name>
git diff

Overwrite local changes git checkout -- <file_name>
git reset --hard origin/master

4.9 Containerising Applications

Aminor difference in the version of a library can alter the functionality of your appli-
cation, resulting in an unintended outcome. Fortunately, containerising an application
allows it to execute in the same way regardless of the workspace or computer that it

102 D. Herath et al.

is deployed on. You can think of containerisation as an efficient alternative to virtual
machines.

Docker9 is a great tool to consider for containerisation. A key reason why the
development community has adopted Docker is that if you containerise your appli-
cation and transfer the image to a teammate’s environment, the application will have
the same performance on both devices. This is because the container includes all the
dependencies needed by the application.

4.10 Chapter Summary

The chapter beganwith an introduction to common constructs found in programming
anddiscussedusingPython as an example language.The intentionhas been to provide
a starting point for readers who are not familiar with the basics of programming or
as a quick refresher for those picking up coding after some lapse in practice. We also
discussed a few useful tools in aiding computational thinking, such as flowcharts
and pseudocode. We then covered several important concepts, including OOP, error
handling, secure coding and version control. Any robotics programmer worth their
salt must be well versed in these aspects. Again, we have aimed to provide you with
pointers to essential concepts to explore further and build on. Finally, we discussed
containerisation as an efficient way to deploy your code on multiple platforms and
operating systems. The projects section of the bookwill provide further opportunities
to practice and explore these ideas further.

4.11 Revision Questions

1. What are some of the common programming languages used in robotics?
2. You are required to display the following pattern on a screen. Write the

pseudocode of a suitable algorithm for this task.

*
* *
* * *
* * * *
* * * * *

3. Convert the pseudocode developed in 2. above to a Python implementation.
4. What are the four basic concepts of OOP?
5. What is Git and why is it important?

9 https://www.docker.com/.

https://www.docker.com/

4 Software Building Blocks: From Python to Version Control 103

4.12 Further Reading

It is far too numerous to suggest a set of suitable reading for this chapter as there
are many online resources as well as excellent books were written on each of the
topics covered in this chapter. You may head over to the book’s website for a list of
up-to-date resources. The following have served as useful online resources in writing
this chapter:

• Python programming (Phython.org, 2019; Python Application, 2021; Python
Exceptions, 2021; Python Security, 2020; Python Tutorial, 2021)

• Git (Atlassian, 2021)
• Containerisation (Docker, 2013)

References

Atlassian.Git Tutorials and Training | Atlassian Git Tutorial. Atlassian. https://www.atlassian.com/
git/tutorials (Accessed 2021, December 22).

Docker, What is a Container? | Docker. Docker. (2013). https://www.docker.com/resources/what-
container

How to Containerize a Python Application. Engineering Education (EngEd) Program
| Section. https://www.section.io/engineering-education/how-to-containerize-a-python-applic
ation/ (Accessed 2021, December 22).

Python Exceptions: An Introduction—Real Python. https://realpython.com/python-exceptions
(Accessed 2021, December 22).

Python Security Practices You Should Maintain. SecureCoding. (2020, May 18). https://www.sec
urecoding.com/blog/python-security-practices-you-should-maintain/

Python Tutorial. www.tutorialspoint.com. https://www.tutorialspoint.com/python. (Accessed 2021,
December 22).

Welcome to Python.org. (2019, May 29). https://www.python.org/

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra.
Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading
multidisciplinary research teams on complex robotic integration, industrial and research projects
for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and
was named one of the most innovative young tech companies in Australia in 2014. Teams he
led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in
the coveted Amazon Robotics Challenge—an industry-focused competition amongst the robotics
research elite. In addition, Damith has chaired several international workshops on Robots and Art
and is the lead editor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first
significant work to feature leading roboticists and artists together in the field of Robotic Art.

Adam Haskard is a cyber security and technology professional with over 16 years’ experi-
ence within the Department of Defence. Adam has led GRC and Security Engineering activities
in Defence Gateway Operations, JP2047, AIR6000, 1771 and L4125 as the DIE ITSM. Adam
possesses a strong understanding of information systems, cross domain solutions, the certification

https://www.atlassian.com/git/tutorials
https://www.docker.com/resources/what-container
https://www.section.io/engineering-education/how-to-containerize-a-python-application/
https://realpython.com/python-exceptions
https://www.securecoding.com/blog/python-security-practices-you-should-maintain/
http://www.tutorialspoint.com
https://www.tutorialspoint.com/python
https://www.python.org/

104 D. Herath et al.

and accreditation process and the military and wider technology landscape. He has in-depth tech-
nical and GRC experience leading multi-disciplinary teams on sensitive and complex cyber secu-
rity activities. Adam has gained significant work experience from his various roles in the ADF and
Industry, which included Cyber Security Professional, Engineer and Network Security Adminis-
trator, that enabled him to develop his cyber security and ICT skills. He was a member of the
ADF between 2006–2013 where he progressed through information system (CIS) and leadership-
based trainings. Adam’s expertise includes evaluating, designing, monitoring, administering and
implementing cybersecurity systems, protections and capabilities.

Niranjan Shukla has 15 years of prior experience working as a Software Engineer, Team Lead
and TechnoloArchitect with experience in Data-driven development, API Design, Frontend tech-
nologies, Data Visualization, Virtual Reality and Cloud. He practices Design thinking through
digital-Art on-the-side.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 5
The Robot Operating System (ROS1&2):
Programming Paradigms and
Deployment

David St-Onge and Damith Herath

5.1 Learning Objectives

The objective at the end of this chapter is to be able to:

• to know how to use (run and launch) ROS nodes and packages;
• to understand the messaging structure, including topics and services;
• to know about some of the core modules of ROS, including the Gazebo simulator,
ROSbags, MoveIt! and the navigation stack.

5.2 Introduction

We expect most readers of this book to aim at the development of a new robot or
at adapting one for specific tasks. As we mentioned in the introduction, the content
of this book covers all of the required grounds to know “what has to be done” with
an overview of several ways to address “how can it be done”. If you do not know
it already, you will quickly understand through this book that robot design calls to
many different disciplines. The amount of knowledge needed to deploy a robotic sys-
tem can sometimes feel overwhelming. However, many individual problems were
solved already, including software ecosystems to simulate and then deploy our robots
seamlessly. Advanced toolset and libraries are certainly integrated in the proprietary
solution stack of the main robotic system manufacturers (such as ABB RobotStudio
and DJI UAV simulator), but can everybody benefit of the last decades of public
research for their own robots? This is a recurrent issue in many fields, and several
libraries have been created in specific domains, such as to gather vision algorithms

D. St-Onge (B)
Department of Mechanical Engineering, ÉTS Montréal, Montreal, Canada
e-mail: david.st-onge@etsmtl.ca

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_5

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_5&domain=pdf
mailto:david.st-onge@etsmtl.ca
 854 53550 a 854 53550 a

mailto:david.st-onge@etsmtl.ca
mailto:Damith.Herath@Canberra.edu.au
 854 57535
a 854 57535 a

mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_5
 -2047 61852 a -2047 61852 a

https://doi.org/10.1007/978-981-19-1983-1_5

106 D. St-Onge and D. Herath

(OpenCV) and machine learning algorithms (TensorFlow). The Robot Operating
System (ROS) is an open-source solution addressing this critical sharing need for
robotic sensing, control, planning, simulation, and deployment. Not to be confused
with a library, it is a software ecosystem (the concept of an operating system might
be too strong) facilitating the integration, maintenance, and deployment of new func-
tionalities and hardware from simulations to physical deployment. While ROS can
run code the same from several popular languages, in order to use it you will need
good knowledge of the infrastructure’s underlying concepts (and honestly quite a
bit of practice). ROS is renowned to have a steep learning curve and even more so
for developers not familiar with software engineering. This chapter aims at giving
you an overview of ROS and setting the bases to use it without being specific to any
version (only few code examples are provided).

Since ROS is made to run predominantly on Linux operating system, we will end
the chapter with a quick overview of Linux fundamental tools useful for roboticists
and ROS developers.

An Industry Perspective

Alexandre Vannobel, Team Lead,
Kortex Applications Team

Kinova inc.

I have a bachelor’s degree in biomedical engineering fromPolytechniqueMon-
tréal. I was especially interested in software development through my studies,
most especially newer technologies such as AI, robotics, and cloud comput-
ing. I had the chance to work as an intern for one summer at Kinova. Needless
to say, I learned a lot about robots during those four months I never really
learned the basics of robotics in a classroom. It was more of a learn-by-doing
experience (and it still is).
Learning the details and intricacies of ROS, Gazebo, andMoveIt was certainly
a challenge! I have also been responsible for interfacing our robots with this
framework, and there were some development and integration issues, as the
goals and objectives of people who create robots and those who use robots do

5 The Robot Operating System (ROS1&2): Programming . . . 107

sometimes differ. It is of importance in those cases to consider what users want
and how they want to use the robot, but also to consider implementation costs
and time of features.
I havewitnessed the acceleration ofROS2’s development in the last fewmonth-
s/years, and I think this is where the field is going. ROS1 is a centralized
framework made to “unite” all of the robotics paradigms and tools in one big
system, but it suffers from a lot of legacy design choices that make the indus-
try really refractory from using it, starting with communication layers and the
lack of real-time support. I think ROS2, which was designed with the same
paradigms as ROS1 but with an emphasis on addressing those issues will bring
the industrial and the research worlds closer.

5.3 Why ROS?

Before you dive into ROS usage, you must understand its roots, as they motivated
several design decisions along theway, up to the need to redefine thewhole ecosystem
for industrial and decentralized applications in ROS2. ROS is a big part of the recent
advances in robotics and its history is as important as any of the works presented in
Chap. 1.

It all startedwith twoPhDs students at Stanford: EricBerger andKeenanWyrobek.
Early in their research, around 2005, they both needed a robotic platform to deploy
and test their scientific contributions: the design of an intrinsically safe personal
robot (Wyrobek et al., 2008). In their search for the best robotic platform, they ended
up talking to several researchers, each developing their own hardware and software.
The amount of duplicated work stunned them. They will later argue that 90% of the
roboticists work involve re-writing code and building prototypes, as illustrated in
Fig. 5.1. They made it their mission to change how things worked by developing a
new common software stack and a versatile physical robot, the PR1. The fund-raising
and marketing of their idea are out of scope here, but let us just mention that they
had to work hard in order to gain some credibility (Wyrobek, 2017). While still at
Stanford, they made the first PR1 prototype, alongside its modular software stack
(inspired from Switchyard byNateKoenig) and validated its versatility with a student
coding competition and an in-house demonstration (a living room cleaning robot).

Berger and Wyrobek’s vision of a universal operating system for robots defi-
nitely stroke right in the ambitious work of Scott Hassan (Silicon Valley billion-
aire). At the time, Scott Hassan was directing a research laboratory, Willow Garage,
focused on autonomous vehicles. Over time, ROS (Willow Garage new name for
Berger–Wyrobek–Koenig-inspired software stack) and PR became the main activ-
ity of Willow Garage, involving investments of several millions of dollars. These
considerable resources clearly contributed to the rapid growth of ROS, namely by
financially supporting a great team of engineers. However, there was already a hand-

http://dx.doi.org/10.1007/978-981-19-1983-1_1
 843 28269 a 843 28269 a

http://dx.doi.org/10.1007/978-981-19-1983-1_1

108 D. St-Onge and D. Herath

Fig. 5.1 Comic commissioned at Willow Garage, from Jorge Cham, to illustrate the wasted time
in robotics R&D

ful of open-source projects for robotics at the time, including Player/Stage (Gerkey
et al., 2003), the Carnegie Mellon Navigation Toolkit (CARMEN) (Montemerlo
et al., 2003), Microsoft Robotics Studio (Jackson, 2007), OROCOS (Bruyninckx,
2001), YARP (Metta et al., 2006), and more recently the Lightweight Communica-
tions and Marshalling (LCM) (Huang et al., 2010), as well as other systems (Kramer
and Scheutz, 2007). These systems provide common interfaces that allow code shar-
ing and reuse, but did not survive as strong as ROS did.Money itself could not ensure
ROS success, they needed a community.

In Silicon Valley, people are in a secret place working on something that may or may not ever
see the light of day. They may or may not ever be able to talk about it. It’s a very different
experience to be able to - as we do here - all day, every day, just write code and put it out in
the world—Brian Gerkey, chief executive officer at Open Robotics (Huet, 2017)

5 The Robot Operating System (ROS1&2): Programming . . . 109

The ROS community is nowadays clearly what makes ROS unique,1 powerful, and
impossible to avoidwhenworking in robotics. FollowingBerker testimony (Wyrobek,
2017), they built that community over three strategies:

1. They secured the support of the other major players in open-source robotics by
involving them from the start in the definition of what ROSmust be. These people
became early ambassadors of ROS.

2. They started a wide internship program, hosting PhD students, postdoctoral fel-
lows, professors, and industry engineers from all over the world, all contributing
to ROS and then using it in their own work. Berker mentions that Willow Garage
was hosting at some point more interns than employees, counting hundreds of
them.

3. They gave away 11 of their first PR2 prototypes, running exclusively on ROS, to
major research laboratories around the world as the result of a competitive call.
The new owners had to commit to contribute significantly to the ROS code base
and to provide a proof that their institution allows them to share their research
publicly.

Unfortunately, afterWillowGarage skyrocketedROSpopularity and usageworld-
wide, the company was dissolved in 2013. It was never meant to be the end of ROS
and PR2: the hardware customer service was taken over by Clearpath Robotics and
the open-source software development by a new entity, the Open Source Robotics
Foundation (non-profit). Under OSRF, they developed the first set of ROS distri-
butions (Distro), from Medusa Hydro (2013) to Melodic Morenia (2018), but the
foundation was growing with more requests for commercial contracts. In 2017, it
splits to create the Open Source Robotics Corporation (known as Open Robotics,2)
while the foundation still maintains the ROS code base. Open robotics released the
last version of ROS1, Noetic, the first to be based on Python 3 (all previous versions
used Python 2) and a whole new version, ROS2.

5.4 What Is ROS?

Now youmaywonder if ROS is not just a glorified library. . .What is so special about
it? The minimal answer is twofold: 1. It provides mechanisms for code maintenance
and extensibility (adding new features), and 2. it connects a large community. The
ROS wiki provides a more complete answer:3

ROS is an open-source, meta-operating system for your robot. It provides the services you
would expect from an operating system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between pro-
cesses, and package management. It also provides tools and libraries for obtaining, building,
writing, and running code across multiple computers.

1 ROS users’ world map: http://metrorobots.com/rosmap.html.
2 https://www.osrfoundation.org/welcome-to-open-robotics/.
3 http://wiki.ros.org/ROS/Introduction.

http://metrorobots.com/rosmap.html
 7587 55962 a 7587 55962 a

http://metrorobots.com/rosmap.html
https://www.osrfoundation.org/welcome-to-open-robotics/
 -1461 57290 a -1461 57290
a

https://www.osrfoundation.org/welcome-to-open-robotics/
http://wiki.ros.org/ROS/Introduction
 -1461 58619
a -1461 58619 a

http://wiki.ros.org/ROS/Introduction

110 D. St-Onge and D. Herath

Fig. 5.2 ROS workspace
folder structure from the
assignments detailed in
Chap. 18

Wewill stick to our two-item list and just scratch the surface of some core concepts
of software engineering to understand a bit better how they unfold in ROS. Imple-
menting software engineering best practices is at the core of ROS, from a modular
architecture to a full code-building workflow. The concept of an operating system
may be a bit stretched as ROS is closer to a middleware: the abstract interface to the
hardware (POSIX of robots).

As users (i.e., not developers) of ROS, we usually do not need to know the details
of the building structure, but it is mandatory to learn the basics in order to know how

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 409 2651 a 409 2651 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

5 The Robot Operating System (ROS1&2): Programming . . . 111

to properly use it. ROS provides a meta-builder, a uniform set of tools to build code
in several languages for several different computer’s environments and architecture.
In ROS1, this is done by catkin (formerly by rosbuild); while in ROS2 ament
takes over. In the end, they are really similar things, both just wrappers aroundCMake
(Cross-platform Makefile system).4 If you are a Python developer, you may think
this kind of structure is unnecessary, but that is notwithstanding how it contributes
to the portability and modularity of ROS. Portability here refers to the deployment
of your code easily in different environments, as long as it follows the ROS building
structure. Different environments can be for other users, new robots, but also in
order to be seamlessly compatible with a testing environment. We will discuss more
in details the simulation infrastructure provided by ROS in Sect. 5.6.3. Using the
ROS build tools helps integrate your code with the rest of the ROS ecosystem. The
meta-builder will generate the custom messages (topics), services, and actions your
node requires (described in Sect. 5.5.1) and make them available to other executable
(alike libraries). It will also add several paths and files to the environment in order
to execute your code and quickly find your files (e.g., configuration files). The meta-
builder will organize your work space over build, devel and src folders, as
shown in Fig. 5.2.

Let us have a quick look at this ROS folder structure. In a glimpse, the build
folder will host all the final files generated from the meta-builder while the devel
folder keeps track of the files generated by the process for testing and debug-
ging purpose. The devel folder will also include the essential setup.bash file,
which, when sourced (#source devel/setup.bash), adds the location of the
packages built to your ROS environment. Sourcing the system ROS (#source
/opt/<ROS Distro>/setup.bash) and your local work space is mandatory
to run any executable using ROS commands. This is usually part of any ROS instal-
lation procedures, both for maintained packages and third-party ones. The folder
src is the one you will end up using the most. It contains a separated folder for each
package of your work space. Software in ROS is organized in packages. A package
might contain ROS nodes, a ROS-independent library, a dataset, configuration files,
a third-party piece of software, or anything else that logically constitutes a useful
module. The goal of these packages is to provide their intended functionality in an
easy-to-consume manner so that software can be easily reused.

Each of the package’s folders must respect a structure, as shown in Fig. 5.2,
with the subfolders: include, launch, src as well as optional ones related
to the use of Python code (script) and simulation (models, urdf, worlds).
The include and src folders are part of common C/C++ code structure, the
first for headers (declarations) and the second for content (definitions). launch
contains the launched files discussed in Sect. 5.5.2. The src folder contains
one or more nodes. The nodes are executable with dedicated functionalities
and specific inputs and outputs (when applicable). The work space shown in
Fig. 5.2 is extracted from the assignments in Project Chap. 18. It combines third-
party packages from Intel for the cameras (realsense-occupancy), from

4 https://cmake.org/.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 24969 53882 a 24969 53882 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://cmake.org/
 -1461 58323 a -1461 58323
a

https://cmake.org/

112 D. St-Onge and D. Herath

Kinova for the Gen3 lite arm (ros_kortex), from Clearpath for the wheeled
base (dingo, dingo_robot, jackal, puma_motor_driver) and pack-
ages specific to the assignments (mobile_manip, realsense_simulator,
common_gazebo_models).

To deploy a ROS work space, you must follow the ROS installation instructions,5

and then either copy a third-party node (clone a Git repository) in order to work on
it, or make your own fresh work space.6 In both cases, you will end up writing code
inside thepackage folder, for instance insidemobile_manip_ws/src/mobile_
manip shown in Fig. 5.2. Inside of your package, if a node (an executable file in
script or C/C++ code in src) is new, you need to add it to the CMakelist.txt
building configuration file at the root of your work space for your meta-builder to be
aware of the node existence. When setting up a new ROS environment, be aware that
there is a compatibility matrix to fit each ROS distribution with Linux distributions.7

Now that we have a better idea of how the meta-builder works to provide portabil-
ity (dealing with different environments) and modularity (packages and nodes), we
can look into how modularity help connects the ROS community. ROS developers
can share their nodes on any online platform (e.g., GitHub), or make it official by
including it to a ROS distribution (indexed). A ROS indexed package must follow
perfectly theROS structure standard aswell as programming best practices (unit tests,
well commented, etc.). After a bit of training, it becomes easy to download, build,
and run nodes made by any contributor around the world. This helped strengthen a
community, one so enthusiast that it creates its own annual event, entitled ROSCon
(ROSWorld in 2021 for the Virtual version), gathering hundreds of developers and
users. ROS community is growing pretty fast, with new groups emerging, such as
ROS Industrial8 focused on developing industry-relevant capability in ROS. Where
the community can easily exchange, their software must also be able to commu-
nicate. A large part of the modularity of ROS is provided by its communication
infrastructure. A library of message types, extendable, guarantees the data format is
compatible between all users nodes. The messages, i.e., simple data structures, can
then be called in the form of topics or as part of services, as will be explained in
Sect. 5.5.1.

5.4.1 ROS1&2: ROSCore Versus DDS

ROS distributions are frequently released with major updates (enhancements). Since
2017, the core of ROS was revisited, leading to the release of a first stable ROS2
distribution in 2020, Foxy Fitzroy. The last distribution of ROS1, Noetic, will be

5 https://wiki.ros.org/ROS/Installation.
6 https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#
Create_a_ROS_Workspace.
7 https://www.ros.org/reps/rep-0003.html#platforms-by-distribution.
8 https://rosindustrial.org/.

https://wiki.ros.org/ROS/Installation
 -1461 53009
a -1461 53009 a

https://wiki.ros.org/ROS/Installation
https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
 -1461 54338 a -1461 54338 a

https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
 -1461 56773
a -1461 56773 a

https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
https://rosindustrial.org/
 -1461 58101
a -1461 58101 a

https://rosindustrial.org/

5 The Robot Operating System (ROS1&2): Programming . . . 113

Fig. 5.3 ROS Core role: the
librarian connecting the
nodes’ topics and services

officially supported until May 2025 and may very well be active longer than that, but
at some point all ROS users are expected to transit to ROS2. We quickly mentioned
the new building mechanism of ROS2, ament, and we will discuss some format
changes (e.g., launch files) in the upcoming sections, but the main difference is at
the core, the roscore. In ROS1, roscore is a collection of nodes and programs
that are prerequisites of a ROS-based system. You must have a roscore running in
order for ROSnodes to communicate. Launching theroscore (either automatically
with a launch file or manually with the roscore command) starts the ROS Core,
i.e., the ROS1 librarian. As shown in Fig. 5.3, the ROS Master (i.e. ROS Core)
is the one responsible for indexing all nodes running (the slaves) along with their
communication modality. In other words, in ROS1, without the ROS Core, the nodes
cannot be aware of the others, let alone start to communicate with one another.
However, when all nodes are launched and aware of the others, theoretically the
ROS Core could be killed without any node noticing.

At a glimpse:roscore is dead inROS2, nomoremaster and slaves. The commu-
nication infrastructure is fundamentally decentralized in ROS2, based on a peer-to-
peer strategy, the Data Distribution Service (DDS).Where ROS1 had a critical single
point of failure, no node can block the others from running in ROS2. DDS includes
packet transport protocol and a distributed discovery service to grab information
from the other running nodes.9 This paves the way to facilitating the development
and deployment of multi-robot systems, maybe even so-called robotic swarms.

Before getting into the ROS world, you need to pick your version. If you are
looking for more existing packages and a more stable API, use ROS1. If you are

9 For more information: https://design.ros2.org/articles/ros_on_dds.html.

https://design.ros2.org/articles/ros_on_dds.html
 7176 57867 a 7176 57867 a

https://design.ros2.org/articles/ros_on_dds.html

114 D. St-Onge and D. Herath

looking for long-term stability, better performance, and newer algorithms, use ROS2.
Just do not try to learn both from scratch! If you are still in doubt about which one
to go for, ignore ROS1 and use ROS2, since ROS 1 will be going away in a couple
of years.

5.4.2 ROS Industrial

While we will be limiting our discussions to ROS 1 & ROS 2 in this book, it is
worth noting that another flavor of ROS exists called ROS Industrial or ROS-I for
short. 10 As the name suggests, ROS-I is a concerted effort to bring the best of ROS
to industrial-scale robotics. While, in general, research robotics systems such as the
PR2 follow an open-source ethos, most commercial robotic systems use closed and
proprietary software. This makes it extremely difficult to develop cross-platform
projects using them or adapt existing commercial hardware systems outside their
intended ecosystems. Frustrated by this situation, Shaun Edwards, in 2012, created
the initial ROS-I repository in collaboration with Yaskawa Motoman Robotics com-
pany and Willow Garage while he was at Southwest Research Institute to facilitate
the adoption of ROS in manufacturing and automation. Since then, many commer-
cial robotic platforms have been integrated within ROS-I. Core developments of
ROS-I are independently managed through several industrial consortia that require
a paid membership to participate. A good understanding of ROS should set you up
for a relatively easy transition to ROS-I if you eventually venture into commercial
robotics.

5.5 Key Features from the Core

The following sections will give an overview of the main features included in ROS.
While the focus is on ROS1 (the assignments presented in Project Chap. 18 run
on Noetic), the concepts are shared with ROS2, but some format differences are
discussed when applicable.

5.5.1 Communication Protocols

Whether it is decentralized (ROS2) or centralized (ROS1), the communication
between nodes is structured in messages.11 Figure 5.4 shows the Odometry mes-

10 https://rosindustrial.org/.
11 http://wiki.ros.org/Messages.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 31811 40598 a 31811 40598 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://rosindustrial.org/
 -1104 55666 a -1104 55666 a

https://rosindustrial.org/
http://wiki.ros.org/Messages
 -1104 56994 a -1104 56994 a

http://wiki.ros.org/Messages

5 The Robot Operating System (ROS1&2): Programming . . . 115

Fig. 5.4 Content of ROS
topic Odometry

sage with some of the message types it contains. Several message libraries come
along with a ROS installation, but developers can also generate custom messages for
their node. At run time, the availability of these data structure can be advertised over
topics. Topics are barely names, i.e., labels, put on a given data structure (message)
from a given node. A node may publish data to any number of topics and simultane-
ously have subscriptions to any number of topics. Topics are one of the main ways
in which data is exchanged between nodes and therefore between different parts of
the system (between robots and with a monitoring ground station). In order to share
information, a node needs to advertise a topic and then publish content (messages)
into it. The first part is done in the initialization part of the node’s code, while the
latter is done each time new data must be shared, commonly inside the code’s main
loop at a fixed frequency. On the other side, the node(s) that needs a topic’s content
will subscribe to it. The subscriber will associate a callback function triggered for
each new incoming message.

ROS comes with a really handy debugging tool for topics, the terminal command
rostopic (ros2 topic in ROS2). It can be used to show all available topics
from the nodes running: rostopic list (ros2 topic list), to print the
content (message) of a given topic: rostopic echo odom (ros2 topic
echo odom) and to show the publishing frequency of a topic: rostopic hz
odom (ros2 topic hz odom).

Topics are connectionless communication (classic publisher/subscriber system)
in the sense that the publisher of the message does not know if any other node is
listening. ROS also provides with a connection-oriented protocol (synchronous RPC
calls), the services. Services have a client and a server, and both will acknowledge
the information received by the other at each transaction. Topics and services use the
same containers (message types) for information, but are better suited to different
applications. For instance, topics are useful to stream the reading from a sensor,
while services are better suited to share the configuration of a node or change a

116 D. St-Onge and D. Herath

Fig. 5.5 Example of a launch file for: left is the XML format for ROS1 and right, the Python format
new to ROS2

node’s state. Finally, ROS provides the actions protocol (asynchronous RPC calls),
combining topics and services. A basic action includes a goal service, a result service,
and a feedback topic. Its format is well suited to interface withmission planners, such
as QGroundControl.12

5.5.2 Launch and Run

To deploy a ROS systemmeans to start several executable files, i.e., nodes. The most
basic command to do so is rosrun <package name> <node name> (ros2
run <package name> <node name>), which is most often run in a different
terminal for each node. However, in ROS1 you need a roscore before any node can be
run, so youmust use the command roscore beforehand. Using this strategy to start
the nodes individually will lead to numerous terminal tabs that must be monitored
simultaneously. ROS provides another way to launch several nodes altogether: the
launch files. In ROS1, using a launch file will also automatically start the roscore.

The format of the launchfile differs betweenROS1andROS2, as shown inFig. 5.5.
ROS1 uses an XML file while ROS2 encourages the use of Python scripts (ROS2
still supports XML format). Nevertheless, both serve to call nodes with parameters
and can nest other launch files. Calling several nodes simultaneously is great, but
what happens if you need twice the same node, for instance to process images from
two cameras? You can always use the rosrun command to launch nodes afterward
that are not in the launch file; they will connect to the same ecosystem automatically.
However, a powerful feature of launch files is the group tag to force nodes into
a given namespace: the same node can then be launched several times in different
parallel namespaceswithout interferingwith one another. This is essential to simulate
multi-robot systems.

12 http://qgroundcontrol.com/.

http://qgroundcontrol.com/
 -1104 57867 a -1104 57867 a

http://qgroundcontrol.com/

5 The Robot Operating System (ROS1&2): Programming . . . 117

5.5.3 ROS Bags

Now say you developed a new collision avoidance algorithm, based on the data of
several sensors. You deploy it on your robot and go for a run with it. No matter how
well it goes, you will want to extract performance metrics and assess afterward the
issues you faced. This calls for a logging system, luckily ROS provides a robust and
versatile one out-of-the-box! The ROS bag format is a logging format for storing
ROS messages in files. Files using this format are called bags and have the file
extension .bag. Bags are recorded, played back, and generally manipulated by
tools in the rosbag (ros2 bag) and rqt_bag (no counterpart yet available in
ROS2) packages. You can replay your field experiments: republish all sensor data
at their real frequency (or simulate different publishing rates), including packet loss
or any disturbance from the experiment. rosbags also has an API that provides
features to quickly parse and analyze or export your data. For instance in Python, it
may look like:

import rosbag bag = rosbag.Bag(’test.bag’) for topic, msg, t

in bag.read_messages(topics=’odom’):

print("Odometry is x={}, y={} and z={} at time {} sec".

format(

msg.pose.pose.position.x, msg.pose.pose.position.y,

msg.pose.pose.position.z,

t.toSec())

bag.close()

Rosbags are key to tuning your algorithms and sharing your time-consuming
experimental data with your peers.

5.5.4 Transforms and Visualization

Can you imagine a useful, physical robot that does not move or watch something
else move? Any useful application in ROS will inevitably have some component
that needs to monitor the position of a part, a robot link, or a tool. The ROS way of
dealing with relative motion is encompassed in TF (transforms). TF allows seeking
the geometrical transformation between any connected frames, even back through
time. It allows you to ask questions like “What was the transform between A and B
10 seconds ago?"

One possible example is a camera, mounted on a robot, tracking markers in the
scene, as shown inFig. 5.6. This example shows the robot odometry frame (themobile
base motion—camera_odom_frame), the camera pose (fixed to the base—
camera_fisheye2_frame), and the frame of the tag detected (ETS_target).
The tag is detected in the camera_fisheye2_frame, and its pose is extracted
and transformed directly incamera_odom_frame to visualize all frames together.

118 D. St-Onge and D. Herath

Fig. 5.6 Visualization in RViz of a fish-eye camera feed and the reference frames resulting from a
fiducial marker detection

As long as you have the position and orientation of an object (six degrees of
freedom), you can broadcast its TF in ROS. For instance in Python, it may look like:

import tf2_ros # import the TF library br =

tf2_ros.TransformBroadcaster() # create de broadcaster t =

geometry_msgs.msg.TransformStamped() # create the message

container

fill the message: t.header.stamp = rospy.Time.now()

t.header.frame_id = "world"

t.child_frame_id = "myrobotframe"

t.transform.translation.x = x

t.transform.translation.y = y

t.transform.translation.z = z

q = tf_conversions.transformations.quaternion_from_euler

(psi, phi, theta)

t.transform.rotation.x = q[0]

t.transform.rotation.y = q[1]

t.transform.rotation.z = q[2]

t.transform.rotation.w = q[3]

br.sendTransform(t) # broadcast the transform

Notice in the snippet above the format of the orientation (rotation): ROS, by default,
requires to use quaternions. tf_conversions library provides the tool to convert
rotation matrices and Euler angles to quaternions and back, but for more information
about the mathematical representation of the quaternions, read Chap. 6. Often TF are
used to define the fixed geometrical relations between a robot’s parts. You can then

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 28126 57070 a 28126 57070 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

5 The Robot Operating System (ROS1&2): Programming . . . 119

rather easily use the pose of an object detected by a camera mounted somewhere
on your robot to feed the wheels motors with appropriate commands, such as “my
camera sees the door 2 m ahead, but is positioned 50cm from the wheel axis, so let’s
go forward by only 1.5 m”.

The viewer shown in Figs. 5.6, 5.7, and 5.8 is RViz, short for ROS Visualization.
It is a 3D viewer supporting almost all types of topics, namely 2D and 3D LiDAR
point clouds, camera stream, and dynamic reference frames motion. The viewer is
launched simply with rosrun rviz rviz (or simply rviz). Then using the
graphical interface Add button, you can select the topic you want to monitor. While
RVizwasmade tomonitor your robot’s topics, it can also host interactivemarkers that
can be moved in the visualization window and will broadcast their updated position
out in ROS. An example used to command a robotic arm is shown in Fig. 5.8.

5.6 Additional Useful Features

Several community contributions went into the essential toolset of ROS and greatly
contribute to its popularity. This section covers a handful of what we consider to be
the most important for mobile robots and manipulators. All of these packages are
leveraged in at least one of the assignments of Project Chap. 18.

5.6.1 ROS Perception and Hardware Drivers

When dealing with your hardware integration, the same logic applies as for the soft-
ware parts discussed previously: you do not want to waste time in reproducing what
was done already to interface with each component. Manufacturers have their coun-
terpart to this logic: it can be really expensive to develop drivers for several different
operating systems and software solutions to accommodate potential clients. ROS
acts here again as a standard, connecting the manufacturers to a large community.
Hundreds of hardware manufacturers deliver ROS nodes with their products, namely
SICK, Clearpath, Kinova, Velodyne, Bosch, and Intel. The driver node made by the
manufacturer most often deals only with low-level communication into ROS com-
patible topics and services. From that point, the meta-package ROS perception helps
with filtering, synchronizing, and visualization of the data. For instance, ROS per-
ception includes pcl_ros to manage point clouds. It includes filters such as voxel
grid filter and pass-through filter, but also geometrical segmentation of the data to
extract planes or polygons from the point cloud. An example point cloud published
as a ROS topic is shown in Fig. 5.7. For dealing with images (cameras),cv_bridge
and several other packages bring the powerful features of the open library OpenCV
to process images within ROS code. This provides the classic algorithms for contours
detection, images filtering (blur, etc.), and histogram generation. From there, many

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 24902 25986 a 24902 25986 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

120 D. St-Onge and D. Herath

Fig. 5.7 DARPA subterranean 2021 spot-1 finals map made by CTU-CRAS-NORLAB team

machine learning algorithms have ROS wrappers, such as the powerful You Only
Look Once (YOLO)13 for object recognition.

Finally, ROS perception also contains a package integrating several of the
most up-to-date algorithms for simultaneously localization and mapping (SLAM),
gmapping. Based on either on 2D LiDAR, 3D LiDAR, stereo camera, or a single
camera, the package outputs a rough map of the environment explored by the robot
without any a priori knowledge of the robot position in the map. These powerful
algorithms are nowadays essential to any mobile robot deployment in GPS-denied
environment. Several other, and more recent, SLAM solutions are also available on
GitHub from research laboratories around the world, but gmapping is maintained
by OSRF. When the environment is known (a 2D map is available), you may prefer
to use the ROS package for adaptive Monte Carlo localization (AMCL). This one
uses a particle filter to find the best candidates in position when simulating your laser
scan from the map provided. This is the strategy deployed in the assessments 4 and
5 of Project Chap. 18.

5.6.2 ROS Navigation and MoveIt!

Let us assume that the perception stack grants us with the position of the robot
and a map of its environment. In order to fulfill any mission, the robot will need to
move in this environment, either by finding an optimal trajectory (mobile robot) or
by computing an optimal posture for a manipulator to reach a given pose with its
tool (i.e., gripper). For mobile robots, conventional methods of indoor path planning

13 https://github.com/leggedrobotics/darknet_ros.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 6285 40505 a 6285 40505 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://github.com/leggedrobotics/darknet_ros
 -1104 56901
a -1104 56901 a

https://github.com/leggedrobotics/darknet_ros

5 The Robot Operating System (ROS1&2): Programming . . . 121

Fig. 5.8 Kinova Gen3 lite manipulator controlled by interactive markers andMoveIt! planner from
RViz

often refer to the optimal path as the shortest path that can be obtained from various
algorithms such as A*, Dijkstra’s (Palacz et al., 2019) or rapid-exploring random
trees (RRT). These algorithms, and a lot more, are available out of the box from
public ROS packages.

For manipulators, many numerical solvers for multibody dynamics have been
proposed over the past decades and along with them path planners that either use
sampling-based algorithms or optimization-based algorithms. These algorithms and
several otherswere integrated in theOpenMotionPlanningLibrary,14 itself integrated
in the MoveIt! ROS planning package.15

Figure 5.8 showsMoveIt! in action through RViz using interactive markers. These
markers can simply be dragged to the desired goal and then the left menu grants the
user access to different planners and their configurable parameters. MoveIt! can also
consider static objects in the scene to plan a solution considering collision avoidance.
These objects can be added manually or imported from the Gazebo simulator.

5.6.3 Gazebo Simulator

Robot simulation is an essential tool in every roboticist’s toolbox. A well-designed
simulator makes it possible to rapidly test algorithms, design robots, perform regres-
sion testing, and train artificial intelligence systems using realistic scenarios. Gazebo

14 https://ompl.kavrakilab.org/.
15 https://moveit.ros.org/.

https://ompl.kavrakilab.org/
 -1104 59195
a -1104 59195 a

https://ompl.kavrakilab.org/
https://moveit.ros.org/
 -1104 60523 a -1104 60523 a

https://moveit.ros.org/

122 D. St-Onge and D. Herath

Fig. 5.9 View from Gazebo simulator with the mobile manipulator of the assignment in Project
Chap. 18

offers the ability to accurately and efficiently simulate robots in complex indoor and
outdoor environments. It encompasses a robust physics engine, with convenient pro-
grammatic and graphical interfaces. Best of all, alike ROS, Gazebo is free, open
source, and has a vibrant community.

Gazebo simulator can load any mesh in obj or dae format and then use it with
realistic dynamics to simulate robot motion and collisions. Alike ROS, Gazebo is
modular, so the simulation plugins for dynamics, can be customized as well as any
sensor data. Several manufacturers provide plugins (e.g., Intel cameras) and models
(e.g., Kinova robots) to simulate their hardware within Gazebo. Figure 5.9 shows
a simulation environment from the Project Chap. 18, including Intel cameras, the
fully actuated Kinova Gen3 lite manipulator, the differential drive Clearpath Dingo
mobile base, and a world made out of walls, furniture, and functional doors.

Gazebo is by far the most popular simulator for ROS users, but it lacks realistic
rendering and can be pretty heavy to run for a large number of robots (swarms).
To address the first limitation, Gazebo is being phased out in favor of Ignition.16

Nevertheless, developers in vision-based machine learning will prefer more realistic
environments such asUnreal17 andUnity18 (which has aROSplugin19). For the latter,
swarm roboticists will use dedicated simulators, such as ARGoS20 (which also has
a ROS plugin21).

16 https://ignitionrobotics.org/.
17 https://www.unrealengine.com/.
18 https://unity.com/.
19 https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/.
20 https://www.argos-sim.info/
21 https://github.com/BOTSlab/argos_bridge/.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 409
21934 a 409 21934 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
http://dx.doi.org/10.1007/978-981-19-1983-1_18
 20488 37857 a 20488 37857 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://ignitionrobotics.org/
 -1104 53882
a -1104 53882 a

https://ignitionrobotics.org/
https://www.unrealengine.com/
 -1104 55210 a -1104 55210 a

https://www.unrealengine.com/
https://unity.com/
 -1104 56538 a -1104 56538 a

https://unity.com/
https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/
 -1104 57867
a -1104 57867 a

https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/
https://www.argos-sim.info/
 -1104 59195
a -1104 59195 a

https://www.argos-sim.info/
https://github.com/BOTSlab/argos_bridge/
 -1104 60523 a -1104 60523 a

https://github.com/BOTSlab/argos_bridge/

5 The Robot Operating System (ROS1&2): Programming . . . 123

5.7 Linux for Robotics

We mentioned previously that ROS is not exactly an operating system, but rather a
middleware. Still, many people are referring to it as the Linux for robotics (Wyrobek,
2017). There is some truth in this name, as ROS is extending the Linux operating
system to robotic applications. Until ROS2, it was only able to run properly on
Linux. It means that the majority of ROS users must know their way around in a
Linux environment.

We will take for granted that you start on a computer already set up with Linux
(Dell sells certified computers preloaded with Linux22) or that you know how to
launch a Linux virtual machine in Windows or OSX (although virtual machines are
not recommended for hardware experiments and computer-intense simulations).

As we mentioned earlier, when installing ROS on a Linux system, look into the
ROS-Linux compatibility matrix first.23 In all of Linux distributions, you will need
to input some terminal commands to get things done. Knowing the basic commands
in a Linux terminal is also rather essential for embedded development, as the most
popular on-board computers (e.g., Raspberry Pi, NVidia) will run a version of Linux
and can be accessed through a remote terminal session (e.g., ssh). Themost essentials
terminal commands are as follows:

• cd: Change Directory. cd .. is used to get to the parent directory.
• ls: List Files.ls -la:will list all files (hidden ones too) alongwith the properties
(permissions and size).

• mv: MoVe file.
• cp: CoPy file.
• rm: ReMove file.
• df: Disk Filesystem (disk usage). df -h allows to see the memory usage on all
disks in human readable format.

• reset: to remove all output from the terminal screen and remove any local
environment variables changes.

To edit and compile your ROS code, you want an integrated development envi-
ronment (IDE) that can help you find the right names and definitions of functions,
as well as compile and even debug your code. IDEs are like glasses: you need to try
them to find the one that fits you best. A lot of IDEs are available for Python (Atom,
Eclipse, PyCharm, etc.) and C/C++ (Visual Code, CLion). Linux experts sometimes
prefer the highly configurable text editors such as Sublime, Emacs, and Vim, for
which plugins and tutorials are available for ROS. However, the majority of the ROS
developers seems to prefer Eclipse, for its user-friendly interface, its support for sev-
eral programming languages, and its ROS plugin seamlessly integrated. Other more
recent options are drawing attention: Microsoft Visual Code, or its open-source ROS
version, Roboware, and the web-based ROSDevelopment Studio (RDS). While they

22 https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/.
23 https://www.ros.org/reps/rep-0003.html#platforms-by-distribution.

https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/
 -1104 56538 a -1104 56538
a

https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/
https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
 -1104 57867
a -1104 57867 a

https://www.ros.org/reps/rep-0003.html#platforms-by-distribution

124 D. St-Onge and D. Herath

all have pros and cons, they also all do essentially the same thing. If you are looking
for an IDE, we suggest VS Code. If you just want a code editor, we like Sublime
Text.

5.8 Chapter Summary

This chapter introduced the Robotic Operating System, ROS. We first discussed
the motivation for its conception by going through its origin and then we gave an
overview of its core advantages, leading to its current popularity. The chapter covered
both ROS1 and ROS2, with a short stopover on the centralized versus decentralized
differences between them.We then covered the essential features from the ROS Core
and third-party additions. Finally, we gave essential hints to new Linux users, as this
operating system is still the best suited one for ROS development.

5.9 Revision Questions

Question #1
In ROS1, what is the result of the command rosrun robot_manip dingo_
control?

1. It launches the robot_manip node of the dingo_control package, but a
roscore must have been started beforehand.

2. It launches the dingo_control node of the robot_manip package, but a
roscore must have been started beforehand.

3. It launches the robot_manip node of the dingo_control package and a
roscore if none is present.

4. It launches the dingo_control node of the robot_manip package and a
roscore if none is prese[]nt.

Question #2
Associate the following ROS concepts:

1. Topic
2. Service
3. Message

with their definition:

A A link created by a node to post information to those who subscribe to it.
B A standardized container for the exchange of information between nodes.
C A blocking communication that awaits the response of the called node.

Question #3
Is ROS1 a completely decentralized software ecosystem? Explain why.

5 The Robot Operating System (ROS1&2): Programming . . . 125

Question #4
Give the relative path in the ROS workspace to a C++ node source file (doit.cpp)
of a package named realsense_occupancy.

5.10 Further Reading

The best way to learn ROS is to play with it. ROS wiki24 is a great place to start
learningmore about the core packages. ROSwiki also contains several basic tutorials
to practice with topics, services, actions, and launch file either in C++ or in Python.
If you are looking for an extension to this chapter, including more explanations on
the functionalities of ROS, the open access online book of Jason M. O’Kane, A
Gentle Introduction to ROS25 is a perfect resource. For the one that prefers physical
books, going in depth in all of the ROS components, along with detailed example,
look into the book of Quigley, Gerkey, and Smart, Programming Robots with ROS.
Unfortunately, there is still a lack of good books specific to ROS2, but the online
official documentation is always a great resource.26

References

Bruyninckx,H. (2001).Open robot control software: The orocos project. InProceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 3, pp.
2523–2528, vol. 3. https://doi.org/10.1109/ROBOT.2001.933002

Gerkey, B. P., Vaughan, R. T., & Howard, A. (2003). The player/stage project: Tools for multi-robot
and distributed sensor systems. In Proceedings of the 11th International Conference on Advanced
Robotics, pp. 317–323.

Huang, A. S., Olson, E., & Moore, D. C. (2010). LCM: lightweight communications and mar-
shalling. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
4057–4062. https://doi.org/10.1109/IROS.2010.5649358

Huet, E. (2017). The not-so-secret code that powers robots around the globe. Bloomberg The Quint.
Jackson, J. (2007). Microsoft robotics studio: A technical introduction. IEEE Robotics Automation
Magazine, 14(4), 82–87. https://doi.org/10.1109/M-RA.2007.905745

Kramer, J., & Scheutz, M. (2007). Development environments for autonomous mobile robots: A
survey. Autonomous Robots, 22(2), 101–132. https://doi.org/10.1007/s10514-006-9013-8

Metta, G., Fitzpatrick, P., & Natale, L. (2006). Yarp: Yet another robot platform. International
Journal of Advanced Robotic Systems, 3(1), 8.

Montemerlo, M., Roy, N., & Thrun, S. (2003). Perspectives on standardization in mobile robot
programming: The carnegie mellon navigation (carmen) toolkit. In Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
vol. 3, pp. 2436–2441. https://doi.org/10.1109/IROS.2003.1249235

24 https://docs.ros.org/.
25 https://www.cse.sc.edu/~jokane/agitr.
26 such as https://docs.ros.org/en/rolling/.

https://doi.org/10.1109/ROBOT.2001.933002
 6114 31964 a 6114 31964 a

https://doi.org/10.1109/ROBOT.2001.933002
https://doi.org/10.1109/IROS.2010.5649358
 3519 38606 a 3519 38606 a

https://doi.org/10.1109/IROS.2010.5649358
https://doi.org/10.1109/M-RA.2007.905745
 8317
41926 a 8317 41926 a

https://doi.org/10.1109/M-RA.2007.905745
https://doi.org/10.1007/s10514-006-9013-8
 15982 44140 a 15982 44140
a

https://doi.org/10.1007/s10514-006-9013-8
https://doi.org/10.1109/IROS.2003.1249235
 7526 50782 a 7526 50782 a

https://doi.org/10.1109/IROS.2003.1249235
https://docs.ros.org/
 -1104 55210 a -1104 55210
a

https://docs.ros.org/
https://www.cse.sc.edu/protect unhbox voidb@x penalty @M {}jokane/agitr
 -1104 56538 a -1104 56538 a

https://www.cse.sc.edu/~jokane/agitr
https://docs.ros.org/en/rolling/
 1875 57867
a 1875 57867 a

https://docs.ros.org/en/rolling/

126 D. St-Onge and D. Herath

Palacz, W., Ślusarczyk, G., Strug, B., & Grabska, E. (2019). Indoor robot navigation using graph
models based on bim/ifc. In International Conference on Artificial Intelligence and Soft Com-
puting, Springer, pp 654–665.

Wyrobek, K. (2017). The origin story of ros, the linux of robotics. In IEEE Spectrum.
Wyrobek, K. A., Berger, E. H., Van der Loos, H. M., & Salisbury, J. K. (2008). Towards a personal
robotics development platform: Rationale and design of an intrinsically safe personal robot. In
2008 IEEE International Conference on Robotics and Automation, pp. 2165–2170. https://doi.
org/10.1109/ROBOT.2008.4543527

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the École de technologie supérieure and director of the INIT Robots Lab (ini-
trobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect
to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the
field of interactive media (structure, automatization and sensing) as workshop production director
and as R&D engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in national training
programs for highly qualified personnel for drone services (UTILI), as well as for the deployment
of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic inte-
gration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA
2019).

Damith Herath is an associate professor in Robotics and Art at the University of Canberra. He is
a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial, and research projects for over
two decades. He founded Australia’s first collaborative robotics start-up in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015 and
2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted Ama-
zon Robotics Challenge—an industry-focused competition among the robotics research elite. In
addition, he has chaired several international workshops on Robots and Art and is the lead edi-
tor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first significant work to
feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1109/ROBOT.2008.4543527
 30714 6061 a 30714 6061 a

https://doi.org/10.1109/ROBOT.2008.4543527
https://doi.org/10.1109/ROBOT.2008.4543527
http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 6
Mathematical Building Blocks: From
Geometry to Quaternions to Bayesian

Rebecca Stower , Bruno Belzile , and David St-Onge

6.1 Learning Objectives

The objective at the end of this chapter is to be able to:

• use vector and matrix operations;
• represent translation, scaling, and symmetry in matrix operations;
• understand the use and limitation of Euler’s angles and quaternions;
• use homogeneous transformations;
• use derivatives to find a function optimums and linearize a function;
• understand the importance and the definition of a Gaussian distribution;
• use t-tests and ANOVAs to validate statistical hypothesis.

6.2 Introduction

Several of the bodies of knowledge related to robotics are grounded in physics and
statistics. While this book tries to cover each topic in an accessible manner, the large
majority of these book chapters expect a minimal background in mathematics. The
following pages summarize a wide range of mathematical concepts from geometry
to statistics. Throughout this chapter, relevant Python functions are included.

R. Stower (B)
Department of Psychology, Université Vincennes-Paris 8, Saint-Denis, France
e-mail: becstower@gmail.com

B. Belzile · D. St-Onge
Department of Mechanical Engineering, ÉTS Montréal, Montreal, Canada
e-mail: bruno.belzile.1@ens.etsmtl.ca

D. St-Onge
e-mail: david.st-onge@etsmtl.ca

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_6

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_6&domain=pdf
http://orcid.org/0000-0002-6158-4818
 5565 7713 a 5565 7713 a

http://orcid.org/0000-0002-6158-4818
http://orcid.org/0000-0003-3247-9362
 13640 7713 a 13640 7713 a

http://orcid.org/0000-0003-3247-9362
http://orcid.org/0000-0002-0587-8598
 24301 7713 a 24301 7713 a

http://orcid.org/0000-0002-0587-8598
mailto:becstower@gmail.com
 854 50671 a 854 50671
a

mailto:becstower@gmail.com
mailto:bruno.belzile.1@ens.etsmtl.ca
 854
54656 a 854 54656 a

mailto:bruno.belzile.1@ens.etsmtl.ca
mailto:david.st-onge@etsmtl.ca
 854
57535 a 854 57535 a

mailto:david.st-onge@etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_6
 -2047 61833 a -2047
61833 a

https://doi.org/10.1007/978-981-19-1983-1_6

128 R. Stower et al.

Fig. 6.1 Different
coordinate systems in 3D
space

X

Y

Z

r

ρ

x

y

z

θ

φ

6.3 Basic Geometry and Linear Algebra

In this section, a brief non-exhaustive summary of basic concepts in Euclidean geom-
etry is given. Moreover, some linear algebra operations, useful for the manipulations
of components in different arrays, are recalled.

6.3.1 Coordinate Systems

A coordinate system is a “system for specifying points using coordinates measured
in some specified way.”1 The most common, which you have most probably used in
the past is the Cartesian coordinate system, is shown in Fig. 6.1. In this case, more
precisely in 3D space, we have an origin, i.e., the point from where the coordinates
are measured, and three independent and orthogonal axes, X , Y , and Z . Three axes
are needed and they must be independent, but they do not need to be orthogonal.
However, for practical reasons in most (but not all) applications, orthogonal axes are
preferred (Hassenpflug, 1995).

Youmay encounter some commonalternatives toCartesian coordinates that can be
more appropriate for some applications, such as spherical and cylindrical coordinates.
In the former, the coordinates are defined by a distance ρ from the origin and two
angles, i.e., θ and φ. In the latter, which is an extension of polar coordinates in 2D, a
radial distance r , an azimuth (angle) θ , and an axial coordinate (height) z are needed.
While a point is uniquely defined with Cartesian coordinates, it is not totally the case
with spherical and cylindrical coordinates; more precisely, the origin is defined by
an infinite set of coordinates with those two systems, as the angles are not defined at
the origin. Moreover, you can add/subtract multiples of 360◦ to every angle and you
will end up with the same point, but different coordinates. Moreover, you should be

1 https://mathworld.wolfram.com/CoordinateSystem.html.

https://mathworld.wolfram.com/CoordinateSystem.html
 -1461 57867
a -1461 57867 a

https://mathworld.wolfram.com/CoordinateSystem.html

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 129

careful with cylindrical and spherical coordinates, as the variables used to define the
individual coordinates may be switched, depending on the convention used, which
usually differs if you are talking to a physicist, a mathematician, or an engineer.2

6.3.2 Vector/Matrix Representation

In mathematics, a vector is “a quantity that has magnitude and direction and that
is commonly represented by a directed line segment whose length represents the
magnitude and whose orientation in space represents the direction.”3 As you may
wonder, this definition does not refer to components and reference frames, which we
often come across when vectors are involved. This is because there is a common con-
fusion between the physical quantity represented by a vector and the representation
of that same quantity in a coordinate system with one-dimensional arrays. The same
word, vector, is used to refer to these arrays, but you should be careful to distinguish
the two. Commonly, an arrow over a lower case letter defines a vector, the physical
quantity, for example−→a , and a lower case bold letter represents a vector defined in a
coordinate system, i.e., with components, for example, a. You should note, however,
that authors sometimes use different conventions. In this book, the coordinate system
used to represent a vector is denoted by a superscript. For example, the variable bS

is the embodiment of
−→
b in frame S, while bT is the embodiment of

−→
b in frame T .

They do not have the same components, but they remain the same vector.
Vectors−→a and

−→
b in a n-dimensional Euclidean space can be displayed with their

components as

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3
...

an−1

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
b3
...

bn−1

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.1)

For example, vectors −→c and
−→
d are shown in Fig. 6.2. As can be seen, two reference

frames are also displayed. Their components in these frames are

cS =
[
1
1

]
, cT =

[
0

1.4142

]
, dS =

[
1
3

]
, dT =

[−1.4142
2.8284

]
(6.2)

2 See https://mathworld.wolfram.com/SphericalCoordinates.html.
3 https://www.merriam-webster.com/dictionary/vector.

https://mathworld.wolfram.com/SphericalCoordinates.html
 133 56538 a 133 56538
a

https://mathworld.wolfram.com/SphericalCoordinates.html
https://www.merriam-webster.com/dictionary/vector
 -1461 57867
a -1461 57867 a

https://www.merriam-webster.com/dictionary/vector

130 R. Stower et al.

Fig. 6.2 Planar vectors and
their components in different
frames

−→c

−→
d1

1

1

3

1.4142

-1.4142

2.8284

XS

Y S

Y T

XT

import numpy as np # Import library

arrays

a = np.array ([1 ,1]) # vector

A = np.array ([1,2],

[3,4]) # matrix

Similarly, tensors are used to represent physical properties of a body (and many
other things). More formally, tensors are algebraic objects defining multilinear rela-
tionships between other objects in a vector space. Do not focus to much on the
mathematical definition, but instead on what you already know. You have already
encountered some tensors in this chapter, since scalars and vectors (the physical
quantity, not the array) are, respectively, rank-0 and rank-1 tensors.4 Therefore, ten-
sors can be seen as their generalization. One example of rank-2 tensors is the inertia
tensor of a rigid body, which basically represents how the mass is distributed in a
rigid body (which does not depend on a reference frame). For the sake of numerical
computation, the representation of a rank-2 tensor in a coordinate system can be done
with what we call a matrix. You should be careful, however, not to confuse matrices
and rank-2 tensors. Indeed, all rank-2 tensors can be represented by a matrix, but
not all matrices are rank-2 tensors. In other words, matrices are just boxes (arrays)
with numbers inside (components) that can be used to represent different objects,
rank-2 tensors among them. Matrices are generally represented by upper case bold
letters, eg. A. Matrices, which have components, can also be defined in specific ref-
erence frames. Therefore, the superscript to denote the reference frame also applies
to matrices in the book, e.g., HS is a homogeneous transformation matrix (will be
seen in Sect. 6.4.4) defined in S.

Other common matrices with typical characteristics include:

• the square matrix, which is a matrix with an equal number of rows and columns;
• the diagonal matrix, which only has nonzero components on its diagonal, i.e.,
components (1, 1), (2, 2), . . . , (n, n);

• the identity matrix 1, which is a (n × n) matrix with only 1 on the diagonal, the
other components all being equal to 0.

4 For more information on tensors and their rank: https://mathworld.wolfram.com/Tensor.html.

https://mathworld.wolfram.com/Tensor.html
 16714 58266 a 16714 58266 a

https://mathworld.wolfram.com/Tensor.html

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 131

6.3.3 Basic Vector/Matrix Operations

Vectors and matrices are powerful and versatile mathematical tools with several
handful properties and operations. We will recall the most useful in robotics in the
following.

Dot Product

The addition and the multiplication with a scalar operations with vectors are simply
distributed over the components. Otherwise, twomost relevant operations in robotics
are the dot and cross products. The dot product is also known as the scalar product,
as the result of the dot product of two arbitrary vectors is a scalar. Let −→a and

−→
b be

two arbitrary vectors and their corresponding magnitude5 be ‖−→a ‖ and ‖−→b ‖, then
the dot product of these two vectors is

−→a · −→
b = ‖−→a ‖‖−→b ‖ cos θ (6.3)

where θ is the angle between those two vectors. If the two vectors are orthogonal,
by definition, the result will be zero. If components are used, then we have

a · b = a1b1 + a2b2 + a3b3 + · · · + an−1bn−1 + anbn (6.4)

import numpy as np # Import library

dot product

np.dot(a,b) # dot product of two array -like inputs

np.linalg.multi_dot(a,b,c) # dot product of two or more arrays in a single call

magnitude of a vector

np.linalg.norm(a)

Using the numerical values previously given in (6.2), the dot product of −→a and
−→
b

is:

−→a · −→
b = 1.4142 · 3.1623 cos(0.4636) =4 (6.5)

aS · bS = 1 · 1 + 1 · 3 =4 (6.6)

aT · bT = 0 · −1.4142 + 1.4142 · 2.8284 =4 (6.7)

As you can see from this example, both the geometric and algebraic definitions of
the dot product are equivalent.

Cross Product

The other type of multiplication with vectors is the cross product. Contrary to the
dot product, the cross product of two vectors results in another vector, not a scalar.
Again, both vectors must have the same dimension. With −→a and

−→
b used above, the

cross product is defined as

5 Length, always positive.

132 R. Stower et al.

−→a × −→
b = ‖−→a ‖‖−→b ‖ sin θ

−→e (6.8)

where, as with the dot product, θ is the angle between −→a and
−→
b , and −→e is a unit

vector6 orthogonal to the first two. Its direction is established with the right-hand
rule. In 3D space, the components of the resulting vector can be computed with the
following formula:

a × b =
⎡
⎣

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎤
⎦ (6.9)

where a = [a1 a2 a3]T and b = [b1 b2 b3]T .

The right-hand rule is used to easily determine the direction of a vector
resulting from the cross product of two others. First, you point in the direction
of the first vector with your remaining fingers, then curl them to point in the
direction of the second vector. According to this rule, the thumb of the right
hand will point along the direction of the resulting vector, which is normal
to the plane formed by the two initial vectors.

import numpy as np # Import library

cross product

np.cross(a,b)

Again, using the numerical values used above in (6.2), we can compute the cross
product. Of course, since these two vectors are planar and the cross product is defined
over 3D space, the third component in Z is assumed equal to zero. The result is given
below:

−→a × −→
b = 1.4142 · 3.1623 sin(0.4636)−→k =2

−→
k (6.10)

aS × bS =
⎡
⎣
1 · 0 − 0 · 3
0 · 1 − 1 · 0
1 · 3 − 1 · 1

⎤
⎦ =

⎡
⎣
0
0
2

⎤
⎦ (6.11)

aT × bT =
⎡
⎣

1.4142 · 0 − 0 · 2.8284
0 · −1.41421356 − 1.4142 · 0
0 · 2.8284 − 1.4142 · −1.4142

⎤
⎦ =

⎡
⎣
0
0
2

⎤
⎦ (6.12)

where
−→
k is the unit vector parallel to the Z -axis. By this definition, you can observe

that the unit vector defining the Z -axis of a Cartesian coordinate frame is simply
the cross product of the unit vectors defining the X - and Y -axes, following the order
given by the right-hand rule. These three unit vectors are commonly labeled

−→
i ,

−→
j

and
−→
k , as shown in Fig. 6.3. You should note that the cross product of unit vector

−→a with
−→
j also results in

−→
k , since −→a is also in the XY -plane. Moreover, as you

6 With a magnitude of 1.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 133

Fig. 6.3 Unit vectors
defining a Cartesian frame

X

Y

Z

−→
j

−→
i

−→
k

−→a

−→
i × −

k

can see with the cross product of
−→
i and

−→
k illustrated in the same figure, a vector

is not attached to a particular point in space. As mentioned before, it is defined by
a direction and a magnitude, thus the location where it is represented does not have
any impact on the cross product result.

Matrix Multiplication

Similarly to vectors, the addition and multiplication by a scalar are also distributed
over the components for matrices. On the other hand, the matrix multiplication is
a little more complicated. Let matrix A be defined by row vectors and matrix B be
defined by column vectors, i.e.,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
a3
...

an−1

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B = [
b1 b2 b3 . . . bn−1 bn

]
(6.13)

Then, the matrix multiplication is defined as

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 · b1 a1 · b2 a1 · b3 . . . a1 · bn−1 a1 · bn

a2 · b1 a2 · b2 a2 · b3 . . . a2 · bn−1 a2 · bn

a3 · b1 a3 · b2 a3 · b3 . . . a3 · bn−1 a3 · bn
...

...
...

. . .
...

an−1 · b1 an−1 · b2 an−1 · b3 . . . an−1 · bn−1 an−1 · bn

an · b1 an · b2 an · b3 . . . an · bn−1 an · bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.14)

While this result may seem scary at first, you can see that the (i, j) component7 is
simply the dot product of the i th row of the first matrix and the j th column of the

7 The (i, j) component is the component on the i th row and j th column.

134 R. Stower et al.

second matrix. The number of columns of the first matrix (A) must be equal to the
number of rows of the second matrix (B).

import numpy as np # Import library

matrix multiplication

np.matmul(A,B) # for array -like inputs

A @ B # for ndarray inputs

To illustrate this operation, let A and B be (2 × 2) matrices, i.e.,

A =
[
1 2
3 4

]
, B =

[
1 0

−1 2

]
(6.15)

then, the result of the matrix multiplication is

AB =
[
1 · 1 − 2 · 1 1 · 0 + 2 · 2
3 · 1 − 4 · 1 3 · 0 + 4 · 2

]
=

[−1 4
−1 8

]
(6.16)

It is critical that you understand that matrix multiplication is not commutative,
whichmeans the ordermatters, as you can see in the following examplewithmatrices
A and B used above:

AB =
[−1 4
−1 8

]
, but BA =

[
1 2
5 6

]
(6.17)

Transpose of a Matrix

Another common operation on a matrix is the computation of its transpose, namely
an operation which flips a matrix over its diagonal. The generated matrix, denoted
AT has the row and column indices switched with respect to A. For instance, with a
(3 × 3) matrix C, its transpose is defined as

CT =
⎡
⎣

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

⎤
⎦

T

=
⎡
⎣

c1,1 c2,1 c3,1
c1,2 c2,2 c3,2
c1,3 c3,2 c3,3

⎤
⎦ (6.18)

import numpy as np # Import library

matrix transpose

np.transpose(A) # function for array -like input

A.transpose() # method for ndarray

A.T # attribute for ndarray

Since vectors (array of components) are basically (1 × n)matrices, the transpose can
be used to compute the dot product of two vectors with a matrix multiplication, i.e.,

a · b = aTb = a1b1 + a2b2 + · · · + anbn (6.19)

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 135

Determinant and Inverse of a Matrix

Finally, a brief introduction to the inverse of a matrix is necessary, as it is quite
common in robotics, from the mechanics to control to optimization. Let A be a
(n × n) square matrix;8 this matrix is invertible if

AB = 1, and BA = 1 (6.20)

Then, matrix B is the inverse of A and therefore can be written as A−1. The compo-
nents of A−1 can be computed formally with the following formula:

A−1 = 1

det(A)
CT (6.21)

where det(A) is called the determinant of A and C is the cofactor matrix9 of A. The
determinant of a matrix, a scalar sometimes labeled ‖A‖, is equal to, in the case of
a (2 × 2) matrix,

det(A) = ad − bc, where A =
[

a b
c d

]
(6.22)

Similarly, for a 3 × 3 matrix, we have

det(A) = a(ei − f h) − b(di − f g) + c(dh − eg), where A =
⎡
⎣

a b c
d e f
g h i

⎤
⎦

(6.23)
The determinant of a matrix is critical when it comes to the computation of its
inverse, as a determinant of 0 corresponds to a singular matrix, which does not have
an inverse. The inverse of a (2 × 2) matrix can be computed with the following
formula

A−1 = 1

ad − bc

[
d −b

−c a

]
, where A =

[
a b
c d

]
(6.24)

Similarly, for a 3 × 3 matrix, we have

A−1 = 1

det(A)

⎡
⎣

(ei − f g) −(bi − ch) (b f − ce)
−(di − f g) (ai − cg) −(a f − cd)

(dh − eg) −(ah − bg) (ae − bd)

⎤
⎦ , where A =

⎡
⎣

a b c
d e f
g h i

⎤
⎦

(6.25)

8 Same number of rows and columns.
9 The cofactor matrix will not be introduced here for the sake brevity, but its definition can be found
in any linear algebra textbook.

136 R. Stower et al.

import numpy as np # Import library

matrix determinant

np.linalg.det(A)

matrix inverse

np.linalg.inv(A)

As you can see from Eq. (6.25), you cannot inverse a matrix with a determinant
equal to zero, since it would result in a division by zero. The inverse of a matrix is
a useful tool to solve a system of linear equations. Indeed, a system of n equations
with n unknowns can be casted in matrix form as

Ax = b (6.26)

where the unknowns are the components of x, the constants are the components of b
and the factors in front of each unknowns are the components of matrixA. Therefore,
we can find the solution of this system, namely the values of the unknown variables,
as

x = A−1b (6.27)

Generalized Inverses

However, if we have more equations (m) than the number of unknowns (n), the
system is overdetermined, and thusA is no longer a square matrix. Its dimensions are
(m × n). An exact solution to this system of equations cannot generally be found. In
this case, we use a generalized inverse; a strategy to find an optimal solution. Several
generalized inverse, or pseudo-inverse, can be found in the literature (Ben-Israel and
Greville, 2003), each with different optimization criterion. For the sake of this book,
only one type is presented here, the Moore–Penrose generalized inverse (MPGI).
In the case of overdetermined systems, the MPGI is used to find the approximate
solution that minimized the Euclidean norm of the error, which is defined as

e0 = b − Ax0 (6.28)

where x0 and e0 are the approximate solution and the residual error, respectively.
The approximate solution is computed with

x0 = ALb, AL = (ATA)−1AT (6.29)

where AL is named the left Moore–Penrose generalized inverse (LMPGI), since
AIA = 1. As an exercise, you can try to prove this equation.

There is another MPGI that can be useful in robotics, but not quite as common
as the LMPGI, the right Moore–Penrose generalized inverse (RMPGI). The right
generalized inverse is defined as

AR ≡ AT (AAT)−1, AAR = 1 (6.30)

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 137

whereA is am × n matrix withm < n, i.e., representing a system of linear equations
with more unknowns than equations. In this case, this system admits infinitely many
solutions. Therefore, we are not looking for the best approximate solution, but one
solutionwith theminimum-(Euclidean) norm. For example, in robotics, when there is
an infinite set of joint configurations possible to perfectly reach an arbitrary position
with a manipulator, the RMPGI can give you the one minimizing the joint rotations.

With both generalized inverses presented here, we assume that A is full rank,
which means that its individual columns are independent if m > n, or its individual
rows are independent if m < n. In the case of a square matrix (m = n), a full rank
matrix is simply non-singular.

6.4 Geometric Transformations

It is crucial in robotics to be able to describe geometric relations in a clear and
unambiguous way. This is done with coordinate systems and reference frames as
mentioned above. You may have studied already four kinds of geometric transfor-
mation: translation, scaling, symmetry (mirror), and rotation. We will quickly go
over each of them, as they all are useful for computer-assisted design. However,
keep in mind that transformations used to map coordinates in one frame into another
use only translation and rotation.

For clarity, we will present all geometric transformations in matrix form, to lever-
age the powerful operations and properties as well as their condensed format. Using
the vector introduction above (Sect. 6.3.2), the simplest geometric element will be
used to introduce the transformation, the point:

P2D(x, y) =
[

x
y

]
, P3D(x, y, z) =

⎡
⎣

x
y
z

⎤
⎦ (6.31)

In fact, you only need to apply transformations to point entities in order to trans-
form any 2D and 3D geometry. From a set of points, you can define connected pairs,
i.e., edges or lines, and from a set of lines you can define loops, i.e., surfaces. Finally,
a set of selected surfaces can define a solid (Fig. 6.4).

6.4.1 Basic Transformations

Let’s start with a numerical example: given a point in x = 1 and y = 2 that we intend
to move by 2 units toward x positive and by 4 units toward y positive. The algebraic
form of this operation is simply x ′ = x + 2 and y′ = y + 4, which can be written in
matrix form:

138 R. Stower et al.

P (1, 2)

P ′(3, 6)
Y

X(0, 0)

Tx = 2

Ty = 4

P (1, 2)

P ′(2, 4)

Y

XP0

P (1, 2)

Y

X

P ′(−1, 2)

Fig. 6.4 Basic geometrical transformations, from left to right: translation, scaling andmirror (sym-
metry)

P ′ = P + T =
[
1
2

]
+

[
2
4

]
(6.32)

Similar reasoning applies in three dimensions. Now imagine we use point P to define

a line with the origin P0 =
[
0
0

]
and that we want to stretch this line with a scaling

factor of 2. The algebraic form of this operation is x ′ = x × 2 and y′ = y × 2, which
can be written in matrix form:

P ′ = S P =
[
2 0
0 2

] [
1
2

]
(6.33)

This scaling operation is referred to as proportional, since both axes have the same
scaling factor. Using different scaling factors will deform the geometry. If, instead
of scaling the geometry, we use a similar diagonal matrix to change the sign of one
or more of its components, it will generate a symmetry. For instance, a symmetry
with respect to y is written:

P ′ = S P =
[−1 0
0 1

] [
1
2

]
(6.34)

These operations are simple and do not change with increasing the dimensions from
two to three. The rotations, however, are not as such.

6.4.2 2D/3D Rotations

A rotation is a geometric transformation that is more easily introduced with polar
coordinates (see Fig. 6.5):

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 139

Fig. 6.5 Planar rotation and
polar coordinates

Y

X

P (x, y)

P ′(x′, y′)

α

θr

(0, 0)

P =
[

x
y

]
=

[
r cos(α)

r sin(α)

]
. (6.35)

Then a rotation θ applied to this vector consists in:

P ′ =
(

r cos(α + θ)

r sin(α + θ)

)
, (6.36)

which can be split with respect to the angles using common trigonometric identities
leading to

P ′ =
[

x cos(θ) − y sin(θ)

x sin(θ) + y cos(θ)

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

] [
x
y

]
. (6.37)

The resulting 2 × 2 matrix is referred to as the rotation matrix, and its format is
unique in 2D. Any rotation in the plane can be represented by this matrix, using the
right-hand rule for the sign of θ . This matrix is unique because a single rotation axis
exists for planar geometry: the perpendicular to the plane (often set as the z-axis). For
geometry in three-dimensional space, there is an infinite number of potential rotation
axis; just visualize the rotational motions you can apply to an object in your hand.
One approach to this challenge consists in defining a direction vector in space and a
rotation angle around it, since Leonhard Euler taught us that “in three-dimensional
space, any displacement of a rigid body such that a point on the rigid body remains
fixed, is equivalent to a single rotation about some axis that runs through the fixed
point.” While this representation is appealing to humans fond of geometry, it is not
practical to implement in computer programs for generalized rotations. Instead, we
can decompose any three-dimensional rotation into a sequence of three rotations
around principal axis. This approach is called the Euler’s Angles and is the most
common representation of three-dimensional rotation. We only need to define three
matrices:

140 R. Stower et al.

Rx =
⎡
⎣
1 0 0
0 cos(ψ) − sin(ψ)

0 sin(ψ) cos(ψ)

⎤
⎦ , (6.38)

Ry =
⎡
⎣

cos(φ) 0 sin(φ)

0 1 0
− sin(φ) 0 cos(φ)

⎤
⎦ , (6.39)

Rz =
⎡
⎣
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎤
⎦ . (6.40)

If these matrices are the only ones required to represent any rotation, they still leave
two arbitrary definitions: 1. the orientation of the principal axes (x − y − z) in space,
2. the order of the rotations. Rotation matrices are multiplication operations over
geometry features, and, as mentioned above, these operations are not commutative.
The solution is to agree over a universal set of conventions:

XY X, XY Z , X Z X, X ZY, Y XY, Y X Z , Y Z X,

Y ZY, Z XY, Z X Z , ZY X, and ZY Z . (6.41)

These twelves conventions still need their axes orientation to be defined: Each axis
can either be fixed to the inertial frame (often referred to as extrinsic rotations) or
attached to the body rotating (often referred to as intrinsic rotations). For instance,
the fixed rotation matrix for the XY Z convention is:

RzRyRx =
⎡
⎣
cosθ cosφ cosθ sinφ sinψ − sinθ cosψ cosθ sinφ cosψ + sinθ sinψ

sinθ cosφ sinθ sinφ sinψ − cosθ cosψ sinθ sinφ cosψ − cosθ sinψ

− sinφ cosφ sinψ cosφ cosψ

⎤
⎦ .

(6.42)
While using a fixed frame may seem easier to visualize, most embedded controllers
require their rotational motion to be expressed in the body frame; one attached to the
object and moving with it. The same convention XY Z , but in mobile frame is:

R′
xR

′
yR

′
z =

⎡
⎣

cosφ cosθ − cosφ sinθ sinφ

cosψ sinθ + sinψ sinφ cosθ cosψ cosθ − sinψ sinφ sinθ − sinψ cosφ
sinψ sinθ − cosψ sinφ cosθ sinψ cosθ + cosψ sinφ sinθ cosψ cosφ

⎤
⎦ .

(6.43)
In aviation, the most common convention is the ZYX (roll–pitch–yaw) also

called the Tait–Bryan variant. In robotics, each manufacturer and software devel-
oper decides on the convention they prefer to use, for instance, FANUC and KUKA
use the fixed XYZ Euler angle convention, while ABB uses the mobile ZYX Euler
angle convention. As for computer-assisted design, the Euler angles used in CATIA
and SolidWorks are described by the mobile ZYZ Euler angles convention.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 141

Fig. 6.6 Vector
representation of planar
rotation using the imaginary
axis i

i

i2 = −1

θ

-2 -1 0 1 2

Euler’s angle representation is known to have a significant limitation: gimbal lock.
In a glimpse, each convention suffers from singular orientation(s), i.e., orientation
at which two axes are overlaid, thus both having the same effect on rotation. With
two axes generating the same rotation, our three-dimensional space is no longer fully
reachable; i.e., one rotation is not possible anymore. Gimbal lock has become a rather
popular issue in spacecraft control since Apollo’s mission suffered from it (Jones
and Fjeld, 2006). Nevertheless, Euler’s angles stay the most common and intuitive
representation of three-dimensional rotation and orientation, but others, often more
complex, representation were introduced to cope with this limitation.

6.4.3 Quaternion

One such gimbal-lock-free representation is the quaternion. Quaternion is a rather
complexmathematical conceptwith respect to the level required for this textbook.We
will not try to define exactly the quaternion in terms of their mathematical construc-
tion, and we will not detail all of their properties and operations. Instead, you should
be able to grasp the concept thanks to a comparison with the imaginary numbers, a
more common mathematical concept.

We recall that the imaginary axis (i) is orthogonal to the real numbers one (see
Fig. 6.6), with the unique property i2 = −1. Together they create a planar reference
frame that can be used to express rotations:

R(θ) = cos(θ) + sin(θ)i. (6.44)

In other words, we can write a rotation in the plane as a vector with an imaginary
part. Now, imagine adding two more rotations as defined above with Euler’s angles:
we will need two more “imaginary” orthogonal axes to represent these rotations.
Equation 6.44 becomes:

R(θ) = cos(θ) + sin(θ)(xi + y j + zk). (6.45)

142 R. Stower et al.

While this can be easily confused with a vector-angle representation, remember that
i − j − k define “imaginary” axes; not coordinates in the Cartesian space. These
axes hold similar properties as the more common i imaginary axis:

‖i, j, k‖ = 1, j i = −k, i j = k, i2 = −1. (6.46)

For most people, quaternions are not easy to visualize compared to Euler angles, but
they provide a singularity-free representation and several computing advantages. This
is why ROS (see Chap. 5) developers selected this representation as their standard.

In Python, the scipy library contains a set of functions to easily change from one
representation to another:

Import the library

from scipy.spatial.transform import Rotation as R

Create a rotation with Euler angles

mat = R.from_euler(’yxz’, [45, 0, 30], degrees=True)

print("Euler: ", mat.as_euler(’yxz’, degrees=True))

Print the resulting quaternion

print("Quaternion: ", mat.as_quat ())

6.4.4 Homogeneous Transformation Matrices

A standardized way to apply a transformation from one coordinate system to another,
i.e., to map a vector from one reference frame to another, is to use homogeneous
transformation matrices. Indeed, a homogeneous transformation matrix can be used
to describe both the position and orientation of an object.

The (4 × 4) homogeneous transformation matrix is defined as

HT
S ≡

[
Q p
0T 1

]
(6.47)

where Q is the (3 × 3) rotation (orientation) matrix, p is the three-dimensional vec-
tor defining the Cartesian position [x, y, z] of the origin and 0 is the three-
dimensional null vector. As can be seen with the superscript and subscript of H, the
matrix defines the reference frameT in the reference frameS.While being composed
of 9 components, there are not all independent, since the position and orientation in
the Cartesian space add up to 6 degrees-of-freedom (DoF). Whereas the translation
introduced above were defined as additions, the homogeneous matrix merges it with
rotation and makes it possible to use only multiplications.

http://dx.doi.org/10.1007/978-981-19-1983-1_5
 8480 10046 a 8480 10046 a

http://dx.doi.org/10.1007/978-981-19-1983-1_5

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 143

6.5 Basic Probability

6.5.1 Likelihood

When we talk about probability, we are typically interested in predicting the likeli-
hood of some event occurring, expressed as P(event). On the most basic level, this
can be conceptualized as a proportion representing the number of event(s) we are
interested in (i.e., that fulfill some particular criteria), divided by the total number of
equally likely events.

Below is a summary of the notation for describing the different kinds and combi-
nations of probability events which will be used throughout the rest of this section
(Table 6.1).

As an example, imagine we have a typical (non-loaded) 6-sided die. Each of the
six sides has an equal likelihood of occurring each time we roll the die. So, the
total number of possible outcomes on a single dice roll, each with equal probability
of occurring is 6. Thus, we can represent the probability of any specific number
occurring on a roll as a proportion over 6.

For example, the probability of rolling a 3 is expressed as:

P(3) = 1

6
(6.48)

The probability of an event not occurring is always the inverse of the probability
of it occurring, or 1 − P(event). This is known as the rule of subtraction.

P(A) = 1 − P(A′) (6.49)

So in the aforementioned example, the probability of not rolling a 3 is:

P(3′) = 1 − 1

6
= 5

6
(6.50)

We could also change our criteria to be more general, for example to calculate
the probability of rolling an even number. In this case, we can now count 3 possible
outcomes which match our criteria (rolling a 2, 4, or 6), but the total number of
possible events remains at 6. So, the probability of rolling an even number is:

Table 6.1 Common probability notations

P(A) Probability of A occurring

P(A′) Probability of A not occurring

P(A ∩ B) Probability of both A and B occurring

P(A ∪ B) Probability of either A or B occurring

P(A|B) Probability of A occurring given B occurs

144 R. Stower et al.

P(even) = 3

6
= 1

2
(6.51)

Now, imagine we expanded on this criterion of rolling even numbers, to calculate
the probability of rolling either an even number OR a number greater than 3. We
now have two different criteria which we are interested in (being an even number
or being greater than 3) and want to calculate the probability that a single dice roll
results in either of these outcomes.

To begin with, we could try simply adding the probability of each individual
outcome together:

P(even ∪ > 3) = 3

6
+ 3

6
= 6

6
= 1 (6.52)

We have ended up with a probability of 1, or in other words, a 100% chance of
rolling a number which is either even or greater than 3. Since we already know there
are numbers on the die which do not meet either of the criteria, we can deduce that
this conclusion is incorrect.

The miscalculation stems from the fact that there are numbers which are both
even numbers AND greater than 3 (namely 4 and 6). By just adding the probabilities
together, we have “double-counted” their likelihood of occurring. In Fig. 6.7, we can
see that if we create a Venn diagram of even numbers and numbers> 3, they overlap
in the middle with the values of 4 and 6. If we think of probability as calculating the
total area of these circles, then we only need to count the overlap once.

So to overcome this double-counting, we subtract the probability of both events
occurring simultaneously (in this example, the probability of rolling a number which
is both an even number AND greater than 3) from the summed probability of the
individual events occurring;

P(even ∪ > 3) = 3

6
+ 3

6
− 2

6
= 4

6
= 2

3
(6.53)

More generally, this is known as the rule of addition and takes the general form:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (6.54)

Fig. 6.7 Venn diagram of
even numbers and numbers
greater than 3

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 145

In the case where two outcomes cannot happen simultaneously (i.e., there is no
overlap in the venn diagram), then P(A ∪ B) = P(A) + P(B), as P(A ∩ B) = 0.
This is known as mutually exclusive events.

Finally, imagine we slightly changed our criteria again, so that we are now inter-
ested in the probability of rolling both an even number AND a number greater than
3. You might have noticed we actually already used the probability of both an even
number and a number greater than three occurring in the previous equation to calcu-
late the probability of either of the two events occurring, P(even ∩ > 3) = 2

6 = 1
3 .

This is because in this example we have a small number of outcomes, meaning it
is relatively easy to just count the number of outcomes which match our criteria.
However, in more complicated scenarios the calculation is not as straightforward.

So, to begin thinking about the question of how to calculate the probability of two
events happening simultaneously, we can first ask what is the probability of one of
the events occurring, given the other event has already occurred. In this example,
we could calculate the probability of rolling a number greater than 3, given that the
number rolled is already even. That is, if we have already rolled the die and know that
the outcome is an even number, what is the likelihood that it is also greater than 3?

We already know that there are three sides of the die which have even numbers
(2, 4, or 6). This means our number of possible outcomes, if we know the outcome
is even, is reduced from 6 to 3. We can then count the number of outcomes from
this set which are greater than 3. This gives us two outcomes (4 and 6). Thus, the
probability of rolling a number greater than 3, given that it is also even is:

P(> 3|even) = 2

3
(6.55)

However, this calculation still overestimates the probability of both events occur-
ring simultaneously, as we have reduced our scenario to one where we are 100% sure
one of the outcomes has occurred (we have already assumed that the outcome of the
roll is an even number). So, to overcome this, we can then multiply this equation
by the overall probability of rolling an even number, which we know from before is
P = 3

6 .

P(even ∩ > 3) = 3

6
× 2

3
= 6

18
= 1

3
(6.56)

This gives us the same value, P(A ∩ B) = 1
3 that we saw in our previous equation.

This is also called the rule of multiplication, with the general form:

P(A ∩ B) = P(A)P(B|A) (6.57)

One additional factor to consider when calculating probability is whether events
are dependent or independent. In the dice example, these events are dependent, as
one event happening (rolling an even number) affects the probability of the other
event happening (rolling a number greater than 3). The overall probability of rolling

146 R. Stower et al.

a number greater than 3 is 1
2 , but increases to

2
3 if we already know that the number

rolled is even.
If events are independent, i.e., do not affect each other’s probability of occurring,

the rule of multiplication reduces to:

P(A ∩ B) = P(A) × P(B) (6.58)

The rule of multiplication also forms the basis for Bayes’ theorem, to be discussed
in the next section.

6.5.2 Bayes’ Theorem

Bayes’ rule is a prominent principle used in artificial intelligence to calculate the
probability of a robot’s next steps given the steps the robot has already executed.
Bayes’ theorem is defined as:

P(A ∩ B) = P(A)P(B|A)

P(B)
(6.59)

Robots (and sometimes humans) are equippedwith noisy sensors and have limited
information on their environment. Imagine a mobile robot using vision to detect
objects and its own location. If it detects an oven it can use that information to infer
where it is. What you know is that the probability of seeing an oven in a bathroom is
pretty low, whereas it is high in a kitchen. You are not 100% sure about this, because
you might have just bought it and left it in the living room, or your eyes are “wrong”
(your vision sensors are noisy and erroneous), but it is probabilistically more likely.
Then, it seems reasonable to guess that, given you have seen an oven, you are “more
likely” to be in a kitchen than in bathroom. Bayes’ theorem provides one (not the
only one) mechanism to perform this reasoning.

P(room) is the “prior” belief before you’ve seen the oven, P(oven|room) pro-
vides the likelihood of seeing an oven in some room, and P(room|oven) is your
new belief after seeing the oven. This is also called the “posterior” probability, the
conditional probability that results after considering the available evidence (in this
case an observation of the oven).

6.5.3 Gaussian Distribution

Moving away from our dice example, we know that in real-life things do not always
have an equal probability of occurring.When different outcomes have different prob-
abilities of occurring, we can think about these probabilities in terms of frequencies.
That is, in a given number of repetitions of an event, how frequently is a specific

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 147

Fig. 6.8 Normal distribution

outcome likely to occur? We can plot these frequencies on a frequency histogram,
which counts the number of times each event has occurred. This logic forms the basic
of frequentist statistics, which we discuss more of in Sect. 6.7.

The Gaussian, or normal, distribution (aka the “Bell Curve”) refers to a fre-
quency distribution or histogram of data where the data points are symmetrically
distributed—that is, there is a “peak” in the distribution (representing the mean)
under which most values in the dataset occur, which then decreases symmetrically
on either side as the values become less frequent (see Fig. 6.8). Many naturally
occurring datasets follow a normal distribution, for example, average height of the
population, test scores on many exams, and the weight of lubber grasshoppers. In
robotics, we can see a normal distribution on the output of several sensors. In fact, the
central limit theorem suggests that, with a big enough sample size, many variables
will come to approximate a normal distribution (even if they were not necessar-
ily normally distributed to begin with), making it a useful starting point for many
statistical analyses.

We can use the normal distribution to predict the likelihood of a data point falling
within a certain area under the curve. Specifically,we know that if our data is normally
distributed, 68.27% of data points will fall within 1 standard deviation of the mean,
95.45% will fall within 2 standard deviations, and 99.73% will fall within 3 standard
deviations. In probability terms, we could phrase this as “there is a 68.27% likelihood
that a value picked at random will be within one standard deviation of the mean.”
The further away from the mean (the peak of the curve) a value is, the lower its
probability of occurring. The total probability of all values in the normal distribution
(i.e., the total area under the curve) is equal to 1.

Mathematically, the area under the curve is represented by a probability density
function, where the probability of falling within a given interval is equal to the area
under the curve for this interval. In other words, we can use the normal distribution to
calculate the probability density of seeing a value, x , given the mean,μ, and standard
deviation, σ 2.

p(x |μ, σ 2) = 1√
2πσ 2

e− 1
2

(x−μ)2

2σ2 (6.60)

148 R. Stower et al.

Fig. 6.9 Derivative of a
function gives the
instantaneous slope of that
function. Locations with null
derivative are in green: the
optimums

f (x)

x

We can see that there are actually only two parameters which need to be input,
μ, and σ 2. The simplicity of this representation is also relevant to computer science
and robotics applications.

In a classic normal distribution, the mean is equal to 0, and the standard deviation
is 1. The mean and standard deviation of any normally distributed dataset can then
be transformed to fit these parameters using the following formula:

z = x − μ

σ
(6.61)

These transformed values are known as z-scores. Thus, if we have the mean and
standard deviation of any normally distributed dataset, we can convert it into z-
scores. This process is called standardization, and it is useful because it means we
can then use the aforementioned properties of the normal distribution to work out the
likelihood of a specific value occurring in any dataset which is normally distributed,
independent of its actual mean and standard deviation. This is because each z-score is
associated with a specific probability of occurring (we already know the probabilities
for z-scores at exactly 1, 2, and 3 standard deviations above/below the mean). You
can check all z-score probabilities using z-tables.10 From these, we can calculate the
percentage of the population which falls either above or below a certain z-score. A
z-score can then be considered a test statistic representing the likelihood of a specific
result occurring in a (normally distributed) dataset. This becomes important when
conducting inferential statistics, to be discussed later in this chapter.

6.6 Derivatives

Differential calculus is an essential tool for most of the mathematical concepts in
robotics: fromfinding optimal gains to the linearization of complex dynamic systems.

10 https://www.ztable.net/.

https://www.ztable.net/
 -1104 58331 a -1104 58331 a

https://www.ztable.net/

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 149

The derivative of a function f (x) is the rate at which its value changes. It can be
approximated by f ′(x) = 	 f (x)

	x . However, several algebraic functions have known
exact derivatives, such as v̇xn x = nxn−1. In robotics, we manipulate derivatives for
physical variables such as the velocity (ẋ), the derivative of the position (x), and
the acceleration (ẍ), the derivative of the velocity. On top of this, derivative can be
helpful to find a function optimum: when the derivative of a function is equal to
zero we are either at a (local) minimum or a (local) maximum (see Fig. 6.9). Several
properties are useful to remember, such as the derivative operator can be distributed
over addition:

[f (x) + g(x)]′ = f ′(x) + g′(x), (6.62)

and distributed over nested functions:

f (g(x))′ = f ′(g(x))g′(x). (6.63)

Finally, derivative operators can be distributed over a multivariate function, using
partial derivatives, i.e., derivatives with respect to each variable independently. For
instance:

∂[Ax1 + Bx2]x1 = A. (6.64)

6.6.1 Taylor Series

Robotics is all about trying to control complex dynamic systems in complex dynamic
environments. Most often these systems andmodels present nonlinear dynamics. For
instance, airplane and submarines drag forces impact the vehicle acceleration with
regard to the (square of) its velocity. One way to cope with this complexity is to sim-
plify the equation using polynomial (an addition of various powers) approximation.
The most popular is certainly the Taylor series:

f (x)|a = f (a) + f ′(a)

1! (x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3 + · · ·
(6.65)

which approximate f (x) around the point x = a using a combination of its deriva-
tives. If we want our approximation to linearize the function, we will keep only the
first two terms:

f (x) ≈ f (a) + f ′(a)(x − a) (6.66)

6.6.2 Jacobian

Now instead of a single function depending of a single variable, you will often find
yourself with a set of equations each depending of several variables. For instance,

150 R. Stower et al.

f1 = Axy, f2 = Cy2 + Dz, and f3 = E/x + Fy + Gz (6.67)

which can be written as a vector:

F =
⎡
⎣

f1
f2
f3

⎤
⎦ . (6.68)

You can linearize this system of equations using Taylor’s series:

F ≈ F(a) + J

⎡
⎣

x − xa

y − ya

z − za

⎤
⎦ , (6.69)

where J is the matrix of partial derivatives of the functions, often referred to as the
Jacobian, in this case:

J =
⎡
⎣

∂ f1x ∂ f1y ∂ f1z
∂ f2x ∂ f2y ∂ f3z
∂ f3x ∂ f3y ∂ f3z

⎤
⎦ =

⎡
⎣

Ay Ax 0
0 2Cy D

−E/x2 F G

⎤
⎦ . (6.70)

In Chap. 10, the Jacobian is leveraged as amatrix to relate the task space (end effector
velocities) to the joint space (actuator velocities). A Jacobian matrix derived for a
single function, i.e., a single row matrix, is called a gradient, noted (for a geometric
function in Cartesian space):

∇ f = [
∂ f x ∂ f y ∂ f z

]
. (6.71)

The gradient is a useful tool to find the optimum of a function by traveling on it; a
stochastic approach very useful in machine learning (see Chap. 15).

6.7 Basic Statistics

When conducting research in robotics, and especially user studies, you will often
have data you have collected in pursuit of answering a specific research question.
Typically, such research questions are framed around the relationship between an
independent variable and a dependent variable. For example, you might ask how the
number of drones (independent variable) in a mission affects the operator’s cognitive
workload (dependent variable). Being able to analyze the data you have collected
is then necessary to communicate the outcomes from your research. Chapter 13
gives more detail on how to design and conduct user studies, for now we will begin
explaining some of the analyses you can perform once you have obtained some data!

http://dx.doi.org/10.1007/978-981-19-1983-1_10
 1877 26604 a 1877 26604 a

http://dx.doi.org/10.1007/978-981-19-1983-1_10
http://dx.doi.org/10.1007/978-981-19-1983-1_15
 26157 37231 a 26157
37231 a

http://dx.doi.org/10.1007/978-981-19-1983-1_15
http://dx.doi.org/10.1007/978-981-19-1983-1_13
 33696 53171 a 33696 53171 a

http://dx.doi.org/10.1007/978-981-19-1983-1_13

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 151

Table 6.2 Common parameter notations for samples versus populations

Parameter Sample Population

Mean x̄ μ

Standard deviation s σ

Variance s2 σ 2

Number of data points n N

The first step of analyzing any dataset is usually to describe its properties in a way
that is meaningful to your audience (descriptive statistics). This involves taking the
raw data and transforming it (e.g., into visualizations or summary statistics). The
second step is then to determine how you can use your data to answer a specific
research question and/or generalize the results to a broader population (inferential
statistics). Here, it is important to distinguish between a sample of data collected,
and the population the data is intended to generalize to (see also Chap. 13). Criti-
cally, descriptive statistics only relate to the actual sample of data you have collected,
whereas inferential statistics try to make generalizations to the population. Typically,
formulas relating to calculating values of a sample use Greek letters, whereas for-
mulas relating to a population use Roman letters. Below is a table with some of the
most common notations for both samples and populations (Table 6.2).

When we collect data our samples can either be independent (the data is from two
different groups of people) or repeated (from the same group). For example, imagine
we wanted to test robotics students’ knowledge of basic geometry and linear algebra.
We could either take a single sample of students, and test their knowledge before and
after reading this chapter—this would be a within-groups study, as the same students
were tested each time. Alternatively, we could take a sample of students who have
read this book chapter and compare them against a sample who have not read this
chapter. There is no overlap between these two groups; thus, it is a between-groups
study design.

You can first begin describing the properties of your sample using three different
measures of central tendency; the mean, the median, and the mode. The mode
represents the most common response value in your data . That is, if you took all of
the individual values from your dataset and counted how many times each occurred,
themode is the valuewhich occurred themost number of times. For example, imagine
we asked 10 robotics professors how many robots they have in their laboratory (see
Table 6.3).

We can see that the most common value reported is 12 robots—this is the mode.
The mode can be most easily identified by creating a frequency distribution of the
values in your dataset (see Fig. 6.10).

The median is the value which is in the middle of your range of values. Using the
aforementioned example, if we ranked the number of robots in each laboratory from
smallest to largest, the median is the value which falls exactly in the middle (or, if
there is an even number of data points, the sum of the two middle values divided by

http://dx.doi.org/10.1007/978-981-19-1983-1_13
 30313 19659 a 30313 19659
a

http://dx.doi.org/10.1007/978-981-19-1983-1_13

152 R. Stower et al.

Table 6.3 Sample data of robots per professor

Professor ID Number of Robots

1 1

2 5

3 7

4 10

5 10

6 12

7 12

8 12

9 15

10 20

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Robots

Fr
eq

ue
nc

y

Fig. 6.10 Frequency distribution of the number of robots per laboratory

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 153

2). In this case, we have 10 values, so the median is the average of the 5th and 6th
values, 10+12

2 = 11.
However, the median and the mode both rely on single values, and thus, ignore

much of the information which is available in a dataset. The final measure of central
tendency is then the mean, which takes into account all of the values in the data
by summing the total of all the values, and dividing them by the total number of
observations. The formula to calculate the mean of a sample is expressed as:

x̄ =
∑N

i=1 xi

n
(6.72)

where x̄ represents the mean of the sample, x represents an individual value, and
n represents the number of values in the dataset.

