


Page 1 

 

1 

Introduction 4 2 

Chapter 1 Deducing Types 11 3 

 Understand template type deduction. 11 Item 1:4 

 Understand auto type deduction. 21 Item 2:5 

 Understand decltype. 26 Item 3:6 

 Know how to view deduced types. 34 Item 4:7 

Chapter 2 auto 42 8 

 Prefer auto to explicit type declarations. 42 Item 5:9 

 Be aware of the typed initializer idiom. 48 Item 6:10 

Chapter 3 From C++98 to C++11 and C++14 56 11 

 Distinguish () and {} when creating objects. 57 Item 7:12 

 Prefer nullptr to 0 and NULL. 67 Item 8:13 

 Prefer alias declarations to typedefs. 72 Item 9:14 

 Prefer scoped enums to unscoped enums. 77 Item 10:15 

 Prefer deleted functions to private undefined ones. 84 Item 11:16 

 Declare overriding functions override. 89 Item 12:17 

 Prefer const_iterators to iterators. 96 Item 13:18 

 Use constexpr whenever possible. 101 Item 14:19 

 Make const member functions thread-safe. 107 Item 15:20 

 Declare functions noexcept whenever possible. 113 Item 16:21 



Page 2 

 

 Consider pass by value for cheap-to-move parameters that are Item 17:1 

always copied. 120 2 

 Consider emplacement instead of insertion. 128 Item 18:3 

 Understand special member function generation. 136 Item 19:4 

Chapter 4 Smart Pointers 145 5 

 Use std::unique_ptr for exclusive-ownership Item 20:6 

 resource management. 147 7 

 Use std::shared_ptr for shared-ownership resource Item 21:8 

management. 154 9 

 Use std::weak_ptr for std::shared_ptr-like pointers that can Item 22:10 

dangle.  164 11 

 Prefer std::make_unique and std::make_shared to direct use of Item 23:12 

new.  170 13 

 When using the Pimpl Idiom, define special member functions in the Item 24:14 

implementation file. 179 15 

Chapter 5 Rvalue References, Move Semantics, and Perfect Forwarding 189 16 

 Understand std::move and std::forward. 190 Item 25:17 

 Distinguish universal references from rvalue references. 197 Item 26:18 

 Use std::move on rvalue references, std::forward on universal Item 27:19 

references.  202 20 

 Avoid overloading on universal references. 210 Item 28:21 

 Familiarize yourself with alternatives to overloading on universal Item 29:22 

references.  217 23 

 Understand reference collapsing. 228 Item 30:24 



Page 3 

 

 Assume that move operations are not present, not cheap, and not Item 31:1 

used.  234 2 

 Familiarize yourself with perfect forwarding failure cases. 238 Item 32:3 

Chapter 6 Lambda Expressions 249 4 

 Avoid default capture modes. 251 Item 33:5 

 Use init capture to move objects into closures. 258 Item 34:6 

 Use decltype on auto&& parameters to std::forward them. 264 Item 35:7 

 Prefer lambdas to std::bind. 267 Item 36:8 

Chapter 7 The Concurrency API 275 9 

 Prefer task-based programming to thread-based. 275 Item 37:10 

 Specify std::launch::async if asynchronicity is essential. 280 Item 38:11 

 Make std::threads unjoinable on all paths. 286 Item 39:12 

 Be aware of varying thread handle destructor  behavior. 293 Item 40:13 

 Consider void futures for one-shot event communication. 299 Item 41:14 

 Use std::atomic for concurrency, volatile for Item 42:15 

special memory. 308 16 

 17 



Page 4 

 

1 

If you’re an experienced C++ programmer and are anything like me, you initially 2 

approached C++11 thinking, “Yes, yes, I get it. It’s C++, only more so.” But as your 3 

knowledge of the revised language increased, you were surprised by the scale of 4 

the changes. auto objects, range-based for loops, lambda expressions, and rvalue 5 

references change the very face of C++, to say nothing of the new concurrency fea-6 

tures. And then there are the idiomatic changes! 0 and typedefs are out, nullptr 7 

and alias declarations are in. Enums should now be scoped. Smart pointers are 8 

now preferable to built-in ones. Moving objects is normally better than copying 9 

them. There’s a lot to learn about C++11.  10 

The adoption of C++14 hardly made things easier.  11 

So...a lot to learn. More importantly, a lot to learn about making effective use of the 12 

new capabilities. If you need information on the basic syntax or semantics of fea-13 

tures in “modern” C++, resources abound, but if you’re looking for guidance on 14 

how to employ the features to create software that’s correct, efficient, maintaina-15 

ble, and portable, the search is more challenging. That’s where this book comes in. 16 

It’s devoted not to describing the features of C++11 and C++14, but rather to their 17 

effective application. 18 

The information in the book is broken into guidelines called Items. Want to under-19 

stand the various forms of type deduction? Or to know when (and when not) to 20 

declare objects using auto? Are you interested in why const member functions 21 

should be thread-safe, how to implement the Pimpl Idiom using 22 

std::unique_ptr, why you should avoid default capture modes in lambda ex-23 

pressions, or the differences between (and proper uses of) std::atomic and 24 

volatile? The answers are all here. Furthermore, they’re platform-independent, 25 

Standards-conformant answers. This is a book about portable C++. 26 

Items comprise guidelines, not rules, because guidelines have exceptions. The 27 

most important part of each Item is not the advice it offers, but the rationale be-28 

hind the advice. Once you’ve read that, you’ll be in a position to determine whether 29 

the circumstances of your project justify disregarding the Item’s guidance. The 30 
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true goal of this book isn’t to tell you what to do or what to avoid doing, but to 1 

convey a deeper understanding of how things work in C++11 and C++14.  2 

Terminology and Conventions 3 

To make sure we understand one another, it’s important to agree on some termi-4 

nology, beginning, ironically, with “C++.” There have been four standardized ver-5 

sions of C++, each named after the year in which the corresponding ISO Standard 6 

was adopted: C++98, C++03, C++11, and C++14. C++98 and C++03 differ only in 7 

subtle technical details, so in this book, I refer to both as C++98. 8 

When I mention C++98, I mean only that version of the language. Where I refer to 9 

C++11, I mean both C++11 and C++14, because C++14 is effectively a superset of 10 

C++11. When I write C++14, I mean specifically C++14. And if I simply mention 11 

C++, I’m making a broad statement that pertains to all language versions. As a re-12 

sult, I might say that C++ places a premium on efficiency (true for all versions), 13 

that C++98 lacks support for concurrency (true for C++98 only), that C++11 sup-14 

ports lambda expressions (true for C++11 and C++14), and that C++14 offers gen-15 

eralized function return type deduction (true for C++14 only). 16 

C++11’s most pervasive feature is probably move semantics, and the foundation of 17 

move semantics is distinguishing expressions that are rvalues from those that are 18 

lvalues. That’s because rvalues indicate objects eligible for move operations, while 19 

lvalues generally don’t. In concept (though not always in practice), rvalues corre-20 

spond to anonymous temporary objects returned from functions, while lvalues 21 

correspond to objects you can refer to, either by name or by following a pointer or 22 

reference.  23 

A useful heuristic to determine whether an expression is an lvalue is to ask if you 24 

can take its address. If you can, it typically is. If you can’t, it’s usually an rvalue. A 25 

nice feature of this heuristic is that it helps you remember that the type of an ex-26 

pression is independent of whether the expression is an lvalue or an rvalue. That 27 

is, given a type T, you can have both lvalues of type T and rvalues of type T. It’s es-28 

pecially important to remember this when dealing with a parameter of rvalue ref-29 

erence type, because the parameter itself is an lvalue: 30 
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class Widget { 1 
public: 2 
  Widget(Widget&& rhs);    // rhs is an lvalue, though it has 3 
  …                        // an rvalue reference type 4 
};                          5 

Here, it’d be perfectly valid to take rhs’s address inside Widget’s move construc-6 

tor, so rhs is an lvalue, even though its type is an rvalue reference. (By similar rea-7 

soning, all parameters are lvalues.) 8 

This code example demonstrates several conventions I typically follow: 9 

 The class name is Widget. I use Widget whenever I want to refer to an arbi-10 

trary user-defined type. Unless I need to show specific details of the class, I use 11 

Widget without declaring it.  12 

 I use the parameter name rhs, which stands for “right-hand side.” It’s my pre-13 

ferred parameter name for the move operations (i.e., move constructor and 14 

move assignment operator) and the copy operations (i.e., copy constructor and 15 

copy assignment operator), though I also employ it for the right-hand parame-16 

ter of binary operators: 17 

Matrix operator+(const Matrix& lhs, const Matrix& rhs);  18 

It’s no surprise, I hope, that lhs stands for “left-hand side.”  19 

 I highlight parts of code or parts of comments to draw your attention to them. 20 

In the code above, I’ve highlighted the declaration of rhs and the part of the 21 

comment noting that rhs is an lvalue.  22 

 I use “…” to indicate “other code could go here.” This narrow ellipses is differ-23 

ent from the wide ellipsis (“...”) that’s used in the source code for C++11’s 24 

variadic templates. That sounds confusing, but it’s not. For example: 25 

template<typename... Ts>                // these are C++  26 
void processVals(const Ts&... params)   // source code 27 
{                                       // ellipses 28 

  …                                     // this means "some 29 
                                        // code goes here" 30 

} 31 
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The declaration of processVals shows that I use typename when declaring 1 

type parameters in templates, but that’s merely a personal preference; the 2 

keyword class would work just as well. On those few occasions where I show 3 

code excerpts from a C++ Standard, I declare type parameters using class, be-4 

cause that’s what the Standards do. 5 

When an object is initialized with another object of the same type, the new object 6 

is said to be a copy of the initializing object, even if the copy was created via the 7 

move constructor. Regrettably, there’s no terminology in C++ that distinguishes 8 

between an object that’s a copy-constructed copy and one that’s a move-9 

constructed copy: 10 

void someFunc(Widget w);        // someFunc's parameter w 11 
                                // is passed by value 12 

 13 
Widget wid;                     // wid is some Widget 14 

someFunc(wid);                  // in this call to someFunc,  15 
                                // w is a copy of wid that's 16 
                                // created via copy construction 17 

someFunc(std::move(wid));       // in this call to SomeFunc, 18 
                                // w is a copy of wid that's 19 
                                // created via move construction 20 

Copies of rvalues are generally move-constructed, while copies of lvalues are typi-21 

cally copy-constructed. An implication is that if you know only that an object is a 22 

copy of another object, it's not possible to say how expensive it was to construct 23 

the copy. In the code above, for example, there’s no way to say how expensive it is 24 

to create the parameter w without knowing whether rvalues or lvalues are passed 25 

to someFunc. (You’d also have to know the cost of moving and copying Widgets.) 26 

In a function call, the expressions passed at the call site are the function’s argu-27 

ments. The arguments are used to initialize the function’s parameters. In the first 28 

call to someFunc above, the argument is wid. In the second call, the argument is 29 

std::move(wid). In both calls, the parameter is w. The distinction between argu-30 

ments and parameters is important, because parameters are lvalues, but the ar-31 

guments with which they are initialized may be rvalues or lvalues. This is especial-32 

ly relevant during the process of perfect forwarding, whereby an argument passed 33 
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to a function is passed to a second function such that the original argument’s rval-1 

ueness or lvalueness is preserved. (Perfect forwarding is discussed in more detail 2 

in Item 32.) 3 

Well-designed functions are exception-safe, meaning they offer at least the basic 4 

exception safely guarantee (i.e., the basic guarantee). Such functions assure callers 5 

that even if an exception is emitted, program invariants remain intact (i.e., no data 6 

structures are corrupted) and no resources are leaked. Functions offering the 7 

strong exception safety guarantee (i.e., the strong guarantee) assure callers that if 8 

an exception is emitted, the state of the program remains as it was prior to the call. 9 

As Item 16 explains, C++98 Standard Library functions offering the strong guaran-10 

tee constrain the applicability of move semantics in the C++11 Standard Library. 11 

I use the term callable entity to refer to anything that can be called using the syntax 12 

of a call to a non-member function, i.e., the syntax “functionName(arguments)”. 13 

Functions, function pointers, and function objects are all callable entities. Function 14 

objects created through lambda expressions are known as closures. It’s seldom 15 

necessary to distinguish between lambda expressions and the closures they create, 16 

so I often refer to both as lambdas.  17 

In the same vein, I rarely distinguish between function templates (i.e., templates 18 

that generate functions) and template functions (i.e., the functions generated from 19 

function templates). Ditto for class templates and template classes. 20 

Many things in C++ can be both declared and defined. Declarations introduce 21 

names without giving details, such as where storage is located or how the entity is 22 

implemented: 23 

extern int x;                       // object declaration 24 

class Widget;                       // class declaration 25 

int func(const Widget& w);          // function declaration 26 

enum class Color;                   // scoped enum declaration 27 
                                    // (see Item 10) 28 

Definitions provide the storage location or implementation details: 29 

int x;                              // object definition 30 
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class Widget {                      // class definition 1 
  … 2 
}; 3 

int func(const Widget& w)  4 
{ return w.size(); }                // function definition 5 

enum class Color  6 
{ Yellow, Red, Blue };              // scoped enum definition 7 

A definition also qualifies as a declaration, so unless it’s really important that 8 

something is a definition, I tend to refer to declarations. 9 

New C++ Standards generally preserve the validity of code written under older 10 

ones, but occasionally the Standardization Committee deprecates features. That’s a 11 

warning that the features may be removed from future Standards. You should 12 

avoid deprecated features. (The reason for deprecation is usually that newer fea-13 

tures offer the same functionality, but with fewer restrictions or drawbacks. 14 

std::auto_ptr is deprecated in C++11, for example, because std::unique_ptr 15 

does the same job, only better.) 16 

Sometimes the Standard says that the result of an operation is undefined behavior. 17 

That means that runtime behavior is unpredictable, and it should go without say-18 

ing that you want to steer clear of such uncertainty. Examples of actions with un-19 

defined behavior include using square brackets (“[]”) to index beyond the bounds 20 

of a std::vector, dereferencing an uninitialized iterator, or engaging in a data 21 

race (i.e., having two or more threads, at least one of which is a writer, simultane-22 

ously access the same memory location). 23 

In source code comments, I sometimes abbreviate “constructor” as ctor and “de-24 

structor” as dtor. 25 

Reporting Bugs and Suggesting Improvements 26 

I’ve done my best to fill this book with clear, accurate, useful information, but sure-27 

ly there are ways to make it better. If you find errors of any kind (technical, exposi-28 

tory, grammatical, typographical, etc.), or if you have suggestions for how the book 29 

could otherwise be improved, please email me at emc++@aristeia.com. New 30 
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printings give me the opportunity to revise Effective Modern C++, and I can’t ad-1 

dress issues I don’t know about! 2 

To view the list of the issues I do know about, consult the book’s errata page, 3 

http://www.aristeia.com/BookErrata/emc++-errata.html.  4 

http://www.aristeia.com/BookErrata/emc++-errata.html
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1 

C++98 had a single set of rules for type deduction: the one for function templates. 2 

C++11 modifies those rules a bit and adds two more, one for auto and one for 3 

decltype. C++14 then extends the usage contexts in which auto and decltype 4 

may be employed. The increasingly widespread application of type deduction frees 

programmers from the tyranny of spelling out types that are obvious or redun-

dant. It makes C++ software more adaptable, because changing a type at one point 

in the source code automatically propagates through type deduction to other loca-

tions. However, it can render code more difficult to reason about, because the 

types deduced by compilers may not be as apparent as we’d like. 

Effective programming in modern C++ isn’t possible without a solid understanding 

of how type deduction operates. There are just too many contexts where it takes 

place: in calls to function templates, in most situations where auto appears, in 

decltype expressions, and, as of C++14, where the enigmatic decltype(auto) 

construct is employed.  

This chapter provides the foundational information about type deduction that eve-

ry C++ developer requires. It explains how template type deduction works, how 

auto builds on that, and how decltype goes its own way. It even explains how 

you can force compilers to make the results of their type deductions visible, thus 

enabling you to ensure that compilers are deducing the types you want them to. 

 Item 1: Understand template type deduction. 21 

It’s said that imitation is the sincerest form of flattery, but blissful ignorance can be 

an equally heartfelt accolade. When users of a complex system are ignorant of how 

it works, yet happy with what it does, that says a lot about the design of that sys-

tem. By this measure, template type deduction in C++ is a tremendous success. Mil-

lions of programmers have passed arguments to template functions with com-

pletely satisfactory results, even though many of those programmers would be 

hard-pressed to give more than the haziest description of how the types used by 

those functions were deduced. 
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If that group includes you, I have good news and bad news. The good news is that 1 

the type deduction process for auto-declared variables is essentially the same as 2 

for templates (see Item 2), so when it comes to auto, you’re on familiar ground. 3 

The bad news is that when the template type deduction rules are employed by au-4 

to, you’re more likely to be surprised by what happens. If you want to use auto 5 

(and you certainly  should—see Item 5), you’ll need a reasonable understanding of 6 

the rules that drive template type deduction. They’re generally straightforward, so 7 

this poses little challenge. It’s just that they worked so naturally in C++98, you 8 

probably never had to think much about them. 9 

If you’re willing to overlook a pinch of pseudocode, we can think of a function 10 

template as looking like this: 11 

template<typename T> 12 
void f(ParamType param); 13 

A call can look like this: 14 

f(expr);                    // call f with some expression 15 

During compilation, compilers use expr to deduce two types: one for T and one for 16 

ParamType. These types are frequently different, because ParamType often con-17 

tains adornments, e.g., const- or reference qualifiers. For example, if the template 18 

is declared like this, 19 

template<typename T> 20 
void f(const T& param);     // ParamType is const T& 21 

and we have this call, 22 

int x = 0; 23 

f(x);                       // call f with an int 24 

T is deduced to be int, but ParamType is deduced to be const int&.  25 

It’s natural to expect that the type deduced for T is the same as the type of the ar-26 

gument passed to the function, i.e., that T is the type of expr. In the above example, 27 

that’s the case: x is an int, and T is deduced to be int. But it doesn’t always work 28 

that way. The type deduced for T is dependent not just of the type of expr, but also 29 

on the form of ParamType. There are three cases: 30 
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 ParamType is a pointer or reference type, but not a universal reference. (Uni-1 

versal references are described in Item 26. At this point, all you need to know 2 

is that they exist.) 3 

 ParamType is a universal reference. 4 

 ParamType is neither a pointer nor a reference. 5 

We therefore have three type deduction scenarios to examine. Each will be based 6 

on our general form for templates and calls to it: 7 

template<typename T> 8 
void f(ParamType param); 9 

f(expr);                // deduce T and ParamType from expr 10 

Case 1: ParamType is a Pointer or Reference, but not a Universal Reference 11 

The simplest situation is when ParamType is a pointer type or a reference type, 12 

but not a universal reference. In that case, type deduction works like this: 13 

 If expr’s type is a reference, ignore the reference part. 14 

 Pattern-match expr’s type against ParamType to determine T. 15 

For example, if this is our template, 16 

template<typename T> 17 
void f(T& param);       // param is a reference 18 

and we have these variable declarations, 19 

int x = 27;             // x is an int 20 
const int cx = x;       // cx is a const int 21 
const int& rx = x;      // rx is a read-only view of x 22 

the deduced types for param and T in various calls are as follows: 23 

f(x);                   // T is int, param's type is int& 24 

f(cx);                  // T is const int, 25 
                        // param's type is const int& 26 

f(rx);                  // T is const int, 27 
                        // param's type is const int&  28 



Page 14 

 

In the second and third calls, notice that because cx and rx designate const val-1 

ues, T is deduced to be const int, thus yielding a parameter type of const int&. 2 

That’s important to callers. When they pass a const object to a reference parame-3 

ter, they expect that object to remain unmodifiable, i.e., for the parameter to be a 4 

reference-to-const. That’s why passing a const object to a template taking a T& 5 

parameter is safe: the constness of the object becomes part of the type deduced 6 

for T. 7 

In the third example, note that even though rx’s type is a reference, T is deduced to 8 

be a non-reference. That’s because rx’s reference-ness is ignored during type de-9 

duction. If this were not the case (i.e., if T were deduced to be const int&), 10 

param’s type would be const int& &, i.e., a reference to a reference. References to 11 

references aren’t permitted in C++, and one way they’re avoided is by ignoring the 12 

reference-ness of expressions during type deduction. 13 

These example all show lvalue reference parameters, but type deduction works 14 

exactly the same way for rvalue reference parameters. Of course, only rvalue ar-15 

guments may be passed to rvalue reference parameters, but that restriction has 16 

nothing to do with type deduction. 17 

If we change the type of f’s parameter from T& to const T&, things change a little, 18 

but not in any really surprising ways. The constness of cx and rx continues to be 19 

respected, but because we’re now assuming that param is a reference-to-const, 20 

there’s no longer a need for const to be deduced as part of T: 21 

template<typename T> 22 
void f(const T& param);  // param is now a ref-to-const 23 

int x = 27;              // as before 24 
const int cx = x;        // as before 25 
const int& rx = x;       // as before 26 

f(x);                    // T is int, param's type is const int&  27 

f(cx);                   // T is int, param's type is const int&  28 

f(rx);                   // T is int, param's type is const int& 29 

As before, rx’s reference-ness is ignored during type deduction.  30 
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If param were a pointer (or a pointer to const) instead of a reference, things 1 

would work essentially the same way: 2 

template<typename T> 3 
void f(T* param);        // param is now a pointer 4 

int x = 27;              // as before 5 
const int *px = &x;      // px is a ptr to a read-only view of x 6 
 7 

f(&x);                   // T is int, param's type is int*  8 

f(px);                   // T is const int,  9 
                         // param's type is const int*, 10 

At this point, you may find yourself yawning and nodding off, because C++’s type 11 

deduction rules work so naturally for reference and pointer parameters, seeing 12 

them in written form is really dull. Everything’s just obvious! Which is exactly 13 

what you want in a type deduction system. 14 

Case 2: ParamType is a Universal Reference 15 

Things are less obvious for templates taking universal reference parameters (i.e., 16 

