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SECTION 1

Impedance measurement basics

1-1. Impedance

Impedance is an important parameter used to characterize electronic circuits, components, and
the materials used to make components.  Impedance (Z) is generally defined as the total opposi-
tion a device or circuit offers to the flow of an alternating current (AC) at a given frequency, and
is represented as a complex quantity which is graphically shown on a vector plane.  An impedance
vector consists of a real part (resistance, R) and an imaginary part (reactance, X) as shown in
Figure 1-1. Impedance can be expressed using the rectangular-coordinate form R+jX or in the
polar form as a magnitude and phase angle:  |Z|∠θ .  Figure 1 also shows the mathematical rela-
tionship between R, X, |Z| and θ.  In some cases, using the reciprocal of impedance is mathemati-
cally expedient.  In which case 1/Z= 1/(R+jX)= Y= G+jB, where Y represents admittance, G con-
ductance, and B susceptance.  The unit of impedance is the ohm (Ω), and admittance is the
siemen (S).  Impedance is a commonly used parameter and is especially useful for representing a
series connection of resistance and reactance, because it can be expressed simply as a sum, R and
X.  For a parallel connection, it is better to use admittance (see Figure 1-2).

Figure 1-1. Impedance (Z) consists of a real part (R) and an imaginary part (X)

Figure 1-2. Expression of series and parallel combination of real and imaginary components
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Reactance takes two forms - inductive (XL) and capacitive (Xc).  By definition, XL=2πfL and
Xc=1/(2πfC), where f is the frequency of interest, L is inductance, and C is capacitance.  2πf can be
substituted for by the angular frequency (ω:omega) to represent XL=ωL and Xc=1/(ωC).  Refer to
Figure 1-3.

Figure 1-3. Reactance in two forms - inductive (XL) and capacitive (Xc)

A similar reciprocal relationship applies to susceptance and admittance.  Figure 1-4 shows a typi-
cal representation for a resistance and a reactance connected in series or in parallel.

The quality factor (Q) serves as a measure of a reactance’s purity (how close it is to being a pure
reactance, no resistance), and is defined as the ratio of the energy stored in a component to the
energy dissipated by the component.  Q is a dimensionless unit and is expressed as Q=X/R=B/G.
From Figure 1-4, you can see that Q is the tangent of the angle θ.  Q is commonly applied to
inductors; for capacitors the term more often used to express purity is dissipation factor (D).  This
quantity is simply the reciprocal of Q, it is the tangent of the complementary angle of θ, the angle
δ shown in Figure 1-4 (d).

Figure 1-4. Relationships between impedance and admittance parameters

1-2



1-2. Measuring impedance

To find the impedance, we need to measure at least two values because impedance is a complex
quantity.  Many modern impedance measuring instruments measure the real and the imaginary
parts of an impedance vector and then convert them into the desired parameters such as |Z|, θ,
|Y|, R, X, G, B.  It is only necessary to connect the unknown component, circuit, or material to
the instrument.  However, sometimes the instrument will display an unexpected result (too high
or too low).  One possible cause of this problem is incorrect measurement technique, or the natur-
al behavior of the unknown device.  In this section, we will focus on the traditional passive compo-
nents and discuss their natural behavior in the real-world as compared to their idealistic behav-
ior.

1-3. Parasitics: There are no pure R, C or L

All circuit components are neither purely resistive nor purely reactive, they are a combination of
these impedance elements.  The result is, all real-world devices have parasitics - unwanted induc-
tance in resistors, unwanted resistance in capacitors, unwanted capacitance in inductors, etc.  Of
course, different materials and manufacturing technologies produce varying amounts of para-
sitics, affecting both a component’s usefulness and the accuracy with which you can determine its
resistance, capacitance, or inductance.  A real-world component contains many parasitics.  With
the combination of a component’s primary element and parasitics, a component will be like a com-
plex circuit, if it is represented by electrical symbols as shown in Figure 1-5.

Figure 1-5. Component (capacitor) with parasitics represented by an electrical equivalent circuit

1-3



1-4. True, effective, and indicated values

A thorough understanding of true, effective, and indicated values of a component, as well as their
significance to component measurements, is essential before you proceed with making practical
measurements.

➣ A true value is the value of a circuit component (resistor, inductor or capacitor) that excludes
the defects of its parasitics.  In many cases, the true value can be defined by a mathematical
relationship involving the component’s physical composition.  In the real-world, true values
are only of academic interest (Figure 1-6 (a)).

➣ The effective value takes into consideration the effects of a component’s parasitics.  The effec-
tive value is the algebraic sum of the circuit component’s real and reactive vectors; thus, it is
frequency dependent (Figure 1-6 (b)).

➣ The indicated value is the value obtained with and displayed by the measurement instru-
ment; it reflects the instrument’s inherent losses and inaccuracies.  Indicated values always
contain errors when compared to true or effective values.  They also vary intrinsically from
one measurement to another; their differences depend on a multitude of considerations.
Comparing how closely an indicated value agrees with the effective value under a defined set
of measurement conditions lets you judge the measurement’s quality (Figure 1-6 (c)).

The effective value is what we want to know, and the goal of measurement is to have the indicat-
ed value to be as close as possible to the effective value.

Figure 1-6. True, effective, and indicated values
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1-5. Component dependency factors

The measured impedance value of a component depends on several measurement conditions, such
as frequency, test signal level, and so on.  Effects of these component dependency factors are dif-
ferent for different types of materials used in the component, and by the manufacturing process
used.  The following are typical dependency factors that affect measurement results.

Frequency:

Frequency dependency is common to all real-world components because of the existence of para-
sitics.  Not all parasitics affect the measurement, but some prominent parasitics determine the
component’s frequency characteristics.  The prominent parasitics will be different when the
impedance value of the primary element is not the same.  Figures 1-7 through 1-9 shows the typi-
cal frequency response for real-world resistors, inductors, and capacitors.

Figure 1-7. Resistor frequency response

Figure 1-8. Inductor frequency response
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Figure 1-9. Capacitor frequency response

Test signal level:

The test signal (AC) applied may affect the measurement result for some components.  For exam-
ple, ceramic capacitors are test signal voltage dependent as shown in Figure 1-10 (a).  This depen-
dency varies depending on the dielectric constant (K) of the material used to make the ceramic
capacitor.

Cored-inductors are test signal current dependent due to the electromagnetic hysteresis of the
core material.  Typical AC current characteristics are shown in Figure 1-10 (b).

Figure 1-10. Test signal level (AC) dependencies of ceramic capacitors and cored-inductors

DC bias:

DC bias dependency is very common in semiconductor components such as diodes and transistors.
Some passive components are also DC bias dependent.  The capacitance of a high-K type dielectric
ceramic capacitor will vary depending on the DC bias voltage applied, as shown in Figure 1-11 (a).

In the case of cored-inductors, the inductance varies according to the DC bias current flowing
through the coil.  This is due to the magnetic flux saturation characteristics of the core material.
Refer to Figure 11 (b).

1-6



Figure 1-11. DC bias dependencies of ceramic capacitors and cored-inductors

Temperature:

Most types of components are temperature dependent.  The temperature coefficient is an impor-
tant specification for resistors, inductors and capacitors.  Figure 1-12 shows some typical temper-
ature dependencies that affect ceramic capacitors with different dielectrics.

Other dependency factors:

Other physical and electrical environments, e.g., humidity, magnetic fields, light, atmosphere,
vibration, and time may change the impedance value.  For example, the capacitance of a high-K
type dielectric ceramic capacitors decreases with age as shown in Figure 1-13.

1-7
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SECTION 2

Impedance measurement instruments

2-1. Measurement methods

There are many measurement methods to choose from when measuring impedance, each of which
has advantages and disadvantages.  You must consider your measurement requirements and con-
ditions, and then choose the most appropriate method, while considering such factors as frequen-
cy coverage, measurement range, measurement accuracy, and ease of operation.  Your choice will
require you to make tradeoffs as there is not a single measurement method that includes all mea-
surement capabilities.  Figure 2-1 shows six commonly used impedance measurement methods,
from low frequencies up to the microwave region.  Table 2-1 lists the advantages and disadvan-
tages of each measurement method, the corresponding Agilent typical instruments, their applica-
ble frequency range, and the typical applications for each method.  Considering only measure-
ment accuracy and ease of operation, the auto balancing bridge method is the best choice for mea-
surements up to 110 MHz.  For measurements from 100 MHz to 3 GHz, the RF I-V method has
the best measurement capability, and from 3 GHz and up the network analysis is the recommend-
ed technique.

2-1

Figure 2-1. Impedance measurement method (1 of 3)

When a circuit is adjusted to resonance by adjusting a tun-
ing capacitor C, the unknown impedance Lx and Rx values
are obtained from the test frequency, C value, and Q value.
Q is measured directly using a voltmeter placed across the
tuning capacitor.  Because the loss of the measurement
circuit is very low, Q values as high as 1000 can be mea-
sured.  Other than the direct connection shown here, series
and parallel connections are available for a wide range of
impedance measurements.

Bridge method

Resonant method

When no current flows through the detector (D), the value of
the unknown impedance Zx can be obtained by the relationship
of the other bridge elements.  Various types of bridge circuits,
employing combinations of L, C, and R components as the
bridge elements, are used for various applications.
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While the RF I-V measurement method is based on
the same principle as the I-V method, it is config-
ured in a different way by using an impedance
matched measurement circuit (50 Ω) and a preci-
sion coaxial test port for operation at higher fre-
quencies.  There are two types of the voltmeter and
current meter arrangements; which are suited to low
impedance and high impedance measurements.
Impedance of the device under test (DUT) is derived
from measured voltage and current values, as illus-
trated.  The current that flows through the DUT is
calculated from the voltage measurement across a
known low value resistor, R.  In practice, a low loss
transformer is used in place of the low value resis-
tor, R.  The transformer limits the low end of the
applicable frequency range.

An unknown impedance Zx can be calculated from mea-
sured voltage and current values.  Current is calculated
using the voltage measurement across an accurately
known low value resistor, R.  In practice a low-loss trans-
former is used in place of R to prevent the effects caused
by placing a low value resistor in the circuit.  The trans-
former, however, limits the low end of the applicable fre-
quency range.

The reflection coefficient is obtained by measuring
the ratio of an incident signal to the reflected signal.
A directional coupler or bridge is used to detect the
reflected signal and a network analyzer is used to
supply and measure the signals.  Since this method
measures reflection at the DUT, it is usable in the
higher frequency range.

I-V method

RF I-V method

Network analysis method

Figure 2-1. Impedance measurement method (2 of 3)



Figure 2-1. Impedance measurement method (3 of 3)
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The current, flowing through the DUT, also flows through resistor
R.  The potential at the “L” point is maintained at zero volts (thus
called a “virtual ground”), because the current through R bal-
ances with the DUT current by operation of the I-V converter
amplifier.  The DUT impedance is calculated using voltage mea-
surement at High terminal and that across R.

Note: In practice, the configuration of the auto balancing bridge
differs for each type of instrument.
Generally LCR meters, in a low frequency range typically
below 100 kHz, employ a simple operational amplifier for
its I-V converter.  This type of instrument has a disadvan-
tage in accuracy, at high frequencies, because of perfor-
mance limits of the amplifier.  Wideband LCR meters and
impedance analyzers employ the I-V converter consisting
of sophisticated null detector, phase detector, integrator
(loop filter) and vector modulator to ensure a high accura-
cy for a broad frequency range over 1 MHz.  This type of
instrument can attain to a maximum frequency of 110 MHz.

Auto balancing bridge method



Table 2-1. Common impedance measurement methods

Note: Agilent Technologies currently offers no instruments for the bridge method and the resonant method shaded in the

above table.

2-4

Advantages Disadvantages Applicable Typical Agilent Common 
frequency products application
range

Bridge High accuracy (0.1%typ.). Need to be manually DC to None Standard
method Wide frequency balanced. 300 MHz lab

coverage by using Narrow frequency
different types of coverage with a
bridges. single instrument.
Low cost.

Resonant Good Q accuracy up to Need to be tuned to 10 kHz to None High Q
method high Q. resonance. 70 MHz device 

Low impedance measurement.
measurement accuracy.

I-V Grounded device Operating frequency 10 kHz to None Grounded 
method measurement. range is limited by 100 MHz device

Suitable to probe transformer used in measurement.
type test needs. probe.

RF I-V High accuracy (1% Operating frequency 1 MHz to 4287A RF 
method typ.) and wide range is limited by 3 GHz 4395A+43961A component

impedance range at high transformer used in 4396B+43961A measurement.
frequencies. test head. E4991A

Network High frequency Recalibration required 300 kHz 8753E RF
analysis Range. when the measurement and 4395A component
method Good accuracy when frequency is changed. above measurement.

the unknown Narrow impedance
impedance is close to measurement range.
the characteristic
impedance

Auto Wide frequency Higher frequency ranges 20 Hz to 4284A Generic 
balancing coverage from LF to HF. not available. 110 MHz 4294A component
bridge High accuracy over 4294A+42941A measurement
method a wide impedance (*1)

measurement range. 4294A+42942A (*1) Grounded
Grounded device (*1) device
measurement measurement



2-2. Operating theory of practical instruments

The operating theory and key functions of the auto balancing bridge instrument are discussed in
the paragraphs 2-3 through 2-4-8.  A discussion of the RF I-V instrument is described in para-
graphs 2-5 through 2-7-6.

2-3. Theory of auto balancing bridge method

The auto balancing bridge method is commonly used in modern LF impedance measurement
instruments.  Its operational frequency range has been extended up to 110 MHz.  A detailed dis-
cussion of the operating theory of a practical instrument using Agilent 4294A precision impedance
analyzer as an example will now be discussed.  Table 2-2 lists the 4294A’s key specifications, and
Figure 2-2 shows the simplified block diagram of the 4294A analog section.

Table 2-2. Agilent 4294A precision impedance analyzer key specifications

Figure 2-2. Simplified analog-section block diagram for the Agilent 4294A precision 

impedance analyzer

2-5

Test signal Frequency: 40 Hz to 110 MHz, 1 mHz resolution
Signal level: 5 mV to 1 V rms

Impedance measurement |Z|, |Y|, θ, R, X, G, B, L, C, D, Q
parameters

Impedance measurement 3 mΩ to 500 MΩ
range

Basic measurement 0.08% of reading
accuracy

Display Color graphic display, 6 digits

DC bias 0 V to ±40 V, 0 mA to ±100 mA



The measurement circuit is functionally divided into following three sections.

The signal source section generates the test signal applied to the unknown device.  The frequen-
cy of the test signal (fm) is variable from 40 Hz to 110 MHz, and the maximum frequency resolu-
tion is 1 mHz.  A microprocessor controlled frequency synthesizer is employed to generate these
high-resolution test signals.  The output signal level, variable from 5 mV to 1 V, is adjusted using
an attenuator.  Figure 2-3 shows a diagram of the signal source section.  In addition to generating
the test signal which is fed to the DUT, the internally used reference signals are also generated in
this section.

The auto balancing bridge section balances the range resistor current with the DUT current to
maintain a zero potential at the low terminal.  Figure 2-4 (a) shows a simplified block diagram of
the bridge section.  The detector D detects potential at the low terminal and controls both magni-
tude and phase of the OSC2 output, so that the detected potential becomes zero.  The actual bal-
ancing operation is shown in Figure 2-4 (b).  When the bridge is “unbalanced”, the null detector
detects an error current and the phase detectors, at the next stage, separate it into 0° and 90° vec-
tor components.  The output signals of the phase detectors go through loop filters (integrators)
and are applied to the modulator to drive the 0° and 90° component signals.  The resultant signal
is amplified and fed back through range resistor Rr to cancel the current through the DUT, there-
fore no error current flows into the null detector.  This balancing operation is performed automat-
ically over the full frequency range of 40 Hz to 110 MHz.

The vector ratio detector section measures two vector voltages across the DUT (Edut) and range
resistor Rr (Err) series circuit (Figure 2-5).  Since the range resistor value is known, measuring
two voltages will give the impedance vector Zx of the DUT by Zx = Rr × (Edut/Err).  Selector S1
selects either the Edut or Err signal so that these signals alternately flow identical paths to elimi-
nate tracking errors between the two signals.  Each vector voltage is measured using an A to D
converter and separated into its 0° and 90° components by digital processing.

Figure 2-3. Signal source section block diagram
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Figure 2-4. Auto balancing bridge section block diagram

Figure 2-5. Vector ratio detector section block diagram
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2-4. Key measurement functions

The following discussion describes the key measurement functions for advanced impedance mea-
surement instruments.  Thoroughly understanding these measurement functions will eliminate
the confusion sometimes caused by the measurement results obtained.

2-4-1. OSC level

The oscillator output signal is output through the Hc terminal and can be varied to change the
test signal level applied to the DUT.  The specified output signal level, however, is not always
applied directly to the DUT.  In general, the specified OSC level is obtained when the High termi-
nal is open.  Since source resistor Rs is connected in series with the oscillator output, as shown in
Figure 2-6, there is a voltage drop across Rs.  So, when the DUT is connected, the applied voltage
Vx depends on the value of the Source resistor and the DUT’s impedance value, Zx.  This must
taken into consideration especially when measuring low values of impedance (low inductance or
high capacitance).  The OSC level should be set as high as possible to obtain a good S/N ratio for
the vector ratio detector section.  A high S/N ratio improves the accuracy and stability of the mea-
surement.  In some cases, however, the OSC level should be decreased, such as when measuring
cored-inductors, and when measuring semiconductor devices in which the OSC level is critical for
the measurement and to the device itself.