In our example, this would be:

x̄ robots = 1 + 5 + 7 + 10 + 10 + 12 + 12 + 12 + 15 + 20

10
= 10.4 (6.73)

Conversely to the median and the mode, this value does not actually have to exist
in the dataset (e.g., if the average number of robots in the laboratory is actually 10.4,
some students probably have some questions to answer . . .)

Many basic statistics can be computed in Python using the numpy library:

import numpy as np # Import the library

mu = np.mean(data) # Mean of the sample ‘‘data ’’

mod = np.mode(data) # Mode of the sample ‘‘data ’’

med = np.median(data) # Mode of the sample ‘‘data ’’

In the classic normal distribution, the mean, the median, and the mode are equal
to each other. However, in real life, data often does not conform perfectly to this
distribution, thus, these measures can differ from each other. In particular, while the
median and the mode are relatively robust to extreme values (outliers), the value of
the mean can change substantially. For example, imagine our sample included one
professor who works with microrobots who reported having hundreds of robots in
their lab. This would obviously skew the mean by a lot while not being representative
of the majority of the sample.

Let’s say we asked another 90 robotics professors about the number of robots they
have, so we now have sampled a total of 100 robotics professors. Our results now
show the frequency distribution shown in Fig. 6.11.

We can see that although the mean is still 10.4, the mode is now 8 robots, and
the median is 10. These values, although similar to each other, are not identical,
although the data is normally distributed. We can check this using the probability
density function. Again, this is not perfectly represented by the normal distribution,
but it makes a very good approximation of the data.

154 R. Stower et al.

0

3

6

9

Number of Robots

Fr
eq

ue
nc

y

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Robots

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Fig. 6.11 Frequency histogram and probability density function for a normally distributed dataset.
The graph on the left shows the measures of central tendency, with the dark purple bar representing
the model, the dashed purple line representing the median, and the solid black line representing the
mean. The graph on the right shows the actual probability distribution of the data contrasted with
the normal distribution

6.7.1 Variance

The sensitivity of our dataset descriptive metrics to new data points can be grasped in
terms of its variability. We can measure the amount of variance in any given sample,
as well as detect outliers, in multiple different ways. The first one is the standard
deviation. This represents on average, how far away values are from the mean. The
smaller the standard deviation, the closer the values in the sample are on average to
the mean, and the more accurate the mean is at representing the sample. We can also
use the standard deviation to create a cutoff for extreme values—any value which
falls above or below 3 standard deviations from the mean is likely to be an outlier
(i.e., not representative of the population) and can often be excluded.

To calculate the standard deviation of a variable, we first take each individual
value and subtract the mean from it, resulting in a range of values representing the
deviances from the mean. The total magnitude of these deviances is equal to the
total variance in the sample. However, given that some individual values will be
above the mean, and some below, we need to square these values so that they are
all positive, to avoid positive and negative values canceling each other out. We then
sum the squared deviances to get a total value of the error in the sample data (called
the sum of squares). Next, we divide by the number of data points in the sample
(n), minus one. Because we are calculating the sample mean, and not the population
mean, n − 1 represents the degrees of freedom in the sample. This is because we
know both, the sample mean and the number of data points. Thus, if we have the
values of all the data points bar one, the last data point can only be whatever value
is needed to get that specific mean. For example, if we go back to our first sample of
10 robotics professors, and took the values of the first 9, knowing that the mean is
10.4 and that we sampled 10 robotics professors total, the number of robots in the
laboratory of the last professor must have a fixed value.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 155

10.4 =1 + 5 + 7 + 10 + 10 + 12 + 12 + 12 + 15 + x

10
x =20

(6.74)

That is, this value of x is not free to vary. So, the degrees of freedom are always
one less than the number of data points in the sample.

Finally, since we initially squared our deviance values, we then take the square
root of the whole equation so that the standard deviation is still expressed in the same
units as the mean.

The full formula for calculating the standard deviation of a sample is described
below. Note that if we were to calculate the standard deviation of the population
mean instead, the first part would be replaced with 1

N , rather than
1

n−1 .

s =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2 (6.75)

In Python, we can compute this using:

import numpy as np # Import the library

stddev = np.std(data) # Standard deviation of the sample ‘‘data ’’

If we don’t take the square root of the equation, and instead leave it as is, this is
known as the variance, denoted by s2.

In statistical testing, we are interested in explaining what causes this variance
around the mean. In this context, the mean can be considered as a very basic model
of the data, with the variance acting as an indicator of how well this model describes
our data. Means with a very large variance are a poor representation of the data,
whereas means with a very small variance are likely to be a good representation.

The variance for any given variable ismade up of two different sources; systematic
variance, which is variance that can be explained (potentially by another variable),
and unsystematic variance, which is due to error in our measurements.

We therefore often in our experiments have more than one variable, and we might
be interested in describing the relationship between these variables—that is, as the
values in one variable change, do the values for the other variable also change? This
is known as covariance.

The total variance of a sample with two variables is then made up of the vari-
ance attributed to variable x, the variance attributed to variable y, and the variance
attributed to both. Remembering that variance is simply the square of the formula
for the standard deviation, or s2, we can frame the sum of the total variance for two
variables as:

(sx + sy)
2 = sx

2 + sy
2 + 2sxy (6.76)

It is this last term, 2sxy that we are interested in, as this represents the covariance
between the two variables. To calculate this, we take the equation for variance, but

156 R. Stower et al.

rather than squaring the deviance of x , (x − x̄), we multiply it by the deviance of the
other variable, y − ȳ. This ensures we still avoid positive and negative deviations
canceling each other out. These combined deviances are called the cross product
deviation.

cov(x, y) = 1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ) (6.77)

To get the covariance between two variables in Python, we can use:

import numpy as np # Import the library

cov = np.cov(data ,ddof =0) #compute the covariance matrix

6.7.2 General Population and Samples

In the aforementioned example, we have a specific population that we are interested
in robotics professors. However, as it would be difficult to test every single robotics
professor in the world, we took only a subset of robotics professors and asked them
about the number of robots they have in their laboratories. In this case, the mean
number of robots is an estimation of the general population mean. This is different
from the true population mean, which is the mean we would get if we actually were
able to ask every single robotics professor how many robots they have. In an ideal
world, the sample you have collected would be perfectly representative of the entire
population, and thus, the sample mean would be equal to the true mean. However,
as there is always some error associated with the data, the sample mean will likely
always vary slightly from the true mean.

If we were to take several different samples of different robotics professors, these
samples would each have their own mean and standard deviation, some of which
might over or underestimate the true population mean. If we were to plot the means
of each of our samples in a frequency distribution, the center of this distribution
would also be representative of the population mean. Importantly, if the population
is normally distributed, the distribution of samples will also be normally distributed.
Thus, knowing the variance in a distribution of samples would allow us to know
how likely it is that any one specific sample is close to the true population mean,
exactly the same as the standard deviation of individual values around a sample mean
allows to estimate the error in that sample. The standard deviation of a distribution
of samples around the population mean is then known as the standard error and is
expressed as.

σ = s√
n

(6.78)

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 157

The standard error allows us to determine how far away, on average, the mean
of a sample taken at random from the population is likely to be from the population
mean. Of course, when we conduct experiments, we cannot actually repeatedly take
different samples from the population—normallyweonly have one sample.However,
the concept of the standard error is theoretically important to understand how we can
generalize our results from our sample to a population. Going back to the central limit
theorem, if you have a large enough sample size, the sample mean will become more
similar to the true population mean. Similarly, the standard error will also come to
approximate the standard error of the population. For this reason, the standard error
is often used in place of the standard deviation when using inferential statistics.

6.7.3 The Null Hypothesis

Hypothesis testing involves generating some prediction about our data and then
testing whether this prediction is correct. Normally, these predictions relate to the
presence or absence of an effect (i.e., there is some relationship between variables,
or not).

The null hypothesis, typically denoted as H0, is the assumption that there will be
no effect present in the data. For example, if you are comparing two different robots
on some feature (e.g., appearance) and how much appearance affects the robots’
likability, H0 would state that there is no difference between the two robots. Relating
this back to our normal distribution, H0 is the assumption that the data from the two
groups come from the same population (i.e., are represented by the same distribution,
with the same mean). That is, do we happen to have two samples that vary in their
mean and standard deviation by chance, but are actually from the same population,
or, is their a systematic difference between the two (see Fig 6.12)?

In contrast, the alternative hypothesis, or H1, relates to the presence of some
effect (in the aforementioned example, H1 would be that there is an effect of robot
appearance on likeability). Again putting this in context of the normal distribution,
H1 is the idea that the data comes from two different population distributions, with
different means and standard deviations. In this context the “populations” can also
refer to an experimental manipulation—e.g., is a population of people who saw a
robot with glowing red buttons and aggressive beeping more likely, on average, to
rank this robot as less likeable than a population of people who saw a robot with
colorful lights and calm beeping?

In inferential testing, we work on the basis that H0 is true by default. Thus, the
goal is not to prove that H1 is true, but rather to try and demonstrate that H0 is false.
That is, we want to show that it is very unlikely that the two (or more) groups come
from the same population distribution.

So, when we have two sample means of different values, we can test whether
the differences in these values are due to chance (i.e., random variation), or, if
they actually come from different populations. The likelihood that we would have
obtained these data, given the null hypothesis is true, is represented by the p-value,

158 R. Stower et al.

Sample 1
Sample 2

Fig. 6.12 Two overlapping bell curves from different samples

Fig. 6.13 p-values in relation to the normal distribution

see Fig. 6.13. Typically, the threshold for this likelihood is set at 95%. That is, if
we assume the null hypothesis is true, and the results from our model indicate that
the likelihood of observing these results is 5% or less, then the null hypothesis is
likely not the correct explanation for the data. In this case, we would reject H0 and
accept H1. In other words, we call the result statistically significant. The smaller the
p-value, the lower the probability that H0 is true. Although p < .05 is the minimum
threshold that is typically accepted, p < .01 and p < .001 may also be used.

Note that all these thresholds still leave some margin for error—it is possible that
we could observe these results even if H0 is true, just unlikely. That is, by chance
we have picked two samples that differ substantially from each other (remember
that our distribution of samples from the general population also follows a normal
distribution, thus, there is always the chance to have a sample that is not actually
representative of the population). This is called a Type-I error, or a false positive—we
have incorrectly deduced that the samples come from different populations, when in
fact they come from the same one. The inverse of this, if we incorrectly conclude
that the samples come from the same population, when in reality they come from
different ones, is called a Type-II error; see Table 6.4.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 159

Table 6.4 Type I and II errors

H0 is true H0 is false

Reject H0 Type I error α Correct 1 − β

Accept H0 Correct 1 − α Type-II error β

An additional factor to consider when setting the p-value threshold is the direc-
tionality of our test. If we predict that there will be a significant difference between
our two sample means, we could choose to test precisely whether one of the two sam-
ples, specifically, will have a higher mean than the other. For example, we could test
whether an older versus newer model of a robot have different levels of battery per-
formance, or we could test specifically whether the newer model has a better battery
performance than the older model. In the former scenario, we would use two-tailed
hypothesis testing. That is, we don’t know which side of the normal distribution our
test statistic (e.g., the z-value) will fall, so we consider both. In the latter scenario, we
are specifically saying that the mean for the newer robot model will be higher than
the mean of the old model, thus, we only look at the probabilities for that side of the
distribution with a test statistic in that direction, called one-tailed hypothesis testing.
However, one-tailed hypothesis testing is generally used sparingly, and usually only
in contexts where it is logistically impossible or irrelevant to have results in both
directions. That is, even if we have a directional hypothesis (e.g., that the newer
model has a better battery performance), if it is theoretically possible that the older
model has a better battery performance, we need to test both sides of the probability
distribution. In this example, if we used a one-tailed hypothesis test assuming that the
newer model is better, and in fact it is actually worse than the older model, we would
likely get a non-significant result and incorrectly conclude that there is no difference
in battery performance between the two models. For this reason, most hypothesis
testing in robotics is two-sided.

6.7.4 The General Linear Model

So far, we have discussed measures of central tendency and different measures of
variance as ways of describing variables. However, as mentioned at the beginning
of this section, we are usually interested in not only describing our data, but using
it to predict some outcome. That is, we want to create a model of our data so that
we can accurately predict the outcome for any given set of parameters. We can then
conceptualize any outcome or variable we are trying to predict as a function of both
the true value of the model and the error, such that:

outcomei = modeli + errori (6.79)

160 R. Stower et al.

Wheremodeli can be replaced with any number of predictor variables. This forms
the basis for the general linear model. Mathematically, this model can be expressed
as:

Yi = b + wXi + εi (6.80)

Where Yi represents the outcome variable, b is where all predictors are 0, and w

represents the strength and direction of an effect.
As mentioned before, this can then be expanded to any number of predictor vari-

ables:

Yi = b0 + b1Xi + b2Xi + · · · + bn Xi + εi (6.81)

Once we have defined a model, we want to test how well it actually predicts the
data that we have.We can do this by comparing the amount of variance in the data that
is explained by ourmodel, divided by the unexplained variance (error) to get different
test statistics. We can then use the normal distribution to check the likelihood that
we would have obtained a specific test statistic, given the null hypothesis is true.

test statistic = variance explained by model

unexplained variance (error)
(6.82)

To get the ratio of explained to unexplained variance, we start by calculating the
total variance in our sample. To do this, we need to go back to the formula for the
sum of squares, which is simply:

SStotal =
n∑

i=1

(xi − x̄grand)
2 (6.83)

Where xi is an individual data point, x̄grand is the grand mean, or the mean of the
total dataset, and n is the number of datapoints.

We also know that variance is equal to the sum of squares divided by the degrees
of freedom, so, the sum of squares can be rearranged as:

s2 = 1

n − 1

n∑
i=1

(xi − x̄grand)
2

s2 = 1

n − 1
SStotal

SStotal =s2(n − 1)

(6.84)

This gives us the total amount of variation in the data (the sum of the deviation
of each individual data point from the grand mean). We are interested in how much
of this variation can be explained by our model (remembering that total variation =
explained variation + unexplained variation).

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 161

To get the amount of variation explained by our model, we then need to look at
our group means, rather than the grand mean. In this case, our model predicts that
an individual from Group A will have a value equal to the mean of Group A, an
individual from Group B will have a value equal to the mean of Group B, etc.

We can then take the deviance of each group mean from the grand mean, and
square it (exactly the same as calculating normal sums of squares). We then multiply
each value by the number of participants in that group. Finally, we add all of these
values together.

So, if we have three groups, this would look like:

SSmodel = na(x̄ a − x̄grand)
2 + nb(x̄ b − x̄grand)

2 + nc(x̄ c − x̄grand)
2 (6.85)

Where na represents the number of datapoints in group A, x̄ a is the mean of group
A, and x̄grand is the grand mean.

This can be expanded to k number of groups with the general form:

SSmodel =
k∑

n=1

nk(x̄ k − x̄grand)
2 (6.86)

Where k is the number of groups, nk is the number of datapoints in group k, x̄ k is
the mean of group k, and x̄grand is the grand mean.

So, nowwe have the total variance, and the variance explained by our model. Intu-
itively, the variance that is left must be the error variance, or variance not explained
by the model. This residual variance is the difference between what our model pre-
dicted (based on the group means) and our actual data. Although in theory we can
get this value by subtracting the model variance from the total variance, we can also
calculate it independently.

Remember that our model predicts that an individual from Group A will have a
score equal to the mean of Group A. So, to get the residual variance we first calculate
the deviance of each individual in Group A from the mean of Group A, and the same
for Group B and so on and so forth. This can be expressed as:

SSresidual =
n∑

i=1

(xik − x̄ k)
2 (6.87)

Where n is the total number of data points, i is an individual datapoint, xik is the
value of an individual, i in group k, and x̄ k is the mean of that group.

This takes the deviance of each individual datapoint from its associated group
mean and sums them together. However, we could also conceptualize residual vari-
ance as the sum of the variance of Group A, plus the variance of Group B and so on
for k number of groups. We also saw before how the sum of squares can be expressed
in terms of the variance (see Eq. 6.84). The same logic can be applied here for adding
the group variances together to give us:

162 R. Stower et al.

Fig. 6.14 Illustration of total sum of squares, the model sum of squares, and the residual sum
of squares. The solid red line represents the grand mean, the dashed red lines indicate a specific
data point (or group mean), and the solid blue line represents the predicted value of y for a given
value of x

SSresidual =
∑

s2k (nk − 1) (6.88)

Where s2k is the variance of group k, and nk is the number of data points for that
group.

Visually, the total sum of squares (SStotal), the model sum of squares (SSmodel),
and the residual sum of squares (SSresidual) can be represented by the three values
illustrated in Fig. 6.14.

However, right now these are biased by the number of data points used to calculate
them—the model sum of squares is based on the number of groups (e.g., 3), whereas
the total and residual sum of squares are based on individual data points (which could
be 5, or 15, or 50, or 500). To rectify this, we can divide each sum of squares by
the degrees of freedom to get the mean squares (MS). For MSmodel the degrees of
freedom are equal to the number of groups minus one, whereas for the MSresidual they
are calculated by the number of total data points minus the number of groups.

MSmodel =SSmodel

k − 1

MSresidual =SSresidual
n − k

(6.89)

Where k is the total number of groups and n is the total number of data points.
From here, we are able to compare the variance explained by our model to the

residual, or error variance and test whether this ratio is significant. Although there
are many different kinds of test statistics that we can use to see whether our model
is significant or not, we will focus on only two of them: the t-test and the ANOVA.

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 163

Fig. 6.15 Comparison of t
and z distributions

6.7.5 T-test

The t-test is used to compare themeans of two different samples, to test whether there
is a statistically significant difference between the two (i.e., a less than 5% chance
of observing this difference in means, given the null hypothesis is true).

As we discussed before in Sect. 6.7.2, when sample sizes are sufficiently large,
the sampling distribution of a population will approximate the normal distribution,
and we can use z-scores to calculate probabilities (using p-values associated with
specific z-scores). However, if we have small sample sizes (which can often be the
case in user studies), then we cannot reliably estimate the variance of the population.
In this case, we use a t-distribution, which is a more conservative estimate of the
normal distribution. It is the t-distribution that we use to calculate our p-values for
the t-test. See Fig. 6.15 for a comparison between the z and t distributions.

The value of the t-test is then a function of the mean and the standard error of
the two samples we are comparing. If we have a difference between two means,
then intuitively the larger this difference is, the more likely it is there is an actual
difference between the samples. However, if the standard error is also very large, and
the difference in means is equal to or smaller than this value, then it is unlikely that
it represents a true difference between the samples—the difference between means
could simply be accounted for by a large variance in a single population.

So, to perform a t-test, we want to compare the difference in means we actually
saw, to the difference in means we would expect if they come from the same popu-
lation (which is typically 0). Going back to the previous section, we also saw that in
general the test statistic (which in this case, is the t-test) can be calculated by dividing
variance explained by the model by the error variance (see Eq. 6.82). In this case, the
model we are testing is the difference between the actual and expected means. So,
we take this value (which, as the expected difference between means is 0, is actually
just the value of the observed difference) and divide it by the standard error of the
differences between the means.

t = (x̄1 − x̄2) − (μ1 − μ2)

standard error of the difference
= (x̄1 − x̄2)

standard error of the difference
(6.90)

164 R. Stower et al.

To get the standard error of the differences between means, we first start by
summing together the variance for each sample, divided by the sample size of each.
This is based on the variance sum law, which states that the variance of the difference
between two samples is equal to the sum of their individual variances.

s12

n1
+ s22

n2
(6.91)

We then take the square root of this value to get the standard error of the difference.
√

s12

n1
+ s22

n2
(6.92)

So, Eq. 6.90 becomes:

t = (x̄1 − x̄2)√
s12

n1
+ s22

n2

(6.93)

However, this assumes that the sample sizes of each group are equal. In the case
that they are not (which is often), we replace s1 and s2 with an estimate of the pooled
variance, which weights each sample’s variance by its sample size.

s2pooled = (n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

(6.94)

In turn, the t-test statistic becomes:

t = (x̄1 − x̄2)√
spooled2

n1
+ spooled2

n2

(6.95)

Note that we are also assuming the data comes from two different groups (i.e., an
independent groups t-test). When we have a within-groups design, we instead use a
dependent t-test.

In Python, t-tests for both within- and between-groups samples can be computed
with:

from scipy import stats # Import library

res = stats.ttest_rel(x1, x2) # Run test for dependent sample

res = stats.ttest_ind(x1, x2) # Run test for independent sample

print(res [1])

We can then calculate the probability that we would have seen this t-value if the
samples actually did come from the same population, which gives us the p-value.
We can do this using t-distribution tables, or, since you are likely using some form
of statistical software, read this value from the output. The important thing to know
is that, because our data is normally distributed, the p-values for each t-value remain

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 165

Table 6.5 Independent groups t-test

Mean (SD) Estimate t-value p-value

Own algorithm Competing algorithm

1055 (408) 4042 (605) −2986.9 −28.94 <.001

0.00000

0.00025

0.00050

0.00075

0.00100

0 2000 4000 6000

Time to Solve Maze Puzzle (ms)

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Fig. 6.16 Probability density function for each algorithm

consistent. That is, if we conducted two completely different experiments and ended
up with the same or similar t-values, the p-values would also be the same.

As a practical example, imagine we want to compare two different navigation
algorithms, one we have developed and one a competing laboratory has developed,
in terms of how fast they can solve a maze puzzle (in milliseconds). We run an
independent t-test comparing the two algorithms and find the following results in
Table 6.5:

From this, we can see that our algorithm solves the puzzle significantly faster. We
can also compare the probability distributions of the two groups; see Fig. 6.16. This
also confirms that there is only a very small overlap in the values that occur in both
samples and that these values have a very low probability of occurring.

For more t-test examples, a set of Python examples based on a public dataset of
task load surveys is available online.11

6.7.6 ANOVA

ANOVA stands for “Analysis of Variance” and is an extension of the t-test when we
havemore than two groups. That is, we are again interested in comparing themeans of

11 https://github.com/Foundations-of-Robotics/Stats-examples.

https://github.com/Foundations-of-Robotics/Stats-examples
 -1104 57867
a -1104 57867 a

https://github.com/Foundations-of-Robotics/Stats-examples

166 R. Stower et al.

different samples to determine if there is a statistically significant difference between
them (i.e., whether they come from the same or different population distributions).
To do this, we use the F-test. This is simply another test statistic, which, as we have
seen before, is a measure of the total variance explained by our model divided by the
amount of error in the model.

To explain more about the difference between a t-test, and an F-test, imagine we
have three different groups (A, B, and C). We then have multiple different possible
outcomes for the results: First, there could be no significant difference between any
of the three groups. Second, A, B, and C could all be significantly different from
each other. Alternatively, A and B could be different from each other, but not from
C, and so on for all possible combinations of A, B, and C. So, we can already see
that this is quite a few more options compared to the t-test where we have only two
groups and the outcome is binary—there is either a significant difference between
the groups or not.

An ANOVA is therefore conducted in two stages: First, we conduct an omnibus
test to determine if there is any difference between the means at all. However, this
does not tell us which groups, specifically, might be different from each other. Thus,
if the result of this test is significant, then we conduct a series of t-tests for each of
the possible two-way combinations of the groups. The reason that we do not start
straight away with t-tests is because this inflates our chance of making a type I error
(incorrectly stating that the samples come from different populations, when in fact
they come from the same one). This is because if we set our significance threshold
to 95%, then we are still allowing for a 5% chance of incorrectly rejecting the null
hypothesis. If we perform three t-tests independently of each other, each with a
significance threshold of 95%, then we can see how this error compounds: 0.953 =
0.8571 and 1 − 0.857 = 14.3%. So, instead of having a 5% chance of incorrectly
rejecting the null hypothesis, we now have a 14.3% chance. This is known as the
familywise error rate and increases with the more comparisons we make. By starting
our analysis with an omnibus test, we are trying to mitigate this error.

To get the omnibus F-statistic, we need to go back to Eq. 6.89, where we can see
that we actually can calculate values for our model variance and residual variance!
Thus, the F-statistic can be expressed as:

F = M Smodel

M Sresidual
(6.96)

Any value greater than 1 means that our model explains more variance than
random individual differences (which is a good thing!) However, it still does not tell
us whether this value is significant. To check this, we again go back to our p-values
to determine, with a given F-statistic and associated degrees of freedom, what the
likelihood of obtaining this value is, if the null hypothesis is true. To get the degrees
of freedom, we need to consider the two parts that make up our ratio: our model
variance and the residual variance. We also mentioned before about how the sum
of squares for each of these was calculated using their respective number of data
points—for the model variance this is equal to the number of groups, and for the

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 167

Table 6.6 Mean and SD for perceived task difficulty in each task environment

Environment Mean (SD)

Land 3.12 (1.00)

Water 5.16 (0.95)

Air 5.38 (1.28)

residual variance this is equal to the number of data points. It is these values which
we use to get the degrees of freedom.

d f = k − 1

n − k
(6.97)

Where k is equal to the number of groups and n is equal to the sample size. This
is also why k − 1 is sometimes called the numerator degrees of freedom, whereas
n − k is called the denominator degrees of freedom.

Having determined our degrees of freedom and our F-statistic, we then need to
use F-distribution tables (or our statistics software) to look up the corresponding
p-value. Again, the p-value for all F-values with specific degrees of freedom will
always be the same.

Following a significant ANOVA, the next step is to conduct individual t-tests
between each pair of groups, called pairwise comparisons. Again, however, we have
to be a bit cautious of inflating our type I error. When the number of comparisons is
less than 5, it is generally considered okay to use the p-values as-is. Anything above
this however, and it is recommended to use an adjustment method. This typically
involves applying a correction to the p-values to make their estimates more conser-
vative, see (Bender and Lange, 2001) for an explanation of the different types of
corrections.

Now that we have covered some of the logic underpinning the ANOVA, we can
consider what this looks like in practice. Imagine we have a sample of robot opera-
tors, and we are interested in understanding the difficulty of using unmanned robots
to explore different types of environments. So, we design an experiment into how the
type of environment affects the perceived task difficulty. Here, our independent vari-
able is task environment (land, water, air) and our dependent variable is the perceived
task difficulty, measured on a 7-point scale from 1 (very easy) to 7 (very difficult).
We test a total of 150 robot operators, 50 in each environment.

In this case, the null hypothesis (H0) is that there will be no difference between
the three task environments. The alternative hypothesis (H1) is that the perceived
task difficulty will change according to the task environment.

After running our descriptive statistics, we observe the following means and stan-
dard deviations for each group; see Table 6.6.

As our first step of the ANOVA, we conduct the omnibus F-test, to determine if
there is any overall difference between the groups, Table 6.7.

168 R. Stower et al.

Table 6.7 Results of Omnibus F-test for one-way ANOVA

DF Sums of
squares

Mean squares F-value p

Environment 2 155.3 77.65 65.68 <.001

Residuals 147 173.8 1.18

Table 6.8 Post-hoc pairwise comparisons for each task environment with no correction

Estimate SE t-value p-value

Land versus
Water

−2.04 0.22 −9.38 <.001

Land versus Air −2.26 0.22 −10.39 <.001

Water versus Air −0.22 0.22 −1.01 .313

What you might be able to see from these tables is that the values for each column
match exactly the formulas we discussed for the general linear model. That is, the
mean squares are equal to the sums of squares divided by the DF for each row, and
the F-value is the ratio of the mean squares. So, in case you are ever stuck in a
room with only your experimental data and no Internet access or statistics software
downloaded, you can still calculate your ANOVAs by hand!

From looking at the p-value, we can see that the overall F-test is significant (p <

.001). However, we don’t yet know where this difference lies (i.e., we don’t know
which of the environments are perceived as significantly more or less difficult). So,
the next step is to compare the groups, using our pairwise comparisons; see Table 6.8.

From these results, we can now determine that both air and water environments
are perceived as more difficult to explore than land environments, but that there is
no difference between these two. We could then write up the results from this test as
follows:

The results from a one-way between-groups ANOVA revealed a signifi-
cant effect of task environment on perceived task difficulty, F(2, 147) =
65.68, p < .001. Post-hoc pairwise comparisons with no correction indicate
that the land environment was perceived as significantly less difficult than
both the water (t = −9.38, p < .001) and air (t = −10.39, p < .001) envi-
ronments, respectively. However, there was no difference in perceived task
difficulty between the water and air environments (t = −1.01, p = .313).

In the aforementioned example, we only had one independent variable, task envi-
ronment, and thus, it is a one-way ANOVA. Now, imagine we expanded our experi-
mental design to includenot only the task environment, but also the typeof robot being
used for exploration, unmanned aerial vehicles (UAVs) versus unmanned ground
vehicles (UGVs). Now we have two independent variables, task environment (again

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 169

with three levels, land, water, and air) and robot type (UAV versus UGV). Our depen-
dent variable, perceived task difficulty, remains the same. This is called a two-way
ANOVA.

In this case, we now have two different main effects we are interested in; the effect
of robot type on task difficulty, and the effect of task environment. However, there is
also a third effect—the interaction between the two variables. An interaction effect
indicates that at different levels of one variable, the effect of the other variable on
the dependent variable changes. To keep things simple, these kinds of effects are
called . . . simple effects. The directionality of the interaction hypotheses is normally
theoretically driven and specified before conducting the analysis. However, usually
we only conduct one set (i.e., either the effect of variable A at different levels of
variable B, or the effect of variable B at different levels of variable A, but not both).
This again has to dowithminimizing our chances ofmaking a type I error—remember
that every analysis we run comes with a small chance of incorrectly rejecting the
null, so the more analyses we run, the more this chance compounds.

In this case, we will look at the simple effects of robot type over the levels of task
environment. That is, at each level of task environment (land, water, air) we will run
an analysis of the effect of robot type on perceived task difficulty. However, we could
just as equally say that depending on the type of robot, the effect of task environment
on perceived task difficulty changes.

The syntax to compute this analysis in python looks like:

Import libraries

from statsmodels.formula.api import ols

from statsmodels.stats.anova import anova_lm

Create the model (two factors - last term is interaction)

formula = ’task_difficulty ~ C(environment) + C(robot) + C(environment):C(robot)’

Test the model against the data (must have column headers as in the model)

model = ols(formula , data).fit()

Run a two -way ANOVA

aov_table = anova_lm(model , typ=2)

print(aov_table.round (4))

We can see the means and standard deviations for our new dataset below
in Table 6.9:

So to recap, we now have two main effects which we are looking at, and an
interaction effect. Each main effect has an F-value associated with it, as does the
interaction. We can see these and their associated significance’s in the table below
(Table 6.10).

Table 6.9 Means and SDs for task environment and Robot type

Environment Robot type Mean (SD)

Land UAV 5.12 (1.47)

Land UGV 3.20 (1.34)

Water UAV 6.16 (0.79)

Water UGV 6.00 (0.70)

Air UAV 2.92 (1.45)

Air UGV 5.08 (1.42)

170 R. Stower et al.

Table 6.10 Results of Omnibus F-test for two-way ANOVA

DF Sums of
squares

Mean squares F-value p

Environment 2 133.97 66.99 43.91 <.001

Robot type 1 0.03 0.03 0.017 .900

Environment *
Robot type

2 104.69 52.35 34.31 <.001

Residuals 144 219.68 1.53

Table 6.11 Post-hoc pairwise comparisons for two-way ANOVA with no correction

Estimate t-value p-value

Land 1.92 4.78 <.001

Air −2.16 −5.41 <.001

Water 0.16 0.749 .457

We can see, based on this table, that there is still the main effect of task envi-
ronment, but no main effect of robot type. However, the interaction between task
environment and robot type is significant.

As with the previous one-wayANOVA, we can follow up the significantF-test for
the interaction with pairwise comparisons. In this case, however, we take each level
of environment (land, water, air) and look at the effect of robot type on task difficulty
within each of these conditions. As we only have two levels of robot type, we can
go straight to t-tests comparing UAVs and UGVs within each task environment.
However, if we had more than two levels (e.g., if we had also tested unmanned
underwater vehicles), we would need to conduct another one-way ANOVA for each
environment type, then conduct the pairwise comparisons between the robot types
depending on which environment was significant.

The results of the pairwise comparisons for the effect of robot type within each
task environment are in Table 6.11.

Now things are starting to get a little bit interesting. From this table, we can see
that, in the water environment, there is no difference between UGVs and UAVs.
In fact, the mean perceived task difficulty for both of these groups is quite high
(probably because neither UAVs nor UGVs are suited for underwater exploration).
Conversely, in the land environment, the UGV is rated as having a significantly lower
task difficulty than the UAV, and vice versa for the air environment, where the UAV
has a lower task difficulty.

We can plot a graph of this interaction as seen in Fig. 6.17.
Looking at this graph, we can begin to get an idea of why the main effect for robot

type was non-significant. Because the means for the UAV and UGV were flipped for
the land and air environments, and similar for the water environment, when averaged
all together, they cancel each other out. So when we look at the aggregated means for
the two robot types (see Fig .6.18), ignoring whether they were in a land, water, or

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 171

1

2

3

4

5

6

7

Air Land Water
Task Environment

M
ea

n
Ta

sk
 D

iff
ic

ul
ty

Robot Type
UAV
UGV

Fig. 6.17 Two-way interaction between task environment and robot type

Fig. 6.18 Two-way
interaction between task
environment and robot type

1

2

3

4

5

6

7

UAV UGV
Robot Type

M
ea

n
Ta

sk
 D

iff
ic

ul
ty

air environment, there does not appear to be a big difference between them. We can
also see, if we plot some lines connecting the means (the dashed purple and green
lines), that they intersect. This usually indicates the presence of an interaction.

Thus, when we find an interaction, the results from this interaction supersede the
results of the main effects. That is, we can say that the main effects were qualified
by the presence of an interaction. If we have no significant interaction, then we
can follow up any significant main effects exactly the same way as for the one-way
ANOVA.

172 R. Stower et al.

The write-up for this analysis would look something like:

The results of the two-way analysis of variance revealed a significant main
effect of task environment, F(2, 144) = 43.91, p < .001, but no signifi-
cant main effect of robot type F(1, 144) = 0.017, p = .900. However, these
effects were qualified by the presence of an interaction between task envi-
ronment and robot type, F(2, 144) = 34.31, p < .001. Follow up tests for
the simple effect of robot type at each level of environment indicates that
in land environments, UGVs were rated significantly lower for perceived
task difficulty than UAVs t = 4.78, p < .001, whereas for air environments
the opposite is true, with UAVs being rated significantly lower for perceived
task difficulty t = −5.41, p < .001. However, in underwater environments,
there was no difference between UAVs and UGVs—each of them was rated
equally as difficult for exploration (t = 0.75.p = .457).

In sum, ANOVAs follow the same logic for test statistics that we have consistently
seen throughout this chapter; that is, they rely on the ratio of explained to unex-
plained variance. This logic can be extended to more complex analyses, for example
if you have three independent variables (three-way ANOVA), or a within-groups
experimental design (repeated measures ANOVA), or a design which combines both
within- and between-groups variables (mixed ANOVA). The math to compute these
is slightly more complicated, but they all stem from the same basic principles of the
general linear model. Thus, if you understand the content from this chapter, you will
be well placed to conduct other more advanced statistical analyses in the future.

6.8 Chapter Summary

In this chapter, we covered a lot of ground on various mathematical tools essential to
modern roboticists. We expect most of it to be merely a reminder for most readers,
but with a twist toward how we need and use these tools in robotics. From geometry
to matrix calculus to quaternions and inference statistics, this chapter is meant to be
a reference you will come back to when reading the rest of this book.

6.9 Revision Questions

Question #1

Consider the following system of equations:

2x + 3y = 12 (6.98)

y − 2z = 0 (6.99)

x − y + 2z = 3 (6.100)

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 173

Write this system inmatrix form (Ax = b), compute the determinant ofA, its inverse
and finally, find the values of x , y, and z.

Question #2

Demonstrate the equality in Eq. 6.37.

Question #3

Define what a p-value is and explain how it is related to the normal distribution.

Question #4

State the ratio needed to compute a test statistic and why.
More examples and exercises on statistical tests are available online.12

6.10 Further Reading

While the theory behind basic linear algebra was presented in this chapter, some
practical limitationsmust be knownbefore solving anumerical problem.For instance,
even if the determinant of a square matrix is not equal to zero, it may not be a good
idea to inverse it to solve a system of linear equation. This is where youmust consider
the conditioning of amatrix, quantified by the condition number, which should not be
close to 1. If it is, numerical approximations during the computationwill be amplified
and this will result in significant errors on the obtained solution. Moreover, to solve
a numerical system of equations, the inverse (and generalized inverse) of a matrix
is generally only of theoretical value, as algorithms such as the LU-decomposition,
the Gram–Schmidt orthogonalization procedure, and the Householder reflections are
used to avoid numerical errors. For further information, you can refer to a textbook
on numerical analysis (Gilat and Subramaniam, 2008; Kong et al., 2020).13

The statistics covered in this chapter are only a starting point for many other tech-
niques for analysing experimental data. If you are interested in learning more about
the theory behind different statistical methods, you can read Discovering Statistics
Using R by Field et al. (2012), also available online.14

References

Ben-Israel, A., & Greville, T. N. (2003). Generalized inverses: Theory and applications (Vol. 15).
Springer Science & Business Media.

Bender, R., & Lange, S. (2001). Adjusting for multiple testing-when and how? Journal of Clinical
Epidemiology, 54(4), 343–349.

Field, A. P., Miles, J., & Field, Z. C. (2012). Discovering statistics using R. SAGE Publications.
Gilat, A., & Subramaniam, V. (2008). Numerical methods for engineers and scientists: An intro-

duction with applications using MATLAB. Wiley.

12 https://github.com/Foundations-of-Robotics/Stats-examples.
13 Python Programming and Numerical Methods also available online: https://
pythonnumericalmethods.berkeley.edu/notebooks/Index.html.
14 https://www.discoveringstatistics.com/.

https://github.com/Foundations-of-Robotics/Stats-examples
 -1104 56760 a -1104 56760
a

https://github.com/Foundations-of-Robotics/Stats-examples
https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html
 32152 58088 a 32152 58088 a

https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html
https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html
https://www.discoveringstatistics.com/
 -1104 60523 a -1104 60523 a

https://www.discoveringstatistics.com/

174 R. Stower et al.

Hassenpflug, W. (1995). Matrix tensor notation part ii. skew and curved coordinates. Computers &
Mathematics with Applications, 29(11), 1–103. https://doi.org/10.1016/0898-1221(95)00050-9,
https://www.sciencedirect.com/science/article/pii/0898122195000509

Jones, E. M., & Fjeld, P. (2006). Gimbal angles, gimbal lock and a fourth gimbal for Christmas.
Apollo Lunar Surface Journal. http://history.nasa.gov/alsj/gimbals.html

Kong, Q., Siauw, T., & Bayen, A. (2020). Python programming and numerical methods: A guide
for engineers and scientists. Academic Press.

Rebecca Stower is a postdoctoral research fellow at the CHArt Laboratory at Paris 8 in collab-
oration with the INIT lab at ETS, Montreal. She holds a PhD in Psychology and a Bachelor of
Psychological Science (Honours First Class). Her PhD centred on the occurrence of robot errors
during child-robot-interactions and how this impacts children’s attitudes and behaviours towards
robots. Separately, she is also interested in the conceptualisation of social intelligence in robots
and the design and measurement of social robot behaviour. More generally, she is passionate about
the intersection of psychology and technology and how psychological research methods can be
applied to robotics. She is also highly involved with open science and has contributed to the organ-
isation of multiple interdisciplinary and cross-industry events.

Bruno Belzile is a postdoctoral fellow at the INIT Robots Lab. of ÉTS Montréal in Canada.
He holds a B.Eng. degree and Ph.D. in mechanical engineering from Polytechnique Montréal.
His thesis focused on underactuated robotic grippers and proprioceptive tactile sensing. He then
worked at the Center for Intelligent Machines at McGill University, where his main areas of
research were kinematics, dynamics and control of parallel robots. At ÉTS Montréal, he aims at
creating spherical mobile robots for planetary exploration, from the conceptual design to the pro-
totype.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the École de technologie supérieure and director of the INIT Robots Lab (ini-
trobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect
to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the
field of interactive media (structure, automatization and sensing) as workshop production director
and as R&D engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in national training
programs for highly qualified personnel for drone services (UTILI), as well as for the deployment
of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic inte-
gration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA
2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1016/0898-1221(95)00050-9
 16695 526 a 16695 526 a

https://doi.org/10.1016/0898-1221(95)00050-9
https://www.sciencedirect.com/science/article/pii/0898122195000509
 -1185 1633 a -1185 1633 a

https://www.sciencedirect.com/science/article/pii/0898122195000509
http://history.nasa.gov/alsj/gimbals.html
 10579 3847 a 10579 3847 a

http://history.nasa.gov/alsj/gimbals.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891 a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Part II
Embedded Design

Chapter 7
What Makes Robots? Sensors, Actuators,
and Algorithms

Jiefei Wang and Damith Herath

7.1 Learning Objectives

This chapter explores a framework and some of the main building blocks in
developing robots. You will learn about:

• The Sense, Think, Act loop.
• Different types of sensors that make robots ‘feel’ the world and find suitable

sensors for use in specific scenarios.
• Algorithms that make the robots’ ‘intelligent’.
• Actuators that make robots move.
• Commonly used computer vision algorithms that make robots ‘see’.

7.2 Introduction

In Chap. 4, we discussed that programming could be thought of as input, process,
and output. Sense, Think, Act is a similar paradigm used in robotics. A robot could
be thought of rudimentarily as analogous to how a human or an animal responds to
environmental stimuli. For example, we humans perceive the environment through
the five senses (e.g. sight).Wemight then ‘decide’ the following action based on these
incoming signals and, finally, execute the action through our limbs. For example, you

J. Wang (B)
The School of Engineering and Information Technology, University of New South Wales,
Canberra, Australia
e-mail: Jiefei.wang@adfa.edu.au

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_7

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_7&domain=pdf
mailto:Jiefei.wang@adfa.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_7

178 J. Wang and D. Herath

Sense Think Act

Fig. 7.1 Sense, Think, Act loop in robotics

might see (sense) a familiar face in the crowd and think it would be good to grab
their attention and then act on this thought by waving your hand.

Similarly, a robot may have several sensors through which it could sense the
environment. An algorithm could then be used to interpret and decide on an action
based on the incoming sensory information. This computational process could be
thought of as analogous to the thinking process in humans. Finally, the algorithm
sends out a set of instructions to the robot’s actuators to carry out the actions based
on the sensor information and goals (Fig. 7.1).

The current configuration of the robot is called the robot’s state. The robot state
space is all possible states a robot could be in. Observable states are the set of fully
visible states to the robot, while other states might be hidden or partly visible to the
robot. Such states are called partially observable states. Some states are discrete (e.g.
motor on or off), and others could be continuous (e.g. rotational speed of the motor).
In the above paradigm, the sense element observes the state, and the Act element
proceeds to alter the state.

An Industry Perspective

Vitaliy Khomko, Vision Application Developer

Kinova Inc.
My journey into robotics startedwhen I joined JCATechnologies,Manitoba, in
2015. At that time, the maturity of sensors and controllers technology allowed
innovators to create smart agricultural and construction equipment capable of
performingmany complex operations autonomously with very little input from
amachine operator. Frankly speaking, I did not get to choose robotics. I simply
got sucked into the technological vortex because the industry was screaming
for innovation as well as researchers and developers to drive it. In 2018, I was
welcomed by the team of very passionate roboticists at Kinova, Quebec, in the
position of Vision Technology Developer. The creative atmosphere fuelled by
Kinova’s employees kept driving me for many months. I worked hard during
the day trying my best to fit in and kept learning new stuff in the evening to fill
in the blanks. All this hard work paid off well in the end. I must admit, now, I
can wield magic with a vision-enabled robot.

Continuous learning and keeping up with all the industry trends is by far
the most challenging and time-consuming. The theoretical knowledge alone,

7 What Makes Robots? Sensors, Actuators, and Algorithms 179

though, can only help with being on the right track. In reality, when working
on delivering a real consumer product, an enormous effort goes into research
and evaluation, work planning, development/coding, and testing. Maintaining
a good relationship with your coworkers is essential. At the end of the day,
it is your teammates who give you a hand when you get stuck, who share
your passion and excitement, who appreciate your effort, and who let you feel
connected. Nothing really compares with the satisfaction of joint accomplish-
ment when you can pop a beer by the end of a long day with your colleagues
after delivering the next milestone, watching the robot finally doing its thing
over and over again.

With regard to evolution, I certainly noticed a shift from simple auto-
mated equipment controlled by human experts into very efficient autonomous
machines capable of making decisions. Sensors have been around for a long
time. By strategically placing them into amachine, one can achieve an unprece-
dented amount of feedback from a machine to allow better control and oper-
ation precision. The amount of information and real-time constraints, though,
can be too much even for an expert human operator to process through. What
really made a difference now is the availability of algorithms and computa-
tional devices to enable a certain degree of machine autonomy. For example,
camera technology is widely available these days. But it is not the camera alone
that enables vision-guided robotics. Its robot–camera calibration, 2D/3Dobject
matching and localisation grasping clearance validation, etc. Some can argue
that recent advancements in artificial intelligence mainly contributed to that
evolution. I think AI is just another tool. And by no means an ultimate solution
to every problem.

7.3 Sense: Sensing the World with Sensors

Everything changes in the real world. Some changes are notable while others are
subtle, some are induced, and some are provoked. However, these changes always
reveal information hidden from the initial perception. Sensing the changes in the
environment are particularly meaningful and allow perception and interaction with
the surroundingworld. For example, humans perceive the displacements of the colour
patterns on the retina and compute those displacements to understand the changes.
Some animals, such as bats, can use echolocation to estimate their environment
changes and localise themselves. Unlike humans or animals, robots do not have
naturally occurring senses. Therefore, robots need extra sensors to help them sense
the environment and use algorithms to process and understand the information. For
example, a typical sensor such as a video camera can be considered the robot’s ‘eyes’.
A sonar sensor could be thought of as equivalent to echolocation in a bat. By having

180 J. Wang and D. Herath

different sensors integrated with robots, they can achieve various tasks like the one
human being can do.

7.3.1 Typical Sensor Characteristics

Sensors could be characterised in various ways. Let us look at some of the common
characteristics and their definitions first.

7.3.1.1 Proprioceptive and Exteroceptive

As humans perceive aches and pains internal to their body, so could robots sense
various internal states of the robot, such as the speed of its wheels/motors or the
current drawn by its internal power circuitry. Such sensors are called proprioceptive
sensors.On the other hand, sensors that provide information about the robot’s external
environment are called exteroceptive sensors.

7.3.1.2 Passive and Active Sensors

A sensor that only has a detector to observe or measure the physical properties of
the environment is categorised as a passive sensor. A light sensor is an example.
In contrast, active sensors emit their own signal or energy to the environment and
employ a detector to observe the reaction resulting from the emitted signal. A sonar
sensor is a typical example.

7.3.1.3 Sensor Errors and Noise

However well made a sensor is, they are susceptible to various manufacturing errors
and environmental noise. However, some of these errors could be anticipated and
understood. Such errors that are deterministic and reproducible are called system-
atic errors. Systematic errors could be modelled and integrated as part of the sensor
characteristics. Other errors are difficult to pinpoint. These could be due to envi-
ronmental effects or other random processes. Such errors are called random errors.
Understanding these errors is crucial to deploying a successful robotics system.
When this information is not readily available for the sensor selected, you will need
to conduct a thorough error analysis to isolate and quantify the systematic errors and
figure out how to capture the random errors.

7 What Makes Robots? Sensors, Actuators, and Algorithms 181

7.3.1.4 Other Common Sensor Characteristics

You may encounter the following terms describing various other characteristics of
a sensor. It is important to understand what they mean in a given context to use the
appropriate sensor for the job.

ResolutionTheminimum difference between two values that the sensor canmeasure.

Accuracy The uncertainty in a sensor measurement with respect to an absolute
standard.

Sensitivity The smallest absolute change that a sensor can measure.

Linearity Whether the output produced by a sensor depends linearly on the input.

Precision The reproducibility of the sensor measurement.

Bandwidth The speed at which a sensor can provide measurements. Usually
expressed in Hertz (Hz)readings per second.

Dynamic range Under normal operation, this is the ratio between the limits of the
lower and upper sensor inputs. This is usually expressed in decibels (dB):

Dynamic Range = 10 log log10

(
upper limit

lower limit

)

7.3.2 Common Sensors in Robotics

7.3.2.1 Light Sensors

Light sensors are used to detect light that creates a difference in voltage signal to
feedback to the robot’s system. The two common light sensors that are widely used in
the field of robotics are photoresistors and photovoltaic cells. The change in incident
light intensity changes the photoresistor’s resistance in a photoresistor. More light
leads to less resistance, vice versa. Photovoltaic cells, on the other hand, convert
solar radiation into electricity. This is especially helpful when planning a solar robot.
While the photovoltaic cell is considered an energy source, a smart implementation
combined with transistors and capacitors can convert this into a sensor. Other light
sensors, such as phototransistors, phototubes, and charge-coupled devices (CCD),
are also available (Fig. 7.2).

182 J. Wang and D. Herath

Fig. 7.2 A common light
sensor (a photoresistor)

7.3.2.2 Sonar (Ultrasonic) Sensors

Sonar sensors (also called ultrasonic sensors) utilise acoustic energy to detect objects
and measure distances from the sensor to the target objects. Sonar sensors are
composed of two main parts, a transmitter and receiver.

The transmitter sends a short ultrasonic pulse, and the receiver receives what
comes back of the signal after it has reflected from the surface of nearby objects.
The sensor measures the time from signal transmission to reception, namely the
time-of-flight (TOF).

Knowing the transmission rate of an ultrasonic signal, the distance to the target
that reflects the signal can be calculated using the following equation.

Distance = (Time × SpeedOf Sound)/2

where ‘2’ means the sound has to travel back and forth.
Sonar sensors can be used for mobile robot localisation through model matching

or triangulation by computing the pose change between the inputs acquired at two
different poses (Jiménez&Seco, 2005). Sonar sensors could also be used in detecting
obstacles (see Fig. 7.3).

One of the challenges of using these sensors is that they are sensitive to noise from
the surrounding and other sonar sensors with the same frequency. Moreover, they are
highly dependent on thematerial and orientation of the object surface as these sensors
make use of the reflection of the signalwaves (Kreczmer, 2010).New techniques such

7 What Makes Robots? Sensors, Actuators, and Algorithms 183

Fig. 7.3 Four sonar sensors are embedded in the chest of thisNAO robot to help detect any obstacles
in front of it. A tactile sensor is embedded on its head

as compressed high-intensity radar pulse (CHIRP) have been developed to improve
sonar performance.

Sonar signals have a characteristic 3D beam pattern. This makes them suitable for
detecting obstacles in a wide area when the exact geometric location is not needed.
However, laser sensors provide a better solution for situationswhere precise geometry
needs to be inferred.

7.3.2.3 Laser and LIDAR

Laser sensors can be utilised in several applications related to positioning. It is a
remote sensing technology for distance measurement that involves transmitting a
laser beam towards the target and analysing the reflected light. Laser-based range
measurements depend on either TOF or phase-shift techniques. Like the sonar sensor,
a short laser pulse is sent out in a TOF system, and the time, until it returns, is
measured. A low-cost laser range finder popular in robotics is shown in Fig. 7.4.
Also see Fig. 7.10.

LIDAR Light Detection And Ranging (LIDAR) has found many applications in
robotics, including object detection, obstacle avoidance, mapping, and 3D motion
capture. LIDAR can be integrated with GPS and INS to enhance the performance
and accuracy of outdoor positioning applications (Aboelmagd et al., 2013).

One of the disadvantages of using LIDAR is that it requires high computational
ability to process the data, which may affect mobile robot applications’ real-time
performance. Moreover, scanning can fail when the object’s material appears trans-
parent, such as glass, as the reflections on these surfaces can bring misleading and
unreliable data (Takahashi, 2007).

184 J. Wang and D. Herath

Fig. 7.4 Hokuyo URG-04LX range finder

7.3.2.4 Visual Sensors

Compared with proximity sensors wementioned above, optical cameras are low-cost
sensors that provide a large amount of meaningful information.

The images captured by a camera can provide rich information about the robot’s
environment once processed using appropriate image processing algorithms. Some
examples include localisation, visual odometry, object detection, and identification.
There are different types of cameras, such as stereo, monocular, omnidirectional, and
fisheye, that suit all manner of robotic applications.

Monocular cameras (Fig. 7.5) are especially suitable for applications where
compactness and minimum weight are critical. Moreover, low cost and easy deploy-
ment are the primary motivations for using monocular cameras for mobile robots.
However, monocular cameras can only obtain visual information and are not able to
obtain depth information. On the other hand, a stereo camera is a pair of identical
monocular cameras mounted on a rig. It provides everything that a single camera
can offer and extra information that benefits from two views. Based on the parallax
principle, the stereo camera can estimate the depth map (a 2D image that depicts
the depth relationship between the objects in the scene and the camera’s viewpoint)

7 What Makes Robots? Sensors, Actuators, and Algorithms 185

Fig. 7.5 A popular
monocular camera

by utilising the two views of the same scene slightly shifted. Fisheye cameras are
a variant of monocular cameras that provide wide viewing angles and are attrac-
tive for obstacle avoidance in complex environments, such as narrow and cluttered
environments.

7.3.2.5 RGB-D Sensors

RGB-D sensors are unconventional visual sensors that can simultaneously obtain a
visible image (RGB image) and depth map of the same scene. They have been very
popular in the robotics community for real-time image processing, robot localisation,
obstacle avoidance. However, due to the limited range and sensitivity to noise, they
are mostly used in indoor environments.

The Kinect sensor is one of the most well-known RGB-D sensors (Yes! The same
sensor you use when playing video games on the Xbox), introduced to the market
in November 2010 and has gained great popularity since then. The computer vision
community quickly discovered that this depth-sensing technology could be used for
other purposes while costingmuch less than some traditional three-dimensional (3D)

186 J. Wang and D. Herath

Fig. 7.6 A newer version of the Microsoft® Kinect sensor

cameras, such as time-of-flight-based ones. In June 2011,Microsoft released an SDK
for the Kinect to be used as a tool for non-commercial products (Fig. 7.6).

The basic principle behind theKinect depth sensor is the emission of an IR speckle
pattern (invisible to the naked eye) and the simultaneous capture of an IR image by a
CMOScamera fittedwith an IR-pass filter. An image processing algorithmembedded
inside the Kinect uses the relative positions of the dots in the speckle pattern (see
Fig. 7.7) to calculate the depth displacement at each pixel position in the imagethe
technique is called structured light. Hence, the depth sensor can provide the x-, y-,
and z-coordinates of the surface of 3D objects.

The Kinect sensor consists of an IR laser emitter and IR and RGB cameras. It
simultaneously captures depth and colour images at frame rates of up to 30 Hz. The
RGB colour camera delivers images at 640 × 480 pixels and 24 bits at the highest
frame rate. In contrast, the 640 × 480 and 11 bits per pixel IR camera provides
2048 levels of sensitivity with a field-of-view of 50° horizontal and 45° vertical. The
operational range of the Kinect sensor is from 50 to 400 cm.

Fig. 7.7 A view from an RGB-D camera (from left to right—RGB image, depth image, IR image
showing the projected pattern)

7 What Makes Robots? Sensors, Actuators, and Algorithms 187

7.3.2.6 Inertial Measurement Units

An inertial measurement unit (IMU) utilises gyroscopes and accelerometers (and
optionally magnetometers and barometers) to sense motion and orientation. An
accelerometer is a device for measuring acceleration and tilt. Two types of forces
affect an accelerometer: gravity which helps determine how much the robot tilts.
This measurement helps balance the robot or determine whether a robot is driving
on a flat or uphill surface—the other is the dynamic force which is the accelera-
tion required to move an object. These sensors are useful in inferring incremental
changes in motion and orientation. However, they suffer from bias, drift, and noise.
This requires regular calibration of the system before use or sophisticated sensor
fusion and filter techniques (such as the EKF described in Chap. 9). You will often
see IMU units used with computer vision systems or combined with Global Navi-
gation Satellite System (GNSS) information. Such systems are commonly called
INS/GNSS systems (Intertial Navigation Systems/GNSS).

7.3.2.7 Encoders

Simply put, encoders record movement metrics in some form. There are three types
of encoders: linear encoders, rotary encoders, and angle encoders.

Linear encoders measure straight-line motion. Sensor heads that attach to the
moving piece of machinery run along guideways. Those sensors are linked to a
scale inside the encoder that sends digital or analog signals to the control system.
Rotary encoders measure rotational movement. They typically surround a rotating
shaft, sensing and communicating changes in its angular motion. Traditionally,
rotary encoders are classified as having accuracies above ±10′′ (arcseconds). Rotary
encoders are also available, equipped with important functional safety capabilities.
Similar to their rotary counterpart, angle encoders measure rotation. These, however,
are most often used in applications when a precise measurement is required.

Mobile robots often use encoders to calculate their odometry. Odometry is the
use of motion sensors to determine the robot’s temporal change in position relative
to some known position. A simple example of using a rotary incremental encoder
to calculate the robot’s travel distance could be illustrated using Fig. 7.8. A light is
shone through a slotted disc (usually made of metal or glass). As the disc rotates, the
light passing through the slots is picked up by a light sensor mounted on the other
side of the disc. This signal could be converted into a sinusoidal or square wave using
electronic circuitry. If this encoder is attached to the axis of the robot’s wheel, we
can use the output signal to calculate the velocity at which the robot is moving.

To calculate the length travelled L (cm) using the output from an incremental
encoder, we start by calculating the number of pulses per cm (PPCM):

PPCM = PPR

2πr

188 J. Wang and D. Herath

Fig. 7.8 A simplified rotary incremental encoder with 16 slots

where PPR is the pulses per revolutionwhich in the example in Fig. 7.8 is 16.
Then the length L is given by:

L = Pulses

PPCM

The speed (S) is then calculated as:

S = L

TimeTaken

It is worth noting that the need to have these sensors closer to the motors often
results in them being subject to electromagnetic noise. Therefore to improve the
encoder’s performance as well as to decipher the direction of rotation, a second set
of light and sensor pair is included with a 90° a phase shift (Fig. 7.9).

7.3.2.8 Force and Tactile Sensors

Both these types of sensors measure physical interactions between the robot and
the external environment. A typical force sensor is usually used to measure external
mechanical force input, such as in the form of a load, pressure, or tension. Sensors
such as strain gauges and pressure gauges fall into this category. On the other hand,
tactile sensors are generally used to mimic the sense of touch. Usually, tactile sensors
are expected to measure small variations in force or pressure with high sensitivity.
Robots designed to be interactive integrate many tactile sensors so they can respond
to touch (e.g. Fig. 7.3). Sophisticated sensors are emerging that could mimic skin-
like sensitivity to touch. A more primitive version could be seen in most vacuum
cleaning robots, where the front bumper acts as a collision detector (Fig. 7.10).

7 What Makes Robots? Sensors, Actuators, and Algorithms 189

Fig. 7.9 A popular hobby rotary incremental encoder with two outputs (quadrature encoder)

7.3.2.9 Other Common Sensors in Robotics

Many other sensors are used in robotics, and new ones are developed in various
research laboratories and commercialised regularly. These include microphones
(auditory signals), compasses, temperature sensors (thermal and infrared sensors),
chemical sensors, andmanymore. Therefore, it is prudent to research suitable sensors
for your next project as new and more capable sensors may better suit your needs.
Can you think of all the sensors that may be used in the robot shown in Fig. 7.10?

7.4 Think: Algorithms

A critical component of a robotic system is its ability to make control decisions based
on the available sensory information and to realise the tasks and goals allocated to
it. If the brains of a robot are the computers embedded in the robotic system, the
algorithms are the software components that enable a robot to ‘think’ and make
decisions. Algorithms interpret the environment based on sensory input and decide

190 J. Wang and D. Herath

Fig. 7.10 A modern vacuum cleaning robot integrates many sensors. On the top is a time-of-flight
laser scanner. The front bumper includes several tactile sensors to detect any frontal collisions.
What other sensors do you think this robot may have?

what needs to be done at what given time and what is happening in the environment
based on the allocated tasks.

In the most general sense, an algorithm is a finite list of instructions used to
solve problems or perform tasks. To get a feel for the concept of algorithms, think
about baking a sponge cake. How would you write down your whole process to
make a sponge cake to a person who does not know baking at all? Answering these
questions in a detailed and ordered way makes an algorithm. One of the attributes of
an algorithm is that there is a systematic process that occurs in a specific order. The
wrong order of the steps can result in a big difference. For example, if we change
the order of steps in making sponge cake, for instance, put eggs and flour in the oven
for half an hour before preheating the oven. That would not make any sense!

For a robotic system, algorithms are the specific recipes that help them
‘think’. They are precise sequences of instructions implemented using programming
languages. The essential elements of an algorithm are input, sequence, selection,
iteration, and output.

• InputData, information or signals collected from the sensors or a command from
a human operator.

• Sequence—The order in which behaviours and commands are combined to
produce the desired result.

7 What Makes Robots? Sensors, Actuators, and Algorithms 191

• Selection—Is the use of conditional statements in a process. For example,
conditional statements such as [If then] or [If then else] can affect the process.

• Iteration—Algorithms can use repetition to execute steps a certain number of
times or until a specific condition is reached. It is also known as ‘looping’.

• OutputDesired result or expected outcome, such as the robot reaching the targeted
location or avoiding the collision with certain obstacles.

Robotics is rife with all kinds of algorithms, from simple obstacle avoidance
to complex scene understanding using multiple sensors. Among these, computer
vision algorithms play a significant role in their ability to infer the rich information
generated through various optical camera systems discussed earlier. Therefore, we
discuss some common vision algorithms found in robotics next.

7.5 Act: Moving About with Actuators

We identify robots as things that move around or with moving parts. In the Sense,
Think,Act paradigm, theAct refers to this dynamic aspect of robots. The robot acts on
the environment by manipulating it using various appendages called manipulators
(arm-type robots) or traversing it (mobile robots). In order to act, a robot needs
actuators. An actuator is a device that requires energy, such as electric, hydraulic,
pneumatic, and external signal input, then convert them to a form of motion that can
be controlled as desired.

7.5.1 Common Actuators in Robotics

7.5.1.1 Motors

The electric motor is a typical example of an electrically driven actuator. As they
can be made in different sizes, types, and capacities, they are suitable for use in a
wide range of robotic applications. There are various electric motors, such as servo
motors, stepper motors, and linear motors.

Servo motors

A servo motor is controlled with an electric signal, either analog or digital, which
determines the amount of movement. It provides control of position, speed, and
torque. Servo motors are classified into different types based on their application,
such as the AC servo motor and DC servo motor.

The speed of a DC motor is directly proportional to the supply voltage with a
constant load, whereas, in an AC motor, speed is determined by the frequency of the
applied voltage and the number of magnetic poles. AC motors are commonly used

192 J. Wang and D. Herath

Fig. 7.11 Hobby DC servo motors (left) and a high-end actuator (right) used in an industrial robot
arm (courtesy of Kinova Robotics)

in servo applications in robotics and in, in-line manufacturing, and other industrial
applications where high repetitions and high precision are required.

DC servomotors are commutatedmechanicallywith brushes, using a commutator,
or electronically without brushes. Brushed motors are generally less expensive and
simpler to operate, while brushless motors are more reliable, have higher efficiency,
and are less noisy (Fig. 7.11).

Stepper motors

A stepper motor is a brushless synchronous DC motor that features precise discrete
angular motions. A stepper motor is designed to break up a single complete rotation
into a number of much smaller and essentially equal part rotations. For practical
purposes, these can be used to instruct the stepper motor to move through set degrees
or angles of rotation. The end result is that a stepper motor can be used to transfer
accurate movements to mechanical parts that require a high degree of precision.
Stepper motors are very versatile, reliable, cost-effective and provide precise motor
movements, allowing users to increase the dexterity and efficiency of programmed
movements across a huge variety of applications and industries. Most 3D printers,
for example, use multiple stepper motors to precisely control the 3D print head.

Linear motors

A linear motor operates on the same principle as an electric motor but provides linear
motion. Unlike a rotary machine, a linear motor moves the object in a straight line
or along a curved track. Linear motors can reach very high acceleration, up to 6 g,
and travel speeds of up to 13 m/s. Due to this character, they are especially suitable
for use in machine tools, positioning and handling systems, and machining centres.

7 What Makes Robots? Sensors, Actuators, and Algorithms 193

7.5.1.2 Hydraulic Actuators

Hydraulic actuators are driven by the pressure of the hydraulic fluid. It consists of a
cylinder, piston, spring, hydraulic supply and return line, and stem. They can deliver
large amounts of power. As such, they can be used in construction machinery and
other heavy-duty equipment.

There are some advantages to using hydraulic actuators. A hydraulic actuator
can hold force and torque constant without the pump supplying more fluid or
pressure due to the incompressibility of fluids. Hydraulic actuators can have their
pumps and motors located a considerable distance away with minimal loss of power.
Comparing the pneumatic cylinder of equal size, the forces generated by hydraulic
actuators are 25 times greater, ensuring they operate well in heavy-duty settings.
One of the disadvantages of using hydraulic actuators is that they may leak fluid,
leading to reduced efficiency and, in extreme cases, damage to nearby equipment
due to spillage. Hydraulic actuators require many complementary parts, including a
fluid reservoir, motor, pump, release valves, and heat exchangers, along with noise
reduction equipment.

7.5.1.3 Pneumatic Actuators

Pneumatic actuators have been known for being highly reliable, efficient, and safe
sources of motion control. These actuators are driven by pressurised air that can
convert energy in the form of compressed air into linear or rotary mechanical motion.
They feature both simple mechanical design and flexible operation. They are widely
used in combustible automobile engines, railway applications, and aviation. Most of
the benefits of choosing pneumatic actuators over alternative actuators, such as elec-
tric ones, boil down to the reliability of the devices and the safety aspects. Pneumatic
actuators are also highly durable, requiring less maintenance and long operating
cycles.

7.5.1.4 Modern Actuators

Many new actuation methods and actuators have emerged in recent times. These
include pneumatic tendons (Fig. 7.12) and other biologically inspired actuators, such
as fish fins or octopus tentacles. Soft robotics is an emerging field that explores some
of these developments. However, the compliance requirements and morphology of
soft robots prevent the use of many conventional sensors seen in hard robots. As a
result, there has been active research into stretchable electronic sensors. Elastomer
sensors allow for minimal impact on the actuation of the robot.

194 J. Wang and D. Herath

Fig. 7.12 Pneumatic rubber muscles used in animating this giant robotic structure during a perfor-
mance by the artist, Stelarc (Reclining StickMan, 2020AdelaideBiennial ofAustralianArt:Monster
Theatres, Photographer—Saul Steed, Stelarc)

7.6 Computer Vision in Robotics

Computer vision techniques have been the subject of heightened interest and rigorous
research for decades nowas awayof sensing theworld in all its complexity.Computer
vision attempts to achieve the function of understanding the scene and the objects
of the environment. Furthermore, the increasing computational power and progress
in computer vision methods have made making robots ‘see’ a popular trend. As
computer vision combines both sensors and algorithms, it deserves its own unique
section within this chapter.

Computer vision in robotics refers to the capability of a robot to visually perceive
and interact with the environment. Typical tasks are to recognise objects, detect
ground planes, traverse to a given target location without colliding with obstacles,
interact with dynamic objects, and respond to human intents.

Vision has been used in various robotic applications for more than three decades.
Examples include applications in industrial settings, service,medical, andunderwater
robotics, to name a few. The following section will introduce some classic computer
vision algorithms widely used in robotics, such as plane detection, optical flow, and
visual odometry.

7 What Makes Robots? Sensors, Actuators, and Algorithms 195

7.6.1 Plane Detection

For an autonomous mobile robot system, detecting the dominant plane is a funda-
mental task for obstacle avoidance and trajectory finding. The dominant plane can be
considered a planar area occupying the largest region on the ground towards which
the robot is moving. It provides useful information about the environment, particu-
larly whether objects above the detected dominant plane and along the direction of
the robot’s movement can be viewed as obstacles. A ground mobile robot or micro-
aerial vehicle operating in an unknown environment must identify its surroundings
before the system can conduct its mission. These vehicles should recognise obstacles
within their operating area and avoid detected obstacles or travel over them where
possible. There are various plane detection techniques such as RANSAC and the
region growth method.

7.6.1.1 RANSAC

The random sample consensus (RANSAC) (Fischler & Bolles, 1981) method is
an iterative method to estimate parameters of a mathematical model from a set of
observed data that contains outliers. It is a very useful tool to find planes, with its
principle to search for the best plane among three-dimensional (3D) point clouds. At
the same time, it is computationally efficient even when the number of points is vast.
Plane detection using RANSAC starts by randomly selecting three points from the
point cloud and calculating the parameters of the corresponding plane. The next step
detects all the points of the original cloud belonging to the calculated plane based on
the given threshold. Repeating this procedure for N rounds, each time, it compares
the obtained result with the last saved one, and if the new one is better, it replaces
the saved one (see Algorithm 1).

The four types of data needed as input for this algorithm are:

• a 3D point cloud which is a matrix of the three coordinate columns X, Y, and Z;
• a tolerance threshold of distance t between the chosen plane and other points;
• a probability (α) which lies typically between 0.9 and 0.99 and is the minimum

probability of finding at least one good set of observations in N rounds; and
• the maximum probable number of points belonging to the same plane.

196 J. Wang and D. Herath

As one of the most well-known methods for plane detection, RANSAC has been
shown to be capable of detecting planes in both 2D and 3D. For example, in Fig. 7.13,

Fig. 7.13 Two groups of 3D points representing two planes detected using the RANSAC method

7 What Makes Robots? Sensors, Actuators, and Algorithms 197

two groups of noisy 3D points (blue and red) with two planes detected successfully
using the RANSAC method.

7.6.1.2 Region Growth Method

The region growth method for plane detection was first introduced by Hähnel et al.,
(2003) with the goal of creating a low complexity model that can be implemented in
real time. It works from a seed chosen randomly from the point cloud, which consists
of sufficient information to fit a plane and addsmore points based on specific selection
conditions, such as if three points are needed or whether a point with a corresponding
normal can be used. Then,when the neighbouring points are consistentwith the plane,
they are considered part of it. This procedure is repeated until no more points can be
found, and then the algorithm stops and adds the plane if it contains enough points.
Finally, the points are removed from the point set, and a new seed is selected. A brief
outline of this algorithm is presented in Algorithm 2.

7.6.2 Optical Flow

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a
visual scene caused by the relative motion between an observer and the scene. It is
believed that insects and birds frequently use optical flow for short-range navigation
and obstacle avoidance. For example, biologists have reported that birds use optical
flow to avoid obstacles andmanoeuvre landings. In addition,manymammals possibly

198 J. Wang and D. Herath

use optical flow to detect the motions of objects. All these discoveries regarding
optical flow provide new ideas for roboticists to develop visual-based robots with
the capability to navigate safely and quickly in unknown environments.

Optical flow can be treated as the apparent motions of objects, brightness patterns
or feature points observed by eyes or cameras. Based on this definition, it can be
computed from the difference between two sequences, which is usually expressed
as:

[u̇, v̇]T = f (u, v), where its unit is pix/sec or pix/frame.
Optical flowcan also bedefined as the projectionof the relative 3Dmotionbetween

an observer and scene into the image plane. As an image consisting of many pixels
with unique coordinates, it can be described as a two-dimensional (2D) vector in
image sequences. Therefore, the motion field model can be described as:

OF = V

d

where OF is the optical flow field, V is the observer velocity vector, and d is the
distance between the observer and the image plane with the unit normally rad/s or
°/s. The two definitions above mentioned are the same for an ideal situation after a
coordinate transformation.

For a short duration, the intensity structures of local time-varying image regions
are approximately constant. Based on this assumption, if I (x, t) is the image intensity
function, we have:

I (x, t) = I
(
x + δx , y + δy

)
,

where δx is the displacement of the local image region at (x, t) at time t + δt . This
equation expanded in a Taylor series yields:

I (x, t) = I (x, t) + ∇I · δx + δt It + O2

where ∇I = (
Ix , Iy

)
and It are the first-order partial derivatives of I (x, t) and O2

the second-and higher-order terms, which are negligible. The previous equation can
be rewritten as:

∇I · V + It = 0

dividing by δt , where ∇I = (
Ix , Iy

)
is the spatial intensity gradient, and V = (u, v)

is the image velocity. This is known as the optical flow constraint equation, which
defines a single local constraint on image motion (Fig. 7.14).

Manymethods have been proposed for detecting the optical flow. Some techniques
are briefly discussed next.

7 What Makes Robots? Sensors, Actuators, and Algorithms 199

Fig. 7.14 Detected optical flow indicated by red arrows, longer the arrow length faster movement
of the pixel patch (translation on the left, rotation on the right)

7.6.2.1 Lucas–Kanade Method and Horn–Schunck Method

The Lucas–Kanade method (Lucas & Kanade, 1981) and Horn–Schunck method
(Horn & Schunk, 1981) are widely used classical differential methods for optical
flow estimation. Lucas–Kanade method assumes that the flow is constant in a local
neighbourhood of the pixel under consideration and solves the basic optical flow
equations for all the pixels in that neighbourhood by the least-squares criterion.
By combining information from several nearby pixels, the Lucas–Kanade method
can often resolve the inherent ambiguity of the optical flow equation. It is also less
sensitive to image noise compared with other methods.

Horn–Schunck method is another classical optical flow estimation algorithm. It
assumes smoothness in the flow over the whole (global) image. Thus, it tries to
minimise distortions in flow and prefers solutions that show more smoothness. As a
result, it is more sensitive to noise than the Lucas and Kanade method. Many current
optical flow algorithms are built upon these frameworks.

7.6.2.2 Energy-Based Methods

Energy-based optical flow calculation methods are also called frequency-based
methods because they use the energy output fromvelocity-tuned filters. Under certain
conditions, these methods can be mathematically equivalent to differential methods
mentioned previously. However, it is more difficult for differential and correlation
methods to deal with sparse patterns of moving dots than energy-based methods.

200 J. Wang and D. Herath

7.6.2.3 Phase-Based Methods

A phase-based technique is a classical method calculating the optical flow using the
phase behaviours of band-pass filter outputs. It was first introduced by Fleet and
Jepson (1990) and has been shown to be more accurate than other local methods
mainly because phase information is robust to changes, in contrast, scale orientation
and speed (Fleet & Jepson, 1990). However, the main drawback of phase-based
techniques is the high computational load associated with their filtering operations.

Correlation methods

Correlation-based methods find matching image patches by maximising some simi-
larity measure between them under the assumption that the image patches have not
been overly distorted over a local region. Such methods may work in cases of high
noise and low temporal support where numerical differentiation methods are not as
practical. These methods are typically used for finding stereo matches for the task
of recovering depth.

7.6.3 Visual Odometry

Visual odometry (VO) is a method for estimating the position and orientation of
mobile robots, such as a ground robot or flying platform, using the input from a single
or multiple cameras attached to it (Scaramuzza & Fraundorfer, 2011). It estimates a
position by integrating the displacements obtained fromconsecutive images observed
from onboard vision systems. It is vital in environments in which a GPS is not
available for absolute positioning (Weiss et al., 2011).

Many conventional odometry solutions produce unpredictable errors in the
measurements delivered by gyroscopes, accelerometers, and wheel encoders. It has
been found that, for Mars exploration Rovers experiencing small translations over
the sandy ground, large rocks or steep slopes, the visual odometry needs to be
corrected for errors arising from motions and wheel slip (Maimone et al., 2007).
A vehicle’s position can be estimated by either stereo or monocular cameras using
feature matching or tracking technologies. In Garratt and Chahl (2008), the trans-
lation and rotation are estimated using the image interpolation algorithm with a
downward-facing camera. Methods for computing ego-motion directly from image
intensities have also been suggested (Hanna, 1991; Heeger & Jepson, 1992). The
issue with using just one camera is that only the direction of motion, not the absolute
velocity scale, can be determined, known as the scaling factor problem. However,
using an omnidirectional camera can solve this problem; for example, safe corridor
navigation for a micro air vehicle) (MAV) using an optical flow method is achieved
in Conroy et al., (2009), but this operation requires a great deal of computational
time.

7 What Makes Robots? Sensors, Actuators, and Algorithms 201

7.7 Review Questions

• What is the difference between an AC motor and a DC motor?
• What is the difference between a camera and an RGB-D sensor?
• A typical rotary encoder used in a wheeled mobile robot to measure the distance

it travels has 40 slots. The robot’s wheel to which this sensor is mounted has a
diameter of 7 cm. If the sensor gives out a steady 7 Hz square pulse, what is the
robot’s speed in cm/s?

7.8 Further Reading

Although a little dated, the Sensors for Mobile Robots by Everett and Robot Sensors
and transducers by Ruocco provide comprehensive coverage of classical sensors
used in robotics. Computer Vision: Algorithms and Applications by Szeliski is
an excellent introductory book on computer vision in general. For more robotics-
related concepts in computer vision as well for those interested in reading more
advanced topics in robotics, Corke’s Robotics, Vision and Control are highly recom-
mended. The book includesmany code samples and associated toolboxes inMatlab®.
Programming Computer Vision with Python: Tools and algorithms for analysing
images by Solem provide many Python-based examples of vision algorithm imple-
mentations. Algorithms by Sedgewick and Wayne is one of the best books on the
topic.

References

Aboelmagd, N., Karmat, T. B., & Georgy, J. (2013). Fundamentals of inertial navigation, satellite-
based positioning and their integration. Springer.

Chum, O., & Matas, J. (2005). Matching with prosac-progressive sample consensus. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005
(Vol. 1, pp. 220–226). IEEE.

Conroy, J., Gremillion, G., Ranganathan, B., & Humbert, J. (2009). Implementation of wide-field
integration of optic flow for autonomous quadrotor navigation. Autonomous Robots,27(3), 189–
198.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communications of the
ACM,24(6), 381–395.

Fleet, D. J., & Jepson, A. D. (1990). Computation of component image velocity from local phase
information. International Journal of Computer Vision,5(1), 77–104.

Garratt, M. A., & Chahl, J. S. (2008). Vision-based terrain following for an unmanned rotorcraft.
Journal of Field Robotics,25(4), 284.

Hähnel, D., Burgard, W., & Thrun, S. (2003). Learning compact 3D models of indoor and outdoor
environments with a mobile robot. Robotics and Autonomous Systems, 44(1), 15–27.

Hanna, K. (1991). Direct multi-resolution estimation of ego-motion and structure from motion. In
Proceedings of the IEEE Workshop on Visual Motion (pp. 156–162). IEEE.

202 J. Wang and D. Herath

Heeger, D. J., & Jepson, A. D. (1992). Subspace methods for recovering rigid motion I: Algorithm
and implementation. International Journal of Computer Vision,7(2), 95–117.

Horn, B. K. P., & Schunk, B. G. (1981). Determining optical flow. Artificial Intelligence,17, 185–
203.

Jiménez, A., & Seco, F. (2005). Ultrasonic localisation methods for accurate positioning. Instituto
de Automatica Industrial.

Kreczmer, B. (2010). Objects localisation and differentiation using ultrasonic sensors. INTECH
Open Access Publisher.

Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an application to
stereo vision. In Proceedings of DARPA IU Workshop (pp. 121–130).

Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of visual odometry on the mars
exploration rovers. Journal of Field Robotics,24(3), 169–186.

Matas, J., &Chum, O. (2005). Randomised RANSACwith sequential probability ratio test. In Tenth
IEEE International Conference on Computer Vision, 2005. ICCV 2005 (Vol. 2, pp. 1727–1732).
IEEE.

Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry [tutorial]. IEEE Robotics & Automation
Magazine,18(4), 80–92.

Schnabel, R., Wessel, R., Wahl, R., & Klein, R. (2008). Shape recognition in 3D point-clouds. In
The 16th International Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision (Vol. 8). Citeseer.

Sutton, M., Wolters, W., Peters, W., Ranson, W., & McNeill, S. (1983). Determination of
displacements using an improved digital correlation method. Image and Vision Computing,1(3),
133–139.

Takahashi, T. (2007). 2D localisation of outdoor mobile robots using 3D laser range data (Doctoral
dissertation). Carnegie Mellon University.

Tarsha-Kurdi, F., Landes, T., & Grussenmeyer, P. (2007). Hough-transform and extended RANSAC
algorithms for automatic detection of 3D building roof planes from lidar data. In ISPRSWorkshop
on Laser Scanning 2007 and SilviLaser 2007 (Vol. 36, pp. 407–412).

Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Monocular-SLAM-based navigation for
autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics,28(6),
854–874.

Jiefei Wang research focuses on sensing, real-time image processing, guidance, and control for
autonomous systems. He received the master’s degree in electrical engineering from Australian
National University in 2011, and the Ph.D. degree in electrical engineering from the University
of New South Wales in 2016. His research interests include sensing and image processing, scene
understanding for obstacle avoidance, control of autonomous systems, and aerial robotics.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra. He
is a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial and research projects for over
two decades. He founded Australia’s first collaborative robotics startup in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015
and 2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted
Amazon Robotics Challenge—an industry-focused competition among the robotics research elite.
In addition, he has chaired several international workshops on Robots and Art and is the lead
editor of the book ‘Robots and Art: Exploring an Unlikely Symbiosis’—the first significant work
to feature leading roboticists and artists together in the field of robotic art.

7 What Makes Robots? Sensors, Actuators, and Algorithms 203

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 8
How to Move? Control, Navigation
and Path Planning for Mobile Robots

Jiefei Wang and Damith Herath

8.1 Learning Objectives

You will learn about:

• Controllers and control techniques used in robotics, including the PID controller
• Mobile robot locomotion types
• Robot path planning and obstacle avoidance.

8.2 Introduction

When we think of robots, we think of them as manipulators, such as in manufac-
turing facilities where they are fixed to a location or robots that are moving about
(Fig. 8.1). Robots that move around in the environment are called mobile robots.
This chapter looks at mobile robots, how to control them, different locomotion types
and algorithms used for planning paths, and obstacle avoidance while navigating.

J. Wang (B)
The School of Engineering and Information Technology, University of New South Wales,
Canberra, Australia
e-mail: Jiefei.wang@adfa.edu.au

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_8

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_8&domain=pdf
mailto:Jiefei.wang@adfa.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_8

206 J. Wang and D. Herath

Fig. 8.1 A Kinova Gen3 lite robot arm mounted on a Clearpath Dingo Indoor mobile robotic
platform (left) alongside a Jackal Unmanned Ground Vehicle used for outdoor navigation. (right)
(Credits Clearpath/Kinova)

An Industry Perspective

Dana Leslie
Former Clearpath Robotics’ Employee

Like many young engineers, I have my parents to thank for enabling me to
explore the world through robotics. The enjoyment of playing with lego, elec-
tronics kits, and computer programming at a young age, was undoubtedly the
catalyst that resulted in my career trajectory.

After studying electrical engineering at the University of Victoria, I was
fortunate to get a start in the industry by landingmyfirst job at CellulaRobotics,
a subsea robotics company. It was here that our team designed, manufactured,
and deployed robots to the darkest depths of the ocean, studying and learning
about the undersea world!

8 How to Move? Control, Navigation and Path Planning … 207

From water onto land, the robots I’ve helped design continued to evolve;
developing wheeled terrestrial systems at Clearpath Robotics in Ontario, and
most recently legged humanoids at Agility Robotics in Oregon.

During the design of amobile robot, diodeswere incorporated into the power
system to enable battery hot-swapping. Consequently, the energy generated by
back-EMF from the motors (while braking or being pushed) could not be
absorbed by the battery. The result was an uncontrolled increase in voltage,
causing various subsystems to glitch, with the robot lifelessly rolling to a halt…

This type of challenge is trivial to conceptualise, butmuchharder to quantify.
It’s only apparent in a fully integrated system, is correlated to things outside
of your control, and is intensified when carrying heavy payloads or traveling
down ramps. (Increased mechanical to electrical energy conversion.)

In the end, through comprehensive and iterative testing, the solution was a
combination of reducing deceleration rates, varying system capacitance, and
utilising transient-voltage-suppression diodes.

It’s nice to be able to power your robot by giving it a push, but it’s critical
that your robot behaves when it’s in a hurry to stop.

Innovation in embedded sensing, processing, power electronics, and battery
chemistries have collectively advanced the robotics industry throughout my
career.

Precise and energy-dense servo-actuators have recently enabled cutting-
edge humanoid robotic development that is poised to redefine the workforce;
automating the dullest and dangerous of human tasks.

These same actuators have advanced robotic manipulation, enabling the
technology to emerge from the factory line and onto the front lines. Robotic
arms are no longer just being used to assemble cars, they’re being used to flip
hamburgers and pack your groceries!

8.3 Mobile Robots

Mobile robots have receivedmuch attention in the last few decades due to their ability
to explore complex environments such as space, rescue operations, and accomplish
tasks autonomously without human effort. Mobile robots can be broadly categorised
as wheeled, legged, and flying robots.

208 J. Wang and D. Herath

8.3.1 Wheeled Robots

Wheeled robots traverse around the ground using motorised wheels to propel them-
selves and a comparatively easier to design, build, and operate for movement in flat
or rocky terrain than robots that use legs or wings. They are also better controlled
as they have fewer degrees of freedom than flying robots. One of the challenges of
wheeled robots is that they cannot operate well over certain ground surfaces, such
as sharp declines, rugged terrain, or areas with low friction. Nevertheless, wheeled
robots are themost popular in the consumer market due to the low cost and simplicity
of differential steering mechanisms they employ. Although wheeled robots can have
any number of wheels, the mechanisms need to be modified to keep dynamic balance
based on the number of wheels. Three or four wheels are the most popular and suffi-
cient for static and dynamic balance among all wheeled robots, which are widely
used in research projects.

8.3.1.1 Kinematic Modelling

This book primarily discusses two types of robots and their motions, mobile robots
and arm type robots. In either type, we need to understand how the movements
generated by the actuators translate into complex body movements. To design a
robot to act in the environment, we need to understand these geometric relationships
of motion.

Kinematics is the study of motions of points, bodies, and systems of bodies (such
as robots) without considering the forces acting on these systems. In this chapter,
we will discuss some common wheel configurations and their respective kinematic
models used in mobile robots that use motors to drive them around. Then, Chap. 10
will delve into modelling kinematics of arm-type robots.

8.3.1.2 Holonomic Drive

Holonomic refers to the relationship between controllable and total degrees of
freedom of a robot. If the controllable degree of freedom is equal to the total degrees
of freedom, then the robot is said to be Holonomic. A robot built on castor wheels
or omniwheels is a good example of a holonomic drive. It can freely move in any
direction, and the controllable degrees of freedom is equal to total degrees of freedom.

If the controllable degree of freedom is less than the total degrees of freedom, it
is known as non-holonomic drive. For example, a car has three degrees of freedom:
its position in two axes and orientation. However, there are only two controllable
degrees of freedom: acceleration (or braking) and the turning angle of the steering
wheel. This makes it difficult for the driver to turn the car in any direction (unless it
skids or slides).

8 How to Move? Control, Navigation and Path Planning … 209

For a typical differential drive robot (see Fig. 8.4), the non-holonomic constraint
could be written as:

ẋ sin φ − ẏ cosφ = 0

8.3.1.3 Three-Wheeled Robots

One of the most common actuator configurations to drive a mobile robot is the
three-wheeled configuration (also known as the tricycle model).

There are two types of three-wheeled robots:

• Differentially steered—two separately powered wheels with an extra free rotating
wheel. The robot direction can be changed by varying the relative rate of rotation
of the two separately driven wheels. If both the wheels are driven in the same
direction and speed, the robot will go straight. Otherwise, depending on the speed
of rotation and its direction (Fig. 8.2).

• Two wheels powered by a single actuator and a powered steering wheel.

The centre of gravity in this type of robot has to lay inside the triangle formed by the
wheels. If too much weight is allocated to the side of the free rotating wheel, it will
cause an imbalance that could make the robot tip over.

Let us now explore how a differentially steered three-wheeled robot could be
modelled kinematically.

The model presented in Fig. 8.3 introduces a virtual wheel for the front set of
differential drive wheels. The twowheels along the centreline of the robot essentially
represent the whole system. With the said constraints, the robot can only exercise
two degrees of freedom. Thus, the derivation of the kinematic model refers to the
robot’s simplified model. The instantaneous centre of rotation (also known as the
instantaneous velocity centre) in this model refers to an imaginary point attached to
the robot where at a given point in time has zero velocity while the rest of the robot
body is in planar motion. You could imagine the robot to be rotating around this
point at the time instance being considered.

It can be shown that the continuous time form of the vehicle model (with respect
to the centre of the front wheel) can be derived as follows:

ẋ(t) = V (t) cos(φ(t) + γ (t))

ẏ(t) = V (t) sin(φ(t) + γ (t))

ϕ̇(t) = V (t) sin(γ (t))

B

where x(t) and y(t) denote the position of the vehicle, the angle φ(t) is the orientation
of the robot with respect to the x-axis, and V (t) represents the linear velocity of the

210 J. Wang and D. Herath

Fig. 8.2 Differentially steered three-wheeled robot. The front two wheels (top) are powered by
two DC motors. A back castor wheel is free to rotate around and is not powered

front wheel. The angle γ is defined as the steer angle of the vehicle. B is the base
length between the two sets of wheels.

A simpler kinematic model can be derived from the model discussed earlier in
many simple robot configurations where the system makes the velocity of the robot
V (t) and the angular velocity of the robot φ̇(t) directly available (e.g. via wheel
encoders). Then the process model for the corresponding system can be represented
as follows (Fig. 8.4):

Following simpler equations can be derived then:

ẋ(t) = V (t) cos(φ(t))

ẏ(t) = V (t) sin(φ(t))

ϕ̇(t) = ω(t)

8 How to Move? Control, Navigation and Path Planning … 211

B

W

Instantaneous centre of

rotation

Rr

Fig. 8.3 Vehicle geometry of a typical three-wheeled robot

Fig. 8.4 Simplified robot
model

8.3.1.4 Two-Wheeled Robots

Two-wheeled robots are harder to balance than other types because they must keep
moving to maintain upright. The centre of gravity of the robot body is kept below the
axle. Usually, this is accomplished by mounting the batteries below the body. They
can have their wheels parallel to each other, and these vehicles are called dicycles,
or one wheel in front of the other, tandemly placed wheels (bicycle). Two-wheeled
robots must keep moving to remain upright, and they can do this by driving in the
direction the robot is falling. To balance, the base of the robot must stay under its
centre of gravity. For a robot that has left and right wheels, it needs at least two

212 J. Wang and D. Herath

B

Instantaneous centre of

rotation

Rr

Ø

α

Ø

Fig. 8.5 Wheel configuraiton of a two-wheeled bicycle robot

sensors. A tilt sensor is used to determine tilt angle and wheel encoders that keep
track of the position of the robot’s platform (Fig. 8.5).

where Rrr = B
tan ø , α + ø + 90◦ = 180◦.

8.3.1.5 Four-Wheeled Robots

There are several configurations possible with four wheels.

• Two powered and two free rotating wheels

Same as the differentially steered ones mentioned previously but with two free
rotating wheels for extra balance.

Four-wheeled robots are more stable than three-wheeled ones as the centre of
gravity has to remain inside the rectangle formed by the four wheels instead of
a triangle. Still, it is advisable to keep the centre of gravity to the middle of the
rectangle as this is the most stable configuration, especially when taking sharp turns
or moving over a non-even surface.

• Two-by-two powered wheels for tank-like movement

This type of robot uses two pairs of powered wheels, and each pair turns in the same
direction. The tricky part of this kind of propulsion is getting all the wheels to turn
with the same speed. If the wheels in a pair are not running at the same speed, the

8 How to Move? Control, Navigation and Path Planning … 213

B

W

Instantaneous centre of

rotation

Rr

Ø

Fig. 8.6 Ackerman drive

slower one will slip. If the pairs do not run at the same speed, the robot is not able to
drive straight. A good design has to incorporate some form of car-like steering.

• Car-like steering (Ackerman drive)

This method allows the robot to turn the same way a car does (Fig. 8.6). However,
this system does have an advantage over previous methods where it only needs one
motor to drive the rear wheels and a servo for steering. The previous methods would
require either two motors or a highly complex gearbox since they require two output
axles with independent speed and direction of rotation.

where Rrr = B
tan ø .

8.3.1.6 Omnidirectional Wheels

Omnidirectional (Omni) wheeled robots fall under a class of unconventional mobile
robots (Fig. 8.7).

An omniwheel could be thought of as having many smaller wheels making up a
large one, and the smaller ones are mounted at an angle to the axis of the core wheel.
This allows the wheels to move in two directions and move holonomically, which
means it can instantaneously move in any direction, unlike a car, which moves non-
holonomicallly and has to be in motion to change heading. In addition, omniwheeled
robots can move in at any angle in any direction without rotating beforehand. Some
omniwheel robots use a triangular platform, with the three wheels spaced at 60-
degree angles. The advantage of using omniwheels is that they make it easier for

214 J. Wang and D. Herath

Fig. 8.7 A set of Mecanum wheels (a type of omniwheel) on a home robot

robots to be designed with wheels mounted on an unaligned axis. The disadvantage
of using omniwheels is that they have poor efficiency due to not all the wheels
rotating in the direction of movement, which also causes loss from friction, and are
more computationally complex because of the angle calculations of movement.

8.3.2 Walking Robots

Legged robots are inspired by human beings, legged animals or insects which
use leg mechanisms to provide locomotion. Compared with wheeled robots, they
are more versatile. They can traverse extreme environments such as unstructured,
uneven, unstable, rugged terrain and complex confined spaces such as underground
environments and industrial structures.

Legged robots can be categorised by the number of limbs they use. Robots with
more legs tend to bemore stable, while fewer legs lend themselves to greatermanoeu-
vrability. For a legged robot to keep its balance, it requires maintaining its centre
of gravity within its polygon of stability. The polygon of stability is the horizontal
surface defined by the leg-ground contact points made by the robot. These multide-
grees of freedom legs are usually modelled as kinematics chains which is covered in
Chap. 10.

8 How to Move? Control, Navigation and Path Planning … 215

8.3.2.1 Robot Gait

The periodic contact of the robot’s legswith the ground is called the gait of thewalker.
The specific gait depends on the leg configuration of the robot and parameters such
as the speed, terrain the robot is moving, intended task and power limitations of the
robot. Milton Hildebrand was one of the earliest zoologists to study animal gaits.
Various researchers have since adopted his method for gait-pattern specification in
robotics, providing a formal method for studying and improving robot gait.

8.3.2.2 Two-Legged Robots

Two-legged robots are also called bipedal robots. The fundamental challenges for
two-legged robots are stability andmotion control, which refers to balance andmove-
ment control. In advanced systems, accelerometers or gyroscopes provide dynamic
feedback to control the balance. Such sensors are also used for motion control,
walking, jumping, and even running, combined with technologies such as machine
learning. On the other hand, the passive walker is a bipedal mechanism that “walks”
without actuation, simply using gravity as its energy source (Fig. 8.8).

Fig. 8.8 A bipedal robot

216 J. Wang and D. Herath

Fig. 8.9 Pepper robot (left)—a wheeled semi-humanoid robot used in retail marketing. The HRP-
1 (right)—an early Humanoid Robot Prototype developed by the National Institute of Advanced
Industrial Science and Technology (AIST), Japan, on public display at its premises

8.3.2.3 Humanoid Robots

If you close your eyes and think about a robot, what would you picture in your mind?
Most likely a fictional creature like Arnold Schwarzenegger in the Terminator series
movies or C-3PO from Star Wars. It is likely a humanoid—a humanlike robot with
a head and body with arms and legs, probably painted metallic silver. Humanoid
robots are expected to imitate human motion and interaction (Fig. 8.9) and have their
roots in longing and mythmaking, as discussed in our first chapter. With years of
research, they are becoming commercially available in several application domains,
including in competitive game-playing (such as in the RoboCup humanoid league1)
and social and interactive robots such as the Pepper (Fig. 8.9) by Softbank Robotics.
Strictly speaking, Pepper is a semi-humanoid robot with a wheeled robot base and
not a bipedal robot. As mentioned earlier, a wheeled robot is much simpler, stable

1 https://humanoid.robocup.org/.

https://humanoid.robocup.org/

8 How to Move? Control, Navigation and Path Planning … 217

and economical to produce. How these robots are deployed are constantly expanding,
and with the development of new technology, the market will follow suit.