“T&&” parameters), because lvalue arguments get special treatment. The complete 17 

story is told in Item 26, but here’s the headline version:  18 

 If expr is an lvalue, both T and ParamType are deduced to be lvalue refer-19 

ences. 20 

 If expr is an rvalue, the usual type deduction rules apply.  21 

For example: 22 

template<typename T> 23 
void f(T&& param);       // param is now a universal reference  24 

int x = 27;              // as before 25 
const int cx = x;        // as before 26 
const int& rx = x;       // as before 27 

f(x);                    // x is lvalue, so T is int&, 28 
                         // param's type is also int& 29 

f(cx);                   // cx is lvalue, so T is const int&, 30 
                         // param's type is also const int& 31 
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f(rx);                   // rx is lvalue, so T is const int&, 1 
                         // param's type is also const int& 2 

f(27);                   // 27 is rvalue, so T is int, 3 
                         // param's type is therefore int&& 4 

Item 26 explains exactly why these examples play out the way they do, but the key 5 

point is that the type deduction rules for parameters that are universal references 6 

are different from those for parameters that are lvalue references or rvalue refer-7 

ences. In particular, when universal references are in use, type deduction distin-8 

guishes between lvalue arguments and rvalue arguments. That never happens for 9 

non-universal (i.e., “normal”) references.  10 

Case 3: ParamType is Neither a Pointer nor a Reference 11 

When ParamType is neither a pointer nor a reference, we’re dealing with pass-by-12 

value: 13 

template<typename T> 14 
void f(T param);         // param is now passed by value 15 

That means that param will be a copy of whatever is passed in—a completely new 16 

object. The fact that param will be a new object motivates the rules that govern 17 

how T is deduced from expr: 18 

 As before, if expr’s type is a reference, ignore the reference part. 19 

 If, after ignoring expr’s reference-ness, expr is const, ignore that, too. If it’s 20 

volatile, also ignore that. (volatile objects are uncommon. They’re gener-21 

ally used only for implementing device drivers. For details, see Item 42.) 22 

Hence: 23 

int x = 27;              // as before 24 
const int cx = x;        // as before 25 
const int& rx = x;       // as before 26 

f(x);                    // T and param are both int 27 

f(cx);                   // T and param are again both int 28 

f(rx);                   // T and param are still both int 29 
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Note that even though cx and rx represent const values, param isn’t const. That 1 

makes sense. param is an object that’s completely independent of cx and rx—a 2 

copy of cx or rx. The fact that cx and rx can’t be modified says nothing about 3 

whether param can be. That’s why expr’s constness (if any) is ignored when de-4 

ducing a type for param: just because expr can’t be modified doesn’t mean that a 5 

copy of it can’t be. 6 

It’s important to recognize that const is ignored only for by-value parameters. As 7 

we’ve seen, for parameters that are references-to- or pointers-to-const, the con-8 

stness of expr is preserved during type deduction. But consider the case where 9 

expr is a const pointer to a const object, and expr is passed to a by-value param: 10 

template<typename T> 11 
void f(T param);         // param is still passed by value 12 

const char* const ptr =  // ptr is const pointer to const object 13 
  "Fun with pointers"; 14 

f(ptr);                  // pass arg of type const char * const 15 

Here, the const to the right of the asterisk declares ptr to be const: ptr can't be 16 

made to point to a different location, nor can it be set to null. (The const to the left 17 

of the asterisk says that what ptr points to—the character string—is const, hence 18 

can't be modified.) When ptr is passed to f, the bits making up the pointer are 19 

copied into param. As such, the pointer itself (ptr) will be passed by value. In accord 20 

with the type deduction rule for by-value parameters, the constness of ptr will be 21 

ignored, and the type deduced for param will be const char*, i.e., a modifiable 22 

pointer to a const character string. The constness of what ptr points to is pre-23 

served during type deduction, but the constness of ptr itself is ignored when 24 

copying it to create the new pointer, param. 25 

Array Arguments 26 

That pretty much covers it for mainstream template type deduction, but there’s a 27 

sidestream case that is worth knowing about. It’s that array types are different 28 

from pointer types, even though they sometimes seem to be interchangeable. A 29 

primary contributor to this illusion is that, in many contexts, an array decays into a 30 

pointer to its first element.  This decay is what permits code like this to compile: 31 
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const char name[] = "J. P. Briggs";  // name's type is 1 
                                     // const char[13] 2 

const char * ptrToName = name;       // array decays to pointer 3 

Here, the const char* pointer ptrToName is being initialized with name, which is 4 

a const char[13], i.e., a 13-element array of const char. These types (const 5 

char* and const char[13]) are not the same, but because of the array-to-pointer 6 

decay rule, the code compiles.   7 

But what if an array is passed to a template taking a by-value parameter? What 8 

happens then? 9 

template<typename T> 10 
void f(T param);      // template with by-value parameter 11 

f(name);              // what types are deduced for T and param? 12 

We begin with the observation that there is no such thing as a function parameter 13 

that's an array. Yes, yes, the syntax is legal, 14 

void myFunc(int param[]); 15 

but the array declaration is treated as a pointer declaration, meaning that myFunc 16 

could be equivalently declared like this: 17 

void myFunc(int* param);         // same function as above 18 

This equivalence of array and pointer parameters is a bit of foliage springing from 19 

the C roots at the base of C++, and it fosters the illusion that array and pointer 20 

types are the same. 21 

Because array parameter declarations are treated as if they were pointer parame-22 

ter declarations, the type of an array that’s passed to a template function by value 23 

is deduced to be a pointer type. That means that in the call to the template f, its 24 

type parameter T is deduced to be const char*: 25 

f(name);          // name is array, but T deduced as const char* 26 

But now comes a curve ball. Although functions can’t declare parameters that are 27 

truly arrays, they can declare parameters that are truly references to arrays! So if 28 

we modify the template f to take its argument by reference, 29 
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template<typename T> 1 
void f(T& param);      // template with by-reference parameter 2 

and we pass an array to it, 3 

f(name);               // pass array to f 4 

the type deduced for T is the actual type of the array! That type includes the size of 5 

the array, so in this example, T is deduced to be const char [13], and the type of 6 

f's parameter (a reference to this array) is const char (&)[13]. Yes, the syntax 7 

looks toxic, but on the plus side, knowing it will score you mondo points with those 8 

rare souls who care.  9 

Interestingly, the ability to declare references to arrays enables creation of a tem-10 

plate to deduce the number of elements that an array contains:  11 

template<typename T, std::size_t N>        // return size of 12 
constexpr std::size_t arraySize(T (&)[N])  // an array as a  13 
{                                          // compile-time 14 
  return N;                                // constant 15 
}        16 

Note the use of constexpr (see Item 14) to make the result of this function avail-17 

able during compilation. That makes it possible to declare, say, an array with the 18 

same number of elements as a second array whose size is computed from list of 19 

initializers: 20 

int keyVals[] = { 1, 3, 7, 9, 11, 22, 35 };      // keyVals has 21 
                                                 // 7 elements 22 

int mappedVals[arraySize(keyVals)];              // so does 23 
                                                 // mappedVals 24 

Of course, as a modern C++ developer, you’d naturally prefer a std::array to a 25 

built-in array: 26 

std::array<int, arraySize(keyVals)> mappedVals;  // mappedVals' 27 
                                                 // size is 7 28 

Function Arguments 29 

Arrays aren’t the only entities in C++ that can decay into pointers.  Function types  30 

can decay into function pointers, too, and everything we’ve discussed regarding 31 
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type deduction and arrays applies to type deduction for functions and their decay 1 

into function pointers. As a result: 2 

void someFunc(int, double);   // someFunc is a function; 3 
                              // type is void(int, double) 4 

template<typename T> 5 
void f1(T param);             // in f1, param passed by value 6 

template<typename T> 7 
void f2(T& param);            // in f2, param passed by ref 8 

f1(someFunc);                 // param deduced as ptr-to-func; 9 
                              // type is void (*)(int, double) 10 

f2(someFunc);                 // param deduced as ref-to-func; 11 
                              // type is void (&)(int, double) 12 

This rarely makes any difference in practice, but if you’re going to know about ar-13 

ray-to-pointer decay, you might as well know about function-to-pointer decay, too. 14 

So there you have it: the rules for template type deduction. I remarked at the out-15 

set that they’re pretty straightforward, and for the most part, they are. The special 16 

treatment accorded lvalues when deducing types for universal references muddies 17 

the water a bit, however, and the decay-to-pointer rules for arrays and functions 18 

stirs up even greater turbidity. Sometimes you simply want to grab your compilers 19 

and demand, “Tell me what type you’re deducing!” When that happens, turn to 20 

Item 4, because it’s devoted to coaxing compilers into doing just that.  21 

Things to Remember 22 

 When deducing types for parameters that are pointers and non-universal ref-23 

erences, whether the initializing expression is a reference is ignored. 24 

 When deducing types for parameters that are universal references, lvalue ar-25 

guments yield lvalue references, and rvalue arguments yield rvalue references.  26 

 When deducing types for by-value parameters, whether the initializing expres-27 

sion is a reference or is const is ignored. 28 

 During type deduction, arguments that are array or function names decay to 29 

pointers, unless they’re used to initialize references. 30 
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 Item 2: Understand auto type deduction. 1 

If you’ve read Item 1 on template type deduction, you already know almost every-2 

thing you need to know about auto type deduction, because, with only one curious 3 

exception, auto type deduction is template type deduction. But how can that be? 4 

Template type deduction involves templates and functions and parameters, but 5 

auto deals with none of those things.  6 

That’s true, but it doesn’t matter. There’s a direct mapping between template type 7 

deduction and auto type deduction. There is literally an algorithmic transfor-8 

mation from one to the other. 9 

In Item 1, template type deduction is explained using this general function tem-10 

plate 11 

template<typename T> 12 
void f(ParamType param);  13 

and this general call: 14 

f(expr);                    // call f with some expression 15 

In the call to f, compilers use expr to deduce types for T and ParamType.  16 

When a variable is declared using auto, auto plays the role of T in the template, 17 

and the type specifier for the variable acts as ParamType. This is easier to show 18 

than to describe, so consider this example: 19 

auto x = 27; 20 

Here, the type specifier for x is simply auto by itself. On the other hand, in this 21 

declaration, 22 

const auto cx = x; 23 

the type specifier is const auto. And here, 24 

const auto& rx = x; 25 

the type specifier is const auto&. To deduce types for x, cx, and rx in these ex-26 

amples, compilers act as if there were a template for each declaration as well as a 27 

call to that template with the corresponding initializing expression: 28 
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template<typename T>               // conceptual template for  1 
void func_for_x(T param);          // deducing x's type 2 

func_for_x(27);                    // conceptual call: param's  3 
                                   // deduced type is x's type 4 

template<typename T>               // conceptual template for  5 
void func_for_cx(const T param);   // deducing cx's type 6 

func_for_cx(x);                    // conceptual call: param's 7 
                                   // deduced type is cx's type 8 

template<typename T>               // conceptual template for  9 
void func_for_rx(const T& param);  // deducing rx's type 10 

func_for_rx(x);                    // conceptual call: param's  11 
                                   // deduced type is rx's type 12 

As I said, deducing types for auto is the same as deducing types for templates. 13 

Item 1 divides template type deduction into three cases, based on the characteris-14 

tics of ParamType, the type specifier for param in the general function template. In 15 

a variable declaration using auto, the type specifier takes the place of ParamType, 16 

so there are three cases for that, too: 17 

 Case 1: The type specifier is a pointer or reference, but not a universal refer-18 

ence. 19 

 Case 2: The type specifier is a universal reference. 20 

 Case 3: The type specifier is neither a pointer nor a reference. 21 

We’ve already seen examples of cases 1 and 3: 22 

auto x = 27;          // case 3 (x is neither ptr nor reference) 23 

const auto cx = x;    // case 3 (cx isn't either) 24 

const auto& rx = x;   // case 1 (rx is a non-universal ref.) 25 

Case 2 works as you’d expect:  26 

auto&& uref1 = x;     // x is int and lvalue, 27 
                      // so uref1's type is int& 28 

auto&& uref2 = cx;    // cx is const int and lvalue, 29 
                      // so uref2's type is const int& 30 
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auto&& uref3 = 27;    // 27 is int and rvalue, 1 
                      // so uref3's type is int&& 2 

Item 1 concludes with a discussion of how array and function names decay into 3 

pointers for non-reference type specifiers. That happens in auto type deduction, 4 

too, of course: 5 

const char name[] =            // name's type is const char[13] 6 
  "R. N. Briggs"; 7 

auto arr1 = name;              // arr1's type is const char* 8 

auto& arr2 = name;             // arr2's type is 9 
                               // const char (&)[13] 10 

 11 
void someFunc(int, double);    // someFunc is a function; 12 
                               // type is void(int, double) 13 

auto func1 = someFunc;         // func1's type is  14 
                               // void (*)(int, double) 15 

auto& func2 = someFunc;        // func2's type is  16 
                               // void (&)(int, double) 17 

As you can see, auto type deduction really is template type deduction. They’re just 18 

two sides of the same coin. 19 

Except for the one way they differ. We’ll start with the observation that if you want 20 

to declare an int with an initial value of 27, C++98 gives you two syntactic choic-21 

es: 22 

int x1 = 27; 23 
int x2(27); 24 

C++11, through its support for uniform initialization, adds these: 25 

int x3 = {27}; 26 
int x4{27}; 27 

All in all, four syntaxes, but only one result: a variable with value 27. 28 

But as Item 5 explains, there are advantages to declaring variables using auto in-29 

stead of fixed types, so it’d be nice to replace int with auto in the above variable 30 

declarations. Straightforward textual substitution yields this code: 31 
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auto x1 = 27;  1 
auto x2(27);  2 
auto x3 = {27}; 3 
auto x4{27}; 4 

These declarations all compile, but they don’t have the same meaning as the ones 5 

they replace. The first two statements do, indeed, declare a variable of type int 6 

with value 27. The second two, however, declare a variable of type 7 

std::initializer_list<int> containing a single element with value 27! 8 

auto x1 = 27;            // type is int, value is 27  9 

auto x2(27);             // ditto 10 

auto x3 = {27};          // type is std::initializer_list<int>, 11 
                         // value is {27} 12 

auto x4{27};             // ditto 13 

This is due to a special type deduction rule for auto. When the initializer for an 14 

auto-declared variable is enclosed in braces, the deduced type is a 15 

std::initializer_list. If such a type can’t be deduced (e.g., because the val-16 

ues in the braced initializer are of different types), the code will be rejected: 17 

auto x5 = {1, 2, 3.0};   // error! can't deduce T for 18 
                         // std::initializer_list<T> 19 

As the comment indicates, type deduction will fail in this case, but it’s important to 20 

recognize that there are actually two kinds of type deduction taking place. One 21 

kind stems from the use of auto: x5’s type has to be deduced. Because x5’s initial-22 

izer is in braces, x5 must be deduced to be a std::initializer_list. But 23 

std::initializer_list is a template. Instantiations are 24 

std::initizalizer_list<T> for some type T, and that means that T’s type 25 

must be deduced. Such deduction falls under the purview of the second kind of 26 

type deduction occurring here: template type deduction. In this example, that de-27 

duction fails, because the values in the braced initializer don’t have a single type. 28 

The treatment of braced initializers is the only way in which auto type deduction 29 

and template type deduction differ. When an auto variable is initialized with a 30 

braced initializer, the deduced type is some instantiation of 31 

std::initializer_list. If a template is faced with deducing the type for a 32 
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braced initializer, however, the code is rejected. (This has consequences for per-1 

fect forwarding, as Item 32 explains.) 2 

You might wonder why auto type deduction has a special rule for braced initializ-3 

ers, but template type deduction does not. I wonder this, myself. Unfortunately, I 4 

have not been able to find a compelling explanation. But the rule is the rule, and 5 

this means that you must bear in mind that if you declare a variable using auto 6 

and you initialize it with a braced initializer, the deduced type will always be 7 

std::initializer_list. It’s especially important to bear this in mind if you 8 

embrace the philosophy of uniform initialization—of enclosing initializing values 9 

in braces as a matter of course. One of the most classic mistakes in C++11 pro-10 

gramming is accidently declaring a std::initializer_list variable when you 11 

mean to declare something else. To reiterate: 12 

auto x1 = 27;            // x1 and x2 are ints  13 
auto x2(27); 14 

auto x3 = {27};          // x3 and x4 are 15 
auto x4{27};             // std::initializer_list<int>s 16 

This pitfall is one of the reasons some developers put braces around their initializ-17 

ers only when they have to. (When you have to is discussed in Item 7. ) 18 

For C++11, this is the full story, but for C++14, the tale continues. C++14 permits 19 

auto to indicate that a function’s return type should be deduced (see Item 3), and 20 

C++14 lambda expressions may use auto in parameter declarations. However, 21 

these uses of auto employ template type deduction, not auto type deduction. That 22 

means that braced initializers in these contexts cause type deduction to fail. So a 23 

function with an auto return type that returns a braced initializer won’t compile: 24 

auto createInitList() 25 
{ 26 
  return { 1, 2, 3 };         // error: can't deduce type 27 
}                             // for { 1, 2, 3 }  28 

The same is true when auto is used in a parameter type specification in a C++14 29 

lambda (thus yielding a generic lambda): 30 

std::vector v; 31 
… 32 
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auto resetV = 1 
  [&v](const auto& newValue) { v = newValue; };  // C++14 only 2 

… 3 

resetV( { 1, 2, 3 } );        // error! can't deduce type 4 
                              // for { 1, 2, 3 } 5 

The net result is that auto type deduction is identical to template type deduction 6 

unless (1) a variable is being declared and (2) its initializer is inside braces. In that 7 

case only, auto deduces a std::initializer_list, but template type deduction 8 

fails. 9 

Things to Remember 10 

 auto type deduction is normally identical to template type deduction. 11 

 The sole exception is that in variable declarations using auto and braced ini-12 

tializers, auto deduces std::initializer_lists. 13 

 Template type deduction fails for braced initializers. 14 

 Item 3: Understand decltype. 15 

decltype is a funny beast. Given a name or an expression, decltype tells you the 16 

name’s or the expression’s type. Typically, what it tells you is exactly what you’d 17 

predict. Occasionally however, it provides results that leave you scratching your 18 

head and turning to reference works or online Q&A sites for revelation. 19 

We’ll begin with the typical cases—the ones harboring no surprises. In contrast to 20 

what happens during type deduction for templates and auto (see Items  1 and 2), 21 

decltype almost always parrots back the type of the name or expression you give 22 

it without any modification: 23 

const int i = 0;           // decltype(i) is const int 24 

bool f(const Widget& w);   // decltype(w) is const Widget& 25 
                           // decltype(f) is bool(const Widget&) 26 

struct Point { 27 
  int x, y;                // decltype(Point::x) is int 28 
};                         // decltype(Point::y) is int 29 

Widget w;                  // decltype(w) is Widget 30 
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if (f(w)) …                // decltype(f(w)) is bool 1 

template<typename T>       // simplified version of std::vector 2 
class vector {  3 
public: 4 
  … 5 
  T& operator[](std::size_t index); 6 
  … 7 
}; 8 

vector<int> v;             // decltype(v) is vector<int> 9 
… 10 
if (v[0] == 0) …           // decltype(v[i]) is int& 11 

See? No surprises.  12 

In C++11, the primary use for decltype is declaring function templates where the 13 

function’s return type depends on its parameter types. For example, suppose we’d 14 

like to write a function that takes a container that supports indexing via square 15 

brackets (i.e., the use of “[]”) plus an index, then authenticates the user before re-16 

turning the result of the indexing operation. The return type of the function should 17 

be the same as the type returned by the indexing operation. 18 

operator[] on a container of objects of type T typically returns a T&. This is the 19 

case for std::deque, for example, and it’s almost always the case for 20 

std::vector. For std::vector<bool>, however, operator[] does not return a 21 

bool&. Instead, it returns a brand new object. The whys and hows of this situation 22 

are explored in Item 6, but what’s important here is that the type returned by a 23 

container’s operator[] depends on the container. 24 

decltype makes it easy to express that. Here’s a first cut at the template we’d like 25 

to write, showing the use of decltype to compute the return type. The template 26 

needs a bit of refinement, but we’ll defer that for now: 27 

template<typename Container, typename Index>    // works, but 28 
auto authAndAccess(Container& c, Index i)       // requires 29 
  -> decltype(c[i])                             // refinement 30 
{ 31 
  authenticateUser(); 32 
  return c[i]; 33 
} 34 
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The use of auto before the function name has nothing to do with type deduction. 1 

Rather, it indicates that C++11’s trailing return type syntax is being used, i.e., that 2 

the function’s return type will be declared following the parameter list (after the 3 

“->”). A trailing return type has the advantage that the function’s parameters can 4 

be used in the specification of its return type. In authAndAccess, for example, we 5 

specify the return type using c and i. If we were to have the return type precede 6 

the function name in the conventional fashion, c and i would be unavailable, be-7 

cause they would not have been declared yet. 8 

With this declaration, authAndAccess returns whatever type operator[] re-9 

turns when applied to the passed-in container, exactly as we desire. 10 

C++11 permits return types for single-statement lambdas to be deduced, and 11 

C++14 extends this to both all lambdas and all functions (including those with mul-12 

tiple statements). In the case of authAndAccess, that means that in C++14 we can 13 

omit the trailing return type, leaving just the leading auto. With that form of dec-14 

laration, auto does mean that type deduction will take place. In particular, it 15 

means that compilers will deduce the function’s return type from the function’s 16 

implementation: 17 

template<typename Container, typename Index>  // C++14 only, and 18 
auto authAndAccess(Container& c, Index i)     // not quite  19 
{                                             // correct 20 
  authenticateUser(); 21 
  return c[i];                  // return type deduced from c[i] 22 
} 23 