Figure 2-6. OSC level divided by source resistor (Rs) and DUT impedance (Zx)

2-8



2-4-2. DC bias

In addition to the AC test signal, a DC voltage can be output through the Hc terminal and applied
to the DUT.  A simplified output circuit, with a DC bias source, is shown in Figure 2-7.  Many of
the conventional impedance measurement instruments have a voltage bias function, which
assumes that almost no bias current flows (the DUT has a high resistance).  If the DUT’s DC
resistance is low, a bias current flows through the DUT and into the range resistor Rr, thereby
raising the DC potential of the virtual ground point.  Also the bias voltage is dropped at source
resistor Rs.  As a result, the specified bias voltage is not applied to the DUT and, in some cases, it
may cause measurement error.  This must be taken into consideration when a low resistivity
semiconductor device is measured.

The Agilent 4294A (and some other impedance analyzers) has advanced DC bias function that can
be set to either voltage source mode or current source mode.  Because the bias output is automati-
cally regulated according to the monitored bias voltage and current, the actual bias voltage or cur-
rent applied across the DUT is always maintained at the setting value regardless of the DUT’s
DC resistance.  The bias voltage or current can be regulated when the output is within the speci-
fied compliance range.

Inductors are conductive at DC.  Often a DC current dependency of inductance needs to be mea-
sured.  Generally the internal bias output current is not enough to bias the inductor at the
required current levels.  To apply a high DC bias current to the DUT, an external current bias
unit or adapter can be used with specific instruments.  The 42841A and its bias accessories are
available for high current bias measurements using the 4284A and 4285A precision LCR meters.

Figure 2-7. DC bias applied to DUT referenced to virtual ground
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2-4-3. Ranging function

To measure impedance from low values to high values, impedance measurement instruments
have several measurement ranges.  Generally, 7 to 10 measurement ranges are available and the
instrument can automatically select the appropriate measurement range according to the DUT’s
impedance.  Range changes are generally accomplished by changing gain multiplier of the vector
ratio detector, and by switching the range resistor (Figure 2-8 (a)).  This insures that the maxi-
mum signal level is fed into the A to D converter to give the highest S/N ratio for maximum mea-
surement accuracy.

The range boundary is generally specified at two points to give an overlap between adjacent
ranges.  Range changes occurs with hysteresis as shown in Figure 2-8 (b), to prevent frequent
range changes due to noise.

On any measurement range, the maximum accuracy is obtained when the measured impedance is
close to the full-scale value of the range being used.  Conversely, if the measured impedance is
much lower than the full-scale value of the range being used, the measurement accuracy will be
degraded.  This sometimes causes a discontinuity in the measurement values at the range bound-
ary.  When the range change occurs, the impedance curve will skip.  To prevent this, the imped-
ance range should be set manually to the range which measures higher impedance.

Figure 2-8. Ranging function
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2-4-4. Level monitor function

Monitoring the test signal voltage or current applied to the DUT is important for maintaining
accurate test conditions, especially when the DUT has a test signal level dependency.  The level
monitor function measures the actual signal level across the DUT.  As shown in Figure 2-9, the
test signal voltage is monitored at the High terminal and the test signal current is calculated
using the value of range resistor Rr and the voltage across it.

Instruments equipped with Auto Level Control (ALC) function can automatically maintain a con-
stant test signal level.  By comparing the monitored signal level with the test signal level setting
value, the ALC adjusts the oscillator output until the monitored level meets the setting value.
There are two ALC methods: analog and digital.  The analog type has an advantage in providing a
fast ALC response, whereas the digital type has an advantage in performing a stable ALC
response for a wide range of DUT impedance (capacitance and inductance.)

Figure 2-9. Test signal level monitor and ALC function

2-4-5. Measurement time and averaging

Achieving optimum measurement results depends upon measurement time, which may vary
according to the control settings of the instrument (frequency, IF bandwidth, etc.).  When select-
ing the measurement time modes, it is necessary to take some tradeoffs into consideration.
Speeding up measurement normally conflicts with the accuracy, resolution, and stability of mea-
surement results.
The measurement time is mainly determined by operating time (acquisition time) of the A-D con-
verter in the vector ratio detector.  To meet the desired measurement speed, modern impedance
measurement instruments use a high speed sampling A-D converter, in place of the previous tech-
nique which used a phase detector and a dual-slope A-D converter.  Measurement time is propor-
tional to the number of sampling points taken to convert the analog signal (Edut or Err) into digi-
tal data for each measurement cycle.  Selecting a longer measurement time results in taking a
greater number of sampling points for more digital data, thus improving measurement precision.
Theoretically, random noise (variance) in a measured value proportionately decreases inversely to
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the square root of the A-D converter operating time.
Averaging function calculates the mean value of measured parameters from the desired number
of measurements.  Averaging has the same effect on random noise reduction as that by using a
long measurement time.

Figure 2-10. Relationship of measurement time and precision

2-4-6. Compensation function

Impedance measurement instruments are calibrated at UNKNOWN terminals and, measurement
accuracy is specified at the calibrated reference plane.  However, an actual measurement cannot
be made directly at the calibration plane because the UNKNOWN terminals do not geometrically
fit to the shapes of components that are to be tested.  Various types of test fixtures and test leads
are utilized to ease connection of the DUT to the measurement terminals.  (The DUT is placed
across the test fixture’s terminals, not at the calibration plane.) As a result, a variety of error
sources (such as residual impedance, admittance, electrical length, etc.) are involved in the circuit
between the DUT and the UNKNOWN terminals.  The instrument’s compensation function elimi-
nates measurement errors due to these error sources.  Generally, the instruments have the fol-
lowing compensation functions:

• Open/short compensation or open/short/load compensation
• Cable length compensation

The open/short compensation function removes the effects of the test fixture’s residuals.  The
open/short/load compensation allows complicated errors to be removed where the open/short com-
pensation is not effective.  The cable length compensation offsets the error due to the test lead’s
transmission characteristics.
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The induced errors are dependent upon test frequency, test fixture, test leads, DUT connection
configuration, and surrounding conditions of the DUT.  Hence, the procedure to perform compen-
sation with actual measurement setup is a key technique to obtain accurate measurement results.
The compensation theory and practice are discussed comprehensively in Section 4.

2-4-7. Guarding

When in-circuit measurements are being performed or when one parameter of a three terminal
device is to be measured, for the targeted component, as shown in Figure 2-11 (a), the effects of
paralleled impedance can be reduced by using guarding techniques.  The guarding techniques can
also be utilized to reduce the outcome of stray capacitance when the measurements are affected
by the strays present between the measurement terminals or between the DUT terminals and a
closely located conductor.  (Refer to paragraph 3-5 for the methods of eliminating the stray capaci-
tance effects.)

The guard terminal is the circuit common of the auto balancing bridge and is connected to the
shields of the 4-terminal pair connectors.  The guard terminal is electrically different from the
ground terminal which is connected directly to the chassis (Figure 2-11 (b)).  When the guard is
properly connected as shown in Figure 2-11 (c), it reduces the test signal current but does not
affect the measurement of the DUT’s impedance Zx, because Zx is calculated using current Ix.
The details of the guard effects are described as follows.  The current I1, which flows through Z1,
does not flow into the ammeter.  As long as I1 does not cause a significant voltage drop of the
applied test signal, it scarcely influences on measurements.  The current I2, which is supposed to
flow through Z2, is small and negligible compared to Ix, because the internal resistance of the
ammeter (equivalent input impedance of the auto balancing bridge circuit) is very low in compari-
son to Z2.  In addition, the potential at the Low terminal of the bridge circuit, in the balanced con-
dition, is zero (virtual ground).  However, if Z2 is too low, the measurement will become unstable
because ammeter noise increases.

Note: In order to avoid possible bridge unbalance and not cause significant measurement errors, Z2 should not be lower

than certain impedance.  Minimum allowable value of Z2 depends on Zx, test cable length, test frequency and other

measurement conditions.

The actual guard connection is shown in Figure 2-11 (d).  The guard lead impedance Zg should be
as small as possible.  If Zg is not low enough, an error current will flow through the series circuit
of Z1 and Z2 and, it is parallel with Ix.
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Figure 2-11. Guarding techniques

2-4-8. Grounded device measurement capability

Grounded devices such as the input/output of an amplifier can be measured directly using the I-V
measurement method or the reflection coefficient measurement method (Figure 2-12 (a)).
However, it is difficult for an auto balancing bridge to measure low-grounded devices because the
measurement signal current bypasses the ammeter (Figure 2-12 (b)).  Measurement is possible
only when the chassis ground is isolated from the DUT’s ground.  (Note: The 4294A used with the
42941A or the 42942A will result in grounded measurements.)
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Figure 2-12. Low-grounded device measurement
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2-5. Theory of RF I-V measurement method

The RF I-V method featuring Agilent’s RF impedance analyzers and RF LCR meters is an
advanced technique to measure impedance parameters in the high frequency range, beyond the
frequency coverage of the auto balancing bridge method.  It provides better accuracy and wider
impedance range than the network analysis (reflection coefficient measurement) instruments can
offer.  This paragraph discusses the brief operating theory of the RF I-V method using a simpli-
fied block diagram as shown in Figure 2-13.

The signal source section generates an RF test signal applied to the unknown device and has a
variable frequency range from 1 MHz to 3 GHz (typical).  Generally, a frequency synthesizer is
used to meet frequency accuracy, resolution and sweep function needs.  The amplitude of signal
source output is adjusted for the desired test level by the output attenuator.

The test head section is configured with a current detection transformer, V/I multiplexer, and
test port.  The measurement circuit is matched to the characteristic impedance of 50 Ω to ensure
optimum accuracy at high frequencies.  The test port also employs a precision coaxial connector of
50 Ω characteristic impedance.  Since the test current flows through the transformer, in series
with the DUT connected to the test port, it can be measured from the voltage across the trans-
former’s winding.  The V channel signal, Edut, represents the voltage across the DUT and the I
channel signal, Etr, represents the current flowing through the DUT.  Because the measurement
circuit impedance is fixed at 50 Ω, all measurements are made in reference to 50 Ω without rang-
ing operation.

The vector ratio detector section has similar circuit configurations as the auto balancing bridge
instruments.  The V/I input multiplexer alternately selects the Edut and Etr signals so that the
two vector voltages are measured with identical vector ratio detector to avoid tracking errors.
The measuring ratio of the two voltages derives the impedance of the unknown device as Zx = 50
× (Edut/Etr).  To make the vector measurement easier, the mixer circuit down-converts frequency
of the Edut and Etr signals to an IF frequency suitable for the A-D converter’s operating speed.
In practice, double or triple IF conversion is used to obtain spurious-free IF signals.  Each vector
voltage is converted into digital data by the A-D converter and is digitally separated into 0° and
90° vector components.
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Figure 2-13. Simplified block diagram for RF I-V method
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2-6. Difference between RF I-V and network analysis measurement methods

When testing components in the RF region, the RF I-V measurement method is often compared
with network analysis.  The difference in principle is highlighted as the clarifying reason why the
RF I-V method has advantages over the reflection coefficient measurement method, commonly
used with network analysis.
The network analysis method measures the reflection coefficient value, Γx, of the unknown
device.  Γx is correlated with impedance, by the following equation:

Γx = (Zx-Zo)/(Zx+Zo)

Where, Zo is the characteristic impedance of the measurement circuit (50 Ω) and Zx is DUT
impedance.  In accordance with this equation, measured reflection coefficient varies from -1 to 1
depending on the impedance, Zx.  The relationship of reflection coefficient to impedance is graphi-
cally shown in Figure 2-14.  The reflection coefficient curve in the graph affirms that the DUT is
resistive.  As the graph indicates, the reflection coefficient sharply varies, with difference in
impedance (ratio), when Zx is near Zo (that is, when Γx is near zero).  The highest accuracy is
obtained at Zx equal to Zo because the directional bridge for measuring reflection detects the
“null” balance point.  The gradient of reflection coefficient curve becomes slower for both the lower
and higher impedance, causing deterioration of impedance measurement accuracy.  In contrast,
the principle of the RF I-V method is based on the linear relationship of voltage-current ratio to
impedance, as given by ohm’s law.  Thus, the theoretical impedance measurement sensitivity is
constant, regardless of measured impedance (Figure 2-15 (a)).  The RF I-V method has measure-
ment sensitivity which is superior to the reflection coefficient measurement except for a very nar-
row impedance range around the null balance point (Γ=0 or Zx=Zo) of the directional bridge.

Note: Measurement sensitivity is a change in measured signal levels (∆V/I or ∆V/V) relative to a change in DUT imped-

ance (∆Z/Z).  The measurement error approximates to the inverse of the sensitivity.

The reflection coefficient measurement never exhibits such high peak sensitivity for capacitive
and inductive DUTs, because the directional bridge does not have the null balance point for reac-
tive impedance.  The measurement sensitivity of the RF I-V method also varies, depending on the
DUT’s impedance, because the measurement circuit involves residuals and the voltmeter and cur-
rent meter are not ideal (Figure 2-15 (b)).  (Voltmeter and current meter arrangement influences
the measurement sensitivity.) Though the measurable impedance range of the RF I-V method is
limited by those error sources, it can cover a wider range than in the network analysis method.
The RF I-V measurement instrument provides a typical impedance range from 0.2 Ω to 20 kΩ at
the calibrated test port, while the network analysis is typically from 2 Ω to 1.5 kΩ (depending
upon the required accuracy and measurement frequency).

Note: Typical impedance range implies measurable range within 10% accuracy.

Moreover, because the vector ratio measurement is multiplexed to avoid phase tracking error and,
because calibration referenced to a low loss capacitor can be used, accurate and stable measure-
ment of low dissipation factor (high Q factor) is enabled.  The Q factor accuracy of the network
analysis and the RF I-V methods are compared in Figure 2-16.
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Figure 2-14. Relationship of reflection coefficient to impedance

Figure 2-15. Measurement sensitivity of network analysis and RF I-V methods
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Figure 2-16. Comparison of typical Q accuracy

2-7. Key measurement functions

2-7-1. OSC level

The oscillator output signal is output through the coaxial test port (coaxial connector) with source
impedance of 50 Ω.  The oscillator output level can be controlled to change the test signal level
applied to the DUT.  Specified test signal level is obtained when the connector is terminated with
a 50 Ω load (The signal level for open or short condition is calculated from that for 50 Ω).  When a
DUT is connected to the measurement terminals, the current that flows through the DUT will
cause a voltage drop at the 50 Ω source impedance (resistive).  Actual test signal level applied to
the device can be calculated from the source impedance and the DUT’s impedance as shown in
Figure 2-6.  Those instruments equipped with level monitor function can display the calculated
test signal level and measurement results.

2-7-2. Test port

The test port of the RF I-V instrument usually employs a precision coaxial connector to ensure
optimum accuracy throughout high frequency range.  The coaxial test port allows RF test fixtures
to be attached and the instrument to be calibrated using traceable coaxial standard terminations.
The test port is a two-terminal configuration and does not have a guard terminal separate from a
ground terminal.  Therefore, the guarding technique does not apply as well to the RF I-V mea-
surements as compared to network analysis.
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2-7-3. Calibration

Most of the RF vector measurement instruments such as network analyzers need to be calibrated
each time a measurement is initiated or a frequency setting is changed.  The RF I-V measurement
instrument requires calibration as well.  At higher frequencies, a change in the instrument’s oper-
ating conditions, such as, environmental temperature, humidity, frequency setting, etc., have a
greater effect on measurement accuracy.  This nature of RF vector measurement makes it diffi-
cult to sufficiently maintain the calibrated measurement performance over a long period of time.
Thus, users have to periodically perform requisite calibration.

Note: Calibration is necessary each time a measurement setup is changed.

Calibration is executed in reference to three standard terminations, open, short and load, and all
three must be performed.  To improve the accuracy of low dissipation factor measurements (high
Q factor), calibration with a low loss capacitor can be performed.  The theory of calibration and
appropriate calibration methods are discussed in Section 4.

2-7-4. Compensation

Two kinds of compensation functions are provided: open/short compensation for eliminating the
errors due to test fixture residuals and electrical length compensation for minimizing the test port
extension induced error.  Practical compensation methods are discussed in Section 4.

2-7-5. Measurement range

RF I-V measurement method as well as network analysis covers the full measurement range from
low impedance to high impedance without ranging operation.  All measurements are made at sin-
gle broad range.

2-7-6. DC bias

The internal DC bias source is connected to the center conductor of the coaxial test port and
applies a bias voltage to the DUT.  The internal bias function can be set to either the voltage
source mode or the current source mode.  The voltage source mode is adequate to the voltage-
biased measurement of capacitive DUT.  The current source mode is to the current-biased mea-
surement of inductive DUT.  Actual bias voltage and current across the DUT are monitored and,
within specified voltage/current output compliance ranges, automatically regulated at the same
level as the bias setting value regardless of the DUT’s DC resistance, thus allowing accurate DC
bias to be applied across the DUT.  Since the internal bias source cannot output bias current large
enough for inductor measurements, generally, current-biased measurement (in excess of maxi-
mum output current) requires an external bias method to be used.  For biasing up to 5 A and 40 V
in frequency range below 1 GHz, the 16200B bias adapter compatible with RF I-V instruments is
available.
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SECTION 3

Fixturing and cabling

When interconnecting a device under test (DUT) to the measurement terminals of the auto bal-
ancing bridge instrument, there are several connection configurations to choose from.  This sec-
tion will introduce the basic theory and use of each connection configuration focussing on the auto
balancing bridge instrument.  In RF impedance measurements, the usable connection configura-
tion is the two terminal method only.  Since the measurement technique for RF impedance is dif-
ferent from that for LF, it is described separately after the discussion of the auto balancing bridge
instrument.