8.3.2.4 Four-Legged Robots

Four-legged robots are also called quadruped robots. They have better stability
compared to two-legged robots during movement. Also, the lower centre of gravity
and four legs keep them well balanced when they are not moving. They can move
either by moving one leg at a time or by moving the alternate pair of legs (Fig. 8.10).

Types of Gait for Four-Legged Robots

Four-legged robots can walk with statically and dynamically stable gaits. In the
statically stable gait, each leg of the robot is lifted up and down sequentially, and
there are three stance legs at least at any moment. This type of gait is called creeping
gait (Zhao et al., 2012).Dynamically stable gaits are often used in four-legged robots
to walk and run due to their efficiencies, such as trotting, pace, bounce, and gallop
gait (Fukuoka & Kimura, 2009). In trotting gait, two of the legs are in the same
diagonal lift, and the two legs are in contact with the ground until the other two legs
lift off, and then repeat the motion two by two in order.

Fig. 8.10 Sony Aibo robot dog—One of the early versions of Sony’s four-legged robot dog series

218 J. Wang and D. Herath

Fig. 8.11 A robot hexapod (Credit Bryce Cronin)

8.3.2.5 Six-Legged Robots

Six-legged robots are also called hexapods. They are designed to mimic the
mechanics of insects. Their legsmove in a “wave” form from the back to the front. As
a result, six-legged robots offer greater stability while moving and standing, they can
operate just on three legs, and the remaining legs provide flexibility and increase their
capabilities. In Chaps. 12 and 17, you will explore the design and implementation of
a hexapod robot (Fig. 8.11).

Types of Gait for Six-Legged Robots

One by one is the simplest gait, which moves each leg forward one after the other
in a clockwise or anticlockwise direction while the remaining five legs are in the
stance phase—not moving. For a quadruped gait (Fig. 8.11), the robot moves the
front two legs (1 and 2) forward, and the rest (3, 4, 5, 6) support the body, then the
robot moves the middle two legs (3, 6) to push the body forward while the rest of
the legs (1, 2, 4, 5) support, then swing the last two legs (4 and 5) forward while
the other legs support (1, 2, 3, 6) the robot. The pattern is then repeated. The tripod
gait uses two legs on one side and another on the other side (e.g. 1, 5, and 3), as in
a tripod, to hold the robot steady while moving the three remaining legs forward (2,
4, and 6) together.

8.3.2.6 Eight-Legged Robot

Spiders and other arachnids inspire eight-legged robots. Compared with other legged
robots, eight-legged robots offer the greatest stability with potential use in more

8 How to Move? Control, Navigation and Path Planning … 219

challenging environments such as in hazardous areas to perform reconnaissance,
identify structural damages, and perform maintenance tasks.

8.3.3 Flying Robots

Much effort has been devoted to improving the flight endurance and payload of
Unmanned Aerial Vehicles (UAVs), commonly known as drones, which has resulted
in various configurations in different sizes, capabilities, and endurance.Unlike legged
and wheeled robots, flying robots are free to utilise the full six degrees of freedom,
allowing for different types of flight for a drone. These are known as Yaw, Pitch, and
Roll (Fig. 8.12).

Yaw (ψ) – This is the rotation of the drone’s head to either right or left. It is the basic
movement to spin the drone. In a remotely piloted drone, this is usually achieved using the
left throttle stick by moving to either the left or right.

Pitch (θ) – This is the drone’s movement, either forward or backward. The forward pitch is
generally achieved in a remotely piloted drone by pushing the throttle stick forward, making
the drone tilt and move forward, away from you. Backward pitch is achieved by moving the
throttle stick backwards.

Roll (Ø) – Roll makes the drone fly sideways to either left or right. The right throttle stick
controls the roll in a remotely piloted drone.

8.3.3.1 Multicopters

Amulticopter is a type of flying vehicle with propellers driven by motors (Fig. 8.13).
Themain rotor blade(s) produces a forceful thrust used for both lifting and propelling
the vehicle. Multirotor uncrewed aerial vehicles are capable of vertical take-off and
landing (VTOL) and may hover at a place, unlike fixed-wing aircraft. Their hovering

Fig. 8.12 Roll, pitch, and
yaw

220 J. Wang and D. Herath

Fig. 8.13 Different types of multicopper (clockwise from top left—A quadrotor—DJI MAVIC
PRO, A hexacopter—Custom built model, DJI Phantom Model and An octocopter—Custom built
model)

capability and ability to maintain speed make them ideal for civilian fields, moni-
toring, surveillance, and aerial photography work. One of the challenges with multi-
copters is that they consume more power, leading to limited endurance. Also, multi-
copters, unlike fixed-winged counterparts, are inherently aerodynamically unstable
and requires an on-board flight controller (an autopilot) to maintain stability.

Multicopters can be divided into specific categories based on the number and
positioning of motors, and each category has its own mission (Fig. 8.14). And based
on the mission requirements, they are classified in various configurations such as
Monocopter (1 rotor), Tricopter (3 rotors), quadcopter (4 rotors), hexacopter (6
rotors) (X/+ configurations),Octacopter (8 rotors) (X/+ configurations), X8-rotor,
and Y6-rotor. A quadrotor is a multirotor helicopter lifted and propelled by four
rotors. It is a useful tool for university researchers to test and evaluate new ideas in
several fields, including flight control theory, navigation, real-time systems.

8.3.3.2 A Quadrotor Example

A quadrotor (drone) is able to perform three manoeuvres in the vertical plane: hover,
climb, or descend.

Hover—To hover, the net thrust of the four rotors push the drone up and must be
exactly equal to the gravitational force pulling it down.

8 How to Move? Control, Navigation and Path Planning … 221

Fig. 8.14 Various configurations possible with the hoverfly multirotor control board (Ed Darack,
2014)

Climb (Ascend)—Increasing the thrust (speed) of the four rotors so that the upward
force is greater than the weight and pull of gravity.

Descend—Dropping back down requires doing the exact opposite of the climb,
decreasing the rotor thrust (speed) so the net force is downward.

To fly forward, an increase in the quadcopter motor rpm (rotation rate) of rotors
3 and 4 (rear motors) and a decrease in the rate of rotors 1 and 2 (front motors) is
required. The total thrust force will remain equal to the weight so that the drone will
stay at the same vertical level. To rotate the drone without creating imbalances, a
decrease in the spin of motors 1 and 3 with an increase in the spin of rotors 2 and 4
is required (Fig. 8.15).

Mathematical Model of a Quadcopter

The structure of the quadcopter is presented in the below figure, including the
corresponding angular velocities, torques and forces created by the rotors (Fig. 8.16).

The absolute linear position ξ of the quadcopter is defined in the inertial frame.
Angular position is defined with three Euler angles η. Vector q contains the linear
and angular position vectors.

222 J. Wang and D. Herath

Fig. 8.15 A quadcopter
rotor configuration

Fig. 8.16 Inertial and body frames of a quadcopter

ξ =
⎡
⎣
x
y
z

⎤
⎦, η =

⎡
⎣
Ø
θ

ψ

⎤
⎦, q =

[
ξ

η

]

The origin of the body frame is in the centre of mass of the quadcopter. In the
body frame, the linear velocities are determined by VB and the angular velocities by
ν

VB =
⎡
⎣

vx , B
vy, B
vz, B

⎤
⎦, v =

⎡
⎣
p
q
r

⎤
⎦

The rotation matrix from the body frame to the inertial frame is

R =
⎡
⎣
CψCθ CψSθ SØ − SψCθ CψSθCØ + SψSθ

SψCθ SψSθ SØ + CψCθ SψSθCØ − CψSθ

−Sθ Cθ SØ CθCψ

⎤
⎦

8 How to Move? Control, Navigation and Path Planning … 223

where Sx = sin(x) andCx = cos(S). The rotation matric R is orthogonal thus R−1 =
RT which is the rotation matrix from the inertial frame to the body frame. The
transformationmatric for angular velocities from the inertial frame to the body frame
is Wη, and from the body frame to the inertial frame is W−1

η :

η̇ = W−1
η v then v = Wηη̇,

The quadcopter is assumed to have a symmetric structure with the four arms
aligned with the body x- and y-axes. Thus, the inertia matrix is diagonal matrix I in
which Ixx = Iyy

I =
⎡
⎣
Ixx 0 0
0 Iyy 0
0 0 Izz

⎤
⎦

The inverse of the following equation could be used to solve for the required
rotor speeds to achieve the desired thrust (T�) and moments τ = (τ1, τ2, τ3) of the
quadcopter (Mahony et al., 2012);

⎛
⎜⎜⎝

T�

τ1

τ2

τ3

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

CT CT CT CT

0 dcT 0 −dcT
−dcT 0 dcT 0
−Cq Cq −Cq Cq

⎤
⎥⎥⎦

⎛
⎜⎜⎝

ω2
1

ω2
2

ω2
3

ω2
4

⎞
⎟⎟⎠

where CT (>0) and Cq are two coefficients that can be experimentally determined
for the considered quadcopter using thrust tests.

8.3.3.3 Fixed Wings

Fixed-wing UAVs require a runway for take-off and landing and also, unlike multi-
copters, cannot hover and maintain flight at low speeds. However, they have longer
endurance and can fly at high cruising speeds because of the successful generalisation
of larger fixed-wing planes with slight modifications and improvements.

Fixed wings are the main lift generating elements in response to forward accel-
erating speed. The velocity and steeper angle of air flowing over the fixed wings
controls the lift produced. Fixed-wing drones require a higher initial speed and a
thrust to load ratio of less than 1 to initiate a flight. If fixed-wing and Multirotor are
compared for the same amount of payload, fixed-wing drones are more comfortable
with less power requirement and thrust loading of less than 1. Rudder, ailerons, and
elevators control aircraft orientation in yaw, roll, and pitch angles.

224 J. Wang and D. Herath

8.3.3.4 Other Flying Robots

There are also some non-conventional configurations of UAVs used for scientific
research. They include hybrid, convertible and flapping wing drones that can take off
vertically or act as an insect for spying missions. Flapping wing drones inspired by
insects such as small dragonflies2 and birds3 have regularly appeared in the research
literature and at times as commercial prototypes. Due to the lightweight and flexible
wings, the flapping drones can contributewell to stable flight in awindy environment.
A large amount of research work on flapping wing drones has been carried out
by researchers and biologists because of their exclusive manoeuvrability benefits.
Blimps and airships are other categories of flying robots that utilise a lifting gas that
is less dense than the environment it is operating.

8.4 Controlling Robots

Using the Sense, Think, Act framework, the robot’s controller can be thought of as
the component within the Think element responsible for the robot’s movements. It
is usually a microcontroller or an onboard computer or a mix of these used to store
information about the robot and its surrounding environment and execute designated
programmes that operate the robot. The control system includes data processing,
control algorithms, logic analysis, and other processing activities which enable the
robot to perform as designed. Based on the different requirements,more sophisticated
robots have more sophisticated control systems.

The control system involves all three aspects of the sense, think, and act loop
during execution. First, the perception system provides information about the envi-
ronment, the robot itself, and the relationship between the robot and the environment.
Based on the information from the sensors and the robot’s objectives, the cognition
and control system must then decide on how to act and what to do to achieve its
objectives. The appropriate commands are then sent to the actuators, which move
the mechanical structure. The control system coordinates all the input data and plans
the robot’s motion towards the desired goal.

Various control techniques have been proposed and are being researched. The
control strategies of mobile robots can be divided into open-loop and closed-loop
feedback strategies. When it comes to open-loop control, human operators are
involved in sending instructions. The robot relays information to the operator only to
perform as instructed. An example of such a system is piloting a drone using a drone
controller. The robot’s success in achieving its mission is essentially dependent on
your piloting skills—the controller simply relays your “intent” to the drone. Most
of the time, control commands such as velocities or torques are calculated before-
hand, based on the knowledge of the initial and end position (“Goal pose”) of the

2 https://spectrum.ieee.org/somehow-an-incredible-robotic-dragonfly-is-now-on-indiegogo.
3 https://spectrum.ieee.org/festo-bioinspired-robots-bionicswift.

https://spectrum.ieee.org/somehow-an-incredible-robotic-dragonfly-is-now-on-indiegogo
https://spectrum.ieee.org/festo-bioinspired-robots-bionicswift

8 How to Move? Control, Navigation and Path Planning … 225

Controller Actuators

Sensors

+
-

Input
?Goal Pose?

Output
?Current Pose?

Feedback
?Distance Travelled?

Motor
CommandError

Fig. 8.17 A typical closed-loop feedback controller

robot. However, this strategy cannot compensate for disturbances and model errors
(“Error”).

On the other hand, closed-loop control strategies could provide the required
compensation since the inputs are functions of the actual state of the system and not
only of the initial and endpoints. Therefore, disturbances and errors causing devia-
tions from the predicted state are compensated by real-time sensor data (“Feedback”)
(Fig. 8.17). Formally, we could define a feedback controller as enabling a robot to
reach and maintain the desired state (called a set point) by repeatedly comparing its
current state with the desired goal state. Here, feedback refers to the information that
is literally “fed back” into the system’s controller. When a system is operating at the
desired state, it is said to be operating at the steady state.

8.4.1 PID Controllers

A PID controller is a control loop feedback mechanism that calculates the difference
between a desired value (setpoint) and the actual output from a process and use that
result to apply a correction to the process. The term PID stands for Proportional–
Integral–Derivative feedback control, and it is one of the most commonly used
controllers in the industry. It is the best starting point when designing an autonomous
control system and is very popular in commercial autopilot systems and open-source
developments.

Themain goal of this process is tomaintain a specified setpoint value. For example,
you may want a DCmotor to maintain a setpoint value r(t) of 600 encoder pulses per
second. The actual motor speed y(t), called the process variable, is subtracted from
the setpoint value 600 to find the error value e(t). The PID controller then computes
the new control value u(t) to apply to the motor based on the computed error value. In
the case of a DCmotor, the control value would be a pulse-width-modulated (PWM)
signal. The (t) represents a time parameter being passed into the process (Fig. 8.18).

Let us now look at how each of the three elements, P, I, D, contributes to the
overall controller.

226 J. Wang and D. Herath

Fig. 8.18 APID controller—r(t) is the reference setpoint, e(t) is the difference between the process
output and the desired setpoint, u(t) is the process input control value, y(t) is the process output

8.4.1.1 Proportional Control (P)

This element takes some proportion of the current error value. The proportion is
specified by a constant called the gain value, and a proportional response is repre-
sented by the letters Kp. As an example, Kp may be set to 0.25, which will compute
a value of 25% of the error value. This is used to compute the corrective response
to the process. Since it requires an error to generate the proportional response, there
is no proportional part of the corrective response if there is no error. For example,
when controlling a drone autonomously, increasing the P gain Kp typically leads
to shorter rise time (i.e. the drone reaches the required altitude quickly) and larger
overshoots. Although it can decrease the system’s settling time, it can also lead the
drone to display highly oscillatory or unstable behaviour (Fig. 8.19).

8.4.1.2 Derivative Control (D)

The derivative term is used to estimate the future trends of the error based on its
current rate of change. It is used to add a dampening effect to the system such that
the quicker the change rate, the greater the controlling or dampening effect. In that
sense, increasing the D gain Kd typically leads to smaller overshoot and a better-
damped behaviour. However, increasing Kd could lead to larger steady-state errors
(Fig. 8.20).

8.4.1.3 Integral Control (I)

Element I takes all past error values and integrates themover time. The term integrates
simply means to accumulate or add up. This results in the integral term growing
until the error goes to zero. When the error is eliminated, the integral term will
stop growing. If an error still exists after the application of proportional control, the
integral term tries to eliminate the error by adding in its accumulated error value.
This will result in the proportional effect diminishing as the error decreases, and
the growing integral effect compensates for this. Increasing the I gain Ki leads to a

8 How to Move? Control, Navigation and Path Planning … 227

Fig. 8.19 An example showing the effects of increasing Kp—shorter rise time but oscillatory
behaviour increasing. (No Integral and Derivative control)

reduction in the steady-state error (often elimination) but also could lead to larger
oscillations (Fig. 8.21).

Another issue to be mindful of when using the integral term in a controller refers
to Integral windup. This is common in most physical systems (nonlinear systems),
where a significant change in the setpoint (either positive or negative) results in the
integral term accumulating significant errors that cannot be offset by errors in the
opposite direction leading to a loss of control. Researchers have developed several
anti-windup techniques over the years to counter the phenomenon. One common
technique is setting boundaries for the integral term depending on the known system
limitations, such as actuator operational range.

8.4.1.4 Tuning a PID Controller

As understood from this brief overview of the role of each element of the PID
controller, it is not possible to independently tune the three different gains. Each of
them aims to offer the desired response characteristic (e.g. faster response, damped
and smooth oscillations, near-zero steady-state error) but has a negative effect that
must be compensated by re-tuning another gain. Therefore, PID tuning is a highly

228 J. Wang and D. Herath

Fig. 8.20 An example showing the effects of increasingKdwith a constantKp (No Integral control)

coupled and iterative procedure. The PID controller consists of the additive action of
the Proportional, the Integral, and the Derivative component. Not all of them have to
be present; therefore, we often employ P controllers, PI controllers or PD controllers
when a simpler controller yields the desired result.

8.4.2 Fuzzy Logic Controllers

The fuzzy logic theory was developed in the mid-1960s as a way to deal with the
imprecision and uncertainty inherent to perception systems. Since then, it has been
used in many engineering applications. Designers consider it one of the simpler
solutions available for many nonlinear control problems, including most robotics
navigation and control problems. Fuzzy logic is more advantageous than traditional
solutions because it allows computers to actmore like humans, responding effectively
to complex inputs to deal with linguistic notions such as “too hot”, “too cold” or
“just right”. Furthermore, fuzzy logic is well suited to low-cost implementations
based on cheap sensors, low-resolution analog-to-digital converters, and 4-bit or 8-
bit microcontroller chips. Such systems can be easily upgraded by adding new rules
to improve performance or by adding new features. In many cases, fuzzy control can

8 How to Move? Control, Navigation and Path Planning … 229

Fig. 8.21 An example showing the effects of increasing Ki with a constant Kp and Kd

improve existing traditional control systems by adding an extra layer of intelligence
to the current control method.

8.4.2.1 A Simple Example

Consider a ground robot moving towards a target.
The fuzzy logic controller (FLC) used has two inputs: error in distance (
ed) and

error in the angle of orientation (
ea) of the robot. The controller’s output (that is,
the control signals) would be pulse-width-modulated signals to control the angular
velocity of the two servo wheels. Therefore, the fuzzy logic controller is a two-input,
two-output system. The block diagram of the robotic system is shown in Fig. 8.22.

8.5 Path Planning

Path planning is the means of finding a suitable (optimal) path for a moving platform
to travel from its starting point to the goal point in a given environment. Earlywork on
path planning focused on planning paths for robotic manipulators, where a perfect

230 J. Wang and D. Herath

Fig. 8.22 Fuzzy logic
control system

Calculation of FLC

Sensor

Readings

Robot

world model and precise knowledge of the joint angles were assumed. However,
these assumptions cannot be made for mobile robots operating in partly known or
unknown environments and with localisation uncertainties.

Classical algorithms, such as Dijkstra’s algorithm (Dijkstra, 1959), A and A*
algorithms (Hart et al., 1968), apply a global graph search to find the least-cost
path from the starting point to the target point. There are also other methods for
sampling the local environment to determine the least-cost path (Kuffner & LaValle,
2000). The main purpose of obtaining the best path is to find the shortest path with
minimal energy usage and maximum coverage of an area or optimised predicted
perception quality. In some situations, it is beneficial to choose from a given set
of trajectories that can be followed by the robot’s controller rather than planning
a specific and maybe impossible path (Dey et al., 2011). Therefore, different path
planning algorithms are used for different situations, with most algorithms relying
on heuristic and probabilistic techniques.

8.5.1 Heuristic Path Planning Algorithms

Heuristic methods use an estimated cost function for target-oriented path searching
which considerably reduces the computational time. These algorithms calculate the
path based on the fewest number of grid cells in the queue by assigning a cost to each
node with respect to the difference of its distance from that of the minimal distance
between the starting and goal nodes.

8.5.1.1 A* Algorithm

The most well-known path planning algorithm is the A* algorithm (Hart et al., 1968)
which uses a best-first search method to find the least-cost path from the starting
to the goal node. Unlike other path planning techniques, we can consider that the

8 How to Move? Control, Navigation and Path Planning … 231

A* algorithm has a “brain” that can do the calculations. It is widely used for games
and web-based maps to find the shortest path in a very efficient way. The vehicle
traverses towards the goal node until it either reaches it or determines that there is no
available path with a heuristic function used to evaluate the goodness of each node.

Considering a graph map with multiple nodes, what the A* algorithm does is that
at each step, it picks the node according to the value “f ”, which is equal to the sum of
“g” and “h”. At each step, it picks the node having the lowest “f ” value and proceeds
to the next until it finds the goal point.

f (node) = g(node) + h(node)

where:

g(node) is the travelling cost from the initial point to the current point; h(node) is the
heuristic function that includes the cost from the starting node to the current location,
c(n, n′) and estimated cost from the current location to goal h(n′).

A* (star) Pathfinding Pseudocode

// Initialise both open and closed list
let the openList and closedList equal empty list of nodes

// Add the start node
put the startNode on the openList (leave it’s f at zero)

// loop until find the end
while the openList is not empty

// Get the current node
let the currentNode equal the node with the least f value
remove the currentNode from the openList
add the currentNode to the closedList

// Found the goal
if currentNode is the goal
Goal found! Backtrack to get path

// Generate children
let the children of the currentNode equal the adjacent nodes
for each child in the children

232 J. Wang and D. Herath

// Child is on the closedList
if child is in the closedList
continue to beginning of for loop

// Create the f, g, and h values
child.g = currentNode.g + distance between child and current
child.h = distance from child to end
child.f = child.g + child.h

// Child is already in openList
if child.position is in the openList’s nodes positions
if the child.g is higher than the openList node’s g
continue to beginning of for loop

// Add the child to the openList
add the child to the openList

For example:
We would like to find the shortest path between A to K in the following map. The
number written with red is the distance between the nodes, and the number in the
blue circle written in black is the heuristics value. A* uses f (n) = g(n) + h(n) to find
the shortest path.

Let’s start with start point A. A has three nodes: B, E, and F, then we can start
calculate f (B), f (E), and f (F):

f (B) = 3 + 8 = 11

f (E) = 1 + 1 = 2

f (F) = 5 + 4 = 9

f (E) < f (F) < f (B), so we will choose E as the new start node.
For node E, it two nodes F and H, f (F) = 7 (1 + 6) + 4 = 11, f (H) = 3 (1 + 2)

+ 4 = 7, f (H) < f (F), so we will choose H as the new start node.
For node H, it has two nodes J and I, f (J) = 5 (1 + 2 + 2) + 3 = 8, f (I) = 4 (1

+ 2 + 1) + 2 = 6, f (I) < f (J), so we will choose I as the new start node.
For node I, it has two nodes D and K, f (D) = 10 (1 + 2 + 1 + 6) + 5 = 15, f (K)

= 6(1 + 2 + 1 + 2) + 0 = 6, f (K) < f (D), so we will choose K as the next node, as
K is the goal point, the algorithm stop here.

The shortest path from A to K is A—E—H—I—K (Fig. 8.23).
The A* algorithm is similar to Dijkstra’s algorithm (Dijkstra, 1959), except that

it guides its search towards the most promising states, which can save a significant
amount of computational effort. The limitation of the above approaches is that they
need a complete map of the area under exploration. However, when operating in
real-world scenarios, as new information might be added to the map, replanning is

8 How to Move? Control, Navigation and Path Planning … 233

Fig. 8.23 A* algorithm example

essential. While A ∗ could be used to plan from scratch for every update, this is
computationally expensive.

Instead, the D* Lite (Koenig & Likhachev, 2005) and Focussed Dynamic A* (D*)
(Stentz et al., 1995) algorithms search for a path from the goal towards the start and
update nodes only when changes occur. An updated path is calculated based on the
previous path, which is much more effective than the A ∗ algorithm and Dijkstra’s
algorithm. D* Lite algorithm is one of the most popular goal-directed navigation
algorithms that is widely used formobile robot navigation in unknown environments.
It is a reverse searching method and can replan from the current position when new
obstacles are blocking the path.

Finally,Field D* is an interpolation based path planning and replanning algorithm
(Ferguson&Stentz, 2006). In contrast to othermethods inwhich nodes are defined as
the centres of grids, it defines nodes on the corners of grids. Then linear interpolation
is used to create waypoints along the edges of grids which allows the planning of
direct, low-cost, smooth paths in non-uniform environments. D* and its variants are
widely used for autonomous robots, including Mars rovers and autonomous cars
(Stentz & Hebert, 1995; Urmson et al., 2008).

234 J. Wang and D. Herath

8.5.2 Probabilistic Path Planning Algorithms

Probabilistic approaches sample the configuration space randomly, which helps
to decrease the path planning time and memory usage. However, their main
disadvantage is that they cannot always be guaranteed to find the optimal path.

Much work has been conducted based on probabilistic path planning methods.
One of the most popular approaches is the probabilistic roadmap (PRM) algorithm
(Kavraki & Latombe, 1998; Kavraki et al., 1996) which generally consists of two
phases: firstly, it randomly samples points in the configuration space to build a
roadmap graph and then connects the sampled configurations to their neighbours; and
secondly, in the query phase, the starting and goal nodes are connected to their neigh-
bours in the graph and the path calculated using a heuristic method. Although any
existing path can be found if there is a sufficiently increasing number of samples,
as situations such as narrow corridors in large environments can rapidly increase
the path planning time, deliberate sampling strategies are necessary. While multiple
queries can be executed on the same graph-based on PRMs, some pre-processing is
needed during which, in some cases, obstacles are defined.

8.6 Obstacle Avoidance

In mobile robotics, the goal of obstacle avoidance is generally to navigate from one
location to the goal location while avoiding collisions with obstacles during the robot
motion in a known or unknown environment. Therefore, obstacle avoidance is almost
always is combined with path planning. The process requires an understanding of the
environment, such as a full map or partial map, a target location and robot’s location
(localisation) (discussed in the next chapter), and sensors such as cameras or laser
sensors to provide obstacle information.

Obstacle avoidance is always comprised of obstacle detection and collision avoid-
ance. There are varieties of algorithms that use different kinds of sensors and tech-
niques to achieve the goal of obstacle detection. The processed data received from
sensors are then sent to the controller to operate the robot to avoid obstacles. There
are some widely used obstacle avoidance algorithms such as bug algorithms, VFH,
and other proximity-based techniques (e.g. sonar, bumper sensors).

8.6.1 Bug Algorithm

The bug algorithms are the simplest obstacle avoidance method among all obstacle
avoidance methods. In the bug algorithm, the main idea is to track the contour of the
obstacles found in the robot’s path and make the robot circumnavigate it (Lumelsky,

8 How to Move? Control, Navigation and Path Planning … 235

2005; Lumelsky & Stepanov, 1987). There are several modified versions of the bug
algorithm, such as Bug 1, Bug 2, DistBug, and Tangential Bug algorithm.

Bug 1 algorithm is the simplest of all Bug algorithm variations. It reaches the goal
almost all the time with high reliability. But the matter of concern with this method
is efficiency. The robot moves on the shortest path joining the robot’s position X and
goal location until it encounters a hurdle in the path. When an obstacle confronts it,
it starts revolving around its surface and calculates the distance from the destination
point. After one complete revolution, it figures out the point of departure closest to
the goal. Then, it maintains or changes the direction of motion depending on the
distance of leaving point from the hit point. This method can be illustrated in the
following steps:

• Head towards the goal
• If an obstacle is encountered, circumnavigate it and remember how close you get

to the goal
• Return to that closest point and continue

Robot revolves around every obstacle on the way towards the goal, increasing
the computational efforts. But ease of implementation makes it worth it when only
completion of the task is required irrespective of time.

Generally speaking, the bug algorithms work well with single obstacle avoidance.
However, these bug algorithms are not very reliable in a more complex and cluttered
environment, and in some tricky conditions, one version works better than the other
version.

8.6.2 The Vector Field Histogram (VFH)

Vector field histogram is a real-time obstacle avoidance method for mobile robots
developedbyBorenstein andKoren (1991). Thismethod contains threemajor compo-
nents that help to achieve obstacle avoidance. Firstly, the robot generates a two-
dimensional sensory histogram around its body or within a limited angle and starts
updating the histogram data at every stage. Secondly, the two-dimensional histogram
data are converted into a one-dimensional polar histogram. Finally, it selects the lower
polar dense area and moves the vehicle, calculating the direction.

This approach overcomes the issue of sensor noise.Ahistogram is a graph between
probabilities of the presence of obstacles to the angle associated with the sensor
reading. The probabilities are obtained by creating a local occupancy grid map (see
Chap. 9) of the environment of the robot’s surroundings. The histogram is used
to discover all the passages large enough to allow the robot to pass through. The
selection of path is based on a cost function which is a function of the alignment
of the robot’s path with the goal and on the difference between the current wheel
orientation and the new direction. A minimum cost function is desirable. One of
the advantages of using VFH is that it conquers the problem of sensor noise by
making a polar histogram that represents the probability of obstacle of a particular

236 J. Wang and D. Herath

angular direction. Some demerits need to be taken into consideration when using this
technique, such as VFH does not guarantee the completeness, which can lead to an
unfinished task. It can be problematic to pass through a narrow passage using this
method. Moreover, it does not consider the robot’s dynamics and its environment,
making it not ideal for use in a complex dynamic environment.

8.7 Chapter Summary

Robots thatmove around in the environment instead of being fixed to a single location
are calledmobile robots. These canbe categorised according to the typeof locomotion
they utilise, such as wheeled, legged, or flying.

A robot controller essentially provides the controlling commands to its actuators
to drive the robot towards the desired goal. A common control loop is the PID
(proportional–integral–derivative) controller, which uses sensor feedback to update
the control signal in a repeated manner. Essentially the controller applies a correction
to a control function where the correction could be proportional to the error (P) or
reflective of the cumulative error (I) or the change in the error rate (D). A PID
controller requires tuning of its parameters, which usually requires an iterative trial
and error approach or sophisticated tuning algorithms to realise optimal performance.

For a robot to move from a given point to the desired goal point, it needs to plan
a path between the two points using some optimal criteria, for example, shortest
distance, the lowest energy consumption, or the largest area coverage. Many tech-
niques have evolved over the years, including heuristic and probabilistic techniques,
each having its own merits and concerns. Additionally, a complimentary problem in
path planning is the obstacle avoidance problem. Again, researchers have come up
with various strategies and techniques to solve the problem.

As a roboticist developing a mobile robot, your task is to select, develop, and
implement techniques, algorithms, and platforms based on the ideas discussed in
this chapter to suit the requirements of the job at hand.

8.8 Review Questions

• If using a PID controller for a drone, increasing the P gain Kp typically leads to
shorter or longer rise times?

• If using a PID controller for a drone, increasing the I gain KI, would it result in
smaller or larger oscillations?

• Comparing two-wheeled, three-wheeled, four-wheeled robots, which one is the
most unstable type?

• What does pitch, yaw and roll mean in a drone?
• What is the difference between classic and heuristic path planning algorithms?

8 How to Move? Control, Navigation and Path Planning … 237

8.9 Further Reading

The chapter covered introductory material on several related topics. Once the basic
concepts are well understood, you can explore these topics in more depth and expand
onto advanced topics. Following titles, Introduction to Robotics: Mechanics and
Control (3rd Edition) by John Craig, Modern Robotics Mechanics, Planning, and
Control byKevinM. Lynch andRoboticsModelling, Planning and Control by Bruno
Siciliano provide some excellent reading. Another highly recommended book on
mobile robots is the book by Roland Siegwart, Introduction to autonomous mobile
robots.

References

Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for mobile
robots. IEEE Transactions on Robotics and Automation, 7(3), 278–288.

da Silva, L. R., Flesch, R. C. C., & Normey-Rico, J. E. (2018). Analysis of anti-windup techniques
in PID control of processes with measurement noise. IFAC-PapersOnLine 51(4), 948–953.

Dey, D., Liu, T. Y., Sofman, B., & Bagnell, D. (2011). Efficient optimisation of control libraries.
Technical report, DTIC Document.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.Numerische Mathematik,
1(1), 269–271.

Ed, Darack, https://www.airspacemag.com/flight-today/build-your-own-drone-180951417, 2014.
Ferguson, D., & Stentz, A. (2006). Using interpolation to improve path planning: The field D*
algorithm. Journal of Field Robotics, 23(2), 79–101.

Fukuoka, Y., & Kimura, H. (2009). Dynamic locomotion of a biomorphic quadruped “Tekken”
robot using various gaits: Walk, trot, free-gait and bound. Applied Bionics & Biomechanics, 6(1),
63–71.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled, 2021.
Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4), 566–580.

Kavraki, L. E., & Latombe, J. -C. (1998). Probabilistic roadmaps for robot path planning.
Koenig, S., & Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. IEEE
Transactions on Robotics, 21(3), 354–363.

Kuffner, J. J., & LaValle, S. M. (2000). Rrt-connect: An efficient approach to single-query path
planning. In Proceedings. ICRA’00 IEEE international conference on robotics and automation,
2000, (vol 2, pp. 995–1001). IEEE.

Lumelsky, V. J. (2005). Sensing, Intelligence, Motion: How Robots and Humans Move in an
Unstructured World. John Wiley & Sons.

Lumelsky, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2, 403–430.

Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor aerial vehicles: Modeling, estimation, and
control of quadrotor. IEEE Robotics & Automation Magazine, 19(3), 20–32. https://doi.org/10.
1109/MRA.2012.2206474

Stentz, A., et al. (1995). The focussed D* algorithm for real-time replanning. In IJCAI, 95, 1652–
1659.

https://www.airspacemag.com/flight-today/build-your-own-drone-180951417
https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled
https://doi.org/10.1109/MRA.2012.2206474

238 J. Wang and D. Herath

Stentz, A., & Hebert, M. (1995). A complete navigation system for goal acquisition in unknown
environments. Autonomous Robots, 2(2), 127–145.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D.,
Galatali, T., Geyer, C., et al. (2008). Autonomous driving in urban environments: Boss and the
urban challenge. Journal of Field Robotics, 25(8), 425–466.

Zhao, D., Jing, X., Dan, W., et al. (2012). Gait Definition and successive gait-transition method
based on energy consumption for a quadruped. Chinese Journal of Mechanical Engineering,
25(1), 29–37.

Jiefei Wang ’s research focuses on sensing, guidance, and control for autonomous systems. He
received the master’s degree in electrical engineering from Australian National University in 2011,
and the Ph.D. degree in electrical engineering from the University of New South Wales in 2016.
His research interests include sensing and image processing, scene understanding for obstacle
avoidance, control of autonomous systems, and aerial robotics.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra.
Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading
multidisciplinary research teams on complex robotic integration, industrial and research projects
for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and
was named one of the most innovative young tech companies in Australia in 2014. Teams he
led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in
the coveted Amazon Robotics Challenge—an industry-focused competition amongst the robotics
research elite. In addition, Damith has chaired several international workshops on Robots and Art
and is the lead editor of the book Robots and Art: Exploring an Unlikely Symbiosis—the first
significant work to feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 9
Lost in Space! Localisation and Mapping

Damith Herath

9.1 Learning Objectives

In this chapter, you will learn about:

• The robot localisation problem
• The robot mapping problem
• The Simultaneous Localisation and Mapping (SLAM) problem
• Common probabilistic state estimation techniques
• The Kalman filter and the role of the extended Kalman filter as a recursive state

estimator in nonlinear systems.

9.2 Introduction

Imagine you are visiting a new city or country. Perhaps, if you are like me, one of
the first things you might do is download or print a copy of the local area map. Or,
perhapsmake sure that the navigation app or theGPS on your phone is up to date with
the latest map. But, while you are travelling across the new city, do you remember
the time when you got lost? Even with the latest maps?

Similarly, have you ever wondered how a self-driving car knowswhere it is going?
A typical mobile robotic system architecture is shown in Fig. 9.1. It consists of

several sensors, planning and control modules and actuators. While specific instan-
tiations of these components will be application and platform-dependent, a typical
mobile robotic system requires these building blocks to function. First of all, internal
and external sensors provide information about the robot and the physical world it
inhabits. Next, this information is interpreted by various algorithms to estimate the

D. Herath (B)
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_9

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_9&domain=pdf
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_9

240 D. Herath

Fig. 9.1 Ahigh-level overview of amobile robot system from the sensors to algorithms to actuators

vehicle’s state and its environment. The state estimate is then used to plan the robot’s
actions and generate commands for the actuators. We looked at sensors, control, path
planning and obstacle avoidance in the previous chapters.

This chapter explores localisation and mapping, once considered the holy grail of
robotics, which are two fundamental capabilities that any autonomous mobile robot
requires to navigate in the wild, including self-driving cars (and Mars rovers, too!).

An Industry Perspective

Guillaume Charland-Arcand

ARA Robotics

I was exposed first during my CEGEP years in a small club where we were
building sumo robots for robotics competitions. The competition was simple,
2 robots faced each other on a circular black ring with a small white bar that
delimited the edge, the goal was for one robot to push the other one out of
the ring. My robot was very simple, big motors, big wheels, a few sensors, an
8-bit microcontroller, my own circuit board, and a few lines of codes. I was not
very successful in the competitions, but building a thing on your own, mixing
mechanics, electronics, software, and seeing something move on its own, was
pretty cool. But I felt I did not know enough, so at the university, I decided to
join a scientific club focusing on multirotor UAVs, which was pretty new at the

9 Lost in Space! Localisation and Mapping 241

time. I fell in love with this branch of robotics instantly. It was mobile robots,
like my good old sumo robot, but on steroids. Everything was harder; more
vibration, complicated nonlinear dynamics, limited payload capacity and it’s
flying!

At the time of doing my master’s, working with UAV was hard because
of the lack of resources. I had convinced my supervisor to buy equipment,
but based on the budget, we could only afford 1 UAV. This made things a
lot more complicated for me, because, one mistake, one line of code in error,
and the UAV crashes. Working on control law design made this even more
problematic. Everybody that worked a bit in control theory has experienced
this: it’s always fine on paper and in simulations, but there is always the small
caveat of finding the controller gains, which is done through experimentation
typically. The challenge was to tune my controller and validate my controller
software without breaking the only UAV I had. This is where I got introduced
to safety-critical engineering and its practices, i.e., how to design software and
hardware in a systematic fashion to guarantee that it won’t fail. I did not go
as far as following DO-178 standards, but it provided new insight on how to
develop robotic products and applications.

When I started, SLAMwas starting to be applied onUAVs.A fewROSpack-
ages existed, but it was mostly in 2D, using Hokuyo scanning laser rangefinder.
There were also a few successful demonstrations of autonomous UAVs oper-
ating in GNSS denied environments, but it was mainly prototyped in exper-
imental settings. Now, companies such as Exyn Technologies and Skydio,
provide products for industrial applications that have a very high level of
autonomy. These systems can generate extremely precise 3D maps, detect
static and dynamic obstacles and plan paths through unknown environments at
high velocities. I would say the last 5 years’ technological improvements are
major and are a great bedrock from the innovation to come because the task of
autonomy is very complex and not completely solved yet.

9.3 Robot Localisation Problem

For any autonomous mobile robot to be successfully deployed, it requires to answer
the question ‘where am I?’. For example, in Fig. 9.2 a robot travelling in a local
coordinate frame. In Fig. 9.2, a robot is shown at time t = k at an unknown location.
The robot localisation problem is to find the current coordinates and the heading
(the direction which the robot is facing) of the robot with respect to a given local
coordinate frame. The local coordinate frame is usually fixed at the location where

242 D. Herath

Fig. 9.2 A robot travelling in a local coordinate frame

the robot was at time t = 0, though this could be arbitrarily selected. The robot
also carries its own coordinate frame. The heading is usually defined as the angular
difference between the x-axis of the local coordinate frame and the x-axis of the robot
coordinate frame. The localisation problem is said to be solved for a given time t = k
when the current (x, y, z) coordinates and the heading (�) of the robot with respect
to the given local coordinate frame are fully known.

In the example shown, the robot knows its starting position. The localisation
problem could then be thought of as a tracking problem, where the requirement is to
track the robot’s movement from the beginning with respect to its initial position. On
the other hand, if the initial position is not known, then the localisation problem is
considered to be a global positioning problem. An example of this could be a robot
being turned on at an arbitrary location without knowing its initial position.

Another related problem is the ‘kidnapped’ robot problem, where a properly
localised robot suddenly gets moved to a different location without being aware of
the move. An example of this could be a vacuum cleaning robot starting from its
charging station (known local coordinate frame) and suddenly being picked up by a
user and placed in another room (who would do that?).

9 Lost in Space! Localisation and Mapping 243

0 0.5 1 1.5 2 2.5 3 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
ob

ot
 p

at
h/

(m
)

Fig. 9.3 True path of a robot (blue) compared to the odometry-based estimate of the path

9.3.1 Odometry-Based Localisation

One of the most common techniques used in robotics to extract the current loca-
tion of a robot is to use wheel encoders. Odometry, the word derived from Greek
roots (odos—street and metron—to measure) simply refers to any technique that
uses motion information to derive relative position estimates of the robot. Similar to
the odometer available on a vehicle that indicates the distance the vehicle has trav-
elled (either the absolute distance since its manufacture or the relative distance from
an arbitrary starting point), the wheel encoders could be used to calculate relative
travel distances and heading of the robot based on the known wheel geometry and
dynamics. This process is sometimes referred to as dead reckoning. However, due to
sensor errors, slippage and other noise elements inherent in such systems, odometry
accumulates errors over time. As shown in Fig. 9.3, a robot could lose track of its
location relatively quickly if it only relied on odometry. Nevertheless, odometry is
extensively used in robotics to acquire short-term localisation information.

9.3.2 IMU-Based Odometry

Inertial measurement units (IMU) are devices that integrate several sensors in a single
package, including accelerometers and gyroscopes. IMUs could be used to measure
the robot’s linear acceleration in three dimensions (using a tri-axial accelerometer)
and rotational rate (using gyroscopes). By appropriately integrating this information,
it is possible to derive the robot’s speed and travel distance so the robot’s relative

244 D. Herath

location and heading information can be worked out. However, IMU units suffer
from ‘drift’ where they accumulate errors over time.

9.3.3 Visual Odometry

Visual odometry is an alternate technique that uses cameras and computer vision to
derive odometric information. Various computer vision techniques have been used
to estimate the motion of robots. Generally, these techniques attempt to understand
the relative changes in images between subsequent frames due to movement. A
common approach is to track a set of image features across frames (see Chap. 7).
These techniques are sometimes coupled with an IMU to improve the estimates.
Such systems are usually called visual inertial odometry.

9.3.4 Map-Based Localisation

The previous techniques described for solving the localisation problem only provide
relative information. In other words, these techniques require the integration of a
series ofmeasurements to derive the robot’s current location.An alternative technique
is to use an external map tomake direct observations to a series of external landmarks
(also called beacons or features) using a sensor mounted on the robot to infer the
robot’s current location with respect to these landmarks based on a-priori map.
That is if you know the locations of a set of previously identified landmarks in
the environment with respect to a global/local coordinate frame (i.e. someone has
already built a local map of the environment) and if you have a sensor capable of
re-identifying and measuring relative location of these landmarks with respect to its
position, then it is possible to localise your robot within the given coordinate frame
using triangulation. Triangulation uses two known locations to ‘triangulate’ or work
out the location of a third point using geometry. In order to triangulate, the distances
and the angles to the known locations (landmarks) with respect to the unknown
location must be measured (see Fig. 9.4).

Consider a robot observing n landmarks in the environment with known locations
using a noisy sensor where the current location of the robot is unknown;

The current robot location (unknown) is: xr = [xr , yr]
Measured bearings to the known landmarks: θ = [

θ1, θ2, . . . , θn
]T

Actual locations of the landmarks (known) xi = [xi , yi]T

Actual bearings to the landmarks (unknown): θ(xr) =[
θ1(xr), θ2(xr), . . . , θn(xr)

)]T
where tanθ i (xr) = yi−yr

xi−xr
Assuming the measurement error to be (δθi), we can write a relationship between

the measured bearing and the actual bearing for each observed feature: θi = θ i (xr)+

9 Lost in Space! Localisation and Mapping 245

Fig. 9.4 Map-based localisation

δθi or

θ = θ(xr) + δθ

where

δθ = [
δθ1, δθ2, . . . , δθn

]T

and assuming the measurement noise to be zero-mean Gaussian and independent,
the covariance matrix is given by

� = diag
(
σ 2
1 , σ 2

2 , . . . , σ 2
n

)

We can then construct the maximum likelihood (ML) estimator of the robot
location:

x̂r = argmin
1

2

[
θ
(
x̂r

) − θ
]T

�−1
[
θ
(
x̂r

) − θ
]

This could nowbe solved recursively using a technique such as theGauss–Newton
algorithm as a nonlinear least-squares problem.

246 D. Herath

Most common localisation algorithms assume landmarks to be stationary during
the entire robot operation. This is called the static environment assumption. An
environment is considered dynamic if it contains map elements (except for the robot)
that are moving, such as humans, vehicles and other robots. Obviously, such dynamic
elements are not suitable as landmarks for localisation and are treated as noise.
In robotics, such landmarks could be visually salient features naturally occurring
in the given environment (e.g. corners and edges) or artificially placed (e.g. laser
retroreflective beacons). A suitable sensor (e.g. a camera for the former and a laser
range finder for the latter) along with relevant signal processing techniques should
be used to detect and measure the distance and the angle (bearing) to these features
with respect to the sensor coordinate frame.

The Global Positioning System (GPS) uses the distance information between the
robot and the satellite (via time-of-flight and satellite-specific data) to localise, using
a slight variation of the triangulation technique called trilateration which requires
knowing only the distances to the landmarks (or the satellites). Ideally, having more
than two landmarks will help to improve the accuracy of the location estimate. The
same applies to the previously described triangulation scenario.

A related problem called the data association problem deals with the disambigua-
tion of detected features and the correct association with the known map features.
This problem does not arise with GPS, as each satellite on the constellation sends
uniquely identifiable information to the receiver.

9.4 The Robot Mapping Problem

In the previous section, we discussed how objects within the robot’s environ-
ment could be used to localise a robot. Of particular interest was the availability
of maps. How are these maps generated? Figure 9.5 shows an ancient map of
Taprobana,modern-day Sri Lanka, drawn by the ancientmathematician and cartogra-
pher Claudius Ptolemy. The map was drawn using geographical coordinates derived
from tools and techniques available at the time. Today, such maps are drawn using
modern surveying techniques usingmodern tools andGPS location data. The general
idea, however, remains the same. Measurements are made to features of interest (e.g.
contours, trees, structures) and are plotted against a fixed coordinate frame. As you
would notice, Ptolemy’s map has only a passing resemblance to today’s maps of the
country. During ancient times, in the absence of GPS to localise, sailors and cartogra-
phers relied on observing the sun and the stars using such instruments as the sextant
resulting in significant errors in measurements and localisation. To create such maps
accurately, one would need to make relative measurements to these features accu-
rately and be able to localise the instrument that is making the measurements within
the coordinate frame accurately.

When deploying robots, it is possible to access a priori maps on many occasions.
For example, in indoor structures, it may be possible to refer to the architect drawn
blueprints of the building or place artificial beacons (e.g. retroreflective markers that

9 Lost in Space! Localisation and Mapping 247

Fig. 9.5 Ptolemy’s Taprobana as published in Cosmographia Claudii Ptolomaei Alexandrini, 1535
(modern-day Sri Lanka) (Image by Laurent Fries—(Bailey and Durrant-Whyte (2006)), Public
Domain, https://commons.wikimedia.org/w/index.php?curid=16165526)

respond to laser light) at known and fixed locations. However, this assumes that
the structure has not been changed from the original blueprints, which may not be
accurate in the former and for large environments, placement and measurement of
artificial beacons become a cumbersome proposition. In addition, there are semi-
permanent elements within the building, such as furniture, that will change their
locations over time, increasing the transient nature of maps. Also, it might be that
the robot needs to be deployed in an environment where a pre-built map does not
exist. In such situations, the robot is required to build a map. While the localisation
problem is a relatively easier problem to tackle due to its low-dimensional nature,
the map building problem is much harder, especially if the environment is large.

9.4.1 Occupancy Grid Maps

One of the simpler techniques used in robotics to create a map is the occupancy grid
map. Occupancy grid maps are commonly used in 2Dmapping scenarios to describe
the floor plan of a robot’s environment using a grid layout. Figure 9.6 shows a small
occupancy grid map of an indoor environment. The grey shadings indicate where
the sensor (a laser range finder in this case) has detected obstacles. Less dense areas
of the ‘map’ indicate lower certainty of an obstacle at those locations. The blue line

https://commons.wikimedia.org/w/index.php?curid=16165526

248 D. Herath

Fig. 9.6 An occupancy grid map (left) and the actual plan of the mapped area (right) (image credit:
Rafael Gomes Braga)

indicates the robot’s path during the mapping exercise. If you are wondering how the
robot’s path was generated, we used a separate localisation algorithm with known
laser beacons placed in the environment. If we used the odometric data to generate
the occupancy grid map, the results would have been as bad as Ptolemy’s map.

9.4.2 Other Types of Maps

Maps such as the occupancy grid maps (Fig. 9.6) that represent the environment
using a geometric representation are calledmetric maps. Other types of maps include
feature maps that represent the environment using a set of salient features such as
edges and corners; semantic maps that combine geometric information with high-
level semantic information such as human identifiable objects in the environment
(e.g. Books, tables) and their relationship to each other. Metric and feature maps
are relatively less intuitive to humans. Semantic maps provide a more data-rich
environment that humans can interpret. Such maps are helpful when humans and
robots need to interact. For example, a semantic map implementation is better suited
in a self-driving car situation, whereas a metric map might be more efficient for an
underground mining application.

9.5 The Simultaneous Localisation and Mapping (SLAM)
Problem

When the robot is provided with a priori map, it is possible to localise the robot in
the environment—like our example at the beginning of the chapter of you visiting
a new city with a map. Conversely, if the robot’s pose is known, it is possible to
construct a map of the environment—such as when surveyors create newmaps using
GPS location information. But, what happens if the robot does not have a map and

9 Lost in Space! Localisation and Mapping 249

does not know the location? This is the dreaded chicken and the egg problem in
robotics. The question is, how do you construct a map while using the same map
to localise simultaneously. The problem is commonly known as the Simultaneous
Localisation and Mapping (SLAM) problem. In the late ‘90s, it was shown that it
is indeed possible for a robot to start from an unknown location in an unknown
environment to incrementally build a map of the environment while simultaneously
computing the pose of the robot using the map being built.

9.5.1 An Estimation Theoretic Approach to the Localisation,
Mapping and SLAM Problems

However, as we have seen in previous chapters, the sensors used in a robot could be
noisy, and the environment could be unpredictable, resulting in inherent uncertainties
in themeasurementsmade about the environment. Therefore, it is required to consider
these uncertainties in any canonical formulation of the problem.

In order to accommodate the underlying uncertainties of the system, it is possible
to explore a class of algorithms that explicitly model system uncertainty using theo-
ries of probability. Thus, the localisation, mapping or the SLAM problem could be
formulated as a multivariate state estimation problem with noisy measurements:

x̂MAP � argmax
x

p(x|z)

where x represents the state variable and z is the measurement vector. We assume
each multivariate state as a normal distribution.

If we can further assume a prior distribution p over x exists, then the above
problem could be restated using Bayes’ theorem (see Chap. 6):

x̂MAP � argmax
x

p(z|x)p(x)

Here, p(z|x) is the measurement likelihood and p(x) is the prior. This sets up the
problem in a way that it is possible to solve it in a recursive manner, as was the case
with the simple triangulation problem discussed earlier. We can now estimate the
states of the robot and the map repeatedly from a given starting point. To do so, we
should first define the relevant state vectors of the robot and the environment

The robot’s state for a mobile robot operating in 2D could be expressed as

xr =
⎡

⎣
xr
yr
φr

⎤

⎦

250 D. Herath

where xr and yr denote the current location of the origin of the robot’s coordinate
frame with respect to the local coordinate frame and φr is the robot’s heading with
respect to the x-axis of the robot’s coordinate frame.

Assuming that ourmap is to be constructed using ametric featuremap, the location
of the i th map feature could be defined as the vector,

x f i =
⎡

⎣
xi
yi
zi

⎤

⎦

where (xi , yi , zi) are the 3D coordinates of the i th feature with respect to the local
coordinate frame. If we assume that the entire map of the environment will constitute
an n number of such features, then the map vector could be defined as,

xm =
⎡

⎢
⎣

x f 1
...

x f n

⎤

⎥
⎦

Then, depending on the specific problem, we can assemble the state vector x to
be estimated for a given time t = k, as follows,

• For the localisation problem,

x(k) = [xr (k)]

• For the mapping problem,

x(k) = [xm(k)]

• For the Simultaneous Localisation and Mapping problem,

x(k) =
[
xr (k)
xm(k)

]

Once the state vector is defined, the estimation process occurs in three steps at
any given time step t = k (see Fig. 9.8):

1. The Prediction Stage

In the prediction stage, we will use a model of the robot’s motion (control input) to
predict how the states of the robot would evolve over the considered time step.

2. The Observation Stage

9 Lost in Space! Localisation and Mapping 251

In this stage, the robot uses its on-board sensors to make measurements to the map
features in the environment. For example, a depth camera and computer vision algo-
rithm could be used to detect salient features in the environment and measure their
location with respect to the robot’s coordinate frame. It is important to note that
the algorithms used should be able to identify the features repeatedly and match
them correctly over time (i.e. newly observed features should be correctly matched
to features already on the map). This ability to match observations to corresponding
map features is called data association (Fig. 9.7). Of course, if an observed feature
is not already on the map, such a feature will need to be initialised first (i.e. added
to the map vector).

These measurements are inherently noisy due to their physical nature and the
limitations of the algorithms. The estimates of the states based on these sensor inputs
are, therefore, limited by the accuracy of the sensors used for observations. However,
during the final stage of the estimation process, such noise will be filtered out.

3. The Update Stage

Fig. 9.7 A vision algorithm
is used to detect salient
features in the environment.
The top and bottom images
show two views of the same
environment captured at two
different time intervals of the
robot’s journey. The lines
indicate matched features
between the two images
(data association). Can you
spot any instances of failed
data association?

252 D. Herath

Fig. 9.8 Unknown states could be recursively estimated using sensor informationwithin aBayesian
framework

During the update stage, the prediction information and observations are combined
to produce an improved estimate of the states. The process could be represented as:

x̂ = (1 − w)xpredicted + wxobserved

where w is a weighing factor used to determine the relative importance of the obser-
vation and the prediction. If the sensors used in the robot provide highly accurate
observation measurements, this parameter will be set closer to 1. If the sensors are
noisier and you have to rely on the predictions, this value needs to be set closer
to 0. In order to select the best value for the weighting factor, it is important to
understand the nature of your observation measurements (called the sensor model)
and the robot’s motion model (also called the vehicle model or the control model).
Suppose this is not appropriately ‘tuned’ to the system. In that case, the estimates
could be either conservative, in which case the state estimates will carry large uncer-
tainties or optimistic, therefore being overly confident about estimation where it is
not warranted. Either scenario leads to state estimates that are not useful in the worst
case, outright dangerous. An example of the latter could be observed when using
GPS systems for localisation in densely constructed environments such as passing
through a narrow pathway amidst tall buildings. Here, you would notice that your
GPS location estimate suddenly starts to jump around and sometimes appears to

9 Lost in Space! Localisation and Mapping 253

be inside the buildings. However, it might still indicate high confidence in the esti-
mate (usually denoted by a circle or an ellipse around the estimated location—the
smaller the circle, the higher the confidence). This occurs because of the multi-path
problem with GPS signals. Here, GPS signals are bounced off the tall structures
before reaching the GPS receiver leading to large errors in the time-of-flight calcu-
lations. Since the built-in algorithms are unaware of what is happening outside, it
continues to trust the observations leading to these erroneous state estimates. For a
self-driving car or similar robot, this could be catastrophic, to say the least!

Various algorithms have been proposed to solve the multivariate state estimation
problem. One of the most popular algorithms is the Kalman filter.

9.6 The Kalman Filter

The Kalman filter is a recursive linear statistical method for estimating the states of
interest. The basic Kalman filter deals with linear systems, and nonlinear systems are
treated by a linear approximation using the extended Kalman filter (EKF). Kalman
filter has various applications in varying disciplines. For example, in robotic naviga-
tion and data fusion, Kalman filter is one of the methods frequently discussed in the
literature with various adaptations and modifications.

9.6.1 Linear Discrete-Time Kalman Filter

For a linear system subject to Gaussian, uncorrelated, zero-mean measurement and
process noises, the Kalman filter is the optimal minimum mean squared error esti-
mator. To derive thefilter for such a system, itsmodel and themodel of the observation
must be defined. Then the problem can be stated as a recursive linear estimator with
unknown gains. The gains can be determined using theminimummean-squared error
criterion (MMS).

The Kalman filter consists of the same three recursive stages discussed in the
previous section.

1. Prediction stage
2. Observation stage
3. Update stage.

For a linear, discrete-time system, the state transition equation can be written as
follows:

x(k) = F(k)x(k − 1) + B(k)u(k) + G(k)v(k)

254 D. Herath

where

• x(k) state at time k
• u(k) control input vector at time k
• v(k) additive motion noise
• B(k) control input transition matrix
• G(k) noise transition matrix
• F(k) state transition matrix

And the linear measurement equation can be written as follows:

z(k) = H(k)x(k) + w(k)

where

• z(k) observation made at time k
• x(k) state at time k
• H(k) measurement model
• w(k) additive observation noise

As mentioned earlier, system and measurement noise is assumed to be zero-mean
and independent. Thus,

E[v(k)] = E[w(k)] = 0, ∀k

and,

E
[
v(i)wT (j)

] = 0, ∀i, j

Motion noise and the measurement noise will have the following corresponding
covariance:

E
[
v(i)vT (j)

]= δi jQ(i),E
[
w(i)wT (j)

] = δi j R(i)

The estimate of the state at a time k given all information up to time k is written as
x̂(k|k) and the estimate of the state at a time k given information up to time k − 1 is
written as x̂(k|k−1) and is called the prediction. Thus, given the estimate at (k − 1)th
time step, the prediction equation for the state at kth time step can be written,

x̂(k/k − 1) = F(k)x̂(k − 1|k − 1) + B(k)u(k)

And the corresponding covariance prediction:

P(k|k − 1) = F(k)P(k − 1|k − 1)FT (k) + G(k)Q(k)GT (k)

Then the unbiased linear estimate is:

9 Lost in Space! Localisation and Mapping 255

x̂(k|k) = x̂(k|k − 1) + W(k)[z(k)−H(k)x̂(k|k − 1)]

Note that the conditional expected error between the estimate and the true state is
zero.

W(k) is called the Kalman gain at time step k. This is calculated as:

W(k) = P(k|k − 1)HT (k)S−1(k)

where S(k) is called the innovation variance at time step k and given by:

S(k) = H(k)P(k|k − 1)HT (k) + R(k)

and the covariance estimate is:

P(k|k) = (I−W(k)H(k))P(k|k − 1)(I − W(k)H(k))T + W(k)R(k)WT (k)

Essentially, theKalmanfilter takes aweighted average of the prediction x̂(k|k−1),
based on the previous estimate x̂(k−1|k−1), and a new observation z(k) to estimate
the state of interest x̂(k|k).
Case study:We can illustrate this process with a simple 1-D toy example (Fig. 9.9).
Let us assume that the robot can only move in one direction (x). At time t = k − 1
the robot is at the location x(k − 1). Though the robot is not privy to this exact value,
it has an estimate of its location, given by x̂(k − 1|k − 1). As this is an estimate of
the true value, it has uncertainty about its location, represented by the curve above
it—the spread indicating the extent of the uncertainty. Now, the robot moves forward
to the location x(k) at time t = k using a control input u(k). Using these pieces of
information, the robot can now predict its location at the new time step as x̂(k|k−1).
However, this leads to increased error in the estimated location as represented by

Fig. 9.9 A 1-D robot localisation example

256 D. Herath

the new curve. The robot observes a landmark (represented by the star) at this stage
using its onboard sensor. Let us assume that the exact location of the star, xstar is
known to the robot (i.e. a map is available). The robot measures the distance z(k)
between the star and its current location using an internal sensor. As we now have an
additional piece of information about the robot’s location at time t = k, it is possible
to integrate the new information to come up with a better estimate of the current
location. If we trust the sensor that made the distance measure, we could weigh that
information more. The previous derivation of the Kalman filter helps us make this
decision and integrate the new sensor information weighted by the ‘trust’ we place
on the sensor. Finally, an improved location estimate could be worked out as x̂(k|k)
resulting in a reduction in the uncertainty of the robot location. This new estimate
then could be used to predict the robot’s location at t = k + 1, and the process could
be repeated.

9.6.2 The Extended Kalman Filter (EKF)

Although the Kalman filter is the optimal minimummean squared error estimator for
a linear system, any real robot is nonlinear.A solution is found in the extendedKalman
filter (EKF), which uses a linearised approximation to nonlinear models. However,
linear approximations for nonlinear functionsmust be treatedwith care, and if treated
properly, the EKFwill generate very good results inmany applications. The extended
Kalman filter algorithm is very similar to the linear Kalman filter algorithm with the
substitutions:

F(k) → ∇fX(k) and H(k) → ∇hX(k)

where ∇fX(k) and ∇hX(k) are nonlinear functions of both state and time step. These
are called the Jacobians, or the partial derivates of the state transition and measure-
ment functions, respectively (see Chap. 6). This implies that these functions are
differentiable.

Then, the main equations can be summarised as follows:

1. Prediction equations:

x̂(k/k − 1) = f((k − 1|k − 1),u(k))

P(k|k − 1) = ∇fX(k)P(k − 1|k − 1)∇T fX(k) + Q(k)

2. Update equations:

x̂((k|k) = x̂(k|k − 1) + W(k)[z(k)−h(x̂(k|k − 1))]

9 Lost in Space! Localisation and Mapping 257

P(k|k) = P(k|k − 1) − W(k)S(k)WT (k)

where

S(k) = ∇hX(k)P(k|k − 1)∇ThX(k) + R(k)

9.6.3 Data Association

One of the issues that arise during data fusion in a robotic navigation scenario is
identifying the sensor observations with the observed. As mentioned earlier, this
problem is commonly referred to as the data association problem. There are several
methods available for discerning the observations. The most obvious way of doing
this is to make the observations self-identifying. An example of this was presented
earlier using computer vision, where a feature matching algorithm is used for the
data association.

Statistical methods also exist to determine how likely a given observation is of the
object thought to be observed. Derivation of equations for one such method referred
to as the Mahalanobis distance is discussed below.

The difference between the observed and the predicted observation for a set of
sensor data is called the innovation (v) and could be represented with the notations
introduced earlier in the Kalman filter section as follows:

ν(k) = z(k) − ẑ(k|k − 1)

where ẑ(k|k − 1) is the predicted observation for time step k given the observation
information up to time step k − 1. It can be proven that the innovation is white with
a mean of zero and variance S(k) given below:

S(k) = R(k) + H(k)P(k|k − 1)HT (k)

The above information can then be used in the problem of data association. The
normalised innovation squared q(k) is defined as:

q(k) = νT (k)S−1ν(k)

If the associated filter is assumed to be consistent, the above equation can be shown
to be a χ2 random distribution with m degrees of freedom, where m = dim(z(k)),
which is the dimension of the observation sequence.

A confidence value can be chosen from the x2 tables and compared against the
value of q for each observation in the observation sequence. If the value of q for
a given observation is less than the threshold, then that observation is likely to be
associated with the correct object of observation. If multiple observations satisfy the

258 D. Herath

above condition, it is safer to ignore such observations as improper data association
could lead to unstable filter performance.

9.7 A Case Study: Robot Localisation Using the Extended
Kalman Filter

Let us now consider a real-world application of the extended Kalman filter in solving
the localisation problem.

9.7.1 Assumptions

The motion model used is a very important parameter in deciding the success of
the filter to be used. Therefore, it needs proper consideration along with the choice
of sensors. The algorithm used in this case study uses the rigid body and rolling
motion constraints to simplify the analysis. The rigid body constraint assumes that
the robot’s frame is rigid, and the rolling motion constraint assumes that all points
on the vehicle rotate about the instantaneous centre of rotation with the same angular
velocity. This could be a reasonable model for a simple structure like the TurtleBot.
In order to further simplify the analysis, it is assumed that there is no slip between
tyres and the ground and that vehicle motion may be adequately be represented as a
two-dimensional model whose motion is restricted to a plane.

9.7.2 Derivation of the EKF-Based Localisation Algorithm

Derivation follows the equations in Sect. 6. A state prediction for the (k + 1) time
step can be derived from the information available up to time step k:

X(k + 1) = f (X(k),u(k))

Note the abbreviated representation used where X(k + 1) represents the prediction
of state at (k + 1) time step given the information up to time step (k). X(k) represents
the best estimate available at time step (k). u(k) represents the control inputs to the
robot driver at time step (k):

u(k) =
[
V (k)

ω(k)

]

9 Lost in Space! Localisation and Mapping 259

Fig. 9.10 Sensor mounted
on the robot observes the ith
feature

(k+1)

a

X

Y

(x(k+1),y(k+1))

Sensor

ith feature

Bi(Xi,Yi)

i

ri

where V (k) is the robot’s forward velocity at time step (k) and ω(k) is the turning
rate (angular velocity) at time step (k). Thus, the complete process model can be
described as below:

⎡

⎢
⎣

x(k + 1)

y(k + 1)

ϕ(k + 1)

⎤

⎥
⎦ =

⎡

⎣
x(k) +
T V (k) cos(ϕ(k))
y(k) +
T V (k) sin(ϕ(k))
ϕ(k) +
Tω

⎤

⎦

Assume that the robot makes an observation at time step (k + 1) with its onboard
sensor to a particular feature in the environment. The sensor is mounted on the robot
with an offset of a-units in the centreline, and the observation results in range (ri) and
bearing (θi) information pertaining to the feature observed, as depicted in Fig. 9.10.

There are n-number of features scattered in the environment for which absolute
position coordinates are known a priori (i.e. themaps is given). A general observation
of the ith feature Bi(X i,Yi) can be represented as follows:

ri(k + 1) =
√

(Xi − xr (k + 1))2 + (Yi − yr (k + 1))2

θi(k + 1) = tan−1

(
(Yi − yr (k + 1)

(Xi − xr (k + 1)

)
− ϕ(k + 1)

where

xr = x(k) + a cos(φ(k))

yr = y(k) + a sin(φ(k))

260 D. Herath

The best estimate for this observation Z(k + 1|k) derived from previous informa-
tion can be represented in the following form;

Z(k + 1) =
[
Ẑr (k + 1|k)
Ẑθ (k + 1|k)

]

=
[√

(Xi − x̂(k + 1|k))2 + (Yi − ŷ(k + 1|k))2
tan−1

(
(Yi−ŷ(k+1|k)
(Xi−x̂(k+1|k)

)
]

The prediction of covariance can be obtained as

P(k + 1|k) = ∇ fx (k)P(k|k)∇ f Tx (k) + ∇ fw(k)�(k)∇ f Tw (k)

where ∇ fx represents the gradient of Jacobean of f (.) evaluated at time k with
respect to the states, ∇ fw is the Jacobean of f (.) with respect to the noise sources,
and �(k) is the noise strength given by

�(k) =
[

σ 2
V

0

0

σ 2
ω

]

∇ fx (k) =
⎡

⎣
1 0
T V (k) sin(φ(k|k))
0 1
T V (k) cos(φ(k|k))
0 0 1

⎤

⎦

∇ fw(k) =
⎡

⎣

T cos(ϕ(k|k)) 0

T sin(ϕ(k|k)) 0

0
T

⎤

⎦

The innovation (observation prediction error) covariance S(k), which is used in
the calculation of the Kalman gains, can be calculated by squaring the estimated
observation error and taking the expectations of the measurements up to kth time
step and can be written as follows

S(k + 1) = ∇hx (k + 1)P(k + 1|k)∇hT
x (k + 1) + R(k + 1)

where R(k + 1) is the observation variance (which is diagonal in most robotics
applications due to the independent nature of the measurements)

R(k) =
[

σ 2
r

0

0

σ 2
θ

]

∇hx (k + 1) =
[

x̂(k+1|k)−Xi

d
ŷ(k+1|k)−Yi

d 0
−ŷ(k+1|k)−Yi

d2
x̂(k+1|k)−Xi

d2 −1

]

where

9 Lost in Space! Localisation and Mapping 261

d =
√

(Xi − x̂r (k + 1))2 + (Yi − ŷr (k + 1))2

Finally, the state update equations for the EKF are given by (adapting general
equations in the previous section)

x̂(k + 1/k + 1) = x̂(k + 1|k) + W (k + 1)[z(k + 1)−h(x̂(k + 1|k))]

where

W (k + 1) = P(k + 1|k)∇hT
x (k + 1)S(k + 1)−1

is the Kalman gain.
The algorithm is now complete, and as the robot proceeds from time t = 0

observing the environment, it can be applied recursively to determine the current
location. A set of map features must be first initialised. In the example in Fig. 9.11,
we have used a set of retroreflective beacons spread out in the environment. The
locations of these beacons were surveyed and recorded for initialisation. A SICK
laser range finder was used to detect and measure the range and bearing to these
beacons.

Fig. 9.11 An implementation of the EKF-based localisation algorithm. The solid blue line indicates
the EKF estimate of the robot path. The red dotted line is odometry. The * denotes the locations of
the surveyed beacons

262 D. Herath

9.8 Summary

This chapter looked briefly at a set of fundamental problems in robot navigation. The
localisation problem answers the question ‘where am I?’ and the mapping problem
asks the question ‘how to generate a map of the robot’s environment?’ when the
robot’s location is known. The Simultaneous Localisation and Mapping (SLAM)
problem involves solving both the localisation and the mapping problem concur-
rently.Wediscussed an estimation theoretic approach to solving these problems using
probabilistic techniques. The extended Kalman filter was presented as an implemen-
tation of this approach using a linear approximation to the nonlinear system models.
In combination, these algorithms and techniques should enable your robot never to
get lost in space (or earth!).

9.9 Review Questions

• Assume a robot equipped with a sensor that can detect the state of a door. For
simplicity, let us assume that the door could be in only one of two possible states,
open or closed. Let us now assume the robot’s sensors are noisy. The noise is
characterised by the following conditional probabilities: (Z-observation, X-door
state)

p(Z = sense_open|X = is_open) = 0.63

p(Z = sense_closed|X = is_closed) = 0.95

What is the value of the conditional probability
p(Z = sense_closed|X = is_open).

• What is meant by the robot localisation problem?
• Why is data association important for successful localisation?

9.10 Further Reading

This chapter only scratched the surface of the localisation and mapping problem.
Considerable research has happened since the ‘90s, with many successful implemen-
tations now in various production platforms operating at large-scale environments.
An excellent book on the subject by (Thrun et al., 2005) provides an excellent deep
dive into the subject. The essential tutorial on SLAM by Bailey and Durrant-Whyte
(Bailey & Durrant-Whyte, 2006; Durrant-Whyte & Bailey, 2006) provides a great
quick reference to the SLAM problem. The seminal work by (Dissanayake et al.,
2001; Durrant-Whyte, & Csorba, 2001) provides proof of the existence of a solu-
tion to the SLAM problem. If you are interested in understanding the underlying

9 Lost in Space! Localisation and Mapping 263

probabilistic estimation techniques and theories (Bar-Shalom et al., 2001) is highly
recommended.

References

Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II.
IEEERobotics &AutomationMagazine, 13(3), 108–117. Retrieved from https://doi.org/10.1109/
MRA.2006.1678144.

Bar-Shalom, Y., Li, X.-R., & Kirubarajan, T. (2001). Estimation with applications to tracking and
navigation. Wiley InterScience.

Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A
solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions
on Robotics and Automation, 17(3), 229-241.

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localisation and mapping (SLAM): Part I
the essential algorithms.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer,
22(6), 46–57.

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46. Retrieved from
https://doi.org/10.1109/TRO.2006.889486.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics cambridge. MIT Press.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra.
Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading
multidisciplinary research teams on complex robotic integration, industrial and research projects
for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and
was named one of the most innovative young tech companies in Australia in 2014. Teams he
led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in
the coveted Amazon Robotics Challenge—an industry-focused competition amongst the robotics
research elite. In addition, Damith has chaired several international workshops on Robots and Art
and is the lead editor of the book Robots and Art: Exploring an Unlikely Symbiosis—the first
significant work to feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/MRA.2006.1678144.
https://doi.org/10.1109/TRO.2006.889486.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 10
How to Manipulate? Kinematics,
Dynamics and Architecture of Robot
Arms

Bruno Belzile and David St-Onge

Learning Objectives

The objective at the end of this chapter is to be able to:

• recognize the architecture and mobilities of a robot arm;
• solve the forward and inverse kinematics problem of serial and parallel manipu-
lators;

• obtain the Jacobian relating the velocities of the joints to the end-effector;
• analyze the Jacobian to obtain the different singularities and understand their
physical meaning;

• obtain the equations defining the dynamics of a robotic manipulator.

Introduction

Manipulators are not fundamentally different than any other robotic systems regard-
ing their kinematics and dynamics. They are defined by their number of degrees-
of-freedom (DoF) and their architecture, which are critical for the envisioned appli-
cation. This chapter will provide you with an overview of the kinematics of robot
arms, including the direct kinematics problem (DKP), the inverse kinematics problem
(IKP) and the different types of singularities and how to find them. As kinematics
alone is not sufficient for advanced control, you will need to understand also the
dynamics of a robotic manipulator; we will cover it briefly.

B. Belzile (B) · D. St-Onge
Department of Mechanical Engineering, ÉTS Montréal, 1100 Notre-Dame Street West,
Montreal, QC H3C 1K3, Canada
e-mail: bruno.belzile.1@ens.etsmtl.ca

D. St-Onge
e-mail: david.st-onge@etsmtl.ca

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_10

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_10&domain=pdf
http://orcid.org/0000-0003-3247-9362
 4473 9705
a 4473 9705 a

http://orcid.org/0000-0003-3247-9362
http://orcid.org/0000-0002-0587-8598
 14857 9705 a 14857 9705 a

http://orcid.org/0000-0002-0587-8598
mailto:bruno.belzile.1@ens.etsmtl.ca
 854 55179
a 854 55179 a

mailto:bruno.belzile.1@ens.etsmtl.ca
mailto:david.st-onge@etsmtl.ca
 854
58057 a 854 58057 a

mailto:david.st-onge@etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_10
 -2047 61852 a -2047
61852 a

https://doi.org/10.1007/978-981-19-1983-1_10

266 B. Belzile and D. St-Onge

An Industry Perspective

Juxi Leitner, Co-Founder

LYRO Robotics.

My background is in computer science. I started programming computerswhen
I was young (and there was not much else to do in my very tiny hometown in
the middle of the alps).

When I was about 15-16, I realised that most of my code lives in a computer
and did not really interact or change things in the real world. I started to become
more andmore interested in robotics and getting inspired by themovies coming
out then, such as The Matrix, I robot, and Minority Report (I wanted to build
those spider robots!) So, I looked for ways to learnmore about it, and I enrolled
in a Joint European Master Degree in Space Robotics.

I have researched robotics in academic settings for over a decade before trying
to transfer the technology into real-world applications with our current startup
LYRO Robotics.

Initially, I was looking at robot swarms andmulti-robot coordination (for space
exploration particularly), but I got lucky and was able to attend a summer
programme in Lisbon to work with the then in-development iCub European
Humanoid. I was fascinated by how easy certain tasks come to us, yet how
hard they are for robotic systems, like detecting the world around the robot
(even how to decide what to focus your "eyes"/cameras on) or how hard it is
to pick up an object, even a simple one from a table in front of the robot.

That was eye-opening, and I got excited by the topic of embodiment and how
to integrate perception and smarts with the physicality of the robotic system
to enable physical interaction with the world! I still find it fascinating, and it
is more than 17 years later :)

Another pivotal moment for me was entering and eventually winning the Ama-
zon Robotics Challenge in 2017. There are specific things that industrial robots
were designed for, and it’s not picking random objects out of dynamic clutter.
Building the team (we were 20+) and designing the robotic system was really

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 267

just a lot of fun. The part of solving a real-world problem with fundamental
tech we researched for years was particularly exciting (and frustrating at the
same time ;)
The win showed that thinking about all the options from hardware to software,
is important for designing robots that work. So, we started looking for real-
world applications and founded LYRO in 2019 to bring robots to markets that
are currently underserved due to various reasons (robots too expensive or too
incapable is a big one).
Lot of the theory discussed in this chapter are relevant in the real world. For
example, the iCubwas inspired by the kinematics of a young child. In particular,
the hand has a lot of degrees of freedom, three in the shoulder, two in the elbow,
and two in the wrist. Then the hand has nine more (given it has five digits).
It highlighted an interesting issue for me that the forward kinematics is pretty
straightforward (if you have correct measurements), but inverse kinematics,
like when I have a position of an object I want to grasp, how do I need to
move my various joints, is a very hard and tricky problem with singularities
and non-linearities everywhere.
During my PhD, we regularly had to fix the cables in the iCub’s arm due to us
running into (or over) limits and breaking things!
I work in Robotic Grasping, and the advent of machine learning 20 years
ago, and deep learning ten years ago has clearly had an impact. However,
while “grasping is solved” is an often-cited quote, it is still non-trivial to get
a robotic arm to pick up any random object in any random configuration and
perform some useful task with it.
The area is expanding, which is good, but it lacks reproducibility which is
slowing down progress.
On the other hand, it is a very exciting time to enter as the whole field shifts
more towards robots that perform tasks in a smart fashion rather than "simply"
perform the same action over and over again.

Architectures

The physical embodiment of a roboticmanipulator (wewill use the term robot loosely
for this chapter) is a kinematic chain composed by a set of rigid bodies, called links,
connected in series together by joints (formally known as kinematic pairs). In other
words, a joint constrains the motion between two bodies. There are two types of
joints, namely lower kinematic pairs (LKP) and higher kinematic pairs (HKP). By
definition, the former involves “a contact taking place along a surface common to
the two bodies” (Angeles, 2014). You most likely encountered already the two most
common joints that belong to this category: the revolute (rotation, R) and prismatic

268 B. Belzile and D. St-Onge

(translation, P) joints. While there are also four other types of LKP, helical (screw,
H), cylindrical (C), universal (U) and spherical (S), all of them can be obtained
with a combination of revolute and prismatic joints. Therefore, the content of this
chapter will nearly exclusively focus on those two types of joints. While most joints
commonly used in robots only have a single degree-of-freedom (DoF), namely the
revolute and prismatic joints mentioned above, other types of joints, such as the
spherical and cylindrical joints, exist, with, respectively, three and two DoFs. As it
will be seen in the subsection on wrist-partitioned serial manipulators, the last three
revolute joints of this type of robot are equivalent to a spherical joint.

The architectures of robotic manipulators can be classified into two main cate-
gories: serial and parallel. The former, more common in the manufacturing industry,
consist of manipulators made of simple and open kinematic chains. They are known
for their reach and simplicity. The Kinova Gen3 lite, shown in Fig. 10.1, falls into
this category with its 6R kinematic chain,1 i.e., an open loop of six actuated revolute
joints in a serial array. The latter, parallel manipulators, are based on complex kine-
matic chains made of at least one loop. They are known for their structural rigidity,
speed and the ability to lift a larger payload with respect to the robot mass. While for
the serial manipulator, most actuators need to be moved during the robots’ motion,
the actuators of a parallel manipulator can all be attached rigidly to the base.

Manipulators can also be classified by their mobility, which include their DoFs
and the type ofmotion they can generate. For instance, one of themost important type
of robotic manipulators is the Schönflies-motion generators (SMG). These 4-DoF
robots, capable of three translations and one rotation about an axis of fixed direction
(usually the vertical axis), are commonly called SCARA-like robot, after one of
the first and well-known SMG, the Selective-Compliance Assembly Robot Arm
(SCARA), a serial robot with one prismatic and three revolute joints (Makino et al.,
2007). These manipulators can have a serial or a parallel architecture. Nowadays,
most industrial manipulator will have 5–7 DoFs, such as the Kinova Gen3 and Gen3
lite.

Kinematics of Serial Manipulators

Serial manipulators are considered simple kinematic chains, i.e., each link can be
coupled via one or two joints, to one or two links. The first link is the base and the
last link is the end-effector (EE), sometimes called tool. In the sequel, we will take
a closer look to the direct and inverse kinematics of serial manipulators.

Direct Kinematics

Kinematics are used to describe themotion of a robotwithout considering the dynam-
ics, namely the forces and the torques causing the motion. Therefore, kinematics

1 An underline letter representing a joint means it is actuated.

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 269

Fig. 10.1 Kinova Gen3 lite,
a serial 6-DoF robotic
manipulator

problems are geometric problems. First, we consider the direct kinematics (DK),
sometimes called forward kinematics (FK), of a serial robot. The DK equations are
used to map the joint variables, called the posture or configuration of the robot,
into the position and the orientation of the EE, namely its pose. In the end, you
will obtain an explicit system of nonlinear equations to compute p = [px py pz]T ,
the three-dimensional vector representing the Cartesian position of the EE, as well as
a 3 × 3 orthogonal orientation (rotation) matrixQmade of three unit vectors parallel
to the X -, Y - and Z-axes of the EE (expressed in the base reference frame). Both p
and Q can be assembled into a single 4 × 4 homogeneous matrix, as you will see.

Denavit-Hartenberg Convention

It is impossible to discuss the subject of direct kinematics of serial robots without
bringing up the Denavit-Hartenberg convention. It is a powerful tool that will help
you solve the forward kinematics of a serial manipulator in a systematic way. Since
thismethodwas first introduced byHartenberg andDenavit (Hartenberg andDenavit,
1964), some variations were proposed. Here, we use Paul’s notation, also known as

270 B. Belzile and D. St-Onge

the distal variant (Lipkin, 2008). Each link is numbered from 0 to n, 0 being the base,
while n is the nth link, namely the flange of the robot to which the end-effector is
attached. The ith joint is defined as the one connecting the (i − 1)th and ith links.
While the forward kinematics of a serial robot can be solved without the use of the
DH convention (or any other), it simplifies considerably the process and can be easy
understood by other engineers familiar with the DH notation. Brace yourself, the
following lines cover several definitions and formulas, but the procedure quickly
become easy to use after trying some examples. For each link, a Cartesian frame is
defined. Two such frames are shown in Fig. 10.2. You should note that the (Xi,Yi,Zi)
axes are rigidly attached to the (i − 1)th link. The following convention is used:

1. Zi is the axis of the ith kinematic pair/joint.
2. Xi is the common normal between Z(i−1) and Zi. Contrary to Zi, which does

not have a prescribed direction, Xi is oriented from Z(i−1) toward Zi. If they
intersect, resulting in an undefined direction for Xi, the convention is to use the
cross product of unit vectors parallel to Z(i−1) and Zi ii = k(i−1) × ki. In the case
the former and the latter are parallel, Xi is arbitrarily chosen to complete the
Cartesian frame, i.e., orthogonal to Z(i−1) and Zi.

3. with the right-hand rule,2 Yi is defined.

With these frames and their respective axes, four parameters are defined for i =
1 . . . n: θi, αi, di, ai, i = 1 . . . n, being respectively the joint angle, the link twist, the
link offset and the link length. They are defined below:

1. ai is the distance3 between Zi and Z(i+1) along X(i+1).
2. di is the coordinate,4 along Zi, from the origin of the ith frame to the intersection

with X(i+1).
3. αi is the angle between Zi and Z(i+1), measured with respect to the positive

direction of X(i+1).
4. θi is the angle between Xi and X(i+1), measured with respect to the positive

direction of Zi.

An homogeneous transformation matrix, as defined in Chap. 6 (Section 6.4.4), is
obtained from these parameters, i.e.,

Hi
i−1 ≡

⎡
⎢⎢⎣
cos θi − sin θi cosαi sin θi sin αi ai cos θi
sin θi cos θi cos θi − cos θi sin αi ai sin θi
0 sin αi cosαi di
0 0 0 1

⎤
⎥⎥⎦ (1)

2 As explained in Chap. 4 the thumb of the right hand points along the direction of the Z-axis; the
curl of the fingers while closing the hand represents a motion from the X -axis toward the Y -axis.
3 Always positive by definition.
4 Being a signed distance, it can be negative.

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 26188 39270 a 26188 39270
a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_6
 30947 39270 a 30947 39270 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_4
 7158 51446 a 7158 51446 a

http://dx.doi.org/10.1007/978-981-19-1983-1_4

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 271

Zi

Yi

Xi

Xi+1

Yi+1
Zi+1

di

ai

αi

θi

ai ei+1

ei

Fig. 10.2 Frames’ representation in the DH convention

where subscript refers to the reference frame in which the coordinates are given,
(i − 1) in this notation. It can also be separated into the rotation matrixQi

i−1 and the
displacement vector ai, i.e.,

Hi
i−1 =

[
Qi

i−1 a
i
i−1

0T 1

]
(2)

The orientation and position of the EE are thus obtained by multiplying the indi-
vidual transformation matrices associated with the DH parameters, giving us

Q = Q1
0Q

2
1Q

3
2Q

4
3Q

5
4Q

6
5 (3a)

p =
6∑

i=1

ai0 or (3b)

p = a10 + Q1
0a

2
1 + Q1

0Q
2
1a

3
2 + Q1

0Q
2
1Q

3
2a

4
3 + Q1

0Q
2
1Q

3
2Q

4
3a

5
4 + Q1

0Q
2
1Q

3
2Q

4
3Q

5
4a

6
5
(3c)

H =
[
Q p
0T 1

]
= H1

0H
2
1H

3
2H

4
3H

5
4H

6
5 (3d)

where H is the homogeneous transformation matrix representing both the position
and orientation of the EE. For the sake of brevity, in the sequel, if only a subscript is
given for a rotation/transformation matrix, it is given in the previous reference frame.

272 B. Belzile and D. St-Onge

Fig. 10.3 DH frames for each joint for the Kinova Gen3 lite (extracted from the manipulator user
manual)

For a joint with a single DoF, such as a revolute or a prismatic joint, only one of
the four parameters (ai, di, θi, αi) is a variable, the others are constant. As previously
mentioned, a homogeneous transformation matrix is characterized by six parameters
in 3D space. Here, this number is reduced to four since, with the DH convention,
the location of the origin of frame i is not arbitrarily chosen. Indeed, we have two
constraints for the X -axis of each subsequent frame: (1) Xi must be normal to Zi
and (2) it must also intersect it. The frame is rigidly attached to link i, but it is
not necessarily located at the end of the link, as one may expect. In fact, it may lie
outside the link itself. The reduced number of parameters defining the transformation
matrices is one of the main assets of the DH notation.

The DH frames applied to the Kinova Gen3 lite are shown in Fig. 10.3, and the
corresponding DH parameters are detailed in Table 10.1. Since the six joints of the
Gen3 lite are revolute, all θi are unknowns. In Chap. 18, more precisely in Project 3,
you will have to find the DH parameters of a 3-DoF version of this manipulator,5 as
well as compute its forward and inverse kinematics.

5 Three of its six joints will be locked.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 21061 49139 a 21061
49139 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 273

Table 10.1 DH parameters of the Kinova Gen3 lite

i 1 2 3 4 5 6

ai 0 a2 0 0 0 0

di d1 d2 d3 d4 d5 d6
αi π/2 π π/2 π/2 π/2 0

Inverse Kinematics

As mentioned at the beginning of this chapter, solving the IKP allows the engi-
neer to obtain the set of joint coordinates, namely the posture of the robot, from a
position and orientation of the end-effector, namely the pose. Contrary to the DKP,
which give only one EE pose from a set of joint coordinates, there may be more
than one solution to the IKP, i.e., more than one posture that corresponds to a posi-
tion/orientation of the EE. However, an analytical (symbolic and exact) solution to
the inverse kinematics is not necessarily always obtainable, depending on the archi-
tecture of the robotic manipulator. In some cases, a numerical approach is preferable.
Numerical approaches are also better fit for simulator compatiblewith variousmanip-
ulator architectures. The different solutions to the IKP are called configuration types.
Usually, while moving, a manipulator will keep the same configuration type, as alter-
nating from one configuration type to another requires large joint angle variations to
obtain, in the end, the same EE coordinates. Switching configuration can also risk
passing through a singularity, which we will discuss later. The controller of commer-
cially available manipulators takes these elements into account while computing the
positions and velocities of the joints.

To solve the IKP symbolically for the explicit equations, we start with the same
equations used above, i.e., the ones defined by the 4 × 4 homogeneous transformation
matrix, i.e., H. Since the last line is always [0 0 0 1], we thus have 12 nonlinear
equations, but only six unknowns in the case of a non-redundant6 spatial manipulator.
Of course, if the robot has additional joints, for example, to reach a target within
a cluttered workspace (ex. welding operations), the number of potential solutions
increases. Within this chapter, only non-redundant manipulators are considered.

As previously mentioned, while we have nine equations for the orientation of
the EE, only thhree are independent, giving us a system of six equations with six
unknowns (three for the orientation, three for the position). Solving the IKP for a
general serial manipulator is thus a challenging mathematical problem considering
the nonlinearity of the equations. However, you will find that most commercially

6 A spatial serial redundant manipulator has more than six joints. Notwithstanding the mechanical
limits of the joints, the limits of the reachable workspace and singularities, only six joints are needed
to reach any point with any orientation of the EE. You should be careful if you come across the
term “redundant,” as it can have different meanings depending on the context. A parallel robot can
be redundantly actuated, i.e., more actuators than DoFs, and any manipulator can be kinematically
redundant with respect to its task, for example, pointing tasks, which only require two DoFs.

274 B. Belzile and D. St-Onge

available manipulators fall in the special category of wrist-partitioned, greatly sim-
plifying the problem, as we will show below.

Wrist-Partitioned Manipulators
The architecture of decoupled serialmanipulator (wrist-partitioned)makes it possible
to separate the orientation problem from the position problem. Therefore, we obtain
explicit equations, avoiding the need for a numerical method to solve the IKP. The
problem is thus split into the inverse position kinematics and the inverse orientation
kinematics. By definition, the axes of the last three joints of decoupled manipulators
intersect. This point is known as thewrist center. Looking back to theDHparameters,
thismeans that a4 = a5 = a6 = 0. This alsomeans that the last threeDH frames share
the same origin. The coordinates of the latter are given by vector pw in frame 0, i.e.,

pw = a1 + Q1a2 + Q1Q2a3 + Q1Q2Q3a4 (4)

Since a4 = 0, a4 is not a function of θ4, as the equation of pw above. With Eq. (3b),
we can rewrite the above equation as

pw = p − Q1Q2Q3Q4a5 − Q1Q2Q3Q4Q5a6 (5)

which can be simplify, knowing that with a decoupled wrist, a5 = 0, as

pw = p − QQT
6 a6 (6)

This equation is solely function of constant DH parameters and the target position
and orientation coordinates of the EE in the case of an IKP. Therefore, the location
of the wrist, pw, can be computed in the base frame without the joint coordinates,
decoupling the position from the orientation.

In short, we solve the position problem by first computing the location of the wrist
with Eq. (6), then by isolating the first three joint coordinates in Eq. (4), which is a
simpler 3-DoF problem with three equations and three unknowns.
Example: 3-DoF Serial Manipulator
As an example, we can solve 3-DoF inverse position problem for a generic serial
manipulator with three revolute joints. It should be noted that the procedure below
may need to be slightly adapted in certain special cases (null DH parameters, certain
angles, division by zero, etc.). First, we need to rewrite Eq. (4):

QT
1 (pw − a1) = a2 + Q2a3 + Q2Q3a4 (7)

This can be done because rotation matrices are orthogonal, thus Q−1
i = QT

i . Devel-
oping the above equation in terms of its components, we have

A cos θ2 + B sin θ2 = xw cos θ1 + yw sin θ1 − a1 (8a)

A sin θ2 − B cos θ2 = cosα1(yw cos θ1 − xw sin θ1) + (zw − b1) sin α1 (8b)

C = sin α1(xw sin θ1 − yw cos θ1) + (zw − b1) cosα1 (8c)

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 275

with

A =a2 + a3 cos θ3 + b4 sin α3 sin θ3 (8d)

B = − a3 cosα2 sin θ3 + b3 sin α2 + b4 cosα2 sin α3 cos θ3 + b4 sin α2 cosα3 (8e)

C =b2 + a3 sin α2 sin θ3 + b3 cosα2 − b4 sin α2 sin α3 cos θ3 + b4 cosα2 cosα3

(8f)

We can see that the right-hand side of Eqs (8a–8c) is only function of θ1, the
position of the wrist and the DH parameters. Let

D =xw cos θ1 + yw sin θ1 − a1 (9)

E = cosα1(yw cos θ1 − xw sin θ1) + (zw − b1) sin α1 (10)

we can cast Eq. (8a–8b) in matrix form, i.e.,

[
A −B

−B A

] [
cos θ2
sin θ2

]
=

[
D
E

]
(11)

We are now able to compute explicit functions of sin θ2 and cos θ2:

cos θ2 = (AD − BE)/(A2 + B2) (12)

sin θ2 = (BD − AE)/(A2 + B2) (13)

which leads to
θ2 = arctan2(sin θ2, cos θ2) (14)

Obviously, θ2 cannot be computed right away since the values of the other two
joint angles are needed. To this aim, we need to make θ2 disappear. This is done
by calculating the sum of squares of each side of Eq. (8a–8c). Knowing sin2 θ2 +
cos2 θ2 = 1, we obtain

A2 + B2 + C2 = x2w + y2 + (zw − b1)
2 + a21 − 2a1xw cos θ1 − 2a1yw sin θ1 (15)

The left-hand side of the above equation is only a function of DH parameters and
θ3, while the right-hand side is only dependent on DH parameters and θ1. Moreover,
Eq. (15) is linear in sin θ1, sin θ3, cos θ1 and cos θ3. Computing the sum of the squares
of Eq. (8a–8b) would not have been useful, here, to eliminate θ2, as the resulting
equationwould not have been linear in the termsmentioned above,which is necessary
for the following steps. Therefore, Eq. (15) is rewritten as

F1 cos θ1 + G1 sin θ1 + H1 cos θ3 + I1 sin θ3 + J1 = 0 (16)

where F1, G1, H1, I1 and J1 are only functions of DH parameters and the position of
the wrist, all these terms being known at this stage. Then, Eq. (8c) is rewritten in a

276 B. Belzile and D. St-Onge

similar form, i.e.,

F2 cos θ1 + G2 sin θ1 + H2 cos θ3 + I2 sin θ3 + J2 = 0 (17)

Again, F2, G2,H2, I2 and J2 are only functions of DH parameters and the position of
the wrist. Having two linear equations and four unknowns, the next step is obtaining
explicit expressions of cos θ1 and sin θ1, as we did with θ2. Thus, we obtain

cos θ1 = −G2(H1 cos θ3 + I1 sin θ3 + J1) + G1(H2 cos θ3 + I2 sin θ3 + J2)

F1G2 − F2G1
(18)

sin θ1 = F2(H1 cos θ3 + I1 sin θ3 + J1) − F1(H2 cos θ3 + I2 sin θ3 + J2)

F1G2 − F2G1
(19)

θ1 = arctan2(sin θ1, cos θ1) (20)

Finally, we eliminate θ1 by computing the sum of the sin2 θ1 and cos2 θ1, which
results in

K cos2 θ3 + L sin2 θ3 + M cos θ3 sin θ3 + N cos θ3 + P sin θ3 + Q = 0 (21)

where the coefficients in front of the trigonometric functions of θ3 are functions of
Fi, Gi, Hi, Ii and J2i, for i = 1, 2, which are in turn functions of DH parameters
and the position of the wrist. We, therefore, have a nonlinear equation with known
coefficients where the only unknown is θ3. To solve this implicit equation, we use
a well-known identity in the field of kinematics, the Weierstrass substitution (also
known as the tangent half-angle substitution):

cos θ3 ≡ 1 − T 2
3

1 + T 2
3

, sin θ3 ≡ 2T3
1 + T 2

3

, T3 = tan(θ3/2) (22)

With this substitution, Eq. (21) is rewritten as an equation of degree four in T3:

RT 4
3 + ST 4

3 +UT 2
3 + VT3 + W = 0 (23)

All four possible values for T3 are thus obtained by computing the roots of the above
equation. These values are then used to calculate the solutions for θ3 with

θ3 = 2 arctan T3 (24)

The values for the remaining joint coordinates are then computed with first Eq. (20)
thenEq. (14), for θ1 and θ2, respectively. Therefore,we have solve the inverse position
problem for a 3-DoF serial manipulator, obtaining four sets of joint coordinates.
If we replace the revolute joints with prismatic joints, the problem becomes less
challenging to solve, as two prismatic joints (and one revolute) lead to a maximum
of two solutions to the inverse position problem and three prismatic joints lead to

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 277

only one solution to the inverse position problem. The position of the wrist now
known; the next step is to find the solutions for the remaining three joints.

