
Using the DESim Application with Verilog Code

This tutorial introduces the DESim application, which you can use to simulate circuits specified with Verilog
code. The DESim application provides a graphical user interface (GUI) that represents some of the features of a
DE1-SoC board. This GUI serves as a “front end” for the ModelSim simulator. Using the DESim GUI you can
invoke both the ModelSim Verilog compiler and simulator. Inputs to the ModelSim simulator can be provided by
clicking on features in the DESim GUI, which also shows results produced by the simulator on displays that look
like the ones on a DE1-SoC board.

Contents:

• Getting Started with DESim

• Compiling and Simulating DESim Sample Projects

• Simulating a Circuit that Includes a Memory Module

• Making a DESim Project

• Troubleshooting Problems with the DESim Application

Requirements:

• A computer running Microsoft® Windows® (version 10 is recommended).

• A good working knowledge of Verilog code.

• ModelSim-Intel FPGA Starter Edition software, version 10.5b. This software must be installed on the
computer that is running the DESim software. The required ModelSim software is part of the Quartus Prime
suite of CAD tools provided by Intel® Corporation. Version 10.5b of ModelSim is packaged with a number
of Quartus software releases, including 18.0, 18.1, and 19.0.

• You should know how to use ModelSim® to simulate Verilog code using a testbench. This material is
presented in the tutorial Using the ModelSim-Intel FPGA Simulator with Verilog Testbenches.

• The DESim application. Instructions for downloading and installing the DESim application are available in
the document Installing the DESim Application, available from the Intel FPGA Academic Program.

Getting Started
Start the DESim program to reach the graphical user interface (GUI) shown in Figure 1. You should see the
message “The server is running...” at the top of the message pane in the GUI. If you do not see this message,
but instead you see a message Server setup failed, then the DESim software is not working properly and should
be closed. In this case see the troubleshooting section at the end of this document.

On the right-hand side of Figure 1 the LEDs represent the red lights LEDR9−0 that are provided on a DE1-SoC
board. The Switches correspond to the board’s SW9−0 slide switches, the Push Buttons to KEY3−0, and the
Seven-segment Displays to HEX5, HEX4, · · ·, HEX0. There are also some additional features in the GUI
called PS/2 Keyboard, Parallel Ports, and VGA Display. These features of the DESim GUI are not
described in this document.

The DESim tool works in the context of a project. To introduce the features of the DESim GUI we will first open
an existing project. This example is a multibit adder named addern, which is provided as a demo project along
with the DESim software. Referring to Figure 1, click on the Open Project command to reach the dialogue
displayed in Figure 2. As shown in the figure, navigate to the demos folder, click to select the addern project,
and then click the Select Folder button.

1

Figure 1: The DESim GUI.

Figure 2: Opening the addern project.

2

Using Microsoft Windows File Explorer, Figure 3 shows the contents of the file-system folder that holds the
addern project. It consists of the folders named sim and tb, as well as the files called Addern.v, and top.v. There
is also a Readme.txt file, but it just provides documentation and is not really a part of the DESim project.

Figure 3: The addern folder.

The Addern.v file, shown in Figure 4, is the Verilog code that will be simulated in this part of the tutorial. We will
use the DESim GUI to specify signal values for the adder’s inputs, Cin, X, and Y, and then display the simulation
results produced for the outputs, Sum and Cout, on the LEDs. To make connections between the adder’s ports and
the signals that are associated with the DESim GUI we instantiate the Addern module in another Verilog module
called top. This module is defined in the file top.v, displayed in Figure 5. Its ports use the signal names that are
appropriate for a top-level Verilog module which is intended to be implemented on a DE1-SoC board. These port
names include CLOCK_50, SW, KEY, HEX0, · · ·, HEX5, and LEDR. For the Addern module we only use some
of these ports, and leave the others unconnected (the unused ports are included for consistency with other DESim
demo projects).

The Addern module is instantiated in Line 15 in top.v by the statement

Addern U1 (SW[9], SW[3:0], SW[7:4], LEDR[3:0], LEDR[4]);

This statement connects the switch SW9 to the multibit adder’s carry-in, Cin, and it connects SW3−0 and SW7−4

to the adder’s X and Y data inputs, respectively. The Sum output is attached to LEDR3−0, and the carry-out, Cout,
is connected to LEDR4.