3-1. Terminal configuration

An auto balancing bridge instrument is generally equipped with four BNC UNKNOWN terminals
(Hc, Hp, Lp and Lc) on its front panel.  There are several connection configurations used to inter-
connect a DUT to the UNKNOWN terminals.  Because each method has advantages and disad-
vantages, the most suitable method must be selected based on the DUT’s impedance and required
measurement accuracy.

The two-terminal (2T) configuration is the simplest way but contains many error sources.  Lead
inductance, lead resistance, and stray capacitance between two leads have been added to the mea-
surement result (Figure 3-1).  Because of the existence of these error sources, the typical imped-
ance measurement range (without doing compensation) is limited to 100 Ω to 10 kΩ.

The three-terminal (3T) configuration employs coaxial cables to reduce the effects of stray capaci-
tance.  The outer conductors (shield) of the coaxial cables are connected to the guard terminal.
Measurement accuracy is improved on the higher impedance measurement range but not on
lower impedance measurement range because lead inductance and resistance still remain.  (See
Figure 3-2.) The typical impedance range will be extended above 10 kΩ.  If the outer conductor is
connected as shown in Figure 3-2 (d), lower impedance measurement accuracy is a little
improved.  (Shielded 2T configuration.)

The four-terminal (4T) configuration can reduce the effects of lead impedances because the signal
current path and the voltage sensing cables are independent (Figure 3-3).  Accuracy for the lower
impedance measurement range is improved typically down to 1 Ω.  When the DUT’s impedance is
lower than 1 Ω, a large signal current flows through the current path and mutual (M) coupling to
the voltage sensing cable will cause an error.

The five-terminal (5T) configuration is a combination of the 3T and 4T configurations.  It is
equipped with four coaxial cables and all of the outer conductors of the four cables are connected
to the guard terminal (Figure 3-4).  This configuration has a wide measurement range from 1 Ω to
10 MΩ, but the mutual coupling problem still remains.  If the outer conductor is connected as
shown in Figure 3-4 (d), lower impedance measurement accuracy is a little improved.  (Shielded
4T configuration.)
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The four-terminal pair (4TP) configuration solves the mutual coupling problem because it uses
coaxial cable to isolate the voltage sensing cables from the signal current path (Figure 3-5).  Since
the return current flows through the outer conductor of the coaxial cable, the magnetic flux gener-
ated by the inner conductor is canceled by that of the outer conductor (shield).  The measurement
range for this configuration can be improved to below 1 Ω.  The impedance measurement range
realizable for this configuration depends on the measurement instrument and on how well the
4TP configuration is strictly adhered to up to the connection point of the DUT.  If the cables are
not connected properly, measurement range will be limited, or in some cases, measurement can-
not be made.  Figure 3-5 (d) shows an example of incorrect configuration.

Figure 3-1. Two-terminal (2T) configuration
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Figure 3-2. Three-terminal (3T) configuration

Figure 3-3. Four-terminal (4T) configuration
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Figure 3-4. Five-terminal (5T) configuration

Figure 3-5. Four-terminal pair (4TP) configuration
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3-2. Using test cables at high frequencies

The 4TP configuration is the best solution for wide-range impedance measurement.  However, in
basic 4TP measurement, its cable length is limited by the measurement frequency because the
length of the cable must be much shorter than the wavelength.  The following equation gives a
typical guideline for determining the limitation:

F × L ≤ 15

Where: F is the measurement frequency (MHz)
L is the cable length (m)

When the cable length is 1 m, the maximum frequency limit will be approximately 15 MHz.  If the
cable length or frequency exceeds this limit, the auto balancing bridge may not balance.
Generally, 4TP measurement instruments have this cable length limitation, but there are some
exceptional instruments, such as 4294A, which permit using test cables at frequencies over the
limits.  These instruments obviate the limitation by having measurement circuit impedance
matched to the characteristic impedance of specified test cables at high frequencies.  (Note that
practical cable length limit due to increase in measurement error still exists.)

Cable length compensation is also necessary for higher frequency impedance measurement (typi-
cally above 100 kHz).  In the higher frequency region, transmission characteristics of the cable
will cause an error and it depends on the type of cable used.  As a recommendation, use the stan-
dard Agilent test cables.  Agilent’s impedance measurement instruments can compensate for
known transmission characteristics of the cables.  A detailed discussion on the error and how to
compensate for it is provided in Section 4.

3-3. Test fixtures

The test fixture plays an important role in impedance measurement in both mechanically and
electrically.  The quality of the fixture determines the limit of the total measurement quality.
Discussion on how to choose or fabricate a fixture follows.

3-3-1. Agilent supplied test fixtures

Agilent Technologies supplies various types of test fixtures depending on the type of device being
tested.  To choose the most suitable test fixture for the DUT, consider not only the physical layout
of the contacts but also the usable frequency range, residual parameters (usable impedance
range), and the allowable DC voltage that can be applied.
The contact terminals of the test fixtures (DUT connection) can be either 2-terminal or 4-terminal
that are suited to different applications.  The DUT connection configuration and suitable applica-
tion of Agilent’s test fixtures are summarized in Table 3-1.

Note: The terminal configuration in this case is described for the contact terminals only, not the whole circuit in the test

fixture.
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Table 3-1. Test fixture’s DUT connection configuration and applications

3-3-2. User fabricated test fixtures

If the DUT is not applicable to Agilent supplied test fixtures, create an application specific test
fixture.  Key points to consider when fabricating a test fixture are:

(1) Residuals must be minimized.  To minimize the residuals, the 4TP configuration should be
maintained as close as possible to the DUT.  Also, proper guarding techniques will eliminate
the effects of stray capacitance.  See “Eliminating the stray capacitance effect” given in this
section for practical use of guarding.

(2) Contact resistance must be minimized.  Contact resistance will cause additional error.  In
the case of the 2T configuration, it directly affects the measurement result.  The contact elec-
trodes should hold the DUT firmly and should always be clean.  Use a corrosion-free material
for the electrodes.

(3) Contacts must be able to be opened and shorted.  Open/short compensation can easily
reduce the effects of the test fixture residuals.  To perform an open/short measurement, you
must open and short the contact electrodes.  For an open measurement, the contact electrodes
should be located the same distance apart as when the DUT is connected.  For the short mea-
surement, a lossless (low impedance) conductor should be connected between the electrodes,
or contact electrodes should be connected directly.  If the four-terminal configuration is kept
to the electrodes, make the connections of current and potential terminals and then make an
open or short as shown in Figure 3-6.

3-6

DUT  Applicable Agilent Basic characteristics Suitable 

connection device type test fixture application

configuration

2-terminal Leaded device 16047D • Measurement is Middle and high

16047E susceptible to the effect impedance DUTs and high

16065A of residual impedance frequency measurements.

42842A/B/C and contact resistance

Surface mounted 16034E • Usable frequency limit

device 16034G is high

16034H • Additional error at

16334A high frequencies is

Material 16451B smaller than in

16452A 4-terminal connection

In-circuit device 16095A

42941A

4-terminal Leaded device 16047A • Measurement is less Low and middle

16089A/B/C/D/E affected by residual impedance DUTs and low

Surface mounted 16044A impedance and contact frequency measurements.

device resistance (at relatively

low frequencies)

• Usable frequency limit

is low

• Additional error at

high frequencies is

greater than in

2-terminal connection



3-3-3. User test fixture example

Figure 3-7 shows an example of a user fabricated test fixture.  It is equipped with alligator clips
as the contact electrodes for flexibility in making a connection to DUTs.  Also, this test fixture can
be connected directly to 4TP instruments.  The assembly procedure for this test fixture is shown
in Figure 3-7.

Figure 3-6. User fabricated test fixture open/short methods

Figure 3-7. Example of fixture fabrication
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3-4. Test cables

When the DUT is tested apart from the instrument, it is necessary to extend the test ports
(UNKNOWN terminals) using cables.  If the cables are extended without regard to their length, it
will cause not only an error, but will also result in bridge unbalance making measurement impos-
sible.

3-4-1. Agilent supplied test cables

Agilent Technologies supplies 1 m, 2 m and 4 m cables as listed in Table 3-2.  The test cables from
16048A to 16048E are constructed using the same cable material.  The 16048G and 16048H
employ a high quality cable to insure low-loss transmission characteristics that specifically match
to the 4294A.  The cable length and the usable frequency range must be considered when select-
ing a test cable.  Agilent’s instruments can minimize the effects of test cables because the error of
the cable is known.  The measurement error will increase according to the cable length and the
measurement frequency.

Table 3-2. Agilent supplied test cables

3-4-2. User fabricated test cable

Using cables other than those supplied by Agilent is not recommended.  The cable compensation
function of the instrument may not work properly in non-Agilent cables.  If there is an unavoid-
able need to use non-Agilent cables, then use the same or equivalent cable that is used to make
the Agilent test cables.  The Agilent part number of the cable used for frequency below 30 MHz is
8120-0367 (not applicable to the 4294A.) Electrical specifications for these cables are provided in
Figure 3-8.  Do not use test cables other than Agilent supplied cables for higher frequencies.  To
extend the cables using the 4TP configuration, the cable length should be 1 m or 2 m so that the
measurement instrument can compensate for it (depending on the instrument’s cable length com-
pensation function).  If there is an error in the cable length, it will cause additional error.  A
detailed discussion is provided in Section 4.

Test cable Cable Maximum Connector Applicable instruments
length frequency type

16048A 1 m 30 MHz BNC 4263B, 4268A, 4279A, 

16048B SMC 4284A, 4285A, 4288A

16048D 2 m 30 MHz BNC 4263B, 4268A, 4279A, 4284A,
4285A, 4288A

16048E 4 m 1 MHz 4263B, 4284A

16048G 1 m 110 MHz 4294A

16048H 2 m 110 MHz 4294A
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Figure 3-8. Specifications of recommended cable (Agilent PN 8120-0367)

3-4-3. Test cable extension

If the required test cable is longer than 1 m, 2 m, or 4 m, it is possible to extend the Agilent sup-
plied test cable by using the following techniques.

4TP-4TP extension: As shown in Figure 3-9 (a), extension of the four coaxial cables should be con-
nected together at the end of the extension.  The actual connection is as shown in Figure 3-9 (b).
An insulated connection plate must be used in order not to break the 4TP configuration.  Four
BNC(f) to BNC(f) adapters (Agilent PN 1250-0080 × 4) are used in this example.  This technique
can provide the best accuracy, especially for low impedance measurement.  However, in basic 4TP
measurement, its extension length is limited by the measurement frequency.  F(MHz) × L(m) ≤ 15
is a typical estimation for extension limitation.  For higher frequency measurements and longer
extension, the shielded 2T extension technique, which is described next, should be utilized.

Shielded 2T extension: As shown in Figure 3-10 (a), the 4TP configuration is terminated and the
extension cable configures a modified 3T (shielded 2T).  The two outer conductors are connected
together at each end of the cable.  This will cancel the magnetic field induced by the inner conduc-
tors.  This technique is used in the higher frequency region, up to 15 MHz.  The residual imped-
ance of the cable will be directly added to the measurement result but can be insignificant error
source if the DUT’s impedance is greater than the impedance due to the residuals.  For the actual
connection, a connector plate (Agilent PN 16032-60001) supplied with Agilent test cable can be
used as shown in Figure 3-10 (b).

Shielded 4T extension: Lower impedance can be measured accurately when the shielded 4T con-
figuration is connected as shown in Figure 3-11 (a).  The actual connection is shown in Figure 3-
11 (b).

Table 3-2 summarizes the extension techniques and their applicable impedance/frequency range.
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Figure 3-9. 4TP-4TP extension

Figure 3-10. Shielded 2T extension
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Figure 3-11. Shielded 4T extension

Table 3-2. Summary of cable extension
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Measurement frequency

100 kHz and below 100 kHz and above

Low

Typically 4TP-4TP

100 Ω and below

Medium

Typically 4TP-4TP Shielded 4T

100 Ω to 100 kΩ
High

Typically Shielded 2T

100 kΩ and above
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3-5. Eliminating the stray capacitance effects

When the DUT has high impedance (e.g. Low Capacitance), the effects of stray capacitance are
not negligible.  Figure 3-12(a) shows an example of measuring a DUT using 4 terminal contacts.
In this example, Cd is in parallel with the DUT.  When a conductive plate is placed under the
DUT, the combined capacitance (Ch//Cl) is also in parallel with the DUT, resulting in measure-
ment error.  By placing a guard plate between the high and low terminals, Cd can be minimized
(Figure 3-12 (b)).  Also, by connecting the guard terminal to the conductor, the effects of Ch and Cl
can be canceled.  In actual measurement setup, the outer shield conductor of coaxial test cables in
the 3T, 4T, 5T and 4TP configuration works as the guard terminal.  The guarding technique can-
not apply to the 2T configuration.

Figure 3-12. Guarding techniques to eliminate the stray capacitance effects

3-6. Terminal configuration in RF region

RF impedance measuring instruments have a precision coaxial test port, which is actually a 2 ter-
minal configuration in principle.  The center conductor of coaxial test port connector is active
High side terminal and the outer conductor is grounded Low side terminal, as shown in Figure 3-
13.  To measure the DUT, only the simplest 2-terminal connection configuration can be used.
Residual inductance, residual resistance, stray capacitance and stray conductance of the test fix-
ture will add to measurement results (before compensation).  Whether the RF I-V method or net-
work analysis, RF impedance measurement has lower accuracy as the measured impedance dif-
fers greater from 50 Ω.  Instrument inaccuracy rather than the error factors in 2-terminal test fix-
ture primarily limits the measurement range.  The effect of residuals increases with frequency
and narrows the measurable impedance range in very high frequencies.
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Figure 3-13. Coaxial test port circuit configuration

3-7. RF test fixtures

RF test fixtures are designed so that the lead length (electrical path length) between the DUT and
the test port is made as short as possible to minimize residuals.  At frequencies typically below
100 MHz, measurement error due to test fixture residuals is small compared to instrument error
and is normally negligible after compensation is made.  But, especially when measuring low or
high impedance close to the residual parameter values, variance in the residuals of the test fix-
ture will cause measurement repeatability problem.  For example, when measuring a 1 nH induc-
tor (a very low inductance), a slight variance of 0.1 nH in residual inductance will produce a 10%
difference in measured value.  The variance in residuals and resultant measurement instability is
dependent on the accuracy of positioning the DUT on the test fixture terminals.  For repeatable
measurements, RF test fixtures should be able to precisely position DUT across measurement ter-
minals.

The test fixture residuals will have greater effects on measurement at higher frequencies (typical-
ly above 500 MHz) and will narrow practical measurement range.  Therefore, the usable frequen-
cy range of the test fixture is limited to the maximum frequency specified for each test fixture.
The measurement inaccuracy for the DUT is given by sum of the instrument inaccuracy and the
test fixture induced errors.  Because only the 2-terminal measurement configuration is available,
compensation method is crucial to optimize measurement accuracy.  The measurement error
sources and compensation techniques are discussed in Section 4.

Each test fixture has unique characteristics and different structure from others.  Since not only
the residuals but also the surrounding conditions of the DUT (such as ground plate, terminal lay-
out, dielectric constant of insulator, etc.) influence the measured values of the DUTs, the same
type of test fixture should be used to achieve good measurement correlation.
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3-7-1. Agilent supplied RF test fixtures

Agilent Technologies offers various types of RF test fixtures that meet the type of the DUT and
required test frequency range.  Consider measurable DUT size, electrode type, frequency, and
bias condition to select a suitable test fixture.

There are two types of RF test fixtures: coaxial and non-coaxial test fixtures, which are different
from each other for both geometrical structures and electrical characteristics.  As the non-coaxial
test fixture has open-air measurement terminals as shown in Figure 3-14 (a), it features ease of
connecting and disconnecting DUTs.  The non-coaxial type is suitable for testing a large number
of devices efficiently.  Trading off the benefit of measurement efficiency, the measurement accura-
cy tends to be sacrificed at high frequencies because discontinuity (miss-match) in electrical char-
acteristics exists between the coaxial connector part and the measurement terminals.  The coaxial
test fixture holds DUT using similar configuration to the coaxial terminations, as shown in Figure
3-14 (b).  The DUT is connected across the center electrode and the outer conductor cap electrode
of the test fixture.  With 50 Ω characteristic impedance maintained continuously from test port to
the DUT, the coaxial test fixture provides the best measurement accuracy and the best frequency
response.  As the diameter of its replaceable insulator can be selected to minimize the gap
between the DUT and the insulator, the DUT can be positioned with a good repeatability across
the test fixture’s terminals independently of operator skill.  The coaxial test fixture ensures less
additional errors and much better measurement repeatability than the non-coaxial test fixtures.

Figure 3-14. Types of RF impedance test fixtures
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3-8. Test port extension in RF region

In RF measurements, connect the DUT closely to the test port to minimize additional measure-
ment errors.  When there is an unavoidable need of extending the test port, such as in-circuit test-
ing of devices and on-wafer device measurement using a prober, make the length of test port
extension as short as possible.  If the instrument has a detachable test head, it is better for accu-
racy to place the test head near the DUT in order to minimize the test port extension length, and
interconnect the test head and the instrument using coaxial cables.  (Observe the limit of maxi-
mum interconnection cable length specified for instrument.) Using a long test port extension will
involve large residual impedance and admittance of the extension cable in the measurement
results and significantly deteriorate the accuracy even if calibration and compensation are com-
pleted.