But which of C++’s type deduction rules will be used to infer authAndAccess’s 24 

return type: those for templates, those for auto, or those for decltype?  25 

Perhaps surprisingly, functions with an auto return type perform type deduction 26 

using the template type deduction rules. It might seem that use of the auto type 27 

deduction rules would better correspond to the declaration syntax, but remember 28 

that template type deduction and auto type deduction are nearly identical. The 29 

only difference is that template type deduction deduces no type for a braced ini-30 

tializer. 31 
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In this case, deducing authAndAccess’s return type using template type deduc-1 

tion is problematic, but auto’s type deduction rules would fare no better. The dif-2 

ficulty stems from something these forms of type deduction have in common: their 3 

treatment of expressions that are references. 4 

As we’ve discussed, operator[] for most containers-of-T returns a T&, but Item 1 5 

explains that during template type deduction, the reference-ness of an initializing 6 

expression is ignored. Consider what that would mean for this client code using 7 

the declaration for authAndAccess with an auto return type (i.e., using template 8 

type deduction for its return type): 9 

std::deque<int> d; 10 
… 11 
authAndAccess(d, 5) = 10;  // authenticate user, return d[5], 12 
                           // then assign 10 to it; 13 
                           // this won't compile! 14 

Here, d[5] returns an int&, but auto return type deduction for authAndAccess 15 

will strip off the reference, thus yielding a return type of int. That int, being the 16 

return value of a function, is an rvalue, and the code above thus attempts to assign 17 

10 to an rvalue int. That's forbidden in C++, so the code won't compile. 18 

The problem is that we're using template type deduction, which discards reference 19 

qualifiers from its initializing expression. What we want in this case is decltype 20 

type deduction. Such type deduction would permit us to say that authAndAccess 21 

should return exactly the same type that the expression c[i] returns.  22 

The guardians of C++, anticipating the need to use decltype type deduction rules 23 

in some cases where types are inferred, make this possible in C++14 through the 24 

decltype(auto) specifier. What may initially seem contradictory (decltype and 25 

auto?) actually makes perfect sense: auto specifies that the type is to be deduced, 26 

and decltype says that decltype rules should be used during the deduction. We 27 

can thus write authAndAccess like this: 28 

template<typename Container, typename Index>   // C++14 only; 29 
decltype(auto)                                 // works, but  30 
authAndAccess(Container& c, Index i)           // still requires 31 
{                                              // refinement 32 
  authenticateUser(); 33 



Page 30 

 

  return c[i]; 1 
} 2 

Now authAndAccess will truly return whatever c[i] returns. In particular, for 3 

the common case where c[i] returns a T&, authAndAccess will also return a T&, 4 

and in the uncommon case where c[i] returns an object, authAndAccess will 5 

return an object, too. 6 

The use of decltype(auto) is not limited to function return types. It can also be 7 

convenient for declaring variables when you want to apply the decltype type de-8 

duction rules to the initializing expression: 9 

Widget w; 10 

const Widget& cw = w; 11 

auto myWidget1 = cw;             // auto type deduction: 12 
                                 // myWidget1's type is Widget 13 

decltype(auto) myWidget2 = cw;   // decltype type deduction: 14 
                                 // myWidget2's type is 15 
                                 //   const Widget& 16 

But two things are bothering you, I know. One is the refinement to authAndAc-17 

cess I mentioned, but have not yet described. Let’s address that now. 18 

Look again at the declaration for the C++14 version of authAndAccess: 19 

template<typename Container, typename Index> 20 
decltype(auto) authAndAccess(Container& c, Index i); 21 

The container is passed by lvalue-reference-to-non-const, because returning a 22 

reference to an element of the container permits clients to modify that container. 23 

But this means it’s not possible to pass rvalue containers to this function. Rvalues 24 

can't bind to lvalue references (unless they’re lvalue-references-to-const, which is 25 

not the case here).  26 

Admittedly, passing an rvalue container to authAndAccess is an edge case. An 27 

rvalue container, being a temporary object, would typically be destroyed at the 28 

end of the statement containing the call to authAndAccess, and that means that a 29 

reference to an element in that container (which is typically what authAndAccess 30 

would return) would dangle at the end of the statement that created it. Still, it 31 
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could make sense to pass a temporary object to authAndAccess. A client might 1 

simply want to make a copy of an element in the temporary container, for exam-2 

ple: 3 

std::deque<std::string> makeStringDeque();   // factory function 4 

// make copy of 5th element of deque returned 5 
// from makeStringDeque 6 
auto s = authAndAccess(makeStringDeque(), 5); 7 

Supporting such use means we need to revise the declaration for c to accept both 8 

lvalues and rvalues, and that means that c needs to be a universal reference (see 9 

Item 26): 10 

template<typename Container, typename Index> 11 
decltype(auto) authAndAccess(Container&& c, Index i); 12 

In this template, we don’t know what type of container we’re operating on, and 13 

that means we’re equally ignorant of the type of index objects it uses. Employing 14 

pass-by-value for objects of an unknown type generally risks the performance hit 15 

of unnecessary copying, the behavioral problems of object slicing (see Item 17), 16 

and the sting of our coworkers’ derision, but in the case of container indices, fol-17 

lowing the example of the Standard Library (e.g., std::string, std::vector, 18 

and std::deque) seems reasonable, so we’ll stick with pass-by-value for them. 19 

All that remains is to update the template’s implementation to bring it into accord 20 

with Item 27’s admonition to apply std::forward to universal references: 21 

template<typename Container, typename Index>       // final 22 
decltype(auto)                                     // C++14 23 
authAndAccess(Container&& c, Index i)              // version 24 
{ 25 
  authenticateUser(); 26 
  return std::forward<Container>(c)[i]; 27 
} 28 

This should do everything we want, but it requires a C++14 compiler. If you don’t 29 

have one, you’ll need to use the C++11 version of the template. It’s the same as its 30 

C++14 counterpart, except that you have to specify the return type yourself: 31 

template<typename Container, typename Index>       // final 32 
auto                                               // C++11 33 
authAndAccess(Container&& c, Index i)              // version 34 
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-> decltype(std::forward<Container>(c)[i]) 1 
{ 2 
  authenticateUser(); 3 
  return std::forward<Container>(c)[i]; 4 
} 5 

The other issue that’s likely to be nagging at you is my remark at the beginning of 6 

this Item that decltype almost always produces the type you expect, that it rarely 7 

surprises. Truth be told, you’re unlikely to encounter these exceptions to the rule 8 

unless you’re a heavy-duty library implementer. 9 

To fully understand decltype’s behavior, you’ll have to familiarize yourself with a 10 

few special cases. Most of these are too obscure to warrant discussion in a book 11 

like this, but looking at one lends insight into decltype as well as its use. 12 

Applying decltype to a name yields the declared type for that name, just as I said. 13 

Names are lvalue expressions, but that doesn't affect decltype's behavior. For 14 

lvalue expressions more complicated than names, however, decltype ensures 15 

that the type reported is always an lvalue reference. That is, if an lvalue expression 16 

other than a name has type T, decltype reports that type as T&. This rarely has 17 

any impact, because the type of most lvalue expressions inherently includes an 18 

lvalue reference qualifier. Functions returning lvalues, for example, always return 19 

lvalue references.  20 

There is an implication of this behavior that is worth being aware of, however. In 21 

int x = 0; 22 

x is the name of a variable, so decltype(x) is int. But wrapping the name x in pa-23 

rentheses—“(x)”—yields an expression more complicated than a name. Being a 24 

name, x is an lvalue, and C++ defines (x) to be an lvalue, too. decltype((x)) is 25 

therefore int&. Putting parentheses around a name can change the type that 26 

decltype reports for it! 27 

In C++11, this is little more than a curiosity, but in conjunction with C++14’s sup-28 

port for decltype(auto), it means that a seemingly trivial change in the way you 29 

write a return statement can affect the deduced type for a function: 30 
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decltype(auto) f1() 1 
{ 2 
  int x = 0; 3 
  … 4 
  return x;        // decltype(x) is int, so f1 returns int 5 
} 6 

decltype(auto) f2() 7 
{ 8 
  int x = 0; 9 
  … 10 
  return (x);      // decltype((x)) is int&, so f2 returns int& 11 
} 12 

Note that not only does f2 have a different return type from f1, but it’s also re-13 

turning a reference to a local variable! That’s the kind of code that puts you on the 14 

express train to undefined behavior—a train you most assuredly don’t want to be 15 

on. 16 

The primary lesson here is to pay very close attention when using 17 

decltype(auto). Seemingly insignificant details in the expression whose type is 18 

being deduced can affect the type that decltype(auto) reports. To ensure that 19 

the type being deduced is the type you expect, use the techniques described in 20 

Item 4.  21 

At the same time, don’t lose sight of the bigger picture. Sure, decltype (both alone 22 

and in conjunction with auto) may occasionally yield type-deduction surprises, 23 

but that’s not the normal situation. Normally, decltype produces the type you 24 

expect. This is especially true when decltype is applied to names, because in that 25 

case, decltype does just what it sounds like: it reports that name’s declared type. 26 

Things to Remember 27 

 decltype almost always yields the type of a variable or expression without 28 

any modifications. 29 

 For lvalue expressions of type T other than names, decltype always reports a 30 

type of T&. 31 

 C++14 supports decltype(auto), which, like auto, deduces a type from its 32 

initializer, but it performs the type deduction using the decltype rules. 33 
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 Item 4: Know how to view deduced types. 1 

People who want to see the types that compilers deduce usually fall into one of 2 

two camps. The first are the pragmatists. They’re typically motivated by a behav-3 

ioral problem in their software (i.e., they’re debugging), and they’re looking for 4 

insights into compilation that can help them identify the source of the problem. 5 

The second are the experimentalists. They’re exploring the type deduction rules 6 

described in Items 1-3. Often, they want to confirm their predictions about the re-7 

sults of various type deduction scenarios (“For this code, I think compilers will de-8 

duce this type...”), but sometimes they simply want to answer “what if” questions. 9 

“How,” they might wonder, “do the results of template type deduction change if I 10 

replace a universal reference (see Item 26) with an lvalue-reference-to-const pa-11 

rameter (i.e., replace T&& with const T& in a function template parameter list)?” 12 

Regardless of the camp you fall into (both are legitimate), the tools you have at 13 

your disposal depend on the phase of the software development process where 14 

you’d like to see the types your compilers have inferred. We’ll explore three possi-15 

bilities: getting type deduction information as you edit your code, getting it during 16 

compilation, and getting it at runtime. 17 

IDE Editors 18 

Code editors in IDEs often show the types of program entities (e.g., variables, pa-19 

rameters, functions, etc.) when you do something like hover your cursor over the 20 

entity. For example, given this code, 21 

const int theAnswer = 42; 22 

auto x = theAnswer; 23 
auto y = &theAnswer; 24 

an IDE editor would likely show that x’s deduced type was int and y’s was const 25 

int*.   26 

For this to work, your code must be in a more or less compilable state, because 27 

what makes it possible for the IDE to offer this kind of information is a C++ com-28 

piler running inside the IDE. If that compiler can’t make enough sense of your code 29 

to parse it and perform type deduction, it can’t show you what types it deduced. 30 
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Compiler Diagnostics 1 

An effective way to get a compiler to show a type it has deduced is to use that type 2 

in a way that leads to compilation problems. The error message reporting the 3 

problem is virtually sure to mention the type that’s causing it.  4 

Suppose, for example, we’d like to see the types that were deduced for x and y in 5 

the previous example. We first declare a class template that we don’t define. Some-6 

thing like this does nicely: 7 

template<typename T>       // declaration only for TD; 8 
class TD;                  // TD == "Type Displayer" 9 

Attempts to instantiate this template will elicit an error message, because there’s 10 

no template definition to instantiate. To see the types for x and y, just try to instan-11 

tiate TD with their types: 12 

TD<decltype(x)> xType;     // elicit errors containing  13 
TD<decltype(y)> yType;     // x's and y's types; 14 
                           // see Item 3 for decltype info 15 

I use variable names of the form variableNameType, because they tend to yield 16 

quite informative error messages. For the code above, one of my compilers issues 17 

diagnositics reading, in part, as follows. (I’ve highlighted the type information 18 

we’re looking for.) 19 

error: aggregate 'TD<int> xType' has incomplete type and  20 
    cannot be defined 21 
error: aggregate 'TD<const int *> yType' has incomplete type 22 
    and cannot be defined 23 

A different compiler provides the same information, but in a different form: 24 

error: 'xType' uses undefined class 'TD<int>' 25 
error: 'yType' uses undefined class 'TD<const int *>' 26 

Formatting differences aside, all the compilers I’ve tested produce error messages 27 

with useful type information when this technique is employed. 28 

Runtime Output 29 

The printf approach to displaying type information (not that I'm recommending 30 

you use printf) can’t be employed until runtime, but it offers full control over the 31 
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formatting of the output. The challenge is to create a textual representation of the 1 

type you care about that is suitable for display. “No sweat,” you’re thinking, “it’s 2 

typeid and std::type_info::name to the rescue.” In our continuing quest to 3 

see the types deduced for x and y, you figure, we can write this: 4 

std::cout << typeid(x).name() << '\n';    // display types for 5 
std::cout << typeid(y).name() << '\n';    // x and y 6 

This approach relies on the fact that invoking typeid on an object such as x or y 7 

yields a std::type_info object, and std::type_info has a member function, 8 

name, that produces a C-style string (i.e., a const char*) representation of the 9 

name of the type. 10 

Calls to std::type_info::name are not guaranteed to return anything sensible, 11 

but implementations try to be helpful. The level of helpfulness varies. The GNU and 12 

Clang compilers report that the type of x is “i”, and the type of y is “PKi”, for ex-13 

ample. These results make more sense once you learn that, in output from these 14 

compilers, “i” means “int” and “PK” means “pointer to konst const.” (Both com-15 

pilers support a tool, c++filt, that decodes such “mangled” types.) Microsoft’s com-16 

piler produces less cryptic output: “int” for x and “int const *” for y. 17 

Because these results are correct for the types of x and y, you might be tempted to 18 

view the type-reporting problem as solved, but let’s not be hasty. Consider a more 19 

complex example: 20 

template<typename T>                 // template function to  21 
void f(const T& param);              // be called 22 

std::vector<Widget> createVec();     // factory function 23 

const auto vw = createVec();         // init vw w/factory return 24 

if (!vw.empty()) { 25 
  f(&vw[0]);                         // call f 26 
  … 27 
} 28 

This code, which involves a user-defined type (Widget), an STL container 29 

(std::vector), and an auto variable (vw),  is more representative of the situa-30 

tions where you might want some visibility into the types your compilers are de-31 
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ducing. For example, it’d be nice to know what types are inferred for the template 1 

type parameter T and the function parameter param in f. 2 

Loosing typeid on the problem is straightforward. Just add some code to f to dis-3 

play the types you’d like to see: 4 

template<typename T> 5 
void f(const T& param) 6 
{ 7 
  using std::cout; 8 

  cout << "T =     " << typeid(T).name() << '\n';     // show T 9 

  cout << "param = " << typeid(param).name() << '\n'; // show 10 
  …                                                   // param's 11 
}                                                     // type 12 

Executables produced by the GNU and Clang compilers produce this output: 13 

T =     PK6Widget 14 
param = PK6Widget 15 

We already know that for these compilers, PK means “pointer to const,” so the 16 

only mystery is the number 6. That’s simply the number of characters in the class 17 

name that follows (Widget). So these compilers tell us that both T and param are 18 

of type const Widget*.  19 

Microsoft’s compiler concurs: 20 

T =     class Widget const * 21 
param = class Widget const * 22 

Three independent compilers producing the same information suggests that the 23 

information is accurate. But look more closely. In the template f, param’s declared 24 

type is const T&. That being the case, doesn't it seem odd that T and param have 25 

the same type? If T were int, for example, param’s type should be const int&—26 

not the same type at all. 27 

Sadly, the results of std::type_info::name are not reliable. In this case, for ex-28 

ample, the type that all three compilers report for param are incorrect. Further-29 

more, they’re essentially required to be incorrect, because the specification for 30 

std::type_info::name mandates that the type being processed be treated as if 31 
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it had been passed to a template function as a by-value parameter. As Item 1 ex-1 

plains, that means that if the type is a reference, its reference-ness is ignored, and 2 

if the type after reference removal is const, its constness is also ignored. That’s 3 

why param’s type—which is const Widget * const &—is reported as const 4 

Widget*. First the type’s reference-ness is removed, and then the constness of 5 

the result type is eliminated. 6 

Equally sadly, the type information displayed by IDE editors is also not reliable—7 

or at least not reliably useful. For this same example, one IDE editor I know reports 8 

T’s type as (I am not making this up): 9 

const 10 
std::_Simple_types<std::_Wrap_alloc<std::_Vec_base_types<Widget, 11 
std::allocator<Widget> >::_Alloc>::value_type>::value_type * 12 

The same IDE editor shows param’s type as: 13 

const std::_Simple_types<...>::value_type *const & 14 

That’s less intimidating than the type for T, but the “...” in the middle is disturb-15 

ing until you realize that it’s the IDE editor’s way of saying “I’m omitting all that 16 

stuff that’s part of T’s type.”  17 

My understanding is that most of what’s displayed here is typedef cruft and that 18 

once you push through the typedefs to get to the underlying type information, 19 

you get what you’re looking for, but having to do that work pretty much eliminates 20 

any utility the display of the types in the IDE originally promised. With any luck, 21 

your IDE editor does a better job on code like this. 22 

In my experience, compiler diagnostics are a more dependable source of infor-23 

mation about the results of type deduction. Revising the template f’s implementa-24 

tion to instantiate the declared-but-not-defined template TD yields this: 25 

template<typename T> 26 
void f(const T& param) 27 
{ 28 
  TD<T> TType;                      // elicit errors containing 29 
  TD<decltype(param)> paramType;    // T's and param's types 30 
  … 31 
}  32 
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Each of GNU’s, Clang’s, and Microsoft’s compilers produce error messages with the 1 

correct types for T and param. The exact message contents and formats vary, but 2 

as an example, this is what GNU’s compiler issues (after minor reformatting): 3 

error: 'TD<const Widget *> TType' has incomplete type 4 
error: 'TD<const Widget * const &> paramType' has incomplete 5 
       type 6 

Beyond typeid  7 

If you want accurate runtime information about deduced types, we’ve seen that 8 

typeid is not a reliable route to getting it. One way to work around that is to im-9 

plement your own mechanism for mapping from a type to its displayable repre-10 

sentation. In concept, it’s not difficult: you just use type traits and template met-11 

aprogramming (see Item 9) to break a type into its various components (using 12 

type traits such as std::is_const, std::is_pointer, 13 

std::is_lvalue_reference, etc.), and you create a string representation of the 14 

type from textual representations of each of its parts. (You’d still be dependent on 15 

typeid and std::type_info::name to generate string representations of the 16 

names of user-defined classes, though.) 17 

If you’d use such a facility often enough to justify the effort needed to write, debug, 18 

document, and maintain it, that’s a reasonable approach. But if you’re willing to 19 

live with a little platform-dependent code that’s easy to implement and produces 20 

better results than those based on typeid, it’s worth noting that many compilers 21 

support a language extension that yields a printable representation of the full sig-22 

nature for a function, including, for functions generated from templates, types for 23 

both template and function parameters.  24 

For example, the GNU and Clang compilers support a construct called 25 

__PRETTY_FUNCTION__, and Microsoft’s compiler offers  __FUNCSIG__.  These 26 

constructs represent a variable (for GNU and Clang) or a macro (for Microsoft) 27 

whose value is the signature of the containing function. If we reimplement our 28 

template f like this, 29 

template<typename T> 30 
void f(const T& param) 31 
{ 32 
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#if defined(__GNUC__)                          // For GNU and 1 
  std::cout << __PRETTY_FUNCTION__ << '\n';    // Clang 2 
#elif defined(_MSC_VER) 3 
  std::cout << __FUNCSIG__ << '\n';            // For Microsoft 4 
#endif 5 

  … 6 

} 7 

and call f as we did before, 8 

std::vector<Widget> createVec();     // factory function 9 

const auto vw = createVec();         // init vw w/factory return 10 

if (!vw.empty()) { 11 
  f(&vw[0]);                         // call f 12 
  … 13 
} 14 

we get the following result from GNU: 15 

void f(const T&) [with T = const Widget*] 16 

This tells us that T has been deduced to be const Widget* (the same thing we got 17 

via typeid, but without the “PK” encoding and the “6” in front of the class name), 18 

but it also tells us that f’s parameter has type const T&. If we expand T in that 19 

formulation, we get const Widget * const &. That’s different from what typeid 20 

told us, though it’s the same as the type in the error message provoked by use of 21 

the declared-but-not-defined TD template. It’s also correct. 22 

Use of Microsoft’s __FUNCSIG__ produces this output: 23 

void __cdecl f<const classWidget*>(const class Widget *const &) 24 

The type inside the angle brackets is the type deduced for T: const Widget*. This, 25 

too, is what we got via typeid. But the type inside parentheses is the type de-26 

duced for param: const Widget * const&. That’s not what typeid told us, 27 

though, again, it’s the same as the (correct) information we’d get during compila-28 

tion from use of the TD template. 29 
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Clang’s function-signature-reporting facility, despite using the same name as 1 

GNU’s (__PRETTY_FUNCTION__), is not as forthcoming as GNU’s or Microsoft’s. It 2 

yields simply: 3 

void f(const Widget *const &) 4 

This shows param’s type directly, but it leaves it up to you to deduce that T’s type 5 

must have been const Widget* (or to rely on the information provided via 6 

typeid). 7 

IDE editors, compiler error messages, typeid, and language extensions like 8 

__PRETTY_FUNCTION__ and __FUNCSIG__ are merely tools you can use to help 9 

you figure out what types your compilers are deducing for you. All can be helpful, 10 

but at the end of the day, there’s no substitute for understanding the type deduc-11 

tion information in Items 1-3.   12 

Things to Remember 13 

 Deduced types can often be seen using IDE editors, compiler error messages, 14 

typeid, and language extensions such as __PRETTY_FUNCTION__ and 15 

__FUNCSIG__. 16 

 The results of such tools may be neither helpful nor accurate, so an under-17 

standing of C++’s type deduction rules remains essential. 18 
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 1 