To compile the addern project, in the DESim GUI click the Compile Testbench command. This command
executes a batch file called run_compile.bat, which is found in the sim folder of the addern project. This batch
file comprises some ModelSim commands, shown below:

if exist work rmdir /S /Q work

vlib work
vlog ../tb/*.v
vlog ../*.v

The batch file executes the vlib command, which is part of the ModelSim software, to create a work folder
(first deleting this folder if it already exists). The batch file then invokes the ModelSim Verilog compiler, vlog,

3

// A multi-bit adder
module Addern (Cin, X, Y, Sum, Cout);

parameter n = 4;
input Cin;
input [n-1:0] X, Y;
output [n-1:0] Sum;
output Cout;

assign {Cout, Sum} = X + Y + Cin;
endmodule

Figure 4: Verilog code for the multibit adder.

1 module top (CLOCK_50, SW, KEY, LEDR, HEX0, HEX1, HEX2, HEX3, HEX4, HEX5);
2
3 input CLOCK_50; // DE-series 50 MHz clock signal
4 input wire [9:0] SW; // DE-series switches
5 input wire [3:0] KEY; // DE-series pushbuttons
6 output wire [9:0] LEDR; // DE-series LEDs
7
8 output wire [6:0] HEX0; // DE-series HEX displays
9 output wire [6:0] HEX1;

10 output wire [6:0] HEX2;
11 output wire [6:0] HEX3;
12 output wire [6:0] HEX4;
13 output wire [6:0] HEX5;
14
15 Addern U1 (SW[9], SW[3:0], SW[7:4], LEDR[3:0], LEDR[4]);
16
17 endmodule

Figure 5: Verilog code for the top module.

twice. The first invocation of the compiler, vlog ../tb/*.v, compiles the Verilog source code in the addern
project’s tb folder. This folder holds the testbench for the project, which is described shortly. The second call to
vlog compiles the source-code of the DESim project, which includes the files Addern.v and top.v. Any messages
produced while executing run_compile.bat are displayed inside the message pane in the DESim GUI, as illustrated
in Figure 6.

4

Figure 6: Messages produced by executing run_compile.bat.

The testbench file for the addern project that is compiled by the command vlog ../tb/*.v is called tb.v, and
is displayed in Figure 7. It is not necessary to modify (or even examine) much of this code to use the DESim
software, but we describe some of the code here for completeness. The testbench code in the figure has a general
structure that allows it to be used to simulate different examples of Verilog code that might be used in various
DESim projects. Hence, not all of the code in the testbench is needed for the addern project. Line 6 declares the
testbench module, which is named tb. The next several lines in the code declare some signals that are used in the
testbench. The statement

initial $sim_fpga(CLOCK_50, SW, KEY, LEDR, HEX, key_action, scan_code,
ps2_lock_control, VGA_X, VGA_Y, VGA_COLOR, plot, GPIO);

is unique to the DESim program. It makes use of a special feature of the ModelSim software that allows communi-
cation with a custom software function. In this case the custom function is part of the DESim software and is called
sim_fpga. This function is stored in a file named simfpga.vpi, which has to be included in the sim folder of each
DESim project. The DESim GUI sends/receives signal values to/from the ModelSim software via the sim_fpga
function. This ModelSim capability is known as the Verilog Procedural Interface (VPI).

5

1 ‘timescale 1ns / 1ns
2 ‘default_nettype none
3
4 // This testbench is designed to hide the details of using the VPI code
5
6 module tb();
7
8 reg CLOCK_50 = 0; // DE-series 50 MHz clock
9 reg [9:0] SW = 0; // DE-series SW switches