Figure 3-15 shows an equivalent circuit model of the port extension.  The inductance, Lo, resis-
tance, Ro, capacitance, Co, and conductance, Go, represent the equivalent circuit parameter val-
ues of the extension cable.  When the DUT’s impedance, Zx, is nearly 50 Ω, the test signal is most-
ly fed to the DUT as the cable causes only a phase shift and (relatively small) propagation loss
like a transmission line terminated with its characteristic impedance.  However, most likely
DUTs have different value from 50 Ω.  If the impedance of the DUT is greater than that of Co, the
test signal current mainly bypasses through Co, flowing only a little through the DUT.
Conversely, if the impedance of the DUT is lower than that of Lo and Ro, the test signal voltage
decreases by voltage drop across the cable and is applied only a little to the DUT.  As a result, the
cable residuals lead to measurement inaccuracy and instability, particularly, in high impedance
and low impedance measurements.  As illustrated in Figure 3-15, the Lo, Ro, Co and Go not only
get involved in the measurement results (before compensation), but also affect measurement sen-
sitivity.  Note that the measurable impedance range becomes narrow due to port extension even
though the calibration and compensation have been performed appropriately.
In addition, electrical length of the extension cable will vary with environmental temperature
and, thereby causing phase measurement instability.  Using longer extension makes measure-
ment results more susceptible to the influence of environmental temperature changes.  Bending
the cable will also cause variance in measured phase angle, deteriorating measurement repeata-
bility.  Accordingly, in any applications the port extension should be minimized.  Discussion for
practical method of extending test port follows.

The RF I-V and network analysis instruments commonly employ an N-type or 7 mm type coaxial
connector as the UNKNOWN terminal.  Naturally, test port extension is made using a low loss,
electrically stable coaxial transmission line (cable) with 50 Ω characteristic impedance.  When
choosing the cable, care should be taken for both temperature coefficients of propagation con-
stants and rigidity to restrain the cable from easily bending.  Figure 3-16 shows an example when
the test fixture is connected at the end of a 7 mm-7 mm cable.  Calibration should be performed
first at the end of the extension before connecting the test fixture.  As the next step the electrical
length and open/short compensations for the test fixture can be performed.  (Open/short/load cali-
bration may be performed instead of compensation with working standards connected at test fix-
ture’s measurement terminals.  This method does not require the calibration at the end of the
extension.) Detailed discussion for measurement error sources, calibration and compensation is
provided in Section 4.
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Figure 3-15. Calibration plane extension

Figure 3-16. Practical calibration and compensation at extended test port
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SECTION 4

Measurement error and compensation

4-1. Measurement error

For real-world measurements, we have to assume that the measurement result always contains
some error.  Some typical error sources are:

• Instrument inaccuracies (including DC bias inaccuracy and OSC level inaccuracy)

• Residuals in the test fixture and cables

• Noise

The DUT’s parasitics were not listed because the DUT’s parasitics are a part of the DUT and we
need to measure the DUT’s impedance including its parasitics.  In the listed error sources, residu-
als in the test fixture and test cables can be compensated if they are constant and stable.

4-2. Calibration and compensation

Calibration is to define the “calibration plane”, at which the specified measurement accuracy can
be obtained.  To calibrate an instrument, “standard devices” are connected at the calibration
plane and the instrument is adjusted (through computation/data storage) so that it measures
within its specified accuracy.  In the case of 4TP configured instruments, the calibration plane is
at the UNKNOWN BNC connectors (Figure 4-1).

Compensation reduces the effects of the error sources existing between the DUT and the instru-
ment’s calibration plane.  Compensation, however, can not always completely remove the error,
and the measurement accuracy obtained after compensation is not as good as that obtained at the
“calibration plane.”  Compensation is not the same as calibration and can not replace calibration,
the measurements required for compensation depend on the calibration accuracy of the instru-
ment, so compensation must be performed after calibration has been completed.  Compensation
improves the effective measurement accuracy of an instrument.  The following paragraphs
describe three commonly used compensation techniques.

Figure 4-1. Calibration plane of 4TP instrument
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4-2-1. Offset compensation

When a measurement is affected by only a single component of the residuals, the effective value
can be obtained by simply subtracting the error value from the measured value.  For example, in
the case of the low value capacitance measurement shown in Figure 4-2, the stray capacitance Co
paralleled with the DUT’s capacitance Cx is significant to the measurement and can be compen-
sated by subtracting the stray capacitance value from the measured capacitance value Cm.  The
stray capacitance value is obtained with the measurement terminals left open.

Figure 4-2. Offset compensation

4-2-2. Open and short compensations

Open and short compensations are the most popular compensation technique used in recent LCR
measurement instruments.  This method assumes that the residuals of the test fixture can be rep-
resented by the simple L/R/C/G circuit.  The method is represented in Figure 4-3 (a).  When the
UNKNOWN terminals are open, as shown in Figure 4-3 (b), stray admittance Go+jωCo is mea-
sured as Yo because residual impedance Zs is negligible.  When the UNKNOWN terminals are
shorted, as shown in Figure 4-3 (c), the measured impedance represents residual impedance Zs=
Rs+jωLs because Yo is bypassed.  As a result, each residual parameter is known and, the DUT’s
impedance, Zdut, can be calculated from the equation given in Figure 4-3 (d).

Note: Agilent’s impedance measurement instruments actually use a slightly different equation.
Refer to APPENDIX B for more detailed information.

This compensation method can minimize the errors when the actual residual circuit matches the
assumed model in the specific situations listed below:

• Measurement by connecting an Agilent test fixture to the UNKNOWN terminals

• Measurement with an Agilent test fixture connected by an Agilent test cable that is compen-
sated for electrical length

In other situations, the open/short compensation will not thoroughly correct the measured values.
In addition, this method cannot correlate measurement results from different instruments.  To
resolve these compensation limitations, the open, short and load compensations are required.
Refer to Paragraph 4-2-4 for details.
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Figure 4-3. Open/short compensation

4-2-3. Precautions for open and short measurements

When an open measurement is made, it is important to accurately measure the stray capacitance.
To do this, keep the distance between the test fixture terminals the same as when they are hold-
ing the DUT, set the integration time, averaging, and OSC level so that the instrument measures
with maximum accuracy.  If an open measurement is performed under improper conditions, stray
admittance Yo is not correctly measured, resulting in measurement error.

Short measurement is performed by connecting the test fixture terminals directly together or by
connecting a shorting device to the terminals.  The residual impedance contained in the shorting
device should be much lower than the DUT’s impedance, otherwise it will directly affect the mea-
surement results.  Figure 4-4 shows an example of a shorting device that is applicable to the
16047A, 16047C and 16047D test fixtures.  This shorting bar (Agilent PN: 5000-4226) typically
has residuals of 20 nH and 1 mΩ.  Hence, the shorting bar is not suitable for low impedance mea-
surement.  For very low impedance measurement, you should use a test fixture in which the fix-
ture terminals can be connected directly together.
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Figure 4-4. Example of shorting device. (Agilent PN: 5000-4226)

4-2-4. Open, short and load compensations

There are numerous measurement conditions where complicated residual parameters cannot be
modeled as the simple equivalent circuit in Figure 4-3.  Open/short/load compensation is an
advanced compensation technique that is applicable to complicated residual circuits.  To perform
open/short/load compensation, three measurements are required before measuring the DUT, with
the test fixture terminals opened, shorted, and with a reference DUT (load) connected.  These
measurement results (data) are used for calculation when the DUT is undergoing measurement.
As shown in Figure 4-5, the open/short/load compensation models the test fixture residuals as a
four-terminal network circuit represented by the ABCD parameters.  Each parameter is known if
three conditions are known and if the four-terminal circuit is a linear circuit.

The open/short/load compensation should be used in the following situations:

(1) An additional passive circuit or component (e.g. external DC bias circuit, balun transformer,
attenuator and filter) is connected.

(2) A scanner, multiplexer or matrix switch is used.
(3) A non-standard length test cable is used or the 4TP cable is extended from the standard

Agilent test cable.
(4) An amplifier is used to enhance test signal.
(5) A component handler is used.
(6) A custom-made test fixture is used.

In the cases listed above, open/short compensation will not work effectively and the measurement
result contains some error.

It is not necessary to use open/short/load compensation for simple measurement, like measuring
an axial leaded component using the 16047A test fixture.  Open/short compensation is adequate
for such measurements.
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Figure 4-5. Open/short/load compensation

4-2-5. What should be used as the load?

The key point in open/short/load compensation is to select a load whose impedance value is accu-
rately known.  The criteria is as follows.

Use a stable resistor or capacitor as the load device.  The load device’s impedance value must
be stable under conditions of varying temperature, magnetic flux, and other component dependen-
cy factors.  So, avoid using inductors which are relatively sensitive to measurement conditions, for
the load.

Use a load of same size and measure it in the same way as the DUT will be measured.  As
shown in Figure 4-6, if the load is measured under different electrode conditions, its measured
data will not effectively compensate the residuals.  It is a good idea to use one of the actual DUTs
as a working standard.  If the load is a different type from the DUT (e.g. load is C and DUT is R),
at least keep the same distance between the electrodes.

Use a load that is close in value to the DUT. Whatever the load value is, the load compensation
is effective over the entire measurement range if the measurement circuit has a linear character-
istic.  In practice, the circuit between the UNKNOWN terminals and the DUT may have a non-
linear factor, especially when an additional circuit includes a non-linear component such as an
inductor, active switch, amplifier, etc..  As shown in Figure 4-7, additional measurement error
will be added when the measured DUT value is far from the load value used for the compensation.
So, the impedance value of the load should be as close as possible to that of the DUT to be mea-
sured.  If various impedances are to be measured, select a load that is nearly the center value of
the DUT’s impedance range.  In addition, the load value should not be near the open or short
impedance.  Otherwise, the load compensation will not be effective and the result of the
open/short/load compensation will be much the same as (or even worse than) that of open/short
compensation.

Use an accurately known load value.  The impedance value of the load must be known before
performing the open/short/load compensation.  To measure the load value, it is practical to use the
same measurement instrument, but under the best possible measurement conditions.  Set the
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measurement time, averaging and OSC level so that the instrument can measure the load with
maximum accuracy.  Also, use a test fixture which mounts directly to the instrument.  Figure 4-8
shows an example of such a measurement.

Figure 4-6. Electrode distance in load measurement

Figure 4-7. Load value must be close to DUT’s value
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Figure 4-8. Actual open/short load measurement example

4-2-6. Application limit for open, short and load compensations

When the residuals are too significant compared to the DUT’s impedance value, compensation
may not work properly.  For example, if the measured short impedance Zsm is about the same as
DUT’s impedance, total measurement error will be doubled.  The following are typical criteria for
this limitation:

(1) Measured open impedance Zom must be more than 100 times that of the DUT’s impedance.
(2) Measured short impedance Zsm should be less than 1/100 that of the DUT’s impedance.

4-3. Error caused by contact resistance

Any contact resistance existing between the DUT electrodes and the contact electrodes of the test
fixture or test station will result in measurement error.  The effects of the contact resistance are
different for the DUT connection methods, 2-terminal and 4-terminal.  In the case of a 2-terminal
connection, the contact resistance is added to the DUT impedance in series and produces a posi-
tive error in D (dissipation factor) reading (Figure 4-9 (a)).  In the case of a 4-terminal connection,
contact resistances Rhc, Rhp, Rlc and Rlp exist as shown in Figure 4-9 (b).  The effects of the con-
tact resistance differ depending on the terminals.  Rhc decreases the test signal level applied to
the DUT, but it does not directly produce measurement error.  Rlp may cause the auto balancing
bridge to be unstable, but generally its effect is negligible.  Rhp and Chp (distributed capacitance
of the coaxial test lead) form a low-pass filter, which causes attenuation and phase shift of the Hp
input signal, producing measurement error.  Rlc and Clc also form a low-pass filter and cause an
error in measured DUT current and phase angle.  Since the resultant dissipation factor error is
proportional to -ωRhp×Chp and -ωRlc×Clc, the D error is a negative value and increases with fre-
quency.  This error becomes significant when the 4-terminal connection method is used in high
frequency measurements.  The 4-terminal connection gives a constant D error (that is determined
by the contact resistance and test lead capacitance only) while the error of the 2-terminal connec-
tion varies depending on the DUT’s value (Figure 4-9 (c)).  The 4-terminal connection provides
minimal error only when the effects of contact resistance and test lead capacitance are negligible
(mainly at low frequencies).
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Figure 4-9. Effect of contact resistance
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errors of 2-terminal and 4-terminal
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capacitance is smaller than cable
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4-4. Measurement cable extension induced error

Extending a 4TP measurement cable from the instrument will cause a magnitude error and phase
shift of the measurement signal according to the extension cable length and measurement fre-
quency.

The following two problems will arise from the cable extension:

(1) Error in impedance measurement result
(2) Bridge unbalanced

The measurement error is mainly caused by the cable connected to the Hp and Lc terminals, and
it can be compensated by the instrument if the cable length and propagation constants of the
cable are known  (refer to Figure 4-10). Bridge unbalance is caused by the phase shift in the feed-
back loop that includes the Rr, amplifier, and the Lp and Lc cables. This can be compensated by
an intentional phase shift in the feedback loop. These two problems are critical only at frequen-
cies higher than 100 kHz, and Agilent’s impedance measurement instruments can compensate for
Agilent-supplied test cables. In the frequency region lower than 100 kHz, the capacitance of the
cable will only degrade the measurement accuracy (but does not affect the bridge balance). This
effect of cable extension is shown in Figure 4-11.

Note: Cable length and electrical length are different and should not be confused.

Figure 4-10. Cable length compensation
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Figure 4-11. Measurement error due to extended cable length

The cable length compensation works for test cables whose length and propagation constants are
known, such as the Agilent-supplied test cables of 1 m (2 m or 4 m).  If different types of cable in
different lengths are used, it may cause bridge unbalance in addition to measurement error.

In practice, the measurement error is different for the cable termination types of the instrument;
that is, wide-frequency 4TP instruments that internally terminate cables with its characteristic
impedance differ from general 4TP instruments without cable termination.  A measurement error
in case of no termination is discussed first, and the case of terminated cables follows.

(1) Cable extension without termination

Extending test cable from the 4TP instrument without cable termination will produce an imped-
ance measurement error, which is typically given by the following equation:

Error = k × ∆L × f2 (%)

Where, k: A coefficient specific to the instrument,
∆L: Cable length difference (m) from 0 m or 1 m,
f: Measurement frequency (MHz)
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k value is a decimal number mostly within the range of -1 to +1 and different for different instru-
ments.  As the above equation shows, the error rapidly increases in proportion to square of mea-
surement frequency.  Using open/short compensation will not reduce this error.  Only
open/short/load compensation can minimize this error.

(2) Cable extension with termination

Extending the test cables from the instrument with cable termination will not produce a large
error for the magnitude of measured impedance, but cause a phase error in proportion to the
extension length and measurement frequency. (In practice, an error for the magnitude of imped-
ance also occurs because the actual cable termination is not ideal.)  Performing the
open/short/load compensation at the end of the cable can eliminate this error.

4-5. Practical compensation examples

The error sources present in a practical measurement setup are different for the configuration of
test fixtures, test cables or circuits which may be connected between the instrument and the
DUT. Appropriate compensation methods need to be applied depending on the measurement con-
figuration used. The Figure 4-12 shows examples of the compensation methods that should be
used for typical measurement setups.

4-11



Figure 4-12. Compensation examples
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4-6. Calibration and compensation in RF region

4-6-1. Calibration

Whether the RF I-V method or network analysis, the open, short and load calibration minimizes
instrument inaccuracies.  To perform calibration, open, short and load reference terminations are
connected to the test port and, each of the terminations is measured.  This calibration data is
stored in instrument memory and used for calculation to remove the instrument errors.
Impedance values of these reference terminations are indicated in both vector impedance coordi-
nates and smith chart in Figure 4-13.

Note: A 7 mm coaxial connector has a fringe capacitance of typically 0.082 pF when terminated with open.  This fringe

capacitance value has been memorized in the instrument and is used to calculate accurate open calibration data.

Figure 4-13. Calibration standard values

Though all three terminations are indispensable for calibration, the load termination impedance
(50 Ω) is particularly important for precise calibration and has a large influence on resultant mea-
surement accuracy.  The uncertainty of the load termination impedance is represented by a circle
that encloses the error vector.  See Figure 4-13 (a) for a demonstration.  The uncertainty of its
phase angle increases with frequency and becomes a considerable error factor, especially, in mea-
surements of high Q (low ESR or low D) devices at high frequencies.

To improve accuracy for the high Q (low loss) measurement, the RF I-V measurement instrument
can be calibrated using a low loss capacitor (LLC) termination in addition to the open/short/load
terminations.  The LLC provides a reference for calibration with respect to 90°-phase component
of impedance.  As a result, the instrument can measure high Q (low dissipation factor) devices
more accurately than in case of basic open/short/load calibration.  The LLC calibration takes place
only in high frequency range (typically above 300 MHz) because the phase angle of the load
impedance is accurate at relatively low frequencies.
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When the test port is extended, calibration should be performed at the end of extension cable, as
discussed in section 3.  Thereby, the calibration plane is moved to the end of cable.
To perform measurements met to specified accuracy, the instrument should be calibrated before
measurement is initiated and each time the frequency setting is changed.  The calibration defines
the calibration reference plane at which measurement accuracy is optimized.

If a component could be measured directly at the calibration plane, it would be possible to obtain
measured values within the specified accuracy of the instrument.  However, the real-world compo-
nents cannot be connected directly to the calibrated test port and, a suitable test fixture is used
for measurements.  Calibration is not enough to measure the DUT accurately.  Because measure-
ment is made for the DUT connected at the contact terminals of the test fixture (different from
calibration plane), the residual impedance, stray admittance and electrical length that exist
between the calibration plane and the DUT will produce additional measurement errors.  As a
result, compensation is required to minimize those test fixture induced errors.