Spherical Wrist
The first three rotation matrices Q1, Q2, Q3 now fully known; the next step is to
compute the solutions for the last three transformationmatrices,which are function of
the last three joint coordinates. First, we recall Eq. (3a) and rewrite it with everything
known on the right, i.e.,

Q4Q5Q6 =R (25a)

R = QT
3Q

T
2Q

T
1Qd =

⎡
⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ (25b)

Now you should remember that according to the DH notation, the angle between
the axes Z5 and Z6 is α5. These two axes are defined by the unit vectors e5 and e6.
Therefore, according to the dot product, we have

e5 · e6 = cosα5 (26)

We need to express these two vectors in one single reference frame. The DH frame 4
is chosen since it simplifies the equations. In this frame, e5 is simply the last column
of Q4. As for e6 is the last column of Q4Q5. To avoid introducing more than one
unknown in the equation, we use the fact that

Q4Q5 = RQT
6 (27)

We thus obtain an equation where θ4 is the only unknown variable:

X cos θ4 + Y sin θ4 = Z (28a)

where

X = − sin α4(r22 sin α6 + r23 cosα6) (28b)

Y = sin α4(r12 sin α6 + r13 cosα6) (28c)

Z = − cosα4(r32 sin α6 + r33 cosα6) + cosα5 (28d)

Using the Wieirstrass substitution introduced previously, the above equation is then
transformed into a quadratic equation in T4, where the roots are computed and sub-
stituted in θ4 = 2 arctan T4. To find the possible values for the remaining to joint
angles, we need to go back to Eq. (25a). We keep only the unknown terms on the
lefthand side by premultiplying by QT

4 , resulting in

Q5Q6 = QT
4R (29)

278 B. Belzile and D. St-Onge

By developing the components of the above equation and by simple inspection, we
find

cos θ6 = r12 sin α4 sin θ4 − r22 sin α4 cos θ4 + r32 cosα4 − cosα5 sin α6

sin α5 cosα6
(30a)

sin θ6 = r11 sin α4 sin θ4 − r21 sin α4 cos θ4 + r31 cosα4

sin α5
(30b)

As previously done, we put both values into

θ6 = arctan2(sin θ6, cos θ6) (31)

Finally, θ5 is found in a similar fashion but with Eq. (27) instead. By inspection, we
find

cos θ5 =cosα4 cosα5 − r32 sin α6 − r33 cosα6

sin α4 sin α5
(32a)

sin θ5 = r31 cos θ6 − r32 cosα6 sin θ6 + r33 sin α6 cos θ6

sin α4
(32b)

and we compute
θ5 = arctan2(sin θ5, cos θ5) (33)

Other Manipulators
In the case of a serial manipulator without a decoupled wrist, there is no simple
recipe to solve the IKP. In some case, a numerical solver is necessary to obtain the
joint coordinates from a set of EE coordinates. In other cases, explicit equations can
be obtained, for instance, the Kinova Gen3 lite, but they are unique to the robots
with the same architecture. However, while the solutions are different, the approach
to solve the IKP of non-wrist-partitioned manipulators is generally similar, which
is reducing the number of unknowns to only one to obtain the roots of a univariate
polynomial equation to compute the values for one joint coordinate, then computing
those for the other joints by backsubstitution, as we did with the inverse position
problem of the wrist-partitioned manipulator. Indeed, this approach relies mostly on
trigonometric identities, e.g.:

• sin2 θ + cos2 θ = 1
• sin α sin β + cosα cosβ = cos(α − β)

• cosα cosβ − sin α sin β = cos(α + β)

• sin α cosβ + cosα sin β = sin(α + β)

• sin α cosβ − cosα sin β = sin(α − β)

and the concept of dyalitic elimination. The latter is used to reduce the number of
unknowns in a system of non-homogeneous equations. The procedure consists of
four steps:

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 279

1. Rewrite the equations as polynomial expressions where one of the variables is
included into the coefficients; this variable is dubbed the eliminated variable.

2. As many equations as the number of unknowns is needed; therefore, we may
need to generate a new one by multiplying one of the equations by one of the
unknowns, for instance, the equations are then casted into matrix form Ax = 0,
where A is a function of powers of the eliminated variable only, and x of the
other unknowns; it should be noted that the last component of x is equal to 1.

3. Since one component of x is not equal to zero by definition, Amust be singular;
thus, its determinant has to be equal to zero; the next step is thus to compute the
roots of det(A) = 0 to find the possible values of the eliminated variable.

4. The last step is to compute the null space of A; knowing the last component
must be equal to 1, we simply need to scale the obtain vector to make sure its
last component is equal to 1.

Example: IKP of the Kinova Gen3 lite
The inverse kinematics problem of the Kinova Gen3 lite can be solved without
the use of a numerical approach. Considering the number of joints, a large set of
solutions are obtained for each feasible position and orientation of the end-effector.
The methodology to solve the IKP of the Kinova Jaco manipulator, which shares an
architecture similar to the Gen3 Lite, can be found in the literature (Gosselin and
Liu, 2014). The feasible solutions for an arbitrarily chosen pose of the EE are shown
in Fig. 10.4. Four are shown here, but more solutions could have been obtained if
we did not take into account the joint rotational limitations. One unique solution can
be chosen with a particular criterion, for instance, to minimize the joint rotations,
to minimize the torque generated by joint actuator to lift a payload, to simply avoid
obstacle, etc. While the topic of the optimal solution to the IKP will not be covered
in this chapter, numerous criteria can be found in the literature.

Numerical Approach to the IKP
Themethod presented above to find the symbolic solution to the IKP is not necessarily
adequate to all practical use cases. For instance, computing the roots of a high-degree
polynomial, which is often the case with manipulators with several DoFs, may lead
to numerical instabilities; thus, imprecision on the values of the joint coordinates
obtained. The analytical approach may not be fast enough as well. Therefore, to
avoid numerical instabilities and finding the symbolic solution to a challenging IKP,
the numerical approach is often used in the industry. To this regards, we introduce the
Newton-Gauss algorithm, but other avenues are possible. You first need to use the
orientation and position of the end-effector to obtain a system of nonlinear equations
that can be written as

f(x) = 0 (34)

Let the desired orientation matrix (defined for instance by Euler angles) and desired
position vector

Qd = [
qd ,1 qd ,2 qd ,3

]
, pd = [

px,d py,d pz,d
]T

(35)

280 B. Belzile and D. St-Onge

Fig. 10.4 Possible postures
for the same EE pose

(a) Solution #1 (b) Solution #2

(c) Solution #3 (d) Solution #4

and the solution to the forward kinematics defined in Eq. (3a–3b). The former can
also be shown in a format similar to Qd and pd :

Q = [
q1 q2 q3

]
, p = [

px py pz
]T

(36)

For a generic 6-DoF serial manipulator, we thus have a system of 12 equations:

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 281

f =

⎡
⎢⎢⎣
q1 − qd ,1

q2 − qd ,2

q3 − qd ,3

p − pd

⎤
⎥⎥⎦ = 0 (37)

where f is a 12-dimensional vector, 0 is the null vector of the same dimension and
the six unknowns are the joint coordinates we are looking for. The Newton-Gauss
algorithm can now be applied to find x. Through this process, we will find a sequence
of approximations of x, denoted x1, x2, . . . , xk converging toward the solution of the
IKP. The next estimation is denoted xk+1. This algorithm is based on the Taylor series
of the first degree; therefore, we have

xk+1 = xk + �xk (38a)

and
f(xk+1) = f(xk + �xk) = f(xk) + Jf (xk)�xk = 0 (38b)

where Jf (xk) is the mathematical Jacobian of f with respect to x (Section 6.6.2), i.e.,
Jf = ∂f/x), evaluated at xk . It should not be confused with the Jacobian(s) of the
manipulator, which will be introduced later in this chapter. Equation (38b) can be
rewritten as

Jf (xk)�xk = −f(xk) (39)

To be able to compute the next increment�xk to obtain�xk+1, we thus need to solve
the overdetermined system of equation defined by the above equation (Jf being a
tall matrix, i.e., more rows than columns). Since you nearly never have an exact
solution for an overdetermined system, we will find the solution minimizing the
least squares of the error, known as the least square solution. This is done with the
left Moore-Penrose generalized inverse JLf (Section 6.3.3), i.e.,

JLf =(JTf Jf)
−1JTf (40a)

�xk = − JLf (xk)f(xk) (40b)

You should not compute the generalized inverse per se with the equation above,
since it is known to generate numerical issues (the condition number of JTf Jf is,
roughly, the square of that of matrix Jf itself, resulting into a badly conditioned
system (Forsythe, 1970)). Instead, algorithms such as the QR decomposition and
the householder reflections are used, achieving the same results while minimizing
potential numerical issues.7 Depending on the value ofx1, the algorithmwill converge
toward one feasible solution (if any). To obtain at least some of the other potential
solutions (thus different configuration types), several starting pointsx1 must be tested.

7 Section 6.10.

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 30080 21753 a 30080
21753 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_6
 20890 36365 a 20890
36365 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6
http://dx.doi.org/10.1007/978-981-19-1983-1_6
 1597 57867 a 1597 57867 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

282 B. Belzile and D. St-Onge

Jacobian

The forward and inverse kinematics derived in the previous sections relate the joints
coordinates to the position and orientation of the end-effector and vice-versa. Now,
we consider the velocity of theEE and the joint rates.Mathematically, the relationship
between both is the Jacobian of the function defining the FKP. The Jacobian is useful
to plan smooth trajectory, to compute the wrench applied by the EE, to determine
singular postures, etc. For your understanding, awrench is the six-dimensional vector
representation of forces andmoments. Similarly, a twist is the six-dimensional vector
representation of linear and angular velocities. The expressions of the twist and the
wrench are, respectively,

t ≡
[
ω

ṗ

]
, w ≡

[
n
f

]
(41)

where ṗ, ω, f and n are the 3-dimensional linear velocity, angular velocity, force and
moment, respectively.

The Jacobian for a n-link serial manipulator is a (6 × n) matrix mapping the n
joint velocities into the six-dimensional vector consisting of the linear and angular
velocities of the EE, i.e., the twist mentioned above. Let uss assume only revolute
joints for now. Given the angular velocity vector of each link

ω0 = 0 (42a)

ω1 = q̇1e1 (42b)

ω2 = q̇2e2 + ω1 (42c)

ω3 = q̇3e3 + ω2 (42d)

. . .

ωn = q̇nen + ω(n−1) (42e)

where q̇i is the velocity of the ith joint, ei is a unit vector parallel to the axis of the
ith joint, namely the Zi-axis of the ith DH frame, and 0 is the three-dimensional
null vector. The angular velocity of the end-effector, ω, is simply equal to ωn. As
previously mentioned, the position of the EE is

p =
n∑

i=1

ai (43)

Differentiating the above equation with respect to time, we obtain

ṗ =
n∑

i=1

ȧi, where ȧi = ωi × ai, i = 1, . . . , n (44)

Substituing Eqs. (42a) into (44), and with some manipulation, we obtain

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 283

ṗ =
n∑

i=1

q̇iei × ri, ri ≡
n∑
j=i

aj (45)

where ri is defined as the vector from the ith DH frame to the last DH frame attached
to the EE. We can rewrite the previous equations in a more compact matrix form:

ω = Aq̇, ṗ = Bq̇ (46)

with
A ≡ [

e1 e2 . . . en
]
, B ≡ [

e1 × r1 e2 × r2 . . . en × rn
]

(47)

Therefore, the Jacobian mapping q̇ into t is

J =
[
A
B

]
= [

j1 j2 . . . jn
]
, ji =

[
ei

ei × ri

]
(48)

where (3 × 6) submatrices A and B are, respectively, known as the orientation and
position Jacobians.

Earlier in this section, we assumed only revolute joints to compute the Jacobian of
a serial manipulator. If a ith joint is prismatic instead, the angular and linear velocities
of the ith link are written as

ωi = ωi−1, ȧi = ωi−1 × ai + ḋiei (49)

We can then prove that the contributing member of the ith joint to the Jacobian, i.e.,
the ith column, is expressed as

ji =
[
0
ei

]
(50)

Example: Jacobian of a 6-DoF Wrist-Partitioned Serial Manipulator
Since the axes of the last joints of a wrist-partitioned serial manipulator intersect at
one point, known as the spherical wrist, its Jacobian matrix is simplified, resulting
in

J =
[
J11 J12
J21 0

]
(51)

where 0, J11, J12 and J21 are (3 × 3) matrices. You should note that to simplify the
equations, the Jacobian matrix given here maps the joint rates into the twist of Pw,
namely the location of the intersection of the axes of the last three joints. Therefore,
we have

tw = Jq̇ (52)

where tw = [ωT ṗTw]T . As you can see, the angular velocity vectorω is not a function
of the location of Pw. The linear velocity of Pw, which is only a function of the first
three joint velocities, is computed with the following equation, i.e.,

284 B. Belzile and D. St-Onge

ṗw = q̇1e1 × r1 + q̇2e2 × r2 + q̇3e3 × r3 (53)

where ri is defined as the vector from the ith DH frame to the Pw and ei is the unit
vector parallel to the axis of the ith joint, as mentioned above. The angular velocity
of the EE is computed with the formula given earlier in this section, i.e.,

ω = q̇1e1 + q̇2e2 + q̇3e3 + q̇4e4 + q̇5e5 + q̇6e6 (54)

Therefore, we can determine that the submatrices included in expression (51) are

J11 = [
e1 e2 e3

]
(55a)

J12 = [
e4 e5 e6

]
(55b)

J21 = [
e1 × r1 e2 × r2 e3 × r3

]
(55c)

Singularities

In robotics, when a manipulator is in a singular posture, or simply in a singularity, it
cannot displace its EE along at least one direction. Mathematically, this corresponds
to a singular Jacobian matrix use to compute joint velocities. We assumed previ-
ously this matrix was non-singular, i.e., for a robot with six DoFs, its Jacobian is
inversible and its determinant is not equal to zero (Section 6.4). It might not be the
case for certain configurations. Beyond the numerical issue of inverting a singular
matrix, the corresponding posture of the robot also has a physical meaning related
to the limits of the workspace of the robot or a loss of mobility, as mentioned
above. Moreover, if we refer back to the configuration types discussed earlier in this
chapter, the singularities correspond to boundaries between these entities within the
workspace of the robot.

A posture close to a singularity is also problematic for a manipulator and a robot
in general, as the determinant of its Jacobian matrix will be close to zero, yielding
a division by a number close to zero. This will result in significantly high joint
velocities, which raises safety concerns and reduces the trajectory-tracking accuracy.
Let

t = J(q)q̇ (56)

where q̇, t and J(q) are, respectively, the n-dimensional joint-rate vector, the six-
dimensional EE twist and the 6 × n Jacobian matrix, where n is the number of joints.
It is thus trivial to see that any given feasible EE twist, namely its linear and angular
velocity, as defined in Sect. 10.4.4, is a linear combination of the joint velocities. To
be able to achieve any arbitrary value of t, the rank of J, which is a function of the
posture of the robot, i.e. q, must be equal to six for a robot in 3D space. If it is the
case, any given twist of the EE is feasible. However, it should be noted that since
the Jacobian is posture-dependent, it is not always the case. If the rank(J) becomes

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 24200 31322 a 24200 31322 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 285

lower than six, this is call a singular posture, or, for brevity, a singularity. Depending
on which part of the Jacobian matrix generates a singularity, we can have a position
or an orientation singularity, each having a different physical interpretation.

Singularity of the Position Jacobian
For a 6-DoF wrist-partitioned serial manipulator, a singularity of the submatrix J21
causes a position singularity, corresponding to the impossibility of computing the
joint rates for this location. This occurs when the determinant of J21 is equal to zero.
Considering Eq. (51), the determinant can be written as

det(J21) = (e1 × r1) × (e2 × r2) × (e3 × r3) = 0 (57)

This situation occurs in two situations. First, you will find this type of singularity
when one column of J21 is equal to zero, for instance, when ei and r1 are parallel,
which is commonly called a shoulder singularity. This particular case corresponds
physically to the wrist center being located on the first joint axis, resulting in the
instantaneous loss of one DoF. It can also be true for the second or third joint (wrist
center being located on the ith joint axis), but this is usually avoided by carefully
designing the manipulator.

Otherwise, we can also have det(J21) = 0 when two columns of J21 become
coplanar, resulting in a rank-deficiency.Multiple postures/configurations of the robot
can lead to this, notably, but not only, a fully extended arm at the limit of the reachable
workspace. This includes elbow singularities, which occurs for vertically articulated8

manipulators such as the Meca500 sold by Mecademics.9 when the wrist center lies
on the plane passing through the second and third axes. This can also happen in theory
with the manipulator folded on itself, but mechanical limits normally prevents this
situation from occurring.

Singularity of the Orientation Jacobian
In the case of a wrist-partitioned manipulator, an orientation singularity occurs when
det(J12) = 0. This can only happen when e4, e5 and e6 are coplanar. In this con-
figuration, only angular velocity vector on the plane generated by the three vectors
mentioned above are possible at the EE. Considering the typical kinematic chain of
a serial wrist-partitioned manipulator, it generally occurs when the axes of the fourth
and sixth revolute joints are coincident. This type of singularity is sometimes called
a wrist singularity.

Singularities with a Non-Wrist-Partitioned Manipulators
We now have seen the different singularities within the workspace of a serial wrist-
partitioned manipulator thought an analysis of its Jacobian. Mathematically, you

8 A vertically articulated architecture is common for commercially available wrist-partitioned six-
axis serial manipulators: the axes of the second and third joints are parallel, the axes of the first and
fourth joints are orthogonal to the axes of the second and third joints and the axis of fifth joint is
orthogonal to the axes of fourth and sixth joints.
9 https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm.

https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm
 -1461 56538 a -1461 56538 a

https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm

286 B. Belzile and D. St-Onge

Fig. 10.5 Singular postures of the Kinova Gen3 lite (extracted from user manual)

can apply the same process to find singularities in the workspace of a non-wrist-
partitioned manipulator. However, we will look at the full Jacobian matrix in this
case, since we do not have decoupled kinematics for the orientation and position.
To this aim, we will use the Kinova Gen3 lite previously mentioned to illustrate the
process. Potential singular postures are shown in Fig. 10.5.

In this figure, from left to right, we have four different configurations correspond-
ing to singularities of Jacobian matrix that differ from a fully extended arm, another
singular configuration. We have, from left to right (all axes mentioned are illustrated
in red in the figure),

1. The axis of the first joint and the X -axis of the third DH frame, i.e., the common
perpendicular between the axes of joints 2 and 3, are parallel; the axes of joints
4 and 6 are also parallel.

2. The axes of the first and fourth joints are both parallel to the common perpen-
dicular between the axes of joints 2 and 3.

3. The axes of the third and fifth joints are parallel; the fourth joint is also parallel
to the common perpendicular between the axes of joints 2 and 3.

4. The axis of the third joint is parallel with the fifth joint axis and the fourth joint
axis is parallel with the sixth joint axis.

All four cases illustrated above involve a double alignment in the posture of the Gen3
Lite, which loses a DoFmomentarily. For example, in the second case, the EE cannot
move in the direction of the fourth joint axis. In the third and fourth cases, motion is
impossible in the direction of the axis of the third joint.

Kinematics of Parallel Manipulators

As we mentioned at the beginning of this chapter, parallel manipulators are known
for their structural rigidity, speed and the ability to lift a larger payload compared to
serial manipulators with similar mass and size. While their architecture is composed
of at least one loop, they commonly have more. Among the well-known parallel
architectures, the three-limb Delta (sometimes with a telescopic Cardan shaft to add
a fourth DoF) (Clavel, 1990) as well as the four-limb Par4 (Pierrot et al., 2003)

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 287

Fig. 10.6 PPR-2PRP parallel robot, from (Joubair et al., 2012)

(Adept Quattro) have been patented and commercialized. Before starting with the
kinematics of parallel manipulators, you should know that the EE of a parallel robot
is commonly called the mobile (or moving) platform, considering it is attached to
the base with several limbs.

Direct and Inverse Kinematics

While solving the forward kinematics of a serial kinematic chain is generally a simple
task, it is not the case with parallel robots. Indeed, the tool we used in Sect. 10.4.2,
the Denavit-Hartenberg convention, is not appropriate for parallel manipulators, as
it only accepts a maximum of two joints for each link. In general, it is not possible
to obtain an explicit function of the Cartesian coordinates of the EE with respect to
the joint coordinates, even for a simple parallel robot. Therefore, iterative methods
are commonly used for this purpose.

Contrary to the forward kinematics, solving the IKP of a parallel robot is usually
less challenging than with a serial robot. We will obtain an implicit function equal
to zero where q and p are the variables, i.e.,

f(q,p) = 0 (58)

Example: Kinematics of a PPR-2PRP Parallel Robot
Here is a planar parallel robot with three prismatic actuated joints connected to three
limbs attached to the mobile platform, shown in Figs. 10.6 and 10.7. One is a PPR

288 B. Belzile and D. St-Onge

Fig. 10.7 Geometry of a
PPR-2PRP parallel robot,
from (Joubair et al., 2012)

chain, while the other two are PRP chains. The mobile platform’s coordinates are
(x, y, θ), and the joint coordinates are (ρ1, ρ2, ρ3). We thus need to find expressions
of the former as a function of the latter. Using simple geometric relationships, we
have:

θ = arctan

(
ρ3 + d3 − ρ2

s

)
(59a)

x =ρ1 + d1 (59b)

For the last Cartesian coordinate, knowing

h

x
= l

s
(60)

we can compute

y = ρ2 + (ρ1 + d1)
ρ3 + d3 − ρ2

s
(61)

These three expressions above represent the solution to the FKP. The solution to
the IKP is straightforward from this point:

ρ1 =x − d1 (62a)

ρ2 =y − x tan θ (62b)

ρ3 =y + (s − x) tan θ − d3 (62c)

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 289

Jacobians

As mentioned above, the kinematics model of a parallel robot is generally expressed
as an implicit function, namely Eq. (58). By differentiating it with respect to time,
we have

Jṗ = Kq̇ (63)

where both J and K are Jacobian matrices.

Singularities

From these two Jacobian matrices, we can define three types of singularities:

1. Type I: WhenK is singular, i.e., det(K) = 0. This usually corresponds to a limit
of the reachable workspace or an internal limit of the workspace where two
branches of solutions to the IKP meet. Therefore, certain Cartesian velocities at
the EE will not be possible to generate.

2. Type II:WhenJ is singular, i.e., det(J) = 0. These singularities occur at locations
within the reachable workspace where two branches of solutions to the FKP
meet. Therefore, even for a fixed joint coordinates, an infinitesimal motion of
the end-effector is possible. This alsomeans that the robot cannot balance certain
external wrenches applied to the EE, thus resulting in a loss of control, which
must be absolutely avoided.

3. Type III: A combination of both types above, thus when det(J) = det(K) = 0.
In this case, Eq. (58) degenerates, resulting in an unusable EE. This kind of
singularity only exists for certain architectures.

Figure 10.8 depicts singular postures of a pantograph, a common five-bar mech-
anism that can be used as a planar parallel manipulator. The EE is on the middle
revolute joint and the two revolute joints attached to the base are actuated. As can
be seen in this figure, the EE cannot move further up since the mechanism is fully
extended for the illustrated type-I singularity. In the case of the type II singular pos-
ture depicted, it is impossible to control the vertical motion of the EE. With a small
perturbation, the EE could move up or down for the same velocities of the actuated
base joints.

Dynamics

According to the Merriam-Webster dictionary, dynamics is “a branch of mechanics
that deals with forces and their relation primarily to the motion but sometimes also to
the equilibrium of bodies.”10 Forces can be linear, but also rotational, namely torque.

290 B. Belzile and D. St-Onge

Type-I singularity Type-II singularity

non-singular posture

end-effector

actuated joint

Fig. 10.8 Pantograph, a 2-DoF planar parallel manipulator

The second Newton’s law is particularly significant when it comes to the quantitative
analysis of the dynamics of a system, as it states that “the time rate of change of the
momentum of a body is equal in both magnitude and direction to the force imposed
on it.”11 Similarly to kinematics, we can define two different problem:

• forward dynamics, from the actuators to the motion, useful for simulations;
• inverse dynamics, from the motion to the actuators, essential for control.

In this chapter, a brief overview of two approaches to compute the dynamics model
of a robot is given, namely the Euler-Lagrange and the Newton-Euler methods.

Euler-Lagrange

The Euler-Lagrange method is based on energy. The Lagrangian is defined as

L = T − V (64)

where T and V are, respectively, the total kinetic and potential energies in the sys-
tem. From the Lagrangian, the dynamics equations defining the robot’s motion are
computed with

d

dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= τi (65)

10 www.merriam-webster.com/dictionary/dynamics.
11 Definition from www.britannica.com/science/Newtons-laws-of-motion.

www.merriam-webster.com/dictionary/dynamics
 -1104 57867 a -1104 57867
a

www.merriam-webster.com/dictionary/dynamics
www.britannica.com/science/Newtons-laws-of-motion
 5012 59195
a 5012 59195 a

www.britannica.com/science/Newtons-laws-of-motion

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 291

Fig. 10.9 Geometry of a
2-DoF serial robot

θ1

θ2

x

y

l1

m2

m1

g
l2

r2

r1

center of mass

where the individual qi and τi are, respectively, the generalized joint coordinates and
torque (or force for a prismatic joint).

Example: Euler-Lagrange Applied to a 2-DoF Planar Manipulator
A simple 2-DoF serial planar manipulator is illustrated in Fig. 10.9. For the purpose
of this example, only the mass of each link is considered and not their moment of
inertia. The expression of total kinetic is

K = K1 + K2 = 1

2
m1v

2
1 + 1

2
m2v

2
2 (66)

where v1 and v2 are the magnitude of the linear velocity of masses m1 and m2,
respectively. We know, considering the geometry, that

v21 =ẋ21 + ẏ21 = r21 θ̇
2
1 (67a)

v22 =ẋ22 + ẏ22 (67b)

ẋ2 =(−l1 sin θ1 − r2 sin(θ1 + θ2))θ̇1 − r2 sin(θ1 + θ2)θ̇2 (67c)

ẏ2 =(l1 cos θ1 + r2 cos(θ1 + θ2))θ̇1 + r2 cos(θ1 + θ2)θ̇2 (67d)

292 B. Belzile and D. St-Onge

where m1, r1, l1, l2, r2, m2 and g are, respectively, the masses, distances between
the origin of each link and its CoM and lengths of the first and second links and the
gravitational acceleration. The total kinetic energy is thus

K = 1

2
m1r

2
1 θ̇

2
1 + 1

2
m2

(
(l21 + 2l1l2 cos θ2 + l22)θ̇

2
1 + 2(l22 + l1l2 cos θ2)θ̇1θ̇2 + l22 θ̇

2
2)

)

(68)

Finally, again considering the geometry, the total potential energy is

T = T1 + T2 = m1gl1 sin θ1 + m2g (l1 sin θ1 + l2 sin(θ1 + θ2)) (69)

You can complete the procedure as an exercise.

Newton-Euler

The Newton-Euler approach is a recursive method. You first compute the angular
and linear velocities and accelerations of each link individually in the inertial frame,
starting from the base. Then, the forces and torques applied by each link on the
previous one are computed, starting from the end-effector. It is used here to solve
the inverse dynamics of serial manipulators.

Velocities and Accelerations
First, it should be noted that in this procedure, it is the velocity and acceleration
of the center of mass (CoM) of each body, not frame, that you need to compute.
The velocities and accelerations are obtained with the Algorithm 1. In this table, the
components of vectors ai and ei (cf. Fig. 10.2) in frame (i + 1) are

[ei]i+1 = [
0 sin αi cosαi

]T
(70a)

[ai]i+1 = [
ai bi sin αi bi cosαi

]T
(70b)

Forces and Moments
The next step is to compute the forces and moments on each link, starting with the
EE. The wrench applied by the (i − 1)th link on the ith link is defined as

wi = [
nT
i fTi

]T
(71)

where the three-dimensional vectors nT
i and fTi , are, respectively, the force and

moment associated to this wrench. One component of each wrench is the actua-
tion associated to the corresponding joint, namely the third component for a revolute
joint and the sixth joint for a prismatic joint. The remaining components are the
reaction force and moment between the two links. The procedure to compute the

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 293

Algorithm 1 Velocities and accelerations
Require: [ω0]1, [ċ0]1, [ω̇0]1 and [c̈0]1
for i = 1 to n do

if ith joint is revolute then
[ωi]i+1 ← QT

i [ωi−1]i + θ̇i[ei]i+1

[ċi]i+1 ← QT
i [ċi−1]i + [ωi]i+1 × [(ai + si)]i+1 − QT

i [ωi−1 × si−1]i
[ω̇i]i+1 ← QT

i [ω̇i−1]i + θ̈i[ei]i+1 + θ̇i(QT
i [ωi−1]i) × [ei]i+1

[c̈i]i+1 ← QT
i [c̈i−1]i + [ω̇i]i+1 × [(ai + si)]i+1 + [ωi]i+1 × [ωi]i+1 × [(ai + si)]i+1 −

QT
i [ω̇i−1 × (ωi−1 × si−1)]i
else if ith joint is prismatic then

[ωi]i+1 ← QT
i [ωi−1]i

[ċi]i+1 ← QT
i [ċi−1]i + [ωi]i+1 × [(ai + si)]i+1 + ḋi[ei]i+1 − QT

i [ωi−1 × si−1]i
[ω̇i]i+1 ← QT

i [ω̇i−1]i
[c̈i]i+1 ← QT

i [c̈i−1]i + [ω̇i]i+1 × [(ai + si)]i+1 + [ωi]i+1 × [ωi]i+1 × [(ai + si)]i+1 −
QT

i [ω̇i−1 × (ωi−1 × si−1)]i + 2[ωi]i+1 × ḃi[ei]i+1 + b̈i[ei]i+1
end if

end for

wrench on each link is detailed in Algorithm 2. You may wonder where the effect of
gravity appears in the algorithm. To simplify the procedure while still obtaining an
equivalent solution, we use a simple trick. Here, we suppose a virtual acceleration
−g at the base of the robot, namely the first link. Therefore, even though the base is
fixed and not moving, we have

[c̈0]1 = [−g]1 (72)

where −g is the gravitational acceleration.

Algorithm 2Wrench on each link
[fn]n ← Qn[mnc̈n − f]n+1
[nn]n ← Qn[Inω̇n + ωn × Inωn − n + (an + sn) × fn]n+1
for i = n − 1 to 1 do

[fi]i ← Qi[mi c̈i + fi+1]i+1
[fi]i+1 ← Qi[fi]i
[ni]i ← Qi[Iiω̇i + ωi × Iiωi + ni+1 + (ai + si) × fi − si × fi+1]i+1

end for

We now have all forces fi and moments ni; the final step is thus to compute what
we were looking for at the beginning, the actuation torques for revolute joints and
actuation forces for prismatic joint. This is done with the following two equations:

τi =eTi ni, for revolute joints (73a)

τi =eTi fi, for prismatic joints (73b)

294 B. Belzile and D. St-Onge

Chapter Summary

In this chapter, an introduction to the fundamentals of robotics manipulators, from
themechanics point-of-view, was given.We first introduced the typical architectures,
serial and parallel, their pros and cons, as well as notable characteristics such as their
DoFs and the type of motion they can generate. Then, we focused on the kinematics
of both categories, from the joints to the end-effector (direct kinematics) and the
other way around (inverse kinematics). While standard approaches exist for both
the forward and inverse kinematics of a serial manipulator, notably if it is wrist-
partitioned, it is not the case for their parallel counterparts. However, the IKP of
a parallel robot can generally be solved more easily. We have studied the relations
between the joint velocities and the twist of the EE, which includes its angular and
linear velocities. These equations can be put together to obtain the Jacobian matrix,
an useful tool in the analysis of serial and parallel robots. Indeed, from this matrix,
singular postures of the robot can be found: these configurations must be avoided,
because they may cause safety and control issues. Finally, we did a brief overview
of the dynamics of robotic manipulators, namely two common approaches, Euler-
Lagrange and Newton-Euler.

Revision Questions

Question #1
Which equations are valid (there could be more than one or none)?

1. Hworkshop
tool = H0

workshopH
0
1H

1
2H

2
3H

3
tool

2. Hworkshop
tool = H0

workshopH
0
1H

1
2H

2
3H

workshop
0

3. H0
3 = H0

1H
1
2H

2
3

4. H3
0 = H0

1H
1
2H

2
3

5. Hworkshop
EE = H0

workshopH
1
0H

2
1H

3
2H

EE
3

Question #2
Inverse kinematics makes it possible to obtain. . .

Please choose an answer:

1. the pose of the robot effector, based on its parameters and joint coordinates;
2. the values of the joint coordinates of the robot, from the pose of the effector and

the parameters of the robot;
3. the position of the robot effector, based on its parameters and joint coordinates.

Question #3
The kinematic chains of parallel robots are made of:

1. passive and active joints;
2. only passive joints;
3. only active joints.

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 295

Table 10.2 DH parameters of a wrist-partitioned 6R manipulator

i 1 2 3 4 5 6

ai 0 135 mm 38 mm 0 0 0

di 135 mm 0 0 120 mm 0 70 mm

αi −π/2 0 −π/2 π/2 π/2 0

θi q1 q2 − π/2 q3 q4 q5 + π q6

Question #4
Regarding the computation of the Jacobian matrix of a serial manipulator, the vector
eworkshopi−1 represents:

1. the unit vector parallel to the X -axis of the (i − 1)th frame with respect to the
workshop;

2. the unit vector parallel to the Y -axis of the (i − 1)th frame with respect to the
workshop;

3. the unit vector parallel to the Z-axis of the (i − 1)th frame with respect to the
workshop.

Question #5
The DH parameters of a wrist-partitioned manipulator are given in Table 10.2.
First, compute the six homogeneous transformations matrices. Then, compute
the solution(s) to the inverse kinematics for a Cartesian position of the wrist of
(250, 0, 150) mm and an orientation with the Euler angles of (0◦, 90◦, 0◦) according
to the XYZ mobile convention.

Further Reading

This chapter only gave you a short summary on the mechanics of robotic manip-
ulators. If you want to learn more, you can first take a look into the original DH
notation and its variants. To this aim, you can refer to a paper published by Harvey
Lipkin (Lipkin, 2008). Moreover, given the fact that we did not go into the details of
the dynamics of robots, extensive literature can be found on this topic. Notably, you
can look into the Kane’s equations, similar to Lagrangian approach. Also, (Angeles,
2014) introduced an alternative method to solve the inverse dynamics of a robotic
system, the natural orthogonal complement (NOC). Regarding mathematical tools
useful for the analysis of the mobility, kinematics and dynamics of robotic systems
and mechanisms, you can take a look into group theory (Angeles, 2014), screw the-
ory (Davidson, 2004; Müller, 2017), where the twist and wrench concept originate,
and dual-numbers algeabra, useful to combine a translation and a rotation into one

296 B. Belzile and D. St-Onge

single variable. Finally, you can also look into the concept of constraint singularities
for parallel mechanisms (Zlatanov et al., 2002).

References

Angeles, J. (2014). Fundamentals of Robotic Mechanical Systems, Mechanical Engineering Series
(Vol. 124). Springer International Publishing. https://doi.org/10.1007/978-3-319-01851-5

Clavel, R. (1990). Device for the movement and positioning of an element in space
Davidson, J. K. (2004).Robots and screw theory?: Applications of kinematics and statics to robotics.
Oxford University Press.

Forsythe, G. E. (1970). Pitfalls in Computation, or Why a Math Book isn’t Enough. The American
Mathematical Monthly, 77(9), 931–956. https://doi.org/10.1080/00029890.1970.11992636

Gosselin, C., & Liu, H. (2014). Polynomial Inverse Kinematic Solution of the Jaco Robot. In
ASME International Design Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference, ASME, Buffalo, NY, p. V05BT08A055. https://doi.org/10.1115/
detc2014-34152

Hartenberg,R.,&Denavit, J. (1964).Kinematic synthesis of linkages.McGraw-Hill BookCompany.
Joubair, A., Slamani, M., & Bonev, I. A. (2012). A novel XY-Theta precision table and a geometric
procedure for its kinematic calibration.Robotics and Computer-IntegratedManufacturing, 28(1),
57–65. https://doi.org/10.1016/J.RCIM.2011.06.006

Lipkin, H. (2008). A note on Denavit-Hartenberg notation in robotics. In Proceedings of the ASME
International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, DETC2005, Vol.7B, pp. 921–926. https://doi.org/10.1115/DETC2005-
85460

Makino, H., Kato, A., & Yamazaki, Y. (2007). Research and commercialization of SCARA Robot:
The case of industry-university joint research and development. International Journal of Automa-
tion Technology, 1, 61–67.

Müller, A. (2017). Screw theory: A forgotten Tool inMultibodyDynamics.PAMM, 17(1), 809–810.
https://doi.org/10.1002/PAMM.201710372

Pierrot, S., Morita Pierrot, F., Shibukawa, T., &Morita, K. (2003). Four-degree-of-freedom parallel
robot

Zlatanov,D.,Bonev, I.A.,&Gosselin,C.M. (2002).Constraint singularities of parallelmechanisms.
Proceedings—IEEE International Conference on Robotics and Automation, 1, 496–502. https://
doi.org/10.1109/ROBOT.2002.1013408

Bruno Belzile is a postdoctoral fellow at the INIT Robots Lab. of ÉTS Montréal in Canada.
He holds a B.Eng. degree and Ph.D. in mechanical engineering from Polytechnique Montréal.
His thesis focused on underactuated robotic grippers and proprioceptive tactile sensing. He then
worked at the Center for Intelligent Machines at McGill University, where his main areas of
research were kinematics, dynamics and control of parallel robots. At ÉTS Montréal, he aims at
creating spherical mobile robots for planetary exploration, from the conceptual design to the pro-
totype.

https://doi.org/10.1007/978-3-319-01851-5
 16099
9603 a 16099 9603 a

https://doi.org/10.1007/978-3-319-01851-5
https://doi.org/10.1080/00029890.1970.11992636
 14166 15138 a 14166
15138 a

https://doi.org/10.1080/00029890.1970.11992636
https://doi.org/10.1115/detc2014-34152
 25822 18459 a 25822 18459 a

https://doi.org/10.1115/detc2014-34152
https://doi.org/10.1115/detc2014-34152
https://doi.org/10.1016/J.RCIM.2011.06.006
 1637 23994 a 1637 23994 a

https://doi.org/10.1016/J.RCIM.2011.06.006
https://doi.org/10.1115/DETC2005-85460
 21115 27315 a 21115 27315 a

https://doi.org/10.1115/DETC2005-85460
https://doi.org/10.1115/DETC2005-85460
https://doi.org/10.1002/PAMM.201710372
 -1185 33956 a -1185
33956 a

https://doi.org/10.1002/PAMM.201710372
https://doi.org/10.1109/ROBOT.2002.1013408
 32152 38384 a 32152 38384
a

https://doi.org/10.1109/ROBOT.2002.1013408
https://doi.org/10.1109/ROBOT.2002.1013408

10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms 297

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the École de technologie supérieure and director of the INIT Robots Lab (ini-
trobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect
to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the
field of interactive media (structure, automatization and sensing) as workshop production director
and as R&D engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in national training
programs for highly qualified personnel for drone services (UTILI), as well as for the deployment
of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic inte-
gration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA
2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 11
Get Together! Multi-robot Systems:
Bio-Inspired Concepts and Deployment
Challenges

Vivek Shankar Varadharajan and Giovanni Beltrame

11.1 Objectives of the Chapter

At the end of this chapter, you will:

• understand the different types of multi-robot systems,
• be aware of the task allocation problem,
• be able to point out the different types of swarm programming techniques,
• be familiar with the fundamentals of swarm programming,
• understand the real-world deployment challenges with robot swarm.

11.2 Introduction

Swarm robotics is a branch of robotics that focuses on multi-robot systems that coor-
dinate to perform complex tasks through simple behavioral rules. Swarm robotics
combines multi-robot systems with swarm intelligence (Bonabeau et al., 1999), a
field that studies how complex behaviors emerge from simple and local interactions
(Dorigo et al., 2021) in natural systems like schools of fish, flocks of birds and
colonies of insects (see Fig. 11.1). These natural systems are of high interest because
they exhibit efficiency, robustness, parallelism and adaptivity. Ant colonies are an
excellent model for swarm intelligence, as ants work in parallel and use incredibly
low amounts of energy to perform tasks (efficiency), the loss of several ants does not
compromise the colony (robustness), and they can overcome complex environmen-
tal challenges: as an example, fire ants can form rafts with their bodies to carry the
colony to safety in case of floods (adaptivity). Swarm robotics research started out
as an use case to swarm intelligence on virtual and physical agents. Swarm intelli-
gence is a property of groups of simple individuals whose collective behavior exhibit

V. S. Varadharajan (B) · G. Beltrame
Department of Computer and Software Engineering, Polytechnique Montréal, Montreal, Canada
e-mail: vivek-shankar.varadharajan@polymtl.ca

G. Beltrame
e-mail: giovanni.beltrame@polymtl.ca

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_11

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_11&domain=pdf
mailto:vivek-shankar.varadharajan@polymtl.ca
 854 54656 a 854 54656 a

mailto:vivek-shankar.varadharajan@polymtl.ca
mailto:giovanni.beltrame@polymtl.ca
 854 57535 a 854 57535 a

mailto:giovanni.beltrame@polymtl.ca
https://doi.org/10.1007/978-981-19-1983-1_11
 -2047 61833 a -2047
61833 a

https://doi.org/10.1007/978-981-19-1983-1_11

300 V. S. Varadharajan and G. Beltrame

Fig. 11.1 Some examples of natural swarms are a flock of birds, colony of bees, schools of
fish and swarms of ants. Credits Bee colony—flickr.com/Sy, Fish school—iStock.com/armiblue,
Army ants—flickr.com/Axel Rouvin, Ant raft—wikimedia.org/TheCoz and Starling swarm—
wikimedia.org/Walter Baxter

capabilities that are beyond the capacity of a single individual. The phenomenon of
having many simple things performing complex activities when working as a group
is known as emergence.

Swarm intelligence was initially applied to virtual agents as an approach to solve
optimization problems that are otherwise considered very hard. Some examples of
such computational algorithms are ant colony optimization (Dorigo et al., 2006) and
particle swarm optimization (Kennedy & Eberhart, 1995). Ant colony optimization
applies the foraging behavior observed in ants to optimization: a group of simulated
agents move randomly in the search space (i.e., the space of possible parameters),
locate optimal solutions and lay virtual pheromones (analogue to the chemical traces
left by real ants) to direct other agents. Similarly, particle swarm optimization uses a
group of agentsmoving in a search space. These techniques have been very successful
in a wide range of domains like antenna design (Chang et al., 2012), vehicle routing
(Bell & McMullen, 2004), and scheduling problems (Xing et al., 2010).

Applying swarm intelligence to multi-robot systems in the real world is not as
straightforward as for virtual agent based optimization algorithms: robots need to
perceive their environment, determine their position, interact with other robots and
the (potentially unstructured) environment itself. Performing all these activities in
a single complex robot is already a daunting challenge, and having them emerge
from the interaction of many simple robots requires novel approaches to design and
synthesize robotic systems. This additional complexitymeans that only a very limited
number of works have demonstrated out-of-the-laboratory operation capability and
there is no real-world application to date that directly uses swarm robotics design
principles (Dorigo et al., 2021). However, swarm robotics is rapidly finding new
application domains (logistics, agriculture, space exploration, and many others) in
which it can provide a definite advantage, and swarm-based real-world applications
are bound to happen in the near future.

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 301

In this chapter, we will provide a brief introduction to multi-robot and swarm
system design approaches, swarm programming concepts and finally outline some
challenges to be addressed in realizing a real-world swarm system.

An Industry Perspective

Patrick Edwards-Daugherty

Spiri Robotics

My formal education was in mathematics, applied to theoretical physics. I
began programming at a young age, among my other interests in chess, music,
and science fiction. As a child, I was inspired by the positive and hopeful
thinking of imaginative writers and scientists. About a year after graduating in
1998, I started a tech company. I pivoted to robotics in 2012. The use of robots
for space exploration had always been interesting to me from a distance. But
that year, when I saw early displays of small drones able to maneuver without
human control, I became convinced of a tangible possibility to create truly
autonomous robots that could improve the human condition.
When my company’s robotics team was at the first major public exhibition
of our work, at the most embarrassing moment, our batteries caught fire in
their recharging cradles. For the rest of the conference, a security guard with
a fire extinguisher was stationed next to our display. He was very pleasant and
supportive. In my journey with robotics, I have found the biggest cliffs are the
ones right between the “completion” of a design and algorithm on the board,
and the first field test that works out. As a result, at my company, we try to fail
fast and often (and as much as possible, inexpensively) as part of our method.
Ensemble action by autonomous agents, sometimes called swarming or flock-
ing, first needed a basic method for group communications and consensus.
The way a flock of starlings or a school of anchovy can move as one is an
inspiration. The communications part has come a long way in the past decade.
The next challenge, which will remain a challenge for a long time, is to figure
out what actions are useful for the robotic ensembles to engage in, and what,
specifically, are the desired outcomes, so these can be programmed and opti-
mized. The communication part is the underlying first step, and each action
can be thought of as analogous to a group behavior of an animal species. There
are many, and they are very particular to the need and context.

302 V. S. Varadharajan and G. Beltrame

11.3 Types of Multi-robot Systems

Robot swarms are a special type of multi-robot systems that rely on three guiding
principles: (a) control is decentralized (i.e., there are no external controlling entities);
(b) there are no leaders or predefined roles; and (c) robots make decisions based on
local interaction with other robots. To better understand robot swarms, we must
introduce a taxonomy of multi-robot systems, clarifying the differences between
decentralized approaches (such as robot swarms) and other types of multi-robot
systems. Multi-robot systems (MRS) are generally considered to have two or more
robots that coordinate to perform a task. The robots in an MRS can be simple, as the
actual potential of the system can lie within group’s emergent behavior. Consider
the task of collaborative transport (as seen in natural ant colonies): robots need to
lift and move an object that would be too heavy for a single robot. In this case,
a single robot is incapable of performing the task, but several robots can, although
requiring a high degree of coordination. In general, multi-robot systems are preferred
for large, spatially distributed tasks which benefit from the inherent parallelism of
using multiple robots.

An MRS can be homogeneous or heterogeneous: a homogeneous MRS is com-
posed of identical robots (same sensors, computing resources and actuators), while
a heterogeneous MRS contains robots that are fundamentally different (in sensors,
computing resources and/or actuators). Homogeneous MRSs are the most common
typeofMRSbecause they are relatively simple to design andmanage,whereas hetero-
geneous MRS design needs sophisticated task planning to determine the appropriate
type of robot to perform each task.

MRSs can be further classified into centralized, distributed and decentralized
based on the decision making strategy that they use, as illustrated in Fig. 11.2. In
Fig. 11.2: (a) centralized system with each robot connecting to a central server, the
centralized server performs the decision making. (b) One of the robots is elected to
perform decision making in a distributed system. (c) All the robots in a decentralized
system perform decision making on-board by collecting information from other
robots.

Fig. 11.2 Decision making architecture classes: a centralized, b distributed and c decentralized

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 303

Similar to other fields of research, decision making in an MRS can be considered
as a process of analyzing a sequence of alternatives to determine the best choice of
action to perform, using the available information.Most general forms ofMRSdesign
brakes down the global problem into smaller sub-problems that can be assigned to
individual robots. Individual robots take up one or more of these sub-problems and
work toward solving them. Task allocation (TA) is a process of optimally assigning
tasks to a robot that will maximize the overall system performance and it can be
considered as an example of decision making. TA in a MRS is commonly referred to
as Multi-Robot Task Allocation (MRTA), where a set of tasks are assigned optimally
to a set of robots to maximize the overall performance of the system.

AnMRTAis generallymodeled as a combinatorial optimizationproblem: consider
Nt to be the number of sub-tasks that need to be assigned to Nr robots to minimize
the global combined cost, or maximize the reward. The cost function (a metric to
define the quality of global task performance) and the customized constraints on
the optimization for each of the robots depend on the specific task performed by
the robots. The goal of the optimization problem is to obtain a specific sub-task
assignment for the robots, which is generally defined by the tuple (ri , ti), where
ti ∈ 1, . . . , Nt and ri ∈ 1, . . . , Nr . A generalized MRTA problem is of the following
form:

max
NR∑

ri=1

NT∑

ti=1

bit xit (11.1)

subject to
NR∑

ri=1

xit ≤ 1 ∀ti ∈ 1, . . . , NT

NT∑

ti=1

xit ≤ LT ∀ri ∈ 1, . . . , NR

xit ∈ {0, 1} ∀ri ∈ 1, . . . , NR ∀ti ∈ 1, . . . , NT

where bit is the reward accumulated by assigning the task ti to robot ri . xit ∈ {0, 1}
is a binary variable indicating whether robot ri is assigned to task ti . The constraint∑NR

ri=1 xit ≤ 1,∀ti ∈ 1, . . . , NT restricts that assignment of one single task to one
robot. LT indicates the maximum number of tasks that can be assigned to each
robot; when LT = 1, it is referred to as single-assignment problem, where every
single robot only performs one task.

304 V. S. Varadharajan and G. Beltrame

11.3.1 Centralized Multi-robot System

CentralizedMRSgenerally have a single hub, either a server or a robot, which gathers
the sensory data from all the robots and aggregates a global view to then perform
task allocation. A centralizedMRS effectively is one large systemwith a global view
of the environment and the states of all the robots, and hence, this system has the
ability to produce globally optimal task assignment and plans. There exists a wide
variety of centralized decision systems (Luna & Bekris, 2011; Wurm et al., 2008;
Yan et al., 2010). Some of them rely heavily on centralized localization (like Global
Positioning System, GPS) and a few other approaches (McLurkin, 2009) suited
for indoor applications use motion capture systems or ceiling-mounted camera. An
interesting example of a centralized system is the Intel Shooting Star drones, which
have been used in several light shows. These aerial robots form a large pack that
operate synchronously to create 3D visual effects in the night sky. These drones
have a centralized coordination stations to plan predetermined GPS trajectories and
perform role-specific behaviors that are pre-scripted.

While these pre-scripted displays are impressive, the ability of centralized
approaches to handle dynamic environments is limited and does not scale efficiently
for larger numbers of robots. Centralized approaches also have other drawbacks—
they are not robust to robot failure and are vulnerable to security threats due to
their single point of failure: if the centralized hub malfunctions or compromised, the
system is rendered useless.

11.3.2 Distributed Multi-robot System

Distributed MRS uses opportunistic centralization, where one robot in the system
(referred to as the “master”) is elected to act as a centralized hub that receives task-
related information from all robots for TA. The term opportunistic centralization is
used mainly because centralization is performed only for the time being until the TA
is performed; for the next round of TA, a different robot or the same robot is used.
Distributed MRS is used in a wide range of application domains, for instance, in
formation control (Michael et al., 2008), exploration control (Sheng et al., 2006) and
navigation control (Fan et al., 2020). Distributed MRS is comparable to a distributed
computing cluster (Hwang et al., 2013). The main difference with a distributed com-
puting cluster and a distributed MRS is that the nodes rely on a static topology with
reliable communication, failures are rare (nodes operate in safe server rooms), and
state of the system is completely controllable. The election of a master compute node
and task assignment in a distributed MRS is generally done through auction, voting
and assignment. In an assignment, the master node aggregates all the information of
other nodes and makes a decision on the task assignment without any feedback from
the other nodes in the system. In contrast to assignment, both auction and voting

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 305

involves receiving a resource estimate (bid) or a preference for performing a certain
task from each robot in the system to perform the TA.

Auction
An auction can be generally considered an activity in which a seller presents an item
for sale to a set of buyers. For instance, in a distributed MRS, the auctions are for
assigning a particular sub-task to a given robot in the system, with the seller being
the central robot and the buyers being all other robots in the system. An auction is
a preferred routine when the sellers do not have a good estimate on the buyers true
value of an item. Here, we will briefly discuss the common types of auctions, and
for a more detailed comparison, you can refer to Chap.9 of Easley et al. (2012).

• English auctions: This type of auctions is also known as the ascending-bid auction.
In this type of auction, the seller raises the price of an item and the bidders drop out
of the auction gradually until there remains only one final buyer, who is declared
as the winner.

• Dutch auction: This type of auctions is also known as the descending-bid auction.
In this type of auction, the bidders gradually decrease the price of the item until
one of the bidder accepts the current price. The bidder that accepts the current
price is declared as the winner.

• Japanese auction: In this type of auction, the value of the item starts with a zero
price. The bidders gradually increase the price, bidder leave auctionwhen the price
becomes too high and the last bidder standing is declared as the winner.

• First-price sealed-bid: In this type of auction, the bidders submit closed bids that
are unknown to other bidders. The highest bidder is declared as the winner.

• Second-price sealed-bid: This type of auctions are also known as the Vickery
auctions, named after the Noble price winner Willium Vickrey. In this type of
auction, the bidders submit closed bids to the seller; the highest bidder is declared
as the winner and will pay the second-highest bid value.

The auctions can be further classified into sequential, parallel and combinatorial
based on the order the tasks are sold by the seller. In a sequential auctions, the seller
sells the items one at a time until all the items are sold; the auction lasts several rounds
until all the items are sold. Parallel auction requires the seller to sell all the items at
once and the buyers bid on it in parallel; the auction of all the items is performed
in one single round. In a combinatorial auction, the seller sells a combination of
different items, and the bids are cast on packages of items; the seller sells the items
based on an assignment that maximize the revenue.

In a MRS, the bids are generally determined by the sellers’ cost (resources
required) in performing the task. For example, if the tasks (item) correspond to spatial
goals the robots have to reach, the cost of reaching the goal (distance) is fixed. First
price sealed bid is one of the most commonly used type of auction in MRS (Otte
et al., 2020), mainly because of the nature of the tasks involved and the auctions can
be performed in a single round rather than multiple rounds (as in English, Dutch and
Japanese auction). However, there are type of tasks that are favorable for multi-round
auctions that use other type of auctions. We refer the reader to Otte et al. (2020) for

306 V. S. Varadharajan and G. Beltrame

more information on types of auctions that are used in MRS for different types of
tasks.

Voting
The voting is generally considered to be an activity in which a group of individuals
express their preference over a sequence of alternatives which are aggregated to
obtain the preference of the whole group. Voting and auctions are both used to
aggregate information across a group; thus, it might be hard to completely distinguish
between the two. However, the circumstances under which voting and auction are
used can be clearly distinguished. Voting is applied when the group is trying to
reach a single distinct decision that defines the group preference using individual
preferences, whereas auction is applied when an estimate on the choices (bids) can
be used to aggregate the preferences.

In voting, there exists a set of alternativesm that needs be rankedby each individual
as strictly dominating A ≺i B or as weakly dominating A �i B, with A and B being
the two alternatives. A ≺i B means that individual i strictly prefers alternative A
over alternative B and A �i B means A is preferred weekly by individual i over
B. With these individual preferences in hand, different types of rules are applied in
various voting systems to aggregate the individual preference.

• Plurality: This type of voting is also called the majority rule and considered the
most natural way of voting on alternatives. In this type of voting, each alternative
receives a score when it is ranked first and the group preference is a ranking that
is produced with the aggregated score.

• Borda Count: An alternative receives a score of m when it is ranked first by
an individual, receives m-1 when it is ranked second and 0 when it is ranked
last. A summation of all the individual ranking scores are produced to obtain the
aggregated group preference.

• Copeland Count: Elections are conducted pairwise between individuals; the alter-
natives that win a pairwise election receive a score of two, a score of one for a tie
and no points for a defeat. An aggregated score of all the alternatives are produced
to obtain the group ranking. The alternative that wins the most pairwise election
is ranked first.

• Bucklin: The alternative that receives a first ranking from more than half of the
voters is placed as the first group ranking alternative; if there is no alternative that is
preferred first, then the second alternative preferred by more than half of the voters
is ranked first. This process of selecting the alternative is iteratively performed to
obtain the group ranking.

• STV: The alternative that receives the least votes is removed in each round of
voting and the last standing alternative is ranked first.

• Slater: A combined ranking is produced with alternatives that is consistent with
the majority of the pairwise elections.

• Kemeny: A group ranking of alternatives is produced based on as few disagree-
ments as possible. For each disagreement, an alternative is pushed behind in rank-
ing, and a final ranking is produced with this final disagreement ranking of alter-
natives.

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 307

These voting procedures are reasonable and produce desirable properties, but it
might be difficult to clearly distinguish the advantages between these procedures
(Kacprzyk et al., 2020). A well founded set of evaluation criterion might be required
to evaluate the different advantages of these systems. In the context ofMRS, plurality
or majority count is commonly used, since it is the most natural form of voting and
applies to the type of tasks dealt in MRS (Karpov et al., 2016). There are some
application scenarios like formation selection (Iocchi et al., 2003), where voting
procedures like Bucklin is applied to select a formation that is preferred by more
than half of robots.

Many of these voting systems produce different group preferences based on the
order the voting is conducted; this gives rise to two important properties: Unanimity
and independence of irrelevant alternatives (IIA). Unanimity states thatwhen A ≺i B
is the preference of every individual in the group, then the group ranking should
reflect this preference. Whereas, IIA requires that the group ranking between A and
B should only depend on the individual preferences between A and B and not on
the preference of other alternatives. Using these two properties, we can now state
Arrow’s impossibility theorem: A voting system that satisfies both unanimity and IIA
must correspond to a dictatorship by one individual, when there are three alternatives
or more.

Arrows impossibility theorem essentially means the voting system that satisfies
both Unanimity and IIA will not suffer from the drawback of the order in which
voting is conducted. However, there is no voting system that will satisfy both these
properties for more than two alternatives.

11.3.3 Decentralized Multi-robot System

Robot swarms being a subset of decentralized multi-robot systems, arise from the
intersection of two domains: collective robots and swarm intelligence.

The key design principle that is followed in the design of decentralized systems
are:

• Control should be decentralized: All robots in the system are considered to equip
independent decision making capability.

• No leaders: There should be no master node that coordinates and manages the
agents in the system.

• No predefined agent roles: There should be no fixed role for agents in the system.
• Simple, local interactions: All the interactions with the agents should be simple
and should happen only on a local scale (within the communication range).

These rules directly apply to a concept generally referred to as emergence. Emer-
gence is a property that a system exhibits which the individual parts of the system
are incapable of exhibiting on their own, a behavior that demonstrate emergence is
called emergent behavior. In the context of multi-robot systems, emergent behavior

308 V. S. Varadharajan and G. Beltrame

can be thought of as collective behavior that is exhibited by the system as a whole
when they aggregate together. These kind of collective behaviors are widely found
in natural swarms. Consider, a school of fish that exhibits a circling behavior as a
measure to protect itself from predators (Fig. 11.1 shows one such circling behav-
ior). The system that demonstrates emergence is in general very attractive because
they exhibit some inherent capability to produce the following properties: scalabil-
ity, efficiency, robustness, parallelism and adaptivity. Swarm robotics is the field of
engineering that study emergence in robots.

Swarm robotics design problem
The problem of the design of swarm systems (see Fig. 11.3) can be defined as: given a
set of high-level requirements for a swarm, how can these requirements be translated
into a set of robot rules. For instance, consider the task of cleaning a room, the high-
level requirements is cleaning the room and the designer task is to derive a set of
robot commands to satisfy the requirements. In formal terms, the design problem
is to drive the states of all the robots from an initial state to a desired final state.
Consider the state of the swarm S0 = {s1, s2, . . . , sn}, with si being the initial state
of robot i ; the goal is to derive a function f : S0 → ST that will drive the system to a
desired final state ST = {s1,T , s2,T , . . . , sn,T } within the swarm state space S. Before
we delve into the methods available to design these rules, it might be useful to first
understand what are the states of the system and how could one model a swarm
system.

Swarm states
The swarm state space (S) contains all the possible configurations for all the robots in
the swarm, and each of these configurations is called a swarm state, i.e., a combination
of all the individual robot states. Each individual robot has a different perception of
the environment, communicates with different neighbors and hence has a potentially
unique internal state. Figure11.4 shows the individual robot states that are combined
to form the overall swarm state. The individual robot state in the swarm can be broken
down into:

• environmental state se: the state of the robot surroundings,

Fig. 11.3 The swarm robotics design problem: how do we translate swarm-level instructions to
commands for each robot? More formally, how do we change the system state S0 ∈ S to a desired
ST ?

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 309

Fig. 11.4 States of the robots in a swarm are a combination of the environmental state, internal
state, physical state and communication state of the robot

• internal state si: e.g., battery level, memory use, etc.,
• physical state sp: the state of the sensors, actuators, and other mechanical parts of
the robot,

• communication state sc: the internal state resulting from communication with
neighbors.

Consider, si = {se, si, sp, sc} the state of the robot i , the state of the swarmwould be
S = {si }, i ∈ (1, n)} with n the number of robots in the swarm. As one can observe,
the swarm state contains the state of all robots, making the formal modeling of
swarms rather challenging.

A swarm of robots is generally considered as a single machine with evolving
state, and it is generally called an open machine, since only a parts of its state is
controllable. The environmental state se around the robot is dynamic, and it can only
be partially modeled because the sensors of the robot are only capable of capturing a
subset of the environmental state with some amount of uncertainty. Furthermore, the
environment around the robot keeps evolving as the robot is performing its task and
can only be considered partially controllable. Similarly, the physical state sp of the
robot is also only partially controllable (e.g., the battery level cannot be controlled).
Another reason for sp being partially controllable is due to the presence of a non-zero
probability for a hardware failure. On the contrary, the internal state of the robot si
is considered to be fully controllable by the robots through programming.

The communication state sc depends on the underlying communication topology
created by the robots and the state of the communication medium. When more and
more robots are sending information, the chances of collisions and packet drops
increase. Every robot in a swarm is assumed to have a limited communication range

310 V. S. Varadharajan and G. Beltrame

Fig. 11.5 Communication topology created by a swarm of 100 robots: on the left the robots form
a cluster topology and on the right a scale-free topology

based on its underlying communication hardware. The ability of the robots to com-
municate can be represented by a graph structure called the communication topology.
In a communication topology graph, the nodes represent the robots and the edges
represent the communication links between them. Figure11.5 shows some types
of communication topology, scale-free, and cluster topology. The communication
topology of a MRS is continuously affected by the movement of the robots, and the
communication affects movements; hence, only a part of this state is controllable.
The problem of connectivity maintenance (i.e., maintaining a desired communica-
tion topology) is usually formulated as a dual problem that addresses both movement
and communication simultaneously.

Design of swarm robotic systems
The task of programming a swarm robotic system starts by the definition of the
requirements that definewhat the swarm is required to accomplish. The requirements
are then translated into a set of robot rules defining the behavior of each of the
robot in the swarm. The task of the programmer is to create these robot rules from
the requirements, which can be generally referred to as the control software design
process. The design of control software for robot swarms can bemanual or automatic.

Automatic methods
The task of control software design is formulated as an optimization problem where
the parameters for optimal robot behavior are found via search (see Fig. 11.6). The
search in automaticmethods generally involves a robot simulator and a set of template
alternative robot control architectures. The performance of a given alternative on the
swarm is then evaluated using a performance metric. The performance metric ideally
captures the efficiency and effectiveness of the swarm when completing the given
task. The configuration space that contains all possible alternatives to the template
control architecture is referred to as the design space. The candidate solutions from
the design space are drawn with some search rules to identify the optimal solution
that maximize the performance metric.

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 311

Fig. 11.6 An illustration of automatic design in its basic form, the sensory input of the robots are
considered to be two binary IR sensors (IR1 and IR2), and the actuators of the robot are two motors
(M1 and M2) taking real value inputs. In this scenario, an evolutionary algorithm could be used to
obtain the weights of the neural network that performs the task of aggregation (similar the behavior
observed in ants while forming rafts, as seen in Fig. 11.1)

The combinatorial nature of the design space demands the use of metaheuristics
like evolutionary algorithm to search the design space using the performance metric
as an objective function to evaluate the quality of the solutions. The most common
form of automatic design is to use an evolutionary algorithm (EA) to search the
design space paired with an artificial neural network (see Chap. 15 for more infor-
mation on artificial neural networks) to act as the template control architecture. EA
is a population-based optimization procedure inspired from biological evolution. In
EA metaheuristics, a virtual population containing best performing candidate solu-
tions are maintained; in each round of optimization, two candidate solutions are
selected to be combined and produce an offspring (via procedures like crossover or
recombination), and this new offspring is mutated to introduce some variance and
novelty in the population. The artificial neural network maps the sensory inputs to
actuation commands, and the design space contains all possible combinations of
neural network weights. Some initial studies (Nol & Floreano, 2000) have proven
that automatic control software design is a viable option for design of decentralized
robotic systems.

Some other types of automatic design focus on designing methods that promote
and search for novel behaviors in the design space, such as novelty search (Gomes
et al., 2013). Novelty search promotes diversity over performance: this type of auto-
matic design procedures are known to not suffer from problems like immature con-
vergence or stagnation of solutions around local minima. Apart from using a neural
network, automatic methods can be applied to other control architectures like para-
metric finite state automate (Hecker et al., 2012) or behavioral trees (Kuckling et al.,
2018). Based on the type of systemused to evaluate the candidate solutions, automatic
methods can be further classified as online and offline.

http://dx.doi.org/10.1007/978-981-19-1983-1_15
 26646 26870 a 26646
26870 a

http://dx.doi.org/10.1007/978-981-19-1983-1_15

312 V. S. Varadharajan and G. Beltrame

Offline methods
The offline design process involves generating the control software before the deploy-
ment of the swarm.During the design phase, simulation is typically used to evaluating
a large number of possible settings from the design space and generate and appropri-
ate control software. The use of simulation offers the benefit of being faster than real
robot evaluations and avoids damage to the physical hardware caused by low-quality
candidate solutions. The most common characteristics of offline methods are:

• The behaviors produced are usually for homogeneous swarms, executing an iden-
tical version of the control software.

• The objective function (also known as the performance metric) is evaluated in a
centralized manner for the whole swarm rather than evaluating the performance
of the individual robots.

• A typical evolutionary approach evaluates the populations of up to 200 robots using
the control software settings altered through evolutionary procedures (elitism,
recombination and mutation).

• The general performance metric used is based on the spatial change of the robots
relative to other robots, with an evaluation across 10–30 runs to take unknown
stochastic variables into account.

Online methods
Online methods perform directly on the real deployment environment, and the per-
formance is evaluated directly on the physical hardware. The most natural benefit of
using onlinemethods is that they can benefit from the feedback received by deploying
the robots directly in the operational environment. Onlinemethods generally produce
mission specific control software rather than generalized control software that can be
applied to a wide range of missions. The optimization being performed on deployed
robots, only a limited number of alternatives can be evaluated due to resource limita-
tions, and potentially robot harmful behavior has to be filtered out before evaluation.
In addition, the optimization has to be distributed (with opportunistic centraliza-
tion), since the swarm cannot rely on a centralized node to compute the performance
metrics and guide the design space search. The limitation of using a performance
indicator that can only be evaluated in a local and distributed manner makes online
approaches less effective in comparison to offline design methods. However, use of
hybrid approaches that combine online and offline methods is an effective way of
reaping the benefit of both worlds and is under active research by the community.
Some notable characteristics of online design methods are:

• The robots are asynchronously used to explore a portion of the design space, with
each robot evaluating a sub-population of the evolutionary instance of the control
software.

• the robots continuously exchange the best performing instance of the control soft-
ware allowing other robots to include this information in its local population for
further search.

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 313

• The behaviors executed by the robots are usually heterogeneous in nature; each
robot executes a different control software instance. However, there is a possibility
that the robots will eventually reach a point in the search, where they execute a
similar version of the control software.

• As the robots are completely decentralized, the performance metric used has to
be computed locally, using the information available on the robots. This severely
limits the type of tasks that can apply online approaches.

Manual methods
Manual methods involve the design of the control software for the robots either
by hand using a trial-and-error approach, or using the designer’s expertise. The
general procedure is to use a state machine to model and encode the robot control
software. The state machine allows the robots to decompose the overall goal into
elementary tasks. Some state transitions are performed by the swarm as a whole to
ensure consensus among the individual robots in the swarm.

The designer picks a tool that best fits the task at hand and devises a set of rules that
will allow the robots in a swarm to produce a self-organizing behavior. Some notable
self-organizing behaviors are aggregation, circling and pattern formation. The main
advantage of using manual methods is that the programmer has complete control
over the design software and can customize them to best fit the robotic mission.
One of the downsides of this approach is that it is very hard to manually design a
decentralized behavior for the robots since only a part of the state is controllable and
known to the programmer.

11.4 Swarm Programming

Swarm programming is the process of writing code to describe swarm behaviors.
A swarm programming language is a domain-specific language that can be used for
describing control software for robot swarms. Like other domains in computer sci-
ence, a swarm programming language can be compiled intomachine code containing
a set of instructions that can be executed by each robot. The basic requirements of
a swarm programming language are to provide a rich feature to allow arbitrary mis-
sions and to provide support for most robotic hardware. Other desirable properties
of a swarm programming language are:

1. Composability: The control software should be able to work in parts and as well
as, work as a single control software, when various parts of the code are put
together. For instance, a programmer can design a particular part of the code
separately as a function and test it, when putting together such similar functions,
it should work as a whole behavior.

2. Predictability: When looking at a piece of code, the designer should be able to
reason the behavioral outcome that will be observed on the robots.

314 V. S. Varadharajan and G. Beltrame

3. Heterogeneous hardware support: The programming language should provide
support for designing swarms that contain various types of robotic hardware.

4. Hardware agnostic: The programming language should produce invariable
behavioral outcome across various robotic hardware. A given piece of control
software designed using the programming language should be compatible to be
deployed on a wide range of robotic hardware.

11.4.1 Swarm Programming Languages

Over a decade of research in the field of swarm robotics have produced a wide
variety of methods that are used in programming the control software for robot
swarms. In this section, we will discuss some of the notable programming languages
and paradigms that are used in design of robot swarms.

Robot oriented
Themain focus in robot-oriented programming is to provide the designer with as pre-
cise control as possible to program every single robot in the group. In robot-oriented
programming, the designer focuses on designing an individual robot behavior that
will work synchronously to realize a desired group behavior, this type of swarm pro-
gramming is also known as bottom-up approach. One of the most common tool used
for robot-oriented programming is the robot operating system (ROS) (Quigley et al.,
2009). ROS is considered to be one of the widely used tools in programming both
single robot and multi-robot systems. ROS being programming language flexible
allows a designer to design a control software using various programming languages
(Python, C/C++ or Java). Chap. 5 introduces the fundamentals of ROS and can be
used as a reference to ROS. One of the main advantages of using ROS is the avail-
ability of several robustified packages and drivers that can be readily used to program
every single robot in the group. On the downside of programming swarms with ROS,
the programmer has to take into account each of the ROS node interactions and its
details (not limited to the naming used to connect ROS nodes). The complexity of
managing the ROS specific details increases exponentially with the number of robots
in the system.

Spatial computing
Spatial computing focuses on providing programming tools for programming the
swarm as a whole rather than considering the individual robot’s behavior. Spatial
computing can be used when the programmer is not interested in programming indi-
vidual robots but would like to design group level behavior; this kind of approach is
called the top-down approach. The robots in spatial computing are considered to be a
collection of communicating compute devices that are distributed in an arbitrary oper-
ational space, capable of performing a local computational task. The frameworks in
spatial computing abstract the individual robot and provide swarm specific primitives
that will allow design of global behaviors. Some examples of spatial computing are

http://dx.doi.org/10.1007/978-981-19-1983-1_5
 12376 33292 a 12376
33292 a

http://dx.doi.org/10.1007/978-981-19-1983-1_5

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 315

Proto (Beal & Bachrach, 2006) and Protelis (Pianini et al., 2015). In proto, the robots
are assumed to be deployed on a manifold of space called amorphous medium with
a physical and computational state. The robot program defines the way they interact
with the neighbors and the environment to perform a location specific behavior in the
amorphous medium. Spatial computing being a powerful tool for designing swarm
behaviors still lose the robot individuality and the capability to program each robot
in the swarm. Programming of heterogeneous robots with spatial computing is not
possible.

Goal oriented and task oriented
Goal-orientedprogramming is considered abottom-upprogrammingapproachwhere
the individual robots are assigned spatial goals. The global task is broken down into
elementary spatial goals and assigned to robots; the robots coordinate and reach
these spatial goals in parallel. The main focus in goal-oriented programmer is placed
on decomposing the global requirements into spatial goal rather than the logic used
to perform the task. Some example of goal-oriented programming languages are
SWARMORPH (O’Grady et al., 2012) and Termes (Petersen et al., 2011). Goal-
oriented programming is more suited when the mission requires spatial organization
among the robots and has minimal to no robot failures, since the approaches do not
have contingent mechanisms for robot failures.

In task-oriented programming, the global task is broken down into a set of sub-
tasks (such as spatial goals) that can be performed by a single robot and opti-
mally assigned to robots. The robotic swarm is considered as a system with parallel
machines that can be scheduled jobs using a scheduler (a system that assigns resource
to a specific task). These type of systems are referred to as deterministic parallel
machines in sequencing and scheduling theory (Pinedo, 2012). The task of control
software design in goal-oriented programming is to formulate the global problem as a
scheduling problem and design a scheduling system that will assign jobs (sub-goals)
to the robots in a swarm. Task-oriented programming is considered to be a bottom-
up approach since the individual robots are assigned tasks separately. Karma (Dantu
et al., 2011) and Voltron (Mottola et al., 2014) are some examples to task-oriented
programming. Task-oriented oriented programming is more suited for missions that
can be decomposed into a set of sub-tasks that can be performed on a single robot.
Task-oriented programming cannot be used inmissions that require active inter-robot
coordination (e.g., when a sub-task require two or more robots to complete it).

11.4.2 Programming in Buzz

Buzz (Pinciroli & Beltrame, 2016) is considered to be a hybrid domain-specific pro-
gramming language that provide programming primitives similar to robot-oriented
programming, spatial computing and goal-oriented programming. It allows program-
mers to maintain desirable levels of abstraction while programming, the swarm can
be programmed as a whole (top-down) or individual robot behaviors can be designed

316 V. S. Varadharajan and G. Beltrame

(bottom-up) at the same time in a single control software. For instance, the language
provides support for both setting the actuation commands (bottom-up) and support
for neighbors management to consider the swarm as a whole and perform operations
in the neighborhoods (top-down). A pure bottom-up approach suffers from scalabil-
ity issues and conversely; a top-down approach suffers from inability to fine-tune
individual robot behaviors. A concurrent design used in Buzz allows the designer to
pick the right amount of abstraction required at the various stages of the mission.

Buzz satisfies most of the desirable properties of a swarm programming language:
the code can be organized as functions and classes (composible), language syntax
is intuitive with similarities to Python and Lua (predictable), swarm programming
constructs allows concurrent use of heterogeneous robots in a swarm (heterogeneous
hardware support) and unified Buzz virtual machine (BVM) for use with various
hardware platform (hardware agnostic). These properties make Buzz a promising
approach to design control software for robot swarms and hence, in this chapter, we
will provide a detailed introduction to programming in Buzz.

Communication and execution model
The reference communication model used in Buzz is situated communication; it is
a communication paradigm introduced by Stroy et al. (2001) and commonly used
in swarm robotics. In situated communication, the receiver of a message knows
the positional information (distance and bearing) of the sender using a specialized
communication device. The robots using Buzz either equip such a communication
device or simulate situated communication through other sensorymeasurements. The
measurements in a situated communication device are obtained as a positional and
payload pair. As illustrated in Fig. 11.7 left, the positional data includes the relative
range (distance) and bearing (angle) of the sender in the receivers’ coordinate frame.
The payload part of the message includes a serialized messages from the internal
behavior programmed on the robots. The robots in a swarm, broadcast messages, the
robots in communication range receive these messages (often assumed to be line-of-
sight, a requirement for situated communication devices) and process thesemessages.
The information flow in the swarm happens in a gossip based communication (i.e.,
from one neighborhood of robots to another) until all the robots in the swarm have
similar information.

The execution of the control software follows a discretized step wise execution
phase with each step denoting one control loop (illustrated in Fig. 11.7 right). During
each control loop, the robots perform the following actions in order: reading the
sensors, processing the input messages, performing a loop of the code, sending
messages and updating the actuation commands.

Buzz Virtual Machine
Buzz considers the swarm as a collection of devices that uses a virtual machine
called Buzz Virtual Machine1 (BVM). The BVM contains an interpreter2 to execute
the control software designed for the robots (a script called Buzz script). BVM is

1 https://github.com/buzz-lang/Buzz.
2 A program used to execute code, for example, Python interpreter.

https://github.com/buzz-lang/Buzz
 -1461 56552
a -1461 56552 a

https://github.com/buzz-lang/Buzz

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 317

hello!

θ

θ

d
d

R

time

step step step step

read
sen-
sors

process
msgs

exec
script

send
msgs

act

Fig. 11.7 On the left, the reference communication model performing situated communication,
the sender robot in the center broadcast messages within its communication range (R) and the two
receiver robots on the top/bottom, measure the distance (d) and angle (θ) of the sender in their
coordinate frame. On the right, the reference execution model containing the discretized step-wise
execution

written entirely in C and uses a stack (datatype providing a collection of elements)-
based operations to execute the control software. Figure11.8 illustrates the internal
structure of the BVM. For more details on the BVM, we refer the reader to Pinciroli
and Beltrame (2016). BVM is designed to be compact in size (about 12 kB) providing
the possibility to deploy it on most of the robots used in swarm robotics; there
exists a compact BVMoptimized for microcontroller called BittyBuzz.3 The internal
datatype used to store information inside the BVM is key hashable tables (referred
to as data holders). The reference execution architecture discussed earlier directly
translates into BVM operations performed at each step: latest sensor readings and
inputmessages update the respective data holders, the values from the data holders are
used to perform a code step resulting in updating the data holders and the values from
the data holders are used to update the actuation commands and output messages.

In practice, a designerwrites his code inBuzz,which gets compiled into a bytecode
and the bytecode is executed by the BVM. Buzz offers command line tools like bzzc
to compile the buzz script into a BVM interpretable buzz code. The compilation
is generally performed on the programmers machine and the corresponding byte
code is then uploaded onto the robots for execution. Buzz is an extensible language
allowing programmers to attach custom C/C++ functions as closures that can be
called from the Buzz script. For instance, consider, the take_off routine that can be
implemented for flying robots and set_wheels for ground robots. In the compilation
phase, these custom closures are set as symbolic references and referenced during
execution phase.

3 https://github.com/buzz-lang/BittyBuzz.

https://github.com/buzz-lang/BittyBuzz
 -1461 57867 a -1461 57867
a

https://github.com/buzz-lang/BittyBuzz

318 V. S. Varadharajan and G. Beltrame

Fig. 11.8 Internal structure
of the buzz virtual machine,
figure obtained from
Pinciroli and Beltrame
(2016)

Sensor data Actuator data

Input
Message
FIFO

Heap
Output
Message
FIFO

Virtual
Stigmergy

Neighbor
Data

Swarm Data

Interpreter

Activation
Record
Stack

Swarm
Stack

Deploying Buzz on robots
Deployment of Buzz on robots requires an adapter called the Buzz controller. The
main purpose of a Buzz controller is to connect the robot sensors and actuators to the
BVM data holders that store sensor and actuator information. Buzz controller also
serves the purpose of connecting the communication hardware with the BVM, updat-
ing the in and outmessage queue inside the BVM.Buzz controllers are comparable to
a hardware abstraction layer (HAL) that abstracts the robot specific sensor/actuator
communication to the BVM. There exists several buzz controllers that can be readily
used for robot deployments: 1. ARGoS Buzz controller, a controller that is available
with the BVM implementation and can be used with ARGoS3 simulator (Pinciroli
et al., 2012), 2. BzzKh4,4 a controller for KheperaIV5 robots and 3. ROSBuzz,6

a controller that can be used with ROS compatible robots. Buzz controllers can be
considered more than a HALwrapper to BVMbecause some controllers leverage the
extensible nature of the language (using customC/C++ function-based primitives) to
provide additional features. For instance, ROSBuzz provides features to Geo-Fence
robots (limit the operational space for robots), compute veronoi tessellation for robot
groups (a method used to partition the space into sub-groups), exploration primitives
(methods to plan an exploration path in unknown spaces), etc.

Programming primitives
The programming primitives are pre-built software packages and constructs that can
be used to create a more sophisticated control software for the robots. As men-
tioned earlier, buzz offers constructs for both bottom-up (programming operations
performed on individual robots) and top-down (programming operations performed
with groups of robots) programming. Robot-wise operations available in Buzz are:

4 https://github.com/MISTLab/BuzzKH4.
5 http://www.k-team.com/khepera-iv.
6 https://github.com/MISTLab/ROSBuzz.

https://github.com/MISTLab/BuzzKH4
 -1461 55210
a -1461 55210 a

https://github.com/MISTLab/BuzzKH4
http://www.k-team.com/khepera-iv
 -1461 56538 a -1461 56538 a

http://www.k-team.com/khepera-iv
https://github.com/MISTLab/ROSBuzz
 -1461 57867
a -1461 57867 a

https://github.com/MISTLab/ROSBuzz

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 319

assignment of variables, loops, branching and function definitions. The use of robot-
wise operations is analogous to other scripting languages (like Python). As for the
top-down programming primitives Buzz offer: Neighbor management, swarm man-
agement and virtual Stigmergy. Each of this programming primitive takes inspiration
from natural swarm and virtually replicates a phenomenon from natural swarm intel-
ligence. The basic data types available in Buzz are: nil, Int, float, string, table, closure,
swarm and virtual stigmergy. Data types nil, Int, float and string are analogous to
other scripting languages. Whereas, tables are the only structured datatype available
in Buzz that can be either used as tables or dictionaries. Closures correspond to func-
tion pointers that can be stored as global variables and referenced at the execution
time. Swarm and virtual stigmergy are primitives for top-down programming, and
we will discuss them in the following.

Neighbor management
The neighbor management in Buzz is used either for performing operations with the
positional information or communicating information within the robots’ neighbor-
hood. Figure11.9 shows a comparison of a behavior observed in nature (flocking) and
artificial behavior (boids rule) performing a similar behavior. Neighbors construct
simplifies this implementation by using the function neighbours.foreach that loops
through all the neighbors of a robot and apply a function. The function applied for
each neighbor could compute vectors for all three components (separation, cohesion
and alignment) for this neighbor. The result of this operation would be one aggre-
gated vector for each component (separation, cohesion and alignment) that can be
averaged to obtain the common heading of the robot. There are also other functions
in Buzz that could be leveraged in a neighbor based operation: map, reduce and fil-
ter. Communication functions like neighbours.broadcast and neighbours.listen can
be used to broadcast messages in the robots neighborhood. For instance, neigh-
bours.broadcast can be used to broadcast the value of a Buzz datatype under a topic
and neighbours.listen can be used to register a callback function to execute when a
message is received from a topic.

11.4.2.1 Swarm Management

Programming heterogeneous swarms are a challenging task, locomotion and sensing
used by the different types of robot can be fundamentally different. Consider flying,
legged robots and rolling robots, each of these robot types need different kinds of
sensors and actuators to realize locomotion.With different kinds of sensors and actu-
ators comes different types of programming constructs to operate the robots. Buzz
offers swarm construct that can take into account heterogeneity while programming
the robots. Figure11.10 illustrates swarm construct with a heterogeneous swarm
containing flying and ground robots. Sub-groups within the robots can be created
to perform robot specific operations; these virtually tagged robot groups are called
a swarm. From a programming perspective, swarm.create() function can be used to
create a virtual group (swarm) and functions like swarm.select() and swarm.join()

320 V. S. Varadharajan and G. Beltrame

Fig. 11.9 Illustration of flocking: on the right, a starling swarm flocking and on the left, artificial
swarm intelligence performing the equivalent behavior using boids rule (separation, alignment
and cohesion). This behavior require looping through a robot’s neighbors to compute the current
movement, neighbors construct in Buzz provides neighbors.foreach function to loop through all
neighbors and compute the current heading vectors.Credits Starling swarm—wikimedia.org/Walter
Baxter

Fig. 11.10 Illustration of swarm construct in Buzz, a group of robots can be virtually tagged to
assign group specific behavior, flying robots are assigned takeoff task and ground robots are assigned
a wall following behavior

can be applied to join a swarm. As in Fig. 11.10, the function swarm.exec() can be
used to assign a group specific function to execute for a given swarm.

Virtual stigmergy
Virtual stigmergy is a programming construct derived from natural swarm intelli-
gence called stigmergy. Stigmergy is widely found in insect swarms, consider ter-
mites, they change the structure of the mold they build to communicate with other
termites, in this case the information flow is environment mediated. Another exam-

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 321

Fig. 11.11 Stigmergy in termites modifying the mold structure to communicate with other termites
(right), a virtual implementation of this phenomenon (virtual stigmergy) provide (key, value) tuples
to propagate information (left). Credits Termite mound—flickr.com/Justin Hall

ple to stigmergy can be found in ants; they spray pheromones to communicate the
shortest path to a food source. The environment acts as a medium to relay infor-
mation to other insects. Virtual stigmergy is a programming construct that allows
programmers to replicate this phenomenon in a virtual manner on the robots. Unlike
stigmergy in insects, the robots using virtual stigmergy make use of data structures
to store and propagate information. From a usage point of view, virtual stigmergy
is comparable to shared memory and distributed ledgers, acting as a black board
for writing information from one robot and reading it on other robots. Figure11.11
illustrates virtual stigmergy on robots by making comparison to termite swarms. In
programming robots, virtual stigmergy table can be created using stigmergy.create(),
stigmergy.put() can be used to add ormodify entries and stigmergy.get() can be used to
read the latest value. The internal implementation of virtual stigmergy optimizes the
information to be broadcast to achieve a guaranteed network wide propagation. The
information flow happens in a gossip-based fashion from one robots’ neighborhood
to another until a unified information is present in the whole group.

11.5 Deployment of Real-World Swarm Systems

Swarm robotics is a very young field of robotics that has received an increasing
attention over the past decade due to its inherent benefits. However, the field has
not matured enough to have robust real-world deployments, mainly due to the fact
that some of the underlying engineering concepts are not completely clear for full
autonomy. These challenges have given rise to creation of technologies that can allow
humans to supervise and manage the system once deployed.

322 V. S. Varadharajan and G. Beltrame

11.5.1 Human Swarm Interaction

Rapid advances in artificial intelligence are driving the adoption of robotics and
automation in transport and logistics, providing new solutions to highway systems
(Shladover, 2018), passenger transport (Pavone, 2015), last-mile delivery (Grippa et
al., 2019), and automatedwarehouses (Enright&Wurman, 2011). For the foreseeable
future, humanswill remain indispensable to supervise andmanage suchfleets because
we are transitioning from systems that are generally already in use; technology gaps
prevent us from performing all of the required functions autonomously; and particu-
larly in visible, safety-critical applications, society’s trust in decentralized technology
will be earned gradually. However, integrating increasingly sophisticated AI tech-
niques leads to increasingly opaque robot control programs. Furthermore, human
supervisors’ cognitive capacities are challenged (and eventually exceeded) as the
size of autonomous fleets grows. The difficulty of ensuring operational performance
is compounded when incoming information is scattered, delayed, asynchronous or
unreliable. These factors lead to increased pressure on human supervisors’ cogni-
tive resources and their ability to maintain situational awareness, detect problems
and make successful decisions. There are some methodologies and approaches (St-
Onge et al., 2019b) for the supervision of AI-driven swarm systems, deployed across
domains such as transportation and logistics.

Given that the operator is indispensable in a robotic fleet to solve complex tasks and
communicatewith the swarm, themajor focus in the field of human swarm interaction
(HSI) are the following: 1. Operator cognitive complexity, 2. Communication with
the swarm, 3. Control architectures, 4. Level of autonomy and 5. Methods to interact
with operator. All of these modules that the field focus on are tightly coupled with
one another, for instance, the level of communication of robot states depends on the
level of autonomy, which in turn affects the operator effort to control the swarm. A
detailed consideration to the concepts in HSI can be found in Kolling et al. (2015).

Operator cognitive complexity
In the field of computer science, the term computational complexity is defined as the
resources (such as time and memory) required to solve an algorithmic problem. The
required resources are generally considered to be a function of the size of the input.
Computational complexity is used to classify the solvable computational algorithm
from the unsolvable ones. Higher computational complexity algorithm might work
reasonably for smaller number of inputs and fail for larger number of inputs. In HSI,
a similar concept exists called the cognitive complexity for the robot control task;
instead of the algorithm, an operator is replaced. The main task of an operator in
a swarm system is to supervise and manage the robots by performing a sequence
of actions on observation of a robot status. Operators cognitive load can be defined
as the complexity of actions to perform by the operator on observation of a status.
The analogy between computational complexity and cognitive complexity was first
drawn in Lewis (2013).

Consider a group of aerial robots are performing a search operation in the forest
to locate human survivors, when the robots are managed individually by the opera-

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 323

tor (checking each of the robot camera feed individually for a human and sending
commands to further explore) then the cognitive complexity of this mission is O(n).
Conversely, when the operator deploys the robots and selects a search area, the robots
subdivide the tasks autonomously, run a human detection algorithm internally using
the camera feeds and send the operator of only a possible human detection for ver-
ification then the complexity here is O(1), which is the minimal possible cognitive
complexity. Another term that relates to cognitive complexity is the negligence tol-
erance, the time required by the robots to show performance degradation when left
unattended. For optimal operation of the fleet, the operator has to attend to the robots
before negligence tolerance time. In reality, the cognitive complexity of the system lie
between O(1) and O(n) could also be sometimes worse than O(n), when the operator
has to deal with a cascade of tasks for a given robot in the swarm.

Communication with the swarm
An operator communicating with the swarm is an essential routine in real-world
missions, the current level of robot autonomy demands an operator to be present in
the system. An operator generally use a specialized device called the base station
to communicate with the swarm. There are two types of communication that might
be necessary between a base station and the operator: 1. The operator has to relay
high-level goals to the system (commands) and 2. Operator has to obtain situational
awareness on the robot fleet (states). Realizing both the goals require a reliable com-
munication infrastructure within the system. Maintaining a reliable communication
among the robots in the fleet is a challenging problem. The robots need to move to
perform their mission, the movement in turn results in the change of communication
topology, the swarm needs to realize the communication topology change for infor-
mation propagation. One common approach to communication in robot swarms is
to design a connectivity maintenance algorithm that will maintain a desired level of
connectivity in the swarm allowing a base station to connect to the swarm.

Control architecture
The control architecture used in the swarm system defines the possible controls the
operator can have over the system. Control architecture used in the system might
influence the operator cognitive complexity, since it limits the possible controls the
operator can have over the system. The desired cognitive complexity of controlling
a swarm system is O(1), where the operator treats the swarm as a whole, as if it were
a single robot with complex dynamics. The current types of control architectures
available requiremore fine grained interactions than swarm-level interaction, demand
the operator to interact with sub-groups of robots. Some of the common control
architectures used in robot swarms are:

1. Behavior library: Where a set of behaviors are implemented for the robots and
the operator selects an appropriate behavior from the behavioral set based on the
current situational awareness.

2. Parameter adaptation: A generic behavior is implemented initially and the oper-
ator is left to adapt the parameters of the system to control the robotic swarm.

324 V. S. Varadharajan and G. Beltrame

3. Environment mediated control: The operator is made a part of the swarm and
interacts with the swarm through the environmental medium (with modalities
like gesture control).

4. Leader based control: A selective set of robots are assigned a leader role and the
rest of the robots follow the leader robots, the operator continuously interacts
with leader robot to control the swarm system. For example: the operator could
teleop the leader robots to control the swarm.

Level of autonomy
The level of autonomy (LOA) of a swarm system can be defined as the degree to
which the swarm system can make decisions on its own without external support
(like an operator). LOA is generally defined through a 10 point scale, initially pro-
posed by Sheridan and Verplank (1978). A scale of 1 defines the swarm to take
absolutely no decisions and actions; the operator must perform all the tasks in the
system. Conversely, a scale of 10 denotes the system completely disregards the
human and performs all actions exclusively autonomously. It is commonly referred
(Kolling et al., 2015) that the swarm system lie somewhere in or above a scale of
7, which means the system performs actions autonomously and informs the humans
of the choices. The level of autonomy has no influence on the amount of situational
awareness an operator acquires to interact with the swarm.

Methods to interact with operator
The method of interaction with the operator is an important factor to consider in
system with operators and highly influence the cognitive complexity of the system.
There are two methods to operator swarm interaction: 1. Remote interaction and
2. Proximal interactions. In remote interactions, the operator is considered to be
monitoring a remote control node called the ground station. The ground station is
a specialized computer that is used to obtain situational awareness on the robots
mission and send commands back to the system to provide them with directives.
Proximal control is another paradigm that considers the operator to be a physical
part of the swarm as a special swarm member and these specialized swarm members
provide directives to the swarm. Some approaches to proximal control are using
gesture control, voice control and expressive motion. In these approaches, the user
performs a certain gesture or voice command, which in turn creates a local interaction
with the swarm to perform a task. However, the level of control that can be achieved
with proximal control is minimal, since the swarm is controlled as a whole.

Human swarm interaction in Buzz
Within the framework ofBuzz, severalHSI approaches (St-Onge et al., 2019a, 2019b)
have been designed to facilitate the operator interaction with the swarm. These works
generally use ROSBuzz executing a Buzz script to realize the operator interactions.
The operator is considered to be a virtual swarm member and the system uses a
ground station to communicate with the operator (remote interaction). The ground
station being a virtual swarm member, deploy a similar buzz script and receiving
the same states that every other robot in the swarm is receiving. This system has
been tested with two types of ground stations: 1. A traditional computer node and

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 325

2. A tangible robot fleet interface. A traditional computer node in this setup use a
specialized visualization software to visualize and command the swarm. In tangible
robot fleet interface, the operator uses a table topmapwithminiature robots indicating
the status of the robots in the swarm. These miniature robots are used to interact with
the swarm deployed in the field. The idea behind the use of tangible interface is
that, the operator modifies a replica of the swarm, which in turn applies the changes
to the actual swarm. The infrastructure in St-Onge et al. (2019a) was used within
the framework of Pangaea-X in Lanssorate Spain, where a group of astronauts used
the above elaborated interface (computer node and tangible interface) to control the
swarm, while the cognitive load on the astronauts was evaluated.

11.5.2 Data Management, Communication and Mobility

In general, multi-robot systems need to collect large amounts of data from their envi-
ronment, and often these data need to be aggregated, shared and distributed. Consider
the task of distributed map merging (Mangelson et al., 2018) and inter-robot loop-
closure detection in simultaneous localization and mapping (SLAM) (Lajoie et al.,
2020), where robots need to exchange large amounts of data in the form of map frag-
ments and/or pose graphs along with certain key-frame images. Many multi-robot
systems are designed to share state information and commands, but their communi-
cation infrastructure is often too limited for significant data transfers. A mechanism
called SOUL (Varadharajan et al., 2020a) allows members of a fully distributed sys-
tem to share data with their peers. SOUL leverage a BitTorrent-like strategy to share
data in smaller chunks, or datagrams,with policies thatminimize reconstruction time.
The main challenges addressed in this approach are: 1—cope with dynamic network
topologies, 2—optimize the data fragmentation and reconstruction, and 3—optimize
the distribution of the datagrams (chunks of injected data). Since peer-to-peer (P2P)
file sharing mechanisms are well established in literature, with ample research to
demonstrate their robustness and scalability (Reid, 2015), this method leverages
some of their strategies (e.g., with the use of distributed hash tables) and integrates
additional concepts from decentralized robotic systems. There are few other methods
like Swarm mesh (Majcherczyk & Pinciroli, 2020) that provide location based data
storage, referred to as spatial consensus to allow robot in a swarm to leverage the
storage space on all robots.

Thekeyprinciple that needs to be addressed for real-world deployments is address-
ing the perception-action-communication loop in robot swarm. Real-world robot
deployments need to perform the following cascading action loop: to perceive the
environment, estimate its state, perform an action, communicate its state to its neigh-
bors. This cascading sequence of actions affects the other robots in the swarm and
hence is a tightly coupled state that affects each other. A control software designer
must consider the presence of perception-action-communication loop at design time.