It’s been a wild ride for auto. In 1983, Bjarne Stroustrup took this lonely and 2 

largely superfluous keyword and gave it new purpose in his C++ compiler: to de-3 

clare a variable whose type was deduced from its initializing expression. The move 4 

proved too bold for the C developers who were C++’s target audience, so auto’s 5 

revised semantics were rolled back, and the keyword retired to the home for trivia 6 

topics. (“What is auto used for?”)  7 

Nearly three decades later, it debuted a second time (with the same semantics 8 

Bjarne had instilled in it so many years before) and thereby became C++11’s oldest 9 

new feature. It’s also probably C++11’s most frequently used one, because few acts 10 

are as common as declaring variables. In C++14, its utility gains new ground: 11 

lambda parameters may incorporate auto, and function return types may be au-12 

to-deduced. It took a long time for auto to make it into the limelight, but its tenure 13 

there now seems secure. 14 

In concept, auto is as simple as simple can be, but it’s more subtle than it looks. 15 

Using it saves typing, sure, but it also prevents correctness and performance issues 16 

that can bedevil manual type declarations. Furthermore, some of auto’s type de-17 

duction results, while dutifully conforming to the prescribed algorithm, are, from 18 

the perspective of a programmer, just plain wrong. When that’s the case, it’s im-19 

portant to know how to guide auto to the right answer, because falling back on 20 

manual type declarations is an alternative that’s often best avoided. 21 

This brief chapter covers all of auto’s ins and outs. 22 

 Item 5:  Prefer auto to explicit type declarations. 23 

Ah, the simple joy of  24 

int x; 25 

Wait. Damn. I forgot to initialize x, so its value is indeterminate.  Maybe. It might 26 

actually be initialized to zero. Depends on the context. Sigh.  27 
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Never mind. Let’s move on to the simple joy of declaring a local variable to be ini-1 

tialized with the value of an iterator: 2 

template<typename It>    // algorithm to dwim ("do what I mean")  3 
void dwim(It b, It e)    // for all elements in range from 4 
{                        // b to e 5 
  while (b != e) { 6 
    typename std::iterator_traits<It>::value_type 7 
      currValue = *b; 8 
    … 9 
  } 10 
} 11 

Ugh. “typename std::iterator_traits<It>::value_type” to express the 12 

type of the value pointed to by an iterator? Really? I must have blocked out the 13 

memory of how much fun that is. Damn. Wait—didn’t I already say that? 14 

Okay, simple joy (take three): the delight of declaring a local variable whose type is 15 

the same as that resulting from a lambda expression. Oh, right. The type of a lamb-16 

da expression is known only to the compiler, hence can’t be written out. Sigh. 17 

Damn. 18 

Damn, damn, damn! Programming in C++ is not the joyous experience it should be! 19 

Well, it didn’t used to be. But as of C++11, all these issues go away, courtesy of au-20 

to. auto variables have their type deduced from their initializer, so they must be 21 

initialized. That means you can wave goodbye to a host of uninitialized variable 22 

problems as you speed by on the C++11 superhighway: 23 

int x;       // valid in C++ 98/11/14, potentially uninitialized 24 

auto x;      // error! initializer required 25 

auto x = 0;  // fine, x's value is well-defined 26 

Said highway also paves over the potholes associated with declaring a local varia-27 

ble whose value is determined by an iterator: 28 

template<typename It>    // as before  29 
void dwim(It b, It e)  30 
{ 31 
  while (b != e) { 32 
    auto currValue = *b; 33 
    … 34 
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  } 1 
} 2 

And because auto is based on type deduction, it can represent types known only 3 

to compilers: 4 

auto derefUPLess =                        // comparison func. 5 
  [](const std::unique_ptr<Widget>& p1,   // for Widgets  6 
     const std::unique_ptr<Widget>& p2)   // pointed to by  7 
  { return *p1 < *p2; };                  // std::unique_ptrs 8 

Very cool. In C++14, the coolness chills further, because in C++14, parameters to 9 

lambda expressions may involve auto: 10 

auto derefLess =                          // comparison func. 11 
  [](const auto& p1,                      // for values pointed 12 
     const auto& p2)                      // to by anything 13 
  { return *p1 < *p2; };                  // pointer-like 14 

Coolness notwithstanding, perhaps you're thinking that we don't really need auto 15 

to declare a variable that holds a closure, because we can use a std::function 16 

object: 17 

std::function<bool(const std::unique_ptr<Widget>&,  18 
                   const std::unique_ptr<Widget>&)> 19 
  derefUPLess = [](const std::unique_ptr<Widget>& p1, 20 
                   const std::unique_ptr<Widget>& p2) 21 
                  { return *p1 < *p2; }; 22 

You're right, but it's important to recognize that—even setting aside the syntactic 23 

verbosity and the need to repeat the parameter types—using std::function is 24 

not the same thing as using auto. An auto-declared variable holding the result of a 25 

lambda expression has the same type as the lambda expression. The type of a 26 

std::function-declared variable holding the result of a lambda expression is 27 

some instantiation of the std::function template. The constructor for such in-28 

stantiations may allocate heap memory. (Whether it does depends on how much 29 

data is captured by the lambda and on how std::function is implemented). au-30 

to never allocates heap memory. The std::function object uses more memory 31 

than the auto-declared object. And, thanks to implementation details that restrict 32 

inlining and yield indirect function calls, invoking a lambda’s closure via a 33 

std::function object is almost certain to be slower than calling it via an auto-34 

declared object. In other words, the std::function approach is generally bigger 35 
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and slower than the auto approach, and it may yield out-of-memory exceptions, 1 

too. Plus, as you can see in the examples above, writing “auto”  is a whole lot less 2 

work than writing the type of the std::function instantiation. In the competi-3 

tion between auto and std::function for holding the result of a lambda expres-4 

sion, it’s pretty much game, set, and match for auto. (A similar argument can be 5 

made for auto over std::function for holding the result of calls to std::bind, 6 

though in Item 36, I do my best to convince you to use lambdas instead of 7 

std::bind, anyway.) 8 

The advantages of auto extend beyond the avoidance of uninitialized variables, 9 

verbose variable declarations, and the ability to directly hold the result of lambda 10 

expressions. One is the ability to avoid what I call problems related to “type 11 

shortcuts.” Here’s something you’ve probably seen—possibly even written: 12 

std::vector<int> v; 13 
… 14 
unsigned sz = v.size(); 15 

The official return type of v.size() is std::vector<int>::size_type, but few 16 

developers are aware of that. std::vector<int>::size_type is specified to be 17 

an unsigned integral type, so a lot of programmers figure that unsigned is good 18 

enough and write code such as the above. This can have some interesting conse-19 

quences. On 32-bit Windows, for example, both unsigned and 20 

std::vector<int>::size_type are the same size, but on 64-bit Windows, un-21 

signed is 32 bits, while std::vector<int>::size_type is 64 bits. This means 22 

that code that works under 32-bit Windows may behave incorrectly under 64-bit 23 

Windows, and when porting your application from 32 to 64 bits, who wants to 24 

spend time on issues like that? 25 

Using auto ensures that you don’t have to: 26 

auto sz = v.size();  // sz's type is std::vector<int>::size_type 27 

Still unsure about the wisdom of using auto? Then consider this code: 28 

std::unordered_map<std::string, int> m;  29 
… 30 
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for (const std::pair<std::string, int>& p : m) 1 
{ 2 
  …                   // do something with p 3 
} 4 

This looks perfectly reasonable, but there’s a problem. Do you see it? 5 

Recognizing what’s amiss requires remembering that the key part of a 6 

std::unordered_map is const, so the type of std::pair in the hash table 7 

(which is what a std::unordered_map is) isn’t std::pair<std::string, 8 

int>, it’s std::pair<const std::string, int>. But that’s not the type de-9 

clared for the variable p in the loop above. As a result, compilers will strive to find 10 

a way to convert std::pair<const std::string, int> objects (i.e., what’s in 11 

the hash table) to std::pair<std::string, int> objects (the declared type for 12 

p). They’ll succeed by creating a temporary object of the type that p wants to bind 13 

to by copying each object in m, then binding the reference p to that temporary ob-14 

ject. At the end of each loop iteration, the temporary object will be destroyed.  If 15 

you wrote this loop, you’d likely be surprised by this behavior, because you’d al-16 

most certainly intend to simply bind the reference p to each element in m. 17 

Such unintentional type mismatches can be autoed away: 18 

for (const auto& p : m) 19 
{ 20 
 …                             // as before 21 
} 22 

This is not only more efficient, it’s also easier to type. Furthermore, this code has 23 

the very attractive characteristic that if you take p’s address, you're sure to get a 24 

pointer to an element within m. In the code not using auto, you'd get a pointer to a 25 

temporary object—an object that would be destroyed at the end of the loop itera-26 

tion. 27 

The last two examples—writing unsigned when you should have written 28 

std::vector<int>::size_type and writing std::pair<std::string, int> 29 

when you should have written std::pair<const std::string, int>—30 

demonstrate how explicitly specifying types can lead to implicit conversions that 31 

you neither want nor expect. Such conversions arise whenever the type of the ini-32 

tializing expression is different from the type you specify for the target variable, 33 



Page 47 

 

but an implicit conversion exists from one to the other. It generally arises because 1 

your expectations about the type of the initializing expression are incorrect, e.g., 2 

you believe that std::vector<int>::size_type is the same as unsigned, or 3 

you forget that the first component of the std::pairs in a std::unordered_map 4 

is const. If you use auto as the type of the target variable, you need not worry 5 

about mismatches between the type of variable you’re declaring and the type of 6 

the expression used to initialize it. 7 

There are thus several reasons to prefer auto over explicit type declarations. Yet 8 

auto isn’t perfect. The type for each auto variable is deduced from its initializing 9 

expression, and some initializing expressions have types that are neither antici-10 

pated nor desired. The conditions under which such cases arise, and what you can 11 

do about them, are discussed in Items 2 and 6, so I won’t address them here. In-12 

stead, I’ll turn my attention to a different concern you may have about using auto 13 

in place of traditional type declarations: the readability of the resulting source 14 

code. 15 

First, take a deep breath and relax. auto is an option, not a mandate. If, in your 16 

professional judgment, your code will be clearer or more maintainable or in some 17 

other way better by using explicit type declarations, you’re free to continue using 18 

them. But bear in mind that C++ is far from breaking new ground in adopting what 19 

is generally known in the programming languages world as type inference.  Other 20 

statically typed procedural languages (e.g., C#, D, Scala, Visual Basic) have a more 21 

or less equivalent feature, to say nothing of a variety of statically typed functional 22 

languages (e.g., ML, Haskell, OCaml, F#, etc.). In part, this is due to the success of 23 

dynamically typed languages such as Perl, Python, and Ruby, where variables are 24 

essentially never explicitly typed. The software development community has ex-25 

tensive experience with type inference, and it has demonstrated that there is noth-26 

ing contradictory about such technology and the creation and maintenance of in-27 

dustrial-strength, industrial-sized code bases.  28 

Some developers are disturbed by the fact that using auto eliminates the ability to 29 

determine an object’s type by a quick glance at the source code. However, IDEs’ 30 

ability to show object types often mitigates this problem (even taking into account 31 

the IDE type-display issues mentioned in Item 4), and, in many cases, a somewhat 32 
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abstract view of an object’s type is just as useful as the exact type. It often suffices, 1 

for example, to know that an object is a container or a counter or a smart pointer, 2 

without knowing exactly what kind of container, counter, or smart pointer it is. 3 

Assuming well-chosen variable names, such abstract type information should al-4 

most always be at hand. 5 

The fact of the matter is that writing out types explicitly often does little more than 6 

introduce opportunities for subtle errors, either in correctness or efficiency or 7 

both. Furthermore, auto types automatically change if the type of their initializing 8 

expression changes, and that means that some refactorings are facilitated by the 9 

use of auto. For example, if a function is declared to return an int, but you later 10 

decide that a long would be better, the calling code automatically updates itself 11 

the next time you compile if the results of calling the function are stored in an au-12 

to variable. If the results are stored in a variable explicitly declared to be an int, 13 

you’ll need to find all the call sites so that you can revise them. 14 

By all means, consider the impact on your source code’s readability when choosing 15 

between declaring auto types and explicit types. But before you reject auto, be 16 

sure you’re doing it for a solid technical reason, not simply because you’re used to 17 

writing out types by hand. 18 

Things to Remember: 19 

 auto variables must be initialized, are generally immune to type mismatches 20 

that can lead to portability or efficiency problems, can ease the process of re-21 

factoring, and typically require less typing than variables with explicitly speci-22 

fied types. 23 

 auto-typed variables are subject to the pitfalls described in Items 2 and 6.  24 

 Item 6: Be aware of the typed initializer idiom. 25 

Item 5 explains that using auto to declare variables offers a number of technical 26 

advantages over explicitly specifying types, but sometimes auto’s type deduction 27 

zigs when you want it to zag. For example, suppose I have a function that takes a 28 

Widget and returns a std::vector<bool>, where each bool indicates whether 29 

the Widget offers a particular feature: 30 
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std::vector<bool> features(const Widget& w); 1 

Further suppose that bit 5 indicates whether the Widget has high priority. We can 2 

thus write code like this: 3 

Widget w; 4 
… 5 

bool highPriority = features(w)[5];  // is w high priority? 6 
… 7 

processWidget(w, highPriority);      // process w in accord 8 
                                     // with its priority 9 

There’s nothing wrong with this code. It’ll work fine. But if we make the seemingly 10 

innocuous change of replacing the explicit type for highPriority with auto,  11 

auto highPriority = features(w)[5];  // is w high priority? 12 

the situation changes. All the code will continue to compile, but its behavior is no 13 

longer predictable: 14 

processWidget(w, highPriority);      // undefined behavior! 15 

As the comment indicates, the call to processWidget now has undefined behav-16 

ior. But why? The answer is likely to be surprising. In the code using auto, the type 17 

of highPriority is no longer bool. Though std::vector<bool> conceptually 18 

holds bools, operator[] for std::vector<bool> doesn’t return a reference to 19 

an element of the container (which is what std::vector::operator[] returns 20 

for every type except bool). Instead, it returns an object of type 21 

std::vector<bool>::reference (a class nested inside std::vector<bool>).  22 

std::vector<bool>::reference exists because std::vector<bool> is speci-23 

fied to represent its bools in packed form, one bit per bool. That creates a prob-24 

lem for std::vector<bool>’s operator[], because operator[] for 25 

std::vector<T> is supposed to return a T&, but C++ forbids references to bits. 26 

Not being able to return a bool&, operator[] for std::vector<bool> returns 27 

an object that acts like a bool&. For this act to succeed, 28 

std::vector<bool>::reference objects must be usable in essentially all con-29 

texts where bool&s can be. Among the features in 30 

std::vector<bool>::reference that make this work is an implicit conversion 31 
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to bool. (Not to bool&, to bool. To explain the full set of techniques used by 1 

std::vector<bool>::reference to emulate the behavior of a bool& would 2 

take us too far afield, so I’ll simply remark that this implicit conversion is only one 3 

stone in a larger mosaic.) 4 

With this information in mind, look again at this part of the original code: 5 

bool highPriority = features(w)[5];  // declare highPriority’s 6 
                                     // type explicitly 7 

Here, features returns a std::vector<bool> object, on which operator[] is 8 

invoked. operator[] returns a std::vector<bool>::reference object, which 9 

is then implicitly converted to the bool that is needed to initialize highPriority.  10 

highPriority thus ends up with the value of bit 5 in the std::vector<bool> 11 

returned by features, just like it’s supposed to. 12 

Contrast that with what happens in the auto-ized declaration for highPriority: 13 

auto highPriority = features(w)[5];  // deduce highPriority’s 14 
                                     // type 15 

Again, features returns a std::vector<bool> object, and, again, operator[] 16 

is invoked on it. operator[] continues to return a 17 

std::vector<bool>::reference object, but now there’s a change, because au-18 

to deduces that as the type of highPriority.  highPriority doesn’t have the 19 

value of bit 5 of the std::vector<bool> returned by features at all.  20 

The value it does have depends on how std::vector<bool>::reference is im-21 

plemented. One implementation is for such objects to contain a pointer to the ma-22 

chine word holding the referenced bit, plus the offset into that word for that bit. 23 

Consider what that means for the initialization of highPriority, assuming that 24 

such a std::vector<bool>::reference implementation is in place.  25 

The call to features returns a temporary std::vector<bool> object. This ob-26 

ject has no name, but for purposes of this discussion, I’ll call it temp. operator[] 27 

is invoked on temp, and the std::vector<bool>::reference it returns con-28 

tains a pointer to a word in the data structure holding the bits that are managed by 29 

temp, plus the offset into that word corresponding to bit 5. highPriority is a 30 
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copy of this std::vector<bool>::reference object, so highPriority, too, 1 

contains a pointer to a word in temp, plus the offset corresponding to bit 5. At the 2 

end of the statement, temp is destroyed, because it’s a temporary object. There-3 

fore, highPriority contains a dangling pointer, and that’s the cause of the unde-4 

fined behavior in the call to processWidget: 5 

processWidget(w, highPriority);    // undefined behavior!  6 
                                   // highPriority may contain 7 
                                   // dangling pointer! 8 

std::vector<bool>::reference is an example of a proxy class: a class that ex-9 

ists for the purpose of emulating and augmenting the behavior of some other type. 10 

Proxy classes are employed for a variety of purposes. 11 

std::vector<bool>::reference exists to offer the illusion that operator[] 12 

for std::vector<bool> returns a reference to a bit, for example, and the Stand-13 

ard Library’s smart pointer types (see Chapter 4) are proxy classes that graft re-14 

source management onto raw pointers. The utility of proxy classes is well-15 

established. In fact, the design pattern “Proxy” is one of the most longstanding 16 

members of the software design patterns Pantheon. 17 

Some proxy classes are designed to be apparent to clients. That’s the case for 18 

std::shared_ptr and std::unique_ptr, for example. Other proxy classes are 19 

designed to act more or less invisibly. std::vector<bool>::reference is an 20 

example of such “invisible” proxies, as is its C++14 cousin, 21 

std::bitset::reference.  22 

Also in that camp are some classes in C++ libraries employing a technique known 23 

as expression templates. Such libraries were originally developed to improve the 24 

efficiency of numeric code. Given a class Matrix and Matrix objects m1, m2, m3, 25 

and m4, for example,  the expression 26 

Matrix sum = m1 + m2 + m3 + m4; 27 

can be computed much more efficiently if operator+ for Matrix objects returns a 28 

proxy for the result instead of the result itself.  That is, operator+ for two Matrix 29 

objects would return an object of a proxy class such as Sum<Matrix, Matrix> in-30 

stead of a Matrix object. As was the case with std::vector<bool>::reference 31 
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and bool, there’d be an implicit conversion from the proxy class to Matrix, which 1 

would permit the initialization of sum from the proxy object produced by the ex-2 

pression on the right side of the “=”.  (The type of that object would traditionally 3 

encode the entire initialization expression, i.e., be something like 4 

Sum<Sum<Sum<Matrix, Matrix>, Matrix>, Matrix>. That’s definitely a type 5 

from which clients should be shielded.) 6 

As a general rule, “invisible” proxy classes don’t play well with auto. Objects of 7 

such classes are often not designed to live longer than a single statement, so creat-8 

ing variables of those types tends to violate fundamental library design assump-9 

tions. That’s the case with std::vector<bool>::reference, and we’ve seen 10 

that violating that assumption can lead to undefined behavior.  11 

You therefore want to avoid code of this form: 12 

auto someVar = expression of "invisible" proxy class type; 13 

But how can you recognize when proxy objects are in use? The software employ-14 

ing them is unlikely to advertise their existence. They’re supposed to be invisible, 15 

at least conceptually! And once you’ve found them, do you really have to abandon 16 

auto and the many advantages Item 5 demonstrates for it?  17 

Let’s take the how-do-you-find-them question first. Although “invisible” proxy 18 

classes are designed to fly beneath programmer radar in day-to-day use, libraries 19 

using them often document that they do so. The more you’ve familiarized yourself 20 

with the basic design decisions of the libraries you use, the less likely you are to be 21 

blindsided by proxy usage within those libraries. 22 

Where documentation comes up short, header files fill the gap. It’s rarely possible 23 

for source code to fully cloak proxy objects. They’re typically returned from func-24 

tions that clients are expected to call, so function signatures usually reflect their 25 

existence. Here’s the spec for std::vector<bool>::operator[], for example: 26 

namespace std {                    // from C++98/11/14 Standards 27 

  template <class Allocator> 28 
  class vector<bool, Allocator> {  29 
  public: 30 
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    … 1 
    class reference { … }; 2 

    reference operator[](size_type n); 3 
    … 4 
  }; 5 

} 6 

Assuming you know that operator[] for std::vector<T> normally returns a 7 

T&, the unconventional return type for operator[] in this case is a tip-off that a 8 

proxy class is in use. Paying careful attention to the interfaces you’re using can of-9 

ten reveal the existence of proxy classes. 10 

In practice, many developers discover the use of proxy classes only when they try 11 

to track down mystifying compilation problems or debug incorrect unit test re-12 

sults. Regardless of how you find them, once auto has been determined to be de-13 

ducing the type of a proxy class instead of the type being proxied, the solution 14 

need not involve abandoning auto. auto itself isn’t the problem. The problem is 15 

that auto isn’t deducing the type you want it to deduce.  The solution is to force a 16 

different type deduction. The way you do that is what I call the typed initializer idi-17 

om. 18 

The typed initializer idiom involves declaring a variable with auto, but casting the 19 

initialization expression to the type you want auto to deduce. Here’s how it can be 20 

used to force highPriority to be a bool, for example: 21 

auto highPriority = static_cast<bool>(features(w)[5]); 22 

Here, features(w)[5] continues to return a std::vector<bool>::reference 23 

object, just as it always has, but the cast changes the type of the expression to 24 

bool, which auto then deduces as the type for highPriority. At runtime, the 25 

std::vector<bool>::reference object returned from 26 

std::vector<bool>::operator[] executes the conversion to bool that it sup-27 

ports, and as part of that conversion, the still-valid pointer to the 28 

std::vector<bool> returned from features is dereferenced. That avoids the 29 

undefined behavior we ran into earlier. The index 5 is then applied to the bits 30 

pointed to by the pointer, and the bool value that emerges is used to initialize 31 

highPriority. 32 
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For the Matrix example, the typed initializer idiom would look like this: 1 

auto sum = static_cast<Matrix>(m1 + m2 + m3 + m4); 2 

Applications of the idiom aren’t limited to initializers yielding proxy class types. It 3 

can also be useful to emphasize that you are deliberately creating a variable of a 4 

type that is different from that generated by the initializing expression. For exam-5 

ple, suppose you have a function to calculate some tolerance value: 6 

double calcEpsilon();            // return tolerance value 7 

calcEpsilon clearly returns a double, but suppose you know that for your appli-8 

cation, the precision of a float is adequate, and you care about the difference in 9 

size between floats and doubles. You could declare a float variable to store the 10 

result of calcEpsilon, 11 

float ep = calcEpsilon();        // impliclitly convert 12 
                                 // doublefloat 13 

but this hardly announces “I’m deliberately reducing the precision of the value re-14 

turned by the function!” A declaration using the typed initializer idiom, however, 15 

does: 16 

auto ep = static_cast<float>(calcEpsilon()); 17 

Similar reasoning applies if you have a floating point expression that you are de-18 

liberately storing as an integral value. Suppose you need to calculate the index of 19 

an element in a container with random access iterators (e.g., a std::vector, 20 

std::deque, or std::array), and you’re given a double between 0.0 and 1.0 21 

indicating how far from the beginning of the container the desired element is lo-22 

cated. (0.5 would indicate the middle of the container.) Further suppose that 23 

you’re confident that the resulting index will fit in an int. If the container is c and 24 

the double is d, you could calculate the index this way, 25 

int index = d * c.size(); 26 

but this obscures the fact that you’re intentionally converting the double on the 27 

right to an int. The typed initializer idiom eliminates makes things transparent: 28 

auto index = static_cast<int>(d * c.size()); 29 
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Things to Remember 1 