4-6-2. Error source model

Regarding ordinary non-coaxial test fixtures, consider an error source model similarly to that in
low frequency measurements.  Figure 4-14 (a) illustrates typical test fixture configuration and a
model of error sources.  The test fixture is configured with two electrically different sections: A
coaxial connector section and a non-coaxial terminal section for connecting DUT.  The characteris-
tic of the coaxial section can be modeled using an equivalent transmission line (distributed con-
stant circuit) and represented by propagation constants.  Normally, as the coaxial section is short
enough to neglect the propagation loss, we can assume that only the phase shift (error) expressed
as electrical length exists.  The characteristic of the non-coaxial section can be described using the
residual impedance and stray admittance model in two-terminal measurement configuration as
shown in Figure 4-14 (b).  We can assume residual impedance, Zs, in series with DUT and stray
admittance, Yo, in parallel with DUT.

Figure 4-14. Typical error source model
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4-6-3. Compensation method

As the error source model is different for the coaxial and non-coaxial sections of the test fixture,
compensation method is also different for each of them.

Electrical length compensation eliminates measurement errors induced by the phase shift in the
coaxial section.  Agilent RF impedance analyzers and RF LCR meters facilitate the electrical
length compensation by allowing you to choose the model number of desired test fixture from
among the displayed list, instead of entering the specified electrical length of that test fixture to
the instrument.  (It is also possible to input the specified electrical length value.)

Open/short compensation is effective for residuals in the non-coaxial section.  It is based on the
same compensation theory as described for low frequency measurements.  (Refer to paragraph 4-
2-2 for details.) The Yo and Zs can be known by measuring with the contact terminals opened and
shorted, respectively.

As the test fixture is configured with the coaxial and non-coaxial sections, both compensations are
required to minimize combined errors.  Load compensation is not required for normal measure-
ments using Agilent supplied test fixtures.
When a test port extension or a user-fabricated test fixture is used, error sources will not match
the model assumed for the open/short compensation and affect measurement results.  In such
cases that measurement errors cannot be sufficiently removed, consider attempting the
open/short/load compensation.  Actually, the open/short/load compensation is substituted by the
open/short/load calibration using working-standard devices because these two functions are equiv-
alent to each other.  Note that when the open/short/load calibration is executed at measurement
terminals, the test port calibration data is invalidated (because the calibration plane is moved.)
Consequently, measurement accuracy depends on the calibrated accuracy of the short and load
working standard devices (open calibration requires no device) as well as proper contact when
these standard devices are inserted into the test fixture.  It is important to take special considera-
tion for the precision of the standard values, contact resistance and positioning of the standard
device on the test fixture.

4-6-4. Precautions for open and short measurements in RF region

To discuss calibration and compensation issues, we need to consider how residual parameters
have large effects on measurement results at high frequencies.
Assume that, for example, a residual inductance of 0.1 nH and a stray capacitance of 0.1 pF exist
around the measurement terminals of the test fixture.  Notice how the effects of these small resid-
uals differ depending on frequency.  Relationships of the residual parameter values to the typical
impedance measurement range are graphically shown in Figure 4-15.  In low frequency region,
the residual parameter values are much smaller than the values of normally measured devices.  It
is because the capacitors and inductors, which are designed for use in low frequency electronic
equipment, possess large values compared to small residuals.  In high frequency region, however,
such devices as which are employed for higher frequency circuits and equipment have lower val-
ues.  In the frequency range typically above 100 MHz, the majority of the DUTs are low value
devices (in the low nanohenries and the low picofarads) and their values come closely to the val-
ues of the residuals.
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Accordingly, the residual parameters have greater effects on higher frequency measurements and
become a primary factor of measurement errors.  The accuracy of measurement results after com-
pensation depends on how the open/short measurements have been performed properly.

Figure 4-15. Relationship of residual parameter values to the typical impedance 

measurement range of the RF I-V method

To perform optimum compensation, observe the precautions for open/short measurements as
described in paragraph 4-2-3.  In high frequency region, the method of open/short compensation
dominates measurement correlation.  To obtain measurement results with a good correlation and
repeatability, the compensation must be performed at the same conditions.  A difference in com-
pensation method will result in a difference in measured values, leading to correlation problems
on measurement results.  Short measurement is more critical in terms of increasing need for low
inductance measurements.  The short compensation issue is discussed in the following paragraph.

4-6-5. Consideration for short compensation

To make short measurement at the contact terminals of a test fixture or of a component handler,
a short bar (chip) is usually employed.  In measurement of very low impedance (inductance), the
following problems arise from the short bar:

• Different residual impedance dependent on size and shape
• Method of defining the residual impedance

If a different size or shape of the short bar is used, it is difficult to attain a good correlation of the
measurement results.  The residual impedance of the short bar is different if the size differs.
Hence, the same size of short bar must be used when making short measurement.
If the definition of the short bar’s impedance is different, it causes a difference in measured val-
ues.  To have a good correlation, it is desirable to determine the short bar’s residuals.  However, it
cannot be determined only from the inherent impedance of the short bar itself.  The actual imped-
ance depends on surrounding conditions such as contact terminals, thickness of the closely located
conductors, permittivity of insulators, ground conditions, etc.
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Conceptually, there are two methods of defining the short bar’s impedance: One is to assume the
impedance to be zero.  This has been a primordial method of defining the short impedance.  In
this definition method, measurement result is a relative value of the DUT to the short bar.
The other method is to define the short bar’s inductance as xx H.  (Residual resistance is negligi-
ble for small short bar.) In this method, the measurement result is deemed as the absolute value
of the DUT.  The residual inductance of the short bar is estimated from physical parameters (size
and shape) and is used as a reference.  To estimate the inductance, the short bar needs to meet
conditions, where theoretical derivation is possible.

The measurement results from both definition methods are correct.  The difference in measure-
ment result is attributable to only the difference in the definition.  Practically, because of these
incompatible definitions, a problem will emerge when yielding correlation.  To avoid this type of
problem, it is necessary to establish an agreement on the short bar’s size, shape and the definition
method of the residual inductance.

Note: Each of the 16196A/B/C coaxial test fixtures has a short device whose value is theoretically definable.  Since a 50 Ω

coaxial configuration is established for the whole signal flow path including the short device placed in the fixture,

the theoretical inductance value of the short device can be calculated from the length and physical constants by

using a transmission line formula.  Its reference value is documented; however, the use of the 16196A/B/C is not

subject to execution of the compensation based on the reference value.  You need to select the definition method of

short inductance that agrees with your measurement needs.

The chip type short devices and load devices are readily available from the working-standard set
supplied for Agilent RF I-V measurement instruments.  Otherwise, you can substitute appropri-
ate devices for the short and load chips by accurately determining (or properly defining) their
characteristics.  Method of calibrating the load device follows.

4-6-6. Calibrating load device

To determine the values of a load device, you can utilize the same instrument that will be used to
measure DUTs.  Appropriate procedure for calibrating the load device is described below:

(1) Perform open/short/load calibration at the instrument’s test port.  In addition, for a capacitive
or an inductive load device, it is recommended that low loss capacitor calibration be per-
formed.

(2) Connect a direct-mounting type test fixture to the test port.  It is recommended that the
16196A/B/C coaxial test fixtures be used to insure the best measurement accuracy.

(3) Perform open and short compensation.  For short measurement, the method of minimizing
short impedance must be employed.  (To do this, contact the terminals directly together if
possible.) When the 16196A/B/C is used, consider inputting the reference value of the residual
inductance of furnished short device to the instrument.  (Using the reference value is contin-
gent upon how the reference of short inductance needs to be defined for your measurement.
Agilent chooses to take the historic approach to let short=0 H, but the actual user of the test
fixture can choose either approach.)

(4) Connect the load device to the test fixture, select parameters available for instrument’s load
calibration function (typically R-X, L-Q, L-Rs and C-D) and measure the device.  Set the mea-
surement time, test signal level and averaging so that the instrument can measure the load
with a maximum accuracy (or use the specified test signal level of the device if required).
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4-6-7. Electrical length compensation

In the lower frequency region, using the open/short compensation function can minimize most of
test fixture residuals.  In the RF region, however, this is not enough to reduce the effect of the test
fixture residuals.  The wavelength of RF frequencies is short and is not negligible compared to
physical transmission line length of the test fixture.  So, a phase shift induced error will occur as
a result of the test fixture, and this error cannot be reduced by using open/short compensation.
The phase shift can be compensated if the electrical length of the transmission line is known.  As
shown in Figure 4-16, both the electrical length compensation and open/short compensation
should be performed after calibrating at the test port.
The electrical length compensation corrects phase error only and ignores propagation loss induced
error.  This is only effective when transmission line (test port extension) is short enough to
neglect the propagation loss.

Note: Theoretical explanation for the effects of the electrical length and the compensation is given
in APPENDIX D.

Figure 4-16. Complete calibration and compensation procedure

4-18



4-6-8. Practical compensation technique

The calibration and compensation methods suitable for measurement are different for how the
test cable or fixture is connected to the test port.  The following is a typical guideline for selecting
appropriate calibration and compensation methods.

(1) Measurements using Agilent test fixture without test port extension

To make measurements using a test fixture connected directly to the test port, first perform cali-
bration at the test port.  After calibration is completed, connect the test fixture to the test port
and, then perform electrical length compensation (for the test fixture’s electrical length) and
open/short compensation.

(2) Measurement using test port extension

When the measurement needs to be performed using a test port extension or a non-Agilent test
fixture, it is recommended that the open/short/load calibration be performed at the measurement
terminals of the test fixture.  Typically, this method is applied to such a case where unknown
devices are measured using a component handler.  Because coaxial terminations do not match
geometrically with the contact terminals of the test fixture or of the component handler, short and
load devices whose values are defined or accurately known are required as substitution stan-
dards.  (Open calibration requires no device.) Compensation is not required because measure-
ments are made at the calibration plane.

4-7. Measurement correlation and repeatability

It is possible that different measurement results are obtained for the same device when the same
instrument and test fixture is used.  There are many possible causes of the measurement discrep-
ancies, as well as residuals.  Typical factors of the measurement discrepancies in RF impedance
measurements are listed below.

• Variance in residual parameter value
• A difference in contact condition
• A difference in open/short compensation conditions
• Electromagnetic coupling with a conductor near the DUT
• Variance in environmental temperature

4-7-1. Variance in residual parameter value

Effective residual impedance and stray capacitance vary depending on the position of the DUT
connected to the measurement terminals.  Connecting the DUT to the tip of the terminals
increase residual inductance compared to when the DUT is at the bottom.  Stray capacitance also
varies with the position of the DUT. See Figure 4-17.
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Figure 4-17. Difference in residual parameter values due to DUT positioning

4-7-2. A difference in contact condition

Change in contact condition of the device also causes measurement discrepancies.  When the
device is contacted straightly across the measurement terminals, the distance of current flow
between the contact points are minimum, thus providing the lowest impedance measurement
value.  If the DUT tilts or slants, the distance of current flow increases, yielding an additional
inductance between the contact points.  See Figure 4-18.  Residual resistance will also change
depending on the contact points and produce a difference in measured D, Q or R values.  The posi-
tioning error affects measurement of low value inductors and worsens repeatability of measured
values.

Figure 4-18. Measurement error caused by improper DUT positioning
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4-7-3. A difference in open/short compensation conditions

Improper open/short measurements deteriorate accuracy of compensated measurement results.  If
the open/short measurement conditions are not always the same, inconsistent measurement val-
ues will result.  Particularly, each short device has its inherent impedance (inductance) value
and, if not defined as zero or an appropriate value, the difference of the short device used will pro-
duce resultant measurement discrepancies.  Effective impedance of the short device will vary
depending on how it contacts to the measurement terminals.  When the bottom-electrode test fix-
ture is used, contact points on the measurement terminals will be different from the case of the
parallel-electrode test fixture, as shown in Figure 4-19.  Besides, if the short device is not straight
(slightly curved), the measured impedance will be different depending on which side of the device
comes upside.  These effects are usually small, but should be taken into considerations especially
when performing a very low inductance measurement, typically below 10 nH.

Figure 4-19. Difference in short impedance by test fixture types

4-7-4. Electromagnetic coupling with a conductor near the DUT

Electromagnetic coupling between the DUT and a metallic object near the DUT varies with mutu-
al distance and causes variance in measured values.  Leakage flux generated around inductive
DUT induces an eddy current in a closely located metallic object.  The eddy current suppresses
the flux, decreasing the measured inductance and Q factor values.  The distance of the metallic
object from the DUT is a factor of the eddy current strength as shown in Figure 4-20 (a).  As test
fixtures contain metallic objects, this is an important cause of measurement discrepancies due to
test fixture.  Open-flux-path inductors usually have directivity in generated leakage flux.  As a
result, measured values will vary depending on the direction of the DUT.  The difference in the
eddy current due to the leakage flux directivity is illustrated in Figure 4-20 (b), (c) and (d).
If a parasitic capacitance exists between the DUT and an external conductor, it is difficult to
remove the effect on measurement because guarding technique is invalid.  Thus, the DUT should
be separated from the conductor with enough distance to minimize measurement errors.
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Figure 4-20. Eddy current effect and magnetic flux directivity of device

4-7-5. Variance in environmental temperature

Temperature influences on the electrical properties of materials used for the test fixtures and
cables.  When the test port is extended using a coaxial cable, the dielectric constant of the insula-
tion layer (between the inner and outer conductors) of the cable as well as physical cable length
will vary depending on the temperature.  The effective electrical length of the cable varies with
the dielectric constants, thus resulting in measurement errors.
Bending the cable will also cause its effective electrical length to change.  Keep the extension
cable in the same position as it was when calibration was performed.
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SECTION 5

Impedance measurement applications and enhancements

Impedance measurement instruments are used for a wide variety of applications.  In this section
we present practical measurement examples based on real life applications.  Also, special mea-
surement techniques are covered to expand the range of impedance measurement applications.

5-1. Capacitor measurement

Capacitors are one of the primary components used in electronic circuits.  The basic structure of a
capacitor is a dielectric material sandwiched between two electrodes.  The many available types of
capacitors are classed according to their dielectric types.  Figure 5-1 shows the range of generic
capacitance values and Table 5-1 lists the features of the different types of capacitors according to
their dielectric classification.  Capacitance C, dissipation factor D, and equivalent series resis-
tance (ESR) are the parameters generally measured.

A typical equivalent circuit for a capacitor is shown in Figure 5-2.  In this circuit, the capacitance
value C is the main element of the capacitor.  Rs and L are the parasitics existing in the lead
wires and electrodes.  Rp is a parasitic that represents leakage between the two electrodes.

Figure 5-1. Capacitance value by dielectric type

Figure 5-2. Capacitor equivalent circuit

5-1



Table 5-1. Capacitor types

Type Application Advantage Disadvantage

Film Blocking, buffering. Wide range of capacitance Medium cost
bypass, coupling. and voltage values
filtering to medium High IR, low D, good Q
frequency Stable

Tuning and timing Low TC
High voltage

Mica Filtering, coupling, and Low dielectric losses and good Low capacitance-to-volume
bypassing at high temperature, frequency, and ratio
frequencies aging characteristics

Resonant circuit, tuning Low AC loss, high frequency
High-voltage circuits High IR
Padding of larger Low cost

capacitors Extensive test data, reliable

Ceramic Bypassing, coupling, and High capacitance-to-volume ratio Poor temperature coefficients
filtering to high Chip style available and time stability
frequency Low D (low k type) Large voltage-dependency and 

Low cost suceptible to pressure 
(high k type)

Tantalum Blocking, bypassing. High capacitance-to-volume ratio Voltage limitation
electrolytic coupling, and filtering Good temperature coefficients Leakage current

in low–frequency Extensive test data Poor RF characteristics
circuits, timing, color Medium cost
convergence circuits, Failure mode: short
squib firing,
photoflash firing

Aluminum Blocking, bypassing. Highest capacitance-to-volume Affected by chlorinated
electrolytic coupling, and low ratio of electrolytics hydrocarbons

frequency filtering Highest voltage of electrolytics High leakage current
Photoflash Highest capacitance Requires reforming after period

Lowest cost per CV unit for of storage
commercial types Poor RF characteristics

High ripple capability Poor reliability
Short life
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When we measure capacitors, we have to consider these parasitics.  Impedance measurement
instruments measure capacitance in either the series mode (Cs-D, Cs-Rs) or in the parallel mode
(Cp-D, Cp-Rp).  The displayed capacitance value, Cs or Cp, is not always equal to the real capaci-
tance value C due to the presence of parasitic components.  For example, when the capacitor cir-
cuit shown in Figure 5-2 is measured using the Cs-Rs mode, the displayed capacitance value Cs is
expressed using the complicated equation shown in Figure 5-3.  Cs is equal to C only when the
value of Rp is sufficiently high (1/Rp<<1) and the reactance of L is negligible (ωL<<1/ωC).
Generally, the effects of L are seen in the higher frequency region where L is not negligible.
However, Rp can be disregarded in many cases.  For high-value capacitors, the reactance of the
paralleled C value is much lower than Rp.  For low-value capacitors, the value of Rp itself is very
high.  Therefore, most capacitors can be represented as shown in Figure 5-4.  Figure 5-5 (a) and
(b) shows the typical impedance (|Z|∠θ ) characteristics and Cs-D characteristics for ceramic
capacitors.  You can recognize the existence of L from the resonance point seen in the higher fre-
quency region.