The ability of a swarm to coordinate and exchange information depends largely
on the underlying communication graph. A reliable communication infrastructure

326 V. S. Varadharajan and G. Beltrame

allows the robots to exchange information at any time. However, real deployments
includemany potential sources of failures (environmental factors, mobility, wear and
tear, etc.) that can break connectivity and compromise the mission. The underlying
assumption taken by severalworks (St-Onge et al., 2017) includes the robots ability to
exchange information. There are twogeneral approaches to connectivitymaintenance
inmulti-robot systems: strict end-to-end connectivity (Stephan et al., 2017) or relaxed
intermittent connectivity (Kantaros et al., 2019). Many of these approaches are either
computationally intensive or cannot integrate the presence of an operator. There
are some alternatives that use lightweight algorithm (Varadharajan et al., 2020b)
allowing a heterogeneous group of robots to navigate to a target in complex 3D
environments while maintaining connectivity with a ground station by building a
chain of robots. The fully decentralized algorithm is robust to robot failures, can heal
broken communication links and exploits heterogeneous swarms: when a target is
unreachable by ground robots, the chain is extended with flying robots.

11.5.3 Fault Handling

When multi-robot systems are deployed in real-world scenarios, there is an increas-
ing concern regarding the safety and reliability of the system. Robots that are faulty
could potential harm humans or infrastructure. The robot control designed for the
robots needs to explicitly design mechanisms that can tolerate some common mal-
functions at the minimum. Faults in robotic hardware are inevitable, reliable mech-
anism incorporation within the control software could minimize the risks caused by
faulty hardware. There are generally two kinds of robot failures: 1. Endogenous and
2. Exogenous faults. Endogenous faults are generally faults that occurs within the
robotic hardware and exogenous faults are the faults that occur as a result of factors
in the environment, and the robots interaction with the environment.

There are twokinds of approaches to detect faults in robot swarms: 1. Introspection
and 2. Extrospection. In introspection, the robots run some kind of internal diagnos-
tics to determine if the hardware is faulty. Extrospection is using the diagnostics of
the neighboring robots to determine if a given robot is faulty. Some kinds of faults can
be addressed using introspection and others require extrospection, currently resolved
using an operator in the loop. Extrospection is an interesting solution, when dealing
with multi-robot systems, for instance, a deviation from normal operation of a robot
can be detected by other robots. Some existing approaches to fault detection are:

• Communication based (Christensen et al., 2009;Ozkan et al., 2010): Robots inabil-
ity to communicate is detected by using periodic pingmessages between the robots.
These method can only detect completely failed robots or robots with communi-
cation issues.

• Model based (Millard et al., 2014): Robots use a model to compare their behavior
to determine normal operation.

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 327

• Task effort based (Lau et al., 2011): Robots compute their contribution to the
fulfilment of the task and estimate if they are contributing to the global task to
determine their fault state.

• Online methods (Tarapore et al., 2017): An online classification model is learnt
to distinguish between faulty and normal behavior of the robots; robots evaluate
their behavior with the neighbor to determine faultiness. There are some methods
that use a immunology inspired models to predict faulty robots (Tarapore et al.,
2015).

11.6 Chapter Summary

This chapter provides an introduction to the different types ofmulti-robot systems and
introduces the task allocation problem used in assigning tasks to different robots in a
multi-robot system. A particular concentration is given to decentralized systems and
various methods available to design decentralized control software. Fundamentals of
programming a robotic swarm is discussed using the Buzz programming language.
Toward the end of the chapter, a discussion is made regarding the necessity of an
operator in a swarm system and the challenges toward the real-world deployment of
swarm systems.

11.7 Chapter Revision

Question #1
What are the fundamental differences between centralized, distributed and decen-
tralized systems?

Question #2
What are the design rules followed in the design of decentralized system?

Question #3
What are different methods to design control software for robot swarms?

Question #4
What are the desirable properties expected from a swarm programming language?

Question #5
What is the reference communication and execution model used in Buzz?

328 V. S. Varadharajan and G. Beltrame

Question #6
When a operator needs to send individual commands to each robot in a swarm, what
is the operator cognitive complexity in this situation?

Question #7
What are the types of information that needs to be exchanged between an operator
and a robot swarm?

Question #8
How many point scales are generally used to identify the level of autonomy in a
swarm robotic system?

Question #9
What are the common methods used for operator interaction with the swarm?

Question #10
Why is it important to maintain a desired communication topology in robot swarms?

Question #11
What are the types of faults that arise in robot swarms?

11.8 Further Reading

For further information on distributed multi-robot methods such as auction and vot-
ing, we refer the reader to Chaps. 9 and 23 of Easley et al. (2012), respectively. For
more information on decentralized control software design, we refer the reader to
Francesca and Birattari (2016). For more information on the Buzz programming, we
refer the reader to Beltrame (2016). As a further reading on human swarm integra-
tion, we refer the reader further reading on human swarm integration, we refer the
reader to Kolling et al. (2015).

References

Beal, J., & Bachrach, J. (2006). Infrastructure for engineered emergence on sensor/actuator net-
works. IEEE Intelligent Systems, 21(2), 10–19.

Bell, J. E., & McMullen, P. R. (2004). Ant colony optimization techniques for the vehicle routing
problem. Advanced Engineering Informatics, 18(1), 41–48.

Bonabeau, E., Theraulaz, G., & Dorigo, M. (1999). Swarm intelligence. Springer.
Chang, L., Liao, C., Lin,W., Chen, L. L., & Zheng, X. (2012). A hybridmethod based on differential
evolution and continuous ant colony optimization and its application onwideband antenna design.
Progress in Electromagnetics Research, 122, 105–118.

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 329

Christensen, A. L., OGrady, R., & Dorigo, M. (2009). From fireflies to fault-tolerant swarms of
robots. IEEE Transactions on Evolutionary Computation, 13(4), 754–766.

Dantu, K., Kate, B., Waterman, B., Bailis, P., & Welsh, M. (2011). Programming micro-aerial
vehicle swarms with karma. In Proceedings of the 9th ACMConference on Embedded Networked
Sensor Systems (pp. 121–134).

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational
Intelligence Magazine, 1(4), 28–39. https://doi.org/10.1109/MCI.2006.329691

Dorigo, M., Theraulaz, G., & Trianni, V. (2021). Swarm robotics: Past, present, and future. Pro-
ceedings of the IEEE, 109(7), 1152–1165.

Easley, D., & Kleinberg, J. (2012). Networks, crowds, and markets. Cambridge Books.
Enright, J. J.,&Wurman, P.R. (2011).Optimization and coordinated autonomy inmobile fulfillment
systems. In Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence. Citeseer.

Fan, T., Long, P., Liu, W., & Pan, J. (2020). Distributed multi-robot collision avoidance via deep
reinforcement learning for navigation in complex scenarios.The International Journal of Robotics
Research, 39(7), 856–892.

Francesca, G., & Birattari, M. (2016). Automatic design of robot swarms: Achievements and chal-
lenges. Frontiers in Robotics and AI, 3, 29.

Gomes, J., Urbano, P., & Christensen, A. L. (2013). Evolution of swarm robotics systems with
novelty search. Swarm Intelligence, 7(2), 115–144.

Grippa, P., Behrens,D.A.,Wall, F.,&Bettstetter, C. (2019). Drone delivery systems: Job assignment
and dimensioning. Autonomous Robots, 43(2), 261–274.

Hecker, J. P., Letendre,K., Stolleis,K.,Washington,D.,&Moses,M.E. (2012). Formica exmachina:
Ant swarm foraging from physical to virtual and back again. In International Conference on
Swarm Intelligence (pp. 252–259). Springer.

Hwang, K., Dongarra, J., & Fox, G. C. (2013). Distributed and cloud computing: From parallel
processing to the internet of things. Morgan Kaufmann.

Iocchi, L.,Nardi,D., Piaggio,M.,&Sgorbissa,A. (2003).Distributed coordination in heterogeneous
multi-robot systems. Autonomous Robots, 15(2), 155–168.

Kacprzyk, J., Merigó, J. M., Nurmi, H., & Zadrozny, S. (2020). Multi-agent systems and voting:
How similar are voting procedures. In International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (pp. 172–184). Springer.

Kantaros, Y., Guo, M., & Zavlanos, M. M. (2019). Temporal logic task planning and intermittent
connectivity control of mobile robot networks. IEEE Transactions on Automatic Control, 64(10),
4105–4120. https://doi.org/10.1109/tac.2019.2893161

Karpov, V., Migalev, A., Moscowsky, A., Rovbo, M., & Vorobiev, V. (2016). Multi-robot explo-
ration and mapping based on the subdefinite models. In International Conference on Interactive
Collaborative Robotics (pp. 143–152). Springer.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95—
International Conference on Neural Networks (Vol. 4, pp. 1942–1948). https://doi.org/10.1109/
ICNN.1995.488968

Kolling, A., Walker, P., Chakraborty, N., Sycara, K., & Lewis, M. (2015). Human interaction with
robot swarms: A survey. IEEE Transactions on Human-Machine Systems, 46(1), 9–26.

Kuckling, J., Ligot, A., Bozhinoski, D., & Birattari, M. (2018). Behavior trees as a control archi-
tecture in the automatic modular design of robot swarms. In International Conference on Swarm
Intelligence (pp. 30–43). Springer.

Lajoie, P. Y., Ramtoula, B., Chang, Y., Carlone, L., & Beltrame, G. (2020). Door-slam: Distributed,
online, and outlier resilient slam for robotic teams. IEEE Robotics and Automation Letters, 5(2),
1656–1663.

Lau, H., Bate, I., Cairns, P., & Timmis, J. (2011). Adaptive data-driven error detection in swarm
robotics with statistical classifiers. Robotics and Autonomous Systems, 59(12), 1021–1035.

Lewis, M. (2013). Human interaction with multiple remote robots. Reviews of Human Factors and
Ergonomics, 9(1), 131–174.

https://doi.org/10.1109/MCI.2006.329691
 12506 6061 a 12506 6061
a

https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/tac.2019.2893161
 3519 35949 a 3519 35949 a

https://doi.org/10.1109/tac.2019.2893161
https://doi.org/10.1109/ICNN.1995.488968
 25822 41484 a 25822 41484 a

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968

330 V. S. Varadharajan and G. Beltrame

Luna, R., & Bekris, K. E. (2011). Efficient and complete centralized multi-robot path planning. In
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3268–3275).
IEEE.

Majcherczyk, N., & Pinciroli, C. (2020). SwarmMesh: A distributed data structure for cooperative
multi-robot applications. In 2020 IEEE International Conference on Robotics and Automation
(ICRA) (pp. 4059–4065). IEEE.

Mangelson, J. G., Dominic, D., Eustice, R. M., & Vasudevan, R. (2018). Pairwise consistent mea-
surement set maximization for robust multi-robot map merging. In 2018 IEEE International
Conference onRobotics andAutomation (ICRA) (pp. 2916–2923). https://doi.org/10.1109/ICRA.
2018.8460217

McLurkin, J. (2009). Experiment design for large multi-robot systems. In Robotics: Science and
Systems, Workshop on Good Experimental Methodology in Robotics, Seattle, WA.

Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task
assignment and formation control. In: 2008 IEEE International Conference on Robotics and
Automation (pp. 128–133). IEEE.

Millard, A. G., Timmis, J., & Winfield, A. F. (2014). Run-time detection of faults in autonomous
mobile robots based on the comparison of simulated and real robot behaviour. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp. 3720–3725). IEEE.

Mottola, L., Moretta, M., Whitehouse, K., & Ghezzi, C. (2014). Team-level programming of drone
sensor networks. In Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems (pp. 177–190).

Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology
of self-organizing machines. MIT Press.

Otte, M., Kuhlman, M. J., & Sofge, D. (2020). Auctions for multi-robot task allocation in commu-
nication limited environments. Autonomous Robots, 44(3), 547–584.

Ozkan,M., Kirlik, G., Parlaktuna, O., Yufka, A.,&Yazici, A. (2010). Amulti-robot control architec-
ture for fault-tolerant sensor-based coverage. International Journal of Advanced Robotic Systems,
7(1), 4.

O’Grady, R., Christensen, A. L., & Dorigo, M. (2012). SWARMORPH: Morphogenesis with self-
assembling robots. In Morphogenetic engineering (pp. 27–60). Springer.

Pavone, M. (2015). Autonomous mobility-on-demand systems for future urban mobility. In
Autonomes Fahren (pp. 399–416). Springer.

Petersen, K. H., Nagpal, R., & Werfel, J. K. (2011) TERMES: An autonomous robotic system for
three-dimensional collective construction. Robotics: Science and Systems, VII.

Pianini, D., Viroli, M., &Beal, J. (2015). Protelis: Practical aggregate programming. InProceedings
of the 30th Annual ACM Symposium on Applied Computing (pp. 1846–1853).

Pinciroli, C., &Beltrame, G. (2016). Buzz: An extensible programming language for heterogeneous
swarm robotics. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 3794–3800). IEEE.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante,
E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L. M., & Dorigo, M. (2012). ARGoS:
A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4),
271–295.

Pinedo, M. (2012). Scheduling (Vol. 29). Springer.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009).
ROS: An open-source robot operating system. In ICRA Workshop on Open Source Software,
Kobe, Japan (Vol. 3, p. 5).

Reid, N. (2015). Literature review: Purely decentralized P2P file sharing systems and usability
(Technical report). Rhodes University, Grahamstown.

Schwager,M., Dames, P., Rus, D., &Kumar, V. (2017). Amulti-robot control policy for information
gathering in the presence of unknown hazards. In Robotics research (pp. 455–472). Springer.

Sheng, W., Yang, Q., Tan, J., & Xi, N. (2006). Distributed multi-robot coordination in area explo-
ration. Robotics and Autonomous Systems, 54(12), 945–955.

https://doi.org/10.1109/ICRA.2018.8460217
 23331 8275 a 23331 8275
a

https://doi.org/10.1109/ICRA.2018.8460217
https://doi.org/10.1109/ICRA.2018.8460217

11 Get Together! Multi-robot Systems: Bio-Inspired Concepts … 331

Sheridan, T. B., & Verplank, W. L. (1978). Human and computer control of undersea teleoperators
(Technical report). Massachusetts Institute of Technology Cambridge Man-Machine Systems
Lab.

Shladover, S. E. (2018). Connected and automated vehicle systems: Introduction and overview.
Journal of Intelligent Transportation Systems, 22(3), 190–200.

St-Onge,D.,Kaufmann,M., Panerati, J., Ramtoula, B., Cao,Y., Coey, E. B.,&Beltrame,G. (2019a).
Planetary exploration with robot teams: Implementing higher autonomywith swarm intelligence.
IEEE Robotics & Automation Magazine, 27(2), 159–168.

St-Onge, D., Varadharajan, V. S., & Beltrame, G. (2019b). Tangible robotic fleet control. In Pro-
ceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems
(pp. 2387–2389).

Stephan, J., Fink, J., Kumar, V., & Ribeiro, A. (2017). Concurrent control of mobility and commu-
nication in multirobot systems. IEEE Transactions on Robotics, 33(5), 1248–1254. https://doi.
org/10.1109/TRO.2017.2705119

Styø, K. (2001). Using situated communication in distributed autonomous mobile robotics. SCAI,
Citeseer, 1, 44–52.

Tarapore, D., Lima, P. U., Carneiro, J., & Christensen, A. L. (2015). To err is robotic, to tolerate
immunological: Fault detection in multirobot systems. Bioinspiration & Biomimetics, 10(1),
016014.

Tarapore, D., Christensen, A. L., & Timmis, J. (2017). Generic, scalable and decentralized fault
detection for robot swarms. PLoS ONE, 12(8), e0182058.

Varadharajan, V. S., St-Onge, D., Adams, B., & Beltrame, G. (2020a). Soul: Data sharing for robot
swarms. Autonomous Robots, 44(3), 377–394.

Varadharajan, V. S., St-Onge, D., Adams, B., & Beltrame, G. (2020b). Swarm relays: Distributed
self-healing ground-and-air connectivity chains. IEEE Robotics and Automation Letters, 5(4),
5347–5354. https://doi.org/10.1109/LRA.2020.3006793

Wurm, K. M., Stachniss, C., & Burgard, W. (2008). Coordinated multi-robot exploration using
a segmentation of the environment. In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems (pp. 1160–1165). IEEE.

Xing, L. N., Chen, Y. W., Wang, P., Zhao, Q. S., & Xiong, J. (2010). A knowledge-based ant colony
optimization for exible job shop scheduling problems. Applied Soft Computing, 10(3), 888–896.

Yan, Z., Jouandeau, N., & Cherif, A. A. (2010). Sampling-based multi-robot exploration. In ISR
2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference
on Robotics), VDE (pp. 1–6).

Vivek Shankar Varadharajan is a Ph.D. candidate in the Department of Computer Engineering
and Software Engineering at École Polytechnique de Montréa. Varadharajan obtained his M.Sc.
degree in Automation and Robotics from Technical University of Dortmund in 2015. He is a full-
stack robotics developer and has vast experience in equipping robotic platforms with SLAM algo-
rithms, navigation/traversability algorithms and robotic behaviors. His research interests include
distributed robotics, multi-robot systems, machine learning, artificial intelligence and
Cyber-Physical systems. During his study, he has won several prizes at technical contents,
hackathon, poster presentation and demonstrations. He was a team member of CoStar that took
part in the DARPA subterranean challenge along with members from NASA Jet Propulsion Lab-
oratory. He has supervised over 5 interns during his Ph.D. He is a recipient of a BSFD student
scholarship from École Polytechnique de Montréal.

Giovanni Beltrame is a full time professor in the Department of Computer Engineering and Soft-
ware Engineering at École Polytechnique de Montréal. Beltrame obtained his Ph.D. in Computer
Engineering from Politecnico di Milano, in 2006 after which he worked as microelectronics engi-
neer at the European Space Agency on a number of projects spanning from radiation-tolerant sys-
tems to computer-aided design. In 2010 he moved to Montreal, Canada where he is currently Pro-
fessor at Polytechnique Montreal with the Computer and Software Engineering Department. He

https://doi.org/10.1109/TRO.2017.2705119
 30714 12703 a 30714
12703 a

https://doi.org/10.1109/TRO.2017.2705119
https://doi.org/10.1109/TRO.2017.2705119
https://doi.org/10.1109/LRA.2020.3006793
 3519 27093 a 3519 27093
a

https://doi.org/10.1109/LRA.2020.3006793

332 V. S. Varadharajan and G. Beltrame

was also Visiting Professor at the University of Tübingen in 2017/2018. Dr. Beltrame directs the
MIST Lab, with more than 20 students and postdocs under his supervision. He has completed
several projects in collaboration with industry and government agencies in the area of robotics,
disaster response, and space exploration. His research interests include modeling and design of
embedded systems, artificial intelligence, and robotics, on which he has published research in top
journals and conferences.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 12
The Embedded Design Process:
CAD/CAM and Prototyping

Eddi Pianca

12.1 Learning Objectives

This chapter will provide students with the following knowledge:

1. An understand of the design process and where CAD is applied within the
process.

2. A general understanding of the different CAD systems, their application and
file structures.

3. An insight into the use of CADD as a design tool.
4. An awareness for the various digital prototyping and visualisation tool.

12.2 Introduction

This section provides a brief introduction to the design process, how CAD/CAM fits
into this process and a brief overview of the various CAD/CAM technologies. For
a more detailed understanding of the topics covered in this section, references are
included.

12.3 The Design Process and CAD

The design process is a method, used by designers and engineers, to divide a
project into manageable steps to find a solution to a problem. Typically, the design

E. Pianca (B)
University of Canberra, Canberra, Australia
e-mail: eddi.pianca@canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_12

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_12&domain=pdf
mailto:eddi.pianca@canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_12

334 E. Pianca

Diagram 1 Double-diamond diagram of the design process (Design Council, 2021)

process consists of five steps: 1. Briefing and task clarification, 2. Concepts gener-
ation, 3. Refinement and prototyping, 4. Final design and documentation and 5.
Manufacturing (Bonollo, 2016, p. 17–18), refer Diagram 1.

Importantly, the design process is not a linear process because at any step during
the design process a previous step can be revisited to gather more information or to
re-consider the design, etc. Below is a brief overview of the design process steps and
the application of CAD.

Briefing andTaskClarification involves understanding the client brief, defining the
problem and the user, gathering information (researching the market, ergonomics,
anthropometrics, standards, etc.), quantities, cost estimates, materials, processes,
preparing design guidelines for the next steps of the design process, brainstorming
possible ideas and preparing a project timeline. Identifying suitable materials and
manufacturing processes is an important consideration as these will greatly influence
the design to ensure it can be manufactured within the expected retail costs. The
technologies needed to undertake the project, such as suitable CAD packages, 3D
printing, etc., will also need to be identified to ensure the viability of the project.

12 The Embedded Design Process: CAD/CAM and Prototyping 335

Concept Generation is where a variety of alternative ideas are generated as possible
solutions to the design problem. As many concept ideas as possible are generated,
typically five or more that are originated from all different directions and fields
via an out-of-the-box, free-flowing cognitive process known as divergent thinking.
Typically, these concepts are hand generated using pencils and paper or via multi-
touch displays such as Wacom tablets. However, with both techniques a certain level
of free-hand sketching skills is required to adequately communicate the design intent.
At this stage rudimentary prototypes are also sometimes produced to evaluate ideas.
Today CAD is being used more often at this early stage of the design process to
generate quick models for early testing and verification. This is due to advancements
inCAD that have enable 2DCAD to be transferred to 3DCADandother features such
polygon modelling to generate quick complex surfaces that can then be converted
to solid geometry. An example of polygon modelling is the Freestyle tool in CREO
CAD software where a simple starting geometry such as a sphere, cube or flat surface
can be easily pulled and pushed into the desired shape and then converted into a solid.

Refinement and Prototyping involve narrowing down the ideas to one final design
through a cognitive process referred to as convergent thinking. Again, this commonly
involves same freehand skills and or the use of Wacom tablets as in the previous
step. Generally, a hand-generated workshop prototype is also made to verify design
elements such as ergonomics, proportions, size, functionality and aesthetics. As per
the concept generation step, CAD is being used more often at this step to model, test
and 3D print the design to verify its design integrity.

Final Design and Documentation. This is where the CAD model is developed to
be ready for manufacture. Here the CAD model can be numerically analysed via a
range of CAD analysis tools such as Finite Element Analysis (FEA) both static and
dynamic, etc., to ensure the structural integrity of the design, to confirm that all the
parts fit together as intended, and 3D printed for further verification.

This step also involve the preparation of technical drawing and documentation
for manufacturing requirements.

Once the design meets all the requirements of the brief, it can then proceed to the
next step.

Manufacturing. This entails several phases as follows.

Phase 1. Source suitablemanufactures and find outwhat file format(s) they require
for the part files.
Phase 2. Send the part files, technical drawings andmanufacturing requirements to
the manufacturer(s) to check the parts suitability for manufacture, provide quotes
to manufacture each part and recommend any changes to improve manufacturing.
Phase 3. Any recommended changes from themanufacturer(s) will require further
edits to the CADmodel, technical drawings and the manufacturing requirements.
Phase 4. Once the design is considered ready formanufacture a working prototype
is produced to test and verify the integrity of the design in itsworking environment.
Phase 5. If changes are required, theCADmodel is updated, and themanufacturing
phases are repeated as required.

336 E. Pianca

Phase 6. Design is manufactured.

12.4 The Design Process Versus Design Thinking

Whereas the design process is a way of dividing a problem into manageable chunks,
design thinking (as discussed in Chap. 3) can be applied at any point along the design
process to find solutions to ill-defined problems that emerge (Dam & Siang, 2018).
Said another way, the design process is a series of steps while design thinking is a
mindset that enables innovative solutions to emerge (Prud’homme van Reine, 2017,
p.64, 70).

12.5 Cad Systems

Today there are numerous advanced computer-aided design (CAD) software pack-
ages formodelling 3Dobjects. However, all these packages are based on two systems,
the first is parametric 3D modelling, the second is direct 3D modelling.

Parametric 3D Modelling: With this system, each entity in a model is constructed
of features that are listed in a feature history tree. A feature can be a cut, extrude,
revolve, datum plane, datum axis, datum point, sketch, hole, etc. Each feature, entity
and all their relationships, parameters (length, width, height, radius, diameter, force,
etc.), and their position within the assembly are easily tracked via the feature history
tree. The parametric 3D modelling innovation emerged in 1987 when Parametric
Technology Corporation (PTC) released Pro/Engineer (ProE) CAD software. Since
its first release, PTC has made numerous enhancements to ProE and in 2011 renamed
it to CREO. Today the parametric concept is used in most CAD programs as seen in
Table 12.1 (Tornincasa & Di Monaco, 2010, p II-9 & II-17; Ault & Phillips, 2016).

In Table 12.1, level refers to the capability of the package. A high-level package
offers more features and better features to generate complex geometries more easily
and quickly than mid-level packages. However, high-level packages take longer to
learn.

A benefit of the parametric concept is that the model is fully associative so that if a
parameter in a part, assembly or drawing is changed then the related parts, assemblies
and drawings will automatically update to reflect the change. For example, take a
shaft that fits into a holewith a set clearance between them. If the diameter of the shaft
(parameter 1) is changed, then the diameter of the hole will automatically update to
maintain the set clearance (parameter 2). This ensures that the integrity of the model
and the design intent is maintained.

However, on the negative side parametric 3D modelling systems requires
specialised operators with expert skills and knowledge that takes considerable time
and training to acquire (Tornincasa & Di Monaco, 2010, p II-5 to II-7), (Alba, 2018,
March). Furthermore, considerable planning is required to ensure that the model,

12 The Embedded Design Process: CAD/CAM and Prototyping 337

Table 12.1 Comparison of some of the different systems and levels

CAD software Company System Level

CREO PTC Parametric and direct (Hybrid) Mid-level/High-level

Catia Dassault systemes Parametric with a ‘Declarative
modelling’ direct system (Hybrid)

High-level

Fusion 360 Autodesk Direct with a parametric
component- Cloud based (Hybrid)

Mid-level

Inventor Autodesk Direct with a parametric
component (Hybrid)

Mid-level

KeyCreator Kubotek3D Direct 3D modelling Mid-level

NX Siemens Parametric and direct (Hybrid) High-level

Solid edge Siemens Parametric and direct (Hybrid) Mid-level

Solidworks Dassault systemes Parametric feature based with
direct edited capability (Hybrid)

Mid-level

Sketchup Trimble navigation Direct modeller. Surfaces modeller.
All surfaces are planer. Curved
surfaces are faceted

Mid-level

features and files are properly structured to avoid problems as the model evolves. As
seen in Image 1, CREO has a feature history tree displayed on the left-hand side of
the window that can be used to manage and edit the model.

Direct Modelling: With this system, there are no parametric associations. There-
fore, model features can be quickly and easily edited by moving, rotating, deleting,

Image 1 3D model of a powered joint. Creo (version 7, 2020) parametric 3D modelling system
from parametric technology corporation (PTC)

338 E. Pianca

etc. features such as faces and edges without having to consider the model history
(Tornincasa & Di Monaco, 2010, p II-7). This also makes it easier for a designer to
work on a model that was started by someone else. Direct modelling systems can
be very effective in the early stages of the design process as models can be quickly
and easily generated. Another advantage is that direct modelling systems only take
a short time to learn.

The disadvantage of direct modelling is that editing operations can lead to parts
that are no longer dependable. For example, if the centreline of a rotating shaft has
been accidently moved it can cause the shaft to interfere with other parts. Or if a
change has inadvertently altered the tolerances between two parts it could lead to
excessive wear when in operation.

Many of the CAD systems today offer a hybrid approach that merges both para-
metric 3D modelling and direct modelling (Tornincasa & Di Monaco, 2010, p II-8).
These systems preserve the integrity of the model while gaining the flexibility and
freedom of direct modelling.

12.6 CAD File Types

There are generally three main types of files that are used when building 3D para-
metric CAD models that are going to be manufactured: assembly files, part files
and drawing files. The purpose of assembly files is to hold all the part files together,
whereas part files represent the individual components that in real life cannot be
broken down any further. Finally, drawing files are used for generating 2D technical
drawings (also known as engineering drawings) of the model and its parts.

12.7 CAD Parametric Modelling—Assembly and Part Files

As previously noted, CAD is commonly employed at the ‘final design and documen-
tation stage’ of the design process where the design has been narrowed down to one
final concept. The reason CAD is typically introduced at this stage is because all
the details have been decided and most importantly no major fundamental changes
are foreseen. Here the details refer to the: shape, size, number of parts and their
layout, materials, weight, manufacturing process, functionality, ergonomics, envi-
ronmental and social considerations, aesthetics, etc. The fundamental changers refer
to sweeping changes to the details that would affect the structure of the part files and
their parametric associations.

Using parametric modelling, the design can be constructed in an assembly with
multiple parts built to very high accuracies. This enables the CAD model to be
digitally tested for correct fit between parts, structural integrity using finite element

12 The Embedded Design Process: CAD/CAM and Prototyping 339

analysis (FEA), proper articulation of parts, manufacturability, aesthetics by gener-
ating realistically renders, physical verification through 3Dprinting, etc. Importantly,
at any point during the CADmodelling process the model can be tweaked as needed.

Accordingly, CAD has greatly reduced the time needed to design products and
release them onto the market.

Assembly and Part File Structure and Referencing: Before starting a 3D CAD
parametric model, the structure of the files in the assembly requires considerable
planning. This is important to ensure the model can be easily edited at any time by
carefully considering how features are referenced to avoid circular references that
can be formed between files in an assembly. The problem with circular reference
is that they can cause the assembly to stop regenerating or even become unstable.
Circular references are typically formed when editing a part that was created earlier
in the assembly (the parent ‘A’) and referencing it to its child (part ‘B’ that was
built later in the assembly). The reference sequence for this circular reference looks
like A < B < A. Most CAD systems will alert you if any circular references have
been created; however, this generally only happens when the whole assembly is
regenerated. Therefore, it is important to regularly regenerate the whole assembly
to check for circular references before they become too imbedded in the reference
scheme. The best practice to avoid circular references is to only take references from
files created before the one you are working in. In the feature history tree, these are
files above the one you are worked in. In a 3D parametric model, an example of a
feature history tree(or model tree) can be seen in Image 1, on the left side of the
window. The feature history tree also represents the file structure where in Image 1
it starts with the assembly file (DRIVE_JOINT.ASM that was created first) followed
by all the part files.

In the feature history tree, each part file can also be expanded to list all the
features that are used to model the part geometry. This can be seen in Image 2 where
the feature history tree (Model Tree) for the ‘DRIVE_JOINT_SKEL.PRT’ file has
been expanded to show all its features.

With 3D CAD parametric modelling, panning is also required when constructing
each part (Bodein et al., 2014, pp 136). Within each part file, the choice of features,
how they are organised and the choice of references are important to maintain perfor-
mance of the software and hardware and ensure that the part can be easily modified if
needed. A poorly constructed CADmodel can take considerably more time to build,
edit and regenerate than a well-constructed model. Therefore, before starting a CAD
model there are some essential modelling guidelines, for structuring and building
assembly and part files, that operators need to know.

General CAD Modelling Guidelines forAssembly Files: When designing a
product, designers typically start by sketching and drawing the product in its assem-
bled form. This allows the designer to develop the design with all its parts as the
design evolves. Developing the design from the top down also applied to modelling
and designing a product on CAD. It must be noted that although CREO is used in
this chapter to illustrate how CAD works, the modelling guidelines can be applied
to all parametric 3D CAD modelling packages.

340 E. Pianca

Image 2 In themodel tree, seen on the left side of thewindow, theDRIVE_JOINT_SKEL.PRTpart
file has been expanded to show all its features. Model created in Creo (version 7, 2020) parametric
3D modelling system from Parametric Technology Corporation (PTC)

Below are modelling guidelines for parametric CAD assembly files:

1. File Naming—Before starting a CAD model, the first thing is to decide on a
naming convention for all the files. This is important so that files can bemanaged,
and file names are not repeated, and can be easily found.

2. Assembly file—With products that havemore than one part, the CADmodelling
process typically starts with an assembly. In CAD, an assembly file should
generally only contain somedatum features and the part files. The datum features
are typically a datum coordinate system and or x, y, z datum planes that are used
as references to place all the part files into the assembly, as seen in Image 3.

3. Referencing—It is important to employ a simple assembly referencing regime.
This can be achieved by using the first part file in the assembly as a reference
file that contains all the references to ‘Drive and define the Model’. In CREO,
this reference file is called a Skeleton file; it can be automatically created and
is placed after the assembly file as seen in Image 2. The reference file should
only contain basic parametric elements that will be used as references by all the
other part files in the assembly. Basic parametric elements are sketched lines,
sketched curves, point, centrelines, axis, surfaces (as opposed to faces from
solid geometry) and planes that have been explicitly created by the user to be
utilised as reference entities to ‘Drive and define the Model’. What is meant by
‘Drive and define the Model’ is that by editing any Basic Parametric Element
in the reference file the rest of the part files in the assembly and their feature
will automatically update.

12 The Embedded Design Process: CAD/CAM and Prototyping 341

Image 3 In the model tree, seen on the left side of the window, the assembly datum features are
highlighted in blue and are seen in green in the model window. Model created in Creo (version 7,
2020) parametric 3D modelling system from Parametric Technology Corporation (PTC)

4. The only features that should not be included in a driving file are solid features.
5. Solid features should only exist in the part files following the reference-file in

the assembly.
6. Do not take references from solid features.
7. Reassemble (reuse) the same part. A typical case is when there are several of

the same fastener in an assembly. It is much faster, less complex (less features in
the assembly) and easier to simply reassemble the same part in another location
in the assembly than continually rebuilding the part.

General Modelling Guidelines for Part Files: When a product consists of only one
part then the following guidelines can be applied:

1. Break down the part to determine what are the basic functional geometric
elements (squares, rectangles, cubes, cuboids, spheres, etc.). Decide the features
(CAD tools) that will be used to model each element, how they interface with
each other and their reference links.

2. Construct the references- The first features in a part file should comprise basic
parametric elements that will be used as references by all the other features in the
part file. Basic parametric elements are sketched lines, sketched curves, points,
centrelines, axis, surfaces (as opposed to faces from solid geometry) and planes
that have been explicitly created by the user to be utilised as reference entities
to ‘Drive and define the part’. Keep sketches of basic parametric elements as
simple as possible.

342 E. Pianca

3. Create the solid geometry by taking references from basic parametric elements.
Try not to take references from any solid geometry.

4. If needed, it is always best to edit the basic parametric elements or insert
some more basic parametric elements rather than taking references from solid
geometry.

5. Create rounds, shells and draft angles last when modelling your parts.
6. Do not take references from rounds, shells and draft angles.

Example Assembly and Part File Structure: An example of a CAD parametric
assembly file structure with parent–child reference links is shown in Diagram 2.
The file structure starts with an ‘Assembly File’ followed by ‘Reference Part File-A’
which is the only file referenced to the ‘Assembly File’. This means that all the basic
parametric elements can reside in ‘Reference Part File-A’ to ‘Drive and define the
model’ (the whole assembly). Therefore, all the other parts and sub-assemblies in
the assembly can be referenced to ‘Reference Part File-A’.

In Diagram 2, all the part files in ‘Group 1’ were created in the assembly with
all their references, to construct the solid geometry, taken from the basic parametric
elements in ‘Reference Part File-A’.

All the part files in ‘Group 2’were created in the ‘Sub-Assembly File’with all their
references, to construct the solid geometry, taken from the basic parametric elements

Diagram 2 Example assembly file structure with parent–child reference links

12 The Embedded Design Process: CAD/CAM and Prototyping 343

in ‘Reference Part File-B’. The sub-assemblywas created outside the ‘Assembly File’
and imported into the ‘Assembly File’. The ‘Sub-Assembly File’ was then referenced
to ‘Reference Part File-A’. Thismeans that the position of the sub-assembly is defined
by ‘Reference Part File-A’.

Finally, all the parts in ‘Group 3’ were created separately outside the ‘Assembly
File’ and then imported into the ‘Assembly File’. Each ‘Group 3’ file contains its
own basic parametric elements to reference the solid geometry within the file. In the
‘Assembly File’ the position of each ‘Group 3’ file is defined by referencing them to
‘Reference Part File-A’.

The benefit of this file structure and referencing method is that all the files in the
‘Assembly File’ (the assembly model) can be managed via ‘Reference Part File-A’.
This method greatly reduces the problem of having to make changes to every part
file in the assembly to modify the model.

CAD Model Validation: Today most CAD systems have easy-to-use design vali-
dation tools. With these tools’ materials can be assigned to each part complete with
material properties such as density, tensile strength, compressive strength, Young’s
modulus, Poisson’s ratio, specific heat capacity, thermal conductivity, hardness, etc.
With these properties, the weight of parts and the whole model, including its struc-
tural integrity, thermal integrity, etc. can be analysed and validated. An example of
a finite element analysis (FEA) is shown in Image 4.

Validation tools can also apply colours and surfaces finish, such as textures, to
the model surfaces. The model can then be photo realistically rendered to validate
its aesthetic quality as seen in Image 5.

Image 4 Finite element analysis (FEA) of a Snowboard Binding Highbackmade from carbon fibre
and Kevlar. The analysis shows the deflection and stresses resulting from a force applied to the part
that simulates what would happen in the real world. Analysis was generated in Creo (version 7,
2020) parametric 3D modelling system from Parametric Technology Corporation (PTC)

344 E. Pianca

Image 5 Rendering of a Hexapod Robot.Modelled in Fusion 360 parametric 3Dmodelling system
from Autodesk. (Derivative of ’Anansi Hexapod Robot’ by Bryce Cronin/CC BY 4.0. www.cronin.
cloud/hexapod)

The model can also be sectioned to check how the parts fit together (see Image 6)
and exploded to see all the parts (see Image 7).

12.8 CAD Parametric Modelling—Drawing Files

CADdrawing files are used to generate technical drawings for communicatingmanu-
facturing and assembly instructions. Today there is less need for technical drawings
to manufacture parts. This is because CAD part files can be converted into various
formats and sent directly to manufacture (Xometry, 2020). However, it’s important to
always contact themanufacturer to seewhat file format they require or what technical
drawings are needed.

Generating technical drawings of CAD models is a fairly easy process but some
basic knowledge is required as follows:

TechnicalDrawing Standards: Technical drawings need to follow strict standards to
ensure instructions are unambiguous. These standards vary from country to country,
so it is important to become knowledgeable with the standards in your country before
preparing technical drawings to send out to manufacture. The technical drawing
standards are comprehensive in describing the way that objects, assemblies, parts,
features (holes, shafts, chamfers, countersinks, threads, fasteners, fillets, centrelines,
assemblies, etc.), dimensions, text, line thicknesses etc. are presented on drawings. If
the standards are incorrectly applied, it can lead to faulty parts being manufactured.

http://www.cronin.cloud/hexapod

12 The Embedded Design Process: CAD/CAM and Prototyping 345

Image 6 A section view of a Hexapod Robot. Modelled in fusion 360 parametric 3D modelling
system fromAutodesk. (Derivative of ’Anansi Hexapod Robot’ by Bryce Cronin/CC BY 4.0. www.
cronin.cloud/hexapod)

Image 7 An exploded view of a Hexapod Robot. Modelled in fusion 360 parametric 3Dmodelling
system fromAutodesk. (Derivative of ’Anansi Hexapod Robot’ by Bryce Cronin/CC BY 4.0. www.
cronin.cloud/hexapod)

http://www.cronin.cloud/hexapod
http://www.cronin.cloud/hexapod

346 E. Pianca

Table 12.2 Technical
drawings standards for some
countries

Country Standard

Australia AS1100

CANADA CAN3-B78. 1-M83 technical drawings

US ASME Y14.5 and Y14.5 M and ISO 8015

UK BS 8888

Although most countries have their own technical drawing standards, most are based
on the InternationalOrganisation for Standards (ISO) standard ISO128–1:2020 (ISO,
2021). In Table 12.2 are technical drawings standards for some countries.

Technical Drawing Sheet Structure:When generating technical drawings for prod-
ucts that consist of more than one part (in an assembly), it is important to have some
structure to the set of drawing sheets. One way is to organise the sheets into three
groups as follows:Group one contains the assembly sheet(s) that shows the product
in its assembled form. This is the first drawing sheet(s) in the set. Generally, only the
overall dimensions of the product are shown on the assembly drawings. This allows
the manufacturer to understand what the product looks like, get a sense of its size,
how all the parts fit together and how to assemble the product, as seen in Image 8.

Image 8 Example technical assembly drawing of a hinge. Created in Creo (version 7, 2020)
parametric 3D modelling system from Parametric Technology Corporation (PTC)

12 The Embedded Design Process: CAD/CAM and Prototyping 347

Image 9 Example technical assembly parts list drawing of the hinge. Created in Creo (version 7,
2020) parametric 3D modelling system from Parametric Technology Corporation (PTC)

Group Two contains the parts list sheet(s). Here a description, material, quantity
required and other information for each part is listed in a table, as seen in Image 9.

Group Three contains the drawing sheet(s) for each part. The technical drawing
sheet(s) for each part need to contain all the information required to manufacture
the part without having to refer to the assembly and parts list, as seen in Image 10.
This enables drawing sheets for parts that require different manufacturing processes
(fabrication, casting, forging, machining, etc.) to be separated and sent to different
manufacturers who have the requisite manufacturing capabilities. For example, if a
product contains two parts in an assembly where part one is sand cast and part two
is fabricated from sheet metal. Then in the drawing set, Sheet 1 can be the assembly
drawing, sheet 2 the parts list, sheets 3 to 5 for part one and sheets 6 and 7 for part
two. Consequently, to make the two parts: sheets 3 to 5 can be sent to a manufacturer
who specialised in sand casting while sheets 6 and 7 can be sent to a sheet metal
fabricator.

Technical DrawingSheet Sizes: The sheet sizes for technical drawings are ISO-
A and ISO-B. It is important to refer to the standards in your country to see
which one is preferred. It is recommended that all technical drawing sheets have a
border that denotes the extent of the information contained on the sheet. The typical
recommended sheet sizes and borders are as shown in Tables 12.3 and 12.4.

348 E. Pianca

Image 10 Example technical part drawing of the Hinge_Bent_Arm part. Created in Creo (version
7, 2020) parametric 3D modelling system from Parametric Technology Corporation (PTC)

Table 12.3 ISO-A technical
drawing sheet and border
sizes. All dimensions in
millimetres

Sheet designation Sheet size Border size—Top/Bottom and
Sides

A0 841 X 1189 20 and 20

A1 594 X 841 20 and 20

A2 420 X 594 10 and 10

A3 297 X 420 10 and 10

A4 210 X 297 10 and 10

Table 12.4 ISO-B technical
drawing sheet and border
sizes. All dimensions in
millimetres

Sheet designation Sheet size Border size—Top/Bottom and
Sides

B1 707 X 1000 20 and 20

B2 500 X 707 20 and 20

B3 353 X 500 10 and 10

B4 250 X 253 10 and 10

12 The Embedded Design Process: CAD/CAM and Prototyping 349

Each drawing sheet must also have a title block that can be customised to a certain
degree to suit the requirements of the author or organisation. Examples of title blocks
can be seen in Images 8, 9 and 10. It is important to refer to the standards in your
country to see the requirements and options for title blocks.

Technical Drawing Orthographic Projections: In technical drawings 3D objects
are typically represented by 2D views known as orthographic projections. The
purpose of orthographic projections is to clearly communicate the shape and dimen-
sions of objects. This is achieved by representing the object in various orthographic
views, such as front view, side views, top view, bottom view, section views, etc. and
applying dimensions to the views as seen in Images 8 and 10. Orthographic views are
typically represented as unshaded line drawings, however 3D rendered perspective
views can also be included to help communicate the shape of the object as seen in
Images 8 and 10.

There are two types of orthographic projection—first angle and third angle
projection as seen in Image 11.

On a technical drawing sheet, the type of orthographic projection applied must be
stated with a symbol as shown in Image 12. Furthermore, in a set of drawings all the
views must be presented in either first or third angle projection. There must not be a
mix of first and third angle projections in a set of drawings. The application of third
angle projection in technical drawings can be seen in Images 8 and 10. Although
third angle projection is the most common method used, it is important to refer to
the standards in your country to see which one is preferred.

TechnicalDrawing Scales: It is recommended that technical drawing orthographic
views should ideally be drawn to the following scales. The recommended ISO scales
for mechanical technical drawing are shown in Table 12.5.

Reading a Technical Drawing: For products that consist of more than one part (in
an assembly), the first step is to understand what the assembled product looks like,
its size, how many parts there are, what material each part is made of and how all the
parts fit together. This is revealed by reading the assembly sheet(s) in conjunction
with the parts list. The parts list also list which sheet(s) in the set contains the details
for each part.

The second step is to read the drawing sheet(s) for each part to understand the
shape, dimensions and all the necessary information to manufacture the part. As
seen in Image 10, there are two orthographic views of the HINGE_ARM_BENT
part that describe its shape and dimensions. For more complex shapes, there may
be more views including section views and detail views to fully describe the part.
Furthermore, this information may be spread over more than one sheet. Also seen
on Image 10 is a shaded perspective view of the part that is useful for visualising
what the parts looks like. The other information on the sheet is the material that
is specified as ‘STAINLESS STEEL 304 SHEET’, and therefore, an appropriate
manufacturing process would be sheet metal cutting and bending. The remaining
information is contained in the title block where the general tolerance, dimension
units (millimetres) and the applied standards are stated. To fully understand how

350 E. Pianca

Image 11 First and third angle projections. (Williams, 1993)

Image 12 First and third angle projection symbols. Examples showing the placement and size of
these symbols can be seen in Images 8 and 10 that contain the ‘third angle projection symbol’

12 The Embedded Design Process: CAD/CAM and Prototyping 351

Table 12.5 Recommended
technical drawing scales
(Standards Australia)

Category Recommended scales

Enlargement Scales 50:1 20:1 10:1

5:1 2:1

Full size 1:1

Reduced Scales 1:2 1:5 1:10

1:20 1:50 1:100

1:200 1:500 1:1000

1:2000 1:5000 1:10,000

to read technical drawings, it’s important to refer to the relevant standards in your
country.

12.9 CAD File Transfer

The problem with all CAD systems is that their files are not directly transferable
between systems because they use different algorithms. Therefore, CAD files must
first be converted to formats such as STEP, VDA, STL, etc. before they can be opened
in another system (Jezernik, 2003). Although the converted files and all their details
can be viewed in other systems, their parametric associations are lost leaving limited
ability for the files to be edited and the model to be modified (Tornincasa & Di
Monaco, 2010, p II-12).

12.10 VR and AR for CAD

Virtual reality (VR) is a digitally simulated environment of the real world where
the user is completely immersed in the experiences through a head-mounted display
(Aloor et al., 2016, March; Farshid et al., 2018; Cabero-Almenara et al., 2019) or in
a room where a projector projects the VR image on the walls, ceiling and floor.

Today VR is used with CAD to mainly provide close-up inspections, interact, and
validation of 3D CAD models aesthetics, proportions and ergonomics. The benefit
of VR is that it can deliver much better insights than are possible from a flat screen
(Keane, 2019; Wong, 2019).

Augmented reality (AR) allows objects from the real world to be enhanced (seam-
lessly overlayed, blended, interwoven) with digitally generated objects in real time
(Cabero-Almenara et al., 2019; Farshid et al., 2018).

TodayAR is usedwith CAD for end-user feedback on design concepts, to enhance
technical drawings (anARmarkers is placedon2Ddrawings so thatwhen thedrawing
is viewed through a smartphone an overlayed 3D image of the product appears),

352 E. Pianca

verification of digital prototypes by overlaying them onto real objects or users (e.g.
with wearable prototypes, the users can see themselves on a screen wearing the
prototype in real time), manufacturing assembly processes to visualise the position
and orientation of parts, monitoring quality control on production lines, ergonomic
monitoring of workers posture, and employee training (Spasova & Ivanova, 2020, p
498–499).

An example of AR to verify CADmodels was a project undertaken at the Univer-
sity of Canberra. Prescription glasses were designed on CAD and their aesthetic
appeal was tested by the public using AR. From a laptop touch screen monitor,
anyone could select a pair of digital prescription prototype glasses. Then by placing
themselves in front of the laptop monitor they could see themselves in the monitor
wearing the glasses in real time, just like looking into a mirror.

12.11 CAM and CNC

Computer-aided manufacturing (CAM) uses computer systems to automate manu-
facturing processes to make products with very high accuracy and precision.
These manufacturing processes are performed by computer numeric control (CNC)
machines (Latif et al., 2021, p 2549–2550). The manufacturing processes that these
machines perform are milling, turning, cutting (laser, waterjet and plasma), CNC
routing, electrical discharge machining (EDM), welding, 3D printing, etc..

The CAM process typically starts with CAD where the geometry for the part to
be manufactured is generated (Elser et al., 2018, p 1514). As previously noted, the
CAD geometry file is then converted to a suitable format that a CNC machine can
convert into machine language. The machine language contains all the instructions
needed for the CNC machine to make the part. Two common machine languages are
G-code and STEP-NC (Latif et al., 2021, p 2563–2564).

The benefit of CAM is that it can speed up the manufacturing process and reduce
costs. However, equipment can be costly and often skilled staff are required.

3D Printing: 3D printing is a process that enables a 3D digital model to be made
into a physical object. Also known as additive manufacturing, it is a process where
successive layers of a material are laid down over each other to make the object
(Shahrubudin et al., 2019). Typically, 3D digital models are created in CAD and in
most cases are 3D printed to verify the design aesthetics, fit, ergonomics, function-
ality, etc. Today, 3D printing is used in various industries to make not only prototypes
but increasingly, as the technology evolves, mass manufactured end-use parts and
products (Ngo et al., 2018, p 172–173).

In the design process, the benefits of 3D-printed prototypes have greatly reduced
the time and cost to bring new products to market.

The benefits of 3D printing in design and manufacturing are as follows:

12 The Embedded Design Process: CAD/CAM and Prototyping 353

1. In the design process, 3D-printed prototypes have greatly reduced the time and
cost to bring new products to market. It allows designers to quickly verify their
design ideas at any stage of the CAD modelling process.

2. Inmanufacturing: 3D printing enables the production of custom-made products;
transport costs are reduced as products can be manufactured closer to the end-
user; provides companies more flexibility and greater quality control as they
can better manage the whole process; can print a wide range of materials with
new 3D printing materials regularly being released (Shahrubudin et al., 2019,
p 1286–1287); there is no need for expensive tooling, such as dies needed for
traditional casting processes; 3D printing can produce any shape regardless of
its complexity as opposed to conventional manufacturing processes, such as
pressure die casting and injection moulding (Ngo et al., 2018, p 173).

However, when 3D printing parts for mass production there are still some disad-
vantages compared to conventional manufacturing processes. For example, 3D-
printed parts take a considerable amount of time to print, from a few minutes for
small parts to several hours for large parts. In comparison, conventional processes
like pressure die casting and injection moulding, small parts take seconds and large
parts 1–2 min (Kridli et al., 2021, p 100–112).

A further problem with 3D-printed parts is that their mechanical properties are
not as good as parts made using conventional methods such as pressure die casting
and injection moulding. Therefore, 3D printing is best suited for making parts that
are subjected to low structural loads (Chen et al., 2020, p 7).

3D Printing Methods: There are several 3D printing methods, below are seven of
the main ones used today:

1. Fused deposition modelling (FDM) is a process where a filament of thermo-
plastic polymer is fed through a moving (x, y, z) heated nozzle that melts the
plastic and deposits it layer-upon-layer to create a 3D object. The benefits of
this process are that it is inexpensive, simple and reasonably quick compared to
other 3D printing processes. However, parts have poor mechanical properties
and poor surface finish (Ngo et al., 2018, p 174).

2. Selective laser sintering (SLS) involves covering a bed with successive layers
of a very thin, closely packed powder. After each layer is laid down, a laser
beam fuses it to the previous layer. This is repeated until the 3D part is created.
The excess powder is then removed with a vacuum. SLS is used to create parts
made from a variety of plastic polymers, metals and alloys.

The advantages of SLS are that the parts have a high resolution and good
surface finish. If the powder is not fused with a binder, parts can also have good
mechanical properties. The disadvantages are that the process is slow and costly.

3. Selective lasermelting (SLM) is the sameasSLSexcept that it is only suitable for
various metals and metal alloys. Whereas SLS only partially melts the powder,
SLM fully melts and fuses the powder together. Consequently, SLM produces
parts with superior mechanical properties.

354 E. Pianca

4. Stereolithography (SLA) uses a UV laser beam to selectively cure a photosen-
sitive thermoset polymer resin one layer at a time to create a 3D object. SLA
was the first 3D printing technology.

The advantage of SLA is that it produces parts of high quality, fine resolu-
tion and smooth surface finish. The disadvantages are that it is comparatively
expensive and slow (Ngo et al, 2018, p 174; Ge et al, 2020, p 2–4).

5. Digital Light Processing (DLP) is basically the same as SLA except that the
UV light is projected as patterns onto the surface of a photosensitive thermoset
polymer resin to cure it one layer at a time to create a 3D object. The advantage
of DLP is that it creates high-resolution parts at fast speeds. Consequently, it is
suitable for large parts (Ge et al., 2020, p 2–4).

6. Inkjet Printing selectively depositsmicro-size liquid droplets ofmaterial through
a moving ink-jetting head one layer at a time until the 3D object is completed.
The droplets are solidified by a UV light immediately after they are deposited.
Theprocess is lowcost andparts have highprecision and resolution. This process
can print a large variety of materials such as polymers, ceramics, biological
(materials that mimic living tissue & cellular embryonic components) (Ge et al.,
2020, p 2–4; Ogunsanya et al., 2021, p 427–428; Jammalamadaka & Tappa,
2018, p 2).

A disadvantage of inkjet printing is lack of adhesion between layers (Ngo
et al, 2018, p 176).

7. Direct energydeposition (DED)or directmetal deposition (DMD)uses amoving
nozzle to simultaneous deposit material (in the form of a wire or powder) and
deliver a beam of energy (laser, arc or electron beam) to melt the metal one layer
at a time until the object is built. If a laser or arc is used, the process is performed
in an inert atmosphere while for an electron beam a vacuum is required. The
process is suitable to 3D print not only metals (particularly high-performance
super-alloys) but also plastics and ceramics (Ngo et al., 2018, p 174–175; Liu
et al., 2019 p 1, 2; Dávila et al., 2020, p 3379–3380). The advantages and
disadvantages of the three DED methods (laser, arc or electron beam) are as
follows:

Laser based- When powder is used as the deposition metal, the parts created
are of a higher quality than those produced using a wire. However, using wire
is more suited for higher deposition rates. The geometry of the part can affect
its thermal behaviour and therefore impact the quality of the part. This can
necessitate post-processing that adds time and costs (Dávila et al., 2020, p
3379).

Arc based- Advantage is the low cost of equipment compared to laser and electron
beammethods; has a high deposition rate thatmakes it suitable for printingmedium to
large components; produces better surface finish and dimensional control than laser
and electron beammethods.A disadvantage can be porosity between layers; however,
new techniques are resolving this problem (Dávila et al., 2020, p 3379–3380).

Electron beam- Advantages are higher deposition rates compared to laser or arch
methods that make it suitable for printing large components. The disadvantage is

12 The Embedded Design Process: CAD/CAM and Prototyping 355

higher costs due high vacuum and need for protection from X-rays (Dávila et al.,
2020, p 3380).

12.12 Workshop

For design and engineering, the workshop is where all the equipment and space to
make physical prototypes by either traditional and or digital means resides. Tradi-
tional methods are typically used to verify design concepts before committing to
CAD.Whereas digital methods are generally used to make physical prototypes from
CADmodels. However, physical prototypes of CAD models can be built employing
both Traditional and digital methods. The workshop at the University of Canberra
in Australia is outfitted with both Traditional manufacturing equipment and digital
manufacturing equipment (as seen in Images 13 and 14). The University of Canberra
staff and students use the workshop facilities for research, teaching and learning.

Image 13 Traditional cutting, milling and turning

356 E. Pianca

Image 14 CNC 3 axis router

12.13 Case study- Hexapod Robot Project

Introduction: This case study will look at how two honour students (Christopher
Lane and Bryce Cronin) from the University of Canberra (UC) applied the design
process andCAD to design andmanufacture aHexapodRobot. The aim of the project
was to design and manufacture a robot that could be used as a practical teaching
resource for the Robotics course at the University of Canberra. The culmination of
the project resulted in the design and manufacture of a Hexapod Robot as seen in
Image 15. Unlike traditional hexapod designs that usually have two or three Degrees
of Freedom (DoF) in each limb, the UC Hexapod Robot has four DoF in each limb.

Design Process for the Hexapod Robot

Typically, all design projects start with a problem. In this case, the problem was
that there was no practical teaching resource that the UC could use for its robotics
classes. Consequently, it was decided to design and manufacture a Hexapod Robot
that would cater for both introductory and advances robotics classes. It was also
decided to design and manufacture the Hexapod Robot in house at UC. This was
because UC researchers had:

1. Expertise and experience in designing and manufacturing robots.
2. Suitable CAD software (Fusion 360) and expertise in using the software.

12 The Embedded Design Process: CAD/CAM and Prototyping 357

Image 15 UC Hexapod Robot 3D CAD model. Built in Fusion 360 CAD software. (Bryce
Cronin/CC BY-NC-ND 4.0. www.cronin.cloud/hexapod)

3. A fully equipped robotics laboratory and workshop with all the facilities to
prototype (3D print), manufacture and test a robot.

Thefivedesignprocess steps for the design andmanufacturing of the newHexapod
Robot project were as follows:

Briefing and Task Clarification (Design Process Step 1)

• Understanding the project brief. This involved discussion, formulation and
agreement on the design criteria that required a robot that:

– Could be used as a practical teaching resource for both introductory and
advanced robotics classes offered at the UC.

– Can be upgraded to cater for future developments and research.
– All code and physical components can be easily modified by students to assist

with their understanding of robotic concepts.
– The code can facilitate simple actions such as walking and waving as a starting

point for students to develop their own code.
– Wherever possible, all the components and code to be designed and manufac-

tured in house at UC.
– Is safe to operate

• A timeline, budget and deliverables were prepared.

http://www.cronin.cloud/hexapod

358 E. Pianca

• A research report was prepared—It began with a brief affirmation of the project
aim and the design criteria. It then investigated other robot designs and assessed
their positive and negative attributes to meet the requirements of the brief. The
report included suitable materials, manufacturing processes, off-the-shelf compo-
nents, desirable features and functions, software architecture, maintenance, safety
considerations and a risk mitigation strategy for the new device.

The risk mitigation identified possible risks associated with the project and how
they were mitigated. Risks included issues resulting from Covid-19, software secu-
rity, hardware security, injuries to all persons. The risk mitigation strategy used the
risk analysis matrix shown in Table 12.6 to categorise identified risks throughout the
project.

The report concludedwith a list of design guidelines thatwould drive the following
stages of the design process including a timeline, budget and deliverables.

Concepts Generation (Design Process Step 2)

Based on the research report and further brainstorming, the robot’s flexibility of
movement was identified as a primary design objective. This would allow the robot
to perform a range of tasks such as traverse uneven terrain and preform gesture-
based communication for human–robot interaction (HRI). It was also decided that
a modular design would be best suited to meet all the design criteria. To achieve
this, several pages of concept designs were generated as rough hand-drawn sketches
as seen in Image 16. From each concept, the features that best fulfilled the design

Table 12.6 Risk analysis matrix

12 The Embedded Design Process: CAD/CAM and Prototyping 359

Image 16 Concept design as rough hand-drawn sketches

criteria were then combined into one initial Hexapod Robot concept. A quick CAD
modelled of the initial concept was generated on Fusion 360 (Parametric) as seen
in Images 18, 19. The model also included the off-the-shelf components electronic
(as seen in Image 17) and all the fasteners. The electronic parts and fasteners were
modelled as basic shapes to their exact dimensions to ensure their correct fitment
within the model. All the parts, except for the of-the-shelf parts, were designed so
that they could be 3D printed in house. The CADmodel enabled the fit, functionality
and manufacturability of all the parts and the assembly to be closely investigated.

Refinement CAD Model and Prototyping (Design Process Step 3)

From the initial concept CAD model, several design refinements were identified
to simplify and reduce the number of parts, improve the functionality of the joints,
extend the modularity of the design (so that it can be reconfigured) and make it easier
to assemble the robot.

360 E. Pianca

Image 17 Off-the-shelf electronic components

Image 18 UC Hexapod Robot initial concept design. (Bryce Cronin/CC BY-NC-ND 4.0. www.
cronin.cloud/hexapod)

Image 19 UC Hexapod
Robot initial concept arm
designs. (Bryce Cronin / CC
BY-NC-ND 4.0. www.cro
nin.cloud/hexapod)

http://www.cronin.cloud/hexapod
http://www.cronin.cloud/hexapod

12 The Embedded Design Process: CAD/CAM and Prototyping 361

A new fully detailed 3D CADModel of the Hexapod Robot was generated using
Fusion 360 (Parametric) 3D CAD software. The new model incorporated all the
design refinements identified from the initial CAD model. The new CAD model
demonstrated that the new hexapod design fulfilled all the design criteria as follows:

• The design is extremely modular and intuitive that makes the robot suitable for
both introductory and advanced robotics classes, future development upgrades
and research.

• The modular design allows parts to be rearranged so that legs can be extend,
shorten or the joints in each leg can be completely relocate.

• The radial symmetrical design allows for additional legs to be added, or for legs
to be removed.

• Six legs provide plenty of movement flexibility, especially in navigation uneven
terrain or continuing to operate even if some legs become disabled. This is because
it can adjust its posture and centre of gravity on uneven terrain, providing it with
better static stability.

• The software architecture of the hexapod is built upon the commonly used open-
source software known as ROS (Robotic Operating System). ROS is a simple
and flexible middleware that allows for high-speed synchronous control of the
robot’s motors and sensors. The advantage of building the system architecture
with ROS is that it can integrate a huge collection of libraries and tools making
future upgrades easier and better integrated.

• It can walk in a variety of ways (gaits) depending on requirements for speed and
stability. The initial design moves in a tripod gait where it alternates three legs on
the ground and the opposing three legs in the air at any one time in its movement
as seen in Image 20. However, the design allows future upgrades to be made to
the ROS to enable the robot to have a dynamic gait. This means that it will be able
to change its footing and posture based on the terrain thereby achieving better
balance and natural movement.

• Unlike traditional hexapod designs that typically have two or three DoF in each
limb, this design has four DoF in each limb. This enables the UC hexapod to
perform a variety of programmed actions, such seen in Images 20 and 22.

Image 20 Walking motion. (Bryce Cronin/CC BY-NC-ND 4.0. www.cronin.cloud/hexapod)

http://www.cronin.cloud/hexapod

362 E. Pianca

Image 21 Potential attachment options. (Bryce Cronin/CC BY-NC-ND 4.0. www.cronin.cloud/
hexapod)

• It can accommodate a variety of additional attachments such as a gripper, 360°
camera, etc. as seen in Image 21.

• It can flip itself over and continue to perform actions, such aswalkingwhile upside
down.

• It can gesture and pose to human collaborators as a method of expressing inten-
tion and communication to non-technical personnel in the field such as waving,
tapping, beckoning, etc.

• All the major components were designed to be easy to 3D CAD model, modify
and 3D Print. The reason for 3D printing the parts was because it was more
cost effective than CNC machining or traditional injection moulding (for such
relatively small number of parts). It also avoided having to use expensive of-
the-shelf robotic components. Furthermore, because 3D printing was available
in house turnaround times could be greatly minimised making it more suited for
teaching and research applications .

• The only off-the-shelf components were the electronic components, all the
fasteners, bearings and rubber feet. The off-the-shelf electronic components can be
seen in Image 24. The internal off-the-shelf electronic components were config-
ured so that additional electronics could be easily added in the future that can
communicate with the existing electronic components. Up to 2 kg of additional
electronics and equipment could be supported by the Hexapod Robot design.

Image 22 Unfolding motion. (Bryce Cronin/CC BY-NC-ND 4.0. www.cronin.cloud/hexapod)

http://www.cronin.cloud/hexapod
http://www.cronin.cloud/hexapod

12 The Embedded Design Process: CAD/CAM and Prototyping 363

Image 23 Hexapod Robot working prototype

The new 3D CAD model of the Hexapod Robot enabled further refinements to
the CAD model and verified the fitment of all the parts (tolerances).

Prototyping the Redefined Design: From the refined CAD model, one fully func-
tional prototype of the Hexapod Robot was made as seen in Image 23. This involved
3D printing all the components designed by the two UC honours students on an
in-house FDM printer. The material used was polylactic acid (PLA), a thermoplastic
made from renewable resources in the form of a filament. The FDMprocess and PLA
material were selected because of their low cost, the parts produced have adequate
strength to meet the design requirements, and the process is simple. All the elec-
tronic components (see Image 24) and fasteners were purchased off-the-shelf. The
prototype was fully tested to verify the assembly, fitment, articulation of the parts,
the electronics and the ROS.

Testing the Redefined Design: The tests found that the Hexapod Robot met all the
requirements of the design criteria. The tests only found one issue with the design,
where the bolts around the joints would unscrewing themselves.

Final Design Prototyping and Documentation (Design Process Step 4)

To address the issue of the bolts around the joints unscrewing themselves, the
Hexapod Robot CAD model’s leg members were redesigned to include bearings
at the joints. The difference in the design of the leg member can be seen in Images
25 and 26 with the latter being the redesigned version. The bearings can be seen in
exploded CAD model of the leg assembly seen in Image 27.

364 E. Pianca

Image 24 Off-the-shelf electronic components and diagram

Image 25 Leg design with
problem of the bolts
unscrewing themselves
circled in red

12 The Embedded Design Process: CAD/CAM and Prototyping 365

Image 26 Final leg design
with unscrewing problems
resolved circled in red.
(Bryce Cronin/CC
BY-NC-ND 4.0. www.cro
nin.cloud/hexapod)

Image 27 UC Hexapod Robot Leg 3D CAD model exploded view. Built in Fusion 360 CAD.
(Derivative of ’Anansi Hexapod Robot’ by Bryce Cronin/CC BY 4.0. www.cronin.cloud/hexapod)

The final 3D CAD model of the Hexapod Robot is seen in Images 28, 29 and 30.
In the CAD exploded views of the Hexapod Robot model, see Images 27 and 29, the
modular design of the parts and the assembly can be seen.

The final 3D CAD model parts for one leg assembly and the central body can
be seen in Image 31 with a description of the parts in Table 12.7. Because of the
modular design of the Hexapod Robot, there are only 11 different 3D-printed parts.
This included three different printed parts for the central body and eight different
printed parts for all the leg assemblies as shown in Image 31.

http://www.cronin.cloud/hexapod
http://www.cronin.cloud/hexapod

366 E. Pianca

Image 28 UC Hexapod Robot 3D CAD model. Built in Fusion 360 CAD software. (Derivative of
’Anansi Hexapod Robot’ by Bryce Cronin/CC BY 4.0. www.cronin.cloud/hexapod)

Image 29 UCHexapod Robot 3D CADmodel exploded view. Built in Fusion 360 CAD software.
(Derivative of ’Anansi Hexapod Robot’ by Bryce Cronin/CC BY 4.0. www.cronin.cloud/hexapod)

http://www.cronin.cloud/hexapod
http://www.cronin.cloud/hexapod

12 The Embedded Design Process: CAD/CAM and Prototyping 367

Image 30 UCHexapodRobot rendered 3DCADmodel. Built in Fusion 360CADsoftware. (Bryce
Cronin/CC BY-NC-ND 4.0. www.cronin.cloud/hexapod)

Image 31 UCHexapod Robot final design showing the 3D-printed parts for one leg and the central
body. For the description of all the parts, refer Table 12.6. (Derivative of ’Anansi Hexapod Robot’
by Bryce Cronin/CC BY 4.0. www.cronin.cloud/hexapod)

Prototyping and Testing the Final Design: The new parts that make up the robot’s
central body and one leg assembly were individually saved to STL format and 3D
printed. The printing process and material for each part are shown in Table 12.7,
importantly these are same as those used in the final manufactured Hexapod Robot
to test their validity. The printed parts together with their off-the-shelf electronic
components, bearings and fastenerswere assembled and tested. The test results found

http://www.cronin.cloud/hexapod
http://www.cronin.cloud/hexapod

368 E. Pianca

Table 12.7 Parts list for Image 35

Item no Description

1 Central body translucent cover—SLA printed from Accura (acrylate-based plastic)

2 Central body anchor—SLS printed from nylon 12

3 Central body anchor cover—SLS printed from nylon 12

4 Central body connector—SLS printed from nylon 12

5 Leg pivot connector—SLS printed from nylon 12

6 Leg pivot connector CAP—SLS printed from nylon 12

7 Leg mid connector—SLS printed from nylon 12

8 Leg upper foot pad—SLS printed from nylon 12

9 Leg lower foot pad—SLS printed from nylon 12

10 Leg bearing mount—SLS printed from nylon 12

11 Leg bearing spacer washer (Not shown)—SLS printed from nylon 12

that the unscrewing problems at the joints had been resolved and that the final design
fulfilled all the design criteria.

Documentation: This included- 1. A Fusion 360 (parametric) 3D CAD model of
the complete Hexapod Robot assembly, 2. user manual and 3. final report with an
overview of the development process and recommendations for future development
for the Hexapod Robot.

The Contents of the User Manual Were as Follows:

1. Cover page with an image of the Hexapod Robot
2. Images of all the parts complete with parts list. The parts list included a

description of each part, materials, manufacturing process, suppliers and
quantity.

3. Assembly instructions.
4. Operating instructions.
5. Images of the Hexapod Robot performing all its different functions.
6. Software.
7. Programming (coding) instructions.
8. Technical specifications.
9. Manufacturing instructions for the 3D-printed parts.
10. Maintenance instructions.

Recommendations for Future Development Included:

1. To develop a portable method of powering the robot such as batteries. Currently,
the Hexapod Robot is powered by a tethered power source. Importantly, all the
electronic components used in the Hexapod Robot will support batteries and
require no further modifications.

2. To further develop the electronic hardware to expand the Robot’s functionality.

12 The Embedded Design Process: CAD/CAM and Prototyping 369

3. To further develop the software to refine the walking gaits and gesturing
movements.

Manufacturing (Design Process Step 5)

Tomanufacture theHexapodRobot, all the partsmodelledonFusion360 (parametric)
CAD software by the two UC honours students were individually saved to STL
format. All except two of the parts were printed on an SLS 3D printer from Nylon 12
(as seen in Table 12.7). The reason for selecting this printing process and material
is because the parts produced would have very good mechanical properties that are
suitable for working applications along with high-dimensional accuracy and high-
quality surface finish. The remaining two parts were printed on an SLA printer from
translucent and ridged acrylate-based plastic (as seen in Table 12.7). This process
and material were chosen because of the almost transparent look and very good
mechanical properties making the part suitable for functional use.

All the electronic components, as seen in Image 24, and fasteners were purchased
of-the-shelf.

Assembly, Testing and Delivery: A fully functional Hexapod Robot was assembled
as seen in Images 32 and 33. The Hexapod Robot was fully tested and fulfilled all
the design criteria.

Image 32 UC Hexapod Robot final design being assembled. The description of all the parts refer
Table 12.6. (Bryce Cronin/CC BY-NC-ND 4.0. www.cronin.cloud/hexapod)

http://www.cronin.cloud/hexapod

370 E. Pianca

Image 33 Final working UC Hexapod Robot. (Bryce Cronin/CC BY-NC-ND 4.0. www.cronin.
cloud/hexapod)

A fully functioning Hexapod Robot (see image 36) complete with documenta-
tion (1. A full Fusion 360 (parametric) CAD model, 2. User manual and 3. Final
report with an overview of the development process and recommendations for future
development for the Hexapod Robot) was delivered on time and on budget.

12.14 Revision Questions

Question 1. When in the design process should you identify the materials and
processes and why?
Question 2. When during the design process can CAD be employed?
Question 3. What do you need to do before sending files to a manufacturer?
Question 4. Where should a working prototype be tested?
Question 5. How many different 3D CAD modelling systems are there, what are
they called, and what are their comparative advantages and disadvantages?
Question 6. Name the different types of 3D parametric CAD model files?
Question 7. What is a circular reference and how do you avoid them?
Question 8. What elements should be used as references and what are they?
Question 9. What features should not be used as references?
Question 10. What features should be creates last in a part file?
Question 11. What are CAD drawing files used for?
Question 12. Why are technical drawing standards important?

http://www.cronin.cloud/hexapod

12 The Embedded Design Process: CAD/CAM and Prototyping 371

Question 13. Technical drawing sheets are typically organised in howmanygroups
and what are they?
Question 14. What are orthographic projections and what is their purpose?
Question 15. What is VR and AR typically used in CAD for?
Question 16. What are some advantages and disadvantages of 3D printing?
Question 17. What is the difference between the following two 3D printing
methods: SLA and SLS?
Question 18. Why is it important to include all the part in a model including
off-the-shelf parts?

References

Alba, M. (Retrieved 2018, March). https://www.engineering.com/story/whats-the-difference-bet
ween-parametric-and-direct-modeling.

Aloor, J. J., Sahana, P. S., Seethal, S., Thomas, S., & Pillai, M. R. (2016, March). Design of VR
headset using augmented reality. In 2016 international conference on electrical, electronics, and
optimization techniques (ICEEOT) (pp. 3540–3544). IEEE.

Ault, H. K., & Phillips, A. (2016). Direct modeling: Easy changes in CAD?
Bodein, Y., Rose, B., &Caillaud, E. (2014). Explicit referencemodelingmethodology in parametric
CAD system. Computers in Industry,65(1), 136–147.

Bonollo, E. (2016). Product design: a course in first principles. Upfront Publishing, Calwell, A.C.T.
Cabero-Almenara, J., Barroso-Osuna, J., Llorente-Cejudo, C., & Fernández Martínez, M. D.
M. (2019). Educational uses of augmented reality (AR): Experiences in educational science.
Sustainability,11(18), 4990.

Chen, M. Y., Skewes, J., Daley, R., Woodruff, M. A., & Rukin, N. J. (2020). Three-dimensional
printing versus conventional machining in the creation of a meatal urethral dilator: Development
and mechanical testing. BioMedical Engineering OnLine,19(1), 1–11.

Cronin, B. (2020). www.cronin.cloud/hexapod.
Dam, R., & Siang, T. (2018). What is design thinking and why is it so popular. Interaction Design
Foundation.

Dávila, J. L., Neto, P. I., Noritomi, P. Y., Coelho, R. T., & da Silva, J. V. L. (2020). Hybrid manu-
facturing: a review of the synergy between directed energy deposition and subtractive processes.
The International Journal of Advanced Manufacturing Technology, 1–14.

Design Council. (2021). https://www.designcouncil.org.uk/news-opinion/what-framework-innova
tion-design-councils-evolved-double-diamond. Accessed 11 Dec 2021

Elser, A., Königs, M., Verl, A., & Servos, M. (2018). On achieving accuracy and efficiency in
additive manufacturing: Requirements on a hybrid CAM system. Procedia CIRP,72, 1512–1517.

Farshid, M., Paschen, J., Eriksson, T., & Kietzmann, J. (2018). Go boldly!: Explore augmented
reality (AR), virtual reality (VR), and mixed reality (MR) for business. Business Horizons,61(5),
657–663.

Ge, Q., Li, Z., Wang, Z., Kowsari, K., Zhang, W., He, X., Zhou, J.& Fang, N. X. (2020). Projection
micro stereolithography based 3D printing and its applications. International Journal of Extreme
Manufacturing, 2(2), 022004.

ISO 128. (Retrieved 2021). https://www.iso.org/ics/01.100.01/x/.
ISO. (Retrieved 2021). https://www.iso.org/home.html.
Jammalamadaka, U., & Tappa, K. (2018). Recent advances in biomaterials for 3D printing and
tissue engineering. Journal of Functional Biomaterials,9(1), 22.

https://www.engineering.com/story/whats-the-difference-between-parametric-and-direct-modeling
http://www.cronin.cloud/hexapod
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.iso.org/ics/01.100.01/x/
https://www.iso.org/home.html

372 E. Pianca

Jezernik. (2003). A solution to integrate computer-aided design (CAD) and virtual reality (VR)
databases in design and manufacturing processes. The International Journal of Advanced
Manufacturing Technology, 22(11–12). https://doi.org/10.1007/s00170-003-1604-3.

Keane, P. (May 2019). VR in CAD: Where are we now? https://www.engineering.com/story/vr-in-
cad-where-are-we-now.

Kridli, G. T., Friedman, P. A., & Boileau, J. M. (2021). Manufacturing processes for light alloys.
In Materials, design and manufacturing for lightweight vehicles (pp. 267–320). Woodhead
Publishing.

Latif, K., Adam, A., Yusof, Y., & Kadir, A. Z. A. (2021). A review of G code, STEP, STEP-NC, and
open architecture control technologies based embedded CNC systems. The International Journal
of Advanced Manufacturing Technology, 1–18.

Liu, Z., Zhang, H. C., Peng, S., Kim, H., Du, D., & Cong, W. (2019). Analytical modeling and
experimental validation of powder stream distribution during direct energy deposition. Additive
Manufacturing,30, 100848.

Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing
(3D printing): A review of materials, methods, applications and challenges. Composites Part b:
Engineering,143, 172–196.

Ogunsanya, M., Isichei, J., Parupelli, S. K., Desai, S., & Cai, Y. (2021). In-situ droplet moni-
toring of inkjet 3D printing process using image analysis and machine learning models. Procedia
Manufacturing,53, 427–434.

Prud’homme van Reine, P. (2017). The culture of design thinking for innovation. Journal of
Innovation Management,5(2), 56–80.

Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology:
Technological, materials, and applications. Procedia Manufacturing,35, 1286–1296.

Spasova, N., & Ivanova, M. (2020). Towards augmented reality technology in CAD/CAM systems
and engineering education. In The international scientific conference eLearning and software for
education (vol. 2, pp. 496–503). " Carol I" National Defence University.

Standards Australia, AS1100.101–1992 (1992).
Tornincasa, S., & Di Monaco, F. (2010, September). The future and the evolution of CAD. In
Proceedings of the 14th international research/expert conference: trends in the development of
machinery and associated technology (vol. 1, No. 1, pp. 11–18).

Williams, R. A. (1993). Engineering drawing handbook. Standards Australia.
Wong, K. (2019, December). Is AR/VR ready to go beyond visualization? https://www.digitalen
gineering247.com/article/is-ar-vr-ready-to-go-beyond-visualization/cad.

Xometry (Retrieved 2020, May 27). https://xometry.eu/en/choosing-right-file-formats-for-manufa
cturing/.

Eddi Pianca Eddi Pianca is an Assistant Professor and Industrial Design discipline lead at the
University of Canberra where he teachers in Industrial Design, conducts research and supervised
PhD students. He has interest and experience in high level CADD/CAM, user centred design,
ergonomics, High Performance Composites design and advances in design technology. He main-
tains strong industry links by running industry-based project for the industrial design course.

Eddi holds a PhD from the University of Canberra on the design and simulation of complex
full body sports activities.

Prior to the University of Canberra, he worked for the Civil Aviation Authority in Australian
(Mechanical Design office manager), for Electronics Research Australia in Canberra Australia
(designing computer equipment) and for General Electrics Company in Sydney Australia (Indus-
trial Designer, lighting research and development division).

He also has an Industrial Design Degree from the University of Canberra and a Mechanical
Engineering Certificate from ACT TAFE Canberra Australia.

https://doi.org/10.1007/s00170-003-1604-3
https://www.engineering.com/story/vr-in-cad-where-are-we-now
https://www.digitalengineering247.com/article/is-ar-vr-ready-to-go-beyond-visualization/cad
https://xometry.eu/en/choosing-right-file-formats-for-manufacturing/

12 The Embedded Design Process: CAD/CAM and Prototyping 373

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Part III
Interaction Design

Chapter 13
Social Robots: Principles of Interaction
Design and User Studies

Janie Busby Grant and Damith Herath

13.1 Learning Objectives

This chapter introduces you to the basic steps in designing and conducting social
robotics research. By the end of this chapter you will:

1. Be able to describewhyyou are conducting your research project, including your
motivation for conducting the research, who the audience is for your findings,
and the key research questions you will be addressing.

2. Be able to identify the key variables you want to focus on and understand how
to operationalise these variables in real research environments.

3. Be able to recognise different types of research designs, know advantages and
disadvantages of each, and work out which is appropriate in which situation.

4. Be aware of the concepts of validity and reliability, and be able to both identify
and address issues that can emerge.

5. Understand the key principles to consider when designing and conducting
ethical research.

6. Identify key factors when analysing and interpreting data.

13.2 Introduction

This chapter considers when, why and how you can conduct user-focused research
when working with robots. While exciting, high-quality human–robot interaction

J. Busby Grant (B)
Discipline of Psychology, Faculty of Health, University of Canberra, Academic Fellow,
Graduate Research, Canberra, Australia
e-mail: janie.busbygrant@canberra.edu.au

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_13

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_13&domain=pdf
mailto:janie.busbygrant@canberra.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_13

378 J. B. Grant and D. Herath

research is carried out in laboratories and real-life settings around the world, often
those working in the field of robotics feel unsure or unprepared to conduct user-
focused research, as research design and analysis is typically not included in under-
graduate robotics courses. Conducting well-designed research studies can allow you
to identify potential issues, benefits and unexpected outcomes of real-world interac-
tions between robots and users, and provide evidence for efficacy and impact. Being
able to confidently and competently design and conduct user studies with robots will
be an advantage in a myriad of workplace roles.

This chapter is designed to be an introduction and practical guide to conducting
human–robot interaction research. In this chapter, we consider why you should
conduct research examining human–robot interaction, how you can identify the best
research design to answer your question, and select and measure appropriate vari-
ables. Throughout the chapter we provide examples of relevant real-world research
projects.Whilewe can necessarily only “scratch the surface” of each topicwe discuss
in this single chapter, and you are encouraged to explore deeper into the issues of
relevance to you, the tools in this chapter will allow you to understand and implement
well-designed research projects in human–robot interaction.

An Industry Perspective

Martin Leroux, Field Application Engineer

Kinova inc.

I was doing my bachelor’s degree in engineering physics, but I didn’t quite like
it because I found it too abstract. At the time, I happened to find an internship
for a robotics lab which took me in not so much for my then non-existent
background in robotics, but rather for the advanced math skills I developed in
physics. That internship was the part that really clicked for me; I finally was
able to explain tomy family what it is that I do in terms they could understand. I
came to the field for that feeling of satisfaction, but I ended up staying because
it is so wide and I get to learn new things constantly.

13 Social Robots: Principles of Interaction Design … 379

When I first started at Kinova, my job was to evaluate alternative control
input methods to help our assistive users manipulate our robots. Once, I started
working on eye-tracking and a colleague kept insisting that I let one of our
users try it as soon as possible, which I found was too early, especially since I
also have eyes. When I asked why he was so insistent, he told me that a while
ago, their team spent multiple weeks tuning a program to help assistive users
drink from a bottle - adjusting the rotation of the arm, the lift speed, and so
on and so forth. Then, when they were all done and went to show it to a user,
his reaction was: “Oh, I’d never bother with that. I just use a straw.” Weeks of
work went down the drain. Now, we always involve our end users right from
the get-go.

When I first entered the field, human-robot interfaces were already very
varied and fairly functional. However, their purpose was to specifically control
the robot in terms that only made sense for robots. You would move individual
joints or sometimes switch between translation and orientation for end-effector
cartesian control. Nowadays, although the hardware hasn’t evolved much, the
interface itself often leverages artificial intelligence to make the entire system
much smarter. Instead of asking users to think like roboticists, they can keep
thinking like human beings with task-oriented commands. Where people used
to need to think “I want to get my gripper there”, now they can think “I want to
grab this” and the robot can deduce some or all of the motion that is expected
of it.

13.3 Cobots, Social Robots and Human–Robot Interaction

Considered the father of Robotics, Engineer and Entrepreneur, Joseph Engelberger,
after commercialising the first industrial robot arm, stipulated in his book “Robotics
in Service” that the main thrust of the industry should be towards the development of
what are called service robots. He argued that technological developments in robot
perception and artificial intelligence should enable the replacement of human work
that is labour intensive and unpalatable with robotic devices. In fact, a considerable
portion of such mundane human work is now automated using robotic technologies.
In the process, robots have come to be established in increasingly human spaces.
This necessitates the designers of these robotic devices to consider such elements
as perceived safety, human factors and ergonomics on top of the engineering capa-
bilities of the robots. The modern cousins of the original Unimate (like the Kinova
Gen3 robots) embody such nascent technologies, providing the ability to directly
interact and work alongside humans in a safe and intelligent manner. A new category

380 J. B. Grant and D. Herath

of industrial robots is emerging called collaborative robots or cobots. These tech-
nologies are considered to belong to the fourth industrial revolution (industry 4.0)
which represents the evolution of traditional industrial manufacturing technologies
and practices combining with emerging smart technologies such as the Internet of
Things (IoT), cloud computing and artificial intelligence (AI).

On the other hand, the origins of the word “robotics” and as we see in popular
culture, robots are meant to be a reflection of the humanity. As we discussed earlier,
humans have entertained the idea of human-like machines for millennia. With recent
advances in related domains in computing and hardware, there is growing interest in
the engineering community to explore the technical development of socially intelli-
gent robots. We have already seen several commercial artificially socially intelligent
robots appearing in the market with various success. This new genre of machines
called “social robots” are meant to interact with humans at a higher cognitive and
emotional level, as compared to a typical industrial robot in a factory.

In either scenario, robots are increasingly required to interact with humans, and
importantly with end users who are not technically trained to operate robots (such as
is currently the case with industrial era robots). As we have already seen in Chap. 3,
empathetic thinking is required when designing such robots with lay end-users in
mind. And at the other end of the pipeline, before deploying these robots, it is
required that we not only validate the robot’s engineering functions but also its
ability to interact with humans as intended. The latter requires an understanding
of human psychology and associated disciplinary expertise. The study of human–
robot interaction is thus an emergent field that not only encompasses many fields
of engineering, but yields a broader disciplinary net towards psychology, sociology,
design and the humanities. Abbreviated, HRI, the new field is gaining considerable
attention from the robotics community with several key journals and conferences
dedicated to the subject already, including the ACM/IEEE International Conference
on Human–Robot Interaction and the International Conference on Social Robotics
and their respective journals, ACM Transactions on Human–Robot Interaction and
the International Journal of Social Robotics.

13.4 Why Conduct Research?

Any research project should begin with the “why?”. Why do you want or need to
conduct the research, what questions do you want to answer, what will the findings
allow you to know or do, and who will be interested in the answers you generate?

13.4.1 Motivation for the Research

Your reasons for conducting the research may be diverse and could include:

13 Social Robots: Principles of Interaction Design … 381

• You want to know how people interact with the robot in order to improve it.
• You are not sure how the robot will perform in real-world settings.
• You need evidence to give to investors that your product will be successful.
• You are conducting a project in a university or research-focused setting.
• Your boss/supervisor/funding partner said so!

All of these and many more are legitimate reasons for conducting research, but
how you design your project will depend on your “why”, which determines your
research question and your audience. For instance, you might have questions about:
efficacy (how well the robot performs in controlled conditions), effectiveness (how
successful the robot is in the real world), safety (both technical and perceived by the
user), or perceptions of the people interactingwith them (such as ratings of likeability
or animacy).

Research Examples: Why and Audience
Sylax: A university-based research robotics project.

– Why: The researchers want to understand what factors play a role in
converting an industrial robot into an interactive user-friendly robot.

– Audience: The researchers themselves, the wider academic field.

Tommy: A robot product designed by a start-up for commercialisation.

– Why: The researchers want to design a conversational agent for use by the
general population.

– Audience: Initially the researchers, eventually the general population.

Coramand: A tech company robotics product for large-scale industry-based
roll-out.

– Why: The researchers want to assess and improve perceived and operational
safety of their collaborative robot.

– Audience: Initially the development company itself, then roll-out to compa-
nies that use automation at scale (individuals in those companies: executive,
skilled technologists, investors).

13.4.2 Target Audience

Who is the intended target of the outcomes of the research? Remember that there
may be several uses for, and audiences of your output from a particular piece of
research.

Typically, the research you conduct will inherently inform your own knowledge,
so the first audience is generally yourself. Carefully consider what you need to

382 J. B. Grant and D. Herath

know in order to move the project forward—what information will directly inform
the next stage in your project? All too often researchers get carried away with their
own cleverness and design complex experiments, only to find that they have tweaked
their design to the point that their answers don’t quite tell them what they need to
know anymore!Always come back to your key research question andwhat answering
it will allow you to conclude.

If you are a student or university-based researcher your target audience will also
be others in your academic field. You should be familiar with the key literature, and
in a fast-moving field like robotics, this also means attending the main conferences,
reading new abstracts for related projects, taking part in competitions, new business
ventures and start-ups. There may be typical research paradigms in your area that
you are expected to use, or controversies or debates that you need to be aware of, or
terminology or technological basics you should adopt to better communicate with
those in your field. This applies both in terms of the design of the research itself and
how you report and distribute your findings.

You may also have an audience in the form of investors, whether this be venture
capital firms, government funding bodies or individuals. If this funding is currently
supporting your research, be clear on what outcomes and reporting you have already
committed to, and in what timeframes, as you may well need to set up research to
directly address those requirements. If you are designing research to obtain future
funding, look at the previous projects that the organisation or individual has financed,
and consider what kind of evidence they provided. For instance, were they inter-
ested in projects with lab-based proof-of-concept completed, or data on projected
uptake from the general public, or testing conducted in unpredictable real-world
environments? Knowing the answers to these questions will help frame your own
research.

Enterprise may also be an audience for your work, for example companies that
use large-scale automation in industry settings. This relationship may take the form
of an existing contract or potential sales. You need to be very clear on what factors
will bemost important to the key individuals in that organisation so that you can focus
your research to demonstrate capability in those areas. You also need to identify what
forms of evidence will be most convincing to that audience—are they looking for
large lab safety trials, or real-world human–robot error rates, or expert review?

Consumers and/or the general public may also be the target audience for your
research, particularly if you are demonstrating efficacy in a real-world environment
or interest in solving a particular problem. In this case you need to think about what
the target consumer would find persuasive and meaningful, and incorporate those
elements into your study. For example, if safety is a concern among the general
population, then part of your research should investigate the safety of the robot in
general use settings so you can make an evidence-based statement about safety at
the conclusion of your project.

13 Social Robots: Principles of Interaction Design … 383

13.4.3 Research Questions

The Scientific Method is the process used by researchers to create an accurate repre-
sentation of the world. By working collaboratively, building on and sharing evidence
and theories, we can assemble an understanding of how things work. The Scientific
Method involves iteratively generating theories and hypotheses, gathering data and
analysing that data to draw conclusions, which then feed back into our theories about
the world, which then continues the process, refining our knowledge as it continues
(Fig. 13.1).

In HRI research typically you begin a research project with theory about how
you believe a particular interaction between a robot and a participant will play out.
This may be on the basis of previous research and theory in the field, or based on
observations you have personally made. A theory is a set of explanatory ideas that
integrate a variety of evidence. Theories pull together facts into a general principle
or set of principles—they not only help us to explain what is happening, but also
why it is happening. Theories also allow us to make predictions about what will
happen in a new situation. As a multidisciplinary research area, theories in HRI
could be informed by many and at times conflicting ideologies. Some examples are
theory of mind from psychology, perceptual control theory from cybernetics or more
speculative ideas such as the Uncanny Valley effect in aesthetics.

Fig. 13.1 A visual depiction of the scientific method used to conduct research

384 J. B. Grant and D. Herath

Within a particular research study, you will generate a specific hypothesis, which
is typically based on a theory. A hypothesis is a specific statement about the relation-
ship between variables in your study—it is what you expect to happen. Crucially,
hypotheses are testable—that is, the findings of your study either support the hypoth-
esis or contradict it. If a hypothesis (or a theory) is not supported, this is called falsi-
fication. The hypothesis is how you narrow down your broader theory to assess one
particular effect or relationship in your research study.

Research Examples: Theories and Hypotheses
Sylax: A university-based research robotics project.

– Broad research question: What is the effect of factors like behaviour and
appearance of the robot on peoples’ perception of agency?

– Theory: Theory of mind (Leslie, 1987)
– Hypothesis (for one particular study): People will perceive the robot to

have more agency when it shows purposeful movements rather than when
it displays random movements.

Tommy: A robot product designed by a start-up for commercialisation.

– Broad research question: How can wemaximise consumer satisfaction with
our companion robot product?

– Theory: Attachment theory (Bretherton, 1985).
– Hypothesis (for one particular study): When given a robot to use in the

home, people who have greater previous exposure to robots will report
higher attachment to the product.

Coramand: A tech company robotics product for large-scale industry-based
roll-out.

– Broad research question: How can perceived safety and operational safety
of the robot be maximised?

– Theory: Behavioural Decision Theory (Slovic, et al., 1984)
– Hypothesis (for one particular study): People’s perceived safety of the robot

will be greater when the robot displays fluid movements rather than more
robotic movements.

What You Should Know Going into a Research Project
I am conducting this research study because:

The audience/s for my research are:

13 Social Robots: Principles of Interaction Design … 385

The key theory or theories relevant to my study is:

My main hypothesis for the study is:

In summary, before you begin your study consider your motivation for conducting
the study, your target audience/s and the theories that are relevant to your study. Use
these to determine your hypothesis. Remember it needs to be specific to your study
and testable. For example, predicting that robots with faces will be more acceptable
to the general public than robots without faces is a theory—whereas making the
statement that in your study the robot with a face will have higher likeability ratings
than the same robot with the face obscured is an hypothesis. The hypothesis refers
directly to what you aremanipulating andmeasuring in your study, and we’ll explore
this in more detail below.

13.5 Deciding on Your Research Variables

13.5.1 Variables

When conducting research, one of the major tasks is to decide what you are going
to manipulate and what you are going to measure. This obviously depends on your
research question. For example, if you want to investigate perceived safety in the
home setting, this will be measured very differently compared to a research question
is focused on operational safety in an industrial setting. Assessing the likeability of
a robot by young children will use a different approach from measuring the sense of
agency attributed to a robot by an adult.

A variable is a characteristic which can be measured or changed. Age, object
preference, experimental condition, reaction time and performance are all variables.
Some of these variables are inherent to an individual and cannot be assigned (e.g.
age), others change depending on the task (e.g. performance) and others can be
manipulated by a researcher (e.g. exposure to different conditions). Deciding what
variables you want to measure/manipulate is one of the key issues in research design
and will dictate what conclusions you are able to draw.

A helpful distinction is between Independent Variables (IVs)and Dependent
Variables (DVs).

• The IV is the variable you believe has an effect on the other variable/s. In some
studies, the IV is manipulated (changed) by the researcher. In robotics research,
this is often some aspect of the robotic system, for example your IV might be
whether the robot has an anthropomorphic face or not.

386 J. B. Grant and D. Herath

• Within an IV you often have conditions (also called levels or groups)—you “do
different things” to the different groups. There can be any number of conditions.
Sometimes there are clear experimentaland control conditions, such that the exper-
imental condition is the group receiving the treatment, and the control condition
is the comparison group (or “usual” group). For instance, if your IV is the type of
robotic face, you may have two conditions—one in which the participants view
the default robot face (control condition) and one inwhich they view a newversion
of the face (experimental condition).

• The DV is the variable which is measured (observed) by the researcher. Often
there are many DVs in a single study—for example you may want to measure
participants’ ratings of likeability, animacy and safety.

• Note: In some research designs, such as descriptive research, all the variables are
simply measured and the researcher doesn’t believe one has an effect on another.
In this case, all can be considered DVs.

Research Examples: IVs and DVs
Sylax: A university-based research robotics project.

– IV: Behaviour

• Condition 1: Random behaviour
• Condition 2: Purposeful movement—algorithmic behaviour

– DV: Perceived agency measured by the number of interactions initiated by
the participant

Tommy: A robot product designed by a start-up for commercialisation.

– IV: Reported previous exposure to robots based on a questionnaire response
scale.

– DV: Attachment measured using a questionnaire response scale.

Coramand: A tech company robotics product for large-scale industry-based
roll-out.

– IV: Motion type

• Condition 1: Fluid motion
• Condition 2: Robotic motion

– DV: Perceived safety measured as how far away people stand from the robot
(in m).

13 Social Robots: Principles of Interaction Design … 387

13.5.2 Operationalisation

So you know what you want to investigate and why, you’ve identified your key
theory and hypothesis, you’ve decided on your IV and your DV—surely you’re
ready to go, right? Well, not quite yet! The next key step is to operationalise your
variables—which involves defining what you are manipulating and measuring, and
how. For the purposes of the research project you are conducting, you are deciding
very specifically how your variables will be changed ormeasured. Thismight involve
a survey question or set of questions combined into a single value, or a measure of
reaction time, or performance on a task.