 “Invisible” proxy types can cause auto to deduce the “wrong” type for an ini-2 

tializing expression. 3 

 The typed initializer idiom forces auto to deduce the type you want it to have. 4 
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 1 

If you’re an experienced C++ developer, you understand and are comfortable with 2 

C++98 and its common programming idioms. Enums, classes, member functions, 3 

inheritance, templates, const, using objects to manage resources—you’ve been 4 

there, you’ve done that. As such, you’re likely to view C++11 as C++98 plus a bunch 5 

of new features, with C++14 comprising essentially more of the same.  6 

For the most part, that’s fine. C++’s legendary commitment to backwards-7 

compatibility means that not only does virtually all legacy source code remain val-8 

id, the same is true for most C++ software development techniques. Good practices 9 

in C++98 typically remain good practices in C++11. But there are exceptions. In 10 

some cases, C++98 language features should generally be eschewed in favor of 11 

newer, similar C++11 features that take advantage of the experience the C++ pro-12 

gramming community garnered during the 13 year reign of C++98. Examples in-13 

clude using nullptr instead of NULL or 0 (Item 8), preferring alias declarations 14 

over typedefs (Item 9), choosing scoped instead of unscoped enums (Item 10), 15 

and prohibiting the use of unwanted member functions by deleteing them in-16 

stead of declaring them private (Item 11). In other cases, taking advantage of 17 

new language features requires modification of some well-entrenched habits. For 18 

example, virtual function overrides should now be declared as such (Item 12), 19 

some parameters are now better passed by value than by reference-to-const 20 

(Item 17), calls to push_back or push_front or insert should sometimes be re-21 

placed with their emplacement counterparts (Item 18), functions that can poten-22 

tially run during compilation should be declared constexpr (Item 14), and excep-23 

tion specifications should be more widely employed (Item 16). In still other cases, 24 

C++11 simply changes the rules of the C++ programming game. Ways this is ap-25 

parent include that there’s now an important syntactic choice to be made when 26 

declaring objects (Item 7),  const_iterators are substantially more useful than 27 

they used to be (Item 13), declaring member functions const implies that they’re 28 

thread-safe (Item 15), and compiler-generated member functions are governed by 29 

a set of rules that have been significantly revised (Item 19). 30 
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This chapter covers guidelines that will help you update C++98 habits to bring 1 

them into accord with C++11 and C++14, but not all guidelines of that nature are in 2 

this chapter. Item 5, for example (“Prefer auto to explicit type declarations”), be-3 

longs here, too, but it fits more naturally into the chapter on auto, and the over-4 

arching guidance to prefer smart pointers to raw pointers has so many facets, it 5 

gets its own chapter (Chapter 4). Still, the Items that follow do a good job of sum-6 

marizing how effective programming in C++11 and C++14 distinguishes itself from 7 

C++98 approaches to accomplishing common development tasks. It demonstrates 8 

that being an effective contemporary C++ programmer consists of not just adopt-9 

ing new language features, but also reevaluating techniques and practices proven 10 

in C++98. 11 

 Item 7: Distinguish () and {} when creating objects. 12 

Depending on your perspective, syntax choices for object initialization in C++11 13 

embody either an embarrassment of riches or a confusing mess. As a general rule, 14 

initialization values may be specified with parentheses, an equals sign, or braces: 15 

int x(0);             // initializer is in parentheses 16 

int y = 0;            // initializer follows "=" 17 

int z{0};             // initializer is in braces 18 

In many cases, it’s also possible to use an equals sign and braces together: 19 

int z = {0};          // initializer uses "=" and braces 20 

For the remainder of this Item, I'll generally ignore the equals-sign-plus-braces 21 

syntax, because C++ usually treats it the same as the braces-only version. 22 

The “confusing mess” lobby points out that the use of an equals sign for initializa-23 

tion often misleads C++ newbies into thinking that an assignment is taking place, 24 

even though it’s not. For built-in types like int, the difference is academic, but for 25 

user-defined types, it’s important to distinguish initialization from assignment, 26 

because different function calls are involved: 27 

Widget w1;            // call default constructor 28 

Widget w2 = w1;       // not an assignment; calls copy ctor 29 
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w1 = w2;              // an assignment; calls copy operator= 1 

Even with several initialization syntaxes, there were some situations where C++98 2 

had no way to express a desired initialization. For example, it wasn’t possible to 3 

directly indicate that an STL container (e.g., std::vector<int>) should be creat-4 

ed holding a particular set of values (e.g., 1, 3, and 5).  5 

To address the confusion of multiple initialization syntaxes, as well as the fact that 6 

they don’t cover all initialization scenarios, C++11 introduces uniform initializa-7 

tion: a single initialization syntax that can be used anywhere and can express eve-8 

rything. It’s based on braces, and for that reason I prefer the term braced initializa-9 

tion. “Uniform initialization” is a concept. “Braced initialization” is a syntactic con-10 

struct. 11 

Braced initialization lets you express the formerly inexpressible. Using braces, 12 

specifying the initial contents of a container is easy: 13 

std::vector<int> v{1, 3, 5};   // v's initial content is 1, 3, 5 14 

Braces can also be used to specify default initialization values for non-static data 15 

members. This capability—new to C++11—is shared with the “=” initialization 16 

syntax, but not with parentheses: 17 

class Widget { 18 
  … 19 

private: 20 
  int x{0};                    // fine, x's default value is 0 21 
  int y = 0;                   // also fine 22 
  int z(0);                    // error! 23 
};   24 

On the other hand, uncopyable objects (e.g., std::atomics) may be initialized us-25 

ing braces or parentheses, but not using "=": 26 

std::atomic<int> ai1{0};       // fine 27 

std::atomic<int> ai2(0);       // fine 28 

std::atomic<int> ai3 = 0;      // error! 29 
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Perhaps now you see why braced initialization is called “uniform.” Of C++’s three 1 

ways to designate an initializing expression (braces, parentheses, and “=”), only 2 

braces can be used everywhere. 3 

A novel feature of braced initialization is that it prohibits implicit narrowing con-4 

versions among built-in types. If the value of an expression in a braced initializer 5 

isn’t guaranteed to be expressible in the type of the object being initialized, the 6 

code won’t compile: 7 

double x, y, z; 8 

… 9 

int sum1{x + y + z};         // error! sum of doubles may 10 
                             // not be expressible as int 11 

Initialization using parentheses and “=” doesn’t check for narrowing conversions, 12 

because that could break too much legacy code: 13 

int sum2(x + y + z);         // okay (value of expression  14 
                             // truncated to an int) 15 

int sum3 = x + y + z;        // ditto 16 

Another noteworthy characteristic of braced initialization is its immunity to C++’s 17 

most vexing parse. A side-effect of C++’s rule that anything that can be parsed as a 18 

declaration must be interpreted as one, the most vexing parse most frequently af-19 

flicts developers when they want to default-construct an object, but inadvertently 20 

end up declaring a function, instead. The root of the problem is that if you want to 21 

call a constructor with an argument, you can do it like this, 22 

Widget w1(10);     // call Widget ctor with argument 10 23 

but if you try to call a Widget constructor with zero arguments using the analo-24 

gous syntax, you declare a function instead of an object: 25 

Widget w2();       // most vexing parse! declares a function 26 
                   // named w2 that returns a Widget! 27 

This trap is particularly odious, because an empty set of parentheses sometimes 28 

does call a constructor with zero arguments: 29 
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void f(const Widget& w = Widget());  // w's default value is a 1 
                                     // default-constructed  2 
                                     // Widget 3 

Braced initialization eliminates the most vexing parse, yet has no effect on the 4 

meaning of initializations that already do what’s desired: 5 

Widget w1{10};     // as before, calls Widget ctor with arg 10 6 

Widget w2{};       // now calls Widget ctor with no args 7 

void f(const Widget& w = Widget{});  // as before, w's default 8 
                                     // value is a default- 9 
                                     // constructed Widget 10 

There’s thus a lot to be said for braced initialization. It’s the syntax that can be 11 

used in the widest variety of contexts, it prevents implicit narrowing conversions, 12 

and it’s immune to C++’s most vexing parse. A trifecta of goodness, right? So why 13 

isn’t this Item entitled something like “Use braced initialization syntax”?  14 

The drawback to braced initialization is the sometimes-surprising behavior that 15 

accompanies it. Such behavior grows out of the unusually tangled relationship 16 

among braced initializers, std::initializer_lists, and constructor overload 17 

resolution. Their interactions can lead to code that seems like it should do one 18 

thing, but actually does another. For example, Item 2 explains that when an auto-19 

declared variable has a braced initializer, the type deduced is 20 

std::initializer_list, even though other ways of declaring a variable with 21 

the same initializer would cause auto to deduce the type of the initializer: 22 

auto v1 = -1;         // -1's type is int, and so is v1's 23 

auto v2(-1);          // -1's type is int, and so is v2's 24 

auto v3{-1};          // -1's type is still int, but 25 
                      // v3's type is std::initializer_list<int> 26 

auto v4 = {-1};       // -1's type remains int, but 27 
                      // v4's type is std::initializer_list<int> 28 

In constructor calls, parentheses and braces have the same meaning as long as 29 

std::initializer_list parameters are not involved: 30 

class Widget { 31 
public: 32 
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  Widget(int i, bool b);      // ctors not declaring  1 
  Widget(int i, double d);    // std::initializer_list params 2 
  … 3 
}; 4 

Widget w1(10, true);          // calls first ctor 5 

Widget w2{10, true};          // also calls first ctor 6 

Widget w3(10, 5.0);           // calls second ctor 7 

Widget w4{10, 5.0};           // also calls second ctor 8 

If, however, one or more constructors declares a parameter of type 9 

std::initializer_list, calls using the braced initialization syntax strongly 10 

prefer the overloads taking std::initializer_lists. Strongly. If there’s any 11 

way for compilers to construe a call using a braced initializer to be to a constructor 12 

taking a std::initializer_list, compilers will employ that interpretation. If 13 

the Widget class above is augmented with a constructor taking a 14 

std::initializer_list<long double>, for example, 15 

class Widget { 16 
public: 17 
  Widget(int i, bool b);                           // as before 18 
  Widget(int i, double d);                         // as before 19 

  Widget(std::initializer_list<long double> il);   // added 20 

  … 21 

}; 22 

Widgets w2 and w4 will be constructed using the new constructor, even though the 23 

type of the std::initializer_list elements (long double) is, compared to 24 

the non-std::initializer_list constructors, a worse match for both argu-25 

ments! 26 

Widget w1(10, true);       // uses parens and, as before, 27 
                           // calls first ctor 28 

Widget w2{10, true};       // uses braces, but now calls  29 
                           // std::init_list ctor (10 and 30 
                           // true convert to long double) 31 

Widget w3(10, 5.0);        // uses parens and, as before, 32 
                           // calls second ctor 33 
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Widget w4{10, 5.0};        // uses braces, but now calls 1 
                           // std::init_list ctor (10 and 2 
                           // 5.0 convert to long double) 3 

Compilers’ determination to match braced initializers with constructors taking 4 

std::initializer_lists is so strong, it prevails even if the best-match 5 

std::initializer_list constructor can’t be called. For example, consider this 6 

slightly-revised example: 7 

class Widget { 8 
public: 9 
  Widget(int i, bool b);                   // as before 10 
  Widget(int i, double d);                 // as before 11 

  Widget(std::initializer_list<bool> il);  // std::init_list 12 
  …                                        // element type is 13 
};                                         // now bool 14 

Widget w{10, 5.0};     // error! requires narrowing conversions 15 

Here, compilers will ignore the first two constructors (the second of which offers 16 

an exact match on both argument types) and try to call the constructor taking a 17 

std::initializer_list<bool>. Calling that constructor would require con-18 

verting an int (10) and a double (5.0) to bools. Both conversions would be nar-19 

rowing (bool can't exactly represent either value), and narrowing conversions are 20 

prohibited inside braced initializers, so the call is invalid, and the code is rejected. 21 

If there’s no way to convert the types of the arguments in a braced initializer to the 22 

type taken by a std::initializer_list, compilers fall back on normal overload 23 

resolution. For example, if we replace the std::initializer_list<bool> con-24 

structor with one taking a std::initializer_list<std::string>, the non-25 

std::initializer_list constructors become candidates again, because there 26 

is no way to convert ints and bools to std::strings: 27 

class Widget { 28 
public: 29 
  Widget(int i, bool b);               // as before 30 
  Widget(int i, double d);             // as before 31 

  // std::init_list element type is now std::string 32 
  Widget(std::initializer_list<std::string> il); 33 
  … 34 
}; 35 
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Widget w1(10, true);     // uses parens, still calls first ctor 1 

Widget w2{10, true};     // uses braces, now calls first ctor 2 

Widget w3(10, 5.0);      // uses parens, still calls second ctor 3 

Widget w4{10, 5.0};      // uses braces, now calls second ctor 4 

There are two additional twists to the tale of constructor overload resolution and 5 

braced initializers that are worth knowing about: 6 

 Empty braces mean no arguments, not an empty std::initializer_list. Speci-7 

fying constructor arguments with an empty pair of braces is a request to call 8 

the default constructor, not a request to call a constructor with an empty 9 

std::initializer_list: 10 

class Widget { 11 
public: 12 
  Widget();                               // default ctor 13 
  Widget(std::initializer_list<int> il);  // std::init_list  14 
  …                                       // ctor 15 
}; 16 

Widget w1;         // calls default ctor 17 

Widget w2{};       // also calls default ctor 18 
                   // (doesn't create empty std::init_list) 19 

Widget w3();       // most vexing parse! declares a function! 20 

If you want to call a std::initializer_list constructor with an empty 21 

std::initializer_list, you do it by making the empty braces a construc-22 

tor argument—by putting the empty braces inside the parentheses or braces 23 

demarcating what you’re passing! 24 

Widget w4({});     // calls std::init_list ctor 25 
                   // with empty list 26 

Widget w5{{}};     // ditto 27 

 Copy and move constructors are called as usual. Creating an object from 28 

another object of the same type always invokes the conventional copying and 29 

moving functions: 30 

class Widget { 31 
public: 32 
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  Widget(const Widget& rhs);              // copy ctor 1 
  Widget(Widget&& rhs);                   // move ctor 2 

  Widget(std::initializer_list<int> il);  // std::init_list  3 
                                          // ctor 4 

  operator int() const;                   // convert to int 5 
  … 6 
}; 7 

auto w6{w5};               // calls copy ctor, not 8 
                           // std::init_list <int> ctor, even 9 
                           // though Widget converts to int 10 

auto w7{std::move(w5)};    // ditto, but for move ctor  11 
                           // (Item 25 has info on std::move) 12 

At this point, with seemingly arcane rules about braced initializers, 13 

std::initializer_lists, and constructor overloading burbling about in your 14 

brain, you may be wondering how much of this information matters in day-to-day 15 

programming. More than you might think. That’s because one of the classes direct-16 

ly affected is std::vector. std::vector has a non-std::initializer_list 17 

constructor that allows you to specify the initial size of the container and a value 18 

each of the initial elements should have, but it also has a constructor taking a 19 

std::initializer_list that permits you to specify the initial values in the con-20 

tainer. If you create a std::vector of a numeric type (e.g., a std::vector<int>) 21 

and you pass two arguments to the constructor, whether you enclose those argu-22 

ments in parentheses or braces makes a tremendous difference: 23 

std::vector<int> v1(10, 20);  // use non-std::init_list ctor: 24 
                              // create 10-element std::vector, 25 
                              // all elements have value of 20 26 

std::vector<int> v2{10, 20};  // use std::init_list ctor: 27 
                              // create 2-element std::vector, 28 
                              // element values are 10 and 20 29 

But let’s step back from std::vector and also from the details of parentheses, 30 

braces, and constructor overloading resolution rules. There are two primary take-31 

aways from this discussion. First, as a class author, you need to be aware that if 32 

your constructor overloads include one or more functions taking a 33 

std::initializer_list, client code using braced initialization may see only the 34 

std::initializer_list overloads. As a result, it’s best to design your construc-35 
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tors so that the overload called isn’t affected by whether clients use parentheses or 1 

braces. In other words, learn from what is now considered to be an error in the 2 

design of the std::vector interface, and design your classes to avoid it. 3 

An implication is that if you have a class with no std::initializer_list con-4 

structor and you add one, client code using braced initialization may find that calls 5 

that used to resolve to non-std::initializer_list constructors now resolve 6 

to the new function. Of course, this kind of thing can happen any time you add a 7 

new function to a set of overloads: calls that used to resolve to one of the old over-8 

loads might start calling the new one. The difference with 9 

std::initializer_list constructor overloads is that a 10 

std::initializer_list overload doesn’t just compete with other overloads, it 11 

overshadows them to the point that the other overloads may not even be consid-12 

ered. So add such overloads only with great deliberation. 13 

The second lesson is that as a class client, you must choose carefully between pa-14 

rentheses and braces when creating objects. Most developers end up choosing one 15 

kind of delimiter as a default, using the other only when they have to. Braces-by-16 

default folks are attracted by their unrivaled breadth of applicability, their preven-17 

tion of narrowing conversions, and their immunity to C++’s most vexing parse. 18 

Such folks understand that in some cases (e.g., creation of a std::vector with a 19 

given size and initial element value), parentheses are required. In contrast, the go-20 

parentheses-go crowd embraces parentheses as their default argument delimiter. 21 

They’re attracted to its consistency with the  C++98 syntactic tradition, its avoid-22 

ance of the auto-deduced-a-std::initializer_list problem, and the 23 

knowledge that their object creation calls won’t be inadvertently waylaid by 24 

std::initializer_list constructors. They concede that sometimes only brac-25 

es will do (e.g., when creating a container with particular values). Neither ap-26 

proach is rigorously better than the other. My advice is to pick one and apply it 27 

consistently.† 28 

                                                             

† The examples in this book reveal that I’m a parentheses-by-default person. 



Page 66 

 

If you’re a template author, the parentheses-braces duality for object creation can 1 

be especially frustrating, because, in general, it’s not possible to know which form 2 

should be used. For example, suppose you’d like to create an object of an arbitrary 3 

type from an arbitrary number of arguments. A variadic template makes this con-4 

ceptually straightforward: 5 

template<typename T,                // type of object to create 6 
         typename... Args>          // types of arguments to use 7 
void doSomeWork(const T& obj, Args&&... args) 8 
{ 9 
  create local T object from args... 10 

  … 11 

} 12 

There are two ways to turn the line of pseudocode into real code (see Item 27 for 13 

information about std::forward): 14 

T localObject(std::forward<Args>(args)...);    // using parens 15 

T localObject{std::forward<Args>(args)...};    // using braces 16 

So consider this calling code: 17 

std::vector<int> v; 18 
… 19 
doSomeWork(v, 10, 20); 20 

If doSomeWork uses parentheses when creating localObject, the result is a 21 

std::vector with 10 elements. If doSomeWork uses braces, the result is a 22 

std::vector with 2 elements. Which is correct? The author of doSomeWork can’t 23 

know. Only the caller can.  24 

This is precisely the problem faced by the Standard Library functions 25 

std::make_unique and std::make_shared (see Item 23). These functions re-26 

solve the problem by internally using parentheses and documenting this decision 27 

as part of their interfaces. This is not the only way of dealing with the issue, how-28 

ever. Alternative designs permit callers to determine whether parentheses or 29 
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braces should be used in functions generated from a template. A common compo-1 

nent of such designs is tag dispatch, which is described in Item 29.† 2 

Things to Remember 3 

 Braced initialization is the most widely applicable initialization syntax, it pre-4 

vents narrowing conversions, and it’s immune to C++’s most vexing parse. 5 

 As detailed in Item 2, braced initializers yield std::initializer_lists for 6 

auto-declared objects. 7 

 During constructor overload resolution, braced initializers are matched to 8 

std::initializer_list parameters, even if other constructors offer seem-9 

ingly better matches. 10 

 An example of where the choice between parentheses and braces can make a 11 

significant difference is creating a std::vector with two arguments. 12 

 Choosing between parentheses and braces for object creation inside templates 13 

can be challenging. 14 

 Item 8: Prefer nullptr to 0 and NULL. 15 

So here's the deal: 0 is an int, not a pointer. If C++ finds itself looking at 0 in a con-16 

text where only a pointer can be used, it'll grudgingly interpret 0 as a null pointer, 17 

but that’s a fallback position. C++’s primary policy is that 0 is an int, not a pointer. 18 

Practically speaking, the same is true of NULL. There is some uncertainty in the de-19 

tails in NULL’s case, because implementations are allowed to give NULL an integral 20 

type other than int (e.g., long).* That’s not common, but it doesn’t really matter, 21 

because the issue here isn’t the exact type of NULL, it’s that neither 0 nor NULL has 22 

a pointer type.  23 

                                                             

† The treatment in Item 29 is general. For an example of how it can be specifically applied 

to functions like doSomeWork, see the 5 June 2013 entry of  Andrzej's C++ blog, “Intuitive 

interface — Part I.” 