Figure 5-3. Effects of parasitics in actual capacitance measurement

Figure 5-4. Practical capacitor equivalent circuit

Figure 5-5. Typical capacitor frequency response
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Precautions for capacitor measurement depend on the capacitance value being measured.

High-value capacitance measurement is a low impedance measurement.  Therefore, contact
resistance and residual impedance in the contact electrodes, test fixture, and cables must be mini-
mized.  Use a 4-terminal, 5-terminal or 4-terminal pair configuration to interconnect the DUT
with the measurement instrument.  When the 4-terminal or 5-terminal configurations are used,
be sure that a high test signal current flows through the cable.  To avoid the effects of electromag-
netic field coupling, connect the cables as shown in Figure 5-6.  Also, for an accurate measure-
ment, open/short compensation should be properly performed.  Especially for electrolytic capaci-
tors which require a DC bias voltage to be applied, open/short compensation should be performed
with the DC bias set to ON (0 V).

Figure 5-6. High-value capacitance measurement

Low-value capacitance measurement is a high impedance measurement.  Stray capacitance
between the contact electrodes is significant compared to the residual impedance.  To make inter-
connections, use 3-terminal (shielded 2T), 5-terminal (shielded 4T), or 4-terminal pair (4TP) con-
figurations.  Proper guarding techniques and open/short compensation can minimize the effects of
stray capacitance.  Refer to “Eliminating stray capacitance effects” in Section 3.  Figure 5-7 shows
typical procedure for performing open/short compensation for Agilent 16034E/G test fixtures
when measuring chip type capacitors.

Figure 5-7. Low-value chip capacitor measurement

Other than capacitance, the dissipation factor D and the equivalent series resistance ESR are the
important capacitor parameters measured.  Special attention must be paid especially for low D or
ESR measurements.  Contact resistance and residual impedance in the test fixture and cables
will affect the measurement result even when the 4-terminal configuration is used.  Refer to para-
graph 4-3, “Error caused by contact resistance” in Section 4.

The component dependency factors discussed in Section 1 must be taken into account especially
when measuring ceramic capacitors.  The capacitance of ceramic capacitors depends on frequency,
test signal voltage (AC), DC bias, temperature, and time.
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5-2. Inductor measurement

An inductor consists of wire wound around a core and is characterized by the core material used.
Air is the simplest core material for making inductors, but for volumetric efficiency of the induc-
tor, magnetic materials such as iron, permalloy, and ferrites are commonly used.  A typical equiv-
alent circuit for an inductor is shown in Figure 5-8 (a).  In this figure, Rp represents the iron loss
of the core, and Rs represents copper loss of the wire.  C is the distributed capacitance between
the turns of wire.  For small inductors the equivalent circuit shown in Figure 5-8 (b) should be
used.  This is because the value of L is small and the stray capacitance between the lead wires
becomes a significant factor.

Figure 5-8. Inductor equivalent circuit

Inductance measurement sometimes gives different results when measured using different
instruments.  This is due to several reasons which are:

Test signal current.  Cored inductors are test signal current dependent as shown in Figure 5-9
(a).  Many impedance measurement instruments output a voltage driven test signal.  Even when
two different instruments are set to output the same voltage, their output currents are different if
their source resistance is different.  Refer to Figure 5-9 (b).

Test fixture used.  When a metal object is located physically close to an inductor, leakage flux
from the inductor will cause eddy currents to flow in the metal.  The magnitudes of the resulting
eddy currents are different because of the different dimensions and physical geometry of different
test fixtures, as shown in Figure 5-10 (a), resulting in different measurement results.  This is
especially important for measuring open-flux-path inductors.  Figure 5-10 (b) shows experimental
measurement data for an Ls-Q measurement to see this effect.  When a 1.0 mm thick brass plate,
40 mm × 40 mm, is placed close to a small 100 µH RF inductor, measured Ls-Q values are
changed.

Q measurement accuracy. Generally, the Q measurement accuracy in impedance measurement
is not high enough, especially, when measuring high Q values.  Figure 5-11 shows relationship of
Q accuracy and measured Q values.  Because Q value is reciprocal of D (Q=1/D), the Q accuracy is
related to the specified D measurement accuracy as shown in the figure.  The Q measurement
error increases with DUT’s Q value and, therefore, the practically measurable Q range is limited

5-5



by allowable Q measurement error.  (For example, if the allowable Q error is 10% and if the
instrument’s D accuracy is ±0.001, the maximum measurable Q value is 90.9.  See Appendix E for
Q accuracy calculation equation.) Except for resonant method, the impedance measurement
instrument calculates the Q value by Q=X/R.  Measured vector of the relatively high Q inductor is
as shown in Figure 5-12.  The impedance measurement error is represented by a small circle
enclosing the error vector (∆).  The R value of a high Q (low loss) inductor is very small relative to
the X value.  Small changes in R results in large Q value changes (Q=X/R).  Therefore, error in R
measurement can cause significant error in Q, especially in high Q devices.

The following methods deliver improvement to Q measurement accuracy:

(1) Employ the instrument with better accuracy.
(2) Perform optimum compensation for residual resistance.
(3) Utilize equivalent circuit analysis function and calculate Q value from the equivalent circuit

parameter values obtained for the DUT.  Refer to paragraph 5-14 “Equivalent circuit analysis
function and its application” for details.

Figure 5-9. Inductor test signal current

Figure 5-10. Test fixture effects
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Figure 5-11. Q measurement accuracy

Figure 5-12. Q measurement error

Furthermore, the following phenomena may occur when a cored inductor is measured using an
auto balancing bridge type instrument.

When a high level test signal is applied to an inductor, measurement may be impossible for a
certain frequency range.  This is because of the nonlinearity of the core material which causes
harmonic distortion of the test signal current.  If the test signal level is high, an excessive distor-
tion signal will flow into the Lpot terminal of the instrument causing an unbalance or UNCAL
condition (Figure 5-13 (a)).  To reduce the effects caused by core material nonlinearity, decrease
the test signal level, and if the measurement frequency is fixed, connect a LPF at the Lpot termi-
nal as shown in Figure 5-13 (b).

When a test cable is used to measure low-value inductors, measurement may be impossible for
certain values of inductance at higher frequencies.  This is caused by resonance resulting from the
test cable capacitance at the Hp and Hc terminals and the DUT’s inductance.  In this case, the
capacitance of the cables should be changed so that the resonant frequency shifts to a much high-
er frequency than the highest test frequency to be used.  Reduce the length of the Hc and Hp
cables or use another type of cable to decrease the capacitance.
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Figure 5-13. Harmonic distortion caused by inductor
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5-3. Transformer measurement

A transformer is one end-product of an inductor.  So, the measurement techniques are the same
as for inductor measurement.  Figure 5-14 shows a schematic with the key measurement parame-
ters of a transformer.  A description of how to measure these parameters follows.

Primary inductance (L1) and secondary inductance (L2) can be measured directly by connecting
the instrument as shown in Figure 5-15.  All other windings should be left open.  Note that the
inductance measurement result includes the effects of capacitance.  If the equivalent circuit
analysis function of the Agilent’s impedance analyzer is used, the individual values for induc-
tance, resistance, and capacitance can be obtained.

Leakage inductance Obtain leakage inductance by shorting the secondary and measuring the
inductance of the primary as shown in Figure 5-16.

Figure 5-14. Transformer parameters Figure 5-15. Primary inductance measurement

Figure 5-16. Leakage inductance measurement
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Inter-winding capacitance (C) between the primary and the secondary is measured by connect-
ing one side of each winding to the instrument as shown in Figure 5-17.

Mutual inductance (M) Obtain mutual inductance (M) by measuring the inductance in the series
aiding and the series opposing configurations and then calculating the results using the equation
given in Figure 5-18 (a).  Mutual inductance can be measured directly if the transformer is con-
nected as shown in Figure 5-18 (b).  However, the applicable frequency range of this direct con-
nection technique is limited by the type and the parameter values of transformer being measured.
This method premises that stray capacitance effect including the distributed capacitance of wind-
ings and test lead capacitance is sufficiently small.  We recommend using both techniques and
cross checking the results.

Figure 5-17. Inter-winding capacitance measurement

Figure 5-18. Mutual inductance measurement
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Turns ratio (N) Approximate the turns ratio (N) by connecting a resistor in the secondary as
shown in Figure 5-19 (a).  From the impedance value measured at the primary, the approximate
turns ratio can then be calculated.  Direct turns ratio measurement can be made with a network
analyzer or built-in transformer measurement function (option) of the 4263B LCR meter.  Obtain
the turns ratio from the voltage ratio measurements for the primary and the secondary, as shown
in Figure 5-19 (b).

Figure 5-19. Turns ratio measurement
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The 4263B’s transformer measurement function enables the measurement of the N, M, L1 and
the DC resistance of the primary by changing measurement circuit connections with an internal
switch.  Figure 5-20 shows a simplified schematic block diagram of the 4263B.
A test signal is applied to the primary and, L1 is calculated from the measured values of V1 and
I1.  M is calculated from V2 and I1.  N is obtained from the ratio of V1 and V2.
In the DC resistance measurement, the applied voltage at the Hcur terminal is DC.  DC resis-
tance value is calculated from measured DC voltage V1 and current I1.
Using the 16060A transformer test fixture with the 4263B permits L2 and DC resistance mea-
surement for the secondary along with all the parameters for the primary.  The circuit connection
diagram of the 16060A is shown in Figure 5-21.

Figure 5-20. 4263B transformer measurement function schematic block diagram

Figure 5-21. 16060A circuit connection diagram

5-12



5-4. Diode measurement

The junction capacitance of a switching diode determines its switching speed and is dependent on
the reverse DC voltage applied to it.  An internal bias source of the measurement instrument is
used to reverse-bias the diode.  The junction capacitance is measured at the same time.  Figure 5-
22 shows the measurement setup.

For variable capacitance diodes (varactor diode) which utilize capacitance-bias characteristics, it
is important to measure capacitance accurately while applying an accurate DC bias voltage.
Figure 5-23 shows an example of measuring the C-V characteristics of a varactor diode.  Use a low
test signal level (typically 20 mV rms) to trace precisely the relationship of the capacitance to the
DC bias voltage.

The varactors for high frequency applications require Q factor or equivalent series resistance
(ESR) measurement along with capacitance at a frequency above 100 MHz.  The RF I-V measure-
ment instrument is adequate for this measurement.  It is possible to measure Q or ESR with the
same setup as for the C-V measurement, by merely selecting the desired parameter.

Figure 5-22. Reverse biased diode measurement setup

Figure 5-23. Varactor C-V characteristics
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5-5. MOS FET measurement

Evaluating the capacitances between the source, drain, and gate of an MOS FET is important in
design of high frequency and switching circuits.  Generally, these capacitances are measured
while a variable DC voltage source is connected to the drain terminal referenced to the source,
and the gate held at zero DC potential (Figure 5-24).  When an instrument is equipped with a
guard terminal and an internal DC bias source, capacitances Cds, Cgd, and Cgs can be measured
individually.  Figure 5-25 (a) through (c) shows the connection diagram for an instrument’s High,
Low, and Guard terminals.  The guard is the outer conductors of BNC connectors of the
UNKNOWN terminals.

Figure 5-24. Capacitance of MOS FET

Figure 5-25. MOS capacitance measurement
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5-6. Silicon wafer C-V measurement

The C-V (capacitance vs. DC bias voltage) characteristic of a MOS structure is an important mea-
surement parameter for evaluating silicon wafers. To evaluate the capacitance that varies with
applied DC bias voltage, capacitance is measured at a low AC signal level while sweeping a num-
ber of bias voltage points. Because the device usually exhibits a low capacitance (typically in the
low picofarads), the instrument must be able to measure low capacitance accurately with a high
resolution at a low test signal level. Precise bias voltage output is also required for accurate C-V
measurement. Typical C-V measurement conditions are listed in Table 5-2. We recommend that
you use an auto balancing bridge instrument to achieve the required performance.

Figure 5-26 shows a measurement setup example using the 4294A precision impedance analyzer
with a prober. It is important that the Low terminal of the auto balancing bridge instrument not
be connected to the substrate, since the substrate is electrically connected to the prober’s noisy
ground and the Low terminal is sensitive to the noise. If the wafer chuck (stage) of the prober is
isolated from the ground and effectively guarded, the shielding conductor of the 4TP cable can be
connected to the prober’s guard terminal to minimize stray capacitance around the probes.

When a device with low resistivity is measured, applied DC voltage decreases due to DC leakage
current through the device, and this may cause C-V measurement error. Using the DC bias auto
level control (ALC) function helps to lessen this problem.

Table 5-2. Typical C-V measurement conditions
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Frequency 10 kHz to 1 MHz
(10 kHz to 100 MHz for a thin gate oxide measurement)

Capacitance range 0.0001 pF to 1000 pF

Capacitance accuracy ± 0.1%

Test signal level 20 mVrms or 30 mVrms typical

DC bias voltage 0 V to ± 40 V

Bias voltage resolution ≤ 10 mV

Bias voltage accuracy ± 0.1%



Figure 5-26. C-V measurement setup
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As a result of extremely high integration of logic LSIs using MOS FETs, the thickness of the MOS
FETs’ gate oxide is becoming thinner (less than 2.0 nm), and such MOS FETs have been produced
recently. In evaluating these kinds of MOS FETs, leakage current becomes larger by the tunnel-
ing effect because the capacitance value of a thin gate oxide has high impedance, and most of the
test signal flows as leakage current. Consequently, measurement of the thin gate oxide cannot be
performed accurately. To solve this problem, test frequency should be set higher (1 MHz or more)
than usual to reduce the impedance value of the thin gate oxide as low as possible. It is also
important to simplify the measurement configuration to reduce residuals that exist in the mea-
surement path. If you perform high-frequency C-V measurement using the 4TP configuration, the
measurement error increases due to the residual inductance of the guard cable that is connected
between the probe heads. Also, the compensation does not work well because the distance
between probes easily varies. To solve this problem, a simplified 2T configuration with the
42941A impedance probe, as shown in Figure 5-27, is highly recommended for accurate high-fre-
quency C-V measurement.

Figure 5-27. Example of high-frequency C-V measurement system configuration

Coaxial cable

Probe head

Wafer prober
Chuck

Agilent 4294A

42941A Impedance Probe
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5-7. High-frequency impedance measurement using the probe

As shown in Table 5-3, an RF I-V instrument can be used for a wafer’s L, C, and R measurements,
which are measurements in RF frequencies. Figure 5-28 shows an example measurement configu-
ration when using the RF I-V instrument. This figure illustrates a measurement system configu-
ration for using the E4991A RF impedance/material analyzer with a probe. Option E4991A-010,
the probe station connection kit, makes it easier to establish a probing system that can perform
on-wafer measurements from 1 MHz to 3 GHz. This kit contains a small test head and an exten-
sion cable.

The E4991A has calibration, compensation, and DC bias functions, and compared to a network
analyzer, the E4991A provides a wider impedance measurement range and stable measurement
performance (refer to section 2-6).

Table 5-3. Application examples of high-frequency impedance measurements using probe
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Application Parameters DUT Frequency Measurement requirement

Spiral inductor L, Q RFIC for mobile GHz - Low inductance (nH range)
phone - High Q

Transistor, Diode C, D CMOS FET Pin diode MHz/GHz - Low inductance (nH range)
Transistor/diode - Low capacitance (pF range)
for optical use

Disk head C, D GMR head, MHz/GHz - Low inductance
magnetic head

IC package C, L IC package GHz - Low inductance (nH range)
- Low capacitance (pF range)

Memory C, D FRAM, DRAM, SRAM MHz, GHz - Low capacitance (pF range)

Dielectric material C, D Thin film layer, MHz, GHz - Wide impedance range
PC board - Low-loss

Chip L, Q Chip inductor MHz, GHz - Stable contact to small
inductor/capacitor C, D Chip capacitor electrodes

- Wide impedance range
- High Q/Low D



Figure. 5-28. 
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5-8. Resonator measurement

The resonator is the key component in an oscillator circuit.  Crystal and ceramic resonators are
commonly used in the kHz and MHz range.  Figure 5-29 (a) and (b) show typical equivalent circuit
and frequency response for a resonator.  A resonator has 4 primary elements; C, L, R, and Co.  C
and L determine the series resonant frequency, fr, and Co and L determine the parallel resonant
frequency, fa.  Qm (Mechanical Q) is another measurement parameter used to describe the perfor-
mance of resonators.  An impedance analyzer or network analyzer is used to measure the res-
onator characteristics.

In the following methods note the impedance analyzer has an advantage in the accuracy of the
measurement results.

Impedance analyzer advantages

• The impedance value at resonant frequency can be read directly.
(Network analyzers generally read in units of dB.)

• Measurement accuracy for low impedance at series resonance and for high impedance at par-
allel resonance are better than in network analysis.

• Measurement is made by simply connecting the resonator to the test fixture, and residuals
can be removed using the compensation function.
(Network analyzers require a π network circuit to be connected and cannot compensate for all
the residuals.)

• By using the equivalent circuit analysis function, all resonator parameters are easilly known.
(Network analyzers require complicated calculation or special analysis software to be used.)

Network analyzer advantages

• Faster measurement speed

• Higher measurement frequency range

Agilent’s impedance analyzers are suitable for testing resonators.  With its equivalent circuit
analysis function, each resonator parameter can be determined individually.  Also, I-Basic pro-
gramming function facilitates calculation of Qm and the extraction of other parameters.  Figure 5-
30 shows a resonator measurement setup using an auto balancing bridge instrument for frequen-
cy range up to approximately 100 MHz.  For higher frequency measurement, the same setup can
be used with RF I-V measurement instrument.  Take the following precautions to ensure accurate
measurements.