10 reg [3:0] KEY = 0; // DE-series pushbutton keys
11 wire [(8*6) -1:0] HEX; // HEX displays (six ports)
12 wire [9:0] LEDR; // DE-series LEDs
13
14 reg key_action = 0;
15 reg [7:0] scan_code = 0;
16 wire [2:0] ps2_lock_control;
17
18 wire [7:0] VGA_X; // "VGA" column
19 wire [6:0] VGA_Y; // "VGA" row
20 wire [2:0] VGA_COLOR; // "VGA pixel" colour (0-7)
21 wire plot; // "Pixel" is drawn when this is pulsed
22 wire [31:0] GPIO; // DE-series GPIO port
23
24 initial $sim_fpga(CLOCK_50, SW, KEY, LEDR, HEX, key_action, scan_code,
25 ps2_lock_control, VGA_X, VGA_Y, VGA_COLOR, plot, GPIO);
26
27 wire [6:0] HEX0; // DE-series HEX0 port
28 wire [6:0] HEX1; // DE-series HEX1 port
29 wire [6:0] HEX2; // ...
30 wire [6:0] HEX3;
31 wire [6:0] HEX4;
32 wire [6:0] HEX5;
33
34 // create the 50 MHz clock signal
35 always #10
36 CLOCK_50 <= ~CLOCK_50;
37
38 // connect the single HEX port on "sim_fpga" to the six DE-series HEX ports
39 assign HEX[47:40] = {1’b0, HEX0};
40 assign HEX[39:32] = {1’b0, HEX1};
41 assign HEX[31:24] = {1’b0, HEX2};
42 assign HEX[23:16] = {1’b0, HEX3};
43 assign HEX[15: 8] = {1’b0, HEX4};
44 assign HEX[7: 0] = {1’b0, HEX5};
45
46 top DUT (.CLOCK_50(CLOCK_50), .SW(SW), .LEDR(LEDR), .KEY(KEY), .HEX0(HEX0),
47 .HEX1(HEX1), .HEX2(HEX2), .HEX3(HEX3), .HEX4(HEX4), .HEX5(HEX5));
48
49 endmodule

Figure 7: The testbench file, tb.v, for the addern project.

Line 46 in the testbench code instantiates the design under test (DUT), which is the Verilog module named top
shown in Figure 5. To execute the testbench using the ModelSim simulator, click on the Start Simulation
command in the DESim GUI. This command executes a batch file called run_sim.bat, which is found in the sim
folder of the addern project. This batch file runs vsim, the ModelSim Verilog simulator, using the command:

6

vsim -pli simfpga.vpi -Lf 220model -Lf altera_mf_ver -Lf verilog -c -do "run -all" tb

The -pli argument for the vsim program instructs it to link to the sim_fpga software function that has been
(previously) compiled into the simpfga.vpi file. The -L arguments include some simulation libraries for Intel
FPGAs that may be needed by the simulator. Finally, the remaining arguments run the simulation for the top-level
module, which is tb. Any messages produced while executing run_sim.bat are displayed inside the message pane
in the DESim GUI, as depicted in Figure 8.

As mentioned previously, the addern project includes a Readme.txt file that documents its usage. This file is
displayed in Figure 9. You can follow its instructions to see how the switches and lights are used for the project (of
course, you can also find this information by looking at the Verilog source code). An example simulation result
is illustrated in Figure 8. It corresponds to Cin = 1, X = (0110)2 = (6)10, and Y = (1010)2 = (10)10. The
result of the addition is (10001)2 = (17)10 (Cout = 1, with Sum = (0001)2), which is displayed on the LEDs.
Try different settings for the SW switches and observe the results displayed on the LEDs.

Figure 8: Messages produced by executing run_sim.bat.

We have now finished discussing the addern sample project.

7

To use this demo:

-- set a value, X, using SW[3:0]
-- set a value, Y, using SW[7:4]
-- set a carry-in, Cin, using SW[9]

The circuit produces the 5-bit Sum = X + Y + Cin,
which is displayed on LED[4:0]

Figure 9: The Readme.txt file for the addern project.

Simulating a Sequential Circuit
Another DESim sample project called counter is included in the DESim demos folder. Use the Open Project
command in the DESim GUI to open this project. As illustrated in Figure 10 using File Explorer, the
contents of the file-system folder for this project look the same as for the addern project (Figure 3), except that
there is a Verilog source-code file named Counter.v. Figure 11 shows the contents of the Counter.v file. It represents
a 24-bit counter with synchronous reset. The port names for this module correspond to the signal names on the
DE1-SoC board, with KEY0 being used for reset, CLOCK_50 for the clock signal, and LEDR for the outputs. Since
LEDR is a 10-bit signal and the counter has 24 bits, only a subset of the counter outputs (the most-significant ones)
are connected to LEDR.