* In C, NULL’s type can be void*, but this has never been legal in C++. 

http://akrzemi1.wordpress.com/2013/06/05/intuitive-interface-part-i/
http://akrzemi1.wordpress.com/2013/06/05/intuitive-interface-part-i/
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In C++98, the primary implication of this was that overloading on pointer and in-1 

tegral types could lead to surprises. Passing 0 or NULL to such overloads never 2 

called a pointer overload: 3 

void f(int);        // three overloads of f 4 
void f(bool); 5 
void f(void*); 6 

f(0);               // calls f(int) overload, not f(void*) 7 

f(NULL);            // might not compile, but typically calls 8 
                    // f(int) overload. Never calls f(void*) 9 

The uncertainty regarding the behavior of f(NULL) is a reflection of the leeway 10 

granted to implementations regarding the type of NULL. If NULL is defined to be, 11 

say, 0L (i.e., 0 as a long), the call is ambiguous, because conversion from long to 12 

int, long to bool, and 0L to void* are considered equally good. The interesting 13 

thing about that call is the contradiction between the apparent meaning of the 14 

source code (“I’m calling f with NULL—the null pointer”) and its actual meaning 15 

(“I’m calling f with some kind of integer—not the null pointer”).  This counterintu-16 

itive behavior is what led to the guideline for C++98 programmers to avoid over-17 

loading on pointer and integral types. That guideline remains valid in C++11, be-18 

cause, the advice of this Item notwithstanding, it’s likely that some developers will 19 

continue to use 0 and NULL, even though nullptr is a better choice. 20 

nullptr’s advantage is that it doesn’t have an integral type. To be honest, it 21 

doesn’t have a pointer type, either, but you can think of it as a pointer of all types. 22 

nullptr’s actual type is std::nullptr_t, and, in a wonderfully circular defini-23 

tion, std::nullptr_t is defined to be the type of nullptr. The type 24 

std::nulltpr_t implicitly converts to all raw pointer types, and that’s what 25 

makes nullptr act as if it were a pointer of all types. 26 

Calling the overloaded function f with nullptr calls the void* overload (i.e., the 27 

pointer overload), because nullptr can’t be viewed as anything integral: 28 

f(nullptr);         // calls f(void*) overload 29 
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Using nullptr instead of 0 or NULL thus avoids overload resolution surprises, but 1 

that’s not its only advantage. It can also improve code clarity, especially when au-2 

to variables are involved. For example, suppose you encounter this in a code base: 3 

auto result = findRecord( /* arguments */ ); 4 

if (result == 0) { 5 
  …  6 
} 7 

If you don’t happen to know (or be able to easily find out) what findRecord re-8 

turns, it may not be clear whether result is a pointer type or an integral type. Af-9 

ter all, 0 (what result is tested against) could go either way. If you see the follow-10 

ing, on the other hand,  11 

auto result = findRecord( /* arguments */ ); 12 

if (result == nullptr) { 13 
  …  14 
} 15 

there’s no ambiguity: result must be a pointer type. 16 

Where nullptr truly shines is when templates enter the picture. Suppose you 17 

have some functions that should be called only when the appropriate mutex has 18 

been locked. Each function takes a different kind of pointer: 19 

int    f1(std::shared_ptr<Widget> spw);  // call these only when  20 
double f2(std::unique_ptr<Widget> upw);  // the appropriate 21 
bool   f3(Widget* pw);                   // mutex is locked 22 

Calling code that wants to pass null pointers could look like this: 23 

std::mutex f1m, f2m, f3m;         // mutexes for f1, f2, and f3 24 

using MuxGuard =                  // C++11 typedef; see Item 9 25 
  std::lock_guard<std::mutex>; 26 
… 27 

{ 28 
  MuxGuard g(f1m);            // lock mutex for f1 29 
  auto result = f1(0);        // pass 0 as null ptr to f1 30 
}                             // unlock mutex 31 

… 32 
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{ 1 
  MuxGuard g(f2m);            // lock mutex for f2 2 
  auto result = f2(NULL);     // pass NULL as null ptr to f2 3 
}                             // unlock mutex 4 

… 5 

{ 6 
  MuxGuard g(f3m);            // lock mutex for f3 7 
  auto result = f3(nullptr);  // pass nullptr as null ptr to f3 8 
}                             // unlock mutex 9 

The failure to use nullptr in the first two calls in this code is sad, but the code 10 

works, and that counts for something. However, the repeated pattern in the calling 11 

code—lock mutex, call function, unlock mutex—is more than sad. It’s disturbing. 12 

This kind of source code duplication is one of the things that templates are de-13 

signed to avoid, so let’s templatize the pattern: 14 

template<typename FuncType, 15 
         typename MuxType, 16 
         typename PtrType> 17 
auto lockAndCall(FuncType func, 18 
                 MuxType& mutex, 19 
                 PtrType ptr) -> decltype(func(ptr)) 20 
{ 21 
  MuxGuard g(mutex); 22 
  return func(ptr); 23 
} 24 

If the return type of this function (auto … -> decltype(func(ptr)) has you 25 

scratching your head, do your head a favor and navigate to Item 3, which explains 26 

what’s going on. There you’ll see that in C++14, the return type could be reduced 27 

to a simple decltype(auto): 28 

template<typename FuncType, 29 
         typename MuxType, 30 
         typename PtrType> 31 
decltype(auto) lockAndCall(FuncType func,        // C++14 only 32 
                           MuxType& mutex, 33 
                           PtrType ptr)  34 
{ 35 
  MuxGuard g(mutex); 36 
  return func(ptr); 37 
} 38 

Given the lockAndCall template (either version), callers can write code like this: 39 
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auto result1 = lockAndCall(f1, f1m, 0);          // error! 1 

… 2 

auto result2 = lockAndCall(f2, f2m, NULL);       // error!  3 

… 4 

auto result3 = lockAndCall(f3, f3m, nullptr);    // fine 5 

Well, they can write it, but, as the comments indicate, in two of the three cases, the 6 

code won’t compile. The problem in the first call is that when 0 is passed to 7 

lockAndCall, template type deduction kicks in to figure out its type. The type of 0 8 

is, was, and always will be int, so that’s the type of the parameter ptr inside the 9 

instantiation of this call to lockAndCall. Unfortunately, this means that in the call 10 

to func inside lockAndCall, an int is being passed, and that’s not compatible 11 

with the std::shared_ptr<Widget> parameter that f1 expects. The 0 passed in 12 

the call to lockAndCall was intended to represent a null pointer, but what actual-13 

ly got passed was a run-of-the-mill int. Trying to pass this int to f1 as a 14 

std::shared_ptr<Widget> is a type error. The call to lockAndCall with 0, 15 

then, fails, because inside the template, an int is being passed to a function that 16 

requires a std::shared_ptr<Widget>. 17 

The analysis for the call involving NULL is essentially the same. When NULL is 18 

passed to lockAndCall, an integral type is deduced for the parameter ptr, and a 19 

type error occurs when ptr—an int or int-like type—is passed to f2, which ex-20 

pects to get a std::unique_ptr<Widget>. 21 

In contrast, the call involving nullptr has no trouble. When nullptr is passed to 22 

lockAndCall, the type for ptr is deduced to be std::nullptr_t (i.e., nullptr’s 23 

type). When ptr is passed to f3, there’s an implicit conversion from 24 

std::nullptr_t to void*, because std::nullptr_t objects implicitly convert 25 

to all pointer types. (If the idea of there being objects—plural—of type  26 

std::nullptr_t seems odd, I agree, it is. But don’t worry about it. All objects of 27 

type std::nullptr_t represent the null pointer, so they all behave the same way. 28 

You can create your own such objects if you want to, but given the universal avail-29 

ability of nullptr, why would you?) 30 
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The fact that template type deduction deduces the “wrong” types for 0 and NULL 1 

(i.e., their true types, rather than their fallback meaning as a representation for a 2 

null pointer) is the most compelling reason to use nullptr instead of 0 or NULL 3 

when you want to refer to a null pointer. With nullptr, templates pose no special 4 

challenge. With 0 and NULL, the challenge is essentially insurmountable: templates 5 

always deduce the wrong type. Combined with the fact that nullptr doesn’t suffer 6 

from the overload resolution surprises that 0 and NULL are susceptible to, the case 7 

is iron-clad. When you want to refer to a null pointer, use nullptr, not 0 or NULL. 8 

As a coda, it’s worth noting that lockAndCall is a simplified version of a perfect 9 

forwarding template, and the inability to forward 0 and NULL as null pointers is an 10 

example of a situation where perfect forwarding doesn’t work. For details on per-11 

fect forwarding and the conditions under which it breaks down, consult Item 32. 12 

Things to Remember 13 

 Prefer nullptr to 0 and NULL. 14 

 Avoid overloading on integral and pointer types. 15 

 Item 9: Prefer alias declarations to typedefs. 16 

I’m confident we can agree that using STL containers is a good idea, and I hope that 17 

Item 20 convinces you that using std::unique_ptr is a good idea, but my guess 18 

is that neither of us is fond of writing types like 19 

“std::unique_ptr<std::unordered_map<std::string, std::string>>” 20 

more than once. Just thinking about it probably increases the risk of carpal tunnel 21 

syndrome.  22 

Avoiding such medical tragedies is easy. Just introduce a typedef: 23 

typedef 24 
  std::unique_ptr<std::unordered_map<std::string, std::string>> 25 
  UPtrMapSS; 26 

But typedefs are so…C++98. They work in C++11, sure, but C++11 also offers  ali-27 

as declarations: 28 
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using UPtrMapSS =  1 
  std::unique_ptr<std::unordered_map<std::string, std::string>>; 2 

Given that the typedef and the alias declaration do exactly the same thing (in the 3 

Standard, an alias declaration is actually defined to be an alternative way to create 4 

a typedef), it’s reasonable to wonder whether there is a solid technical reason for 5 

preferring one over the other. 6 

There is, but before I get to it, I want to mention that many people find the alias 7 

declaration easier to swallow when dealing with types involving function pointers: 8 

// FP is a synonym for a pointer to a function taking an int and 9 
// a const std::string& and returning nothing 10 
typedef void (*FP)(int, const std::string&);      // typedef 11 

// same meaning as above 12 
using FP = void (*)(int, const std::string&);     // alias 13 
                                                  // declaration 14 

Of course, neither form is particularly easy to choke down, and few people spend 15 

much time dealing with synonyms for function pointer types, anyway, so this is 16 

hardly a compelling reason to choose alias declarations over typedefs. 17 

But a compelling reason does exist: templates. In particular, alias declarations may 18 

be templatized (in which case they’re called alias templates), while typedefs can-19 

not.  This gives C++11 programmers a clear, straightforward mechanism for ex-20 

pressing things that in C++98 had to be hacked together with typedefs nested 21 

inside templatized structs. For example, consider defining a synonym for a linked 22 

list that uses a custom allocator, MyAlloc.  With an alias template, it’s  a piece of 23 

cake: 24 

template<typename T>                           // MyAllocList<T> 25 
using MyAllocList = std::list<T, MyAlloc<T>>;  // is synonym for 26 
                                               // std::list<T, 27 
                                               //   MyAlloc<T>> 28 

MyAllocList<Widget> lw;                        // client code 29 

With a typedef, you pretty much have to create the cake from scratch: 30 

template<typename T>                     // MyAllocList<T>::type 31 
struct MyAllocList {                     // is synonym for 32 
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  typedef std::list<T, MyAlloc<T>> type; // std::list<T, 1 
};                                       //   MyAlloc<T>> 2 

MyAllocList<Widget>::type lw;            // client code 3 

It gets worse. If you want to use the typedef inside a template for the purpose of 4 

creating a linked list holding objects of a type specified by a template parameter, 5 

you have to precede the typedef name with typename: 6 

template<typename T> 7 
class Widget {                         // Widget<T> contains 8 
private:                               // a MyAllocList<T> 9 
  typename MyAllocList<T>::type list;  // as a data member 10 
  … 11 
}; 12 

Here, MyAllocList<T>::type refers to a type that’s dependent on a template 13 

type parameter (T). MyAllocList<T>::type is thus a dependent type, and one of 14 

C++’s many endearing rules is that the names of dependent types must be preced-15 

ed by typename. 16 

If MyAllocList is defined as an alias template, this need for typename vanishes 17 

(as does the cumbersome “::type” suffix): 18 

template<typename T> 19 
using MyAllocList = std::list<T, MyAlloc<T>>;  // as before 20 

template<typename T> 21 
class Widget {  22 
private:  23 
  MyAllocList<T> list;                         // no "typename",  24 
  …                                            // no "::type" 25 
}; 26 

To you, MyAllocList<T> (i.e., use of  the alias template) may look just as depend-27 

ent on the template parameter T as MyhAllocList<T>::type (i.e., use of the 28 

nested typedef), but you're not a compiler. When compilers process the Widget 29 

template and encounter the use of MyAllocList<T> (i.e. use of the alias tem-30 

plate), they know that MyAllocList<T> is the name of a type, because MyAllo-31 

cList is an alias template: it must name a type. MyAllocList<T> is thus a non-32 

dependent type, and a typename specifier is neither required nor permitted. 33 
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When compilers see MyAllocList<T>::type (i.e., use of the nested typedef) in 1 

the Widget template, on the other hand, they can't know for sure that it names a 2 

type, because there might be a specialization of MyAllocList that they haven’t yet 3 

seen where MyAllocList<T>::type refers to something other than a type. That 4 

sounds crazy, but don’t blame compilers for this possibility. It’s the humans who 5 

have been known to produce such code.  6 

For example, some misguided soul may have concocted something like this: 7 

class Wine { … };   8 

template<>                       // MyAllocList specialization 9 
class MyAllocList<Wine> {        // for T is Wine 10 
private: 11 
  enum class WineType            // see Item 10 for info on 12 
  { White, Red, Rose };          // "enum class" 13 

  WineType type;                 // in this class, type is 14 
  …                              // a data member! 15 
}; 16 

As you can see, MyAllocList<Wine>::type doesn’t refer to a type. If Widget 17 

were to be instantiated with Wine, MyAllocList<T>::type inside the Widget 18 

template would refer to a data member, not a type. Inside the Widget template, 19 

then, whether MyAllocList<T>::type refers to a type is honestly dependent on 20 

what T is, and that’s why compilers insist on your asserting that it is a type by pre-21 

ceding it with typename. 22 

If you’ve done any template metaprogramming (TMP), you’ve almost certainly 23 

bumped up against the need to take template type parameters and create revised 24 

types from them. For example, given some type T, you might want to strip off  any 25 

const-or reference-qualifiers that T contains, i.e., you might want to turn const 26 

std::string& into std::string. Or you might want to take a type and add 27 

const to it or turn it into an lvalue reference, i.e., turn Widget into const Widget 28 

or into Widget&. (If you haven’t done any TMP, that’s too bad, because if you want 29 

to be a truly effective C++ programmer, you need to be familiar with at least the 30 

basics of this facet of C++. You can see examples of TMP in action, including the 31 

kinds of type transformations I just mentioned, in Items 25 and 29.)  32 
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C++11 gives you the tools to perform these kinds of transformations in the form of 1 

type traits, an assortment of templates inside the header <type_traits>. There 2 

are dozens of type traits in that header, and not all of them perform type transfor-3 

mations, but the ones that do offer a predictable interface. Given a type T to which 4 

you’d like to apply a transformation, the resulting type is 5 

std::transformation<T>::type. For example: 6 

std::remove_const<T>::type           // yields T from const T 7 

std::remove_reference<T>::type       // yields T from T& and T&& 8 

std::add_lvalue_reference<T>::type   // yields T& from T 9 

The comments merely summarize what these transformations do, so don’t take 10 

them too literally. Before using them on a project, you’d look up the precise speci-11 

fications, I know.  12 

My motivation here isn’t to give you a tutorial on type traits, anyway. Rather, note 13 

that application of these transformations entails writing “::type” at the end of 14 

each use. If you apply them to a type parameter inside a template (which is virtual-15 

ly always how you employ them in real code), you’d also have to precede each use 16 

with typename. The reason for both of these syntactic speed bumps is that the 17 

C++11 type traits are implemented as nested typedefs inside templatized 18 

structs. That’s right, they’re implemented using the type synonym technology 19 

I’ve been trying to convince you is inferior to alias templates! 20 

There’s a historical reason for that, but we’ll skip over it (it’s dull, I promise), be-21 

cause the Standardization Committee belatedly recognized that alias templates are 22 

the better way to go, and they included such templates in C++14 for all the C++11 23 

type transformations. The aliases have a common form: for each C++11 transfor-24 

mation std::transformation<T>::type, there’s a corresponding C++14 alias 25 

template named std::transformation_t. Examples will clarify what I mean: 26 

std::remove_const<T>::type           // C++11: const T  T 27 
std::remove_const_t<T>               // C++14 equivalent 28 

std::remove_reference<T>::type       // C++11: T&/T&&  T 29 
std::remove_reference_t<T>           // C++14 equivalent 30 
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std::add_lvalue_reference<T>::type   // C++11: T  T& 1 
std::add_lvalue_reference_t<T>       // C++14 equivalent 2 

The C++11 constructs remain valid in C++14, but I don’t know why you’d want to 3 

use them. Even if you don’t have access to C++14, writing the alias templates your-4 

self is child’s play. Only C++11 language features are required, and even children 5 

can mimic a pattern, right? If you happen to have access to an electronic copy of 6 

the C++14 Standard, it’s easier still, because all that’s required is some copying and 7 

pasting. Here, I’ll get you started (via copy-and-paste technology): 8 

template <class T> 9 
using remove_const_t = typename remove_const<T>::type;  10 

template <class T> 11 
using remove_reference_t = typename remove_reference<T>::type; 12 

template <class T> 13 
using add_lvalue_reference_t = 14 
  typename add_lvalue_reference<T>::type;  15 

See? Couldn’t be easier. 16 

Things to Remember 17 

 typedefs don’t support templatization, but alias declarations do. 18 

 Alias templates avoid the “::type” suffix and, in templates, the “typename” 19 

prefix often required to refer to typedefs. 20 

 C++14 offers alias templates for all the C++11 type traits transformations. 21 

 Item 10: Prefer scoped enums to unscoped enums. 22 

As a general rule, declaring a name inside curly braces limits the visibility of that 23 

name to the scope defined by the braces. Not so for the enumerators declared in C- 24 

and C++98-style enums. The names of  such enumerators belong to the scope con-25 

taining the enum, and that means that nothing else in that scope may have the 26 

same name: 27 

enum Color { black, white, red };   // black, white, red are 28 
                                    // in same scope as Color 29 

bool white = false;                 // error! white already 30 
                                    // declared in this scope 31 
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The fact that these enumerator names leak into the scope containing their enum 1 

definition gives rise to the official name for this kind of enum: unscoped enums. 2 

Their C++11 scoped counterparts, scoped enums, don’t leak names in this way: 3 

enum class Color { black, white, red };  // black, white, red  4 
                                         // are scoped to Color 5 

bool white = false;              // fine, no other 6 
                                 // "white" in scope 7 

Color c = white;                 // error! no enumerator named 8 
                                 // "white" is in this scope 9 

Color c = Color::white;          // fine 10 

auto c = Color::white;           // also fine (and in accord 11 
                                 // with Item 5's advice) 12 

Because scoped enums are declared via “enum class”, scoped enums are some-13 

times referred to as enum classes. 14 

The reduction in namespace pollution offered by scoped enums is reason enough to 15 

prefer them over their unscoped siblings, but scoped enums have a second compel-16 

ling advantage: their enumerators are much more strongly typed. Enumerators for 17 

unscoped enums implicitly convert to integral types (and, from there, to floating 18 

point types). Semantic travesties such as the following are therefore perfectly val-19 

id: 20 

enum Color { black, white, red };        // unscoped enum 21 

std::vector<std::size_t>                 // func. returning 22 
primeFactors(std::size_t x);             // prime factors of x 23 

Color c = red; 24 
… 25 

if (c < 14.5) {                // compare Color to double (!) 26 

  auto factors =               // compute prime factors 27 
    primeFactors(c);           // of a color (!) 28 
  … 29 
} 30 

Throw a simple “class” after “enum”, however, thus transforming an unscoped 31 

enum into a scoped one, and it’s a very different story, because there are no implic-32 

it conversions from enumerators in a scoped enum to any other type: 33 
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enum class Color { black, white, red };  // enum is now scoped 1 

Color c = Color::red;                    // as before, but 2 
…                                        // with scope qualifier 3 

if (c < 14.5) {                // error! can't compare 4 
                               // Color and double 5 

  auto factors =               // error! can't pass Color to 6 
    primeFactors(c);           // function expecting std::size_t            7 
  …                  8 
} 9 

If you honestly want to perform a conversion from Color to a different type, do 10 

what you always do to twist the type system to your wanton desires: use a cast: 11 

if (static_cast<double>(c) < 14.5) {       // odd code, but 12 
                                           // it's valid 13 

  auto factors =                                // suspect, but 14 
    primeFactors(static_cast<std::size_t>(c));  // it compiles 15 
  …  16 
} 17 

It may seem that scoped enums have a third advantage over unscoped enums, be-18 

cause scoped enums may be forward-declared, i.e., their names may be declared 19 

without specifying their enumerators: 20 

  enum Color;               // error!  21 

  enum class Color;         // fine 22 

This is misleading. In C++11, unscoped enums may also be forward-declared, but 23 

only after a bit of additional work.  24 

Every enum in C++ has an integral underlying type that is determined by compilers. 25 