1. It is often assumed that the series resonant frequency fr is coincident with minimum imped-
ance point.  This is practical for an approximate measurement, but it is not the true value of
fr.  The true value of fr is given at θ= 0 and is typically 1 to 2 Hz above the minimum imped-
ance point.  Search the 0°-phase angle point for fr measurement.
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2. It is important to properly set the oscillator output level; resonators are test signal depen-
dent.  The minimum impedance value and the series resonant frequency may vary depending
on the applied test signal level.  Decrease the test signal level while monitoring the test cur-
rent (I-monitor function) until the specified test level is obtained.

3. Perform an open/short compensation.  Use ALL POINT compensation mode instead of the
interpolation mode because resonator measurements are narrowband.  Also, pay special
attention to the short compensation procedure.  Improper short compensation will result in
measurement error for fr and the minimum impedance value.

4. Keep the measurement temperature constant.  Resonators are temperature sensitive.  Place a
resonator into the test fixture with your hand and wait until the series resonant frequency
becomes constant.

Figure 5-31 (a) and (b) shows the measurement result for a crystal resonator.

Figure 5-29. Typical resonator characteristics

Figure 5-30. Resonator measurement setup
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Figure 5-31. Resonator equivalent circuit mode
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5-9. Cable measurements

The characteristic impedance Z(Ω), capacitance per unit length C (pF/m) and the propagation con-
stants α (dB/m) and β (rad/m) are parameters commonly measured when evaluating cables.
Figure 5-32 shows a measurement setup for coaxial cable using an auto balancing bridge type
impedance analyzer and the 16047E test fixture.  Note that the High terminal of the test fixture
is connected to the outer conductor of the cable.  This measurement setup avoids the effects of
noise picked up by the outer conductor of the cable, and is important to regard when the cable
length is long.  The characteristic impedance and propagation constants are determined by mea-
suring the impedance of the cable with its other end opened and shorted (open-short method), and
calculating using the equations shown in Figure 5-32.
The I-BASIC programming function of the impedance analyzer facilitates the calculations
required.  Figure 5-33 demonstrates an example of measured characteristic impedance vs fre-
quency.

Figure 5-32. Coaxial cable measurement setup and parameter calculation
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Figure 5-33. Measurement result

Balanced cable measurement

A balun transformer is required for measuring balanced cable because the instrument’s
UNKNOWN terminal is unbalanced.  Refer to the next paragraph titled “Balanced device mea-
surement” for details of measurement method.  Figure 5-34 shows measurement setup for bal-
anced cable.  Agilent 16314A balanced/unbalanced 4-terminal converter can be used to measure
balanced cables from 100 Hz to 10 MHz using an auto balancing bridge instrument.  For measure-
ment using a network analyzer, the 16315A, 16316A and 16317A are available.  These converters
have different characteristic impedance to allow impedance matching with DUT (cable) imped-
ance of 50 Ω, 100 Ω and 600 Ω, respectively, as shown in Table 5-4.

Table 5-4. 16314A, 16315A, 16316A and 16317A characteristic impedance

Figure 5-34. Balanced cable measurement setup
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Converter Characteristic impedance Applicable instrument

Unbalanced Balanced
side side

16314A 50 Ω 50 Ω Auto balancing bridge instrument

16315A 50 Ω 50 Ω Network analyzer

16316A 50 Ω 100 Ω
16317A 50 Ω 600 Ω



5-10. Balanced device measurement

When a balanced DUT (such as balanced cable or the balanced input impedance of a differential
amplifier) is measured, it is necessary to connect a “balun” (balance-unbalance) transformer
between the instrument and the DUT.  Looking from the DUT side, the UNKNOWN terminals of
the impedance measurement instrument are in an “unbalanced” configuration.  Figure 5-35 (a)
shows an example of an auto balancing bridge instrument.  Its Low terminal is considered a “vir-
tual ground” because it is held at approximately a 0 V potential.  When a 1:1 balun transformer is
connected as shown in Figure 5-35 (b), the instrument can measure a balanced DUT directly.

An actual balun transformer has a limited frequency range.  The measurement must be made
within its frequency range.  In addition to Agilent’s balanced/unbalanced converters, various
types of commercial bulan transformers are available for various frequency ranges.  To select the
appropriate balun transformer, check the frequency range and the impedance of the transformer’s
balanced (DUT) side.  Its impedance should be close to the characteristic impedance of the DUT.
The impedance of the unbalanced side should be 50 Ω or 75 Ω as appropriate for the measurement
instrument.

Open/short/load compensation for the balun transformer is required when the turns ratio of the
balun transformer used is not 1:1, or when an accurate measurement is needed.  Open/short com-
pensation is not adequate because the balun transformer will produce both magnitude (|Z|) and
phase errors due to its transfer function characteristic.  The terminal connectors of balanced side
should be connectable for both the standard devices used for open/short/load compensation and
the DUT.  Figures 5-36 (a) through (d) show an example of an actual balun configuration and
compensation.

Figure 5-35. Balanced device measurement
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Figure 5-36. Measurement setup
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5-11. Battery measurement

The internal resistance of a battery is generally measured using a 1 KHz AC signal.  When a bat-
tery is connected directly to the auto balancing bridge type impedance measurement instrument,
the instrument becomes the DC load, typically 100 Ω for the battery.  Figure 5-37 shows the rec-
ommended setup for this measurement.  C1 and C2 block DC current flowing into the instrument.
The value of C1 should be calculated using the minimum measurement frequency.  For example,
when the measurement is made at 1 kHz and above, C1 should be larger than 32 µF.  The voltage
rating of C1 and C2 must be higher than the output voltage of the battery.

Figure 5-37. Battery measurement setup
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5-12. Test signal voltage enhancement

When measuring the impedance of test signal level dependent devices, such as liquid crystals,
inductors and high value ceramic capacitors, it is necessary to vary the test signal voltage.  Many
of the auto balancing bridge instruments employ a test signal source whose output is variable typ-
ically from 5 mV to 1V rms.  Particularly, the 4284A precision LCR meter with the option 4284A-
001 can output a test signal voltage of up to 20 V rms and is the most suitable for this application.
In some cases, measurement needs exist for evaluating impedance characteristics at large test
signal voltages of interest.  There are such cases that higher test voltages than the maximum
oscillator output of the instrument are required.  For auto balancing bridge instruments, output
voltage enhancement is possible if the test signal is amplified as shown in Figure 5-38.  A voltage
divider is also required so that the input voltage of the Hp terminal is the same as the output
voltage of the Hc terminal.  The DUT’s impedance is a concern.  Because the current flowing
through the DUT is also amplified and flows directly into the Rr circuit, it should not exceed the
maximum allowable input current of the Lc terminal.  Typically, this is 10 mA.  For example,
when a 10 V rms signal is applied to the DUT, the minimum measurable impedance is 10 V/10
mA = 1 kΩ.  Also, it should be noted that measured impedance is 1/A (gain of amplifier) of an
actual DUT’s impedance.  For example, when a 10 pF capacitor is measured using ×10 amplifier,
displayed value will be 100 pF.

Note: For RF I-V instrument, it is impossible to amplify the test signal because at the test port the signal source output

is not separate from the voltmeter and current meter inputs.

Figure 5-39 shows a measurement setup example to boost the test signal voltage by factor of 10
(A=10).  The amplifier used in this application should have constant gain in the measurement fre-
quency range and output impedance less than 100 Ω.  R3 and C2 in Figure 5-39 are used to com-
pensate for measured impedance value and its frequency response, respectively.  To increase mea-
surement accuracy R3 and C2 need adjustment.  This can be accomplished by comparing the mea-
sured values with known values of a reference device.  For better accuracy, perform the
open/short/load compensation at a test signal level below 1 V rms (not to cause an excessive cur-
rent to flow in short condition.) The required circuit constants of the divider are different depend-
ing on the input impedance of the Hp terminal of the instrument.

Figure 5-38. Schematic diagram of test signal voltage enhancement circuit
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Figure 5-39. Connection diagram of test signal voltage enhancement circuit
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5-13. DC bias voltage enhancement

DC biased impedance measurement is popularly used to evaluate the characteristics of the device
under the conditions where the device actually operates in circuits.  The internal DC bias function
of the impedance measurement instruments is normally designed to apply a bias voltage to capac-
itor DUTs.  It is suited to DC biased capacitor measurements.
Maximum applicable bias voltage is different for instruments.  The internal bias source can typi-
cally output a variable bias voltage of up to ± 40 V through the Hc terminal.  An external DC volt-
age source is required to apply a DC bias voltage that must exceed the limits of the internal DC
bias function.

Some instruments have a DC bias input terminal for connecting an external DC voltage source.
Use an external bias fixture or adapter for other instruments with no internal DC bias and for DC
bias requirements that exceed the maximum voltage of the bias input terminal.  Table 5-5 lists
the available bias fixture and adapters.

Table 5-5. External bias fixture and adapters

Note: Applicable DUT types for the 16065C and 16200A depend on the test fixture connected.

Use the 16065A external voltage bias fixture, which has a built-in protection circuit, for leaded
devices and high voltage DC bias of up to ± 200V.  Figure 5-40 shows the setup for a + 200 V DC
biased measurement.  Since the 16065A is equipped with a bias monitor output, a digital volt-
meter is used to monitor the DC bias voltage actually applied to the DUT.  The 16065C external
voltage bias adapter is designed to apply a bias voltage of up to ± 40 V from an external voltage
source.  This adapter can be connected between any 4-terminal pair test fixture and instrument’s
UNKNOWN terminals, thus allowing the use of an appropriate test fixture that accommodates
the DUT.  The 16200B external DC bias adapter operates specifically with the RF I-V measure-
ment instruments and the 4294A with the 42942A.  This adapter resolves both voltage bias and
current bias needs.  When used for capacitor measurements, it allows a bias voltage of up to 40 V
DC across the DUT by using an external DC voltage source.
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Model Product Applicable Maximum Usable Applicable
number type instrument bias voltage frequency DUT type*

and current range

16065A Bias fixture 4-terminal ± 200 V, 50 Hz to Leaded
pair 2 mA 2 MHz

16065C Bias adapter 4-terminal ± 40 V, 50 Hz to Leaded and
pair 20 mA 2 MHz SMD

16200B Bias adapter RF I-V ± 40 V, 5 A 1 MHz to Leaded and
4294A+ 1 GHz SMD
42942A



Figure 5-40. External DC bias measurement setup

External DC voltage bias protection in 4TP configuration

If the measurement frequency is above 2 MHz or the type of DUT is not suitable for these exter-
nal bias fixtures, it is recommended to use the protective circuit shown in Figure 5-41.  This cir-
cuit is usable with bias voltage up to ± 200 V.  To reduce the effects of this additional circuit, per-
form the open/short compensation with no bias voltage applied.

Figure 5-41. External DC voltage bias protection circuit
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5-14. DC bias current enhancement

DC current biasing is used for inductor and transformer measurement.  In low frequency region,
the 4284A precision LCR meter with the 42841A bias current source is suitable for this applica-
tion because it can apply up to 20 A of bias current.  (This can be extended up to 40 A if two
42841As are connected in parallel.)
To deliver a bias current in RF impedance measurement, the 16200B external DC bias adapter
can be used with the RF I-V measurement instrument.  The 16200B allows you to supply a bias
current of up to 5 A across the DUT by using an external DC current source.  The 16200B is
directly attached to the 7 mm test port and, the test fixture onto the 16200B as shown in Figure
5-42.  To minimize the bias adapter induced errors, perform open/short/load calibration at the test
fixture terminals with no bias voltage/current applied.

Figure 5-42. External DC bias measurement using the RF I-V measurement instrument

External current bias circuit in 4TP configuration

For external current bias measurement using other auto balancing bridge instruments, an exter-
nal DC current source and a protection circuit are required.  The following describes a protection
circuit that can be used for DC bias current measurements up to 10 A.  Figure 5-43 shows the pro-
tection circuit schematic diagram.
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Take caution of electrical shock hazards when using the external DC bias circuit.

A large energy is charged in L1 and L2 as well as the DUT (Lx) by a bias current delivered from
an external power supply and, when the DUT is disconnected from the measurement circuit, the
DUT generates a very high spike voltage (kick-back voltage) to discharge the energy.  To ensure
operator safety, decrease the bias current to zero before disconnecting the DUT.
L1 and L2 discharge through the protection circuit the instant the DUT is disconnected from the
measurement circuit or the bias current is turned off.  To prevent the instrument from being dam-
aged by harmful discharge, the protection circuit must be designed carefully for the withstanding
voltage/current rating of each circuit component.  Refer to Application Note 346 “A Guideline for
Designing External DC Bias Circuit” for more information.

Figure 5-43. External current bias protection circuit
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5-15. Equivalent circuit analysis and its application

Agilent’s impedance analyzers are equipped with an equivalent circuit analysis function.  The
purpose of this function is to model the various kinds of components as three- of four-element cir-
cuits.  The values of the component’s main elements and the dominant residuals can be individu-
ally determined with this function.

Many impedance measurement instruments can measure the real (resistive) and the imaginary
(inductive or capacitive reactance) components of impedance in both the series and parallel
modes.  This models the component as a two-element circuit.  The equivalent circuit analysis
function enhances this to apply to a three- or four-element circuit model using the component’s
frequency response characteristics.  It can also simulate the frequency response curve when the
values of the three- or four-element circuit are input.

Impedance measurement at only one frequency is enough to determine the values of each element
in a two-element circuit.  For three- or four-element circuits, however, impedance measurements
at multiple frequencies are necessary.  This is because three (four) equations must be set up to
obtain three (four) unknown values.  Since two equations are set up using one frequency (for the
real and imaginary), one more frequency is necessary for one or two more unknowns.  The equiva-
lent circuit analysis function automatically selects two frequencies where the maximum measure-
ment accuracy is obtained.  (This is at the frequency where the √

—
2 × minimum value or √

—
2 × maxi-

mum value is obtained).  If the equivalent circuit model (described later) is properly selected,
accuracy for obtained values of a three- or four-element circuit is comparable to the measurement
accuracy of the instrument.

The equivalent circuit analysis function has five circuit modes as shown in Figure 5-44, which
also lists their applications.  The following procedure describes how to use the equivalent circuit
analysis function.

1. Perform a swept frequency measurement for the unknown DUT using the |Z|-θ or |Y|-θ
function.  The sweep mode can be either linear or logarithmic.

2. Observe the frequency response curve.  See the typical frequency response curve given in
Figure 5-44.  Choose the circuit mode that is most similar to the measured curve.

3. Calculate the equivalent parameters by pressing the “Calculate Parameter” key (or the key
with the same function.) Three or four values for selected circuit mode are calculated and dis-
played.

4. Check the simulated frequency response curve.  The simulated curve is calculated from the
obtained equivalent parameters.  If the fitting quality between the simulated curve and the
actual measurement results is high, the proper circuit mode was selected.  If not, try one of
other circuit modes.
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Figure 5-44. Equivalent circuit models

If the simulated frequency response curve partially fits the measurement results, it can be said
that the selected circuit mode is proper only for that part of the frequency range that it fits.
Figure 5-45 (a) shows an example measurement for a low value inductor.  As shown in Figures 5-
45 (b) and (c), the measurement result does not agree with both the simulated curves over the full
frequency range.  The higher frequency region is well simulated by circuit mode A and the lower
frequency region by circuit mode B.  In other words, the circuit mode for the inductor is like the
circuit mode A at the higher frequencies and like circuit mode B at lower frequencies.  At lower
frequencies L is the dominant element, circuit mode A describes the response curve best.  At the
higher frequencies L and R are the dominant circuit elements, circuit B describes the response
curve best.  From these facts, we can determine that the real circuit mode should be the combina-
tion of circuit modes A and B, and is like Figure 5-46 (a).  Figure 5-46 (b) lists an I-Basic program
to simulate the frequency response for the circuit given in Figure 5-46 (a).  The value of Rs should
be keyed in from the front panel and entered into the internal register, and then calculation is
executed to see the simulated curve.  In this example, the simulated curve agreed with the actual
result as shown in Figure 5-46 (c) when the value of Rs is 1 Ω.
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Figure 5-45. Frequency response simulation for a low-value inductor

Figure 5-46. Equivalent circuit enhancement
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10 DIM Ztrc(1:201,1:2),Fmta$[9],Fmtb$[9]
20 DIM Ttrc(1:201,1:2)
30 DIM R(201),R1(201)
40 DIM X(201)
50 DIM Zdat(1:201,1:2)
60 DIM Tdat(1:201,1:2)
70 !
80 DEG
90 !
100 IF SYSTEM$(“SYSTEM ID”)=”HP4294A” THEN
110 ASSIGN @Agt4294a TO 800
120 ELSE
130 ASSIGN @Agt4294a TO 717
140 END IF
150 !
160 OUTPUT @Agt4294a;”FORM4”
170 !
180 OUTPUT @Agt4294a;”TRAC A”
190 OUTPUT @Agt4294a;”FMT?”
200 ENTER @Agt4294a;Fmta$
210 OUTPUT @Agt4294a;”OUTPMTRC?”
220 ENTER @Agt4294a;Ztrc(*)
230 !
240 OUTPUT @Agt4294a;”TRAC B”
250 OUTPUT @Agt4294a;”FMT?”
260 ENTER @Agt4294a;Fmtb$