Let’s say your DV is safety—how safe people feel interacting with a particular
robotic construct. There are many different ways you could operationalise this vari-
able, for instance you could use a self-reported survey question (How safe did you
feel during this interaction? 5 Very Safe to 1 Not Safe at All), or you could assess
how close participants stand to the robot (with people standing closer indicating a
higher level of safety), or you could measure participants’ heart rate or cortisol level
to indicate their level of stress during the interaction. All of these different ways
of operationalising safety, and many others(!), could be appropriate depending on
your “why”, your research question and your audience. However, operationalisa-
tion is often driven by logistical and contextual issues as well as deeper theoretical
approaches. For instance, what equipment do you have? What expertise do you and
the other researchers have? What time do you have to collect the data? Are your
potential participants able and willing to be measured in this way?

How you operationalise your variable will have fundamental implications for the
conclusions that can be drawn from your study. Also keep in mind that how you
operationalise the variable directly impacts what statistical tests you can run during
analysis (see later discussion), for instance whether you use a choice task, a yes/no
scale, a categorical scale or a continuous number, may require different statistical
analyses.

13.5.3 Relevance-Sensitivity Trade-Off

Whatwe’re looking for in a variable is ameasurement that is sensitive enough to show
a difference that you’re interested in (i.e. don’t measure something that is unlikely to
change). But you also need to be careful not to pick a variable that is so specific that
it isn’t relevant beyond the study to other contexts (i.e. don’t measure something that
isn’tmeaningful in thewiderworld). This is called the relevance-sensitivity trade-off.
This can be a real issue in lab-based experiments, where the focus is on finding a way
ofmeasuring the variable that is easy in that environment, rather than operationalising
the variable in a way that is more relevant to the real-world environment (Fig. 13.2).

388 J. B. Grant and D. Herath

Fig. 13.2 Approaches that can help you decide how to operationalise variables

Examples of Relevance-sensitivity trade-off
Take the example of Tommy, the companion robot aimed at the general popula-
tion. In a carefully controlled experiment you could ask participants howmuch
they like the robot on a scale from 1 to 100. Let’s say you added new capabil-
ities and likeability scores went up from an average of 50 to an average of 60.
That sounds big! But does this actually mean more people will now purchase
the product? Not necessarily. The attachment scale is sensitive enough to pick
up changes based on the improvements you made, but is that change in score
relevant if what you really want to know if whether people will buy it or not?

13.5.4 Research Designs

There are countless ways research can be conducted, and different ways these
approaches can be grouped together. One common categorisation of research
designs is into descriptive, correlational, experimental research, and reviews and
meta-analyses (Fig. 13.3).

13 Social Robots: Principles of Interaction Design … 389

Fig. 13.3 One categorisation of the different types of research designs

13.5.5 Descriptive Research

When you conduct descriptive research you don’t manipulate any variables—instead
you take advantage of the natural flowof behaviour tomeasurewhat you are interested
in. Some of these approaches are highly flexible, so if unexpected events happen in
your research, or you develop new ideas, you can alter how you collect your data to
take advantage of this. Some examples of descriptive research are observation (where
you record the behaviours of your participants without interfering—e.g. examining
video footage of home use of a robot), archival research (using existing data—
e.g. studying web browser search history), and program evaluation (e.g. analysing
outcomes of a robotic system embedded into a workplace). Focus groups are also
a way of conducting descriptive research in which you sit down with small groups
of participants and ask them to give their opinions and describe their behaviours.
Asking descriptive information from large groups of participants is often done using
surveys. In the case of the Coramand robot example used above, the company itself
may want to conduct descriptive research in the form of focus groups, to get an
understanding of how its employees feel about incorporating robots on the factory
floor, before they commit to implementing them.

One common descriptive research method used in robotics is case studies. Case
studies focus on the behaviour of a single individual or single context. They are useful
in that they provide very rich information about a particular experience, so all the
nuances of that person’s situation, behaviour and cognition can be explored. They
are also sometimes the only option, where the situation or experience or context is
so unusual that other research cannot be used, such as discussed in Design Chap. 3.
However, it is difficult to generalise from case studies (will this same pattern of
behaviour or outcomes be seen in other contexts or individuals?) and you cannot
be sure what caused any changes in the individual’s behaviour—it may not have
been the variable you are focused on, but could have been something else in their
environment or unique to them.

390 J. B. Grant and D. Herath

13.5.6 Correlational Research

Correlational research is research which asks whether there is a relationship between
two or more variables, but where the variables are not under the researcher’s direct
control (for logistical or ethical reasons). Often survey research falls into this cate-
gory—although it can be purely descriptive (see above), sometimes surveys are used
to look at whether two variables “go together”, such as assessing whether age is
related to perception of how dangerous robots are. Surveys are useful when you
want to look at naturally occurring patterns in the world, and are relatively easy to
conduct. They also allow you to measure a lot of variables at the same time. The
Tommy example discussed above, in which the researchers wanted to know the rela-
tionship between previous exposure to robots and attachment to the robot product, is
an example of a survey design; the researchers would conduct a correlational analysis
to look at whether those two variables “go together”. However, correlational research
like this can only tell you about the correlation between two variables, not whether
one variable causes changes in another variable. For that, you need to conduct an
experiment!

13.5.7 Experimental Research

Experimental research studies the effect of an independent variable on a depen-
dent variable. So the Sylax case discussed above, which looked at the effect of
behaviour type (the IV: random or purposeful) on perceived agency (the DV) would
be an experiment. Often when you manipulate an IV you measure a whole range
of DVs (so for example likeability, animacy, safety). Experiments are normally
conducted in highly controlled lab-based settings, but can also be conducted in natural
environments—these are known as field experiments.

In an experiment, you typically want to find out if a particular manipulation (e.g.
adding a face to a robot) has an effect. Let’s say you want to compare a condition
where you do that manipulation with one where you don’t. There are several ways
of doing this:

• A control condition is a group where there is no treatment or manipulation of the
IV.

• A placebo condition is a group which receives what looks like the treat-
ment/manipulation but it is not. It is a “look-a-like” treatment without the active
component/ingredient.

13 Social Robots: Principles of Interaction Design … 391

13.5.8 Between-Subjects and Within-Subjects Designs

Consider the Sylax research discussed above, in which a researcher has an IV which
is the type of behaviour, and measures perceived agency. In this study, the researcher
has two conditions—one in which the participants are exposed to random behaviour
(control condition) and one in which they are exposed to purposeful behaviour
(experimental condition). The researcher then has a choice:

• They could recruit 40 participants and assign 20 to the control condition (random
behaviour) and 20 to the experimental condition (purposeful behaviour), and
compare the scores of the two groups.

• They could recruit 20 participants and have those participants complete both the
control and experimental conditions at different times, and compare the scores of
the participants on the two conditions.

In one of these cases, different people experience each of the different conditions;
in the other, the same people complete both conditions. Both of these options are
legitimate under particular circumstances, but they each have benefits and possible
drawbacks you should be aware of when designing your study.

In a within-subjects design participants are assigned to all of the conditions of the
IV, so the experimental manipulation takes place within subjects. If you had three
conditions in your IV, for example, the participants complete all three conditions
(they could do these sequentially in the same testing session, or take part in your
study on three different days). You then compare the scores of the same participants
across the three different conditions.

In a between-subjects design participants are only assigned to one of the conditions
of the IV, so the experimental manipulation takes place between subjects. If you had
three conditions in your IV, then you would have three groups of participants, and
each group would complete a different condition (no individual would participate in
all three conditions). You would then compare the scores of the three different groups
of people (Fig. 13.4).

Both within- and between-subjects designs can be appropriate depending on the
situation.Often, the nature of the studywill determine this for you. For example, if you

Fig. 13.4 Illustration of the differences between within-subjects and between-subjects research
designs, with different individuals represented as different coloured symbols

392 J. B. Grant and D. Herath

Fig. 13.5 Pros and cons of within-subjects and between-subjects research designs

are testing whether there is a difference in learning between two interfaces, you may
be unable to use a within-subjects design as learning on one will transfer to learning
on another—performance on the second interface they see may be better than on the
first, regardless of the interface itself. So, if exposure to one condition can potentially
affect responses in other conditions, it may not be appropriate to use awithin-subjects
design. Similarly, if participants are only available for a single testing session, and
taking part in the conditions involves a high intensity task, participants may be too
fatigued to complete more than one condition. If you are using a within-subjects
design one way of addressing potential ordering issues is to use counterbalancing,
which involves presenting the conditions in alternating (or random) order to the
participants, so that half of participants experience condition 1 first, and the other
half condition 2 (and etc. if any additional conditions).

The organisation of elements such as these, and potential time constraints on
participant involvement,meanswithin-subjects designs can bemore logistically diffi-
cult than between-subjects designs. However, they are statistically more “powerful”
(see later discussion of power) in that this design reduces the random variance in the
data collected, and means you are likely to find a significant effect if one is there than
using between-subjects designs. Within-subjects designs can also be more efficient
and potentially cheaper to run, as fewer individual participants are required compared
with between-subjects designs (Fig. 13.5).

13.5.9 Random Assignment

If you are conducting a study in which participants are allocated to one condition
of an IV only (i.e. a between-subjects design), you need to decide how to assign
participants to a particular condition. That is, when a participant comes through
the door, which condition are they exposed to? You could decide based on a whole
range of factors—for example alternating order of arrival, surname, day of the week.
Often in robotics research this is determined by technical factors—for example if

13 Social Robots: Principles of Interaction Design … 393

the condition takes a long time to set up, the first six weeks of data collection for a
study could involve participants being assigned to Condition A, and the second six
weeks to Condition B.

However, if at all possible, use random assignment to allocate participants to
conditions. That is, ensure participants are randomly allocated to either condition (or
all conditions, if there are more than two). This can be done by a random number
generator or similar (or you can even go old-school and pick a number out of a hat!).
Random assignment is important because it rules out the possibility of systematic
differences between the groups. For example, let’s say the first 10 participants who
take part in your study you put in a “faceless robot” condition, and the second
10 participants who take part in your study you put in a “face robot” condition.
You ask both groups of participants how safe they feel on a 7-point scale from
“not safe at all” to “completely safe”. The issue with this is that there may well be
pre-existing differences between the groups—participants who sign up earlier for
an experiment may be (for example) more enthusiastic, conscientious, have more
positive views towards robots, more likely to be female. So you may end up with
significant differences between the groups based on existing differences, not on the
effect of the IV you are actually testing. If you use random assignment to groups
you mitigate systematic bias between the groups, and this means you can more
confidently say that the IV causes the changes in your DV. So if you really need
to demonstrate a casual effect you need to use random assignment. If you can’t use
random assignment, try to “match” the participants in each condition as much as you
can—so try to have a similar mix of gender, age, ethnicity etc.—but without random
assignment you can’t say for sure that your IV causes the change in the DV.

Random and Non-random Assignment
Coramand:Researchers are examining the effect ofmotion type (IV: two condi-
tions—fluid and robotic) on perceived safety. Because of technical constraints,
they expose 10 participants (people from around the office) to the fluid motion
condition first, then one week later expose a different 10 participants to the
robotic motion condition. They compare perceived safety as reported by partic-
ipants in each group. Each participant was therefore not randomly assigned
to the different conditions. The researchers must acknowledge that existing
differences between the two groups of participants could have played a role in
any differences between the groups of responses (e.g. people who said yes first
to taking part could be more interested in the project and have lower safety
expectations than people who said yes later).

Tommy:Researcherswant to know if the robotwith enhanced capability (IV:
two conditions—original and enhanced) produces more attachment in partic-
ipants (DV). When every participant is delivered a robot they are randomly
assigned via an algorithm to receive either an original capability product or
an enhanced capability product. When they compare the attachment ratings of

394 J. B. Grant and D. Herath

the two groups of participants, they can conclude that any differences they find
are not due to existing differences between the groups.

13.5.10 Reviews and Meta-Analyses

Some research doesn’t collect any new data, but instead “pulls together” all the
published research on a particular topic into a single article, and summarises it—
these are called reviews. Reviews are considered secondary sources, as no new raw
data is collected. Review articles are incredibly useful, as they collect together the
key research that has investigated a particular question. Some reviews are called
systematic reviews, if they use systematic methods to search the literature—they will
list what search terms they used and what databases they searched, and have pre-
specified eligibility criteria about which studies to include in the review. Systematic
reviews give you a rigorous assessment of findings on a participant topic, so they
are the best evidence available to answer a particular research question. If you are
working to sell a robot product to an organisation, for example, you could conduct a
systematic review of available safety studies, to establish and communicate clearly
to the potential customer the current evidence on safety in that setting. Or you could
conduct a systematic review before you start a research project, as if there is enough
evidence already existing, you may not need to conduct the study! However, keep in
mind systematic reviews can be very narrow in focus, so they may not address the
particular question you’re interested in, and they sometimes don’t give you the “big
picture” of what’s going on in that field.

Meta-analyses are typically systematic reviews in which the author also statisti-
cally analyses the data they’ve found in the studies they review. In this way they can
generate new data that numerically summarises the findings. Meta-analyses provide
an objective assessment of evidence in a field, however if the original selection of the
studies is biased, this means the outcomes of the meta-analysis can be influenced.

13.5.11 Which Research Design Is Best?

A theory can be explored using a wide range of designs—one design isn’t better than
another, they just provide different ways of investigating the theory. Different designs
will also give you different types of information and allow you to draw different
conclusions! So make sure you have a clear idea of your motivation, audience and
research question before you design your study.

13 Social Robots: Principles of Interaction Design … 395

How Different Research Designs can be used to Investigate a Research
Question
Let’s take the example of Sylax, a university-based research robotics project
investigating the effect of factors like behaviour and appearance of the robot
on peoples’ perception of agency. You could use a broad range of research
designs to investigate this question, depending on the particular factors you
were interested in.

Descriptive Design: If you were just starting out looking at this research ques-
tion andwanted to better understand human–robot interactions, you could bring
in a single participant and ask them to interact with the robot for an extended
period, and video record that process.You could then sitwith the participant and
watch the video together, examining and discussing all interactions, gaining an
understanding of their thoughts and emotions during the interaction, focusing
on the aspects of the interaction you’re particularly interested in (appearance
and agency).

Survey Design: You could recruit a large number of people to interact with
the robot, then after the interaction give them a survey about what they noticed
about the robot’s appearance and how high they rated the perceived agency.

Experimental Design: You could run an experimentwhere one group of partic-
ipants interact with a robot with no face, and the other group of participants
interact with a robot with a humanoid face, and compare the groups’ perceived
ratings of agency.

Review Design: You could look at previous research which has explored this
topic before. If you wanted to focus on the effect of facial appearance on
perceived agency, for example, you could identify all studies published in the
last 30 years which involved presenting different types of faces to participants
and measuring agency, and summarise their findings to come to a conclusion
about the evidence that faces affect agency.

13.6 Sampling, Reliability and Validity

13.6.1 Sampling

For purposes of generalisation, you should do your best to ensure that the people
in your study—your sample—is a representative sample of the population you want
to apply your findings to—the population. That is, you’re getting your data from a

396 J. B. Grant and D. Herath

sample that has the same characteristics as the population (e.g. same gender break-
down, same age distribution, same ethnic distribution). If the sample isn’t representa-
tive in this way, it can cause serious errors when you try to apply your findings to the
population. For instance, if you use university students as your sample when testing
a particular user interface, you might find that when you roll out your product to the
general population, users who are older or younger than your sample may engage
very differently with the interface.

There are two broad types of sampling approaches, known as probability
samplingand non-probability sampling. Probability sampling iswhen you select from
your intended population so that anymember of the population has a specifiable prob-
ability of being sampled—for example, you could get a list of the entire population,
and select every 10th person on the list to contact. When you use non-probability
sampling there is not an identifiable probability of each member of the population
being included in the sample. One common example of non-probability sampling is
convenience sampling, where you just select your sample from whoever is available
around you! Purposive sampling is another type of non-probability sampling, where
youdeliberately recruit peoplewhomeet a certain requirement—such as interviewing
elderly people if that is who the robot is aimed at, or recruiting factory workers if
the robot is an industrial product.

Using non-probability sampling like convenience or purposive sampling can be
fine, as long as the sample you end up with is representative of the population on
the particular variables you are interested in. Generally, the bigger the sample is, the
better it will reflect the population and so you’ll be able to better generalise to the
population. But if there is systematic bias in your sampling you’ll just make incorrect
inferences more confidently… For example, many robots designed in universities or
start-ups are only tested using convenience sampling with students or other people
involved in the business. This means often the participants are only people who are
young, and already interested in and knowledgeable about robots. Findings from
studies using samples like these won’t necessarily apply to the general public! Also
keep in mind that the size of the sample will be reduced by non-response—so people
drop out of the study, or forget to enter data.

13.6.2 Reliability

Reliability is our confidence that a given finding can be reproduced again and again—
that it isn’t a chance finding. For example, if you find that people respond more
positively to a robot with child-like features than a robot with adult features, that
finding is reliable if other researchers consistently find the same pattern. You can
think of reliability as similar to consistency. However, just because an effect or test
is reliable doesn’t mean it is valid.

13 Social Robots: Principles of Interaction Design … 397

13.6.3 Validity

Validity is our confidence that a given finding shows what we think it shows. There
are four key types of validity: construct validity, external validity, internal validity
and ecological validity.

Construct validity asks whether we measured what we were trying to measure.
This is harder than it seems! Often people do not interpret the task or question the
way you intend, or other factors affect how they respond. For example, often when
asked about the usability of a robot, people’s responses will actually reflect their
judgements about safety instead.

External validity asks howwell we can generalise what we have found in our study
to other times, populations and places. Let’s say you conduct a survey examining
attitudes to games involving a robot, using undergraduate students from Canada as
participants. Will the findings be the same if I used a sample from a nursing home?
Undergraduate students from China? In 10 years?

Internal Validity asks did the outcome reflect the IV we manipulated. Did the
variable we are interested in cause the result? Let’s say you run a study in which
you want to look at the effect of working as part of a team on performance. So you
have some participants complete a difficult task on their own and others complete
it with other people. Can I conclude that lower performance in the teamwork group
is because teamwork per se lowers performance? Not necessarily—the effect could
be due to embarrassment, personal space factors, cognitive load, for example, rather
than teamwork itself.

Ecological validity asks how well the findings of the study apply to real-world
settings—how well does this finding actually work in the real world? For instance, if
you test how people use a new type of technology in the laboratory, will they actually
use it that way at home? On the bus? At work? Note: This is different from external
validity, which is about generalising to other populations/places.

13.6.4 Things that Can Go Wrong with Validity

As we talked about above, sampling bias can affect external validity. If only certain
types of people respond to a questionnaire or take part in a study, this limits who
the findings apply to. It is notoriously difficult to recruit middle-aged people into
studies, for example, as they are busy with young children and full-time jobs. If
this is who is going to purchase your product you need to make sure your sample
includes that group. Mortality—when people drop out of a study—can also affect
external validity. For example, if taking part in the study requires an hour per day,
those who have less time to take part will drop out of the study, meaning the results
will only apply to people like those who remained in the study. If you are running an
experiment and more people in one condition drop out than the other, this can also
affect internal validity. This is particularly an issue if you are conducting longitudinal

398 J. B. Grant and D. Herath

studies (research that is conducted over a long period), where you can get differential
drop out, with participants more likely to drop out of the study if they are in one
condition rather than another. Reactivity is when something about the study itself
means only particular people respond or influences how people respond. So, if you
advertise your study as “Come and play with robots!” you will only get people taking
part who already are positively disposed to interacting with a robot, missing a large
section of society.

Youalso need to keep inmind that social desirability can affect howpeople respond
in a study, as people tend to behave based what they think will look good to others.
For instance, people tend to over-report their vegetable intake and under-report how
many hours of TV they watch! People also change their responses based on cues in
researchwhich suggest how they should respond—known as demand characteristics.
For example, if the researcher repeatedly asks a participant how much they liked the
way the robot’s eyes moved to follow them, the participant will tend to provide more
(and more positive!) information on this element, even if other aspects of the robot
weremore interesting to them. Sometimes theymay even unconsciously change their
responses to match what they think the researcher wants. You also need to be aware
that often people change their behaviour simply because they are being watched!
This is called the observer effect (e.g. if you knew you were being monitored for
how much sugar you’re consuming, are you likely to eat less sugar?).

Testing effects are when a previous testing situation affects the subsequent testing
situation. A gap between pre- and post-test can cause practice effects (i.e. people tend
to get better on the same task when they complete it for a second time) and fatigue
effects (e.g. are people going to be concentrating all the way through a two-hour
testing session?). Maturation effects are when changes occur just because we are
measuring things over time. For example, if you are measuring a how a child with
a long-term illness interacts with a robot over time, the simple effects of the child
ageing are likely to influence the outcomes. Changes in society can also occur during
a study, and this can result in history effects (e.g. 9–11, COVID-19, social views on
technology). You need to take care that changes in the data due to these factors are
not misinterpreted.

Confounds are another threat to internal validity, and reflect changes in your DV
that are due to another variable, NOT your IV. Consider if you introduce a learning
robot into a school to improve mathematical skills. You compare maths skills in
the classrooms without the robot to those with the robot. However, when adding
the robot into the classroom this involves change, excitement, new staff etc. Any
improvements in “maths ability” could be due to any of those factors, rather than the
robot itself.

13.6.5 Ways to Address Problems with Validity

The above section, with all the many potential problems, might make it seem like it’s
impossible to design a “perfect” study! While an individual study can never avoid

13 Social Robots: Principles of Interaction Design … 399

absolutely every potential source of bias, there are simple steps you can take that
will address many of these issues.

Unobtrusive measures can be used to address reactivity, demand characteristics
and the observer effect—these are measures of behaviour that are not obvious to
the person being observed. Examples are using one-way mirrors, measuring factors
people are usually unaware of (such as how far they stand from a robot interface, or
how often they touch it) or using other methods altogether, such as archival records,
which are data which was collected for a different purpose. You can help reduce
demand characteristics and reactivity by hiding the real purpose of an experiment.
You can use deception, where you lie to participants about the purpose of an experi-
ment, or you can use concealment to avoid telling them thewhole truth (but be careful
of ethics! See below). Using blinding is also really useful in addressing a range of
potential biases. Blinding is when key people involved in the study don’t know infor-
mation which could affect their responses. In single-blind studies, the participants
don’t know which treatment group (level of the IV) they are in. In double-blind
studies, both the participants and the researchers don’t know which treatment group
participants are in.

Focus on Living Labs

• Often when you try to increase internal validity (e.g. control the study
tightly) you end up decreasing external validity, so there can be a trade-off
between the two.

• A recurring critique of HRI has been the lack of consideration given to the
ecological validity of experiments, resulting in poorly designed robots and
interactions for the intended task.

• Attempts to address this should consider use of ecologically valid
approaches (real-world conditions), such as field experiments or use of
“living labs”.

• In-the-wild is another term used to describe such experiments. One useful
approach is to compromise by situating your experiments inmore accommo-
dating venues such as technology museums and gallery spaces, where you
find populations open to such experimentation but with reasonable diversity,
providing a context that more closely resembles a real-world environment.

400 J. B. Grant and D. Herath

13.7 Ethics

13.7.1 Ethics and Ethics Review Boards

All throughout this chapter, we’ve been talking about designing and evaluating
studies—recruitment, sampling, randomisation, etc.; however, it is also important
to consider ethical principles in research design. Although most lab-based robotics
studies are relatively benign, it is still crucial to be able to identify and address ethical
issues and demonstrate to a research ethics committee or institutional review board
that your study is appropriate to be conducted. This is in addition to being aware of
the broader implications of ethical robot design considerations discussed in Chap. 16
and safety of robot deployment discussed in Chap. 14.

Common Ethical Issues in Robotics User Studies
So what are some of the typical ethical issues you might face when conducting
human–robot interaction research?

• Some of the most important risks are around data: Who has access to the
data? Where is it stored? If you are using video recordings this is particu-
larly important, as it is difficult to ensure confidentiality when people are
identifiable from their images.

• There can also be physical danger from proximity to robots that needs to be
carefully considered, and this risk communicated to participants when they
give consent to participate.

• Remember participants won’t know most of the terminology you are used
to using, so write all participant-facing information in easy-to-understand
language.

• If you are asking people you know to participate (friends, relatives, other
students) make sure they actually want to take part and don’t feel coerced!
Avoid asking people you have an unequal power relationship with, such as
students you are teaching or supervising.

There are regulations that govern what research can be conducted, typically at
the institutional, national and international level, so you need to check based on
where you are located. Most broadly the World Medical Association Declaration
of Helsinki (Ethical Principles for Medical Research involving Human Subjects) is
applicable to any research you do in which you recruit participants.

The ethics review process is a formal procedure in which you write a statement
including details about the research project and addressing any ethical concerns,
which is then submitted to a research ethics board for approval. The board will
approve, reject or ask for changes to the study or more information to be provided
before approval. Many researchers view applying for ethical approval as purely a

13 Social Robots: Principles of Interaction Design … 401

logistical a stumbling block, but ethics boards will sometimes identify very real
ethical concerns that the researcher has not considered. Ethics boards are typically
composed of experienced researchers, legal experts and laypeople. Each of these
groups can give insight from those perspectives that youmay not have thought about,
that necessitate changes to your project.

13.7.2 Ethical Principles in Research

There are many different ways of considering ethical principles, all of which are
based on the fundamental idea that you show respect to the people who take part
in your study. This means that you are considerate of their experiences and take all
the steps you can to be sure that they are consenting freely to participate, and are
protected from harm. Some of the key principles to keep in mind are to use informed
consent, minimise risk, ensure confidentiality and provide debriefing.

13.7.2.1 Informed Consent

People should participate in your study based on free, informed consent. This means
that you provide them with all relevant information about the study (including any
potential risks), that they understand this information, and that they are not pres-
sured into participating in the study. You need to ensure that your participants are
able to consent. For children or people with cognitive impairments (e.g. dementia),
this requires additional checks—it typically means informed consent from both the
guardian and the person themselves. You also need to provide information in a way
that ensures people understand what you are saying (i.e. free of technical terms or
jargon). Participants should also be free to discontinue the study at any time. This
means that they can withdraw from the study, without any penalty, and do not have
to provide a reason for doing so.

13.7.2.2 Minimise Risk

When designing your research (and writing your ethics application), you will need
to carefully clarify the benefitsand risks of your research. In terms of the benefits,
be explicit—what will this particular study tell us that we don’t already know? Who
will benefit from what you learn from the study? Will there be any broader social
value? Will the participants get any benefit out of it? Remember that this all depends
on your study being well designed in the first place, so that it gives you accurate data
about what you’re trying to assess.

You then need to weigh these benefits against the risks. One common risk is
stress. Try to minimise unintended or unnecessary stress, and remember that what
might not be stressful to you, might be for participants! So consider all the ways in

402 J. B. Grant and D. Herath

which you can reduce stress for the participants. If you are using any deception—
giving participants information that is false—this is a potential source of risk as it
violates informed consent and can cause harm. You should only use deception if
required, and if you do, you need to undertake debriefing (see below) to disclose
that deception and the reason for using it to the participant. Obviously if you are
doing anything which is invasive, this risky! Invasive research is any research which
changes the participants, such as administering drugs, inserting a recording device
into a person’s body, or exposing them to a situation where they could potentially be
hurt or physically impacted. You need to ensure that what you are doing is absolutely
necessary (the study won’t achieve its aims without it), that you have minimised any
risk during the study, and removed any long-term negative effects.

13.7.2.3 Confidentiality

Participants often provide sensitive information during a study and it is your respon-
sibility to keep this information confidential. Remember also that information you
may personally not consider sensitive (e.g. weight, performance on a task) may be
considered sensitive to others. There are various ways you can ensure confidentiality.
The easiest is to ensure participants are anonymous—that the data they provide is not
identifiable. Using a participant ID number rather than names is good practice, for
example. If you’re conducting case study research, you may choose to refer to that
person by their initials or a pseudonym rather than their name. If you are using audio
or video recording, you should specifically ask for the participants’ permission for
this on the consent form. Data storage and protection also needs to be considered—
where is the data stored? No one should have access to the data that isn’t part of the
project. Ensure storage devices are appropriately and securely protected.

13.7.2.4 Debriefing

Debriefing is explaining to the participants who took part in your study exactly what
the study was about and what occurred during the study. This will counteract any
deception that took place during the study (i.e. you tell them the truth about what
happened in the study and why) and hence minimise potential harm. You should also
encourage them to ask questions about the study and you should answer them fully.

The Wizard-Of-Oz Paradigm
When conducting user studies, at times researchers need the participating
robots to exhibit capabilities beyond their technical abilities (either because it
is not possible at the current state of the technology or due to non-availability
of resources). In such situations, a commonly used technique in HRI is to

13 Social Robots: Principles of Interaction Design … 403

augment the missing skills through the integration of a human “wizard”. Let’s
use Tommy (see above) as an example. If we were to examine the impact
on participant–robot attachment by comparing a version of Tommy which
converses verbally comparedwith a versionwhich uses only non-verbal cues, it
might be difficult to implement a fluidNatural LanguageProcessing system that
could mimic human competency appropriately. In such a situation, a confed-
erate (another researcher) could be placed behind a curtain to converse with the
research participant through the robot, giving the illusion that the participant
is conversing with the robot. The concept comes from the classic fantasy novel
“The Wonderful Wizard of Oz” by L. Frank Baum. While helping researchers
to circumvent technical difficulties in conducting user studies, it should be
cautioned that the practice has ethical and social implications. Ethical, in that
you are potentially deceiving a research participant into believing the inter-
action is purely with a robot. Socially, when such research is presented in
the wider media, there is a risk of misrepresenting the current state of the
technology, leading to false understandings about the capabilities of robots.
This has implications for research funding and the formation of exaggerated
expectations or fears towards robots in society.

13.7.3 Data, Analysis and Interpretation

The earlier sections of this chapter have introduced you to the key factors to consider
when designing a research study. While this text does not attempt to teach you data
analysis (that’s several other texts just on its own!), this section walks you through
some of the fundamentals of data analysis, so that you can work out what analyses
you need to conduct and can use other resources to follow up how to do those analyses
with whatever data analysis program you are using.

In this section, we are assuming that you have conducted your study and collected
your data. You are probably looking at a data file listing a big bunch of numbers and
wondering what to do now! This chapter will help you understand what you need to
know to take the next steps.

13.7.3.1 Research Data

One of the first things you need to know is what type of data you have, as this will
allow you to work out what analyses you can do with it.

Although there are many definitions, qualitative data is generally considered to be
data that describes or characterises what it is measuring—it is typically descriptive
information about attributes in the form of words, that you can’t easily summarise
in numbers. You often collect qualitative data if you are conducting case studies

404 J. B. Grant and D. Herath

or observational research, or using other open-ended ways of gathering data in real-
world settings. There are many different ways of presenting and analysing qualitative
data, including approaches like grounded theory, thematic analysis and discourse
analysis. In contrast, quantitative data is data that can be represented as numbers. But
although this sounds simple, not all quantitative data is the same! Overall, knowing
what type of data you have is important and depends on how you chose to measure
your variables (see operationalisation above).

If you’re going to conduct statistical analyses on your data, you need to work out
which of the following four types it is.

• Nominal variables are variables which measure what category people fall into.
Examples are gender (female, male, non-binary etc.) and the condition someone
is in an experiment (control, experimental, etc.).

• Ordinal variables are categorical variables that are sequenced in a certain way,
such as grades in school (A, B, C etc.) or outcomes in a running race (1st, 2nd,
3rd). In other words, the categories “go” in a certain order. However, these ordered
categories do not have consistent intervals between each category.

• Interval variables are variables in which responses are quantitatively related to
each other, with equal intervals between them but no true zero. For example, IQ
is an interval scale as the “0” is not a true absence, but just the lowest score on
that measure.

• Ratio variables are variables in which the numbers are quantitatively related to
each other and have a true zero. This includes variables such as weight and height.

Once you are clear what type of variables you have, you can work out what
descriptive and inferential statistics you can conduct on that data.

Examples of Common Variable Type in Robotics
Many of the variables below could be several different variable types –

it depends exactly how you’ve chosen to measure (operationalise) them.

Reaction time (milliseconds between robotmovement and participant reaction)
Ratio

Perceived agency (5 levels strongly agree to strongly disagree) Ordinal.

Reported safety (combined score across 10-item questionnaire) Interval.

Distance (centimetres between robot and participant) ratio.

Experimental condition (robot without a face, robot with a humanoid face)
Nominal

Previous exposure to robots (none, occasionally, frequently) Ordinal

Interactions (number of times the participant initiated conversation): Ratio

13 Social Robots: Principles of Interaction Design … 405

13.7.3.2 Descriptive Statistics

Descriptive statistics are numerical statements that summarise the data you’ve
collected from your sample. You will need to report the descriptive statistics of
your data when you communicate your findings to your audience. Think about it—if
you collect data from 40 people, you can’t just give all those “raw” numbers in your
presentation or your report! You need to summarise them in some way that tells your
audience what your data “looks like” in a simple overview.

How you describe your data depends on what kind of data you have. If you have
categorical variables (nominal or ordinal), you typically report the number of people
in each category, and/or the percentage of people in each category. For example, if
you asked participants whether they trusted robots, and they were given the option
of yes or no, this would be a categorical variable. You would then report as your
descriptive summary the number of people (the n) who said yes and the number of
people who said no. You could also report the percentage of participants who fell into
that category. For example, “Of the participants, 10 people (25%) reported trusting
robots, and the remaining 30 (75%) reported did not.”). Remember also to report
how many people didn’t answer that question, if that occurred.

If you have numeric variables (interval or ratio), you report the “middle” of the
values for that variable, and how spread out they are around that middle point, as
this is more meaningful than n or percentages with these kinds of variables. The
“middle” of the data set is usually the mean, the median or the mode. The mean (M)
is calculated by adding all values together, and dividing by the number of values.
The median is the central value when all values are ordered from smallest to largest,
and the mode is the most common single value for that variable. Of these the mean
is most frequently reported. The most common ways to report how spread out the
data are the range and the standard deviation. The range is the difference between the
smallest and largest value for that variable. The standard deviation (SD) is a measure
of how much the values vary around the mean—a larger standard deviation means
the values are more spread out, a smaller standard deviation means they are less
spread out. All of these descriptive statistics can be easily calculated using available
statistical software. For example, if you measured how close people stood to a robot
(in m), you could summarise that data as “The participants stood on average 2.17 m
(SD = 0.73) from the robot.”

13.7.3.3 Inferential Statistics

While it’s useful to report what the results of the study are for the participants in
your sample (descriptive statistics), usually you want to make a statement that goes
beyond the people in your sample, and talk about what this means for the entire
population you want to apply your findings to. Inferential statistics are numerical
statements that draw conclusions about the broader population based on your sample
data. While teaching you inferential statistics and the associated statistical theory is
(well!) beyond the scope of this chapter, the following should give you a quick

406 J. B. Grant and D. Herath

overview so that you know what kinds of questions to ask, and how to seek help,
when you begin to conduct analyses.

The first thing you should do is recognise your limits! Appropriately conducting
statistical tests requires a good understanding of the theory those analyses are based
on, what those analyses represent and what they can tell you (and what they can’t!).
You should first find guidance in terms of a statistical advisor, a senior supervisor,
or take part in an introductory statistics course (there are many available online) to
upskill you in these factors. If you don’t understand what you are doing you are likely
to conduct inappropriate analyses and/or draw inaccurate conclusions.

Once you have a basic knowledge of inferential statistics in general, you then
need to decide how to apply that knowledge to your particular study. The place to
start is your hypotheses. You should have pinned down particular hypotheses at the
beginning of the study—what exactly did you predict? These will form the basis for
your analyses. You normally have several different hypotheses in the one study, and
you will need to go through this process for each one to decide which analysis is
appropriate for each hypothesis. For example, if you are manipulating what motion
type the robot exhibits and measuring perceived safety, you might also in the same
study be measuring acceptability and how far people stand from the robot. Or you
might also be manipulating the colour of the robot in the same study. You would
have separate hypotheses for each of these effects and so these would be different
analyses.

Steps when deciding on and conducting analyses.

• What was your initial hypothesis?
• Howdid you operationalise these variables? Identify the IV(s) andDV(s) involved

in this particular hypothesis (how exactly did you measure or manipulate them?
Do have conditions, if so how many, and are they between-subjects or within-
subjects?)

• What types of variables are those IVs and DVs? (i.e. nominal, ordinal, interval or
ratio?)

• Work out which analysis is relevant for you to run, given your IVs and DVs (you
can use a decision tree like the one provided below).

• Check the assumptions of that particular analysis (e.g. some tests require normally
distributed data) and change analyses if necessary (e.g. to a test that doesn’t require
that assumption).

• Conduct analysis and interpret output.
• Write up the output, conveying all necessary information to your audience

(Fig. 13.6).

Research Examples: Selecting and Conducting Analyses
Let’s take the example of Sylax, the university-based robotics project looking at
the effect of factors like behaviour and appearance of the robot on perception of

13 Social Robots: Principles of Interaction Design … 407

Fig. 13.6 Decision tree representing common statistical analyses

agency. The researchers have lots of questions about these different variables,
but in one study they focus particularly on comparing randomversus purposeful
behaviour.

• Their hypothesis for this particular study is that people will perceive the
robot to have more agency when it shows purposeful movements rather
than when it displays random movements.

• They conduct a study in which they manipulate behaviour and measure
perceived agency. Their IV is behaviour, which has two conditions: random
and purposeful. They use the same participants in each condition, so this
IV is manipulated within-subjects. They assess their DV perceived agency
by measuring the number of interactions initiated by the participant.

• The IV of behaviour is nominal (as there are two conditions/groups). The
DV of perceived agency is ratio (as it is the number of interactions).

• Given that the researchers have a ratio DV, have one IV which is nominal,
with two conditions, manipulated within-subjects, the researchers decide
they should run a paired-samples t-test.

• They check the assumptions for a paired-samples t-test (e.g. that their data
is normally distributed) and find that it meets those requirements.

• They conduct a paired-samples t-test using their chosen statistical analysis
program (e.g. The Jamovi Project, 2021) and conclude that although there
is a difference between the means of the number of interactions between the
two conditions, the analysis shows that this is not statistically significant.

• They write up their findings including all the relevant information and
values. They conclude that their hypothesis that people’s perception of

408 J. B. Grant and D. Herath

agencywill differ depending on the robot’s movement type is not supported,
and in fact movement type does not affect perception of agency.

13.7.3.4 Presenting Your Findings

When presenting your findings, you need to tell the person reading it (or watching,
if it is a presentation) all of the relevant details so that they understand what analysis
you conducted, provide themwith the key values so they can see for themselves what
you found, and clearly communicate what this means.

Some key information you should present:

• The name of the test you conducted.
• The variables involved (and name the conditions you are contrasting if relevant).
• The outcomes of any assumption testing.
• The key descriptive statistics (e.g. the means and standard deviations of each

group).
• The key values output from your analysis (typically the test value such as r, t or

F, the number of people or degrees of freedom, the p value).
• Additional information such as confidence intervals and effect sizes.
• Whether or not the outcome was statistically significant.
• Additional information to aid interpretation (e.g. the effect size, confidence

intervals).
• Appropriate graphs or figures to illustrate your findings.

Examples of Typical Presentations of Results of Statistical Analyses
A paired samples t-test was used to compare the perceived agency (number of
interactions initiated) between 20 participants exposed to a randomly moving
robot (M = 4.75, SD = 1.59) and an algorithmically-driven robot (M = 5.55,
SD = 2.01). Assumption checks confirmed the data was normally distributed.
There was a mean difference of 0.80, 95%CI [-1.96, 0.36] between the number
of interactions generated in the two conditions, but this difference was not
significant (t(19) = 1.44, p = 0.166, d = 0.32).

APearson’s r correlation analysiswas conducted to examine the relationship
between self-reported previous exposure to robots and attachment to a robot
product. The assumption of normality was supported. There was a moderate,
significant, positive correlation between previous exposure and attachment
scores (r(15) = 0.54, p = 0.026), such that participants with more contact
with robots before the study tended to report higher attachment to the robot.

13 Social Robots: Principles of Interaction Design … 409

13.7.4 Common Mistakes and Pitfalls

This section introduces you to some of the common errors that both novice and
experienced researchers show from time to time. By knowingwhat they are hopefully
you can avoid them!

One key way researchers run into trouble is not planning the analyses. You should
have formulated your key hypotheses before conducting your study. What are the
main effects you are looking for? What are the key variables? You may have four or
five key hypotheses that you want to test in a single study. Your analyses should then
be pretty straightforward—you are running the analyses that test those hypotheses!
This will also protect you from what is called “data fishing” or “p-hacking”, which is
when researchers run many different analyses on a single data set, but only report the
significant ones. This is highly problematic statistically as it means many of those
findings may actually then be false positives. It is also problematic in that it reflects
a poor understanding of non-significant results—just because a finding isn’t signifi-
cant doesn’t mean it’s not interesting or useful! Not finding a significant difference
between two conditions, for example, may tell you that you don’t need to incorporate
that additional capability to improve safety, or that people can’t differentiate between
different robotic faces.

When you first get your data from your study it is very exciting! You are keen to
see what you’ve found and it’s all too easy to rush into conducting analyses without
understanding the data. If you do this, you end up with whole pile of outcomes
that are a big mess! And are largely uninterpretable! Take your time to get to know
the data set—what type is each variable? Should any variables be recoded to make
them more useful? (e.g. turning age from a number into a category) Do you have
any missing data and is this problematic? Take a look at your data using graphs and
descriptive statistics. Does it “look” ok? Are there any weird values that shouldn’t be
there or outliers that might suggest equipment failure or data entry error? Are your
numeric variables normally distributed or will you violate some assumptions? What
is your plan for this?

After you have conducted your analyses there are a few common issues that can
emerge.One error you see frequently is people assuming correlation equals causation.
For example, just because you find that people who have previous exposure to robots
also are more attached to their companion robot, this doesn’t mean one causes the
other—it doesn’t mean that increasing people’s exposure will cause their attachment
to increase. Maybe it is a positive perception of robots that causes both ratings to
rise? Also be careful in interpretating all your findingsmore generally. If your sample
size is too small, you will have low power, which means that you don’t (statistically)
have the ability to find some effects even if they are really there. There are programs
available (e.g. G*Power) which will enable you to calculate how many people you
need in a study to have a particular level of power. This is often a problem in robotics
user research where we tend to have small sample sizes. Running a power analysis
before you conduct your study, to work out how many participants you need, is an
important step. Finally, even if you find a significant effect, make sure you consider

410 J. B. Grant and D. Herath

effect size as well (most statistical programs will calculate this for you as well, for
each analysis). Some effects can be significant, but not meaningful! For example, if
you find a significant difference between the perceived safety of two robots, if the
difference itself is only.5 of a point on a 1 to 20 scale, it is unlikely to be ameaningful
difference at the end of the day.

The key thing to remember is that you have to be confident in what you’re
presenting. Are you sure that the data reflects your conclusions? Are there any
issues the reader should know about in order to interpret your findings appropri-
ately? Remember others will use your work and build on it, so you want it to be an
accurate representation of the world!

13.8 Chapter Summary

This chapter introduced you the fundamentals in conducting research in human–
robot interaction.We have highlighted the importance of carefully designing research
projects so that you get the most accurate and useful information out of the research
you conduct. This chapter should provide you with the necessary knowledge and
confidence to design your own studies in this field.

13.9 Revision Questions

Q1: You are conducting a research study focusing on the effect of robotic faces
(child-like or adult-like) on perceptions of animacy. You predict that you’ll find
that child-like faces have higher animacy than adult-like faces. This is an example
of a:

(a) Theory
(b) Hypothesis
(c) Control condition
(d) Relevance-sensitivity trade-off.

Q2: You want to work out which of three voice options for a companion robot
elicits the most positive response from the general public. You give a group of
people the same robot with one of the three difference voices and after a week
ask them how positively they view the robot on a scale from 1 to 7. What is the
IV and what is the DV in this study?

(a) IV positive rating; DV voice type
(b) IV robot type; DV safety rating
(c) IV voice type; DV positive rating
(d) IV before and after rating; DV voice type.

13 Social Robots: Principles of Interaction Design … 411

Q3: You figure out the best type of articulation to use on your robotic design by
reading all the previous studies conducted looking at articulation and summarising
them. The research design you are using is:

(a) Descriptive
(b) Correlational
(c) Experimental
(d) Review.

Q4: To establish what factors are important in designing an industrial robot for
a particular company you send out a survey to all the company employees. You
particularly want to know about the relationship between how long people have
worked there and how important they think particular design features are. The
research design you are using is:

(a) Descriptive
(b) Correlational
(c) Experimental
(d) Review.

Q5: You are testing how people react to the new robotic interface you have
designed. You ask some friends if they can drop by the lab to help you test it
out. You are using what kind of sampling?

(a) Convenience
(b) Purposive
(c) Probability
(d) Random.

Q6: You are testing how people react to the new robotic interface you have
designed. You ask them to do a task with the help of the old interface, then do the
same task with the new interface. They report they found it easier to complete the
task with the new interface. What is one explanation for this difference?

(a) Observer effects
(b) Mortality
(c) Practice effects
(d) History effects.

Q7: You place two video cameras in the corner of your laboratory to record the
interactions between your participants and the robot. What ethical issues do you
need to consider when using these?

(a) Informed consent provided by participants to be videoed
(b) Secure storage of the video files
(c) Protecting confidentiality of the participants in the videos
(d) All of the above.

412 J. B. Grant and D. Herath

Q8: You are conducting a pilot test installing a robot in a manufacturing setting.
Youmeasure howmany times people physically touch the robot during the course
of a day. This is what type of variable?

(a) Ordinal
(b) Nominal
(c) Interval
(d) Ratio.

Q9: You conduct a research project and gather some data. You present your data as
the percentage of participants who responded “Strongly agree” to each question.
You are using:

(a) Inferential statistics
(b) Descriptive statistics
(c) The mean and standard deviation
(d) Significance testing.

Q10: A survey of the general population finds that people who are afraid of
robots are more likely to say they don’t need robotic help around the house. The
researchers conclude that if they make people less afraid of robots they will then
want more robots to help in the household. What error are they making?

(a) They are p-hacking
(b) They have low power
(c) They are assuming correlation equals causation
(d) They have low effect size.

References

Bretherton, I. (1985). Attachment theory: Retrospect and prospect. Monographs of the Society for
Research in Child Development, 50(1/2), 3–35. https://doi.org/10.2307/3333824.

Leslie, A. M. (1987). Pretense and representation: The origins of “theory of mind”. Psychological
Review, 94(4), 412.

Slovic, P., Fischhoff, B., & Lichtenstein, S. (1984). Behavioral decision theory perspectives on risk
and safety. Acta Psychologica, 56(1–3), 183–203.

The Jamovi Project. (2021). jamovi (Version 1.6) [Computer Software]. Retrieved from https://
www.jamovi.org.

Janie Busby Grant is a research psychologist based at the University of Canberra. She is a cogni-
tive psychologist whose research focuses on future-oriented thought, mental health and human-
robot interaction. She has experience designing and conducting collaborative cross-disciplinary
research projects and engaging with stakeholders with complex relationships and data sensitivi-
ties. Janie has taught research methods at different levels across three universities and is currently
an Academic Fellow mentoring Ph.D. students across all Faculties in her current university. She
specialises in the use of new technologies in both research and teaching contexts.

https://doi.org/10.2307/3333824
https://www.jamovi.org

13 Social Robots: Principles of Interaction Design … 413

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra.
Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading
multidisciplinary research teams on complex robotic integration, industrial and research projects
for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and
was named one of the most innovative young tech companies in Australia in 2014. Teams he
led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in
the coveted Amazon Robotics Challenge—an industry-focused competition amongst the robotics
research elite. In addition, Damith has chaired several international workshops on Robots and Art
and is the lead editor of the book Robots and Art: Exploring an Unlikely Symbiosis—the first
significant work to feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 14
Safety First: On the Safe Deployment
of Robotic Systems

Bruno Belzile and David St-Onge

14.1 Learning Objectives

The objective at the end of this chapter is to be able to:

• recognize the different standard organization and their publications;
• conduct a risk-assessment procedure on a robotic system and propose risk mitiga-
tion measures;

• know the difference between an industrial robot and a cobot as well as their respec-
tive potential hazards;

• differentiate the types of collaborative operation methods;
• conduct a risk assessment on a mobile robotic system.

14.2 Introduction

The deployment of robotic systems always brings several challenges. Among them,
safety is of uttermost importance, as these robots share their environment with
humans at a certain degree. In this chapter, youwill get an overlook of some standards
relevant to robotic systems, pertaining mostly to their scope and the organizations
issuing them. These standards and others documents such as technical specifications
are relevant to conduct the risk assessment of a new system and mitigation of the
identified hazards, two critical steps in the deployment of robot cells, mobile manip-
ulators, etc. While we will first focus on conventional industrial robots, we will then
move to collaborative robots (cobots), with which human operators’ safety is even
more critical considering the intrinsic close proximity, as well as mobile robots. It
is important to understand that the information presented in this chapter is only a

B. Belzile (B) · D. St-Onge
Department of Mechanical Engineering, ÉTS Montréal, Montreal, Canada
e-mail: bruno.belzile.1@ens.etsmtl.ca

D. St-Onge
e-mail: david.st-onge@etsmtl.ca

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_14

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_14&domain=pdf
mailto:bruno.belzile.1@ens.etsmtl.ca
 854 54656 a 854 54656
a

mailto:bruno.belzile.1@ens.etsmtl.ca
mailto:david.st-onge@etsmtl.ca
 854 57535 a 854 57535
a

mailto:david.st-onge@etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_14
 -2047
61852 a -2047 61852 a

https://doi.org/10.1007/978-981-19-1983-1_14

416 B. Belzile and D. St-Onge

brief introduction to the process leading to the safe deployment of a robotic sys-
tem, whether it is a conventional industrial robot, a cobot or a mobile robot. You
will need to refer to existing standards, technical specifications, guidelines and other
documents that are yet to be released, as it is a field constantly adapting to new
technologies. Moreover, a safe deployment goes beyond any written document, as a
thorough analysis is critical, which includes elements that may not be considered by
any standard.

An Industry Perspective

Camille Forget
Quality assurance manager, Suppliers

Kinova inc.

I have a bachelor’s degree in automated production. I worked a few years in the
metal industry and went back around robotics when I joined Kinova’s quality
assurance team four years ago. I always found robots fascinating, which made
my job even more interesting to do.

Since we design and manufacture both medical and industrial robots, a big
challenge that we have at Kinova in terms of quality is to optimize the quality
management system to meet the requirements of medical standards while still
allowing rapid and constant development required by the industry. We need to
go back to the essence of the requirements and make sure to fulfill them while
also keeping the system efficient and flexible.

Absolutely, the robot safety field is in constant evolution as the technology
progresses to help create safer and better human-robot collaborative applica-
tions. Standards are evolving to help structure the industry and push (things)
forward. New technologies are being developed and refined to help integrate
the robots more safely and efficiently.

14 Safety First: On the Safe Deployment of Robotic Systems 417

14.2.1 Terms and Definitions

First, some terminologymust be defined. Table14.1 includes terms commonly found
in the field of robotic system safety and they will be used throughout this chapter.
The definitions provided here are based on several standards, including new ISO
8373 ISO (2021c) and ISO/DIS 10218-1.2 ISO (2022).

14.2.2 Challenges with the Safe Deployment of Robotic
Systems

Several challenges arise in regard to the deployment of robotic systems, particu-
larly in environments where they were not commonly found in the past. Moreover,
existing and well-known standards are not necessarily adapted for every new situ-

Table 14.1 Definitions

Term Definition

Robot Programmable, with more than one DoF,
autonomous and versatile, designed for
locomotion, manipulation or positioning

Automated guided vehicle (AGV) Mobile platform that follows fixed routes
designed to transport loads

Autonomous mobile robots (AMR) Mobile robot that travels under its own control
using sensors to avoid obstacles

Industrial robot (IR) At least one robotic arm and its controller used
in industrial automation applications in an
industrial environment

Industrial robotic system (IRS) An industrial robot, its end-effector (tool), and
the task program

Industrial robotic system application (IRSA) Industrial robotic system completed with
workpieces, machinery and equipment

Industrial mobile robot (IMR) Autonoumous mobile robot used in an
industrial environment

Standard Established norm including definitions,
technical guidelines on how to approach
particular problems, questions and systems

Technical specification (TS) Document whose publication aims to make
public work which is still under development
and which is not mature enough to be the
subject of a standard; The TS is intended to
give rise to the future publication of a standard
when the research work is sufficiently
completed

418 B. Belzile and D. St-Onge

ation. For instance, before late 2020, if you were working with industrial mobile
robots (IMR), you would not have found exactly what you were looking for, as IMRs
did not fell within the scope of a particular standard. Then, the ANSI/RIA R15.08
ANSI/RIA (2020) was released in December 2020. Both autonomous mobile robots
(AMR) and automated guided vehicles (AGV) with a manipulator used in an indus-
trial environment fall under the definition of IMRs, thus are covered by this standard.
However, AGVs and AMRs have different scopes: the former follow fixed routes,
while the latter use sensors to avoid and go around obstacles by autonomously com-
puting its own trajectory. The ANSI/RIA R15.08 is based on relevant guidance from
ANSI/RIAR15.06 ANSI/RIA (2012) and ANSI/ITSDFB56.5 ANSI/ITSDF (2019),
which focus on industrial robot safety and guided industrial vehicles, respectively.

Moreover, even if a technical specification, precursor of a full standard, is already
established, as it is the case for collaborative robots, the increase in interactions
between robots and operators in close proximity also makes risk assessment more
complicated, as topics such as the onset of pain must be considered, which was not
the case for conventional industrial robots, with which any contact with the robot is
prohibited by design.

14.3 Standards

Standards are established norms agreed by experts and published by an organization.
They cover a large spectrum of topics, ranging from environmental management to
IT security, including sustainability as well and, of course, safety in robotics. While
reading a standard, you will find similarities regarding the content, such as a section
defining clearly the scope of the document with respect to related standards, as well
as the definition of the critical terms used.

14.3.1 Organizations

Organizations issuing standards, technical specifications, norms and codes relevant to
safety of robotic systems can be classified into three categories, i.e., 1. international;
2. national; 3. local. Organizations acting at the international level are obviously those
usually most well known. It should be noted that standards published by national
organizations can be relevant internationally. For instance, the ANSI, an American
organization, is well known and is viewed as a reference well beyond the borders
of the USA. It is even more true in emerging topics where national institutions have
not considered yet. However, you should know that these organizations do not have
the power to make their standards compulsory. It is at the local level, through codes
and regulations, that legal obligations may appear. Nevertheless, the latter may refer
explicitly to standards/technical specifications, as well as generally requiring you to
follow well-known good practices, which include them implicitly.

14 Safety First: On the Safe Deployment of Robotic Systems 419

You can also look at the different organizations and levels from another angle.
At the local level, there are common rules and good practices from the field. These
rules can give rise to codes and regulations. If these codes and regulations are found
to be common to a domain, a branch, a type of machine at the national level, this
can give rise to standards established by national organizations, such as CSA Group.
At another level, if the rules and codes around a subject are of interest beyond the
borders of a country, they may fall under an international standardization process
and eventually give rise to a technical specification and an international standard.

You should remember that standardization work at both national and interna-
tional level is the result of the work of experts in the corresponding field from dif-
ferent backgrounds. For example, for the international standardization work of the
ISO/TC/299/WG3 group in charge of standards associated with industrial robots, the
group consists of

• manufacturers of industrial robots;
• industrial robot integrators;
• companies using industrial robots;
• academics/researchers;
• government agencies;
• prevention organizations.

The international standard thus obtained is the result of a consensus between
different experts from different countries. It represents the best practices that can be
applied in that field.

International
You have probably heard already about ISO. The International Organisation for
Standardisation (ISO) is an federation dating back to 1946 with a membership of
more 150 national standard organizations. It has published tens of thousands of stan-
dards in numerous fields and has several hundreds of technical committees working
on revising and publishing new standards, notably the ISO/TC/299 on robotics men-
tioned above. This technical committee also relies on the input from more grounded
organizations, such as the Robotic Industries Association (RIA),1 which publishes
guidelines designed for robotics applications based on existing standards.

National
There are more than a hundred national standards organizations around the world;
it would be pointless to just list them all here. It should be noted, however, that
they issue their own norms and also participate in the elaboration of international
norms, released by ISO for example. Among them, we can mention the American
National Standards Institute (ANSI)which “is a private, non-profit organization that
administers and coordinates the US voluntary standards and conformity assessment
system.”2 There is also the CSA Group, an organization accredited by the Standards
Council of Canada, a governmental corporation promoting voluntary standardization

1 Now part of the Association for Advancing Automation (A3).
2 www.ansi.org/about/introduction.

www.ansi.org/about/introduction
 -1461 57867
a -1461 57867 a

www.ansi.org/about/introduction

420 B. Belzile and D. St-Onge

in Canada. Standards from CSA Group also have an international reach, being used
notably in China, but the main objective of this organization is to adapt international
standards to the Canadian reality.

14.3.2 Classification and Relevant Technical
Specifications/Standards

You can classify ISO’s safety-of-machinery-related standards into three categories,
types A, B and C (see Villani et al., 2018 for more information). In Fig. 14.1, we have
added standards from other organizations and technical specifications as well (which
are precursors to standards, as mentioned above). As you can see in Fig. 14.1, type
A standards focus on basic safety. For instance, ISO 12100 ISO (2010) “specifies
basic terminology, principles and amethodology for achieving safety in the design of
machinery.” It also proposes principles of risk assessment and risk reduction, which
we will see later in this chapter and will help you design safe robotic systems. Type
A standards apply to all types of machines. Type B standards give you more techno-
logical specifications for the design of machinery, and therefore have a more limited
scope. For example, you can refer to ISO 13850 ISO (2015) if you need to design
emergency stops (e-stops). In other words, type B standards give recommendations
and safety requirements that can be applied to different types of machines. They
relate to safety aspects or a type of protection device that can be used for a series of
machines. For example, emergency stops are not specific to a given machine nor are
movable guards.

While basic (type A) and generic safety (type B) standards are not specifically
written for mobile and collaborative robots, they should still be taken into account in
all deployment scenarios of robotic systems. Finally, type C standards focus specif-
ically on machine safety and are of particular relevance for robotics. They can be
categorized depending if it is an industrial robot, a mobile robot, a collaborative
robot, a service robot or a personal-care robot. Many of the current-standards target
manufacturing robots, e.g., fixed (and recently some industrialmobile robots), collab-
orative devices, automated guided vehicles (AGV), automated agriculturalmachines,
etc. The scope of a standard or a technical specification is one of the first element
defined in the corresponding document. A chart, taken from ANSI/RIA R15.08 and
displayed in Fig. 14.2, details the different scopes of IMRs (ANSI/RIA R15.08),
AGVs without an attached manipulator (ANSI/ITSDF B56.5) and IRSs (ANSI/RIA
R15.06), based on their characteristics.

The ANSI B11 series of standards and technical reports are particularly inter-
esting, as they focus on machinery safety. Similarly to ISO publications, they are
classified in types A, B and C. A full list can be found online.3

You will find a summary of the some relevant standards to robotic systems’ safety
in Table14.2. For example, ISO/TS 15066 is of particular interest, because it focuses

3 https://www.b11standards.org/current-standards.

https://www.b11standards.org/current-standards
 -1461 58544 a -1461 58544
a

https://www.b11standards.org/current-standards

14 Safety First: On the Safe Deployment of Robotic Systems 421

Type A

Type B

Type C

basic safety

generic safety

machine safety (product)

ISO 12100

CAN/CSA-Z434-14

ANSI/RIA R15.06

ANSI/RIA R15.08 ISO TS 15066

ISO 10218-1
ISO 10218-2

ISO 13850
ISO 13851

ISO 13849-1
IEC 62061

ISO 13857

programmable logic controller (PLC)

fundammentals of machine safety

fences

e-stops and
2-hand control

for IR designers

for IR users

cobots

adaptations of
ISO 10218-1/2

industrial mobile robots

ANSI/ITSDF B56.5

automatic guided vehicles

Fig. 14.1 Safety standard pyramid (ISO equivalent, adapted from Villani et al., 2018)

Fig. 14.2 Scope of application of several notable standards (adapted from ANSI/RIA R15.08)

422 B. Belzile and D. St-Onge

Table 14.2 Some relevant standards and technical specifications for robots used in industrial envi-
ronments

Document Title Field of application

ISO 10218 (2011) Robots and robotic devices—Safety
requirements for industrial
robots—Part 1: Robots and Part 2:
Robot systems and integration

This standard specifies requirements
and recommendations for intrinsic
prevention, protective measures and
information for the use of industrial
robots. It describes the basic
hazards associated with robots and
provides the basic requirements for
reducing or eliminating the risks
associated with these hazards. Part 1
is intended for designers and
manufacturers, while Part 2 is
intended for integrators and users

ISO/TS 15066
(2016)

Robots and robotic
devices—Collaborative robots

This technical specification
specifies the safety requirements for
collaborative industrial robot
systems and the working
environment and complements the
requirements and guidance on
collaborative industrial robot
operation given in ISO 10218-1 and
ISO 10218-2

ANSI/RIA R15.08
(2020)

Industrial mobile robots safety This standard defines the safety
requirements for manufacturers of
industrial mobile robots Part 1; Part
2 describes the requirements for
integrators working on the design,
installation and integration of a safe
mobile robot system in a user’s
facilities; and Part 3 defines the
safety requirements for the end user
of industrial mobile robots

ANSI/ITSDF B56.5
(2019)

Safety standard for guided industrial
vehicles

This standard defines the safety
requirements relating to the
elements of design, operation and
maintenance, industrial vehicles
with automatic guidance without
mechanical restraint and unmanned
and the system of which the
vehicles are part

CSA/Z434-14
(2019) (Canada)

Industrial robots and robot systems This standard replicates ISO 10218
with some specifications for Canada

ISO 8373 (2021c) Robotics—Vocabulary This standard defines terms used in
relation to robotics

ISO 19649 (2017) Mobile robots—Vocabulary This standard defines terms used in
relation to mobile robotics

14 Safety First: On the Safe Deployment of Robotic Systems 423

on collaborative robots, which are addressed later in this chapter. You should not see
this list as exhaustive, because only a selection of standards/technical specifications
are included and new ones are currently being written/revised.

14.4 Industrial Risk Assessment and Mitigation

In this section, we will focus on isolated industrial robotic system first and how
to conduct a risk assessment. The global procedure is depicted in Fig. 14.3. The
following section covers the elements shown in this figure. Particularities pertaining
to collaborative and mobiles robots will be addressed in the subsequent sections.

14.4.1 Risk Assessment

Risk assessment is a critical and essential process before deploying a new robotic
system. Your first stepwill be to identify the limits of the robotic system application
in terms of use, space and time throughout its life cycle. This step amounts to defining
the expected use of the machine and the environment in which it is to perform these
functions. It is therefore essential to have proceeded, before the risk identification
stage, to a functional design process of the robotic system. For instance, this stage
includes defining the place where the robot will be installed, the surrounding objects,
the parts handled, the number of operators and their training, the tasks that the robot
will perform, etc.

Then, you must identify every potential sources of harm, known as hazards. It is
necessary to conduct a first analysis to estimate, i.e., quantify, the risk posed by each
hazardous situation. It is an iterative process, therefore the analysis is conducted
again after implementing the risk-reduction measures (mitigation) to validate the
desire outcome has been reached. The approach is unique to every industrial robotic
system application, which means you should avoid a “one-size-fits-all” solution, as
it may be too restrictive for the application, ultimately leading to frequent bypass
of some safeguards to accomplish a task. The risk analysis is, in fact, specific to a
particular machine and installation. Therefore, it is necessary to carry out a new risk
assessment if the environment, tasks or operators change (as part of a machine move,
for example).

Potential Causes of Hazards
A non-exhaustive list of potential hazard causes involving isolated industrial robotic
system (as opposed to collaborative andmobile robots, whichwill be considered later
in this chapter) is detailed in Table14.3. This table not only considers injuries to the
human body, but also material damages. You should note, however, that international
standards only refer to the former when “harm” is mentioned. For your information,
you will find a list of significant hazards in the Annex A of ISO 10218-2.

424 B. Belzile and D. St-Onge

Determination of the limits of the machinery

Hazard identification

Risk estimation

Risk evaluation and adequate risk reduction

Integration and validation

Has the risk level been

adequately reduced?

NO
YES

R
IS

K
A
N
A
LY

S
IS

RISK ASSESSMENT

Operates as expected?
(close calls, incident reports,

operators’ feedback)

NO
Validated?

(safety e-stops, etc.)

Operation
continuous
monitoring

YES

NO

Fig. 14.3 Risk assessment procedure (adapted from ISO 12100) with subsequent integration, val-
idation and monitoring

Initial Analysis
The initial analysis is an hypothetical exercise done by the integrators where poten-
tial hazards are identified. No risk mitigation measures should be considered while
conducting the initial risk analysis: you will therefore have to consider unauthorized
access to the robotworkspace andunqualified operator, risks that are easily prevented.
We will cover the mitigation in the next section (step). Moreover, the operator should
always be considered unqualified and the workspace not protected at this stage of

14 Safety First: On the Safe Deployment of Robotic Systems 425

Table 14.3 Non-exhaustive list of potential causes of hazards involving industrial robotic systems

Categories Examples

Workers related Unqualified operator incapable of controlling
the robot

Human error

Unauthorized access to the robot workspace

Not following the manufacturer’s instructions

Control Interference

Software error

Bad programming

Power Contact between various electrical cords in the
robot system

Leaks in an hydraulic system

Mechanical Deficient/broken part

Environment Sources of electromagnetic interferences

the risk assessment. All of this is done to avoid overlooking any potential hazard.
You can see this as a worst case scenario. For each risk, you need to estimate two
elements or parameters according to ISO 12100:2010:

1. the severity of harm and
2. the probability of that harm.

The latter normally comprises three subparameters:

1. the exposure of the person(s) to the hazard;
2. the occurrence of a hazardous event;
3. the possibilities to avoid or limit the harm.

Various risk estimation tools exist in order to rank the severity and probability
of the harm. However, not all of those tools cover the same number of parameters.
For example, the RIA TR R15.306 proposes the chart illustrated in Fig. 14.4 which
comprises three parameters, namely severity, exposure and avoidance:

• Severity of injury;

– serious (death, chronicle disease, amputation, etc.)
– moderate (broken bone, short hospitalization, etc.)
– minor (bruises, etc.)

• Exposure to the hazard;

– high (more than 1 time par day)
– low (less than 1 time par day)
– prevented (not used in the initial analysis, since we ignore risk mitigation mea-
sures at this stage)

426 B. Belzile and D. St-Onge

severity of injury exposure to hazard avoidance of hazard risk level
mitigation required

S1 - minor

E0 - prevented

E1 - low

E2 - high

A1 - likely

A2 - not likely

A3 - not possible

S2 - moderate

E0 - prevented

E1 - low

E2 - high

S3 - serious

E0 - prevented

E1 - low

E2 - high

A2 - not likely

A3 - not possible

A1 - likely

A2 - not likely

A3 - not possible

A1 - likely

NEGLIGIBLE

LOW

MEDIUM

HIGH

LOW

HIGH

VERY HIGH

minimum

SRP/CS & above

SRP/CS & above

SRP/CS & above

SRP/CS & above

all category

all category

all category

Fig. 14.4 Chart to evaluate the risk level for each dangerous phenomenon (adapted from RIA TR
R15.306 RIA, 2016, which is a supplement of ANSI/RIA R15.06-2012)

• Avoidance of the hazard;

– impossible (insufficient space, caged operator)
– improbable (insufficient space, but under robot speed limitation, obstructed exit)
– probable (sufficient space, under robot speed limitation, early warning).

After completing the potential hazards identification and the three criteria quan-
tification, the next step of the initial analysis is to determine the risk level. You can
do this with the chart mentioned above (Fig. 14.4).

14.4.2 Risk Mitigation

Preventive and corrective measures must be put in place and the risk index will
then be reevaluated accordingly. These measures can be classified into eight cate-
gories according toRIATRR15.306-2016RIA (2016) (Task-basedRiskAssessment
Methodology), in this precise order:

1. elimination;
2. substitution;
3. limit interaction;
4. safeguarding and safety-related part of a control system (SRP/CS);
5. complementary protective measures;

14 Safety First: On the Safe Deployment of Robotic Systems 427

6. warnings and awareness means;
7. administrative controls;
8. personal protection equipment (PPE).

We will see examples for the categories listed above. Some are displayed in
Fig. 14.5. Only a brief summary of some mitigation measures will be given here and
you must refer to the relevant standards/technical specifications/guidelines for more
information.

Elimination: Modifying the industrial robot system’s design (hardware, software,
process, layout, etc.). It should be emphasized that this involves the modification of
the design of themachine to eliminate the risk inherently. For example, eliminating
obstacles that may be the cause of the risk of jamming and thereby eliminating the
risk of jamming in an intrinsic way (without resorting to guards and barriers for
instance).

Substitution: You can mitigate the risk by a substitution, namely by changing mate-
rials handled, and replacing the robot by another less powerful, slower or with a
smaller workspace.

Fig. 14.5 Mitigation measures that can be applied to industrial robot cell (upper left, emergency
stop; upper right, safety distance related to projectors; lower left, safety light curtain; lower right,
lockout procedure)

428 B. Belzile and D. St-Onge

Interaction limitation: Limit physical interactions between the operator and the
industrial robot within the latter’s workspace.

Safeguarding and safety-related part of a control system (SRP/CS): To reduce the
risk of someone coming in close proximity of an industrial robot, themost simple and
common measure is to enclose the robot with a perimeter fence, serving as a barrier
between the robot and anyone it could harm. According to ISO 13857 ISO (2019), a
barrier is necessary if the mechanism potentially dangerous, not necessarily a robot,
is lower than 2.5m above ground. In this case, the same standard recommends rigid
panels with certain parameters depending on the dimensions of the system and its
workspace. For instance, the minimal height of the panels is 1.8m, regardless of the
system. These fences can include openings necessary for the robot’s operation aswell
as a door for maintenance. This door must be equipped with a locking mechanism
or/and sensors to detect intrusion in the workspace. Machine lockout and sensors
are also a possibility to avoid a robot operating at full capacities while an operator
is within close proximity or inside the machine/workspace.

Complementary protective measures: Common complementary measures include
elements to achieve e-stop functions, measures for safe access to the robot, handrail,
mechanical blocks and additional padding.

Warnings and awareness means: Rotating beacons, alarms, warning panels are
among the measures used to increase the operator’s awareness of the potential dan-
gerous phenomenon.

Administrative controls: Organizational-type measures are also essential to reduce
risks involving robotic systems. Indeed, some risks cannot be completely eliminated,
thus a proper training of the staff is critical to increase awareness. The information
shared includes the nature of the risks, existing protection methods, proper safe ways
to approach the robot, etc. Other measures include compliance with the manufac-
turer’s instructions, regular inspections and preventive maintenance of the robot,
rewarding workers for safe behavior, etc.

Personal protection equipment: Common examples include glasses, helmet, boots,
etc.

While considering potential risk mitigation measures, you should consider the
above eight categories in the order they are presented. Therefore, you should
favor elimination and substitution rather than administrative controls and PPE. For
hazards initially evaluated as medium and above on the risk level scale, mitigation
measures must include those within the first four categories, as the four others are
not considered enough to reduce the risk, as displayed in Fig. 14.4. You should
note, however, that you can still apply mitigation measures, such as elimination and
substitution, to potential hazards initially evaluated with a low risk level, even though
it is not required by the standard.

14 Safety First: On the Safe Deployment of Robotic Systems 429

14.4.3 Integration, Validation and Monitoring

After conducting the initial analysis and applying risk mitigation measures, the final
step is to analyze again the potential hazards by quantifying the risk parameters men-
tioned above, but this time taking into account the risk-reduction measures applied.
New risk levels will be obtained, allowing the integration of the robotic system
deployment.

After the integration comes the validation. This can be done with several methods,
for example, (as suggested in ANSI/RIA R15.08 for IMRs, but valid for any robotic
system):

• visual inspection;
• practical tests;
• measurement;
• observation during operation;
• review of application-specific schematics, circuit diagrams and design material;
• review of task-based risk assessment;
• review of specifications and information for use.

A validation step can be, for example, measuring the real contact forces to see
if the force and torque limits programmed in the power-and-force (PFL) limitation
safety function make it possible to reduce the contact forces below the thresholds
prescribed by ISO TS 15066 ISO (2016). Another example is to conduct safety
stop tests to ensure that the response time of the stop safety function and that the
robot stop time have both been taken into account during the calculation for the
positioning of virtual barriers (presence detected by proximity sensors close to the
robot workspace).

The continuous monitoring of the system by the users is then needed to reevaluate
the risk with new information gathered from experience feedback (incidents, close
calls, etc.).

14.5 Cobots

While the term cobots, created from collaborative robots, can be dated back to 1996
(Colgate & Peshkin, 1997), the idea of robots collaborating with humans in close
proximity has been around formuch longer, as can be seen in variousworks of science
fiction. However, in reality, robots have been far more often operating in human-
free environment for safety reasons. Nowadays, with technological advancements in
robotics, cobots are becoming more prevalent, notably in industrial settings. There
are many advantages with cobots, including reducing the space used by the robot
(no physical isolation) and partially automating tasks which still require a human
participation. Because of their close proximity to human workers while performing
various tasks, a safe deployment is evenmore critical. The ISO/TS 15066, previously
mentioned in this chapter, focuses on collaborative robots.

430 B. Belzile and D. St-Onge

14.5.1 Human-Robot Collaboration

The literature provides various categories of human-robot collaborative tasks. In this
chapter, we will consider the three following categories:

• direct collaboration—the operator and the robot work simultaneously on a task;
• indirect collaboration—the operator and the robot work alternately on a task;
• shared workspace—the operator and the robot work on distinct tasks for which
they may need to share the same workspace.

14.5.2 Types of Collaborative Operation Methods

The classification of collaborative tasks with regards to the safety requirements can
be divided into three types, detailed below, according to ISO/TS 15066.

1. Hand guiding;
The operator manually send commands to the cobot: before the operator enters
the collaborative workspace, the robot system achieves a safety-rated monitored
stop (drive power remains on); operator grasps hand-operated device (includes
an enabling device), activating motion/operation. Non-collaborative operation
resumes when the operator leaves the collaborative workspace.
Applications: robotic lift assist, highly variable applications, limited or small-
batch production.

2. Speed and separation monitoring;
Operator and robotic system may move concurrently in the collaborative
workspace: a minimum separation distance between the operator and the cobot
must be maintained at all times for safety. Protective devices are required to
decrease the minimum separation distance. Speed is lowered (safety-rated) to
keep minimum separation distance. If separation distance falls below the estab-
lished threshold, a protective stop is required.
Applications: simultaneous tasks, direct operator interface.

3. Power-and-force limiting;
In this mode, physical contact between the cobot/workpiece and the operator
is possible, either intentionally or unintentionally: the cobot must be specif-
ically designed for this mode to take into account potential contacts and the
corresponding forces must be limited. The contact (quasi-static/pressure or tran-
sient/dynamic) must be detected by sensors and the cobot must react when it
occurs.
Applications: small or highly variable applications, conditions requiring frequent
operator presence.

You can find a fourth type in the literature, called safety-rated monitored stop.
However, in the new version of ISO 10218-1, which will be published in 2022, it
will no longer be considered a type of collaborative operation. It is defined as a direct

14 Safety First: On the Safe Deployment of Robotic Systems 431

interaction between the cobot and the operator under specific circumstances, which
include a safety-rated stop condition. Before the operator enters the “collaborative”
workspace, the drive power remains on, motion resumes after the operator leaves
the workspace (cobot motion resumes without additional action). Protective stop
is triggered if a stop condition (to configure) is violated. If the operator is outside
the workspace but inside the monitored space, there is no need to stop the robot.
The robot can continue to operate as long as a space monitoring safety feature is in
place that prevents the robot from exiting its workspace. The potential applications
include direct part loading or unloading to the end-effector (tool of the robotic arm),
work-in-process inspections, when the robot or the operator moves (not both) in the
same workspace, etc. However, keep in mind that it will no longer be considered a
collaborative operation according to the new ISO terminology.

14.5.3 Hazards Inherent to Cobots

Beyond the risks and potential dangerous phenomena detailed earlier in this chapter,
some are more specific to cobots. Obviously, the close proximity to humans is a
common source for many of them, but some are linked to the task itself. A non-
exhaustive list is detailed below, as well as corresponding mitigation measures:

• physical risks: collisions, crushing, jamming, repetitive impacts, tool used by the
robot
risk mitigation −→ lightweight robot, rounded surfaces, safe speed limitation,
safe force and power limitation, training

• psycho-social risks: isolation, pace difficult to follow by the operator, work trans-
formation
risk mitigation −→ improving the working conditions of workers

• risks of musculoskeletal disorders: high repetitivity, excessive efforts, high pre-
cision required, inadequate posture that may be required for extended periods of
time
risk mitigation −→ arranging workstations to respect the comfort zones, using
appropriate handling techniques, optimizing lighting, choosing the right tools.

14.5.4 Risk Assessment and Mitigation Measures for
Collaborative Applications

The risk assessment with collaborative robots is similar to the process presented
earlier in this chapter. It differs by the different measures to be applied and added
conditions that must be assessed, as detailed in ISO/TS 15066. Indeed, you will
remember that the categories preferred for mitigation measures to obtain an inher-
ently safe design where elimination, substitution and limiting interaction. In the case

432 B. Belzile and D. St-Onge

of cobots, this will translate into reduced energy, robots’ surfaces made of compliant
materials, modified tasks, etc. Therefore, a contact between the robot and the oper-
ator is still possible, as we mentioned above in power-and-force limiting mode, and
you will have to make sure that it will not result in an injury. This is done by:

• identifying conditions for such contact to occur;
• evaluating risk potential for such contacts;
• designing robot system and collaborative workspace so contact is infrequent and
avoidable;

• considering operator body regions, origin of contact event, probability or fre-
quency, type (quasi-static or transient), forces, speeds, etc.

You must prevent contact over the shoulders, and shall avoid any of the robot
motion above this level. Considering it may not always be realistic, experts on the
standardization committeeworking on ISO10218 update are proposing to replace the
verb “shall” with “should,” still strongly encouraging to keep the robot’s movements
below head level.

For other contacts, ISO/TS 15066 contains specifications on the onset of pain,
as shown in Fig. 14.6, as well as transient contact speed limits. An example of risk
mitigation in a power-and-force limiting operation is illustrated in Fig. 14.7. Here,
we first (1) eliminated pinch and crush points, then (2) we reduced robot system
inertia or mass and (3) we reduced robot system velocity. Finally, to reduce the risk
of potential injuries, (4) we modified the robot posture such that contact surface area
is increased and (5) moved away from sensitive upper body parts.

applied force or energy

collaborative collaborative operation not allowed

touch sensation

pain sensation (onset)

minor injury

reversible injury

irreversible injury

Thresholds

Fig. 14.6 Study of the pain onset regarding collaborative operation (adapted from ISO/TS 15066)

14 Safety First: On the Safe Deployment of Robotic Systems 433

wall

cobot
cobot

velocity velocity

EE

EE

(3)

(2)

(1)
(5)

(4)

(a) (b)

Fig. 14.7 Risk mitigation in a power-and-force limiting operation (adapted from ISO/TS 15066):
a before risk mitigation, b after risk mitigation

14.6 Mobile Robots

Mobile robots used in an industrial setting, which include AGVs and AMRs, usually
operate alongside operators and other workers in a shared environment. These robots
fall under the scope of the ANSI/RIA R15.08. The latter refers to several other
standards for particular items relevant to mobile robots. For example, regarding
wireless communication, ANSI/RIA R15.08 refers to NFPA 79, IEC 60204-1 and
IEC 62745 for specifications that are recommended. This is a critical component, as
a mobile robot that does not react fast enough to an order sent by an operator could
have catastrophic consequences, such as a collision.

By definition, mobile robots are not located within a caged environment with
barriers. Therefore, with mobile robots such as AGVs, collisions must be avoided by
safety functions. The robot must be equipped with safety sensors which are able to
detect obstacles, including an operator. The robot must have rules to adapt its speed
(safety speed monitored by a safety function) and changes its course according to the
detected obstacle. If the distance between the mobile robot and the operator drops
below a threshold value, a safety stop must be triggered.

14.6.1 Hazards Inherent to Mobile Robots

The risks posed by hazards identified in the previous sections are multiplied by the
presence of the other workers that are not operating the robot while still sharing the
same environment. Indeed, we moved from caged industrial robots which should
not share their workspace with anyone except on rare occasions to collaborative
robots which can share theirs with a limited number of operators to mobile robots
with a quasi unlimited workspace. Therefore, making sure everyone is aware of the

434 B. Belzile and D. St-Onge

presence of mobile robots in certain areas is critical, and the capability of IMRs to
detect potential dangers (to themselves and others) surrounding them is even more
important.

14.6.2 UAV Operations

Unmanned aerial vehicles (UAVs) are a specific type of mobile robots that falls in a
different category with respect to the danger they may present. From teleoperation to
fully autonomous flights, the risk of not detecting an obstacle (either by the operator
or by the onboard sensors) can have fatal consequences. Several commercial UAVs
weights more than 1kg and can harm a person under its fall. Because of the level of
danger, and inspired from the aviation field, UAVs safety standards are rather in the
form of regulations. However, as UAVs becomemore commonly used, policymakers
are struggling to keep up. A lot of countries have develop regulations (FAA, 2021;
Transport Canada, 2019), but without much international cohesion. Regulations can
vary, including the maximum height to which aircrafts are able to fly to, the areas
they are permitted, the distance they can go to buildings and whether or not identity
tags are necessary. In the vast majority of cases, UAVs should only be flown while
they are still visible to the pilot. Most countries have structured their regulations with
regards to the position of the individual, for instance:

• UAV pilot—follow training sessions, read the device manual, check the weather
and flight zone, etc.;

• UAV owner—register the UAV and ensure its maintenance;
• UAV manufacturer—provide the documentation to prove its safety;
• piloting school—provide the documentation to demonstrate the quality of their
curriculum.

14.6.3 Battery Hazards

Batteries are by their nature one of the most frequent hazards to generate incidents.
This is the reason for the severe regulations on their transport, notably on airplanes.4

Moreover, with the rapid increase in the number of hybrid and electrical vehicles
on the road, as well as the number of mobile robots in operation, risks related to
batteries are becomingmore frequent. Considering the ever increasing power density
of these batteries and their decreasing cost, they should not be taken lightly, quite the
contrary. Regarding the standards related to batteries, you can consider, for example,
the ISO 26262 on road vehicle for some guidelines, especially regarding the literature
focusing on the compliance of batteries (and related systems) to this standard (Tiker,

4 For instance, in Canada, see https://www.catsa-acsta.gc.ca/en/guidelines-batteries.

https://www.catsa-acsta.gc.ca/en/guidelines-batteries

9317 58101 a 9317 58101 a

https://www.catsa-acsta.gc.ca/en/guidelines-batteries

14 Safety First: On the Safe Deployment of Robotic Systems 435

2017). You can look as well into standards such as the IEC 62133. Globally, as
proposed by Ashtiani (2008), we can categorize hazards related to batteries in four
categories:

• electrical (short-circuit, overcharge, soft short);
• thermal (fire, elevated temperature);
• mechanical (crush, perforation, drop);
• system (contactor fail to close, loss of high voltage continuity, chassis fault).

Furthermore, hazard identification and, more generally, the risk assessment of a
robotic system with batteries, must consider their full, but limited, life cycle. Indeed,
a system initially safe may become dangerous without any human intervention only
because the battery has reached its end-of-life. Moreover, even if the robot is not
in operation, not powered up or the battery not even installed, there are potential
hazards. The risk assessment and mitigation does not end with the robot in oper-
ation, as its spare parts such as batteries must be safely kept in storage. You must
therefore also consider the charging process of the battery in your risk assessment as
well. Manufacturers’ manual are obviously a good starting point regarding potential
hazards and mitigation measures. Otherwise, there is an extensive literature on this
topic to help you. For example, Ouyang et al. (2019) listed several countermeasures
related to thermal hazards.

14.6.4 Risk Assessment and Mitigation Measures for Mobile
Robots

As means of mitigating risks with mobile robots, you will find and implement first
safety devices (sensors) which detect operators or any other human being in close
proximity of the robot. Safe speed limitation functions and safety stop functions
capable of stopping the robot before the collision will be used. Otherwise, here you
can find a list of other potential risk mitigation measures intended for mobile robots:

• keeping the batteries at a good level of charge or else completely change the
battery;

• ensuring a safe form factor of the robot;
• stable ground surface for the robot;
• automatic brake when the robot loses control;
• reducing administrative staff on the site;
• supervision of the workers’ movement by a site supervisor;
• pedestrian traffic plan indicating traffic lanes, road markings;
• reversing alarms;
• sensitive bumpers for presence detection;
• permanent lighting on-site allowing easier and safer motion of the robot;
• road signs.

436 B. Belzile and D. St-Onge

The validation step at the end of the risk assessment and mitigation process for
mobile robots is particularly important, as they operate in unstructured environments.
Therefore, the ANSI/RIA R15.08 recommends using test pieces representing adult
humans instead of human subjects when conducting tests. The standard guidelines
also mention that the test pieces “shall be tested in a number of orientations reflecting
persons who are standing, sitting, kneeling, or lying prone.” Finally, other obstacles
and hazards you may need to test include

• overhanging objects;
• negative obstacles (e.g., floor grates, potholes, or steps);
• transparent objects (e.g., glass doors or acrylic walls);
• chain-link fences;
• narrow support columns (e.g., shelf or table legs, sign posts, or ladders);
• reflective and retroreflective surfaces.

14.7 Chapter Summary

In this chapter, we looked into the deployment of a new robotic system from the
safety point-of-view. We went over some definitions, the major standards organiza-
tions, and some of their relevant standards. We then introduced the concept of risk
assessment and mitigation, notably based on the standards discussed previously. We
finally tackled briefly elements specific to collaborative robots, cobots and mobile
robots regarding safety, focusing mostly on their differences with industrial robotic
systems and particular risk mitigation measures.

14.8 Revision Questions

Question #1
True or false: personal protection equipment can be used alone to mitigate any level
or risk.

Question #2
True or false: with cobots, safety stop functions cause the robot to stop once the
operator enters the hazardous area and an automatic restart resumes its operation
when they exit that area.

Question #3
With conventional industrial robots (i.e., fixed base), the perimeter fence can bemade
oh rigid panels having a minimal height of:

1. 1.5m;

14 Safety First: On the Safe Deployment of Robotic Systems 437

2. 1.8m;
3. 2.0m;
4. 1.0m.

Question #4
In a warehouse, a rover is equipped with sensors to compute its path and a 6-DOF
serial manipulator to perform pick-and-place tasks simultaneously with an operator.
This robotic system falls within which category (more than one answer possible):

1. IMR;
2. AVG;
3. AMR;
4. cobot.

14.9 Further Reading

As mentioned at numerous places in this chapter, before deploying a new robotic
system, you should always read the appropriate standards and technical specifications
beforehand. While not directly addressed in this chapter, safety with personal-care
robots has also been studied in the literature (Salvini et al., 2021) and falls under ISO
13482:2014 (2014). We can also mention ISO 18646:2021 (performance criteria and
related test methods) and ISO 22166-1:2021 (modularity) on service robots (ISO,
2021a, 2021b).

References

ANSI/ITSDF. (2019). ANSI/ITSDF B56.5-2019—Safety standard for guided industrial vehicles.
ANSI/RIA. (2012). ANSI/RIA R15.06-2012—Industrial robots and robot systems—Safety require-

ments.
ANSI/RIA. (2020). ANSI/RIA R15.08-1-2020—Industrial mobile robots—Safety requirements—

Part 1: Requirements for the industrial mobile robot.
Ashtiani, C. (2008). Analysis of battery safety and hazards’ risk mitigation. ECS Transactions,

11(19), 1–11. https://doi.org/10.1149/1.2897967
Colgate, J. E., & Peshkin, M. A. (1997). Cobots.
CSA. (2019). CAN/CSA-Z434-14 | Industrial robots and robot systems.
FAA. (2021). https://www.faa.gov/uas/
ISO. (2010). ISO 12100:2010—Safety of machinery—General principles for design—Risk assess-

ment and risk reduction.
ISO. (2011). ISO 10218-1:2011—Robots and robotic devices—Safety requirements for industrial

robots—Part 1: Robots.
ISO. (2014). ISO 13482:2014—Robots and robotic devices—Safety requirements for personal care

robots.
ISO. (2015). ISO 13850:2015—Safety of machinery—Emergency stop function—Principles for

design.

https://doi.org/10.1149/1.2897967
 4146 45690 a 4146 45690 a

https://doi.org/10.1149/1.2897967
https://www.faa.gov/uas/
 3214 49011 a 3214 49011 a

https://www.faa.gov/uas/

438 B. Belzile and D. St-Onge

ISO. (2016). ISO - ISO/TS 15066:2016—Robots and robotic devices—Collaborative robots.
ISO. (2017). ISO 19649:2017—Mobile robots—Vocabulary.
ISO. (2019). ISO 13857:2019—Safety of machinery—Safety distances to prevent hazard zones being

reached by upper and lower limbs.
ISO. (2021a). ISO 18646:2021—Robotics—Performance criteria and related test methods for ser-

vice robots.
ISO. (2021b). ISO 22166-1:2021—Robotics—Modularity for service robots.
ISO. (2021c). ISO 8373:2021—Robotics—Vocabulary.
ISO. (2022). ISO/DIS 10218-1.2—Robotics—Safety requirements—Part 1: Industrial robots.
Ouyang, D., Chen, M., Huang, Q., Weng, J., Wang, Z., &Wang, J. (2019). A review on the thermal
hazards of the lithium-ion battery and the corresponding countermeasures. Applied Sciences,
9(12). https://www.mdpi.com/2076-3417/9/12/2483

RIA. (2016). RIA TR R15.306-2016—Task-based risk assessment methodology.
Salvini, P., Paez-Granados, D., & Billard, A. (2021). On the safety of mobile robots serving in
public spaces: Identifying gaps in EN ISO 13482: 2014 and calling for a new standard. ACM
Transactions on Human Robot Interaction, 10(3), 1–19.

Tikar, S. S. (2017). Compliance of ISO 26262 safety standard for lithium ion battery and its bat-
tery management system in hybrid electric vehicle. In 2017 IEEE Transportation Electrification
Conference (ITEC-India) (pp. 1–5). https://doi.org/10.1109/ITEC-India.2017.8333870

Transport Canada. (2019). Standard 921—Small remotely piloted aircraft in visual line-of-sight
(VLOS)—Canadian Aviation Regulations (CARs).

Villani, V., Pini, F., Leali, F., & Secchi, C. (2018). Survey on human-robot collaboration in industrial
settings: Safety, intuitive interfaces and applications. Mechatronics, 55, 248–266. https://doi.org/
10.1016/j.mechatronics.2018.02.009

Bruno Belzile is a postdoctoral fellow at the INIT Robots Lab. of ÉTS Montréal in Canada.
He holds a B.Eng. degree and Ph.D. in mechanical engineering from Polytechnique Montréal.
His thesis focused on underactuated robotic grippers and proprioceptive tactile sensing. He then
worked at the Center for Intelligent Machines at McGill University, where his main areas of
research were kinematics, dynamics and control of parallel robots. At ÉTS Montréal, he aims at
creating spherical mobile robots for planetary exploration, from the conceptual design to the pro-
totype.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the École de technologie supérieure and director of the INIT Robots Lab (ini-
trobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect
to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the
field of interactive media (structure, automatization and sensing) as workshop production director
and as R&D engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in national training
programs for highly qualified personnel for drone services (UTILI), as well as for the deployment
of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic inte-
gration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA
2019).

https://www.mdpi.com/2076-3417/9/12/2483
 1344 11596 a 1344 11596 a

https://www.mdpi.com/2076-3417/9/12/2483
https://doi.org/10.1109/ITEC-India.2017.8333870
 12473 19344
a 12473 19344 a

https://doi.org/10.1109/ITEC-India.2017.8333870
https://doi.org/10.1016/j.mechatronics.2018.02.009
 29178 23772 a 29178
23772 a

https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1016/j.mechatronics.2018.02.009

14 Safety First: On the Safe Deployment of Robotic Systems 439

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 526 a 20870 526 a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 15
Managing the World Complexity: From
Linear Regression to Deep Learning

Yann Bouteiller

15.1 Objectives of the Chapter

At the end of this chapter, you will:

– understand the fundamentals of modern ML, and in particular deep learning,
– become familiar with linear regressions, MLPs, CNNs, and RNNs,
– be aware of the supervised techniques that are most relevant for robotics,
– understand the fundamentals of deep reinforcement learning,
– become familiar with Gym environments and DQN,
– be aware of the deep RL algorithms that are most relevant for robotics.

15.2 Introduction

Classical robot algorithms for perception and control are often based on simple, linear
models of the world. These approaches are very effective for simple tasks where the
system reasonably satisfies the corresponding assumptions in its domain of opera-
tion. However, they become inoperative inmany high-level reasoning taskswhere the
complexity of the real world is relevant and needs to be captured. A typical example
is the task of driving autonomously from camera pixels, which requires a deep, con-
ceptual understanding of the environment. How can an autonomous car detect other
agents such as vehicles and pedestrians, often partially when not entirely occluded?
How to predict their individual behaviors and react accordingly? How to reliably
detect traffic signalization in all possible variations of the environment, including

Y. Bouteiller (B)
Department of Computer and Software Engineering, Polytechnique Montréal, Montreal, Canada
e-mail: yann.bouteiller@polymtl.ca

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_15

441

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_15&domain=pdf
mailto:yann.bouteiller@polymtl.ca
 854 56538 a 854 56538 a

mailto:yann.bouteiller@polymtl.ca
https://doi.org/10.1007/978-981-19-1983-1_15
 -2047 60726 a -2047
60726 a

https://doi.org/10.1007/978-981-19-1983-1_15

442 Y. Bouteiller

light and weather? Over the past decade, the state-of-the-art solutions to these prob-
lems have emerged from statistical approximation techniques, nowadays referred
to as machine learning (ML). Instead of relying on engineered representations of
the world, ML approaches build their own representations automatically from large
amounts of data, collected either directly from the real world, or from a simulator.
The process of building these representations is called learning (or, equivalently,
training). In modern ML, learnt representations can be so abstract that they are often
interpreted as being similar to a human-like, conceptual understanding of the world.
For instance, ML algorithms are able to learn high-level concepts such as pedestrian
and car by analyzing a large number of images featuring road scenes and can then
be used to complete tasks in which these concepts are relevant.

An Industry Perspective

Jonathan Lussier
Director, Intellectual Property and Innovation

Kinova inc.

I graduated in mechanical engineering and started my career in the aerospace
industry, mainly in system engineering over 10 years both in simulation and in
the product. Meanwhile, in my free time, I was building robots on the side (in
my basement) as I saw it as the wave of the future coming. So I started with
online resources, 3D printing, and sheet metal work in order to start building
some small and subsequently some larger robots arms. It was at this moment
that I found out about Kinova (a company close to where I live) and the great
work they were doing in the assistive field and decided to apply.

My first task when I started at Kinova was to build the proof of concept
for what is now our Gen3 lite robot. Over a span of eight months, I read as
much as I could and benefitted from the extremely high level of expertise from
Kinova engineers to ramp up and design and build it. Afterward, I transitioned
into a role ensuring the Gen3 robot was launched on time, which was very
challenging but a great experience especially from the collaborations between
different groups within the company, which is so great about robotics—the
integration of mechanical and electrical hardware, quality assurance, and of
course all the different software disciplines.

15 Managing the World Complexity: From Linear Regression to Deep Learning 443

The field of machine learning in robotics is changing extremely quickly.
One aspect I love is that, contrary to some other fields or even other aspects
of robotics where research and development are heavily either industry-led or
academic-led, we are seeing many practical applications based on the integra-
tion of machine learning and robotics launched commercially, often by people
still in academia. These advances, built off the back of thousands of researchers
doing more segmented AI (natural language processing, image recognition or
classification, etc.), can be combined into the robotic system in an integrated
way. As mentioned above, there are so many different disciplines that need
to be combined when launching a robotic or automation product that there
are opportunities for hardware, traditional software (e.g., machine vision), and
AI-led approaches at all the different levels—it is very exciting!

Start small and simple! When working on robotics, getting a complete
system up and running can be a challenge in itself. Limiting the number of
hardware and software components is key and that applies to AI as well. Take
advantage of existing libraries (e.g., Gym, Stablebaselines, etc.) which often
combine different options for simulators, datasets, and algorithms wrapped in
an easy to use and (most importantly) well-documented interface.