For an unscoped enum like Color, 26 

enum Color { black, white, red }; 27 

compilers might choose char as the underlying type, because there are only three 28 

values to represent. On the other hand, some enums may have a range of values 29 

that is much larger, e.g.: 30 

enum Status { good = 0, 31 
              failed = 1, 32 
              incomplete = 100, 33 
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              corrupt = 200, 1 
              indeterminate = 0xFFFFFFFF 2 
            }; 3 

Here the values to be represented range from 0 to 0xFFFFFFFF. Except on very 4 

unusual machines (where a char consists of at least 32 bits), compilers will have 5 

to select an integral type larger than char for the  underlying representation of 6 

Status values. 7 

To make efficient use of memory, compiler writers want to choose the smallest 8 

underlying type for each enum that’s sufficient to represent the enum’s range of 9 

enumerator values. (In some cases, compilers will optimize for speed instead of 10 

size, and in that case, they may not choose the smallest permissible underlying 11 

type, but they certainly want to be able to optimize for minimal size.) To make that 12 

possible, C++98 requires that enums be defined (i.e., list all their enumerators) 13 

where they're declared. Having seen the range of enumerator values that must be 14 

representable, compilers are then in a position to choose a suitable underlying 15 

type for that enum type. 16 

But the inability to forward-declare enums has drawbacks, too. Perhaps the most 17 

notable is the increase in compilation dependencies.  Consider again the Status 18 

enum: 19 

enum Status { good = 0, 20 
              failed = 1, 21 
              incomplete = 100, 22 
              corrupt = 200, 23 
              indeterminate = 0xFFFFFFFF 24 
            }; 25 

This is the kind of enum that's likely to be used throughout a system, hence includ-26 

ed in a header file that every part of the system is dependent on.  If a new status 27 

value is then introduced, 28 

enum Status { good = 0, 29 
              failed = 1, 30 
              incomplete = 100, 31 
              corrupt = 200, 32 
              audited = 500,              33 
              indeterminate = 0xFFFFFFFF 34 
            }; 35 
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it's likely that the entire system will have to be recompiled, even if only a single 1 

subsystem—possibly only a single function!—uses the new enumerator. This is 2 

the kind of thing that people hate. And it's the kind of thing that the ability to for-3 

ward-declare enums would eliminate. With forward-declared enums, declarations 4 

for enum-manipulating functions would be freed of their dependencies on the enum 5 

definitions. For example, here’s a perfectly valid C++11 declaration of a scoped 6 

enum and a function that takes one as a parameter: 7 

enum class Status;                   // forward declaration 8 

void continueProcessing(Status s);   // use of fwd-declared enum 9 

With this design, the header containing these two declarations requires no 10 

recompilation if the enumerators in Status are revised. Furthermore, if the 11 

enumerators in Status are revised (e.g., to add the new enumerator audited), 12 

but continueProcessing’s behavior is unaffected (e.g., because continuePro-13 

cessing doesn’t care about the audited value), continueProcessing’s 14 

implementation need not be recompiled, either. 15 

But if code generation requires knowing the size of the enumerators (and it does), 16 

how can C++11’s scoped enums get away with forward declarations when C++98’s 17 

unscoped enums can’t? That’s easy: compilers always know the underlying type for 18 

scoped enums.  19 

All scoped enums have a default underlying type of int: 20 

enum class Status;                 // underlying type is int 21 

If you don’t like the default, you may specify one explicitly: 22 

enum class Status: std::uint32_t;  // underlying type for  23 
                                   // Status is std::uint32_t 24 
                                   // (from <cstdint>) 25 

Either way, compilers know the size of the enumerators in a scoped enum. 26 

But I said that this isn’t really an advantage of scoped enums over unscoped enums. 27 

That’s because C++11 allows you to specify the underlying type for unscoped 28 

enums, too. When you do, those enums can be forward-declared, just like their 29 

scoped compatriots: 30 
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enum Color: std::uint8_t;       // fwd decl for unscoped enum; 1 
                                // underlying type is  2 
                                // std::uint8_t 3 

Underlying type specifications aren’t restricted to enum declarations. You can put 4 

them on the definitions, too: 5 

enum class Status: std::uint32_t { good = 0, 6 
                                   failed = 1, 7 
                                   incomplete = 100, 8 
                                   corrupt = 200, 9 
                                   audited = 500,              10 
                                   indeterminate = 0xFFFFFFFF 11 
                                 }; 12 

It should go without saying that the underlying type you specify when you declare 13 

an enum must match the underlying type you specify when you define the enum. In 14 

general, mismatches will be diagnosed during compilation, although there are sit-15 

uations where compilers are unable to do this. As long as you put all your enum 16 

declarations in header files and dutifully #include those header files everywhere 17 

you use the enums, you’ll be fine. If you try to cut corners by skipping an #include 18 

and manually declaring your enum instead, you may not be fine, and the almost 19 

invariably resulting overnight debugging sessions should serve to remind you not 20 

to commit such crimes against software engineering. 21 

In view of the fact that scoped enums avoid namespace pollution and aren’t suscep-22 

tible to nonsensical implicit type conversions, it may surprise you to hear that 23 

there’s at least one situation in C++11 where unscoped enums are sometimes con-24 

sidered useful. That’s when referring to fields within std::tuples. For example, 25 

suppose we have a tuple holding values for the name, email address, and reputa-26 

tion value for a user at a social networking web site: 27 

using UserInfo =                 // type alias; see Item 9  28 
  std::tuple<std::string,        // name 29 
             std::string,        // email 30 
             std::size_t> ;      // reputation 31 

Though the comments indicate what each field of the tuple represents, that’s 32 

probably not very helpful when you encounter code like this in a separate source 33 

file: 34 
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UserInfo uInfo;                  // object of tuple type 1 
… 2 

auto val = std::get<1>(uInfo);   // get value of field 1 3 

As a programmer, you have a lot of stuff to keep track of. Should you really be 4 

expected to remember that field 1 corresponds to the user’s email address? I think 5 

not. Use of an unscoped enum avoids the need to: 6 

enum UserInfoFields { uiName, uiEmail, uiReputation }; 7 

UserInfo uInfo;                        // as before 8 
… 9 

auto val = std::get<uiEmail>(uInfo);   // ah, get value of 10 
                                       // email field 11 

You need to use an unscoped enum here, because std::get requires a 12 

std::size_t argument, and that means you need to take advantage of the implic-13 

it conversion from UserInfoFields to std::size_t that unscoped enums sup-14 

port.  15 

The corresponding code with scoped enums is substantially more verbose: 16 

enum class UserInfoFields { uiName, uiEmail, uiReputation }; 17 

UserInfo uInfo;                        // as before 18 
… 19 

auto val = 20 
  std::get<static_cast<std::size_t>(UserInfoFields::uiEmail)> 21 
    (uInfo); 22 

The verbosity can be reduced by writing a function that takes an enumerator and 23 

returns its corresponding std::size_t value, but it’s a bit tricky. std::get is a 24 

template, and the value you provide is a template argument (notice the use of an-25 

gle brackets, not parentheses), so the function that transforms an enumerator into 26 

a std::size_t has to produce its result during compilation. As Item 14 explains, 27 

that means it must be a constexpr function. In fact, it should really be a con-28 

stexpr function template, because it should work with any kind of enum: 29 

template<typename E> 30 
constexpr std::size_t toIndex(E enumerator) 31 
{ 32 
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  return static_cast<std::size_t>(enumerator); 1 
} 2 

This toIndex template permits us to access a field of the tuple this way: 3 

auto val = std::get<toIndex(UserInfoFields::uiEmail)>(uInfo); 4 

It’s still more to write than use of the unscoped enum, of course, but it also avoids 5 

namespace pollution and inadvertent conversions involving enumerators. In many 6 

cases, you may decide that typing a few extra characters is a reasonable price to 7 

pay for the ability to avoid an enum technology that dates to a time when the state 8 

of the art in digital telecommunications was the 2400-baud modem. 9 

Things to Remember 10 

 C++98-style enums are now known as unscoped enums. 11 

 Enumerators of scoped enums are visible only within the enum. They convert to 12 

other types only with a cast. 13 

 Both scoped and unscoped enums support specification of the underlying type. 14 

The default underlying type for scoped enums is int. Unscoped enums have no 15 

default underlying type. 16 

 Scoped enums may always be forward-declared. Unscoped enums may be for-17 

ward declared only if their declaration specifies an underlying type. 18 

 Item 11: Prefer deleted functions to private undefined ones. 19 

If you’re providing code to other developers, and you want to prevent them from 20 

calling a particular function, you generally just don’t declare the function. No func-21 

tion declaration, no function to call. Easy, peasy. But sometimes C++ declares func-22 

tions for you, and if you want to prevent clients from calling those functions, the 23 

peasy isn’t quite so easy any more.  24 

This situation arises only for the special member functions, i.e., the member func-25 

tions that C++ automatically generates when they’re needed. Item 19 discusses 26 

these functions in detail, but for now, we’ll worry only about the copy constructor 27 

and the copy assignment operator. This chapter is devoted to common practices in 28 

C++98 that have been superseded by better practices in C++11, and in C++98, if 29 
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you want to suppress use of a member function, it’s almost always the copy con-1 

structor, the assignment operator, or both. 2 

The C++98 approach to preventing use of these functions is to declare them pri-3 

vate and to avoid defining them. For example, near the base of the iostreams hier-4 

archy in the C++ Standard Library is the class template basic_ios. All istream 5 

and ostream classes inherit (possibly indirectly) from this class. Copying istreams 6 

and ostreams is undesirable, because it's not really clear what such operations 7 

should do. An istream object, for example, represents a stream of input values, 8 

some of which may have already been read, and some of which will potentially be 9 

read later. If an istream were to be copied, would that entail copying all the values 10 

that had already been read as well as all the values that would be read in the fu-11 

ture? The easiest way to deal with such questions is to define them out of exist-12 

ence. Prohibiting the copying of streams does just that. 13 

To render istream and ostream classes uncopyable, basic_ios is specified in 14 

C++98 as follows (including the comments): 15 

template <class charT, class traits = char_traits<charT> > 16 
class basic_ios : public ios_base { 17 
public: 18 
  … 19 

private: 20 
  basic_ios(const basic_ios& );            // not defined 21 
  basic_ios& operator=(const basic_ios&);  // not defined 22 
}; 23 

Declaring these functions private prevents clients from calling them. Deliberately 24 

failing to define them means that if code that still has access to them (i.e., member 25 

functions or friends of the class) uses them, linking will fail due to missing func-26 

tion definitions. 27 

In C++11, there’s a better way to achieve essentially the same end: use “=delete” 28 

to mark the copy constructor and the copy assignment operator as deleted func-29 

tions. Here’s the same part of basic_ios as it’s specified in C++11: 30 

template <class charT, class traits = char_traits<charT> > 31 
class basic_ios : public ios_base { 32 
public: 33 
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  … 1 
  basic_ios(const basic_ios& ) = delete; 2 
  basic_ios& operator=(const basic_ios&) = delete; 3 
  … 4 
}; 5 

The difference between deleting these functions and declaring them private may 6 

seem more a matter of fashion than anything else, but there’s greater substance 7 

here than you might think. Deleted functions may not be used in any way, so even 8 

code that’s in member and friend functions will fail to compile if it tries to copy 9 

basic_ios objects. That’s an improvement over the C++98 behavior, where such 10 

improper usage wouldn’t be diagnosed until link-time. 11 

By convention, deleted functions are declared public, not private. There’s a rea-12 

son for that. When client code tries to use a member function, C++ checks accessi-13 

bility before =delete status. When client code tries to use a deleted private 14 

function, some compilers complain only about the function being private, even 15 

though the function’s accessibility doesn’t really affect whether it can be used. It’s 16 

worth bearing this in mind when revising legacy code to replace private-and-17 

not-defined member functions with deleted ones, because making the new func-18 

tions public will generally result in superior error messages. 19 

An important advantage of deleted functions is that any function may be deleted, 20 

while only member functions may be private. For example, suppose we have a 21 

non-member function that takes an integer and returns whether it’s a lucky num-22 

ber: 23 

bool isLucky(int number); 24 

C++’s C heritage means that pretty much any type that can be viewed as vaguely 25 

numerical will implicitly convert to int, but some calls that would compile might 26 

not make sense: 27 

if (isLucky('a')) …            // is 'a' a lucky number? 28 

if (isLucky(true)) …           // is "true"? 29 

if (isLucky(3.5)) …            // should we truncate to 3 30 
                               // before checking for luckiness? 31 
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If lucky numbers must really be integers, we’d like to prevent calls such as these 1 

from compiling. 2 

One way to accomplish that is to create deleted overloads for the types we want to 3 

filter out: 4 

bool isLucky(int number);            // original function 5 

bool isLucky(char) = delete;         // reject chars 6 

bool isLucky(bool) = delete;         // reject bools 7 

bool isLucky(double) = delete;       // reject doubles and 8 
                                     // floats  9 

(The comment on the double overload that says that both doubles and floats 10 

will be rejected may initially surprise you, but your surprise will dissipate once 11 

you recall that, given a choice between converting a float to an int or to a dou-12 

ble, C++ prefers the conversion to double. Calling isLucky with a float will 13 

therefore call the double overload, not the int one. Well, it’ll try to. The fact that 14 

that overload is deleted will prevent the call from compiling.) 15 

Although deleted functions can’t be used, they are part of your program. As such, 16 

they are taken into account during overload resolution. That’s why, with the delet-17 

ed function declarations above, the undesirable calls to isLucky will be rejected: 18 

if (isLucky('a')) …           // error! call to deleted function 19 

if (isLucky(true)) …          // error! 20 

if (isLucky(3.5f)) …          // error! 21 

Another trick that deleted functions can perform (and that private member func-22 

tions can’t) is to prevent use of template instantiations that should be disabled. For 23 

example, suppose you need a template that works with built-in pointers 24 

(Chapter 4’s advice to prefer smart pointers to raw pointers notwithstanding): 25 

template<typename T> 26 
void processPointer(T* ptr); 27 

There are two special cases in the world of pointers. One is void* pointers, be-28 

cause there is no way to dereference them, to increment or decrement them, etc.. 29 

The other is char* pointers, because they typically represent pointers to C-style 30 
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strings, not pointers to individual characters. These special cases often call for spe-1 

cial handling, and, in the case of the processPointer template, let’s assume the 2 

proper handling is to reject calls using those types. That is, it should not be possi-3 

ble to call processPointer with void* or char* pointers.  4 

That’s easily enforced. Just delete those instantiations: 5 

template<> 6 
void processPointer<void>(void*) = delete; 7 

template<> 8 
void processPointer<char>(char*) = delete; 9 

Now, if calling processPointer with a char* is invalid, it’s probably also invalid 10 

to call it with a const char*, so that instantiation will typically need to be deleted, 11 

too: 12 

template<> 13 
void processPointer<const char>(const char*) = delete; 14 

If you really want to be thorough, you’ll also delete the const volatile char* 15 

overload, and then you’ll get to work on the overloads for pointers to the other 16 

standard character types: std::wchar_t, std::char16_t, and std::char32_t. 17 

Interestingly, if you have a function template inside a class, and you’d like to disa-18 

ble some instantiations by declaring them private (à la classic C++98 conven-19 

tion), you can’t, because it’s not possible to give a member function template spe-20 

cialization a different access level from that of the main template. If pro-21 

cessPointer were a member function template inside Widget, for example, and 22 

we wanted to disable calls for void* pointers, this would be the C++98 approach, 23 

though it would not compile: 24 

class Widget { 25 
public: 26 
  … 27 
  template<typename T> 28 
  void processPointer(T* ptr) 29 
  { … } 30 

private: 31 
  template<>                                 // error! 32 
  void processPointer<void>(void*); 33 
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}; 1 

The problem is that template specializations must be written at namespace scope, 2 

not class scope. This issue doesn’t arise for deleted functions, because they don’t 3 

need a different access level. They can be deleted outside the class (hence at 4 

namespace scope): 5 

class Widget { 6 
public: 7 
  … 8 
  template<typename T> 9 
  void processPointer(T* ptr) 10 
  { … } 11 

  … 12 

}; 13 

template<>                                          // still 14 
void Widget::processPointer<void>(void*) = delete;  // public, 15 
                                                    // but 16 
                                                    // deleted 17 

The truth is that the C++98 practice of declaring functions private and not defin-18 

ing them was really an attempt to achieve what C++11’s deleted functions actually 19 

do. As an emulation, the C++98 approach is not as good as the real thing. It doesn’t 20 

work outside classes, it doesn’t always work inside classes, and when it does work, 21 

it may not work until link-time. So stick to deleted functions. 22 

Things to Remember 23 

 Prefer deleted functions to private undefined ones. 24 

 Any function may be deleted, including non-member functions and template 25 

instantiations. 26 

 Item 12: Declare overriding functions override. 27 

The world of object-oriented programming in C++ revolves around classes, inher-28 

itance, and virtual functions. Among the most fundamental ideas in this world is 29 

that virtual function implementations in derived classes override the implementa-30 

tions of their base class counterparts. It’s disheartening, then, to realize how easily 31 

virtual function overriding can go wrong. It’s almost as if this part of the language 32 



Page 90 

 

were designed with the idea that Murphy’s Law wasn’t just to be obeyed, it was to 1 

be honored. 2 

Because “overriding” sounds a lot like “overloading,” yet is completely unrelated, 3 

let me make clear that virtual function overriding is what makes it possible to in-4 

voke a derived class function through a base class interface: 5 

class Base {  6 
public: 7 
  virtual void doWork();         // base class virtual function 8 
  … 9 
}; 10 

class Derived: public Base { 11 
public: 12 
  virtual void doWork();         // overrides Base::doWork 13 
  …                              // ("virtual" is optional 14 
};                               // here") 15 

std::unique_ptr<Base> upb =      // create base class pointer  16 
  std::make_unique<Derived>();   // to derived class object; 17 
                                 // see Item 23 for info on 18 
…                                // std::make_unique 19 

upb->doWork();                   // call doWork through base 20 
                                 // class ptr; derived class 21 
                                 // function is invoked 22 

For overriding to occur, several requirements must be met: 23 

 The base class function must be virtual. 24 

 The base and derived function names must be identical (except in the case of 25 

destructors). 26 

 The parameter types of the base and derived functions must be identical. 27 

 The constness of the base and derived functions must be identical. 28 

To these constraints, which have been part of C++ since the beginning, C++11 adds 29 

one more: 30 

 The functions’ reference qualifiers must be identical. Member function refer-31 

ence qualifiers are one of C++11’s less-publicized features, so don’t be sur-32 

prised if you’ve never heard of them. They make it possible to limit use of a 33 
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member function to lvalues only or to rvalues only. Member functions need not 1 

be virtual to use them: 2 

class Widget { 3 
public: 4 
  … 5 
  void doWork() &;     // this version of doWork applies only  6 
                       // when *this is an lvalue 7 

  void doWork() &&;    // this version of doWork applies only 8 
};                     // when *this is an rvalue 9 

… 10 

Widget makeWidget();   // factory function (returns rvalue) 11 

Widget w;              // normal object (an lvalue) 12 

… 13 

w.doWork();              // calls Widget::doWork for lvalues 14 
                         // (i.e., Widget::doWork &) 15 

makeWidget().doWork();   // calls Widget::doWork for rvalues 16 
                         // (i.e., Widget::doWork &&) 17 

I’ll say more about member functions with reference qualifiers later, but for 18 

now, simply note that if a virtual function in a base class has a reference quali-19 

fier, derived class overrides of that function must have exactly the same refer-20 

ence qualifier. If they don’t, the declared functions will still exist in the derived 21 

class, but they won’t override anything in the base class. 22 

All these requirements for overriding mean that small mistakes can make a big 23 

difference. Code with overriding errors is typically valid, but its meaning isn’t what 24 

you intended. As a result, you can’t rely on compilers to notify you if you do some-25 

thing wrong. For example, the following code is completely legal and, at first sight, 26 

looks reasonable, but it contains no virtual function overrides—not a single de-27 

rived class function that is tied to a base class function. Can you identify the prob-28 

lem in each case, i.e., why the derived class function doesn't override the base class 29 

function with the same name? 30 

class Base { 31 
public: 32 
  virtual void mf1() const; 33 
  virtual void mf2(int x); 34 
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  virtual void mf3() &; 1 
  void mf4() const; 2 
}; 3 

class Derived: public Base { 4 
public: 5 
  virtual void mf1(); 6 
  virtual void mf2(unsigned int x); 7 
  virtual void mf3() &&; 8 
  void mf4() const; 9 
}; 10 

Need some help? 11 

 mf1 is declared const in Base, but not in Derived. 12 

 mf2 takes an int in Base, but an unsigned int in Derived. 13 

 mf3 is lvalue-qualified in Base, but rvalue-qualified in Derived. 14 

 mf4 isn’t declared virtual in Base. 15 

You may think, “Hey, in practice, these things will elicit compiler warnings, so I 16 

don’t need to worry.” Maybe that’s true. But maybe it’s not. With two of the com-17 

pilers I checked, the code was accepted without complaint, and that was with all 18 

warnings enabled. (Other compilers provided warnings about some—but not all—19 

of the issues.) 20 

Because declaring derived class overrides is important to get right, but easy to get 21 

wrong, C++11 gives you a way to make explicit that a derived class function is sup-22 

posed to override a base class version. Just declare it override. Applying this to 23 

the example above would yield this derived class: 24 

class Derived: public Base { 25 
public: 26 
  virtual void mf1() override; 27 
  virtual void mf2(unsigned int x) override; 28 
  virtual void mf3() && override; 29 
  virtual void mf4() const override; 30 
}; 31 

This won’t compile, of course, because when written this way, compilers will 32 

kvetch about all the overriding-related problems. That’s exactly what you want, 33 

and it’s why you should declare all your overriding functions override.  34 
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The code using override that does compile looks as follows (assuming that the 1 

goal is for all functions in Derived to override virtuals in Base):  2 

class Base { 3 
public: 4 
  virtual void mf1() const; 5 
  virtual void mf2(int x); 6 
  virtual void mf3() &; 7 
  virtual void mf4() const; 8 
}; 9 

class Derived: public Base { 10 
public: 11 
  virtual void mf1() const override; 12 
  virtual void mf2(int x) override;   // note revised param type 13 
  virtual void mf3() & override;     14 
  void mf4() const override;          // adding "virtual" is OK, 15 
};                                    // but not necessary 16 