270 OUTPUT @Agt4294a;”OUTPMTRC?”
280 ENTER @Agt4294a;Ttrc(*)
290 !
300 OUTPUT @Agt4294a;”DATMEM”
310 !
320 INPUT “Rs=”,Rs
330 !
340 FOR I=1 TO 201
350 R(I)=Ztrc(I,1)*COS(Ttrc(I,1))
360 X(I)=Ztrc(I,1)*SIN(Ttrc(I,1))
370 R1(I)=R(I)+Rs
380 Zdat(I,1)=SQR(R1(I)^2+X(I)^2)
390 Tdat(I,1)=ATN(X(I)/R1(I))
400 NEXT I
410 !
420 OUTPUT @Agt4294a;”TRAC A”
430 OUTPUT @Agt4294a;”FMT “&Fmta$
440 OUTPUT @Agt4294a;”INPUDTRC “;Zdat(*)
450 !
460 OUTPUT @Agt4294a;”TRAC B”
470 OUTPUT @Agt4294a;”FMT “&Fmtb$
480 OUTPUT @Agt4294a;”INPUDTRC “;Tdat(*)
490 !
500 GOTO 320
510 END

(a)

(a)

(b) Circuit mode A (c) Circuit mode B

(b)

(c)



Measurement accuracy can be improved by taking advantage of the equivalent circuit analysis.
Figure 5-47 (a) shows an Ls-Q measurement example for an inductor.  In this example, an imped-
ance analyzer measures the Q value at 10 MHz.  Measured data read by MARKER is Ls=4.78 µH
and Q=49.6.  The Q measurement accuracy for this impedance at 10 MHz is calculated from the
instrument’s specified D measurement accuracy of ± 0.011, and the true Q value will be between
32 and 109.  The reason that the uncertainty of the Q value is so high is that the small resistive
component relative to reactance cannot be measured accurately.  It is possible to measure the
resistive component accurately if the inductive component is canceled by the capacitance connect-
ed in series with the inductor.  When a loss-less capacitor of 1/(ω2L)=53 pF is connected, the
inductor will resonate at 10 MHz.  (In this example, a 46 pF capacitor is used for resonance.)
Figure 5-47 (b) shows the |Z|-θ measurement results when a 46 pF capacitor is connected.  This
result can be modeled using circuit mode D, and the value of R is calculated to be 8.51 Ω.  The
value of L is obtained as 4.93 µH.  Since the equivalent circuit analysis function uses approxi-
mately 8.51 × √

—
2 Ω data to calculate the R value, the specified measurement accuracy for a 12 Ω

resistance measurement can be used and is ± 1.3%.  Therefore, the Q value can be calculated from
Q=ωLs/R=36.4 with an accuracy of ± 2.4% (sum of the L accuracy and R accuracy.) In this mea-
surement, capacitance value does not have to be exactly the calculated value but the loss of the
capacitor should be very small because it will affect the calculated Q value.

Figure 5-47. Q measurement accuracy improvement
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APPENDIX A

The concept of a test fixture’s additional error

1. System configuration for impedance measurement 

Very often, the system configured for impedance measurements utilizes the following components
(See figure below as well).

1. Impedance measurement instrument
2. Cables and adapter interfaces
3. Test fixture

System configuration for impedance measurement

The Impedance measurement instrument’s characteristic measurement accuracy is defined at the
measurement port of the instrument.  This means that the accuracy at the measurement port has
traceability and the measurement values are guaranteed. 
In an actual measurement, there can be an extension of the measurement port with a cable or an
adapter conversion to match the test fixture’s terminal configuration.  For this reason, cables and
conversion adapters are provided for connectivity with the measurement port.  These cables (and
adapters) are designed with the intent to maintain high accuracy of the measurement instrument
while extending the measurement port.  Most of the time, the measurement accuracy of the
instrument and the cable (or adapter) are specified together as a whole. 
A test fixture is an accessory used to connect the DUT to the measurement instrument.  Many test
fixtures are provided to adapt to various shapes and sizes.  It is either connected directly to the
measurement port of the instrument or to the port of the extension cable or conversion adapter as
described earlier.  Its structure determines the applicable frequency range and signal level.
Hence, it is necessary to use the appropriate one for the corresponding measurement conditions.
In addition, each test fixture has its own characteristic additional error, which is listed in its oper-
ational manual.

2. Measurement system accuracy

The equation for the accuracy of a measurement system is shown below:

(Measurement accuracy) = (Instrument’s accuracy) + (Test fixture’s additional error)

The measurement instrument’s accuracy is determined by an equation with terms, which are depen-
dent on frequency, measured impedance and signal level.  By substituting the respective measure-
ment conditions into the equation, the measurement accuracy is calculated.  If a cable or a conversion
adapter is used, then the specified measurement accuracy is the accuracy of the measurement instru-
ment with the cable or adapter.  This combined measurement accuracy is shown in the instrument’s
operational manual.
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The equation for the test fixture’s additional error is shown below:

Ze = ± { A + (Zs/Zx + Yo•Zx) × 100}  (%)
De = Ze/100 (D ≤ 0.1)

Ze : Additional error for impedance (%)
De : Additional error for dissipation factor
A : Test fixture’s proportional error (%)
Zs/Zx × 100 : Short offset error (%)
Yo•Zx × 100 : Open offset error (%)
Zs : Test fixture’s short repeatability (Ω)
Yo : Test fixture’s open repeatability (S)
Zx : Measured impedance value of DUT (Ω)

Proportional error, open and short repeatability are mentioned in the test fixture’s operational
manual and in the accessory guide. By inputting the measurement impedance and frequency (pro-
portional error, open and short repeatability are usually a function of frequency) into the above
equation, the fixture’s additional error can be calculated.

Proportional error:
The term, proportional error (A), was derived from the error factor, which causes the absolute
impedance error to be proportional to the impedance being measured. If only the first term is
taken out of the above equation and multiplied by Zx, then ∆Z = A•Zx (Ω). This means that the
absolute value of the impedance error will always be A times the measured impedance. The large-
ness of proportional error is dependent upon how complicated the test fixture’s construction is.
Conceptually, it is dependent upon the stability of each element of the fixture’s equivalent circuit
model. From previous experience, proportional error is proportional to the frequency squared.

Short offset error:
The term, Zs/Zx × 100, is called short offset error. If Zx is multiplied to this term, then ∆Z = Zs(Ω).
It can be concluded that this term affects the absolute impedance error, by adding an offset. Short
repeatability (Zs) is determined from the variations in multiple measurements of the test fixture
in short condition. After performing short compensation, the measured values of the short condi-
tion will distribute around 0 in the complex impedance plane. The maximum value of the imped-
ance vector is defined as short repeatability. This is shown in the figure below. The larger short
repeatability is the more difficult it is to measure small impedance values. For example, if the test
fixture’s short repeatability is 100 mΩ, then the additional error of an impedance measurement
under 100 mΩ will be more than 100 %. In essence, short repeatability is made up of a resistance
and an inductance part, which become larger as the frequency becomes higher. 

Definition of short repeatability
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Open offset error:
The term, Yo•Zx × 100 is called open offset error.  If the same analysis is carried out with admittance,
then it can be concluded that this term also affects the absolute admittance error, by adding an offset.
Open repeatability (Yo) is determined from the variations in multiple measurements of the test fix-
ture in open condition. As shown in the figure below, the maximum value of the admittance vector in
the complex admittance plane is defined as open repeatability.  The larger open repeatability is, the
more difficult it is to measure large impedance values.  Open repeatability is made up of a resistance
and a capacitance part, which become larger as the frequency becomes higher.

Definition of open repeatability

3. New market trends and the additional error for test fixtures

New devices:
Recently, the debut of extremely low ESR capacitors and the trend to use capacitors at much high-
er frequencies, have made low impedance measurements more strongly demanded than in the
past. As a result, the test fixture’s short repeatability has become increasingly important. In the
figure below, the relationship between proportional error, short offset error and frequency are
shown when measuring low impedance. Notice that when the measured impedance is less than
100 mΩ, short offset error influences the entirety of the test fixture’s additional error. As shown in
the figure below, when the DUT's impedance is 100 mΩ and the test fixture’s short repeatability is
10 mΩ, the short offset error will be 10%. Since the proportional error is minimal in low frequen-
cies, the additional error will be 10% as well.
For the additional error of test fixtures, up until now, it was common to just specify the propor-
tional error (A). As shown in the 10 Ω measurement case (same figure down below), if the mea-
sured impedance is large in comparison to the test fixture’s short repeatability, then short offset
error can be ignored completely. This is the reason why open and short offset error was not speci-
fied previously. Test fixtures that are only specified with proportional error are due to this reason.
On the contrary, for measured impedance from 1 Ω to 10 kΩ proportional error (A) alone is suffi-
cient to express the test fixture’s additional error. 

Relationship between proportional error, short offset error and frequency when measuring low impedance
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Terminal connection method:

In order to make short repeatability small, there are test fixtures which utilize the 4-terminal con-
nection method (for example 16044A).  By employing this technique, the effect of contact resis-
tance is reduced and short repeatability is drastically improved. As a result, the range of accurate
low impedance measurements is vastly expanded.
In the figure below, the difference between the 2-terminal connection and the 4-terminal connec-
tion is shown. In a 2-terminal connection, the contact resistance, which exists between the fix-
ture’s contact and the DUT, is measured together with the DUT’s impedance. Contact resistance
cannot be eliminated by compensation because the value changes each time the DUT is contacted. 

2 terminal and 4 terminal connection techniques 

In a 4-terminal connection, the voltage and current terminals are separate. Since the input imped-
ance of the voltmeter is large, no current flows to the voltage terminals. Hence, the voltage that is
applied across the DUT can be accurately detected without being affected by the contact resistance.
Also, the current that flows through the DUT flows directly into the current terminal and is accu-
rately detected without being affected by the contact resistance. Due to the reasons stated above, it
is possible to eliminate the effect of contact resistance and realize a small short repeatability.

Test fixture’s adaptability for a particular measurement:
In order to make use of what has been discussed previously, the test fixture’s adaptability for a
particular measurement will be focused upon. To see whether a test fixture is adaptable, it is
important to think about the test fixture’s additional error (proportional error, short and open
repeatability), measurement impedance and the test frequency range.

If the measurement impedance is in the 1 to 10 kΩ range, use only proportional error to calculate
the additional error of the test fixture. It is fine to assume that this is a close approximation to the
fixture’s additional error.

If the measurement impedance is not in this range, use proportional error, short and open offset
errors to calculate the test fixture’s additional error. Recent test fixtures have all three terms
specified in their operational manual, so use these values for the calculation.  

Some of the recent test fixtures (16044A), due to their structure, have different performance char-
acteristics with different measurement instruments. For these test fixtures refer to their opera-
tional manual for more details about the specifications.

So, how are test fixtures, which are not specified with short and open repeatability, assessed
whether they are adaptable or not?  This assessment is made possible by using the following
method to approximate short and open repeatability.  To measure a test fixture’s short repeatabili-
ty, measure the impedance of the short condition after performing short compensation. Take the
shorting plate out of the fixture and then insert it back in. Measure the short condition again. By
repeating this process at least 50 times, it will show the variations in the short condition (See fig-
ure below). The final step to determine an approximation of short repeatability is to add a margin
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to the values obtained. For open repeatability, measure the admittance of the test fixture’s open
condition. In the same way, determine open repeatability by measuring at least 50 times. 

Measurement of short repeatability (16034G)

Measurement settings
Measurement instrument : 4294A
Measurement frequency : 40 Hz-10 MHz
Measurement parameter : Z-θ
Compensation : Performed short compensation
Bandwidth : 3
Measurement method : Inserted the shorting plate, measured the short condition, and then

removed the shorting plate. Repeated this for 50 times.
Display method : Overlaying traces by using the accumulate mode

Lastly of all, a method to visually analyze the accurate measurement range of a test fixture is
introduced. This method is only appropriate when all three error-terms (proportional error, open
and short repeatability) are known. The table below shows the additional error of 16034G.  The
whole equation, with all three terms can be solved for measurement impedance rather than addi-
tional error, for example when additional error is equal to 0.5%.  If the obtained impedance values
are plotted with measurement impedance (y-axis) against frequency (x-axis), a graph similar to
the one shown down below can be obtained.  The shaded area shows the range of impedance that
can be measured with an additional error better than 0.5%. In the same way, other graphs can be
drawn with other additional error values to better visualize the accuracy that can be obtained for
a given impedance and frequency range. The operational manuals of recent test fixtures present
such graphs. 

Additional error of 16034G

Specifications of
Short Repeatability

Actual Measurement
of Short Repeatability

Additional error ≤ 0.5%

Type of error Impedance

Proportional error 0.5 × (f/10)2 [%]

Open repeatability 5 + 500 × (f/10) [nS]

Short repeatability 10 + 13 × (f/10) [mΩ]

Specifications of
short repeatability

Actual measurement
of short repeatability
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APPENDIX B

Open and short compensation

The open/short compensation used in Agilent’s instrument models the residuals as a linear net-
work represented by the ABCD parameters, much like the open/short/load compensation tech-
niques described previously in this document.  The difference is that the open/short compensation
assumes the unknown network as a “symmetrical network”.  From this restriction, the open/short
compensation does not require the load measurement to know each value of ABCD parameters.  A
theoretical explanation and procedure are given in Figure B-1.

Figure B-1. Open/short compensation (1 of 2)
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Figure B-1. Open/short compensation (2 of 2)
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APPENDIX C

Open, short and load compensation

The open/short/load compensation requires the measurement data of a standard DUT with known
values in addition to the open/short measurement data.  The residuals of a test fixture, cables or
an additional circuit can be defined as a four-terminal network (a two-terminal pair network)
expressed with A, B, C, D parameters as shown in Figure C-1.

Figure C-1. Open/short/load compensation model

With the assumption that a DUT with impedance of Z2 is connected to the front panel terminals,
the instrument would measure an impedance value of Z1.  The following relationship defines Z1:

Given: Z1=V1/I1 and Z2=V2/I2

AV2+BI2 AZ2+B
Z1= —————— = —————

CV2+DI2 CZ2+D

The parameters of A, B, C and D can be removed when using the following definitions:

Zo: Measured value when the instrument terminals are open.
Zs: Measured value when the instrument terminals are shorted.
Zsm: Measured value of the standard DUT when connected to the test setup.
Zstd: True (or expected) value of the standard DUT.
Zxm: Measured value of DUT.
Zdut: Corrected value of the DUT.

All of the analysis yields an equation that corrects for impedance error factors:

Zstd (Zo - Zsm) (Zxm - Zs)
Zdut = ————————————————

(Zsm - Zs) (Zo - Zxm)

(Note that each parameter has real and imaginary components.)
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APPENDIX D

Electrical length compensation

A test port extension can be modeled using a coaxial transmission line as shown in Figure D-1.
When an impedance element ZL is connected to the tip of the line, the measured impedance value
Zi at the other end of the line (that is, test port) is given by the following equation:

ZL + Zo tan h γr
Zi = Zo ———————————

ZL tan h γr+ Zo

γ = α + jβ = √ZY = √(R+jωL)(G+jωC)

Where, γ: Propagation constant of the transmission line
α: Attenuation constant of the transmission line
β: Phase constant of the transmission line
r: Transmission line length
Zo: Characteristic impedance of the transmission line

Figure D-1. Transmission line model of test port extension

The DUT impedance value is therefore calculated as:

Zo tan h γr - Zi
ZL = Zo ———————————

Zi tan h γr - Zo

If the transmission line has no propagation loss (α=0, β=ω√LC
–––

), the equation for ZL is simplified
as follows:

Zi - jZo tan βr
ZL = Zo —————————

Zo - jZi tan βr

The true ZL value can be calculated if the phase shift quantity, βr, is known.  Here, the phase
constant β is related to the test signal wavelength γ in the transmission line as follows:

2π
β = ———

λ
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When a (virtual) transmission line in which the signal wavelength is equal to the wavelength in
vacuum is assumed, the virtual line length (re) that causes the same phase shift (βr) as in the
actual line is given by the following equation:

λo                                        2πr 2πre
re = ——r ( because βr = ——— = —————  )

λ λ λ o

Where, λo: wavelength in vacuum
λ: actual wavelength in transmission line

Therefore, the phase shift quantity, βr, can also be expressed by using the phase constant βo in
vacuum and the virtual line length re (because βr=βore.) Since the βo value is derived from
physical constants (βo=2π/λo=ω/c, c: velocity of light), it is possible to represent the phase shift by
using only the virtual line length re.

This virtual line length is specified as the electrical length of the test fixtures and airline exten-
sions.  Accordingly, the compensation procedure to derive the impedance ZL can be simplified by
using the electrical length value.  In case of the coaxial line, since the β value is proportional to
√
—
C (C: distributed capacitance of the line), the electrical length is proportional to the square root

of the dielectric constant of the insulation layer between the inner and outer conductors.
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APPENDIX    E

Q Measurement accuracy calculation

Q measurement accuracy for auto balancing bridge type instruments is not specified directly as
±%.  Q accuracy should be calculated using the following equation giving the possible Q value tol-
erance.

Where: Qt is the possible Q value tolerance
Qm is measured Q value
∆D is D measurement accuracy

For example, when the unknown device is measured by an instrument which has D measurement
accuracy of .001, and the displayed Q value is 200, the Q tolerance is calculated as:

This result means that the true Q value will be between 167 and 250.

Note: The following equation may be used to calculate the Q value tolerance. (The result is the
same at that from the above equation.)

Qt
Qm D

Qm D( )
= ± ±

×
×

2

1
∆
∆

Qt =
±

=
±

1
1

200
001

1
005 001. . .

Qt

Qm
D

=
±

1
1 ∆
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