15.3 Definitions

ML is a vast field consisting of many techniques developed for various purposes.
We can roughly separate these techniques under two categories: supervised and
unsupervised.1

Supervised learning consists of using a set of labeled data points to train amodel.
In other words, given a dataset D = {xi , yi } of data points xi (e.g., camera images
…) and corresponding labels yi (e.g., type of the closest agent present in the image,
position estimate of this agent …), the goal is to find a model f mapping data
points to labels such that f (x) ≈ y for all data point x and corresponding label y …
including those not present in the dataset! This last property is a central objective of
ML, called generalization: A good model is not a model that fits the dataset, but a
model that fits the real phenomenon (of which the dataset is only a comparatively
tiny sample). You will often hear that a good model is one that “generalizes well”.
Depending on the nature of the labels, the task is called classification or regression. A
classifier produces categorical outputs (e.g., is it a car or a cat?). This is typically done

1 This is a very rough categorization. In particular, semi-supervised learning and reinforcement
learning are other important ML categories, which borrow aspects from both supervised and unsu-
pervised learning.

444 Y. Bouteiller

by outputting a vector of probabilities where each dimension represents a category
of interest. For instance, a vector of dimension 3 could represent three classes of
interest such as “pedestrian”, “car”, and “none”. The output f (x) = [0.1, 0.8, 0.1]�
could then mean that the closest agent in the x input image is most likely a car. A
regressor instead produces a real-valued output (e.g., the three-dimensional relative
position of the closest agent). In this case, the model directly outputs the value
of interest. For instance, the output f (x) = [3.5,−1.0, 0.0]� could mean that the
closest agent is 3.5m ahead and 1.0 m on the right. In classifiers and regressors alike,
themodel usually consists of a set of tunable parameters θ . Thus, finding agoodmodel
essentially consists of finding good values for these parameters. Among the most
relevant types of parametricmodels, we can cite decision trees/random forests, which
are simple ML algorithms with good properties in terms of interpretability, linear
regressions, and neural networks. In this chapter, we will denote parametric models
as fθ , and we will focus our attention on neural networks, which are omnipresent in
modern ML. Note that there also exist ML algorithms using nonparametric models,
where the model is typically the dataset itself. For instance, the K-nearest neighbors
(KNN) algorithm compares new data points to the whole dataset, so as to infer their
corresponding labels from the closest labeled data available.

The locution unsupervised learning refers to all ML techniques that instead
use an unlabeled dataset D = {xi }. Famous examples of unsupervised methods
are generative adversarial networks (GANs), intensively used in image genera-
tion/transformation, and trained with unlabeled pictures. While GANs are definitely
useful for robotics, they are used in very advanced situations that we will only briefly
cite in this chapter.

An alternative to the aforementioned categories, called reinforcement learning
(RL),will be coveredwith greater attention in the second part of this chapter. RL algo-
rithms learn a controller from their own experience, in a near-unsupervised fashion.
However, this is done by leveraging an external reward signal that remotely resem-
bles a label, and thus RL stands somewhere in between supervised and unsupervised
approaches.

In robotics, supervised methods are typically useful for perception. In particular,
we use neural networks for image analysis, spatial perception, speech recognition,
signal processing. … Supervised learning is also possible for control, in particular
through behavioral cloning, which consists of imitating the policy2 of an expert.
However, behavioral cloning is inherently limited by the expert level. Thus, policy
optimization strategies based on trial-and-error, such as RL and genetic algorithms,
are often preferred for learning a controller.

2 A policy is a set of relations that maps observations to actions.

15 Managing the World Complexity: From Linear Regression to Deep Learning 445

15.4 From Linear Regression to Deep Learning

15.4.1 Loss Optimization

The goal of supervised learning is to find a model f such that, for all input x and
desired output y, f (x) ≈ y. In ML, the quality of the model f is typically evaluated
in terms of a loss function. A loss function takes a model and a dataset as input and
outputs a real value that represents how bad themodel is performing on the dataset. In
this chapter, we will denote loss functions as L(f,D) in the general case and L(θ,D)

for parametric models. The smaller the loss is, the better the model is considered. In
other words, the goal of ML is almost always an optimization problem consisting of
minimizing a loss function. Many different loss functions exist, each with their own
properties in terms of what they consider being a good model and how easy they are
to optimize. The most common losses are the mean squared error (MSE) loss and
the cross-entropy (CE) loss.

Mean Squared Error Loss
The MSE loss is typically used for regression. It is defined as follows:

LMSE(f,D) = 1

n

n∑

i=1

(| f (xi) − yi |2)

where n is the size of the dataset D (i.e., the number of (xi , yi) pairs in D).
An important property of the MSE loss is that it strongly penalizes models that

have a large prediction error | f (xi) − yi | for some data point xi . In other words, the
MSE loss prefers models that do not ignore any data point. Although this is desirable
in general, this also has the drawback of being strongly impacted by outliers.3

Cross-Entropy Loss
The CE loss is typically used for classification. It is defined as follows:

LCE(f,D) = 1

n

n∑

i=1

−ln(fyi (xi))

where n is the size of the dataset and where fyi (xi) is the probability that f (xi)
outputs for the class yi .

A reasonwhy theCE loss is widely used is that its gradient4 is easy to compute (we
will see why this is important later in this chapter). Since fyi (xi) is a probability,

5 its

3 In ML, outliers are data points whose labels are far from what is expected.
4 A gradient is the Jacobian of a single multivariate function, i.e., with one row. Note that, in
deep learning, we often transpose the gradient to work with column vectors only. For instance,
∇[a,b]� (a + b2) = [1, 2b]�.
5 In practice, this is not really a probability, but the output of a softmax function, which also sums
to 1.

446 Y. Bouteiller

value lies between 0 and 1 (0 being excluded in practice). The closer this probability
is to 1, the smaller the loss is, while a probability close to 0 is strongly penalized.
Indeed we want fyi (xi) to be 1, since the label of xi is yi in our dataset.

15.4.2 Linear Regression

One of the oldest and most fundamental supervised ML techniques is the linear
regression. Linear regression was introduced by Legendre and Gauss who used it
to predict astronomical trajectories in the early 1800s (Stigler, 1981), way before
the term “machine learning” was introduced and popularized. Performing a linear
regression consists of fitting a parametric linear model to a labeled dataset D =
{xi, yi } where the labels yi ∈ R are single real values. As seen in Chap.6, a linear
model is of the form fθ (xi) = w�xi + b, where w is a vector of weights and b is a
single bias. The set of tunable parameters is θ = {w, b}.

Interestingly, it is possible to find the optimal solution to the linear regression
problem using matrix calculus. For this matter, a useful trick is to write θ as the
concatenation of w and b, and to append a 1 to the xi vector:

θ =

⎡

⎢⎢⎢⎣

w1
...

wm

b

⎤

⎥⎥⎥⎦ and xi =

⎡

⎢⎢⎢⎣

xi,1
...

xi,m
1

⎤

⎥⎥⎥⎦

This allows us to write the linear model as a simple vector multiplication:

fθ (xi) = θ�xi

Nowwe canminimize theMSE loss of our parametric fθ model. For our datasetD
of n (xi, yi) pairs,we defineX ∈ R

n×(m+1) as thematrix formed by the n “augmented”
data points and Y ∈ R

n as the vector formed by the n labels:

X =
⎡

⎢⎣
x1�
...

xn�

⎤

⎥⎦ and Y =
⎡

⎢⎣
y1
...

yn

⎤

⎥⎦

This enables us to write the MSE loss in matrix form:

LMSE(θ,D) = 1

n
(Xθ − Y)�(Xθ − Y)

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 30285
16688 a 30285 16688 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

15 Managing the World Complexity: From Linear Regression to Deep Learning 447

To minimize this loss, we take its gradient with respect to our vector of tunable
parameters θ , which can be shown to be (the proof is out of this chapter scope):

∇θ LMSE(θ,D) = 2

n
(X

�
Xθ − X

�
Y)

We then set this derivative to 0 to find the minimum (the convexity of the loss
with respect to θ is easy to prove), which yields our optimal vector of parameters6:

θ∗ = (X
�
X)−1X

�
Y

on the condition thatX
�
X is invertible. Note that this is the leftMPGI ofXmultiplied

byY, as we have essentially minimized the Euclidean norm ofXθ − Y (c.f. Chap. 6).

15.4.3 Training Generalizable Models

Overfitting
As seen in the previous section, the linear regression problem has an optimal solution
that can be written analytically. This solution is not really straightforward, though,

since computing the inverse of X
�
X can be challenging, especially when the xi are

high dimensional. Moreover, linear regressions are a very simple and special case.
In advanced ML approaches, such analytical solution is virtually never available.
Indeed, to find the optimal vector of parameters θ∗, we have computed the gradient
of the loss function with respect to θ and found where this gradient was equal to zero.
The reason why this worked is that, in a linear regression, the MSE loss is convex
with respect to θ . This property is generally not satisfied in complex models such
as neural networks, and thus it is not possible to apply the same strategy. But more
importantly, this is not even a suitable thing to do!

Remember that we are *not* looking for themodel that best fits our dataset (which
is exactly what we have computed in the previous section), but themodel that best fits
the real world. In fact, the “optimal” set of parameters that we have computed is the
worst possible example of overfitting that one can commit with a linear regression:
We have selected our set of parameters θ∗ not because it is best at describing the real
world, but because it is best at describing the dataset.

This is usually not a big deal when using linear regressions: If the phenomenon
of interest is indeed linear, any linear approximation using a reasonable number
of data points is likely to be a good approximation. However, practical problems
are scarcely ever linear. In fact, high-level reasoning tasks—such as driving from
pixels—are highly nonlinear and require nonlinear models like neural networks (try
to imagine what would happen if you performed a linear regression on a dataset of

6 The scikit-learn Python library can be used to compute this set automatically: scikit-learn.org.

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 33604 15319 a 33604 15319 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

448 Y. Bouteiller

Fig. 15.1 Overfitting. Given
data points sampled from a
nonlinear phenomenon, a
model that perfectly
describes all the data points
is likely to generalize poorly

camera images xi to compute outputs fθ (xi) that represent, say, the distance to the
nearest car …).

Typically, nonlinear models do not have strong inductive biases7 like linearity and
have a much bigger capacity.8 They are able to represent crazily complex shapes,
which can fit the dataset exactly and yet generalize horribly. For instance, in Fig. 15.1,
we are trying to model a nonlinear phenomenon from which a dataset has been
sampled (each black circle represents a data point and its label: the xi are the values
on the x axis and the yi are the values on the y axis). Linear regression (dotted)
performs poorly on this simple nonlinear problem. Using a complex nonlinear model
instead and minimizing the MSE loss all the way down to zero produce a strongly
overfit model (dashed). The model represented with a full line has a slightly bigger
MSE loss when evaluated on our dataset, but it is likely to generalize much better to
unseen data.

Minimizing a loss in ML is not a typical optimization problem where one seeks
to actually find the minimum of the loss. Instead, the loss minimization procedure is
merely a tool to find a good set of parameters for our model. But how exactly do we
find this set of parameters, and how do we know that it is a good one?

Stochastic Gradient Descent
Although the loss function for nonlinear models is typically not strictly convex, it can
usually be considered approximately pseudoconvex9 in practice. Complex nonlinear
models such as neural networks have many tunable parameters (i.e., a very high-
dimensional θ), and we are unlikely to find a θ vector that cannot be improved in any
of its dimensions. Thus, despite being unable to find the analytical solution to the loss
minimization problem, we can select a random parameter vector θ0 and iteratively
optimize our loss from there by following the negative gradient. For a given value of
θt , we compute the local negative gradient of the loss:

7 An inductive bias is an assumption about the structure of the world that we force into our model.
8 The capacity of a model indicates the degree of complexity that it is able to represent.
9 A pseudoconvex function increases forever in the direction of any of its local gradients.

15 Managing the World Complexity: From Linear Regression to Deep Learning 449

Fig. 15.2 Gradient descent.
The GD algorithm optimizes
the loss by iteratively
descending its slope in the
directions of its local
gradient with respect to θ

(arrows)

∇t = −∇θ L(θt ,D),

and we update our parameter vector in the direction of this local negative gradient:

θt+1 = θt + α∇t ,

where the learning rate α is an hyperparameter.10 This procedure is illustrated in
Fig. 15.2.

Computing the true local gradient of the loss at each gradient descent iteration
is very computationally intensive. The gradient needs to be averaged over the entire
dataset at each iteration, which is not suitable. A better way of performing gradient
descent is stochastic gradient descent (SGD), an important key of modern ML suc-
cess. In its “pure” (vanilla) version, SGD is the same algorithm as gradient descent,
except instead of averaging the local gradient over the whole dataset, the gradient is
taken with respect to a single (xi , yi) pair sampled from the dataset. This technique
produces a very rough estimate of the gradient, at a much smaller computational cost.
But despite this estimate being rough, a small optimization step can still be taken in
its direction. This operation can be performed rapidly and repeated over many times.
Moreover, the stochastic nature of the gradient estimate enables SGD to escape from
local extrema and saddle points11 easily where vanilla gradient descent would fail.
These properties make SGD much more efficient than gradient descent in practice.

However, this version of SGD is still computationally inefficient. In fact, com-
puting an average gradient over several samples is a parallelizable task, and thus it

10 Hyperparameters are parameters not learnt by the optimization algorithm (often just setmanually).
11 Point where the gradient is close to zero on all dimensions (∇θ L(θt) ≈ 0), but that is not a local
extremum.

450 Y. Bouteiller

is not really a good idea to use something as extreme as one single (xi , yi) pair for
our local gradient estimate. Modern GPUs enable using several of them at no addi-
tional cost in terms of computation. This is why, in practice, we never use one single
sample from the dataset, but a certain number of them. The number of samples per
gradient estimate is an hyperparameter, called the batch size. Batch sizes between
16 and 4096 are common choices. As a rule of thumb, small batches yield rough
gradient estimates and work best with smaller learning rates, whereas larger batches
yield better12 estimates and can afford larger learning rates (He et al., 2019). The
resulting algorithm, called minibatch gradient descent (or also SGD), is the basis
of most state-of-the-art loss optimizers, such as Adam (Kingma & Ba, 2014) and
RMSProp.

Algorithm 1Minibatch gradient descent (SGD)
Require: D, fθ , L , α, n � dataset, model, loss function, learning rate, batch size
Ensure: θ ≈ θ∗ � near-optimal parameters for the model

θ ← random values � initialize parameters
repeat

batch ← n (x, y) pairs sampled from D � sample minibatch from dataset
∇ ← −∇θ L(θ , batch) � estimate gradient on minibatch
θ ← θ + α∇ � update parameters by descending gradient

until convergence of L(θ ,D) � once in a while, evaluate actual loss on dataset

Training, Validating, and Testing
As long as the local gradient can be computed for any value θ of the parameter
vector, SGD enables minimizing the loss of approximately pseudoconvex nonlinear
models.However,whenoptimizedbySGD, the loss onour datasetwill still eventually
converge too close to its true minimum. In other words, if not stopped early enough,
SGD will overfit!

Fortunately, there is a way of stopping convergence right before this happens.
This technique, called early stopping, also enables evaluating the true performance
of the model on unseen data. The main idea is that we do not train our algorithm on
the entire available dataset. Instead, we shuffle the dataset D and split the result into
three disjoint subsets:

• a training set Dtrain,
• a validation set Dvalidation,
• a test set Dtest.

We then performSGDby estimating gradients only on the training set, with a small
change: instead of stopping the algorithm when we think the loss has converged on
the training set, we stop the algorithmwhen the loss stops improving on the validation
set.

12 In the sense of being closer to the true gradient and thus less stochastic, which is only partly
suitable!

15 Managing the World Complexity: From Linear Regression to Deep Learning 451

Fig. 15.3 Early stopping.
The validation set enables
finding when to stop training
before overfitting starts
harming the generalization
properties of the model

This is because, when the model starts overfitting, its performance on the valida-
tion set (on which it is not trained) starts decreasing (i.e., the validation loss starts
increasing). Figure15.3 displays a typical example of this phenomenon over training.

Note that the loss function is not necessarily what people use to determine when
early stopping should happen. It is possible to use metrics we are more directly
interested in. For instance, in classification tasks, we often use the accuracy or the
F1-score.

Finally, you may wonder why we have split our dataset into three parts rather than
two. Indeed, we have not used Dtest at all. And there is a good reason for this: You
should never use the test set before your system is final and ready for production!
There are many subtle ways in which it is possible to overfit on our dataset in an
ML project, and early stopping is one of them. Because we have selected our best
model based on its performance on the validation set, we have slightly overfit on
this subset. To really evaluate our performance, the only unbiased way is to do it on
the unseen test set once the model is final. In supervised learning, this is important
as a last sanity check. Of course, this can be replaced by testing the model directly
in the real world when possible, in which case the real world becomes the test set.
Typically, the performance on the test set is slightly worse than the performance on
the validation set, which is noticeably worse than the performance on the training set.

Regularization
On top of early stopping, many existing techniques, called regularizers, help improve
the generalization performance of a model. Some of these techniques, such as L1 and
L2, add a term to the loss in order to penalize large parameter values and promote
models that use as few parameters as possible (this avoids crazy models similar to
Fig. 15.1). Others, such as dropout, introduce noisymodifications to themodel during
training in order to promote robustness.

452 Y. Bouteiller

b

Full representation Compact representation

Fig. 15.4 Simple neuron

15.4.4 Deep Neural Networks

ML has attracted a lot of attention over the past few years. The main reason for this
surge of interest is thatmodernGPUs (and,more recently, TPUs/IPUs) have provided
enough computational power to train a class of complex nonlinear models invented
in the 1940s–1960s (Fitch, 1944; Ivakhnenko & Lapa, 1965), whose potential had
remained unknown for several decades (Krizhevsky et al., 2012). These models,
called deep neural networks (DNNs), are an algorithmic attempt to mimic the brain.
They project their input into successive, more and more abstract representations,
that eventually map to the desired output. DNNs are today at the core of most ML
successes. In fact, they have become so prominent that modern ML is often simply
called deep learning.

The atomic component of a DNN is a very simple, usually nonlinear model,
called neuron. A neuron is made of a linear model,13 directly followed by an easily
differentiable, usually nonlinear function, called activation. Using the same notation
as for linear regressions, the operation performed by a neuron is

fθ (xi) = σ(θ�xi)

whereσ is the activation function.Weoften represent a neuron as a graph,which helps
visualize the flow of operations. In particular, we will use the compact representation
to understand more complex DNNs (Fig. 15.4).

The only structural difference with a linear regression model is the activation σ ,
which plays a central role in deep learning. Many activation functions exist in the
literature, the most common being the sigmoid and the rectified linear unit (ReLU).

The sigmoid is defined as follows:

sigmoid(a) = 1

1 + e−a

13 The same model as used by linear regression.

15 Managing the World Complexity: From Linear Regression to Deep Learning 453

Fig. 15.5 Sigmoid
activation

Fig. 15.6 ReLU activation

The sigmoid is generally used when one needs to squash an output between 0
and 1. However, its derivative is near zero everywhere except around the origin,
which is harmful to the convergence of SGD. Plus, compared to ReLU, the sigmoid
is relatively costly to compute (Fig. 15.5).

The ReLU is a simple clipping operation:

ReLU(a) = max(x, 0)

Computing a ReLU is blazing fast and so is computing its derivative (0 for neg-
ative numbers, and 1 for strictly positive numbers, the derivative at the origin being
arbitrary) (Fig. 15.6).

The point of using such a simple nonlinearity may seem unclear at first: A neuron
with a ReLU activation is just a crippled linear model unable to output anything neg-
ative! But contrary to linear models, a neuron is never used alone: Its representational
power comes from being coupled with other neurons to form a DNN. In its simplest
form, called multilayer perceptron (MLP), a DNN is a stack of layers, each made of
several parallel neurons (Fig. 15.7).

Remember that each individual neuron has a vector of tunable weights and a
single tunable bias as parameters. Since a layer has several parallel neurons, this
translates to each layer having a matrix of tunable weights and a vector of tunable
biases. The set of tunable parameters of an MLP is thus θ = {Wi,bi}i=1...k+1. The
operation performed by an MLP is as follows:

h1(xi) = σ1(W1xi + b1)

h2(h1) = σ2(W2h1 + b2)

. . .

fθ (xi) = f (hk) = σk+1(Wk+1hk + bk+1)

454 Y. Bouteiller

input

output layerhidden layers

output

Fig. 15.7 Multilayer perceptron

Despite their fairly simple structure, DNNs perform extremely complex nonlinear
projections and are typically treated as black boxes. Thus, we say that layers other
than the last one are hidden. On the other hand, the last layer has a special role and is
typically a simple linear layer with no activation (i.e., σk+1 is the identity function).
This layer projects the output of the last hidden layer into the output space of the
DNN (for instance, into a 3D vector if we are predicting a position …).

Notice that, without nonlinear activation functions, this structure would only be
a crazy way of building a linear model. This is because combining linear combina-
tions yields other linear combinations.Yet, simple nonlinearities such asReLUsmake
DNNs much more powerful. In fact, a famous result called the universal approxi-
mation theorem (Hornik, 1991) shows that, even with a single (large enough) hidden
layer, a neural network can approximate any continuous function arbitrarily well.14

This includes mappings from raw camera images to conceptual information about
their content, or even directly to optimal control commands for our robot!

15.4.5 Gradient Back-Propagation in Deep Neural Networks

We know that DNNs can approximate virtually any complicated nonlinear mapping
of interest, such as mappings from camera images to conceptual descriptions of their
content. Moreover, we know a way of searching for this mapping: SGD with early
stopping. The only ingredient we are missing for applying this strategy is an estimate
of the gradient of the loss with respect to all tunable weights and biases of our DNN.

The key to the success of DNNs is an algorithm introduced in 1970 (Linnainmaa,
1970) and made practical by the use of modern GPUs/TPUs/IPUs, called gradient
back-propagation (or backprop for short). Backprop is a dynamic programming
algorithm that efficiently computes the gradient of the loss. To perform a backprop,

14 For an animated illustration of this result: http://neuralnetworksanddeeplearning.com/chap4.html
(Nielsen, 2015).

http://neuralnetworksanddeeplearning.com/chap4.html
 14137
56760 a 14137 56760 a

http://neuralnetworksanddeeplearning.com/chap4.html

15 Managing the World Complexity: From Linear Regression to Deep Learning 455

b

Fig. 15.8 Gradient back-propagation

one first needs to perform a forward propagation in the DNN, i.e., compute the
fθ (xi) output. Then, backprop uses the chain rule of partial derivatives to propagate
gradients backward in the graph. For simplicity, let us visualize this process on a
single neuron.

In Fig. 15.8, we want to compute the gradient of the loss L with respect to the
weights wi and the bias b. Once the output f has been computed by a forward
propagation, it is straightforward to compute the derivative of the loss with respect
to this output, ∂L

∂ f . We can then use the result to compute ∂L
∂a ,

15 which, according to

the chain rule, is equal to ∂L
∂ f

∂ f
∂a . Indeed,

∂ f
∂a is just the derivative of the activation σ .

The result can then be propagated further back to compute the partial derivatives we
are interested in: ∂L

∂w j
= ∂L

∂a
∂a
∂w j

and ∂L
∂b = ∂L

∂a
∂a
∂b . Indeed,

∂a
∂w j

is xi, j and ∂a
∂b is 1. To

generalize this procedure to DNNs, we also use ∂L
∂a to compute ∂L

∂xi, j
= ∂L

∂a
∂a

∂xi, j
, where

∂a
∂xi , j

is w j , and we repeat this process in previous neurons. Note that intermediate

results such as ∂L
∂a are computed only once and reused many times. This makes this

dynamic programming procedure very efficient in DNNs.
We now master the basics of deep learning! In practice, we will not implement

SGD and backprop manually, because highly optimized libraries have done all the
work for us. Nowadays, the most popular such libraries are PyTorch and Tensor-
Flow.16

15.4.6 Convolutional Neural Networks

We have seen how DNNs can learn extremely complex nonlinear tasks such as
mapping camera pixels to relevant high-level information … in theory. In reality,
using an MLP to process camera images is bound to fail.

15 Here, a denotes the intermediate forward value after the sum and before the activation.
16 pytorch.org and tensorflow.org.

456 Y. Bouteiller

pixel-wise
convolutional

filter

convolution

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.7 0 0
0 0 0.8 0 0.7 0
0 0 0.9 0 0 0.8

a convolutional filter is a tensor of tunable weights

input output

Fig. 15.9 Neural convolution

To understandwhy, let us consider a small 100× 100RGB image input.Whenflat-
tened with all three color channels concatenated, this becomes a 30,000-dimensional
vector. For an MLP to be able to extract meaning of this vector, it should have at
least about as many neurons in its first layer; otherwise, a near-linear regression on
pixels would happen. The number of weights in an MLP layer being the number
of inputs multiplied by the number of parallel neurons, this would require around
9 × 108 tunable weights in the first layer alone. Computing their individual partial
derivatives at each SGD iteration would be painfully slow.

Furthermore, deep learning is never guaranteed to converge to anything inter-
esting. The convergence and generalization properties of SGD rely on the pseudo-
convexity assumption and depend on many hyperparameters (structure of the neural
network, learning rate, initial set of parameters …). Thus, it is often a good idea
to help our models learn meaningful mappings by enforcing inductive biases when
possible, similar to how linearity makes linear models efficient for linear problems.
In particular, camera images have a strong spatial structure that we can use to our
advantage. Convolutional neural networks (CNNs) are an effective way of doing so.
Instead of connecting each color channel of each pixel to each neuron of the first hid-
den layer, CNNs borrow a much lighter technique from traditional computer vision:
image convolution.17 This technique, illustrated in Fig. 15.9, uses filters (also called
kernels) to “scan” images for specific patterns and perform local projections.

A filter is a small array of weights, plus a single optional bias,18 all tunable.
We split the image into pieces of the same size as the filter. Typically, these pieces
are overlapping (e.g., shifted by only one pixel), although for the sake of clarity
they do not overlap in Fig. 15.9 (they form the white “grid”). We apply the filter to

17 The mathematical operation is actually a cross-correlation, but ML practitioners call it “convo-
lution”.
18 Another (less common) version exists in which there is one bias per output pixel.

15 Managing the World Complexity: From Linear Regression to Deep Learning 457

Fig. 15.10 Convolution
options

0 0 0 00 0 0 00 0

0 0 0 00 0 0 00 0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

dilation: 3

stride: 1 padding: 1

kernel size: 3

each piece individually. This is done by multiplying each pixel of the piece with the
corresponding weight of the filter, then summing the results into a single value, and
adding the bias (NB: This operation is a linear combination).

The result is then fed to an activation function, which produces a new pixel value.
Together, new pixels form an output image called feature map. More precisely, a
2D convolutional filter is in fact a 3D tensor19 whose depth is the number of input
channels (e.g., 3 when the input is a RGB image). It combines all input channels into
a single output feature map. CNNs commonly use hundred of filters in parallel, each
producing a different feature map depending on the weights and bias of the filter.
These feature maps then become the input channels of the next convolutional layer.
UsingCNNfilters greatly reduces the number of trainable parameterswhen compared
to MLPs: Only the weights and bias of each filter are trainable, and convolutional
filters are often of size 3 × 3 in practice. Typically, we find that filters become edge
detectors or pattern detectors during training. For instance, in Fig. 15.9, the trained
filter has naturally taken the shape of a flower so as to detect flower patterns.

Additionally, we commonly use the following operations in convolutional layers:

– Zero padding: We append zeroes to the border of the input image.
– Stride: We shift pixels between convoluted pieces of the input image.
– Dilation: We shift pixels between elements of the convolutional filter.

These options are illustrated in Fig. 15.10 (integer values describe both dimen-
sions).

Finally, kernel-based operations other than image convolution are often used in
CNNs. The most common is max pooling, which reduces the size of a feature map
by selecting the pixel with the maximum value in the area of the kernel, as illustrated
in Fig. 15.11.

CNNs are typically made of alternating convolutional and max pooling layers and
are often very deep (i.e., they have many layers). They are by far the current state of
the art in a wide range of computer vision tasks, some of which we will highlight
later in this chapter. CNNs are a building block of many GANs used for image

19 A tensor is a multidimensional array, for instance a matrix is a 2D tensor.

458 Y. Bouteiller

Fig. 15.11 Max pooling
max pooling

0 0 0

0
0 0 0.1

0.2
0
0
0 0 0

0 0
0 0

0.3
0.20.2

0

0.30.3
0.30.2
0.20.10.10.10.1

0.1
0.20.10.1

0.1

0

0.2
0 0.2

0.3

input output

manipulation and generation, and they are not limited to 2D image processing. For
instance, 1D convolutions can be used for signal processing, and 3D convolutions
can be used for video processing.

15.4.7 Recurrent Neural Networks

Time series are often central in robotics: We need them to analyze the past and plan
in the future. Thus far, we have seen how DNNs can analyze the present, but can
they keep track of the past? Is it possible to predict and plan in the future? Can we
generate coherent sequences such as paths, or even sentences? Can we process time
series such as video streams, or even sound and voice?

In deep learning, the past can be analyzed by feeding the whole history of rel-
evant observations to a DNN. For instance, a self-driving car would be unable to
output a relevant command from one camera image only, as this would contain little
information about the dynamics of the world (i.e., only contextual information …).
On the other hand, a history of the last few camera images equally spaced in time
is enough to infer simple dynamics. This concern is more generally known as the
Markov property: The history fed as input to the model must be long enough so that
any earlier observation is irrelevant to the task.

Planning in the future can be done by recursively feeding a DNNwith its own last
few outputs. For instance, let us imagine a model that takes a target position and a
path as input. The model appends a waypoint to the path so that it gets closer to the
target. The updated path can then be fed back to the model. This procedure repeated
several times yields a path planning algorithm. A similar procedure can be used to
generate speech or music. …

Although feeding a history of observations directly to a vanilla DNN is possible,
this quickly gets inefficient and impractical. Naively processing the whole history of
relevant observations at each forward propagation is computationally intensive and
may perform poorly due to the lack of inductive biases. Fortunately, a better alterna-
tive exists: Recurrent neural networks (RNNs) are able to automatically detect and
keep track of only the relevant information from past observations. Instead of being
fed the whole history at each forward propagation, they take a single observation
as input and store the relevant information directly in their hidden layers, within a
persistent hidden state.

15 Managing the World Complexity: From Linear Regression to Deep Learning 459

hidden state

implementation-wise view time-wise view

Fig. 15.12 Recurrent layer

Figure15.12 describes a simple RNN layer. For the sake of clarity, arrows rep-
resent matrix multiplications, i.e., connections between layers, instead of individ-
ual connections between neurons (I is the identity matrix). Time is discretized into
timesteps. The output f (t)

θ of the layer at timestep t is computed from both the input
x(t) and the output from the previous timestep f (t−1)

θ . An additional set of parameters
Wh and bh handles how memorized information is combined with new information.
Mathematically, the output at timestep t is as follows:

f (t)
θ = σ(Wx(t) + b + Whf

(t−1)
θ + bh)

To train an RNN, all observations in the relevant portion of the history are fed to
the model one by one. Then, the gradient of the loss can be back-propagated through
time. This operation is similar to howback-propagation is performed inMLPs, except
the gradient also flows back through the horizontal arrows in the time-wise view of
Fig. 15.12.

RNNs not only make the forward propagation computationally efficient (since
only one observation is fed to the model at each timestep), but also constitute an
inductive bias that promotes memorization of high-level concepts rather than raw
inputs. Indeed, the persistent information consists of the values projected by hidden
layers. In deep learning, these projections are typically seen as extracted concepts.

15.4.8 Deep Learning for Practical Applications

The field of deep learning is very competitive and evolving rapidly. This yields many
high-performance models that practitioners can use directly in robot applications.
Due to Python being particularly popular in the deep learning community, most
readily available implementations are found in Python. Nevertheless, it is always
possible, although a bit cumbersome, to extract readily trained weights and biases
from Python in order to implement the model in more efficient languages for produc-
tion. In fact, PyTorch and TensorFlow both provide ways of facilitating the transfer
of Python models to C++. We provide a non-exhaustive list of supervised and unsu-
pervised approaches that are relevant for robotics.

460 Y. Bouteiller

CNNs and GANs
CNNs and GANs have attracted a large portion of the ML research focus over the
past few years. They are particularly often used in modern computer vision.

– ImageNet: ImageNet (Deng et al., 2009) is a benchmark on which many high-
performance CNNs are compared for pure image classification. At the moment
of writing this book, the best-performing such models are the EfficientNet family
(Pham et al., 2021; Tan & Le, 2019).

– YOLO: YOLO (You Only Look Once) (Bochkovskiy et al., 2020; Long et al.,
2020; Redmon et al., 2016) is a very popular family of CNNs combining image
classification and bounding boxes. YOLO finds all instances of known categories
in an image and draws a bounding box around each instance.

– Mask-R CNN: Mask-R CNN (He et al., 2017) is similar to YOLO, but even more
evolved. On top of detecting all class instances with their bounding boxes in an
image, Mask-R CNN draws the actual segmentation of each instance.

– PoseNet: PoseNet (Kendall et al., 2015;Moon et al., 2018) is a CNN able to extract
human poses from camera images, e.g., for non-verbal communication with the
robot.

– Super-resolution: Super-resolution models (Wang et al., 2020) are able to improve
the resolution of input images, e.g., for low-quality cameras. They are often based
on GANs.

– Image inpainting: Image inpainting models (Elharrouss et al., 2020) are able to fill
gaps in images. For example, they can be used to fill gaps in depth maps generated
by LIDARs, or to reconstruct partially occluded subjects. They are also often based
on GANs.

– Domain adaptation: Domain adaptation models (Wang & Deng, 2018) enable
transforming data from one domain (e.g., data from a simulator) into data from
another domain (e.g., real-world data!). CycleGAN (Zhu et al., 2017) is a popular
example.

Sequential Modeling
The RNN structure that we have described in the previous section is often informally
called “vanilla RNN”. In practice, much more efficient types of RNNs are available.

– LSTM: A long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is
a special type of RNNwith a more complicated, gated structure. In particular, it is
able to selectively forget pieces of information and keep what it thinks is relevant
for many timesteps.

– GRU: A gated recurrent unit (GRU) (Chung et al., 2014) is similar to an LSTM,
but computationally lighter.

– Autoregressive models: Autoregressive models are not really RNNs, but evolved
forms of the naive recursive procedure described in the previous section for gen-
erating sequences with vanilla DNNs. These models use their own previous out-
puts directly as an input sequence and implement inductive biases to process this

15 Managing the World Complexity: From Linear Regression to Deep Learning 461

sequence efficiently. They can be used to generate human voice for example, as
done by WaveNet (Oord et al., 2016).

– Transformers: Transformers (Vaswani et al., 2017) are not reallyRNNseither. They
also take whole sequences as input. Nevertheless, they are the current state of the
art in many sequence processing tasks. Transformers use an attention mechanism
to efficiently process sequences by focusing only on relevant parts of the input.
For instance, GPT-3 (Brown et al., 2020) is an autoregressive transformer able
to generate human-like text. Another example is BERT (Devlin et al., 2018), a
transformer used for language understanding. Both BERT andGPT-3 are immense
models readily pretrained that one needs to fine-tune for their application.

Note that training LSTMs and GRUs is not fully parallelizable and is thus slow,
but using them is fast once trained. On the other hand, training transformers is
parallelizable and is thus fast, but they are slow to use once trained. This is an
important concern in practice for robotic applications where the model needs to run
as fast as possible once deployed.

Behavioral Cloning
Behavioral cloning is a supervised technique that can be used with any DNN to
train a robot controller. First, an expert remotely controls the robot to perform a task
many times. Everything is recorded into a dataset D = {xi , yi }, where the xi are
sensor readings and the yi are expert commands. We then use this dataset to train
a DNN as seen previously. The resulting DNN maps sensor observations to expert
commands. We call this DNN a policy network and denote its output πθ instead of
fθ , by convention.

15.5 Policy Search for Robotic Control

15.5.1 Limitations of Supervised Learning for Control

While behavioral cloning enables learning a policy, it is inherently limited by its
supervised nature. Behavioral cloning only tries to “imitate” the expert policy from a
dataset of demonstrations, and thus it is unable to really match (let alone outperform)
the expert level.Moreover, expert demonstrations are likely to be concentrated around
a small number of interesting trajectories from which they never deviate. Robots not
being perfect, they do deviate from these known trajectories and get lost in unexplored
situations.

This is where the paradigm of policy search comes into play. Unlike supervised
methods, policy search algorithms learn from their own experience. They are not lim-
ited by the expert level, and they learn in a way that is arguably closer to how natural
intelligence arises. For example, evolutionary algorithms are inspired from natural
genetics. They learn their own policy by continuously applying random mutations
to their model, evaluating the new performance on the task after each mutation, and
choosing to keep or discard the newmodel based on this evaluation. These algorithms

462 Y. Bouteiller

Fig. 15.13 RL transition

agent

environment

action observationreward

transition

are able to easily find reasonable solutions to theoretically very complex scenarios,
such as multi-robot tasks. However, because their mutations are random, they are
often less efficient than the informed mutations performed by SGD. Deep reinforce-
ment learning is a class of policy search algorithms able to find high-performance
policies by leveraging SGD instead.

15.5.2 Deep Reinforcement Learning

Deep reinforcement learning is the modern conjunction of deep learning and RL
(Sutton & Barto, 2018), a subfield of ML inspired from behavioral psychology,
and more particularly from the concept of reinforcement. Reinforcement partially
explains living organisms’ behavior as the result of a history of positive and negative
stimuli. Simply put, when facing a given situation, living organisms would try differ-
ent actions and experience different outcomes. When later facing similar situations,
they would become more likely to retry the actions that yielded the best outcomes
and less likely to retry the actions that yielded the worst. RL emulates these outcomes
by mean of a reward signal, which is a measure of how well the robot performs.

Interaction with the Environment
In RL, the world is framed as a special type of state machine calledMarkov decision
process (MDP), or, less formally, environment20 (Fig. 15.13).

Robotic environments usually discretize time into timesteps. At each timestep, the
robot, called agent, retrieves an observation of the current state of the environment
and uses its policy to compute an action from this observation. Once the action is
computed, it is applied in the environment, which transitions to a new state. The agent
observes this new state and receives an instantaneous reward. The new observation

20 More precisely, real-world environments are usually partially observable Markov decision pro-
cesses.

15 Managing the World Complexity: From Linear Regression to Deep Learning 463

x = reset()

x, r, d, i = step(a)

Gym

Actual
system

Model

Fig. 15.14 Gym interface

can then be used to compute a new action from the agent’s policy and so on. As
implied by the name, the observations outputted by an MDP must have the Markov
property. In other words, the observation actually fed to the policy must contain the
whole history of past observations reasonably relevant to the task. Alternatively, the
policy can be an RNN…

In practice, most RL environments are implemented using the Gym Python inter-
face (Brockman et al., 2016) (Fig. 15.14).

The Gym interface is very simple and essentially consists of two methods. The
resetmethod sets the environment to its initial state and returns an initial observation.
The agent computes an action from this observation and feeds this action to the step
method. The step method performs a transition of the environment and returns four
values: a new observation, an instantaneous reward, a Boolean that tells whether the
task is complete, and a Python dictionary that can usually be ignored (it may contain
debugging information).

Importantly for robot applications, note that MDPs do not naturally take real-time
considerations into account. The world is simply “stepped” from one fixed state to
the next, and time is supposed to be “paused” between transitions. We can achieve
a real-time behavior by means of a timer that clocks our Gym environment, but this
comes with delayed dynamics that we need to handle properly.21

Reinforcement Learning Objective
The general philosophy of RL is to maximize the accumulated reward signal that
the agent gets from the environment. More precisely, we want to find an optimal
policy which, from any given observation, maximizes the sum of future rewards that
the agent can expect. In other words, we want to find optimal parameters θ∗ for the
policy of the agent, such that:

θ∗ = argmax
∞∑

t=t0

E[rt],

where E[rt] is the expectation over the instantaneous reward rt received from the
environment at timestep t when following the policy πθ∗ , starting from an arbitrary
initial observation.

21 For a helper that handles these dynamics automatically, see rtgym (pypi.org/project/rtgym/).

464 Y. Bouteiller

Note that this sum can be infinite (e.g., if rt > 0 for all t), and thus θ∗ may be
undefined. To alleviate this issue, we introduce a discount factor 0 ≤ γ < 1 in the
rewards. This hyperparameter is very often used in RL, and understanding its role is
important. Instead of trying to achieve the maximum sum of expected rewards, the
agent tries to achieve the maximum sum of expected γ -discounted rewards:

θ∗ = argmax
∞∑

t=t0

E[γ t rt].

Sinceγ < 1, thismakes the optimal policy relatively greedy: instead of optimizing
for long-term rewards, we give more importance to the rewards that are not too far
in the future. The closer γ is to 0, the greedier the optimal policy becomes. We
usually set γ very close to 1 (0.95 or 0.99 are common values), but the effect is still
noticeable. For instance, let us imagine we design the reward to be 0 everywhere
except for the single timestep when the robot completes the task, where the reward is
1. Without a discount factor (i.e., with γ = 1), any policy would be optimal as long
as it completes the task someday, and it should take ten thousand years. On the other
hand, when γ < 1, the only optimal policies are the ones that complete the task as
fast as possible.

Several ways of maximizing this sum exist. We will focus on an algorithm pub-
lished in 2015, called “Deep Q-Network” (DQN) (Mnih et al., 2015), because it
introduces many of the basic concepts that more advanced deep RL techniques used
nowadays.

Deep Q-Network Policy
In the DQN algorithm, we train a near-deterministic policy that maps complex obser-
vations to discrete actions.22 For this matter, we use the concept of Q-value.

In RL, the state-value function Vπθ
(x) maps the observation x to the sum of γ -

discounted rewards that the agent can expect from following its current policy πθ

after observing x . It is defined recursively as follows:

Vπθ
(x) = Ea∼πθ (·|x)Ex ′,r ′∼p(·|x,a)[r ′ + γ Vπθ

(x ′)],

where p is the transition distribution of the environment, i.e., the statistical distribu-
tion of the new observation x ′ and the new reward r ′ when observing x and taking
action a. The policy πθ is also written as a distribution because it is not deterministic.
The Q-value, or action-value function, is almost the same thing, except it “forces”
the first action:

Qπθ
(x, a) = Ex ′,r ′∼p(·|x,a)[r ′ + γ Vπθ

(x ′)].

22 Determinism is not really suitable for robotics in practice: We may get stuck in unseen situations.
More advanced deep RL techniques are able to train stochastic policies that output real-valued
actions.

15 Managing the World Complexity: From Linear Regression to Deep Learning 465

observation
estimated

optimal Q-value
of each action

Fig. 15.15 Deep Q-network model

In plain English, the Q-value Qπθ
(x, a) is the sum of discounted rewards that the

robot can expect when it observes x , takes action a, and then follows it current policy
πθ ever after. We use the Q-value to discriminate good and bad actions from a given
observation.

Let us imagine that we magically have access to the optimalQ-value function Q∗,
i.e., the Q-value function under the optimal policy πθ∗ . When actions are discrete,
the optimal policy πθ∗ is obviously to choose the action with the highest Q∗ at each
timestep, i.e.,

πθ∗(x) = argmax
a

Q∗(x, a).

This is exactly how the DQN policy works. We train a DNN with parameters θ

that maps observations to the optimal Q-value Q∗ of each action (Fig. 15.15).
Once the DQN model is trained, the robot uses it with the observation received

from the environment at each timestep. The optimal policy πθ∗ is simply to select
the action with the highest estimated Q∗. Ties are broken randomly, which is why
the DQN policy is not entirely deterministic.

Deep Q-Network Training
Of course, we do not magically have access to the optimal Q-value function for
training our DQN model in practice. But there is a well-known method for approxi-
mating this function: Q-learning. The previous equations can be combined into the
following form:

Q∗(x, a) = Ex ′,r ′∼p(·|x,a)[r ′ + γ max
a′ Q∗(x ′, a′)].

This identity, called the Bellman equation, is very important for RL. It enables
identifying the optimal Q-value function by performing Bellman backups. For any
transition (x, a, x ′, r ′) performed in the environment, we can improve our approxi-
mator (e.g., DQN model) of the optimal Q-value function with a simple operation:

Q∗(x, a) ← r ′ + γ max
a′ Q∗(x ′, a′)

Let us take a moment to unveil the full potential of this operation. The Bellman
backup improves the estimate of Q∗(x, a) by aggregating the actual reward r ′ and
the estimated best Q∗ under the next observation x ′. We can select any transition

466 Y. Bouteiller

(x, a, x ′, r ′) to perform this backup, as long as the transition has been sampled from
the environment at some point. This includes transitions collected under a policy that
is not the current policy of the robot. In particular, we can use transitions collected by
an expert, or simply by an older version of the current policy. In RL, this important
property is calledoff-policy. An off-policy algorithm, such asDQN, is able to improve
the current policy with transitions collected under another policy. This is in contrast
to on-policy algorithms, which can only use transitions collected under the current
policy. The main reason why the off-policy property is important is that it enables
reusing old transitions several times at different stages of training. This is particularly
important in robotic applications, where it is costly to collect environment transitions.

Wewant to use the Bellman backup for training our DQNmodel, which is a DNN.
Therefore, we need to translate this backup into a loss function, so as to enable SGD.
This is pretty straightforward:We can simply use theMSE loss.We select a transition
(x, a, x ′, r ′), we feed x and x ′ separately to our DQNmodel so as to retrieve Q∗(x, a)

and Q∗(x ′, ·), and then we perform an SGD step for the Q∗(x, a) output only, using
the following loss:

LMSE(Q
∗, {(x, a, x ′, r ′)}) = |Q∗(x, a) − (r ′ + γmax

a′ Q∗(x ′, a′))|2

The reason why we underline Q∗ in the right-hand part of this equation is a bit
subtle. Notice that, in supervised learning, the quantity between parenthesis would
correspond to the ground truth label y, which would be a constant. Here, however,
this quantity depends on the parameters of the DNN, because the DNN is used to
compute Q∗(x ′, ·). Thus, if we are not careful, performing SGD will modify the
DNN parameters such that our “ground truth” gets closer to our estimate rather than
the other way round! To avoid this issue, we do not back-propagate gradients through
the computation graph of Q∗.23 However, this leaves yet another issue: Updating our
DNN parameters still updates the very target that we are trying to reach! Indeed,
we are updating these parameters such that our estimate of Q∗(x, a) gets closer to
the quantity between parentheses, but this collaterally changes Q∗ and thus this very
quantity, making training unstable. We instead keep an old copy of our DQN model
that we periodically update. This copy, called the target network, is used to compute
Q∗(x ′, ·). Since it is only updated once in a while, it becomes easier to track.

It is straightforward to generalize our loss to minibatch gradient descent. Using a
minibatch M = {(xi , ai , x ′

i , r
′
i)} of n transitions, the MSE loss becomes

LMSE(Q
∗,M) = 1

n

n∑

i=1

|Q∗(xi , ai) − (r ′
i + γ

a′
i

max Q∗(x ′
i , a

′
i))|2.

SinceDQN is off-policy, we can sample these transitions randomly from a dataset,
as we would do in supervised learning. Sampling from a fixed dataset (e.g., of expert
demonstrations) is possible and known as offline RL. Theoretically, this could match

23 In PyTorch and TensorFlow, the “no gradient” option ensures this constant-like behavior.

15 Managing the World Complexity: From Linear Regression to Deep Learning 467

and even outperform the expert level, because we are not imitating the expert any-
more:We are literately learning from their experience. However, this approach comes
with practical difficulties, in particular because it tends to overestimate the value of
unexplored situations. We often prefer letting the agent collect its own experience,
by exploring the environment while learning. In this situation, there is virtually no
theoretical limit to how good the agent can get.

In DQN, the agent explores its environment by following an ε-greedy policy:
With a certain probability ε, the agent selects a random action, and with probability
(1 − ε), it selects the best action as estimated by the DQN model. This scheme
exploits the current knowledge of the environment by drawing exploration toward
promising trajectories only. A higher ε yields a higher tendency to explore and thus
slower convergence, whereas a smaller ε yields faster convergence at the price of
being more likely to converge to local optima, i.e., to poor policies. This trade-off is
known as the exploration/exploitation dilemma.

In practice, we store the transitions collected by the agent in a huge circular dataset
called replay buffer (1–100 million transitions are common sizes). In parallel, we
randomly sample minibatches of transitions from this buffer, and we train our DQN
model by minimizing the LMSE(Q∗,M) loss via SGD.

15.5.3 Improvements of Deep Q-Learning

DQNwas published in 2015 and has popularized the idea of deep Q-learning, which
is leveraged in many state-of-the-art deep RL algorithms nowadays. Over the years,
improvements have been introduced that increased the performance of thesemethods.
In particular, we usually dampen the updates of the target network and train twoDQN
models in parallel.

Slowly Moving Target
Using an old copy of our DQN model that we only periodically update makes the
target easier to track. An even better strategy is to update the target slowly in a
dampened fashion, by mean of an exponentially moving average. Instead of only
periodically updating the target parameters, we update them with each SGD step,
but only by pulling them weakly toward those of the current DNQ model. More
precisely, the parameters of the target are updated according to:

θ ← (1 − τ)θ + τθ,

where θ are the parameters of the currentQ-network, θ are those of the target network,
and τ is a small attraction coefficient (commonly 0.005). With this strategy, the Q∗
target does not move erratically due to the stochasticity of SGD updates.

Double Q-Networks
Another well-known issue of the original DQN algorithm is that the Q-network
tends to converge to overestimated values for some actions. This issue, known as the

468 Y. Bouteiller

overestimation bias, comes from the fact that the target network Q∗ is an estimator
and has a noisy error. When selecting the maximum Q∗ over all actions, we also
select the maximum over … the noisy error!

To tackle this issue, we train two DQN models in parallel, with different sets of
initial parameters. This yields two target networks, each with different error distri-
butions. In recent algorithms, we compute the value of each action as its minimum
across both networks, which cancels the overestimation bias.

15.5.4 Deep Reinforcement Learning for Practical
Applications

Despite DQNbeing relatively recent (2015), the research effort has been so intense in
the deep RL community over the last few years that it is already vastly outperformed
by more advanced techniques.

– SoftActor Critic (SAC). Since its publication in 2018, SAC (Haarnoja et al., 2018a,
2018b) has been one of the main players in deep RL for robotics. SAC is an Actor
Critic algorithm. This means that two neural networks are trained in an interleaved
fashion: an actor (policy network similar to behavioral cloning) and a critic (Q-
network similar to DQN). The policy trained by SAC is stochastic and able to
output continuous actions. Moreover, its entropy24 is maximized in parallel to the
RL objective. This yields a policy that is very robust to unseen situations, which
is particularly important in the real world. SAC is also an off-policy algorithm.

– Model-based reinforcement learning. More recently, another class of deep RL
algorithms, calledmodel based, has seen a dramatic surge of interest from the com-
munity. Model-based algorithms use a model of the world to predict the response
of the environment from a given observation. In state-of-the-art approaches, this
model is learnt from interacting with the environment. Once learnt, the policy can
be trainedwithout interactingwith the environment anymore, and themodel can be
used for planning. The MuZero (Schrittwieser et al., 2020) algorithm is currently
the winning player in this field.

– Non-stationary environments. Let us point out a real-world concern that we have
silenced so far. We have focused on off-policy algorithms because these have
tremendous advantages in situations where the collection of transitions is costly,
which is typically the case in robot applications. However, “naive” off-policy
algorithms onlyworkwhen the environment is stationary. Indeed, these algorithms
rely on a dataset of past transitions to train their current policy. But think of
what happens in the real world, where other agents are continuously learning
and changing their behavior. Old transitions may become obsolete, and learning
from those may become counterproductive. In this situation, you might want to
draw inspiration from on-policy approaches such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017), which only rely on the present.

24 The entropy is the amount of randomness of a stochastic function.

15 Managing the World Complexity: From Linear Regression to Deep Learning 469

– Sim-to-real. It is often practical to train an RL algorithm in simulation, especially
for robotics. RL being fundamentally based on trial-and-error, we do not want our
robot to break because of crazy random actions during training. Simulation instead
provides a safe environment where arbitrarily bad actions can be tried out. More-
over, it is possible to accelerate time in simulation and collect transitions faster
than real time. But this comes at a price: Simulation is never the same as reality,
and a policy trained in simulation typically fails in the real world. This concern,
called the sim-to-real gap, is one of the main challenges that has long kept deep RL
from being really useful in practical robotics. However, it has recently been allevi-
ated impressively by techniques such as Rapid Motor Adaptation (RMA) (Kumar
et al., 2021), which uses a combination of deep RL and supervised learning for
this matter.

15.6 Wrapping It Up: How to Deeply Understand the
World

Deep RL is an elegant illustration of how deep learning enables a robot to produce its
own understanding of the world. When learning a task such as driving autonomously
from camera images through deep RL, the robot is never explicitly told what a car,
a pedestrian, or a road is. Instead, it learns these concepts on the fly, only from
maintaining its own belief about which decisions are good or bad for each possible
observation. This belief is formed by the principle of gradient back-propagation in a
DNN. In the case of DQN, this DNN is the DQNmodel, which can be seen as a black
box, mapping observations to the corresponding Q-value of each available action.
For instance, an image in which there is a pedestrian would likely be mapped to low
Q-values for actions that lead to run over the pedestrian and to higher Q-values for
actions that do not. This implies that DQNbuilds its ownway of detecting pedestrians
(with convolutional kernels that detect pedestrian features for instance) and grasps
a certain understanding of what a pedestrian is, how it moves, how it interacts with
the world, etc. Now, there is no magic at play here: This understanding is entirely
statistical, and it is defined as the complex projections performed by the DNN in its
successive layers of artificial neurons. How this fundamentally differs from a human
understanding of the world, however, is a real question.

15.7 Summary

In this chapter, an introduction to the fundamentals of modern machine learning has
been provided, in its aspects most relevant to robotics. We have started from simple
linear regressions and have built our way up to highly expressive and nonlinear deep
neural networks. This allows us to approximate complex mappings, such as opti-
mal controls from sensor readings. Furthermore, we have introduced the basics of

470 Y. Bouteiller

deep reinforcement learning, a popular approach that enables robots to look for such
controls autonomously. In the course of this chapter, we have seen how a dataset
can be used for training a model and how it is possible to ensure that this model
generalizes well. Finally, we have introduced state-of-the-art supervised models that
the reader can use out of the box for robotic perception and state-of-the-art reinforce-
ment learning algorithms that are becoming increasingly relevant for robot control.
Keep in mind however that all these techniques are uncertain in nature, due to the
use of statistical approximators (e.g., neural networks). Safety is therefore always an
important concern when applying modern ML techniques in the real world.

15.8 Quiz

Please find the quiz for this chapter in the Jupyter notebooks available online.25

15.9 Further Reading

To learn more about deep learning, we recommend “Deep Learning” (Goodfellow
et al., 2016) by Ian Goodfellow, Yoshua Bengio, and Aaron Courville. To learn
more about reinforcement learning, we recommend “Reinforcement Learning: An
introduction” (Sutton & Barto, 2018) by Richard Sutton and Andrew Barto. Both
references are available online for free.

References

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:200410934

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W.
(2016). Openai gym. arXiv preprint arXiv:160601540

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J, Winter, C., ... Amodei, D. (2020). Language models are few-shot
learners. arXiv preprint arXiv:200514165

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:14123555

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition
(pp. 248–255). IEEE.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:181004805

25 https://github.com/Foundations-of-Robotics/ML-Quiz.

http://arxiv.org/abs/200410934
 10838 40155 a 10838 40155 a

http://arxiv.org/abs/200410934
http://arxiv.org/abs/160601540
 12458 42369 a 12458 42369 a

http://arxiv.org/abs/160601540
http://arxiv.org/abs/200514165
 7831 46797 a 7831 46797 a

http://arxiv.org/abs/200514165
http://arxiv.org/abs/14123555
 19530 49011 a 19530 49011 a

http://arxiv.org/abs/14123555
http://arxiv.org/abs/181004805
 20139 54546 a 20139 54546
a

http://arxiv.org/abs/181004805
https://github.com/Foundations-of-Robotics/ML-Quiz
 -1104 57867 a -1104 57867
a

https://github.com/Foundations-of-Robotics/ML-Quiz

15 Managing the World Complexity: From Linear Regression to Deep Learning 471

Elharrouss, O., Almaadeed, N., Al-Maadeed, S., & Akbari, Y. (2020). Image inpainting: A review.
Neural Processing Letters, 51(2), 2007–2028.

Fitch, F. B. (1944). McCullochWarren S. and Pitts Walter. A logical calculus of the ideas immanent
in nervous activity. Bulletin ofMathematical Biophysics, vol. 5, pp. 115–133. Journal of Symbolic
Logic, 9(2).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018a). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, PMLR (pp. 1861–1870).

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,
Abbeel, P., & Levine, S. (2018b). Soft actor-critic algorithms and applications. arXiv preprint
arXiv:181205905

He, F., Liu, T., & Tao, D. (2019). Control batch size and learning rate to generalize well: Theoretical
and empirical evidence. Advances in Neural Information Processing Systems, 32, 1143–1152.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE
International Conference on Computer Vision (pp. 2961–2969).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2), 251–257.

Ivakhnenko, A. G., & Lapa, V. G. (1965). Cybernetic predicting devices. CCM Information Cor-
poration.

Kendall, A., Grimes, M., & Cipolla, R. (2015). PoseNet: A convolutional network for real-time 6-
DOF camera relocalization. In Proceedings of the IEEE International Conference on Computer
Vision (pp. 2938–2946).

Kingma, D. P.,& Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:14126980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems (Vol. 25, pp.
1097–1105).

Kumar, A., Fu, Z., Pathak, D., &Malik, J. (2021). RMA: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:210704034

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a
Taylor expansion of the local rounding errors (Master’s Thesis), University of Helsinki, pp. 6–7
(in Finnish).

Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S., Ding, E., &
Wen, S. (2020). PP-YOLO: An effective and efficient implementation of object detector. arXiv
preprint arXiv:200712099

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529–533.

Moon, G., Chang, J. Y., & Lee, K. M. (2018). V2V-PoseNet: Voxel-to-voxel prediction network
for accurate 3D hand and human pose estimation from a single depth map. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (pp. 5079–5088).

Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). Determination Press.
Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior,
A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv preprint
arXiv:160903499

Pham, H., Dai, Z., Xie, Q., & Le, Q. V. (2021). Meta pseudo labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 11557–11568).

http://arxiv.org/abs/181205905
 -1185 11596 a -1185 11596 a

http://arxiv.org/abs/181205905
http://arxiv.org/abs/14126980
 -1185 28200 a -1185
28200 a

http://arxiv.org/abs/14126980
http://arxiv.org/abs/210704034
 4383 33735 a 4383 33735 a

http://arxiv.org/abs/210704034
http://arxiv.org/abs/200712099
 2029 40377 a 2029 40377 a

http://arxiv.org/abs/200712099
http://arxiv.org/abs/160903499
 -1185 52553 a -1185
52553 a

http://arxiv.org/abs/160903499

472 Y. Bouteiller

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-
time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 779–788).

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan,K., Sifre, L., Schmitt, S., Guez,A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T, & Silver, D. (2020). Mastering Atari, Go, chess and
shogi by planning with a learned model. Nature, 588(7839), 604–609.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy opti-
mization algorithms. arXiv preprint arXiv:170706347

Stigler, S. M. (1981). Gauss and the invention of least squares. The Annals of Statistics, 465–474.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Tan,M.,&Le,Q. (2019). EfficientNet: Rethinkingmodel scaling for convolutional neural networks.
In: International Conference on Machine Learning, PMLR (pp. 6105–6114).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-
sukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems
(pp. 5998–6008).

Wang, M., & Deng, W. (2018). Deep visual domain adaptation: A survey. Neurocomputing, 312,
135–153.

Wang, Z., Chen, J., & Hoi, S. C. (2020). Deep learning for image super-resolution: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on
Computer Vision (pp. 2223–2232).

Yann Bouteiller is an engineer from École des Mines de Saint-Étienne (France) working as a
research associate at the Computer Science Department of Polytechnique Montreal (Canada). His
research focuses on machine learning (ML) and more specifically on designing deep reinforce-
ment learning algorithms for real-world applications. At the junction between theoretical and prac-
tical ML, he aims at facilitating the transfer of recent, simulation-based deep learning successes
to the industry. His work includes advances in reinforcement learning theory as well as practical
deep learning-based advances in neuroscience, autonomous driving, robot learning, video games,
real-time embedded systems, etc.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://arxiv.org/abs/170706347
 12407 7168 a 12407 7168 a

http://arxiv.org/abs/170706347
http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 16
Robot Ethics: Ethical Design
Considerations

Dylan Cawthorne

16.1 Learning Objectives

• Identify some of the ethical design considerations in the robotics field.
• Become familiar with the three main normative ethical theories.
• Understand why technology is not ethically neutral.
• Appreciate that technology exists in a context.
• Utilize the PPPP model to identify and design for a preferable future.
• Identify some human values relevant in robot design.
• Apply the value-sensitive design methodology.
• Identify impacted stakeholders.
• Utilize ethics checklists, standards, design principles, and frameworks.
• Identify specific examples of design features which support human values.
• Learn about the AIRR framework for responsible innovation.
• Be able to answer the questions: “should I build this robot? If so, why? If not,

why not?”
• Apply theories and tools in the chapter to design your own ethically informed

robot.

16.2 Introduction

In May of 2019, a twelve-kilogram medical delivery drone crashed in Switzerland,
only 50m from kindergarten children (Ackerman, 2019) (Fig. 16.1). No one was hurt

D. Cawthorne (B)
Unmanned Aerial Systems Center, University of Southern Denmark, Odense, Denmark
e-mail: dyca@sdu.dk

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_16

473

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_16&domain=pdf
mailto:dyca@sdu.dk
https://doi.org/10.1007/978-981-19-1983-1_16

474 D. Cawthorne

Fig. 16.1 Matternet (2021) drone which crashed in a wooded area of Switzerland near a kinder-
garten. The emergency parachute had been deployed, but the chord connecting it to the drone was
cut allowing the 12 kg drone to freefall to the ground. Image used with permission, from SUST
(2019)

or killed in the incident, but the failure of the drone and its parachute system caused
the Swiss Post to immediately suspend operations of the large quadcopters made by
the Silicon Valley company Matternet (2021). The system, which was designed to
quickly transport up to 2 kg of urgently needed medical samples between hospitals
and save lives, could have inadvertently caused the death of a small child. Should
the drone still be used if its benefits outweigh the risks? Is it fair to subject people
in the cities below the drone’s flightpath to risk of injury or death? What about the
sick people who need urgent medical care—isn’t the drone helping them? And what
responsibility do we as robot engineers and builders have for our creations? In this
chapter, some of the ethical considerations in the field are presented, and theories
and tools are offered for designing ethically informed robotic systems.

16 Robot Ethics: Ethical Design Considerations 475

An Industry Perspective

Nolwenn Briquet, Control Team Lead, Kortex.

Kinova inc.

During my studies, I was always interested in Mechatronics courses. By
combining the disciplines of automation, mechanics, and electronics, I felt that
these subjects were the closest to cutting-edge systems. During all my studies
and even after, I made all my choices little by little to work in this direction.
In 2014, I started working as a robotics engineer in a robotics research labo-
ratory on collaborative robotics applications before doing a Ph.D. in the field
of human–robot interaction. What I particularly retain from this experience
is that it allowed me not only to develop my expertise but also to ask myself
questions about the place of the human being in automation through robotics
and our responsibility in this evolution as engineers designing these systems.
I finally joined Kinova in 2019 as a robotics control developer and I recently
became the team lead of the control team.

When youwork in robotics, the question of the societal impact of our actions
is unavoidable. In some countries, robotization is seen as a way to overcome
labor shortages, while in others it is seen as a real threat.When I was offered the
opportunity to work in collaborative robotics, I was attracted by the concept of
exploiting the complementarity of the human and the robot and thus keeping
the human in the loop. The common discourse is that the human takes care of
the tasks that require decision-making skills, critical thinking, and sometimes
even dexterity, while the repetitive and non-value added tasks are left to the
robot. However, in many situations, we can see that the real interest of these
robots is that they are easy to integrate into a workspace as they do not need to
be placed in a cage. In some cases, the only limitation to taking humans out of
the loop is the technological limit, which I contribute to pushing back in my
job. Therefore, to this day, I am faced with the following dilemma: Are these
the real reasons for the success of collaborative robotics, or is it more a matter
of politicization of public discourse and cobot-washing?

The field of ethics in robotics has been a hot topic in recent years. The
question of responsibility can be found today at several levels: at the level
of the researcher who shares his or her contributions in the public domain,

476 D. Cawthorne

at the level of the robot manufacturer who designs the functionalities of the
robotic system that will be solved on the market, or at the level of the integrator
who will be responsible for the security of the robotic application. At the level
of the research community, there is an awareness among researchers on the
integrity of the data and results that are shared. In the industrial field, this issue
is covered by standards that have evolved in recent years to take into account
safety concerns. However, further steps need to be taken to address the ethical
issues related to the progress of artificial intelligence, whose results appear
extremely promising but also less well-controlled and predictable.

16.3 Ethics

Ethics is the branch of philosophy that deals with questions about right and wrong,
and howbest to live and act in theworld (“Ethics,” 2021). Butwhat does ethics have to
do with robot design? According to philosopher of technology Peter-Paul Verbeek,
“most scholars in the field agree that technologies actively help to shape culture
and society, rather than being neutral means for realizing human ends” (Verbeek,
2008). This means that the robots we design and build won’t just perform a task,
their capabilities will allow some actions to be easier to perform and others more
difficult—which has moral consequences.

For example, a healthcare drone may make it faster to deliver urgent medical
samples between hospitals but make it more difficult to ensure the security of the
samples during the trip. An industrial robot arm designed to weld a car’s frame
together could make assembly faster, but it might make it more difficult for factory
workers to cultivate their welding skills. The complexity of the task becomes even
more challenging—and crucial—as we consider the impacts if these technologies
are scaled up. Will jobs as medical couriers and welders disappear completely?
What will be the long-term impact on peoples’ physical, psychological, and material
welfare? Technologies always exist in a context, so we might ask where will this
robot be implemented? Is it in a country where workers are likely to be retrained to
build or collaborate with robots? Or will these people become redundant? Thus, we
as responsible technologists need to be aware of the ethical considerations relevant
in the domain, the context of use, and the potential long-term impacts—and make
well-reasoned choices about the capabilities our new robots should have.

16 Robot Ethics: Ethical Design Considerations 477

16.3.1 Normative Ethics

Luckily, ethics has been an area of study for thousands of years, and there are a
lot of theories and tools we can apply when designing robots. Ethical questions can
be approached at the level of normative ethics (“Ethics,” 2021). Normative ethical
theories can be useful to robot designers as they provide guidance on ways to view
what is a morally good technology—or at least, technologies that support actions
which are morally good. It is important to note that the way in which morally good
consequences, actions, and behaviors are defined can vary depending on the context
and across cultures.

16.3.2 Consequentialism

One type of normative ethics puts focus on the results or consequences of one’s
actions and is called consequentialism (“Consequentialism,” 2003). This includes
utilitarianism which states that we should act in a way that the consequences
of our actions result in the most good for the most people (“Consequentialism,”
2003). For example, heart disease is the leading cause of death globally at 16%
(World_Health_Organization, 2020)—if we could design a mobile robot or drone
which encouraged people to exercise we could potentially help a lot of people lead
longer, healthier lives. However, the benefits of the drone would have to outweigh
the negative outcomes such as injury, privacy violations, and environmental impact
caused during production and at the end of the drone’s useful life. And the context
will matter too; in some countries, heart disease may be much less prevalent than
others, and the way privacy is exercised could vary across cultures.

16.3.3 Deontology

Another normative ethics approach is deontology which puts focus on the rightness
or wrongness of an action, rather than the outcome or consequence of that action
(“Deontological Ethics,” 2020). Deontology is a rule-based approach where actions
that conform tomoral norms—“theRight”—are allowed, and those that do not should
not be undertaken. For example, if one were to follow the rule not to kill innocent
people, then we should not design a weaponized robot that targets innocent people.
And if one should save lives, then we ought to design a mobile robot or drone which
encouraged people to exercise. With this last example, we can see that different
normative ethical theories may suggest we perform the same actions in a given
situation, but perhaps for different reasons.

However, there are sometimes important differences between normative theories.
In consequentialism, it would be acceptable to perform a wrong action if it leads
to an overall positive outcome for more people. This would not be accepted from a
deontological standpoint, where “the Right is said to have priority over the Good”
(“Deontological Ethics,” 2020).

478 D. Cawthorne

16.3.4 Virtue Ethics

A third type of normative theory is virtue ethics; here the focus is on the moral
character of a person, and the theory aims to guide one in what type of person to
be or become (“Virtue Ethics,” 2016). Examples of virtues to strive for and cultivate
over a long period of time include honesty, courage, care, and wisdom (Vallor, 2016).
Designing an industrial robot arm that reduces workplace injuries would be a way
of (indirectly) cultivating the virtue of care for other people. Developing a drone
that provides rapid medical care in a context where this increased efficiency allows
medical staff more timewith patients would be another way to support the cultivation
of care. Again, how different virtues are manifested could vary depending on context
and across cultures. The three normative theories are summarized in Table 16.1.

All three normative theories share an emphasis on human values—values are what
a person or group of people consider important in life (Friedman et al., 2013). Human
values relevant in technology design include human welfare, privacy, freedom, calm-
ness, and environmental sustainability (Friedman et al., 2013). Later in this chapter,
we will see how human values can be utilized throughout the robot design process
to enhance human flourishing.

16.4 The Non-Neutrality of Technology

Technology interacts with and impacts people and society in complex ways—but
never in an ethically neutral way. Designing and building something alters the range
of capabilities and possible actions available to people (Verbeek, 2008). Some-
times, technologies are described as “platforms”—this is the case with social media
applications such as Facebook and YouTube (Gillespie, 2010), as well as drones
(Cawthorne & Devos, 2020) and robots. These claims represent an older concept in
the philosophy of technology called technological neutrality (Vermaas et al. 2007).
Technological neutrality allows companies, governments, and engineers to distance
themselves from responsibility for the uses of their products. For example, if someone
uses a drone to transport illegal drugs the drone manufacturer could claim that it was

Table 16.1 Three main normative ethical theories

Consequentialism The result/consequence of actions matters most

Guides actions

Includes utilitarianism—the most “good” for the most people/lifeforms

Deontology Rule-based approach

Guides actions

Virtue ethics Focus on virtues/moral character

Guides the type of person one should be/aim to become

16 Robot Ethics: Ethical Design Considerations 479

the user that mis-used their product. However, the drone does clearly play a role
in the crime, and as good robot designers, we should be aware of lots of different
possible uses of our systems and design them so they prevent—or at least make it
more difficult—to do unethical things with.

The concept of technological neutrality has since been replaced by a contextually
situated and interactional model. This means that the context, the user, and the tech-
nology itself all play a role in the resulting mediation and possible resulting action.
As stated before, this means that technology plays a key role in human actions, and
since human actions are morally relevant then technology design is also morally
relevant.

16.4.1 Dual-Use

Creating ethically informed robots may not be easy, especially given the nature of
drone and robotic systems as dual-use technologies. Dual-use refers to a system’s
capability to be usedwithin civilian contexts as well as inmilitary contexts (Novitzky
et al., 2018). Many normative approaches allow for the use of military technologies,
especially to protect oneself or as part of a “just war” (as in a “justifiable” war) (Lin
et al., 2008), but a person that develops a drone to map fields to help farmers may not
have intended for their system to be used for military reconnaissance. Or someone
developing a robot to carry injured soldiers out of harm’s way may not expect the
system to be used to deliver packages in crowded cities.

In practice, there is a lot of technology transfer that takes place both from civil
contexts to military and from military to civil contexts. Drones were initially devel-
oped in university research labs, then proliferated in the military context, and now
are seeing rapid growth in civil contexts (Choi-Fitzpatrick et al., 2016). As well, it
may be difficult to determine if a technology is civil or military—take for example
robots and drones that perform border patrol or those that are used in private security.
Still, there are certain capabilities that are relevant in one context over another, and
we can design for the intended context. For example, in a military context where
the enemy will be trying to destroy the system the survivability of a drone will be a
highly relevant capability, while this capability is much less relevant in a civil context
(Van Wynsberghe & Nagenborg, 2016). How to design for relevant capabilities will
be explained in more detail in the section on value sensitive design.

16.5 Technological Determinism and Multiple Futures

It is sometimes claimed that technologymoves in certainways, and thatwe are power-
less to stop it. For example, that it is inevitable that in the future there will be more
drones and robots. This idea is called technological determinism (Verbeek, 2008). In
the philosophy of technology, this conception hasmostly been superseded by the idea

480 D. Cawthorne

Fig. 16.2 The “PPPP”—or “probable, plausible, possible, preferable”—model shows the future as
contingent on what we do in the present, and that we can choose to design our robotic systems for
a preferable future rather than for the most likely (probable) future. Graphic by the author, based
on Dunne and Raby (2013)

of multiple possible futures—such as that shown in the PPPP—or "probable, plau-
sible, possible, preferable"- model in Fig. 16.2—with an emphasis on human agency
and the role we play in shaping technological development. Clearly, if everyone for
some reason decided to stop developing drones and robots, companies decided to
stop producing them, governments outlawed them, and people stopped buying them
then the future would not contain more drones and robots. There are lots of economic
forces such as profitability and human forces such as curiosity which make it likely
that robots will proliferate in the future, but this is not inevitable. Therefore, we as
robot designers hold a lot of power when it comes to the trajectory of future techno-
logical developments and need to act in a responsible manner in doing so; this topic
is explored in more detail in the section about Responsibility.

So in our case as designers, some critical first questions might be to ask ourselves
“should we build this drone or robot at all?” “What are some of the possible oppor-
tunities, risks, and changes that it will support?” “Who will benefit the most, and
who will be at the greatest risk?” “And if we should design the system, what capabil-
ities and characteristics should it have—and which should it not have?” Later in the
section on Value Sensitive Design, we will look at specific ways to address these
questions.

16.6 Human Values in Design

Many human values that are relevant to technology design in general—and for us
in robotics design—have been proposed and are shown in Table 16.2. Here, values
refer to those things which humans find important and meaningful in life (Friedman
et al., 2013). Values are different than preferences; preferences are opinions that
individuals hold while values are more universal and are held by most people (Van
de Poel, 2009). For example, I might like the color blue (it is my preference) while
you might like the color green (your preference). But we both deeply value our
own physical safety and the safety of others. The importance and universality of
human values makes them critical to a flourishing life, and why they are so relevant

16 Robot Ethics: Ethical Design Considerations 481

Table 16.2 Twelve human values that are considered relevant in technology design. Based on Table
4.1 in Friedman et al. (2013)

Human welfare Includes physical, psychological, and material welfare
Physical welfare deals with bodily well-being such as physical
health
Psychological welfare concerns mental health such as stress
Material welfare refers to physical circumstances and is
related to economics and employment

Ownership and property The right to possess an object

Privacy The ability to determine what information about one’s self can
be communicated to others

Freedom from bias Without systematic unfairness toward individuals or groups

Universal usability Technology that can be successfully used by all people

Trust The expectation to experience goodwill from others

Human autonomy The ability to decide, plan, and act in ways which allow one to
achieve one’s goals

Informed consent Garnering voluntary agreement, such as in the use of
information systems

Accountability Ensuring that actions may be traced uniquely to the person,
people, or institution responsible

Calmness A peaceful and composed psychological state

Identity The understanding of who one is over time

Environmental sustainability Sustaining ecosystems such that they meet the needs of the
present without compromising future generations

to designers and engineers since our technologies can support (or diminish) these
values.

16.7 Value Sensitive Design

Value sensitive design, or VSD, is a way to systematically incorporate the ethical and
social impacts of technologies early in the design process (Friedman et al., 2013).
The process is shown in Fig. 16.3 and includes three phases: (1) conceptual, (2)
empirical, and (3) technological.

16.7.1 Conceptual Phase

In the conceptual phase of VSD, the ethical considerations are identified, as well as
the impacted stakeholders. If we consider the example of a cobot in a factory, this
includes direct stakeholders such as those working alongside the robot as well as

482 D. Cawthorne

Fig. 16.3 The value sensitive design process consists of three phases: (1) conceptual, (2) empirical,
and (3) technological. There are interactions between all phases, and the process itself is iterated
many times throughout the design process as the technology is developed. Graphic by the author
based on Friedman et al. (2013)

indirect stakeholders such as customers who buy products produced at the factory.
Philosophers and technology ethicists are particularlywell-suited to performwork on
the ethical considerations in the conceptual phase, and social scientists can identify
stakeholders and help to understand their values.

16.7.2 Empirical Phase

In the empirical phase of VSD, the interactions between the technology and people
are investigated. Human–robot interaction (HRI) studies are a good example here.
Continuing with the cobot example, how do workers expect a cobot to behave?
Will they trust it and work in close proximity to it, or will they be afraid of it and
stay away? (Read more in the previous chapter on social robots.) The empirical
phase includes both the interaction of technology with individuals, but also society
more broadly. Taking a drone example, will their more widespread use lead to a
“chilling effect”where people assume that theydonot have privacy anywhere because
of surveillance from drone cameras? (Cawthorne & Cenci, 2019) Can we design
drones so it is more obvious what their function is and who is controlling them?
(Cawthorne & Frederiksen, 2020) Social scientists and HRI experts have a lot to
offer in the empirical phase, and they can use a wide variety of quantitative and
qualitative methods to better understand human–technology interactions such as by
using surveys, interviews, and focus groups.

16.7.3 Technological Phase

In the technological phase of VSD, these inputs from the conceptual and empirical
phases are used to design a technology—such as a cobot or drone—that supports the
beneficial human values and positive social impacts identified earlier. “The technical
phase is dedicated to understanding the artifact (i.e., technology, robot) in context

16 Robot Ethics: Ethical Design Considerations 483

and how it manifests values or fails to do so” (Van Wynsberghe & Nagenborg,
2016). Alternatively, a technology can be chosen first and then the social and ethical
implications can be assessed, or a social phenomenon can provide inspiration for
a new technology—the VSD process can be started at any phase (see the section
“Practical suggestions for using value sensitive design” in Friedman et al., (2013)).

16.7.4 Contextual Design

VSD is an example of a contextual and embedded design approach—each individual
technology is considered within the location of its eventual use and in relation to the
people and systems that will be impacted by its uptake. And VSD is an inherently
multidisciplinary design approach, since experts from fields such as philosophy and
ethics of technology can contribute to the conceptual phase, social scientists to the
empirical phase, and engineers and computer scientists to the technological phase.
Therefore, it is useful for us as robot systems designers to at least be aware of some
of the relevant issues with regard to ethical and social impacts, and collaborate with
experts in these fieldswhen developing technology responsibly. Of course, we cannot
all become philosophers or social scientists overnight, but taking into consideration
philosophical and human interaction issues is part of a holistic, contextually aware,
and responsible design practice.

16.8 Ethics Tools

Although it is a developing field, there are already many tools available to make it
easier to incorporate ethics into the design of robotic systems.

16.8.1 Checklists

Perhaps the easiest to use is an ethical checklist such as the one utilized in European
Union Horizon 2020 projects (European_Union, 2019). The checklist asks yes or no
questions about the project, and the questions should identify relevant ethical issues.
For example, “does your research involve human participants?” and are they volun-
teers, vulnerable individuals, or children? “Does your research involve the processing
of personal data?”, and does this involve the processing of special categories of
personal data such as genetics, sexual lifestyle, ethnicity, religion, etc.? A limita-
tion of such checklists is that they are typically self-administered, and researchers
with limited experience working with ethics may not see the potential risks of their
technologies. In addition, most ethical issues do not easily resolve themselves to

484 D. Cawthorne

simple yes or no questions and involve complex reasoning and justification. And it
is possible that the checklist may simply omit a relevant ethical issue.

16.8.2 Standards

Another source for ethics guidelines is industry standards. Within robotics, the Insti-
tute of Electrical and Electronics Engineers (IEEE) is the “world’s largest technical
professional organization for the advancement of technology” (IEEE, 2021). They
have just released the 7000 series of standards to address ethical concerns during
system design. The standard utilizes human values in design (see the earlier section
on human values in design) and contains many elements of value sensitive design
(see the earlier section on VSD). Industry standards help engineers design to similar
requirements and promote an approach that allows companies to compare their tech-
nology to others’. However, standards can be expensive to buy, which can prevent
individuals and small businesses from being able to access them.

16.8.3 Design Principles

Design principles and guidelines developed by researchers and organizations can also
be helpful. For example, the “privacy by design” guidelines for drones were proposed
in 2012 by the Canadian Information and Privacy commissioner (Cavoukian, 2012).
These guidelines include proactively designing for privacy preservation (rather than
reacting after privacy violations have occurred), privacy as the default setting, and
visible and transparent operation—see Table 16.3. These design principles have
since been utilized to improve privacy in drones compared to traditional approaches
(Cawthorne & Devos, 2020).

The visible and transparent operation of robotic systems can be challenging—
how does the robot work? What capabilities does it have? and who is controlling it?
These considerations are called “explicability,” and they describe to what extent a
system is transparent in its operation, and if its actions can be attributed to a person

Table 16.3 Seven privacy by
design guidelines. Any
robotic system that uses a
camera to sense the world
will need to consider privacy
issues. Table from Cawthorne
and Devos (2020) based on
Cavoukian (2012)

Taking a proactive rather than reactive approach

Privacy as the default setting

Embedding privacy in the design

Aiming for full functionality while maintaining privacy

Ensuring full life-cycle protection of sensitive data

Visible and transparent (i.e., explicable) operations

Taking a stakeholder-inclusive approach

16 Robot Ethics: Ethical Design Considerations 485

or organization that is responsible for it. Design for explicability principles has been
proposed within artificial intelligence (AI) (Floridi et al., 2018) and drone design
(Cawthorne & Frederiksen, 2020) as both can appear from the outside as “black
boxes.” A series of questions to consider in designing drones for explicability have
been developed, including “how can the drone be designed to convey the organization
and person responsible for it?” and “how can the purpose of the drone (e.g., health
care) be easily identified from a distance?” Another example of a design guidelines
intended to limit the mis-use or risks drones is the five capability caution principles
which ask the designer to consider aspects such as the context of use, the impact
on jobs and human skills, and long-term impacts on society and the environment
(Cawthorne & Devos, 2020).

Design principles and guidelines can be useful for designers since they pose open-
ended questions or offer suggestions which allows room for creativity and context-
specific solutions. However, they can be more difficult to apply than a checklist since
they are more abstract and require ethically informed critical thinking.

16.8.4 Ethical Frameworks

Afinal category of tools at our disposal is ethical frameworks. Ethical frameworks are
often high levelwhichmakes themuseful for assessing the overall direction technolo-
gies should take and in determining what risks and opportunities may be ahead in the
development of a new technology. One ethical framework concerns AI for the good
of society (Floridi et al., 2018). It utilizes the four bioethics principles as its founda-
tion—beneficence (do good), non-maleficence (do not do harm), human autonomy,
justice, and a new enabling principle for AI—explicability. This framework has
subsequently been translated into a drone context, producing an ethical framework
for the development of drones in public healthcare (Cawthorne&Robbins-vanWyns-
berghe, 2020). The framework has been used to develop a prototype fixed-wing drone
for rapid delivery of blood samples (Cawthorne & Robbins-van Wynsberghe, 2019);
this case study is examined in the next section.

16.9 Case Study: VSD of a Danish Healthcare Drone

Can ethics and value sensitive design help us to design robotic systems that enhance
human flourishing? Can the technology be designed so we can avoid some of the
risks that we read about at the beginning of the chapter, such as the risk of injuring
small children? In this section, we will look at a case study of a Danish healthcare
drone developed using VSD (Cawthorne & Robbins-van Wynsberghe, 2019) and
an ethical framework (Cawthorne & Robbins-van Wynsberghe, 2020) as a practical
example of how these approaches can be used to enhance the design of real robotic
systems. The prototype drone is shown in Fig. 16.4.

486 D. Cawthorne

Fig. 16.4 Prototype Danish healthcare drone; it is the first known example of a drone developed
using VSD methods. Image by the author, with permission granted by the subject in the image

Value sensitive design is holistic and contextual, so first it is important to under-
stand the place the drone will operate and the process it could replace. The small,
affluent country of Denmark consists of two large islands and a peninsula at the
northern tip of Germany, along with many smaller islands. Healthcare services at
these small communities may be limited since they are remote, and the small popu-
lation makes it hard to justify very expensive testing equipment such as those used
to analyze blood samples for certain ailments. In addition, the Danish Ministry of
Health has been undergoing a process of centralizing healthcare services and has
closed several regional clinics while upgrading hospitals in the larger cities into
“superhospitals”—instead of 41 hospitals with 24 h care, there will soon only be 20
(Danish_Municipalities, 2015).

For this case study, we focus on the small island of Ærø, located about 25 km
south of the central Danish island of Fyn. Currently, an average of 32 blood samples
per day are generated at the regional hospital at Ærø and are transported twice a day
on weekdays and once a day on weekends by a courier (Sand, 2019). The courier
loads the samples into an insulated box and drives them to the port. There, the ferry
is used to cross the 25 km of ocean to Fyn. Then, the courier drives a few kilometers
to the larger hospital at Svendborg where the samples are analyzed. The infrequent
deliveries and dependence on the ferry schedule mean that it can take several hours
to get test results (Health_Drone, 2021) meaning some patients could be quarantined
unnecessarily or go without proper treatment for some time. Several stakeholders are

16 Robot Ethics: Ethical Design Considerations 487

Fig. 16.5 Ethical framework for the design of drones in public health care based on the bioethics
principles and AI ethics principles. The high-level ethical principles are made more specific in the
second level of the framework which highlights relevant human values such as human welfare, jobs,
safety, privacy, and fairness (Cawthorne & Robbins-van Wynsberghe, 2020)

relevant: citizens and sick people living on Ærø, healthcare workers, couriers, ferry
operators, and Danish taxpayers among many others.

An ethical framework, shown in Fig. 16.5, was developed for drones used in
public healthcare in collaboration with a robot ethicist (Cawthorne & Robbins-van
Wynsberghe, 2020). The framework is designed to help the drone designer translate
human values into design requirements (Van de Poel, 2013) and is based on bioethics
principles since the drone could become part of the healthcare system. This values
hierarchy includes four levels: at the top are ethical principles such as beneficence
and non-maleficence, next are human values such as human welfare and privacy. The
next lower level (not shown) is about contextual norms—specific considerations that
pertain to the use-case in question. For example, we could compare the safety of the
drone system to that of the current process of driving and taking the ferry. At the
base of the hierarchy (not shown), we need to determine the design requirements that
will support the ethical principles, human values, and norms—and enhance human
flourishing. A detailed account of the development of the drone can be found in
the references (Cawthorne, 2020; Cawthorne & Robbins-van Wynsberghe, 2019,
2020) along with its specifications and performance (i.e., fulfillment of the design
requirements coming from the ethical framework.

The Danish health care drone is a fixed-wing aircraft which means it can be much
smaller and lighter weight than a multirotor drone since flying on wings is more
efficient than flying with powered rotors. The drone is so lightweight that it would
not cause a fatality even if it were to hit a person on the ground—it is safe by design.
The payload of the Danish drone is small, making it useful in urgent cases but not for
routine transportation. The drone’s cargo compartment includes a security system
making itmore difficult to carry unauthorized cargo. The drone is controlledmanually

488 D. Cawthorne

by a pilot using a privacy-preserving camera system which cultivates drone piloting
skills and makes responsibility more direct than with an automated system. And the
drone is painted bright yellow with dark green checkers like a Danish ambulance,
making it clearer what its purpose is and who is responsible for it. If we compare
this drone to the one in the opening paragraph of the chapter, we see key differences.
The contexts of use are not the same so we should not compare them directly, but
the Danish drone exhibits a high level of safety, privacy, security, responsibility, and
explicability which could provide health benefits—while protecting those on the
ground.

As you can see from this example, developing robots in a holistic and value
sensitive way is complex, and there aremany impacted stakeholders—somewhowill
benefit from the technology, and somewhomaybe harmed.What is our responsibility
as robot developers in this complex process? We will explore the topic in the next
section on Responsible research and innovation.

16.10 Responsible Research and Innovation

In the previous sections, we saw how technology is not ethically neutral (the non-
neutrality of technology), which means we need to consider ethics when we design
robotic systems. This is the first step in responsible research and innovation—
accepting that the things we design have ethical importance. Then, the question turns
to howweactually design using ethics as a design input.Here,we could utilize norma-
tive ethical theories in Table 16.1, consider human values listed in Table 16.2, and
utilize value sensitive design, checklists, standards, design principles, and ethical
frameworks. These theories and tools can help us to combat moral de-skilling—the
process where we become less adept at making ethically informed decisions (Vallor,
2015). Ideally, our moral progress should keep pace with our technological progress.

16.10.1 AIRR Framework

An often-cited framework for responsible research and innovation is called AIRR:
anticipation, inclusion, reflexivity, and responsiveness (Stilgoe et al., 2013). “Antic-
ipation prompts researchers and organizations to ask ‘what if…?’ questions, to
consider contingency, what is known, what is likely, what is plausible, and what
is possible” in the future (Stilgoe et al., 2013)—as we saw earlier in the PPPP model
in Fig. 16.2. Inclusionmeans considering not just powerful stakeholders, but all those
that will be impacted—directly or indirectly—by our robots (the conceptual phase
of VSD). Reflexivity “means holding a mirror up to one’s own activities, commit-
ments, and assumptions, being aware of the limits of knowledge and being mindful
that a particular framing of an issue may not be universally held”… “reflexivity
means rethinking prevailing conceptions about the moral division of labor within

16 Robot Ethics: Ethical Design Considerations 489

science and innovation” (Stilgoe et al., 2013)—as exemplified in VSD interdisci-
plinary approach. Responsiveness “requires a capacity to change shape or direction
in response to stakeholder and public values and changing circumstances” (Stilgoe
et al., 2013). Responsiveness can be seen in the iterative nature of the VSD process
(Fig. 16.3)—as circumstances change, wemust adapt our robots to the new situation.

16.11 Chapter Summary

In summary, interdisciplinary collaboration, a holistic perspective, and the ethically
informed design of robotic systems give us the best chance to perform responsible
research and innovation—and ultimately enhance human flourishing.

16.12 Revision Questions

• What are three normative ethical theories, and what do they say?
• List some human values that are relevant in robot design.
• What is dual-use and what are some implications to your robot design?
• List the three phases of value sensitive design; what activities take place in each

phase? Which research areas are most relevant in each phase?
• What are some benefits and limitations of ethical checklists? What about ethical

frameworks?
• Identify industry standards related to ethics in technology design?
• Which design principles would be useful in the design of your robot?
• What does AIRR stand for? How could the four phases of the framework be

applied to your robot?
• Consider an existing or proposed robot or drone system:

– Who are the direct and indirect stakeholders?
– What is the context of use?
– What might be some social impacts of the system?
– Should this robot be built? If so, why? If not, why not?
– How will this robot enhance human flourishing?

References

Ackerman, E. (2019). Swiss post suspends drone delivery service after second crash: An emergency
parachute failure raises questions about the safety of urban delivery drones. https://spectrum.
ieee.org/swiss-post-suspends-drone-delivery-service-after-second-crash

https://spectrum.ieee.org/swiss-post-suspends-drone-delivery-service-after-second-crash

490 D. Cawthorne

Cavoukian, A. (2012). Privacy and drones: Unmanned aerial vehicles. Information and Privacy
Commissioner of Ontario, Canada Ontario.

Cawthorne, D. (2020). Value sensitive design of unmanned aerial systems. (PhD Thesis). University
of Southern Denmark.

Cawthorne, D., & Cenci, A. (2019). Value sensitive design of a humanitarian cargo drone. Paper
presented at the 2019 International conference on unmanned aircraft systems (ICUAS).

Cawthorne, D., & Devos, A. (2020). Capability caution in UAV design. Paper presented at the 2020
International Conference on Unmanned Aircraft Systems (ICUAS).

Cawthorne, D., & Frederiksen, M. H. (2020). Using the public perception of drones to design for
explicability. Paper presented at the International Conference on Robot Ethics and Standards
(ICRES), Taipei, Taiwan.

Cawthorne, D., & Robbins-vanWynsberghe, A. (2019). From HealthDrone to FrugalDrone: Value-
sensitive design of a blood sample transportation drone. Paper presented at the 2019 IEEE
International Symposium on Technology and Society (ISTAS).

Cawthorne, D., & Robbins-van Wynsberghe, A. (2020). An ethical framework for the design,
development, implementation, and assessment of drones used in public healthcare. Science and
Engineering Ethics,26(5), 2867–2891.

Choi-Fitzpatrick, A., Chavarria, D., Cychosz, E., Dingens, J. P., Duffey, M., Koebel, K., Siriphanh,
S., Yurika Tulen, M., Watanabe, H., Holland, J., & Juskauskas, T. (2016). Up in the air: A global
estimate of non-violent drone use 2009–2015.

Consequentialism. (2003). Stanford encyclopedia of philosophy.https://plato.stanford.edu/entries/
consequentialism/

Danish_Municipalities. (2015). Here is where your superhospital is located. http://www.danske
kommuner.dk/Global/Artikelbilleder/2015/DK-3/DK-3-side-26-27.pdf

Deontological Ethics. (2020). Stanford encyclopedia of philosophy.https://plato.stanford.edu/ent
ries/ethics-deontological/

Dunne, A., & Raby, F. (2013). Speculative everything: Design, fiction, and social dreaming. MIT
press.

Ethics. (2021). Wikipedia.https://en.wikipedia.org/wiki/Ethics
European_Union. (2019). How to complete your ethics self-assessment. https://ec.europa.eu/res
earch/participants/data/ref/h2020/grants_manual/hi/ethics/h2020_hi_ethics-self-assess_en.pdf

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin,
R., Pagallo, U., Rossi, F., & Schafer, B. (2018). AI4People—an ethical framework for a good
AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4),
689–707.

Friedman, B., Kahn, P. H., Borning, A., &Huldtgren, A. (2013). Value sensitive design and informa-
tion systems. InEarly engagement and new technologies: Opening up the laboratory (pp. 55–95).
Springer.

Gillespie, T. (2010). The politics of ‘platforms.’ New Media Society,12(3), 347–364.
Health_Drone. (2021). Health Drone: The project. https://sundhedsdroner.dk/index.php?page=the-
project

IEEE. (2021). 7000-2021 standard addressing ethical concerns during systems design.
Lin, P., Bekey, G., & Abney, K. (2008). Autonomous military robotics: Risk, ethics, and design.
https://apps.dtic.mil/sti/pdfs/ADA534697.pdf

Matternet. (2021). Matternet website. https://mttr.net/
Novitzky, P., Kokkeler, B., & Verbeek, P.-P. (2018). The dual-use of drones. Tijdschrift Voor

Veiligheid,17(1–2), 79–95.
Sand, P. S. (2019). Director after flight in medical drone: I felt completely safe.

Fyns. https://www.fyens.dk/erhverv/Direktoer-efterflyvetur-i-laege-drone-Jeg-foelte-mig-helt-
tryg/artikel/3318057

Stilgoe, J.,Owen,R.,&MacNaghten, P. (2013).Developing a framework for responsible innovation.
Research Policy,42(9), 1568–1580.

https://plato.stanford.edu/entries/consequentialism/
http://www.danskekommuner.dk/Global/Artikelbilleder/2015/DK-3/DK-3-side-26-27.pdf
https://plato.stanford.edu/entries/ethics-deontological/
https://en.wikipedia.org/wiki/Ethics
https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/ethics/h2020_hi_ethics-self-assess_en.pdf
https://sundhedsdroner.dk/index.php?page=the-project
https://apps.dtic.mil/sti/pdfs/ADA534697.pdf
https://mttr.net/
https://www.fyens.dk/erhverv/Direktoer-efterflyvetur-i-laege-drone-Jeg-foelte-mig-helt-tryg/artikel/3318057

16 Robot Ethics: Ethical Design Considerations 491

SUST. (2019). Interim report of the Swiss Safety investigation agency SUST about the accident
involving the M2 V9 drone. https://www.sust.admin.ch/inhalte/AV-berichte/ZB_SUI-9903.pdf

Vallor, S. (2015). Moral deskilling and upskilling in a new machine age: Reflections on the
ambiguous future of character. Philosophy and Technology,28(1), 107–124.

Vallor, S. (2016). Technology and the virtues: A philosophical guide to a future worth wanting.
Oxford University Press.

Van de Poel, I. (2009). Values in engineering design. In Philosophy of technology and engineering
sciences (pp. 973–1006). Elsevier.

Van de Poel, I. (2013). Translating values into design requirements. In Philosophy and engineering:
Reflections on practice, principles and process (pp. 253–266). Springer.

Van Wynsberghe, A., & Nagenborg, M. (2016). Civilizing drones by design. In Drones and
responsibility (pp. 148–165). Routledge.