Figure 10: The counter folder.

As described for the addern project, the Counter module is instantiated in another Verilog module called top. This
module is displayed in Figure 12. It is the same as the one from Figure 5, except that Line 15 instantiates the
Counter module. The port KEY[0] in the top module is connected to the counter’s reset input, CLOCK_50 to
its clock input, and LEDR to the counter’s output port.

To compile the counter project, in the DESim GUI click the Compile Testbench command. This command
executes the batch file called run_compile.bat, which is found in the sim folder of the counter project. This
batch file is identical to the one described earlier for the addern project. The testbench file that is compiled by
run_compile.bat for the counter project is found in its tb folder. This testbench, tb.v, is identical to the one shown
in Figure 7.

8

module Counter (KEY, CLOCK_50, LEDR);
input [0:0] KEY;
input CLOCK_50;
output [9:0] LEDR;
parameter n = 24;

reg [n-1:0] Count;
wire Clock, Resetn;

assign Clock = CLOCK_50;
assign Resetn = KEY[0];

// the counter
always @(posedge Clock)

if (Resetn == 1’b0) // synchronous clear
Count <= 0;

else
Count <= Count + 1;

assign LEDR = Count[n-1:n-10];
endmodule

Figure 11: Verilog code for the 24-bit counter.

To execute the testbench for the counter project, click on the Start Simulation command in the DESim
GUI. This command executes the batch file called run_sim.bat. It is identical the one described for the addern
project and runs the vsim Verilog simulator.

1 module top (CLOCK_50, SW, KEY, LEDR, HEX0, HEX1, HEX2, HEX3, HEX4, HEX5);
2
3 input CLOCK_50; // DE-series 50 MHz clock signal
4 input wire [9:0] SW; // DE-series switches
5 input wire [3:0] KEY; // DE-series pushbuttons
6 output wire [9:0] LEDR; // DE-series LEDs
7
8 output wire [6:0] HEX0; // DE-series HEX displays
9 output wire [6:0] HEX1;

10 output wire [6:0] HEX2;
11 output wire [6:0] HEX3;
12 output wire [6:0] HEX4;
13 output wire [6:0] HEX5;
14
15 Counter U1 (KEY[0], CLOCK_50, LEDR);
16
17 endmodule

Figure 12: The top module for the counter project.

9

The Readme.txt file for the counter project specifies:

To use this demo, reset the circuit by pressing and releasing KEY[0].

In the DESim GUI when the Push Buttons have a check mark shown, they are set to the value 1. To reset the
counter circuit, click KEY0 once to press this button (this action sets the corresponding signal for this button to 0),
and then click it again to release the button. The 24-bit counter will start to operate and the ten most-significant
counter outputs will be displayed on the LEDs. A screen-shot of the DESim GUI while simulating the counter
project is shown in Figure 13.

Figure 13: Simulating the counter project.

10

Simulating a Circuit that Includes a Memory Module
The DESim demos folder includes a project called display. It shows how to instantiate a memory module in
Verilog code, and how to initialize the stored contents of the memory in a DESim simulation. Use the Open
Project command to open this example project. As illustrated in Figure 14, the contents of the file-system
folder for this project look similar to the previous ones, but there are two extra files: inst_mem.v and inst_mem.mif.
These files are used for the memory module in the circuit, which is described shortly.

Figure 14: The display folder.

Figure 15 shows the Verilog code for Display.v, which has ports named KEY, SW, HEX0, and LEDR. Figure 16a
gives a logic circuit that corresponds to the code in Figure 15. The circuit contains a counter that is used to read
the contents of successive locations in a memory. This memory provides codes in ASCII format for some upper-
and lower-case letters, which are provided as inputs to a decoder module. The counter and memory modules have
a common clock signal, and the counter has a synchronous clear input. Each successive clock cycle advances the
counter and reads a new ASCII code from the memory. Since the counter is three-bits wide, only the first eight
locations in the memory are read (the upper two address bits on the memory are set to 00), and they provide the
ASCII codes for letters A, b, C, d, E, F, g, and h. The decoder produces an appropriate bit-pattern to render each
letter on a seven-segment display.