Verbeek, P.-P. (2008). Morality in design: Design ethics and the morality of technological artifacts.
In Philosophy and design (pp. 91–103). Springer.

Vermaas, P. E., Kroes, P., Light, A., &Moore, S. (2007). Philosophy and design: From engineering
to architecture. Springer.

Virtue Ethics. (2016). Stanford encyclopedia of philosophy.https://plato.stanford.edu/entries/ethics-
virtue/

World_Health_Organization. (2020). The top 10 causes of death. https://www.who.int/news-room/
fact-sheets/detail/the-top-10-causes-of-death

Dylan Cawthorne is an Associate Professor at the Unmanned Aerial Systems Center at the
University of Southern Denmark. His aim is to support human flourishing through the develop-
ment of ethically informed technologies. His main area of research is using value sensitive design
methods and ethical principles to develop and build prototype drones for humanitarian, public
health care, and search and rescue operations. He works across disciplines, utilizing art, craft, and
creativity to enhance engineering practice. A common theme in his work is the use of holistic
and contextually situated technological development. He considers himself an activist engineer,
and in his free time, he teaches and performs repairs with the local nonprofit organization Repair
Café Odense, and volunteers with Engineers Without Borders Denmark to develop low-cost cloth
masks and mapping drones for use in Africa.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.sust.admin.ch/inhalte/AV-berichte/ZB_SUI-9903.pdf
https://plato.stanford.edu/entries/ethics-virtue/
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
http://creativecommons.org/licenses/by-nc-nd/4.0/

Part IV
Projects

Chapter 17
Robot Hexapod Build Labs

David Hinwood and Damith Herath

17.1 Introduction

Robotics is a practical field of study. As we discussed earlier in the book, it is
essential to actively construct your own knowledge of the subject through experience.
The series of projects presented in this chapter builds on the theoretical foundation
developed throughout the book and flags the need to explore further when there
are gaps in your current knowledge based on the material covered. These projects
expand on the embodied design and prototyping concepts covered in Chap. 12 about
the hexapod robot.Weprovide youwith a hands-on guide to build a robot from scratch
using “first principles”. Once completed, you will gain experience in implementing
mathematical concepts in a practical application and communicating with hardware.
Please note that this chapter references online resources associated with this book
regularly (https://foundations-of-robotics.org). You will;

• Learn about programming techniques for deriving kinematic equations from the
leg component of the robot hexapod. These equations include the direct kinematic
(DK) homogenous transformation and inverse kinematic (IK) equations of the
end-effector (EE) frame.

• Create and manipulate the geometric Jacobian with programming techniques to
analyse the behaviour of the robotic leg.

• Understand and implement serial-based communication, a standard method by
which we can communicate with robotic systems.

D. Hinwood (B) · D. Herath
University of Canberra, Bruce ACT 2617, Australia
e-mail: David.Hinwood@canberra.edu.au

D. Herath
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_17

495

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_17&domain=pdf
https://foundations-of-robotics.org
mailto:David.Hinwood@canberra.edu.au
mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_17

496 D. Hinwood and D. Herath

We will discuss the development of a single leg from the hexapod and perform
a kinematic analysis across the first three projects within this chapter. We empha-
sise intuitive descriptions of mathematical concepts within robotics with Python
code examples. The final project will explore serial communication using C++ code,
discussing bit-wise operations to efficiently send numerical data to amicrocontroller.
A provided docker configuration from the associated online resources ensures exam-
ples introduced in this chapter work out of the box. Please use Python 3.6 or newer
to operate the code segments presented in this chapter.

17.2 Project One: Defining the Robot System

17.2.1 Project Objectives

• Define a mechanical system from a conceptual design and plan modelling
techniques.

• Research and identify suitable actuators for the task.

17.2.2 Project Description

Let us begin by summarising the requirements of our hexapod system. As described
inChap. 12, the hexapod has six legs, each leg containing four actuators. The hexapod
moved with the tripod gait, as discussed in Chap. 8. First, we actuate the base of the
leg in a lateral motion. Next, three rotational link pairs follow this first actuator,
making up the rest of the leg component, as shown in Fig. 17.1.

The actuators used in the original case study described in Chap. 12 were the
rotational Dynamixel MX28r (Dynamixel, 2021) actuators. Each MX28r contains a

Fig. 17.1 A rendering of a single leg from the proposed hexapod platform. Bryce Cronin/CC
BY-NC-ND 4.0. www.cronin.cloud/hexapod

http://www.cronin.cloud/hexapod

17 Robot Hexapod Build Labs 497

microcontroller running a lower-level PID loop with an encoder. These lower-level
controllers enabled the original developers of the hexapod case study to command
the actuator’s desired angle and velocity and be confident that the behaviour would
execute correctly.

17.2.3 Project Tasks

17.2.3.1 Task One: Basic Questions

• Take the robot leg shown in Fig. 17.1 and indicate the type of mechanical device
of the leg, i.e. a parallel structure or a serial-link robot.

• Referring to the definitions in Chap. 10, list suitable techniques for modelling the
following relationships.

– The position relationships, how would the position of the tip/foot position of
the robot leg relate to the actuator positions?

– The velocity relationships, how would the speed of the tip/foot position of the
robot leg relate to the actuator velocities?

– The dynamics relationship, how would the desired motion, forces and torques
of the foot/tip of our robot relate to the torques exerted by our actuators?

17.2.3.2 Task Two: Research Components

• The original design of the hexapod called for the MX28r actuator, as described
earlier. What design considerations do you think were made in selecting these
actuators? You may make assumptions in answering this point, think about;

– The weight of the hexapod and its distribution over the legs
– Components such as the battery and electronics
– Actuator weights and torque capacity

• You can find a list of suitable actuators for this project listed on the associated
website of this book. Go through the list of actuators present on this page and
analyse each actuator’s datasheet while taking note of the various benefits. Then,
identify the optimal solution for the hexapod model. Consider parameters such
as tracking the position/velocity, handling collisions while walking and actuator
strength.

498 D. Hinwood and D. Herath

Table 17.1 DH parameters of the robot leg

i 1 2 3 4

ai 0.071 0.104 0.048 0.041

di 0 0 0 0

αi
π
2 0 0 − π

2

qlim − 2π
9 , 2π

9 − π
2 , π

2 − π
2 , π

2 − π
2 , π

2

17.3 Project Two: Modelling the Position Kinematics

17.3.1 Project Objectives

• Implement the DH parameters of the hexapod leg using Python.
• Programmatically calculate the direct kinematics homogenous transformation

matrix.
• Create an inverse kinematic solution of the robotic leg.
• Learn how we can validate positional relationships.

17.3.2 Project Description

As our robot leg follows a standard joint-link pair structure, we can define the system
with the DH parameters. Table 17.1 shows the parameters assuming the world coor-
dinate frame equals the leg base, i.e. the connection point to the hexapod body.
These parameters also include the additional qlim parameter (which holds the posi-
tion limits of each actuator). Finally, we visualise the parameters with a kinematic
diagram illustrated in Fig. 17.2.

17.3.3 Project Tasks

17.3.3.1 Task One: Codifying the DH Parameters

Note: Coding segments referenced in these questions are in Sect. 3.4

• Take our presented DH parameters from Table 17.1 and Fig. 17.2. Using the
numerical values (Table 17.1), create a simulated version of the robot leg using
the robotics toolbox in Python.

• When creating the robot with the toolbox, make sure you include the joint limit
(qlim) variables in Table 17.1. See Coding Segment 2 for a starting point on this
task.

17 Robot Hexapod Build Labs 499

F
ig
.1
7.
2

A
vi
su
al
is
at
io
n
of

th
e
pr
es
en
te
d
D
H
pa
ra
m
et
er
s
fr
om

Ta
bl
e
17
.1
.W

e
hi
gh

lig
ht

th
e
E
E
po

si
tio

n
in

a
re
d
co
or
di
na
te
fr
am

e,
w
ith

th
e
w
or
ld

co
or
di
na
te

fr
am

e
di
sp
la
ye
d
in

bl
ue
.N

ot
e
th
at
th
e
sh
ow

n
co
nfi

gu
ra
tio

n
is
w
ith

th
e
fo
ur

jo
in
ts
at
ar
bi
tr
ar
y
an
gl
es

500 D. Hinwood and D. Herath

17.3.3.2 Task Two: Kinematics

• While using the spatial math library and numerical values from Table 17.1, calcu-
late the DK homogenous transformation of the robotic leg. See Coding Segments
1 and 3 for help with this problem.

• Confirm the DK homogenous transform calculation by comparing the output to
the “fkine” function from the robot created in Task One. Hint, Look at Coding
Segments 2 and 3 for help with this problem. This task requires you to investigate
the robotics toolbox function “fkine”.

17.3.3.3 Task Three: Advanced Kinematics

• ModifyCodingSegment 3 to find the legEE’s x-, y- and z-positions using symbolic
variables. Remember the structure of the homogenous transformation matrix for
this step.

• Validate your equations by manually deriving the position equations with
diagrams. For a guide on this step, see Sect. 3.4. Do the equations derived match
the symbolic expression previously calculated?

Note: The following two items are an extension exercise for the readers without
explicit instructions in this chapter. However, answers are available with the
associated online resources.

• Derive an inverse kinematics algorithm for our robotic leg using Python. We
leave this question as an open exercise to readers who can use their knowledge of
kinematics and previous information presented throughout the book.

• Validate your inverse kinematics algorithm. Validation can occur by running
through the workspace of the leg and comparing outputs from your direct and
inverse kinematic solutions.

17.3.4 Case Study Example

17.3.4.1 Representing the DH Parameters with Code

Wewanted to gobackbriefly to themathematical representation of theDHparameters
presented in Chap. 10. In this chapter, we may use some slightly different notations.
The first significant change concerns the values of θ . Henceforth, we represent the
values of θ with q, which indicates the angle of an actuator. The method by which
we represent homogenous transformations is also slightly different.

A homogenous transformation, Ai
i−1, would represent the ith link-joint pair of the

DH parameters. We utilise the spatial math Python library to hold various transfor-
mations and rotations of the DH parameters. In code, this may look slightly different
to the previously presented notation. Assuming that we’re utilising the standard

17 Robot Hexapod Build Labs 501

DH convention, we can represent the transformation of Ai
i−1 with the expression

Ai
i−1 = Rz(qi)Tz(di)Tx (ai)Rx (αi). In this case, R and T represent functions that

produce a homogenous transformation matrix from a single rotation or translation.
The subscript denotes the axis the transformation takes place along. In the case of
our robot leg, remember that for the ith joint-link pair, the variable qi represents the
position of our actuator while the other parameters are constant. In Python code, the
calculation of Ai

i−1 is illustrated in Code Segment 1.

Code Segment 1. An example of a single joint-link pair represented
with four sequential transformations

#import requirements – Note we are using python 3.6
import spatialmath as sm
#A joint link pair of the DH parameters, assuming the variables
of the variables of q_i, d_i, a_i and alpha_i already exist
A_i = sm.SE3.Rz(q_i) * sm.SE3.Tz(d_i) *
sm.SE3.Tx(a_i) * sm.SE3.Rx(alpha_i)

Additionally, in this chapter, we utilise the robotics toolbox, a Python library
presented by Corke and Haviland (Corke & Haviland, 2021) that can model serial-
link structures like the proposed leg. We show an example of the robotics toolbox
below, creating a simple two-link manipulator.

Code Segment 2. An example of the robotics toolbox creating a simple
two-link simulated robot.

#import requirements – Note we are using python 3.6
import roboticstoolbox as rtb
import math as rwm
import spatialmath as sm
import numpy as np
#We delcare link lengths for the a variables in this robot
a0 = 0.5
a1 = 0.5
#We also include a base transform variable
base_transform=sm.SE3(np.identity(4))
#base_transform= sm.SE3.Rx(rwm.pi/2)
#base_transform=sm.SE3.Ry(rwm.pi/2)*sm.SE3.Tz(0.5)
#Create the robot with the toolbox, note how theta is not
present as the joint position is not a constant
linkjoint_0 = rtb.RevoluteDH(d=0, alpha=0, a=a0, offset=0,
qlim=None)
linkjoint_1 = rtb.RevoluteDH(d=0, alpha=0, a=a1, offset=0,
qlim=None)
example_robot = rtb.DHRobot([linkjoint_0,
linkjoint_1], base = base_transform, name =

502 D. Hinwood and D. Herath

’Simple_Example’)
example_robot.teach()

Note how in Code Segment 2, there are several additional parameters, including
the base parameter in the functionDHRobot. Also, in each joint-link pair, defined by
RevoluteDH, there are two parameters of offset and qlim. These parameters operate
as follows:

• Offset (offseti =)—Adds a constant offset to the position of our ith actuator. Take
Code Segment 2 and modify it. Change the offset parameter for linkjoint_1,
currently 0, and change it to π/2 (in code rwm.pi/2). Observe how this change
impacts the simulation generated.

• Joint Limits (qlimi =)—Set our ith actuator’s upper and lower position limits.
Change the qlim variable in Code Segment 2 for either linkjoint_0 or linkjoint_1.
Currently, this variable is None. Try changing this variable to [-0.3, 0.3].
Once again, observe how changing this variable impacts the generated simulation.

• Base Position (base=)—The pose of yourmanipulator’s initial position relative to
the world coordinate frame. It is essential that as youmove forward in this chapter,
you define your world coordinate and where your robot is relatively located when
developing your system. In Code Segment 2, several alternative definitions for the
variable base_transform are in commented lines of code. Uncomment different
variations of base_transform and observe how that impacts the simulation.

While not part of the traditional mathematical definition of the DH convention,
these parameters can help define a robot to a desired zero configuration or implement
multiple serial-link systems in a single world.

17.3.4.2 Deriving the Forward Kinematics

The next step in modelling a robot is defining the forward kinematics, estimating the
EE’s position and rotation relative to the robot’s base. We highlight this problem in
Fig. 17.2.Wewant to establish the location andorientation of the red coordinate frame
(EE), previously referred to as the tip/foot, relative to the blue frame (base) based on
actuator positions. We split the problem into the rotation and position components.

Let us first discuss the orientation problem. Broadly, we want to estimate the
rotation matrix using the DH parameters and the actuator positions. We can do this
using Python with the spatial math library. Thus, we present Coding Segment 3,
which retrieves the rotation matrix of an end-effector from the base of our robot leg.

Code Segment 3. The Python code for calculating the rotation matrix
of our robot leg.

#import requirements
import spatialmath as sm

17 Robot Hexapod Build Labs 503

import spatialmath.base as base
import numpy as np
#Creates a set of symbolic variables
a_1, a_2, a_3, a_4 = base.sym.symbol(’a_1, a_2, a_3, a_4’)
d_1, d_2, d_3, d_4 = base.sym.symbol(’d_1, d_2, d_3, d_4’)
alpha_1, alpha_2, alpha_3, alpha_4 = base.sym.symbol(’alpha_1,
alpha_2, alpha_3, alpha_4’)
q_1, q_2, q_3, q_4 = base.sym.symbol(’q_1, q_2, q_3, q_4’)
#Base transform, equivalent to an identity matrix since no
base transform exists on this leg
base_transform=sm.SE3(np.identity(4))
#A joint link pair of the DH parameters, remembering our
leg contains no base transform
leg_linkjoint_1 = sm.SE3.Rz(q_1) * sm.SE3.Tz(d_1) *
sm.SE3.Tx(a_1) * sm.SE3.Rx(alpha_1)
leg_linkjoint_2 = sm.SE3.Rz(q_2) * sm.SE3.Tz(d_2) *
sm.SE3.Tx(a_2) * sm.SE3.Rx(alpha_2)
leg_linkjoint_3 = sm.SE3.Rz(q_3) * sm.SE3.Tz(d_3) *
sm.SE3.Tx(a_3) * sm.SE3.Rx(alpha_3)
leg_linkjoint_4 = sm.SE3.Rz(q_4) * sm.SE3.Tz(d_4) *
sm.SE3.Tx(a_4) * sm.SE3.Rx(alpha_4)
#A joint link pair of the DH parameters
DK_transform = base_transform * leg_linkjoint_1 *
leg_linkjoint_2 * leg_linkjoint_3 * leg_linkjoint_4
#Extract and print the rotation matrix component
RotationMatrix = DK_transform.R
print(RotationMatrix)

Code Segment 3 presents a valuable tool for deriving the rotation matrix using
the spatial math library. But we also need to know the x, y and z displacements from
the base frame to the EE frame. It is possible to gather these variables using a similar
technique to Code Segment 3. However, let us extrapolate these equations manually.
There are several reasons for extracting these equations manually, but the primary
motivation is validation. While the symbolic calculations and the robotic toolbox
are helpful, using them in conjecture with our own manually extrapolated equations
reinforces that we understand our system.

So we begin with two images of our robotic system as shown in Figs. 3 and 4.
These are the two images we use to calculate our forward kinematic transformation.
Figure 17.3 shows a top-down view perpendicular to the Z-axis, which observes the
X- and Y-axes and the manipulator’s EE position within those axes. Alternatively, in
Fig. 17.4, we illustrate a side view of a robot leg highlighting the position of the final
three actuators. This figure also highlights the Z-position of the EE. In both images,
the EE position is the red node at the end of the leg. These images also contain a
variable, mx, that highlights the extended length of the leg. Please note that both
figures’ axis are from the base/world coordinate frame of Fig. 17.2.

We start by estimating the values of mx and z from Fig. 17.4. One method of
thinking about these values is that mx = a1 + w2 + w3 + w4 and z = h2 + h3

504 D. Hinwood and D. Herath

Fig. 17.3 Position of our
robot leg from a top-down
view highlights the x- and
y-positions of our EE

Fig. 17.4 By observing our manipulator from a side view, we display the positions of the final
three actuators along with the length of mx and the z displacement

17 Robot Hexapod Build Labs 505

+ h4. The equations below can explicitly express these variables from standard
trigonometric functions.

mx = a1 + a2 cos(q2) + a3 cos(q2 + q3) + a4 cos(q2 + q3 + q4)

z = a2sin(q2) + a3sin(q2 + q3) + a4sin(q2 + q3 + q4)

Having established these variables, we can now use the length of mx to estimate
the x- and y-positions in Fig. 17.3.

x = mx cos(q1)

y = mx sin(q1)

17.4 Project Three: Modelling the Velocity Kinematics
with Python

17.4.1 Project Objectives

• Using programming techniques, derive the geometric Jacobian of the serial-link
leg relating the actuators and the EE coordinate frame’s velocity.

• Using programming techniques, manipulate the geometric Jacobian and find
properties such as the determinant, inverse and transpose.

• Learn how the Jacobian operates by relating joint speed and EE velocity
parameters.

17.4.2 Project Description

Modelling the velocity relationship between the leg EE coordinate frame and the
actuators is crucial for building a robotic system, as described in Chap. 10. To briefly
reintroduce the Jacobian matrix for serial-link robots, it is generally a 6 × N sized
matrix where N equals the number of actuators within our system. We split our
Jacobian into the position and orientation components to calculate this matrix. First,
let’s discuss the position component, henceforth called JP(q). Next, we take our
direct kinematics and partially derive each equation by every actuator variable in
the structure below. As can be observed, the equation is simply a matrix of partial
derivatives.

506 D. Hinwood and D. Herath

Jp(q) =
⎡
⎢⎣

∂x
∂q1

∂x
∂q2

∂x
∂q3

∂x
∂q4

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂y
∂q4

∂z
∂q1

∂z
∂q2

∂z
∂q3

∂z
∂q4

⎤
⎥⎦

Once we know the entire matrix of JP(q), we can utilise it in the equation below,
where multiplying the Jacobian by the q̇ vector (speed of the actuators) produces the
velocities of the EE in the x-, y- and z-directions.

⎡
⎣
ẋ
ẏ
ż

⎤
⎦ = JP(q)

⎡
⎢⎢⎣

q̇1
q̇2
q̇3
q̇4

⎤
⎥⎥⎦

The orientation Jacobian, JR(q), requires a slightly different calculation to the
previously presented translation components. A rule of thumb to consider is that,
JR(q) and JP(q) should be the same size. Since we have a rotation matrix and no
explicit equations to differentiate, we need to calculate the partial derivative of a
rotation matrix. The broad rule to consider when building your orientation Jacobian
is that the ith column, JRi , is equal to the rotation matrix of the previous joint-link
pair multiplied by the vector [0, 0, 1]. If we consider Ri − 1 as the rotation matrix
before Rz(qi), the expression below represents ith column, JRi . Please note that this
methodology is specific to the constraints on the hexapod leg as it uses the standard
DH convention and only contains rotational actuators.

JRi = Ri−1

⎡
⎣
0
0
1

⎤
⎦

Whenwe put together this matrix, we express our orientation Jacobian in the form
below (where R0 is the rotation matrix of our base transform);

JR(q) =
⎡
⎣ R0

⎡
⎣
0
0
1

⎤
⎦ R1

⎡
⎣
0
0
1

⎤
⎦ R2

⎡
⎣
0
0
1

⎤
⎦ R3

⎡
⎣
0
0
1

⎤
⎦

⎤
⎦

Once calculated, JR(q) can perform the matrix multiplication operation displayed
below, in which ωx, ωy and ωz are angular velocity components about the three-axis.

⎡
⎣

ωx

ωy

ωz

⎤
⎦ = JR(q)

⎡
⎢⎢⎣

q̇0
q̇1
q̇2
q̇3

⎤
⎥⎥⎦

17 Robot Hexapod Build Labs 507

Once the calculations for JP(q) and JR(q) are complete, we can create what is
known as the Geometric Jacobian J(q). The calculation for the geometric Jacobian
is the vertical concatenation of JP(q) and JR(q). It can calculate the velocities of EE
DOF as shown in the expression below.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż

ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[
JP(q)

JR(q)

]
⎡
⎢⎢⎣

q̇0
q̇1
q̇2
q̇3

⎤
⎥⎥⎦ = J (q)q̇

17.4.3 Project Tasks

17.4.3.1 Task One: Calculating and Using the Geometric Jacobian
Components

• Using the DH parameters and direct kinematic equations, calculate the matrix
JP(q). See Coding Segment 4 in Sect. 4.4 for assistance.

• Assuming our joint speed vector q̇ = [0.1, 0.5, 0.2,−0.3], what is the speed of
the EE in the x-, y- and z-directions?

• Using the DH parameters, calculate the matrix JR(q). See Coding Segment 5 in
Sect. 4.4 for assistance.

• Assuming our joint speed vector q̇ = [0.1, 0.5, 0.2,−0.3], what is the angular
velocity of the EE for the values of ωx, ωy and ωz?

17.4.3.2 Task Two: Completing and Manipulating the Geometric
Jacobian

Note: The case study presented in Sect. 4.4 only deals with the Jacobian calculation.
Please peruse the online resources for a more in-depth guide for the steps below.

• Put together the complete geometric Jacobian J (q).
• Make J (q) a square matrix by eliminating rows. Present a summary of how this

operation impacts your Jacobian matrix and why we need to perform this step.
• Establish the following features of our now square Jacobian matrix;

– Using Python code, calculate the determinant. As previously mentioned in
Chap. 10, the determinant can find singularities. Using the determinant, can
you find any possible kinematic singularities?

– Using Python code, calculate the inverse of the square matrix. What can this
matrix do?

508 D. Hinwood and D. Herath

– Using Python code, calculate the transpose of the square matrix. What can this
matrix do?

17.4.4 Case Study Example

We again use Python and the sympy library to find the Jacobian of our system.
We require the forward kinematics we have previously calculated in Project Two to
proceed with the case study. The Python sympy library calculates JP(q) with in-built
differentiation. In Code Segment 4, we provide an example by calculating the first
element of JP(q), the term of ∂x

∂q1
.

Code Segment 4. An example of calculating a single element of position
Jacobian JP(q)

#import requirements – Note we are using python 3.6
from sympy import *
import spatialmath.base as base
#Create symbolic variables to use
a1, a2, a3, a4, q1, q2, q3, q4 = base.sym.symbol(’a0,a1,a2,a3,
q0,q1,q2,q3’)
#Rememeber our DK expression for x? If not check the
forward kinematics derivation of the robot leg
x = (a1 + a2 * cos(q2) + a3 * cos(q2 + q3) + a4 * cos(q2 + q3 +
q4)) * cos(q1)
dx_dq1 = diff(x, q1)
print(dx_dq1)

Coding Segment 5 shows how we would calculate the first two columns of JR(q).
Remember from our previous description of JR(q) how each column corresponds to
a rotation matrix before an actuator motion.

Code Segment 5. Python code which calculates the first two columns
of orientation Jacobian JR(q)

#import requirements – Note we are using python 3.6
from sympy import *
import spatialmath.base as base
import spatialmath as sm
import numpy as np
a1, a2, a3, a4, q1, q2, q3, q4, Pi =
base.sym.symbol(’a0,a1,a2,a3,q0,q1,q2,q3,Pi’)

17 Robot Hexapod Build Labs 509

#The base transformation of the DH parameters, see how
this is transformation before Rz(q_0)
baseTransformation = sm.SE3(np.identity(4))
#The first joint link pair, see how this is transformation
before Rz(q_1) of the DH parameters)
linkjoint_1 = sm.SE3.Rz(q1) * sm.SE3.Tz(0) * sm.SE3.Tx(a1) *
sm.SE3.Rx(Pi / 2)
#The second row of our DH parameters i.e. A1
linkjoint_2 = linkjoint_1 * sm.SE3.Rz(q2) * sm.SE3.Tz(0) *
sm.SE3.Tx(a2) * sm.SE3.Rx(0)
#Calculate the first column of the orientation jacobian
C1Jac = Matrix(baseTransformation.R) * Matrix([0, 0, 1])
#Calculate the second column of the orientation jacobian.
See how we combine the first link-joint pair followed by
the second
C2Jac = Matrix(baseTransformation.R) *
Matrix(linkjoint_1.R) * Matrix([0, 0, 1])

17.5 Project Four: Building Communication Protocols

17.5.1 Project Objectives

• Learn about bytes and different types of integer variables.
• Learn about basic serial (TTL) communication through implementing C++ code.
• Implement a ROS package to communicate with an Arduino microcontroller.

17.5.2 Project Description

This final project discusses communication protocols between a robot and a host
PC. This section describes how the original case study contributors controlled the
robot leg using ROS. The techniques presented will be helpful in many other robotics
projects.Whendeveloping robots,we rarely send radian commands or decimal values
directly to an actuator when commanding the system to move to a position. Instead,
many actuators simply take a tick or step value input, usually an unsigned 8-bit or 16-
bit integer. The MX28r actuators used originally received encoder values from 0 to
4095 to indicate the desired position of our actuator and other feedback or command
values.

The method by which we implemented a solution was by designing a custom
message protocol that utilised TTL, or serial communication. We write custom 8-bit
integer arrays to the serial port. If you are unfamiliar with the terms unsigned or
8-bit integer, let’s very briefly go over what these mean. These terms relate to the
binary numeral system. Binary numbers are sequences of 1 s or 0 s that can represent

510 D. Hinwood and D. Herath

integers. An 8-bit number is a binary number with eight 1 s and 0 s. A 16-bit number
would have 16 values, and so on.

So how do sequences of 1 s and 0 s represent other numbers? First, we treat each
value as 2i with i determined by its place in the sequence by reading from right to
left. We then sum up all the values where a 1 is in the sequence. For example, we
would treat the number 1011 in binary as the sum of 23 + 21 + 20. Notice how we
omit 22 since the third number in our sequence is 0 (remembering we are reading
from right to left). So, in binary, the number 1011 is equivalent to 11.

This example is also what we would refer to as unsigned. An unsigned integer
simply means that we do not consider negative values and sum up all the observed
values in sequence. Therefore, it stands to reason that the maximum value of an
unsigned 8-bit integer (also known as a byte) is 255, i.e. 11,111,111. So this isn’t
particularly useful for a robot system, particularly our system where the target and
feedback values range from 0–4095.

So, for each value in our 8-bit integer array, we’re limited to values of 255 and
cannot utilise negative numbers. Let’s first address negative numbers. We can use
signed integers which utilise a mathematical operation to represent negative numbers
with binary sequences. We refer those curious to the “two’s complement” method
for in-depth information about this operation. Using “two’s complement”, a signed
8-bit binary sequence can now represent a value between −128 and 127. We can
apply this technique to any binary sequence, including 16- and 32-bit numbers.

However, a constraint of serial communication is that we are sending bytes
(unsigned 8-bit integers) across. Thus,we are still left with the problemof howwe can
communicate with our microcontroller with only unsigned 8-bit values. Especially
when considering we want to send both unsigned integers and larger values.

Thus we utilise bit-shifting. For example, let’s say we have a signed 16-bit integer
of 1058. In binary, this would be the value of 00,000,100 00,100,010 using “two’s
complement”. Such a valuewould be inconvenient to send in an 8-bit unsigned integer
array. Essentially, we would write a function that would split our 16-bit integer in
half and represent it as two unsigned 8-bit numbers. We highlight this process in the
image below. As we can observe, we input a signed 16-bit integer and return two
8-bit unsigned values. We can then recombine these two numbers if required.

Let’s now take a look at bit-shifting in code. Note that we now use C++ rather
than Python. Code Segment 6 demonstrates the operation illustrated in Fig. 17.5, in

Fig. 17.5 Splitting a signed 16-bit integer into two unsigned 8-bit integers

17 Robot Hexapod Build Labs 511

which we split a single signed 16-bit number into two unsigned 8-bit numbers. It
also performs the step of rejoining the two unsigned 8-bit integers.

Code Segment 6. A simple C++ example that shows bit-shifting
operations in a coding context

#include <iostream>
#include <string>
using namespace std;
//Our functions for bit shifting and altering data
#define UPPER_BYTE(b) (b >> 8)
#define LOWER_BYTE(b) (b & 0xff)
#define INT_JOIN_BYTE(u, l) (u << 8) | l
int main()
{
int16_t exampleNumber = 1058;
//Manipulates our 16-bit integer in a variety of methods

uint8_t upper = UPPER_BYTE(exampleNumber);//will be 4
uint8_t lower = LOWER_BYTE(exampleNumber);//will be 34
int16_t rejoined = INT_JOIN_BYTE(upper, lower);//will be
1058
//print the newly calculated variables

cout << "input = " << exampleNumber << endl;
cout << "lower = " << int(lower) << endl;
cout << "upper = " << int(upper) << endl;
cout << "rejoined = " << rejoined << endl;
return 0;
}

17.5.3 Project Tasks

17.5.3.1 Task One: Basic Bit-Shifting

• Weperformed somebasic bit-shifting inCodeSegment 6. By researchingC++ and
bit-wise operations, discuss what the functions UPPER_BYTE, LOWER_BYTE
and INT_JOIN_BYTE are doing to the inputs of these functions.

• Take a random number represented by a signed 16-bit integer and calculate
the three outputs from the above functions (Hint: See the process illustrated in
Fig. 17.5 for inspiration).

512 D. Hinwood and D. Herath

17.5.3.2 Task Two: A ROS Example of Serial Communication

• For serial communication, the online resources present a ROS1 package with an
ArduinoUnomicrocontroller [Arduino, 2021]. Examine both of these repositories
and implement the ROS package by following the instructions available in the
README.md file of the ROS package.

• Draw a diagram of how the data passes through this package’s serial communi-
cation and ROS network. Include screenshots demonstrating how you input the
data and view any published information within the ROS network.

• The ROS and Arduino example are limited to sending 16-bit values within the
serial communication module. Modify both the ROS package and Arduino code
to receive signed 32-bit integers instead.

• Describe yourmethodology andwhat variables you had tomodify. Include screen-
shots demonstrating that you can successfully send these larger integers to the
Arduino and the ROS network.

17.6 Some Final Thoughts

This chapter discussed the practical implementation of hardware and software related
to the Hexapod case study in Chap. 12. By presenting the underlying concepts and
applied techniques, we hope that readers can take these skills and apply them to their
robotic systems. Please be aware that there are many different software packages and
libraries to develop robots. However, understanding the core concepts will maximise
your impact and use of these various tools.

References

Arduino UNO&Genuino UNO. (2021). Retrieved December 19, 2021, from https://www.arduino.
cc/en/pmwiki.php?n=Main/arduinoBoardUno

Corke, P.,&Haviland, J. (2021).Not your grandmother’s toolbox—theRobotics Toolbox reinvented
for Python. In IEEE International Conference on Robotics and Automation.

Robotis e-Manual—MX-28AR, MX-28AT. (2021). Retrieved December 19, 2021, from https://
emanual.robotis.com/docs/en/dxl/mx/mx-28/

David Hinwood is a Ph.D. candidate studying robot manipulators at the University of Canberra,
Australia. Initially completing a Bachelor of Software Engineering, he then moved into robotics
under the supervision of Dr Damith Herath. His research interests include the field of HRI and
the design of human-like robotic systems. Previously, he has assisted HRI studies in embodied
interaction, working on the Articulated Head Exhibit. He has also worked on creating human–
robot interactions that play tic-tac-toe and sketch images with members of the public—resulting in

https://www.arduino.cc/en/pmwiki.php?n=Main/arduinoBoardUno
https://emanual.robotis.com/docs/en/dxl/mx/mx-28/

17 Robot Hexapod Build Labs 513

several awards from the International Conference on Social Robotics. His current research focuses
on developing and learning dexterous skills for the robust autonomous manipulation of fabric.

Damith Herath is an Associate Professor in Robotics and Art at the University of Canberra. He is
a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial and research projects for over
two decades. He founded Australia’s first collaborative robotics startup in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015
and 2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted
Amazon Robotics Challenge—an industry-focused competition amongst the robotics research
elite. In addition, he has chaired several international workshops on Robots and Art and is the
lead editor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first significant
work to feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter 18
Deployment of Advanced Robotic
Solutions: The ROS Mobile Manipulator
Laboratories

David St-Onge, Corentin Boucher, and Bruno Belzile

18.1 Introduction

Throughout the book, we introduced the various disciplines and topics involved in
the development of robotic systems. Most of them are individually covered in dedi-
cated books showing the extent of the knowledge required in robotics. Fortunately,
we learned in Chap. 5 that open-source community-based software ecosystems, such
as the Robotic Operating System (ROS), can support several of the integrations and
ease the deployment process. ROS provides users with access to the latest research
algorithms and software deployment tools for codemaintenance, visualization, simu-
lation, and more. Thanks to ROS, we expect all readers of this book to be able to
complete the challenging advanced mobile manipulator tasks of this chapter.

For that purpose, we designed a robotic platform and we built a custom dedi-
cated ROS workspace to support our academic teaching laboratories in robotics,
from Gazebo simulations to the physical deployment (see Fig. 18.1). While under-
going a single-semester introduction course in robotics, the students are not expected
to install and deploy the ROS workspace on their personal computer, but rather
use a server infrastructure available at the university. Nevertheless, we provide the
complete ROS workspace with detailed installation instruction,1 including a Docker
container to ease the deployment. The laboratories were designed at École de tech-
nologie supérieure, in Montréal, Canada, where we host the physical infrastructure
to which these tools are tailored. We have eight robotic platforms for the students

1 https://github.com/Foundations-of-Robotics/mobile_manip_ws.

D. St-Onge (B) · C. Boucher · B. Belzile
Department of Mechanical Engineering, École de Technologie Supérieure, Montréal, Canada
e-mail: david.st-onge@etsmtl.ca

B. Belzile
e-mail: bruno.belzile.1@ens.etsmtl.ca

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_18

515

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_18&domain=pdf
https://github.com/Foundations-of-Robotics/mobile_manip_ws
mailto:david.st-onge@etsmtl.ca
mailto:bruno.belzile.1@ens.etsmtl.ca
https://doi.org/10.1007/978-981-19-1983-1_18

516 D. St-Onge et al.

Fig. 18.1 A group of students testing the robots outside of the laboratory

to test their algorithms and several preconfigured desktop stations. The stations are
accessible remotely to run the full simulation stack including remote visual rendering
of the simulation on a web browser.We tested up to three teams running their Gazebo
simulations in parallel on a single station without degrading performances.2 Each
station is accessible to all teams and so team’s accounts are set on each station. Since
most of the students’ work is done in Jupyter notebooks, we deploy on each station
(the littlest) JupyterHub.3 Details on users’ management and stations configuration,
including Gazeboweb (gzweb) and JupyterHub are also available online.4

18.1.1 Dingo and Gen3 Lite

The motivation behind this set of assessments is to cover several topics relevant to
both mobile robots and manipulator robots with a single integrated robotic platform.
Several engineering courses are available with hands-on laboratory on industrial
manipulators and custom-made mobile robot prototypes (a great project in this last
category is covered in Chap. 17 of this book). What we found was lacking is teaching
material leveraging a commercial robotic platform fit (safe) for proximity with the
users. Our suggested platform, to which we tailored all this chapter’s content, brings

2 Tested on Dell ThinkStation P340 Tiny i7, 16 Gb RAM with NVidia Quadro1000 4 Gb.
3 https://tljh.jupyter.org/en/latest/
4 https://github.com/Foundations-of-Robotics/mobile_manip_ws/tree/master/doc.

https://tljh.jupyter.org/en/latest/
https://github.com/Foundations-of-Robotics/mobile_manip_ws/tree/master/doc

18 Deployment of Advanced Robotic Solutions … 517

Fig. 18.2 CAD model of the
robotic platform with its
custom turret

together a Clearpath Dingo5 differential drive mobile base with a Kinova Gen3 lite6

six-degree-of-freedom manipulator.
This recent version (2020) of the now-famous Kinova arms has been designed

specifically for teaching. The same goes for Clearpath’s mobile platform, the
Dingo, which was released just a couple of months after the Gen3 lite. Clearpath
(Toronto) and Kinova (Montreal) are considered good potential employers for
students passioned by robotics and their hardware can be found in thousands
of companies and universities around the world. Kinova’s arms are deployed in
disability assistance centers and hospitals, not to mention human–robot collaborative
research laboratories, and the company is currently working to increase its presence
in the industrial sector. Clearpath provides products forNASAand several emergency
response agencies around the world and in recent years has become a major player in
warehouse automation. Among everything, both companies are contributing actively
to the ROS community with nodes for their robots and several additional ROS tools
to ease robotics deployment (Fig. 18.2).

We put together the arm and the base using a custom-made turret that ensures
the arm can easily reach door handles and objects on tables at human height. The
turret also hosts a set of Realsense cameras: one for position tracking, the other used
for mapping, obstacle avoidance and user teleoperation. To increase the platform
safety, we added an emergency stop button on the back of the turret, which can be
locked to prevent any motion of the robots. Anyhow, both the arm and the base have

5 https://clearpathrobotics.com/dingo-indoor-mobile-robot/
6 https://www.kinovarobotics.com/product/gen3-lite-robots.

https://clearpathrobotics.com/dingo-indoor-mobile-robot/
https://www.kinovarobotics.com/product/gen3-lite-robots

518 D. St-Onge et al.

their own remote controller for manual control and to take over when autonomous
control is not behaving properly.

18.1.2 Recommended Tools and Base Skill Set Required

The reader undergoing the projects of this chapter must have a good understanding
of the content of most of the chapters in this book. However, the essentials are
the ROS environment (Chap. 5), Python basic programming (Chap. 4), differential
drive kinematics (Chap. 8), homogeneous transformation (Chap. 6), Kalman state
estimation (Chap. 8), serial manipulator kinematics (Chap. 10), navigation (Chap. 9)
and designing a user study (Chap. 13). In the following, the first three projects are
well framed in order to help the student’s focus on the theoretical content and their
learning of the tools, namelyROSandPython. The last twoprojects are less structured
as they are meant to allow the students to explore more advanced topics and integrate
the knowledge they acquired in the previous projects and throughout the book. All
projects notebooks, such as the one shown in Fig. 18.3, are available online.7 The
following set of instructions take for granted that you have local access to a ROS-
configured station and access the robots’ onboard computer (also preconfigured)
through a local (wireless) network. The ROS workspace repository also contains
instructions for the Dingo setup and to launch a simulation on a remote station.8

18.2 Project 1: Discovering ROS and the Dingo

18.2.1 Project Objectives

• Get familiar with the ROS environment (basics);
• Get familiar with the Gazebo simulator (visualization only);
• Get familiar with Python programming (from notebooks);
• Control a mobile robot manually;
• Control a robot with simple Python instructions;
• Program a robot’s differential drive kinematics.

7 https://github.com/Foundations-of-Robotics/mobile_manip_notebooks.
8 https://github.com/Foundations-of-Robotics/mobile_manip_ws/tree/master/doc.

https://github.com/Foundations-of-Robotics/mobile_manip_notebooks
https://github.com/Foundations-of-Robotics/mobile_manip_ws/tree/master/doc

18 Deployment of Advanced Robotic Solutions … 519

Fig. 18.3 Notebook example from Project 1 shown on the GitHub repository

18.2.2 Project Description

This project aims at comparing the performance of a mobile robot (Clearpath Dingo)
in simulation and in reality, through the extraction of the resulting trajectories’ noise.
In order to compare the two, an autonomous open-loop trajectory must be programed
and to do so the Dingo’s differential drive inverse kinematics is required.

18.2.3 First Task: Manual Control in Simulation

• Open a terminal and use this command to start the simulation:
roslaunch mobile_manip dingo_arenasim.launch

• Open a second terminal and use the command rostopic (list, info and
echo) to find the topics’ names for the IMU (sensor_msg/imu), the encoders
(nav_msgs/odometry), and the velocity command (geometry_msgs/Twist).

• Use these topics to record a rosbag with this command:
rosbag record /topic1 /topic2 /topic3

• Open a third terminal and run the teleoperation node (Fig. 18.4):
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
cmd_vel:=mobile_manip/cmd_vel

520 D. St-Onge et al.

Fig. 18.4 Dingo robot in a simulated maze

Keeping a focus in the last terminal window, you can use the keyboard (u, i, o, j,
k, l, m, <) to manually control the robot toward the end of the maze. When you are
out of the maze, stop the rosbag (control-C), and then the simulation.

18.2.4 First Task: Manual Control in Reality

• Start the robot by pressing the power button and wait for the front lights to turn
white.

• Power on the controller. You can now control the robot with the controller
(Fig. 18.5).

18.2.5 Second Task: Inverse Kinematics

The controller and the state estimator need information from the robot’s sensors
to work properly. The provided Python notebook Project1–2 for this task contains
missing ROS topics names and some geometry information of the robot that you
need to fill out.

18 Deployment of Advanced Robotic Solutions … 521

Fig. 18.5 Clearpath remote controller, from the Dingo manual

You can now program your differential drive robot’s inverse kinematics. Look for
the function “move_robot” in the notebook, it’s the one that needs to be modified.
This function uses two arguments as inputs:

• vlin is the desired linear velocity in m/s in the robot’s frame.
• vang is the desired angular velocity in rad/s in the robot’s frame, positive

counterclockwise (Z is up).

Your work consists in using these variables and the robot’s geometry to calculate
the velocity commands sent to each wheel. The variables vel_left and vel_right
will contain the results of your derivation. The function move_robot will then
automatically send the commands to the robot whenever its called.

You can test your code by moving the robot in an empty world simulation with:
roslaunch mobile_manip gen3_lite_dingo_emptysim.launch

using the variables vlin and vang in the last cell of the Python notebook. When you
are ready, record a rosbag of the topic /tf only (it includes the transforms of each
rigid body in the simulation) for the following movements:

• Moving forward in a straight line.
• Moving backward in a straight line.
• Rotate on itself.
• Turn on a circle with a diameter of 1 m.

522 D. St-Onge et al.

18.2.6 Third Task: Simulation Versus Reality

Use the project1–3 notebook and enter the topics’ names in the publishers and
subscribers where it is needed. Edit the values for the velocity of each wheel to make
the robot turn on a circle of 1 m in diameter. This notebook will be used to control
the robot both in simulation and in reality. You will need to record a rosbag for each
and then compare the results.

To record the simulation:

• Open a terminal and run the simulation with
roslaunch mobile_manip gen3_lite_dingo_emptysim.launch

• With rostopic command, find the topics’ names for the IMU
(sensor_msg/imu), the encoders (nav_msgs/odometry), and the motor command
(jackal_msgs/cmd_drive) and edit project1–3 notebook accordingly.

• The last cell of the notebook records a rosbag with the needed topics while the
robot is moving. Make sure to close the rosbag once the circle is done at least
once.

To record the real robot:

• Turn on the robot using the power button on the back (ensure the emergency stop
button is disabled) and wait until the light indicator is on below theWi-Fi symbol.

• Open a new terminal on your computer and connect to the robot over SSH (where
X is your Dingo’s number):
ssh mecbot@cpr-ets05-0X (user mecbot and the password given by your
professor)

• Then when you are connected to it, launch all the custom nodes required for the
laboratories’ task onboard:
roslaunch mobile_manip gen3_lite_dingo_real.launch

Finally, to compare the results, open the notebook Analyse1, enter the name of
your rosbags and edit the code to calculate the variance on the circle trajectory. Using
at most one page, answer this question:

• What quantifiable difference(s) can you observe between the circle trajectory in
simulations and on the real robot? What can you say about the source(s) of these
differences?

18.3 Project 2: Kalman for Differential Drive

18.3.1 Project Objectives

• Design a Kalman filter for position estimation (sensor fusion);
• Estimate sensors’ noise from real data.

18 Deployment of Advanced Robotic Solutions … 523

18.3.2 Project Description

This project aims at developing a state estimator for the mobile base pose from the
available onboard sensors’ measurements. You will use a Kalman filter to fuse the
different measurements and get the best out of each sensor. Since such a piece of code
requires quite a bit of debugging, use only the simulation until you get a working
behavior:

• To launch a simulation, use this launch file:
roslaunch mobile_manip gen3_lite_dingo_emptysim.launch

18.3.3 First Task: Extract Encoders Information (Notebook
Project2_1)

Your first task is to use the encoders’ values to estimate the robot’s movements (x, y,
Vx, Vy, and the heading θ). The function encoders_callback will be called each time
a new update is received from the wheels’ encoders. Modify its content to estimate
progressively the robot’s position and velocity from the encoders’ readings (given in
radians from 0 to infinity).

18.3.4 Second Task: Estimate the Sensor’s Noise
(CSV_Analyse)

To include sensors in a Kalman filter, you first need to know the noise in the measure-
ments. Previous experimental data has been saved in .csv files and are provided to
you alongside a template notebook to help with loading and processing the data
(CSV_Analyse). You need to find the variance of every measurement you will use
in your Kalman filter in order to build your measurement covariance matrix.

18.3.5 Third Task: Design a Kalman Filter (Project2_2)

Now that you extracted meaningful information from the encoders and that you esti-
mated the encoders and IMU noise, you need to fuse these measurements into a more
robust state estimator. Indeed, since the wheels can slip, the IMU measurements can
improve the pose estimation. This fusion will be made with a Kalman Filter. The
given Python notebook already imports the library filterpy.kalman which is respon-
sible for most of the Kalman filter implementation, but you need to configure the

524 D. St-Onge et al.

filter (states, covariance matrices, transition matrices, etc.). Follow the instructions
in the notebook and refer to the library documentation for more details.9

There is not a unique solution to this task. The filter can be configured in different
ways, for example using (or not) command inputs (u). If you choose a configuration
without commands, consider the system’s variance to be σ S = 10.

18.3.6 Fourth Task: Design Justification and Validation

The last cell of the project2_2 notebook sends commands to move the robot. This
cell also creates a rosbag recording the trajectory estimated by your Kalman filter
and the ground truth trajectory from gazebo. You can then test your Kalman filter
performance with the KF-Analyse notebook.

In a page, describe and justify the design of your Kalman filter: Why did you
choose these states?Why do you think this model (configuration matrices) is a better
fit to the problem? What other possibilities were available?

18.4 Project 3: 3-DoF Kinematics

18.4.1 Project Objectives

• Compute direct and inverse kinematics;
• Calculate the Jacobian and the points of singularity;
• Validate the results with the real robot.

18.4.2 Project Description

This project aims at the application of the direct and inverse kinematics to the use
case of a simplified manipulator. The robot used for this laboratory is the Kinova
Gen3 Lite manipulator (see Fig. 18.6). In order to simplify this project (and avoid
the need for a symbolic computation software), the number of axes to be controlled
is reduced from 6 to 3.

As shown in Fig. 18.7, axes 1, 2, and 3 are the ones that can be controlled here.
Assume all other joints are fixed in their initial position (0°), as depicted in Fig. 18.6.
A 90° angle is applied to the third joint on the left-hand side of the figure for the sake
of comparison. The parameters of each of the robot segments are given in Fig. 18.7
(in mm).

9 https://filterpy.readthedocs.io/en/latest/kalman/KalmanFilter.html.

https://filterpy.readthedocs.io/en/latest/kalman/KalmanFilter.html

18 Deployment of Advanced Robotic Solutions … 525

Fig. 18.6 Gen3 lite manipulator: photograph on the left, base, and tool frame locations on the right

18.4.3 First Task: Denavit–Hartenberg Table

You must complete the DH table (again, for the 3-DoF robot) with the parameters
given (their numerical values, not only the variables). Add comments if necessary to
clarify the meaning of the values used.

18.4.4 Second Task: Transformation Matrices

Compute all sequential homogeneous transformationmatrices (Q) from theDH table,
then use the resultingmatrices to obtain the final concatenated transformationmatrix,
or direct kinematics.

18.4.5 Third Task: Inverse Kinematics

Derive the equations to compute each joint coordinate explicitly as a function of
a Cartesian position (not orientation) to be reached within the workspace with the
end-effector. A drawing might help you in your work.

526 D. St-Onge et al.

Fig. 18.7 All joints reference frames from the Gen3 lite manual

Suggested procedure:

1. Extract the three components (x, y, z) defining the position from the homoge-
neous transformation matrix computed in the previous task.

2. Eliminate unknown variables to obtain an equation with only one unknown left.
You can do this similarly to the procedure used to solve the inverse position
problem of a wrist-partitioned serial manipulator, in Chap. 10.

(a) Use the equations corresponding to the coordinates x and y, then compute
the sum of their squares (to eliminate θ1) and isolate cos(θ2). Then,
after isolating sin(θ2) in the equation of the z-coordinate, use the identity
sin2(θ2)+ cos2(θ2)= 1 to make one unknown joint coordinate disappear,
namely θ2.

(b) Use the Weierstrass substitution with (θ2 − θ3) in the equation obtained
in the previous step and find the roots of the obtained quadratic equation.
The possible values of (θ2 − θ3) can then be computed.

(c) Going back to the expressions of sinθ2 and cosθ2 obtained earlier, you
can now compute θ2 with the arctan2 function.

18 Deployment of Advanced Robotic Solutions … 527

(d) θ2 and (θ2 − θ3) known, it is trivial to obtain θ3.
(e) Finally, return to the equations corresponding to the coordinates x and y,

then cast them in matrix form Ax = b, where x = [sinθ1 cosθ1]T since
θ1 is the only remaining unknown. Then, after solving for x, use arctan2
to find the solution for θ1.

18.4.6 Fourth Task: Validation

In order to validate your solution, you must now apply the results obtained in the
previous step to the robot. To do this, the robot must follow a path passing through
the following Cartesian positions:

[mm] x y z

Pose 1 −66.9 −50.2 965.8

Pose 2 223.3 366.8 873.0

Pose 3 10.0 678.0 384.3

Start the robot simulation using the following command:
roslaunch mobile_manip gen3_lite_sim.launch
Use the Kinova_3DoF_Joint_Control notebook: this file contains a function

named dof3control(j1, j2, j3). This function sends angle commands (in degrees) to the
3 joints of the simulated robot in Gazebo. You need to add your code implementing
the solution to the inverse kinematics problem (previous task).

You are encouraged to validate the angle values returned by your inverse
kinematics using the DirectKinematics notebook. Finally, you can confirm that
the position reached by the robot is good with the call at the bottom of the
Kinova_3DoF_Joint_Control notebook.

When your code has proven to work properly in Gazebo, you can validate on the
real robot by changing the ROS_MASTER_URI in the first cell to the IP of your
robot. Then launch the nodes on the real robot with:

• Turn on the robot using the power button on the back (ensure the emergency stop
button is disabled) and wait until the light indicator is on below theWi-Fi symbol.

• When the front lights turn white, turn on the Gen3 Lite (button on the back on the
base of the arm)

• Open a new terminal on your computer and connect to the robot over SSH (where
X is your Dingo’s number):
ssh mecbot@cpr-ets05-0X (user mecbot andpassword given byyour professor)

• Then when you are connected to it, launch all the custom nodes required for the
laboratories’ task onboard:
roslaunch mobile_manip gen3_lite_dingo_real.launch

528 D. St-Onge et al.

If it launches correctly, you should see the arm reach its home position.
In less than a page, answer the following question: To your knowledge, what

criteria could be used to select one solution to the inverse kinematics problem over
another? Justify, it is not necessary to have an exhaustive list of criteria.

18.5 Project 4: Let’s Bring It Back Together!

18.5.1 Project Objectives

• navigate with a mobile manipulator;
• manipulate the environment;
• identify phenomena potentially dangerous involving mobile manipulators and

analyze the risk.

18.5.2 Project Description

This project consists of deploying amobilemanipulator in a real application scenario:
the handling of machined parts in a factory. More specifically, your objective is to
recover a part that has just been machined (in the corridor) and transfer it to a surface
treatment tank (in the laboratory). Two robots are available for this task. The two
robots are initially in the laboratory and must therefore open the door themselves to
reach the part. All tasks can either be run in simulation or with the real robot using
the same Python notebook.

To test any part of your code in a safe environment, do it in simulation. Open a
Linux terminal and start the simulation with the command:

roslaunch mobile_manip gen3_lite_dingo_labsim.launch
After you validate your code in the simulation, you can launch it with the real

robot:

• Turn on the robot using the power button on the back (ensure the emergency stop
button is disabled) and wait until the light indicator is on below theWi-Fi symbol.

• When the front lights turn white, turn on the Gen3 Lite remote (button on the back
on the base of the arm).

• Open a new terminal on your computer and connect to the robot over SSH (where
X is your Dingo’s number):
ssh mecbot@cpr-ets05-0X (user mecbot andpassword given byyour professor)

• Then when you are connected to it, launch all the custom nodes required for the
laboratories’ task onboard (Fig. 18.8):
roslaunch mobile_manip gen3_lite_dingo_real.launch

18 Deployment of Advanced Robotic Solutions … 529

Fig. 18.8 Mobile
manipulator platform in its
parking space

If it launches correctly, you should see the arm reach its home position. Keep the
remote control in your hands at all times: the deadman switch allows you to take
back manual control of the robot if your code reacts badly. Warning! The remote
control only interrupts the commands sent to the Dingo not the ones sent to the arm.

18.5.3 First Task: Teleoperation

Use the notebooks prepared for this task in order to pilot the robot in the room and
the corridor in front. You need to test:

• manual piloting with the remote control, following the robot (not available in the
simulation);

• remotemanual control with the notebook and using visual feedback from the front
color camera (manual-control.ipynb—remember to test in simulations first!);

• autopilot using the notebook, but immediately regaining control if a collision is
imminent. (autonomous.ipynb—remember to test in simulations first!).

530 D. St-Onge et al.

18.5.4 Second Task: Hit a Marker!

Use the TagTouch notebook to detect markers in front of the robot using the
Realsense T265 fisheye camera. The coordinates obtained are in the reference frame
of the camera, you must transpose them into the frame of reference of the manip-
ulator base. The position of the camera in the reference frame of the base of the
manipulators is illustrated in Fig. 18.9:

• in the simulation, [x, y, z] = [0.16, 0.04, 0.463] m;
• on the real robot, [x, y, z] = [0.0, 0.05, −0.137] m.

Remember that the frame of reference of an image (camera) always has the z-
axis coming out of the camera. Then use the inverse kinematics (Cartesian control)
provided by the Gen3 lite controller to touch the marker on the wall. Test first in the
simulation, then in the laboratory. You can move the robot manually using one of the
strategies from step 1 to position the robot (camera) in front of the marker.

You cannot use Kinova’s web service for this and subsequent steps.

Fig. 18.9 Mobile
manipulator model in
Gazebo with reference
frames for the arm base, the
mobile base, and the camera.
X-axis is shown in red, Y-axis
in green, and Z-axis in blue

18 Deployment of Advanced Robotic Solutions … 531

Fig. 18.10 Two Apriltags were used for this task, both in the simulation and in the real deployment

18.5.5 Third Task: Grasping

The door handle and the object to be picked up are both at predetermined poses
relative to their fiduciary marker, as shown in Fig. 18.10. To the transformation from
the previous step, you must now add the transformation required to change frame:

• of the handle (given in the referential of the marker), [x, y, z]= [0.05, 0.3, 0.1] m;
• of the object (given in the referential of the marker), [x, y, z]= [0.05,−0.45, 0.2]

m.

When you reach your goal, you must then tighten the gripper on it. Write down
the movements required to orient the gripper and apply the required force. You can
then use the Dingo and Gen3 lite together to pull the door and bring the object back.
Note: To send an opening or closing command to the gripper, you must use the ROS
service for this purpose (look for reach_gripper in the notebooks).

18.5.6 Fourth Task: Risk Assessment

Based on what your learnings from Chap. 14, you have to take care of the risk
management for the mobile manipulator in this scenario. You are the integrator,
you must therefore deliver an initial analysis of the risks as well as the relevant
means of risk mitigation. Keep in mind that the initial analysis is done without
considering the existing protectionmechanisms on the robotic system. Then, propose
risk mitigation measures and clearly state which ones are already included in the
robotic system and those which should be added (to the system, to the environment
or by the management).

To help you in your assignment, the operator of the mobile manipulator system
has shared the following information with you:

532 D. St-Onge et al.

Fig. 18.11 Fictitious plan of a factory cell with mobile manipulators

• the robotic system to be deployed is a Clearpath Dingo equipped with a Kinova
Gen3 lite arm;

• the task of the industrial robotic system (Dingo and Gen3 lite) is to pick the
parts from various machining machines to place them in surface treatment baths
(machine tending);

• the machines manufacturing the parts are spread over the entire factory floor, with
workers circulating in between regularly;

• treatment baths are in a closed room tomeet ventilation standards for the chemicals
used;

• production runs 24/7.

To help you with this task, a plan layout is illustrated in Fig. 18.11.

18.6 Project 5: Save the Day!

18.6.1 Project Objectives

• Program autonomous navigation for the Dingo;
• Program obstacle avoidance;
• Design a remote command interface;
• Plan, conduct, and analyze the ergonomy of a command interface.

18 Deployment of Advanced Robotic Solutions … 533

18.6.2 Project Description

This project consists in studying the ease of use of a teleoperation system you will
be designing. You will first need to design a controller and a user interface before
conducting a user study. Themission of the participantswill be to explore thefloor of a
building to find some objects. The building is evacuated, only themobile manipulator
is left inside (no human to avoid).

To test any part of your code in a safe environment, do it in simulation. Open a
Linux terminal and start the simulation with the command:

roslaunch mobile_manip gen3_lite_dingo_labsim.launch
After you validate your code in the simulation, you can launch it with the real

robot:

• Turn on the robot using the power button on the back (ensure the emergency stop
button is disabled) and wait until the light indicator is on below theWi-Fi symbol.

• When the front lights turn white, turn on the Gen3 Lite remote (button on the back
on the base of the arm).

• Open a new terminal on your computer and connect to the robot over SSH (where
X is your Dingo’s number):
ssh mecbot@cpr-ets05-0X (user mecbot andpassword given byyour professor)

• Then when you are connected to it, launch all the custom nodes required for the
laboratories’ task onboard:
roslaunch mobile_manip gen3_lite_dingo_real.launch

If it launches correctly, you should see the arm reach its home position. Keep the
remote control in your hands at all times: the deadman switch allows you to take
back manual control of the robot if your code reacts badly. Warning! The remote
control only interrupts the commands sent to the Dingo not the ones sent to the arm.

18.6.3 First Task: Autonomous Navigation

Teleoperation requires a good deal of autonomy from the robotic system so it can
deal with complex maneuvers and leave the operator to attend more sensitive tasks.
You need to design your navigation solution with various levels of autonomy for 1.
Path planning, 2. Collision avoidance, and 3. Objects (Apriltags) detection. A set of
notebooks is providedwithA*andRRTpath planners, including anoccupancygrid of
the environment aswell as visualization tools for laser scans (extracted from the depth
camera) and video feeds (including tags detection in the camera reference frame).
Many solutions are possible for each aspect of the navigation. For the Apriltags
detection, remember that the coordinates obtained are in the reference frame of the
camera, you must transpose them into the frame of reference of the arm base for
manipulation. The position of the camera in the reference frame of the base of the
manipulator is:

534 D. St-Onge et al.

• in the simulation, [x, y, z] = [0.16, 0.04, 0.463] m;
• on the real robot, [x, y, z] = [0.0, 0.05, − 0.137] m.

18.6.4 Second Task: User Interface

Based on the navigation solution you designed in the previous step, code a tele-
operation interface for an operator to complete the mission remotely (i.e., without
following the real robot and looking at the simulator window). This interface must
include visualization of relevant sensor information and input modalities to send
commands to the robot. A minimal interface for the manual control is given as an
example (see Fig. 18.12).

This task is a creative step where you should try to imagine what would help the
user the most. You can then do some research and find what is possible to do in a
Python notebook to make the integration in your interface.

Fig. 18.12 Jupyter notebook minimal interface provided for the teleoperation of a mobile
manipulator (camera view from simulation)

18 Deployment of Advanced Robotic Solutions … 535

18.6.5 Third Task: Ergonomy Study

You can now design a user study (see Chap. 13) to assess the potential of your
teleoperation solution, namely the impact of your solution on the operator’s perfor-
mance and his appreciation. You can either do an explorative study or a confirmative
(comparative) one. To conduct a comparative study, you need an interface that the
users can test in two different conditions (i.e., manual and assisted). In both cases,
you need to define and justify the selected statistical tools (see Chap. 6). At the end
of the term, you will conduct your study on some students of the course group.

You need to complete a protocol for your user study including the questionnaires
and the metrics you will analyze to answer your research question. For instance, a
common questionnaire used to measure the cognitive task load is the NASATLX:
NASATLX questionnaire example

Item Endpoints Description

Mental demand 1–10
Low/High

How much mental and perceptual activity was required (e.g.,
thinking, deciding, calculating, remembering, looking,
searching, etc.)? Was the task easy or demanding, simple or
complex, exacting or forgiving?

Physical demand 1–10
Low/High

How much physical activity was required (e.g., pushing,
pulling, turning, controlling, activating, etc.)? Was the task
easy or demanding, slow or brisk, slack or strenuous, restful
or laborious?

Temporal demand 1–10
Low/High

How much time pressure did you feel due to the rate or pace at
which the tasks occurred? Was the pace slow and leisurely or
rapid and frantic?

Performance 1–10
Low/High

How successful do you think you were in accomplishing the
goals of the task set by the experimenter (or yourself)? How
satisfied were you with your performance in accomplishing
these goals?

Effort 1–10
Low/High

How hard did you have to work (mentally and physically) to
accomplish your level of performance?

Frustration level 1–10
Low/High

How insecure, discouraged, irritated, stressed and annoyed
versus secure, gratified, content, relaxed and complacent did
you feel during the task?

Your ergonomy study report is expected to follow this structure:

1. INTRODUCTION—Introduce the content of this report, the main characteris-
tics of your navigation and user interface and the results of the study.

2. USER STUDYDESIGN—Describe the elements of the study with the research
question, causal or correlated effect sought, impact of the robotic system type,
place of the study and the selection of the candidates. You must also list and
justify the measures used.

536 D. St-Onge et al.

3. STUDY PROTOCOL—Describe how you will proceed in the study sessions.
4. DATAANALYSIS—Use statistical tools to demonstrate the results distribution.
5. DISCUSSION—Discuss the most important observations you made in the data

analysis section.Mention the limitations of the study and add recommendations.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the École de technologie supérieure and director of the INIT Robots Lab
(initrobots.ca). David’s research focuses on human-swarm collaboration more specifically with
respect to operators’ cognitive load and motion-based interactions. He has over 10 years’ experi-
ence in the field of interactive media (structure, automatization and sensing) as workshop produc-
tion director and as R&D engineer. He is an active member of national clusters centered on
human-robot interaction (REPARTI) and art-science collaborations (Hexagram). He participates
in national training programs for highly qualified personnel for drone services (UTILI), as well
as for the deployment of industrial cobots (CoRoM). He led the team effort to present the first
large-scale symbiotic integration of robotic art at the IEEE International Conference on Robotics
and Automation (ICRA 2019).

Corentin Boucher is a research student at the École de Technologie Supérieure (ÉTS). The
interest in robotics that he developed during his studies pushed him to continue his journey and
to carry out research in the field.

Bruno Belzile is a postdoctoral fellow at the INIT Robots Lab. of ÉTS Montréal in Canada.
He holds a B.Eng. degree and Ph.D. in mechanical engineering from Polytechnique Montréal.
His thesis focused on underactuated robotic grippers and proprioceptive tactile sensing. He then
worked at the Center for Intelligent Machines at McGill University, where his main areas of
research were kinematics, dynamics, and control of parallel robots. At ÉTS Montréal, he aims
at creating spherical mobile robots for planetary exploration, from the conceptual design to the
prototype.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 InternationalLicense (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter
or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Index

A
A* algorithm, 230
Abstraction, 92
Accuracy, 181
Ackerman drive, 213
Action, 114
Activation function, 450
Active, 180
Aerostabiles, 27
Algorithms, 189
Alternative hypothesis, 157
Ament, 109
ANSI, 416, 417
ANSI/ITSDF B56.5, 420
ANSI/RIA R15.06, 424
ANSI/RIA R15.08, 420, 427, 431
Anticipation, Inclusion, Reflexivity, and

Responsiveness (AIRR), 486
A quadruped gait, 218
Architecture, 267
Archival research, 387
Arm type robots, 191
Association for Advancing Automation,

417
Assuming correlation equals causation, 407
Auction, 305
Augmented Reality (AR), 351
Automata, 7
Automated guided vehicle, 416, 418, 431
Automatic methods to swarm design, 310
Automatophones, 17
Autonomous boat, 20
Autonomous mobile robot, 416, 431

B
Ballet Robotique, 28

Bandwidth, 181
Basic parametric elements, 341
Battery, 432
Bayes’ theorem, 146, 249
Beacons, 244
Behaviourism, 53
Bellman equation, 463
Benefits, 399
Berger, 107
Between-subjects design, 389
Bicycle, 211
Bill Vorn, 27
Blinding, 395
Body of knowledge, 44
Boursier-Mougenot, 30
Bug algorithm, 234
Buzz, 315

C
CAD assembly files, 340
CAD drawing files, 344
CAD file transfer, 351
CAD file types, 338
CAD Modelling Guidelines for Assembly

Files, 339
CAD model validation, 343
CAD systems, 336
Callback, 91
Capek, 5
Case studies, 387
Catkin, 109
Centralized muti-robot systems, 304
Central limit theorem, 147
Circular references, 339
Class, 92
Classifier, 442

© The Editor(s) (if applicable) and The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1

537

https://doi.org/10.1007/978-981-19-1983-1

538 Index

Climb, 220
Closed-loop, 224
Cobot, 413, 427
Cognitive complexity, 322
Cognitivism, 53
Collaborative operation methods, 428
Collaborative robot, 427
Competition based assessment, 51
Competition-based learning, 51
Computer Aided Manufacturing (CAM),

352
Computer Numeric Control (CNC), 352
Computer vision, 194
Concealment, 397
Conceptual phase, 480
Conditions, 384
Confidential, 400
Confounds, 396
Connectivism, 54
Consequentialism, 475
Consider effect size, 408
Constructionism, 54
Constructivism, 53
Constructivist, 47
Construct validity, 395
Control architectures in Human Swarm

Interaction, 323
Control conditions, 384
Controller, 224, 225
Control system, 224
Convenience sampling, 394
Convolutional neural network, 453
Correlational research, 388
Correlation-based methods, 200
Counterbalancing, 390
Covariance, 155
Cross entropy, 443
Cross product, 131
Cross product deviation, 156
CSA Group, 417
CSA/Z434-14 (2019), 420
Ctesibios, 8
Curriculum design, 45

D
Data association, 246
Data Distribution Service (DDS), 112
Dead reckoning, 243
Debriefing, 400
Decentralized multi-robot system, 307
Deception, 397
Decision structures, 89

Deep learning, neural network, 450
Degrees of freedom, 154, 268
Demand characteristics, 396
Denavit-Hartenberg convention, 269
Deontology, 475
Dependent Variables (DVs), 383
Depth map, 184
Derivative, 148
Derivative control, 226
Descend, 220
Descriptive research, 387
Descriptive statistics, 151, 403
Design based learning, 55
Design principals, 482
Design process, The, 333
Design thinking, 64
Dicycles, 211
Differentially steered, 209
Digital Light Processing (DLP), 354
Dijkstra’s algorithm, 232
Direct Energy Deposition (DED), 354
Direct kinematics, 268, 287
Direct modelling, 337
Distributed muti-robot systems, 304
D* Lite algorithm, 233
Dot product, 131
Double-blind, 397
Double diamond diagram of the design

process, 334
3D PRINTING, 352
Dual-use, 477
Dynamically stable gaits, 217
Dynamic range, 181
Dynamics, 289

E
Early stopping, 448
Ecological validity, 395
Educational theories, 44
Effectiveness, 379
Efficacy, 379
Empathy, 69
Empirical phase, 480
Encapsulation, 92
Encoders, 187
End-effector, 268
Energy-based optical flow, 199
Error analysis, 180
Ethical checklist, 481
Ethical frameworks, 483
Ethics, 474
Ethics review process, 398

Index 539

Euler-Lagrange, 290
Exception, 93
Experimental, 384
Experimental research, 388
Explicability, 482
Exploration-exploitation, 465
External validity, 395
Exteroceptive, 180

F
Falsification, 382
Fatigue effects, 396
Fault detection and handling, 326
Feature history tree, 339
Features, 244
Feedback, 225
Field D*, 233
Field experiments, 388
File naming, 340
File structure, 342
First angle and third angle projection, 349
Fisheye, 185
Flipped classroom, 49
Flowcharts, 85
Flying robots, 219
Focus groups, 387
Force sensor, 188
Forward kinematics, 268
Four-legged robots, 217
Frequency histogram, 147
Frequentist statistics, 147
Function, 90
Functional design process, 421
Fused Deposition Modelling (FDM), 353
Fuzzy logic controllers, 228

G
Gamification, 49
Gazebo, 121
Generalisation, 393
Generalized inverse, 136
General linear model, 160
Geometry, 128
Gimbal lock, 141
Git, 96
Global positioning problem, 242
Golem, 6, 34
Gradient back-propagation, 452
Gradient descent, 446
Grand mean, 160
Granjon, 30

H
Hand guiding, 428
Hazard, 421, 429, 431
Henri Lecoultre, 17
Heron of Alexandria, 10
Hexacopter, 220
History, 107
History effects, 396
Holonomic drive, 208
Homogeneous transformation matrix, 270
Hover, 220
Human-Centered Design (HCD), 69
Humanoid, 216
Human-robot collaboration, 428
Human Speaker Experiment, The, 29
Human values, 478
Hydraulic actuators, 193
Hypothesis, 382
Hysterical Machines, 27

I
Independent Variables (IVs), 383
Inductive bias, 446
Industrial mobile robot, 416, 418
Industry standards, 480
Inertial Measurement Units (IMU), 187,

243
Inferential statistics, 151, 403
Informed consent, 399
Inheritance, 92
Inkjet printing, 354
Instantaneous centre of rotation, 209
Instructivist or didactic, 47
Instructivist pedagogies, 47
Integral control, 226
Integral windup, 227
Integrated Development Environment

(IDE), 123
Interaction effect, 169
Internal validity, 395
International Organisation for Standards

(ISO), 415, 417
Interval variables, 402
Inverse kinematics, 273, 287
Ismail Al-Jazari, 12
ISO 10218, 420
ISO 12100, 423
ISO 19649, 420
ISO 8373, 420
ISO/TS 15066, 418, 427, 429

540 Index

J
Jacobian, 282, 289
Jacquet-Droz, 16
Joint, 267
Joint coordinates, 273

K
Kalman gain, 261
Kidnapped, 242
Killer robots, 30
Kinematic chain, 267
Kinematic pair, 267
Kinematics, 208, 268, 286
Kinova Gen3 lite, 269, 272, 279

L
Landmarks, 244
Laser, 183
Learning, 440
Leonardo Da Vinci, 13
Level of autonomy, 324
Life-inspired, 33
Light Detection And Ranging (LIDAR),

183
Light sensors, 181
Linear encoders, 187
Linearity, 181
Linear motor, 192
Linear regression, 444
Link, 267
Linux, 123
Logical operators, 89
Loops, 90
Loss function, 443
Low power, 407
Lucas–Kanade method, The, 199

M
Machine learning, 440
Main effect, 169
Manuel methods to swarm design, 313
Markov decision process, 460
Markov property, 456
Mathematical background, 127
Matrix, 129

generalized inverse, 136
inverse, 135
multiplication, 133
rank, 137
transpose, 134, 135

Maturation effects, 396

Mean, 403
Mean squared error, 443
Mean squares, 162
Measures of central tendency, 151

mean, 153
median, 151
mode, 151

Median, 403
Message, 114
Meta-analyses, 392
Meta-builder, 109
Methods to design swarm systems, 310
Metric maps, 248
Mobile robots, 191, 205, 431
Mobility, 268
Mode, 403
Modelling Guidelines for Part Files, 341
Model tree, 339
Monocopter, 220
Monocular cameras, 184
Moore-Penrose generalized inverse, 281
Mortality, 395
MoveIt, 120
Multicopter, 219
Multi layer perceptron, 451
Mutually exclusive events, 145

N
Neuron, 450
Newton-Euler, 292
Nikola Tesla, 20
Nominal variables, 402
Non-holonomic, 208
Non-probability sampling, 394
Normative ethics, 475
Not planning the analyses, 407
Null hypothesis, 157
Numerical approach, 279

O
Object, 92
Object-Oriented Programming (OOP), 91
Observation, 387
Observation stage, 250
Observer effect, 396
Obstacle avoidance, 234
Occupancy grid maps, 247
Octacopter, 220
Odometer, 12
Odometry, 187, 243
Off-policy, 464

Index 541

Omnidirectional wheels, 213
One by one, 218
One-way ANOVA, 168
On-policy, 464
Open-loop, 224
Operationalise, 385
Operators, 88
Operator swarm communication, 323
Operator-swarm Interaction, 324
Optical flow, 197
Ordinal variables, 402
Orientation, 138
Orientation singularity, 285
Overfitting, 445

P
Pairwise comparisons, 167
Parallel robot, 286
Parametric 3D modelling, 336
Parent-child reference, 342
Partially observable, 178
Passive, 180
Passive walker, 215
Perceptions, 379
P-hacking, 407
Phase-based technique, 200
Philon of Byzantium, 10
PID controller, 225
Pitch, 219
Planning, 120
Pneumatic actuators, 193
Point cloud, 119
Policy, 442
Policy search, 459
Polygon modelling, 335
Polymorphism, 92
Poor understanding of non-significant

results, 407
Population, 151, 393
Pose, 273
Position singularity, 285
Post-disciplinary, 30
Posture, 273
Power and force limitation, 427
Power and force limiting, 428
PPPP model, 478
Practice effects, 396
Precision, 181
Prediction stage, 250
Privacy by design, 482
Probabilistic path planning algorithms, 234
Probabilistic Roadmap (PRM), 234

Probability, 143
Probability density function, 147
Probability sampling, 394
Problem based learning, 55, 73
Program evaluation, 387
Programmable automaton, 12
Programming primitives in Buzz, 318
Project based assessment, 51
Proportional control, 226
Proprioceptive, 180
Pseudocode, 86
Pulse Width Modulated (PWM), 225
Purposive sampling, 394
P-value, 157
Python, 86

Q
Q-learning, 463
Quadcopter, 220
Qualitative data, 401
Quaternion, 141
Quatitative data, 402
Q-value, 462

R
Random assignment, 389
Random errors, 180
Random Sample Consensus (RANSAC),

The, 195
Range, 403
Ratio variables, 402
Reactivity, 396
Reading a technical drawing, 349
Real world swarm systems, 321
Recurrent neural network, 456
References, 341, 342
Referencing, 340
Reflective learning, 52
Region growth method, 197
Regressor, 442
Reinforcement learning, 442
Relational operators, 88
Relevance-sensitivity trade-off, 385
Reliability, 394
Replication, 34
Researchers-creators, 30
Resolution, 181
Responsible research and innovation, 486
Reviews, 392
RGB-D sensors, 185
RIA TR R15.306, 423
Right-hand rule, 132

542 Index

Risk assessment, 421, 429, 433
Risk estimation, 423
Risk mitigation, 424, 429, 433
Risks, 399
Robot, 5
Robot gait, 215
Robotic artists, 29
Robotics is hard, 31
Robotic swarms, 307
Robot localisation problem, 241
Robot mapping problem, 246
Roll, 219
ROS2, 112
Rosbags, 117
ROS folder, 109
ROS launch, 116
Rosrun, 116
Rotary encoders, 187
Rotation, 138
Rule of addition, 144
Rule of multiplication, 145
Rule of subtraction, 143
R. U. R., 4
Rush into conducting analyses without

understanding the data, 407
RViz, 117

S
Safety, 379
Safety-rated monitored stop, 428
Sample, 151, 393
Sampling bias, 395
Scalar product, 131
Scientific method, 381
Secondary sources, 392
Secure code, 93
Selective-Compliance Assembly Robot

Arm (SCARA), 268
Selective Laser Melting (SLM), 353
Selective Laser Sintering (SLS), 353
Self-building, 33
Self-healing, 34
Semantic maps, 248
Sense, Think, Act, 177
Sensitivity, 181
Senster, 27
Serial manipulator, 268
Serial robot, 268
Service, 114
Servo motor, 191
Setpoint, 225
Shakey, 25

Simple effects, 169
Simulator, 121
Simultaneous Localisation and Mapping

(SLAM), 248
Single-blind, 397
Singularity, 284, 289
Singular matrix, 135
Situated communication, 316
Situated learning, 48
Social desirability, 396
Sonar, 182
Speed and separation monitoring, 428
Spherical wrist, 277
Spot’s Rampage, 30
Stance phase, 218
Standard, 416
Standard deviation, 154, 403
Standard error, 156
Standardisation, 148
Stanford Cart, 25
State, 178
State estimation problem, 249
State space, 178
Statically stable gait, 217
Static environment, 246
Statistical significance, 158
Statistics, 150
Steady state, 225
Stelarc, 29
Stepper motor, 192
Step wise execution model, 316
Stereo camera, 184
Stereolithography (SLA), 354
Strings, 88
Sum of squares, 154
Supervised learning, 441
Surveys, 387, 388
Survival Research Laboratories, 30
Swarm programming, 313
Swarm states, 308
Syntax errors, 92
Systematic errors, 180
Systematic reviews, 392
Szajner, 28

T
T-distribution, 163
Technical drawing orthographic

projections, 349
Technical drawings, 344
Technical drawing scales, 349
Technical drawing sheet sizes, 347

Index 543

Technical drawing sheet structure, 346
Technical drawing standards, 344
Technological determinism, 477
Technological neutrality, 476
Technological phase, 480
Testable, 382
Testing effects, 396
Test statistic, 160
TF, 117
Theory, 381
Think, 189
Topic, 114
Tortoises, 25
Tracking problem, 242
Training, 440
Transformation matrix, 137
Transrobotics, 32
Triangulation, 244
Tricopter, 220
Tricycle model, 209
Tripod gait, 218
Trotting gait, 217
TurtleBot, 25
Twist, 282, 284
Two-legged robots, 215
Two-way ANOVA, 169
Type-I error, 158
Type-II error, 158

U
Unimate, 22
Unimation, 23
Unmanned aerial vehicles, 432
Unobtrusive measures, 397
Unsupervised learning, 442
Update Stage, 251

V
Validity, 395
Value Sensitive Design (VSD), 479
Variable, 383
Variance, 155
Variance sum law, 164
Vaucanson, 15
Vector, 129

cross product, 131
dot product, 131

Vector field histogram, 235
Version control, 96
Virtual Reality (VR), 351
Virtue ethics, 476
Visual Odometry (VO), 200, 244
Voting, 306

W
Walking robots, 214
Wheeled robots, 208
Wieirstrass substitution, 277
William Grey Walter, 24
Willow Garage, 107
Within-subjects design, 389
Workshop, 355
Wrench, 282
Wrist-partitioned manipulator, 274
Wyrobek, 107

Y
Yaw, 219
You Only Look Once (YOLO), 119

Z
Z-scores, 148

	Foreword by Ken Goldberg
	Foreword by Sue Keay
	Preface
	Acknowledgements
	Contents
	Editors and Contributors
	Part I Contextual Design
	1 Genealogy of Artificial Beings: From Ancient Automata to Modern Robotics
	1.1 What is a Robot?
	1.2 A Mythical Origin
	1.3 Early Automata
	1.4 Anatomical Analogies: Understanding Through Replication
	1.4.1 Leonardo Da Vinci
	1.4.2 The Canard Digérateur, the Writer, the Musician and the Drawer
	1.4.3 Babbage and the Computer-Robot Schism

	1.5 Industrial (R)evolutions
	1.6 Modern Robotics
	1.6.1 Coping with the Unknown
	1.6.2 Robots in Arts and Research–Creation

	1.7 Social Robotics
	1.8 Robotic Futures and Transrobotics
	References

	2 Teaching and Learning Robotics: A Pedagogical Perspective
	2.1 Learning Objectives
	2.2 Introduction
	2.3 Defining the Body of Knowledge of the Robotics Field
	2.4 Review of Research on Pedagogies and Practices in Robotics Education
	2.4.1 Adaptation of Content from Different Disciplines
	2.4.2 Constructivist Approaches to Learning
	2.4.3 Situated Learning Methodology
	2.4.4 Flipped Classroom
	2.4.5 Gamification
	2.4.6 Online Interactive Tools

	2.5 Assessment Practices
	2.5.1 Collaborative and Individual Project-Based Assessment
	2.5.2 Competition-Based Assessment
	2.5.3 Reflective Learning

	2.6 Paving the Way for Innovative Pedagogies and Assessment in Robotics Education
	2.7 Chapter Summary
	2.8 Quiz
	References

	3 Design Thinking: From Empathy to Evaluation
	3.1 Learning Objectives
	3.2 Introduction
	3.2.1 What Is Design Thinking
	3.2.2 Design Thinking Models (Double Diamond Model, IDEO Design Thinking and d.school Methods)
	3.2.3 Design 1.0–4.0 and Its Alignment with Robotics

	3.3 Design Thinking Process: Discover, Define, Develop and Deliver
	3.3.1 What Is the Discover Mode, Why Empathise and How
	3.3.2 What Is the Define Mode, Why Ideate and How
	3.3.3 What Is the Develop Mode, Why Ideate and Prototype and How
	3.3.4 What Is the Deliver Mode, Why and How

	3.4 Conclusion
	3.5 Quiz
	References

	4 Software Building Blocks: From Python to Version Control
	4.1 Learning Objectives
	4.2 Introduction
	4.2.1 Thinking About Coding

	4.3 Python and Basics of Programming
	4.3.1 Variables, Strings and Assignment Statements
	4.3.2 Relational and Logical Operators
	4.3.3 Decision Structures
	4.3.4 Loops
	4.3.5 Functions
	4.3.6 Callback Function

	4.4 Object-Oriented Programming
	4.5 Error Handling
	4.6 Secure Coding
	4.7 Case Study—Writing Your First Program in Python
	4.7.1 A Note on Migrating from MATLAB® to Python

	4.8 Version Control Basics
	4.8.1 Git

	4.9 Containerising Applications
	4.10 Chapter Summary
	4.11 Revision Questions
	4.12 Further Reading
	References

	5 The Robot Operating System (ROS1&2): Programming Paradigms and Deployment
	5.1 Learning Objectives
	5.2 Introduction
	5.3 Why ROS?
	5.4 What Is ROS?
	5.4.1 ROS1&2: ROSCore Versus DDS
	5.4.2 ROS Industrial

	5.5 Key Features from the Core
	5.5.1 Communication Protocols
	5.5.2 Launch and Run
	5.5.3 ROS Bags
	5.5.4 Transforms and Visualization

	5.6 Additional Useful Features
	5.6.1 ROS Perception and Hardware Drivers
	5.6.2 ROS Navigation and MoveIt!
	5.6.3 Gazebo Simulator

	5.7 Linux for Robotics
	5.8 Chapter Summary
	5.9 Revision Questions
	5.10 Further Reading
	References

	6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian
	6.1 Learning Objectives
	6.2 Introduction
	6.3 Basic Geometry and Linear Algebra
	6.3.1 Coordinate Systems
	6.3.2 Vector/Matrix Representation
	6.3.3 Basic Vector/Matrix Operations

	6.4 Geometric Transformations
	6.4.1 Basic Transformations
	6.4.2 2D/3D Rotations
	6.4.3 Quaternion
	6.4.4 Homogeneous Transformation Matrices

	6.5 Basic Probability
	6.5.1 Likelihood
	6.5.2 Bayes' Theorem
	6.5.3 Gaussian Distribution

	6.6 Derivatives
	6.6.1 Taylor Series
	6.6.2 Jacobian

	6.7 Basic Statistics
	6.7.1 Variance
	6.7.2 General Population and Samples
	6.7.3 The Null Hypothesis
	6.7.4 The General Linear Model
	6.7.5 T-test
	6.7.6 ANOVA

	6.8 Chapter Summary
	6.9 Revision Questions
	6.10 Further Reading
	References

	Part II Embedded Design
	7 What Makes Robots? Sensors, Actuators, and Algorithms
	7.1 Learning Objectives
	7.2 Introduction
	7.3 Sense: Sensing the World with Sensors
	7.3.1 Typical Sensor Characteristics
	7.3.2 Common Sensors in Robotics

	7.4 Think: Algorithms
	7.5 Act: Moving About with Actuators
	7.5.1 Common Actuators in Robotics

	7.6 Computer Vision in Robotics
	7.6.1 Plane Detection
	7.6.2 Optical Flow
	7.6.3 Visual Odometry

	7.7 Review Questions
	7.8 Further Reading
	References

	8 How to Move? Control, Navigation and Path Planning for Mobile Robots
	8.1 Learning Objectives
	8.2 Introduction
	8.3 Mobile Robots
	8.3.1 Wheeled Robots
	8.3.2 Walking Robots
	8.3.3 Flying Robots

	8.4 Controlling Robots
	8.4.1 PID Controllers
	8.4.2 Fuzzy Logic Controllers

	8.5 Path Planning
	8.5.1 Heuristic Path Planning Algorithms
	8.5.2 Probabilistic Path Planning Algorithms

	8.6 Obstacle Avoidance
	8.6.1 Bug Algorithm
	8.6.2 The Vector Field Histogram (VFH)

	8.7 Chapter Summary
	8.8 Review Questions
	8.9 Further Reading
	References

	9 Lost in Space! Localisation and Mapping
	9.1 Learning Objectives
	9.2 Introduction
	9.3 Robot Localisation Problem
	9.3.1 Odometry-Based Localisation
	9.3.2 IMU-Based Odometry
	9.3.3 Visual Odometry
	9.3.4 Map-Based Localisation

	9.4 The Robot Mapping Problem
	9.4.1 Occupancy Grid Maps
	9.4.2 Other Types of Maps

	9.5 The Simultaneous Localisation and Mapping (SLAM) Problem
	9.5.1 An Estimation Theoretic Approach to the Localisation, Mapping and SLAM Problems

	9.6 The Kalman Filter
	9.6.1 Linear Discrete-Time Kalman Filter
	9.6.2 The Extended Kalman Filter (EKF)
	9.6.3 Data Association

	9.7 A Case Study: Robot Localisation Using the Extended Kalman Filter
	9.7.1 Assumptions
	9.7.2 Derivation of the EKF-Based Localisation Algorithm

	9.8 Summary
	9.9 Review Questions
	9.10 Further Reading
	References

	10 How to Manipulate? Kinematics, Dynamics and Architecture of Robot Arms
	Learning Objectives
	Introduction
	Architectures
	Kinematics of Serial Manipulators
	Direct Kinematics
	Denavit-Hartenberg Convention
	Inverse Kinematics
	Jacobian
	Singularities

	Kinematics of Parallel Manipulators
	Direct and Inverse Kinematics
	Jacobians
	Singularities

	Dynamics
	Euler-Lagrange
	Newton-Euler

	Chapter Summary
	Revision Questions
	Further Reading
	References

	11 Get Together! Multi-robot Systems: Bio-Inspired Concepts and Deployment Challenges
	11.1 Objectives of the Chapter
	11.2 Introduction
	11.3 Types of Multi-robot Systems
	11.3.1 Centralized Multi-robot System
	11.3.2 Distributed Multi-robot System
	11.3.3 Decentralized Multi-robot System

	11.4 Swarm Programming
	11.4.1 Swarm Programming Languages
	11.4.2 Programming in Buzz

	11.5 Deployment of Real-World Swarm Systems
	11.5.1 Human Swarm Interaction
	11.5.2 Data Management, Communication and Mobility
	11.5.3 Fault Handling

	11.6 Chapter Summary
	11.7 Chapter Revision
	11.8 Further Reading
	References

	12 The Embedded Design Process: CAD/CAM and Prototyping
	12.1 Learning Objectives
	12.2 Introduction
	12.3 The Design Process and CAD
	12.4 The Design Process Versus Design Thinking
	12.5 Cad Systems
	12.6 CAD File Types
	12.7 CAD Parametric Modelling—Assembly and Part Files
	12.8 CAD Parametric Modelling—Drawing Files
	12.9 CAD File Transfer
	12.10 VR and AR for CAD
	12.11 CAM and CNC
	12.12 Workshop
	12.13 Case study- Hexapod Robot Project
	12.14 Revision Questions
	References

	Part III Interaction Design
	13 Social Robots: Principles of Interaction Design and User Studies
	13.1 Learning Objectives
	13.2 Introduction
	13.3 Cobots, Social Robots and Human–Robot Interaction
	13.4 Why Conduct Research?
	13.4.1 Motivation for the Research
	13.4.2 Target Audience
	13.4.3 Research Questions

	13.5 Deciding on Your Research Variables
	13.5.1 Variables
	13.5.2 Operationalisation
	13.5.3 Relevance-Sensitivity Trade-Off
	13.5.4 Research Designs
	13.5.5 Descriptive Research
	13.5.6 Correlational Research
	13.5.7 Experimental Research
	13.5.8 Between-Subjects and Within-Subjects Designs
	13.5.9 Random Assignment
	13.5.10 Reviews and Meta-Analyses
	13.5.11 Which Research Design Is Best?

	13.6 Sampling, Reliability and Validity
	13.6.1 Sampling
	13.6.2 Reliability
	13.6.3 Validity
	13.6.4 Things that Can Go Wrong with Validity
	13.6.5 Ways to Address Problems with Validity

	13.7 Ethics
	13.7.1 Ethics and Ethics Review Boards
	13.7.2 Ethical Principles in Research
	13.7.3 Data, Analysis and Interpretation
	13.7.4 Common Mistakes and Pitfalls

	13.8 Chapter Summary
	13.9 Revision Questions
	References

	14 Safety First: On the Safe Deployment of Robotic Systems
	14.1 Learning Objectives
	14.2 Introduction
	14.2.1 Terms and Definitions
	14.2.2 Challenges with the Safe Deployment of Robotic Systems

	14.3 Standards
	14.3.1 Organizations
	14.3.2 Classification and Relevant Technical Specifications/Standards

	14.4 Industrial Risk Assessment and Mitigation
	14.4.1 Risk Assessment
	14.4.2 Risk Mitigation
	14.4.3 Integration, Validation and Monitoring

	14.5 Cobots
	14.5.1 Human-Robot Collaboration
	14.5.2 Types of Collaborative Operation Methods
	14.5.3 Hazards Inherent to Cobots
	14.5.4 Risk Assessment and Mitigation Measures for Collaborative Applications

	14.6 Mobile Robots
	14.6.1 Hazards Inherent to Mobile Robots
	14.6.2 UAV Operations
	14.6.3 Battery Hazards
	14.6.4 Risk Assessment and Mitigation Measures for Mobile Robots

	14.7 Chapter Summary
	14.8 Revision Questions
	14.9 Further Reading
	References

	15 Managing the World Complexity: From Linear Regression to Deep Learning
	15.1 Objectives of the Chapter
	15.2 Introduction
	15.3 Definitions
	15.4 From Linear Regression to Deep Learning
	15.4.1 Loss Optimization
	15.4.2 Linear Regression
	15.4.3 Training Generalizable Models
	15.4.4 Deep Neural Networks
	15.4.5 Gradient Back-Propagation in Deep Neural Networks
	15.4.6 Convolutional Neural Networks
	15.4.7 Recurrent Neural Networks
	15.4.8 Deep Learning for Practical Applications

	15.5 Policy Search for Robotic Control
	15.5.1 Limitations of Supervised Learning for Control
	15.5.2 Deep Reinforcement Learning
	15.5.3 Improvements of Deep Q-Learning
	15.5.4 Deep Reinforcement Learning for Practical Applications

	15.6 Wrapping It Up: How to Deeply Understand the World
	15.7 Summary
	15.8 Quiz
	15.9 Further Reading
	References

	16 Robot Ethics: Ethical Design Considerations
	16.1 Learning Objectives
	16.2 Introduction
	16.3 Ethics
	16.3.1 Normative Ethics
	16.3.2 Consequentialism
	16.3.3 Deontology
	16.3.4 Virtue Ethics

	16.4 The Non-Neutrality of Technology
	16.4.1 Dual-Use

	16.5 Technological Determinism and Multiple Futures
	16.6 Human Values in Design
	16.7 Value Sensitive Design
	16.7.1 Conceptual Phase
	16.7.2 Empirical Phase
	16.7.3 Technological Phase
	16.7.4 Contextual Design

	16.8 Ethics Tools
	16.8.1 Checklists
	16.8.2 Standards
	16.8.3 Design Principles
	16.8.4 Ethical Frameworks

	16.9 Case Study: VSD of a Danish Healthcare Drone
	16.10 Responsible Research and Innovation
	16.10.1 AIRR Framework

	16.11 Chapter Summary
	16.12 Revision Questions
	References

	Part IV Projects
	17 Robot Hexapod Build Labs
	17.1 Introduction
	17.2 Project One: Defining the Robot System
	17.2.1 Project Objectives
	17.2.2 Project Description
	17.2.3 Project Tasks

	17.3 Project Two: Modelling the Position Kinematics
	17.3.1 Project Objectives
	17.3.2 Project Description
	17.3.3 Project Tasks
	17.3.4 Case Study Example

	17.4 Project Three: Modelling the Velocity Kinematics with Python
	17.4.1 Project Objectives
	17.4.2 Project Description
	17.4.3 Project Tasks
	17.4.4 Case Study Example

	17.5 Project Four: Building Communication Protocols
	17.5.1 Project Objectives
	17.5.2 Project Description
	17.5.3 Project Tasks

	17.6 Some Final Thoughts
	References

	18 Deployment of Advanced Robotic Solutions: The ROS Mobile Manipulator Laboratories
	18.1 Introduction
	18.1.1 Dingo and Gen3 Lite
	18.1.2 Recommended Tools and Base Skill Set Required

	18.2 Project 1: Discovering ROS and the Dingo
	18.2.1 Project Objectives
	18.2.2 Project Description
	18.2.3 First Task: Manual Control in Simulation
	18.2.4 First Task: Manual Control in Reality
	18.2.5 Second Task: Inverse Kinematics
	18.2.6 Third Task: Simulation Versus Reality

	18.3 Project 2: Kalman for Differential Drive
	18.3.1 Project Objectives
	18.3.2 Project Description
	18.3.3 First Task: Extract Encoders Information (Notebook Project2_1)
	18.3.4 Second Task: Estimate the Sensor’s Noise (CSV_Analyse)
	18.3.5 Third Task: Design a Kalman Filter (Project2_2)
	18.3.6 Fourth Task: Design Justification and Validation

	18.4 Project 3: 3-DoF Kinematics
	18.4.1 Project Objectives
	18.4.2 Project Description
	18.4.3 First Task: Denavit–Hartenberg Table
	18.4.4 Second Task: Transformation Matrices
	18.4.5 Third Task: Inverse Kinematics
	18.4.6 Fourth Task: Validation

	18.5 Project 4: Let’s Bring It Back Together!
	18.5.1 Project Objectives
	18.5.2 Project Description
	18.5.3 First Task: Teleoperation
	18.5.4 Second Task: Hit a Marker!
	18.5.5 Third Task: Grasping
	18.5.6 Fourth Task: Risk Assessment

	18.6 Project 5: Save the Day!
	18.6.1 Project Objectives
	18.6.2 Project Description
	18.6.3 First Task: Autonomous Navigation
	18.6.4 Second Task: User Interface
	18.6.5 Third Task: Ergonomy Study

	Index