The memory used in the logic circuit is depicted in part b of Figure 16. It is a 32 × 8 synchronous read-only
memory (ROM), which has a register for holding address values. The memory is specified in the Verilog file
inst_mem.v, and it is initialized with the contents of the file inst_mem.mif, which is illustrated in Figure 17. This
file contains the ASCII codes for the eight letters displayed by the circuit.

11

module Display (KEY, SW, HEX0, LEDR);
input [0:0] KEY;
input [0:0] SW;
output reg [6:0] HEX0;
output [9:0] LEDR;

parameter A = 8’d65, b = 8’d98, C = 8’d67, d = 8’d100, E = 8’d69,
F = 8’d70, g = 8’d103, h = 8’d104;

wire Resetn, Clock;
wire [2:0] Count;
wire [7:0] char;

assign Resetn = SW[0];
assign Clock = KEY[0];

count3 U1 (Resetn, Clock, Count);
inst_mem U2 ({2’b0, Count}, Clock, char);
assign LEDR = {2’b0, char};

always @(*)
case (char)

A: HEX0 = 7’b0001000;
b: HEX0 = 7’b0000011;
C: HEX0 = 7’b1000110;
d: HEX0 = 7’b0100001;
E: HEX0 = 7’b0000110;
F: HEX0 = 7’b0001110;
g: HEX0 = 7’b0010000;
h: HEX0 = 7’b0001011;
default HEX0 = 7’b1111111;

endcase
endmodule

module count3 (Resetn, Clock, Q);
input Resetn, Clock;
output reg [2:0] Q;

always @ (posedge Clock)
if (Resetn == 0)

Q <= 3’b000;
else

Q <= Q + 1’b1;
endmodule

Figure 15: Verilog code for the display project.

12

Counter

3

Resetn

Clock

Q

Memory

dataaddr
8

00
5

Decoders

seg7char
7

0

1

2

3

4

5
6

a) circuit

b) memory module

DataOut
Address 32 x 8

855

ROM

Figure 16: A circuit that represents the display project.

DEPTH = 32;
WIDTH = 8;
ADDRESS_RADIX = HEX;
DATA_RADIX = DEC;
CONTENT
BEGIN

00 : 65; % A %
01 : 98; % b %
02 : 67; % C %
03 : 100; % d %
04 : 69; % E %
05 : 70; % F %
06 : 103; % g %
07 : 104; % h %

END;

Figure 17: The inst_mem.mif memory initialization file.

13

To compile the display project, in the DESim GUI click the Compile Testbench command. This command
executes the project’s run_compile.bat script, which is in its sim folder. This batch file is shown below:

1 if exist ..\inst_mem.mif (
2 copy /Y ..\inst_mem.mif .
3)
4 if exist ..\inst_mem_bb.v (
5 del ..\inst_mem_bb.v
6)
7 if exist work rmdir /S /Q work
8
9 vlib work

10 vlog ../tb/*.v
11 vlog ../*.v

Lines 1 to 3 are used to copy the memory initialization file, inst_mem.mif, from the display project folder
into the sim folder. This is done for two reasons: 1. ModelSim requires the file to be in the sim folder to
properly initialize the memory module during a simulation, and 2. if the file is changed in the display folder,
then the latest version of the file will always be used when starting a simulation. Lines 4 to 6 delete a file called
inst_mem_bb.mif that is sometimes associated with a memory module; if present, this file would cause a ModelSim
error. The rest of the batch file, which compiles the Verilog code, is the same as for the previously-described
DESim projects.

The testbench file tb.v that is compiled by run_compile.bat for the display project is identical to the one used
for the addern project, shown in Figure 7. To execute the testbench for the display project, click on Start
Simulation. Its run_sim.bat script is the same as the ones used for the addern and counter projects.

The Readme.txt file for the display project is shown in Figure 18. You can follow its instructions to read successive
locations out of the memory and display the corresponding characters on HEX0. An example simulation output
after first resetting the circuit and then creating a few clock cycles using KEY[0] is illustrated in Figure 19.

To use this demo:

-- The clock input is created by toggling KEY[0]
-- The active-low synchronous reset input is SW[0]

The circuit displays "characters" stored in a ROM on HEX0.
To use the circuit:

1. Set SW[0] to 0 to allow the circuit to be reset
2. pulse KEY[0] down/up to make a clock cycle

-- the character ’A’, the first character stored
in the ROM should be displayed on HEX0

3. Set SW[0] to 1 so that the reset is not active
4. pulse KEY[0] down/up to make a clock cycle
5. pulse KEY[0] down/up to make a clock cycle

-- HEX0 should now show ’b’, the next character
stored in the ROM

6. pulse KEY[0] down/up to make a clock cycle
-- HEX0 should now show ’C’, the next character

stored in the ROM
7. etc (there are eight characters stored in the ROM)

Figure 18: The Readme.txt file for the display project.

14

Figure 19: Simulating the display project.

Setting up a DESim Project
An easy way to set up your own DESim project is to use one of the example projects in the DESim demos folder
as a starting point. You should choose a specific demo project according to its features. For example, if your
design project includes a memory module, then you might choose to start with a copy of the display project. But
if you do not require a memory module, then you could start with a copy of one of the other projects. Also, you
should start with a project that has the ports that you need in its “top” module that is instantiated by its testbench.
All of the example projects described in this document have the same ports in their top module, but some other
projects included in the demos folder may have different top-level ports.

Once you choose a project from the demos folder as a starting point, you should copy its folder contents into
a new folder on your computer. For example, you might make a copy of demos\display and call the new
folder my_folder. Then, in my_folder you would replace the file Display.v with your own source-code file,
say my_source.v. Next, you would edit the file top.v in my_folder and change it to instantiate your Verilog
module, say my_module (which would be in the file my_source.v). You would connect the signals in top.v, such
as CLOCK_50, KEY, and so on, as needed to the ports of my_module. If some of the ports that you require for
my_module aren’t available in the top module, then you should instead use a different sample project from the
demos folder that has the required ports in its top module.

You should not need to make any changes to the files in the sim or tb folder for your new project in my_folder.
You can now open your new project in the DESim software and proceed to compile/simulate your code.

15

Troubleshooting Problems with the DESim Software
This section discusses some potential issues that could be encountered while using the DESim software, and
provides suggested solutions.

1. Upon starting the DESim software you should see the message The server is running...” at the top of the
message pane in the GUI. If you do not see this message, but instead see a message Server setup failed,
then the DESim software is not working properly and should be closed. One reason why this would occur
is if you have executed a second instance of the DESim program. The DESim software cannot be executed
more than once concurrently on your computer.

2. If you click on the Compile Project command in the DESim GUI, it is possible to see an error message
such as ‘vlib’ is not recognized as an internal or external command’. This error means that DESim
attempted to execute the vlib program, which is part of the ModelSim software, but the program was not
found by the operating system. This error will occur if the ModelSim software is not installed on the
computer, or if it is installed but cannot be be located. There are two ways to fix the latter issue: 1) the
Microsoft Windows Path environment variable can be updated to include the location of the ModelSim
software, or 2) the location of the ModelSim software can be specified within the batch file that starts the
DESim software. This batch file is called DESim_run.bat and is found in the file-system folder where
DESim is installed. This second solution is the one that is used on the DESL and ECF systems. Hence, if
you encounter this error on one of these computer systems, check that you are using the correct version of
the DESim software; there is a different version for DESL and for ECF. Note that you can determine which
system you are using by looking at the name of the C: drive on the computer.

3. Occasionally, when compiling or simulating a project in the DESim software you may see a Warning mes-
sage which says that ModelSim cannot “unlink” a file. For example if your DESim project is stored in the
folder C:\DESim\demos\addern, then this message would report:

** Warning: (vlog-31) Unable to unlink file "C:/DESim/demos/addern/sim/work/_lock"

This problem occurs for unknown reasons and is caused by an issue with the ModelSim software (it happens
when directly using the ModelSim GUI also, and not only when using the DESim tool). If the “unlink” issue
persists (sometime it gets resolved automatically), then a solution is to browse with File Explorer into
the file-system folder C:\DESim\demos\addern\sim\work and manually delete the file named _lock.

16