Note that in this example, part of getting things to work involves declaring mf4 vir-17 

tual in Base. Most overriding-related errors occur in derived classes, but it’s pos-18 

sible for things to be incorrect in base classes, too. 19 

A policy of using override on all your derived class overrides can do more than 20 

just enable compilers to tell you when would-be overrides aren’t overriding any-21 

thing. It can also help you gauge the ramifications if you’re contemplating changing 22 

the signature of a virtual function in a base class. If derived classes use override 23 

everywhere, you can just change the signature, recompile your system, see how 24 

much damage you’ve caused (e.g., how many derived classes fail to compile), then 25 

decide whether the signature change is worth the trouble. Without override, 26 

you’d have to hope you have comprehensive unit tests in place, because, as we’ve 27 

seen, derived class virtuals that are supposed to override base class functions, but 28 

don’t, need not elicit compiler diagnostics. 29 

C++ has always had keywords, but C++11 introduces two contextual keywords, 30 

override and final. These keywords have the characteristic that they are re-31 

served, but only in certain contexts. In the case of override, it has a reserved 32 

meaning only when it occurs at the end of a member function declaration. That 33 

means that if you have legacy code that already uses the name override, you 34 

don’t need to change it for C++11: 35 
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class Warning {           // potential legacy class from C++98 1 
public: 2 
  … 3 
  void override();        // legal in both C++98 and C++11 4 
  …                       // (with the same meaning) 5 
};  6 

That's all there is to say about override, but it's not all there is to say about 7 

member function reference qualifiers. I promised I'd provide more information on 8 

them later, and it’s now later.  9 

If we want to write a function that accepts only lvalue arguments, we declare an 10 

lvalue reference parameter: 11 

void doSomething(Widget& w);      // accepts only lvalue Widgets 12 

If we want to write a function that accepts only rvalue arguments, we declare an 13 

rvalue reference parameter: 14 

void doSomething(Widget&& w);     // accepts only rvalue Widgets 15 

Member function reference qualifiers simply make it possible to draw the same 16 

distinction for the object on which a member function is invoked, i.e., *this. It’s 17 

precisely analogous to the const at the end of a member function declaration, 18 

which indicates that the object on which the member function is invoked (i.e., 19 

*this) is const. 20 

The need for reference-qualified member functions is not common, but it does 21 

arise. For example, suppose our Widget class has a std::vector data member, 22 

and we offer an accessor function that gives clients direct access to it: 23 

class Widget { 24 
public: 25 
  using DataType = std::vector<double>;      // see Item 9 for 26 
  …                                          // info on "using" 27 

  DataType& data() { return values; } 28 
  … 29 

private: 30 
  DataType values; 31 
}; 32 
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This is hardly the most encapsulated design that’s seen the light of day, but  set 1 

that aside and consider what happens in this client code: 2 

Widget w; 3 
… 4 

auto vals1 = w.data();               // copy w.values into vals1 5 

The return  type of Widget::data is an lvalue reference (a 6 

std::vector<double>&, to be precise), and because lvalue references are de-7 

fined to be lvalues, we’re initializing vals1 from an lvalue. vals1 is thus copy-8 

constructed from w.values, just as the comment says. 9 

Now suppose we have a factory function that creates Widgets, 10 

Widget makeWidget(); 11 

and we want to initialize a variable with the std::vector inside the Widget re-12 

turned from makeWidget: 13 

auto vals2 = makeWidget().data();    // copy values inside the  14 
                                     // Widget into vals2 15 

Again, Widgets::data returns an lvalue reference, and, again, the lvalue refer-16 

ence is an lvalue, so, again, our new object (vals2) is copy-constructed from val-17 

ues inside the Widget. This time, though, the Widget is the temporary object re-18 

turned from makeWidget (i.e., an rvalue), so copying the std::vector inside it is 19 

a waste of time. It’d be preferable to move it, but, because data is returning an 20 

lvalue reference, the rules of C++ require that compilers generate code for a copy. 21 

(There’s some wiggle room for optimization through what is known as the “as if 22 

rule,” but you’d be foolish to rely on your compilers finding a way to take ad-23 

vantage of it.) 24 

What’s needed is a way to specify that when data is invoked on an rvalue Widget, 25 

the result should also be an rvalue. Using reference qualifiers to overload data for 26 

lvalue and rvalue Widgets makes that possible: 27 

class Widget { 28 
public: 29 
  using DataType = std::vector<double>; 30 
  … 31 
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  DataType& data() &                // for lvalue Widgets,  1 
  { return values; }                // return lvalue 2 

  DataType data() &&                // for rvalue Widgets, 3 
  { return std::move(values); }     // return rvalue 4 
  … 5 

private: 6 
  DataType values; 7 
}; 8 

Notice the differing return types from the data overloads. The lvalue reference 9 

overload returns an lvalue reference (i.e., an lvalue), and the rvalue reference over-10 

load returns a temporary object (i.e., an rvalue). This means that client code now 11 

behaves as we’d like: 12 

auto vals1 = w.data();             // calls lvalue overload for 13 
                                   // Widget::data, copy- 14 
                                   // constructs vals1 15 

auto vals2 = makeWidget().data();  // calls rvalue overload for 16 
                                   // Widget::data, move- 17 
                                   // constructs vals2 18 

This is certainly nice, but don’t let the warm glow of this happy ending distract you 19 

from the true point of this Item. That point is that whenever you declare a function 20 

in a derived class that’s meant to override a virtual function in a base class, be sure 21 

to declare that function override. 22 

Things to Remember 23 

 Declare overriding functions override. 24 

 Member function reference qualifiers make it possible to treat lvalue and rval-25 

ue objects (*this) differently. 26 

 Item 13: Prefer const_iterators to iterators. 27 

const_iterators are the STL equivalent of pointers-to-const. They point to val-28 

ues that may not be modified. The standard practice of using const whenever 29 

possible dictates that you should use const_iterators any time you need an it-30 

erator, yet have no need to modify what the iterator points to.  31 
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That’s as true for C++98 as for C++11 and C++14, but in C++98, const_iterators 1 

had only halfhearted support. It wasn’t that easy to create them, and once you had 2 

one, the ways you could use it were limited. For example, suppose you want to 3 

search a std::vector<int> for the first occurrence of 1983 (the year “C++” re-4 

placed “C with Classes” as the name of the programming language), then insert the 5 

value 1998 (the year the first C++ Standard was adopted) at that location. If there’s 6 

no 1983 in the vector, the insertion should go at the end of the vector. Using iter-7 

ators in C++98, that was easy: 8 

std::vector<int> values; 9 

… 10 

std::vector<int>::iterator it = 11 
  std::find(values.begin(),values.end(), 1983); 12 

values.insert(it, 1998); 13 

But iterators aren’t really the proper choice here, because this code never modi-14 

fies what an iterator points to. Revising the code to use const_iterators 15 

should be trivial, but in C++98, it was anything but. Here’s one approach that’s 16 

conceptually sound, though still not correct: 17 

typedef std::vector<int>::iterator IterT;             // type- 18 
typedef std::vector<int>::const_iterator ConstIterT;  // defs 19 

std::vector<int> values; 20 

… 21 

ConstIterT ci = 22 
  std::find(static_cast<ConstIterT>(values.begin()),  // cast 23 
            static_cast<ConstIterT>(values.end()),    // cast 24 
            1983); 25 

values.insert(static_cast<IterT>(ci), 1998);    // may not 26 
                                                // compile; see  27 
                                                // below 28 

The typedefs aren’t required, of course, but they make the casts in the code easier 29 

to write. (If you’re wondering why I’m showing typedefs instead of following the 30 

advice of Item 9 to use alias declarations, it’s because this example shows C++98 31 

code, and alias declarations are a feature new to C++11.) 32 
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The casts in the call to std::find are present because values is a non-const 1 

container and, in C++98, there was no simple way to get a const_iterator from 2 

a non-const container.  The casts aren’t strictly necessary, because it was possible 3 

to get const_iterators in other ways,† but regardless of how you did it, the 4 

process of getting const_iterators to elements of a non-const container 5 

involved some amount of contorting. 6 

Once you had the const_iterators, matters often got worse, because in C++98, 7 

locations for insertions (and erasures) could be specified only by iterators. 8 

const_iterators weren’t acceptable. That’s why, in the code above, I cast the 9 

const_iterator (that I was so careful to get from std::find) into an 10 

iterator: passing a const_iterator to insert wouldn’t compile.  11 

To be honest, the code I’ve shown might not compile, either, because there’s no 12 

portable conversion from a const_iterator to an iterator, not even with a 13 

static_cast. Even the semantic sledgehammer known as reinterpret_cast 14 

can’t do the job. (That’s not a C++98 restriction. It’s true in C++11 and C++14, too. 15 

const_iterators simply don’t convert to iterators, no matter how much it 16 

might seem like they should.) There are some portable ways to generate itera-17 

tors that point where const_iterators do, but they’re not obvious, not 18 

universally applicable, and not worth discussing in this book. Besides, I hope that 19 

by now my point is clear: const_iterators were so much trouble in C++98, they 20 

were rarely worth the bother. At the end of the day, developers don’t use const 21 

whenever possible, they use it whenever practical, and in C++98, 22 

const_iterators just weren’t that practical. 23 

All that changed in C++11. Now const_iterators are both easy to get and easy to 24 

use. The container member functions cbegin and cend produce 25 

const_iterators, even for non-const containers, and STL member functions 26 

that use iterators to identify positions (e.g., insert and erase) actually use 27 

                                                             

† For example, you could bind values to a reference-to-const variable, then use that vari-

able in place of values in your code. 
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const_iterators. Revising the original C++98 code that uses iterators to use 1 

const_iterators in C++11 is truly trivial: 2 

std::vector<int> values;                           // as before 3 

… 4 

auto it =                                          // use cbegin 5 
  std::find(values.cbegin(),values.cend(), 1983);  // and cend 6 

values.insert(it, 1998); 7 

Now that’s code using const_iterators that’s practical! If we decide we’d prefer 8 

to do a reverse iteration—inserting 1998 at the location of the last occurrence of 9 

1983 (or, if there are no such occurrences, at the beginning of the container)—the 10 

problem is no more challenging, provided we remember that the way to convert a 11 

reverse iterator to a “normal” iterator is to call its base member function: 12 

auto it =                                           // use  13 
  std::find(values.crbegin(),values.crend(), 1983); // crbegin 14 
                                                    // and crend 15 
values.insert(it.base(), 1998); 16 

About the only situation in which C++11’s support for const_iterators comes 17 

up a bit short is when you want to write maximally generic library code. Such code 18 

takes into account that some containers and container-like data structures offer 19 

begin and end (plus cbegin, cend, rbegin, etc.) as non-member functions, rather 20 

than members. This is the case for built-in arrays, for example, and it’s also the 21 

case for some third-party libraries with interfaces consisting only of free functions. 22 

Maximally generic code thus uses non-member functions rather than assuming the 23 

existence of member versions. 24 

For example, we could generalize the code we’ve been working with into a 25 

findAndInsert template as follows: 26 

template<typename C, typename V>                              27 
void findAndInsert(C& container,          // in container, 28 
                   const V& targetVal,    // find 1st occurrence 29 
                   const V& insertVal)    // of targetVal, then 30 
{                                         // insert insertVal 31 
                                          // there   32 
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  auto it = std::find(std::cbegin(container),  // non-mbr cbegin 1 
                      std::cend(container),    // non-mbr cend 2 
                      targetVal); 3 

  container.insert(it, insertVal); 4 
} 5 

This works fine in C++14, but, sadly, not in C++11. Through an oversight during 6 

standardization, C++11 added the non-member functions begin and end, but it 7 

failed to add cbegin, cend, rbegin, rend, crbegin, and crend. C++14 rectifies 8 

that oversight.  9 

If you’re using C++11, you want to write maximally generic code, and none of the 10 

libraries you’re using provides the missing templates for non-member cbegin and 11 

friends, you can throw your own implementations together with ease. For exam-12 

ple, here’s an implementation of non-member cbegin: 13 

template <class C> 14 
auto cbegin(const C& container)->decltype(std::begin(container)) 15 
{ 16 
  return std::begin(container);         // see explanation below 17 
} 18 

You’re surprised to see that non-member cbegin doesn’t call member cbegin, 19 

aren’t you? I was, too. But follow the logic. This cbegin template accepts any type 20 

of argument representing a container-like data structure, C, and it accesses this 21 

argument through its reference-to-const parameter, container. If C is a conven-22 

tional container type (e.g., a std::vector<int>), container will be a reference 23 

to a const version of that container (e.g., a const std::vector<int>&). Invoking 24 

the non-member begin function (provided by C++11) on a const container yields 25 

a const_iterator, and that iterator is what this template returns. The advantage 26 

of implementing things this way is that it works even for containers that offer a 27 

begin member function (which, for containers, is what C++11’s non-member 28 

begin calls), but fail to offer a cbegin member. You can thus use this non-member 29 

cbegin on containers that directly support only  begin. 30 

This template also works if C is a built-in array type. In that case, container be-31 

comes a reference to a const array. C++11 provides a specialized version of non-32 

member begin for arrays that returns a pointer to the array’s first element. (Itera-33 
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tors into arrays are pointers.) The elements of a const array are const, so the 1 

pointer that non-member begin returns for a const array is a pointer-to-const, 2 

and a pointer-to-const is, in fact, a const_iterator for an array. (For insight in-3 

to how a template can be specialized for built-in arrays, consult Item 1’s discussion 4 

of type deduction in templates that take reference parameters to arrays.) 5 

But back to basics. The point of this Item is to encourage you to use 6 

const_iterators whenever you can. The fundamental motivation—using const 7 

whenever it’s meaningful—predates C++11, but in C++98, it simply wasn’t practi-8 

cal when working with iterators. In C++11, it’s eminently practical, and C++14 ti-9 

dies up the few bits of unfinished business that C++11 left behind. 10 

Things to Remember 11 

 Prefer const_iterators to iterators. 12 

 In maximally generic code, prefer non-member versions of begin, end, 13 

rbegin, etc., over their member function counterparts. 14 

 Item 14: Use constexpr whenever possible. 15 

If there were an award for the most confusing new word in C++11, constexpr 16 

would probably win it. When applied to objects, it’s essentially a beefed-up form of 17 

const, but when applied to functions, it has a quite different meaning. Cutting 18 

through the confusion is worth the trouble, because when constexpr corresponds 19 

to what you want to express, you definitely want to use it. 20 

Conceptually, constexpr indicates a value that’s not only constant, its value is 21 

known during compilation. The concept is only part of the story, though, because 22 

when constexpr is applied to functions, things are more nuanced than this sug-23 

gests. Lest I ruin the surprise ending, for now I’ll just say that you can’t assume 24 

that the results of constexpr functions are const, nor can you take for granted 25 

that their values are known during compilation. Perhaps most intriguingly, these 26 

things are features. It’s good that constexpr functions need not produce results 27 

that are const or known during compilation! 28 
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But let’s begin with constexpr objects. Such objects are, in fact, const, and they 1 

do, in fact, have values that are known at compile-time. (Technically, their values 2 

are determined during translation, and translation consists not just of compilation 3 

but also of linking. Unless you write compilers or linkers for C++, however, this has 4 

no effect on you, so you can blithely program as if the values of constexpr objects 5 

were determined during compilation.)  6 

Values known during compilation are privileged. They may be placed in read-only 7 

memory, for example, and, especially for developers of embedded systems, this 8 

can be a feature of considerable importance. Of broader applicability is that inte-9 

gral values that are constant and known during compilation can be used in con-10 

texts where C++ requires an integral constant expression. Such contexts include 11 

specification of array sizes, integral template arguments (including lengths of 12 

std::array objects), enumerator values, alignment specifiers, and more. If you 13 

want to use a variable for these kinds of things, you certainly want to declare it 14 

constexpr, because then compilers will ensure that it has a compile-time value: 15 

int sz;                             // non-constexpr variable 16 

… 17 

constexpr auto arraySize1 = sz;     // error! sz's value not 18 
                                    // known at compilation 19 

std::array<int, sz> data1;          // error! same problem 20 

constexpr auto arraySize2 = 10;     // fine, 10 is a 21 
                                    // compile-time constant 22 

std::array<int, arraySize2> data2;  // fine, arraySize  23 
                                    // is constexpr 24 

Note that const doesn’t offer the same guarantee as constexpr, because const 25 

objects need not be initialized with values known during compilation: 26 

int sz;                             // as before 27 

… 28 

const auto arraySize = sz;          // fine, arraySize is 29 
                                    // const copy of sz 30 

std::array<int, arraySize> data;    // error! arraySize's value 31 
                                    // not known at compilation  32 
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Simply put, all constexpr objects are const, but not all const objects are con-1 

stexpr. If you want compilers to guarantee that a variable has a value that can be 2 

used in contexts requiring compile-time constants, the tool to reach for is con-3 

stexpr, not const. 4 

Usage scenarios for constexpr objects become more interesting when con-5 

stexpr functions are involved. Such functions produce compile-time constants 6 

when they are called with compile-time constants. If they’re called with values not 7 

known until runtime, they produce runtime values. This may sound as if you don’t 8 

know what they’ll do, but that’s the wrong way to think about it. The right way to 9 

view it is this: 10 

 constexpr functions can be used in contexts that demand compile-time con-11 

stants. If the values of the arguments you pass to a constexpr function in such 12 

a context are known during compilation, the result will be computed during 13 

compilation. If any of the arguments’ values is not known during compilation, 14 

your code will be rejected. 15 

 When a constexpr function is called with one or more values that are not 16 

known during compilation, it acts like a normal function, computing its result 17 

at runtime. This means you don’t need two functions to perform the same op-18 

eration, one for compile-time constants and one for all other values. The con-19 

stexpr function does it all.  20 

Suppose we need a data structure to hold the results of an experiment that can be 21 

run in a variety of ways. For example, the lights can be on or off as the experiment 22 

runs, as can the heater or the wind machine, etc. If there are n binary conditions 23 

applicable to the running of the experiment, the number of combinations is 2n, so 24 

we need a data structure with enough room for 2n values. Assuming each result is 25 

an int and that n is known (or can be computed) during compilation, a 26 

std::array could be a reasonable data structure choice. But we’d need a way to 27 

compute 2n during compilation. The C++ Standard Library provides std::pow, 28 

which is the mathematical functionality we need, but, for our purposes, there are 29 

two problems with it. First, std::pow works on floating point types, and we need 30 

an integral result. Second, std::pow isn’t constexpr (i.e., isn’t guaranteed to re-31 
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turn a compile-time result when called with compile-time values), so we can’t use 1 

it to specify the size of a std::array. 2 

Fortunately, we can write the pow we need. I’ll show how to do that in a moment, 3 

but first let’s look at how it’d be declared and used: 4 

constexpr int pow(int base, int exp)   // pow's a constexpr func 5 
{ 6 
  …                                    // impl is below 7 
} 8 

constexpr auto numConds = 5;                 // # of conditions 9 

std::array<int, pow(2, numConds)> results;   // results has 10 
                                             // 2numConds elements 11 

Recall that the constexpr in front of pow doesn’t say that pow returns a const 12 

value, it says that if base and exp are compile-time constants, pow’s result may be 13 

used as a compile-time constant. If base and/or exp are not compile-time con-14 

stants, pow’s result will be computed at runtime. That means that pow can not only 15 

be called to do things like compile-time-compute the size of a std::array, it can 16 

also be called in runtime contexts such as this: 17 

auto base = readFromDB("base");       // get these values 18 
auto exp = readFromDB("exponent");    // at runtime 19 

auto baseToExp = pow(base, exp);      // call pow function 20 
                                      // at runtime 21 

Because constexpr functions must be able to return compile-time results when 22 

called with compile-time values, restrictions are imposed on their implementation. 23 

Among these is that, in C++11, there may be only a single executable statement: a 24 

return.  That sounds more limiting than it is, because two tricks can be used to 25 

extend the expressiveness of constexpr functions beyond what you might think. 26 

First, the conditional “?:” operator can be used in place of if-else statements, 27 

and second, recursion can be used instead of loops. pow can therefore be imple-28 

mented like this: 29 

constexpr int pow(int base, int exp) 30 
{ 31 
  return (exp == 0 ? 1                   // if (exp==0) return 1 32 
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         : base * pow(base, exp - 1));   // else return  1 
}                                        // base*baseexp-1 2 

This works, but it’s hard to imagine that anybody except a hard-core functional 3 

programmer would consider it pretty. In C++14, the restrictions on constexpr 4 

functions are substantially looser, so the following implementation is valid in 5 

C++14: 6 

constexpr int pow(int base, int exp)            // C++14 only 7 
{ 8 
  if (exp == 0) return 1; 9 

  auto result = base; 10 
  for (int i = 1; i < exp; ++i) result *= base; 11 

  return result; 12 
} 13 

constexpr functions are limited to taking and returning literal types, which essen-14 

tially means types that can have values determined during compilation. All built-in 15 

types qualify, but user-defined types may be literal, too, because constructors and 16 

other member functions may be constexpr: 17 

class Point { 18 
public: 19 
  constexpr Point(double xVal, double yVal) 20 
  : x(xVal), y(yVal) 21 
  {} 22 

  constexpr double xVal() const { return x; } 23 
  constexpr double yVal() const { return y; } 24 

  void setX(double newX) { x = newX; } 25 
  void setY(double newY) { y = newY; } 26 

private: 27 
  double x, y; 28 
}; 29 

Here, the Point constructor can be declared constexpr, because if the arguments 30 

passed to it are known during compilation, the value of the data members of the 31 

constructed Point can also be known during compilation. Points so initialized 32 

could thus be constexpr: 33 

constexpr Point p1 { 1, 1 };       // fine, "runs" constexpr 34 
                                   // ctor during compilation 35 
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constexpr Point p2 { 4, 2 };       // also fine 1 

Similarly, the getters xVal and yVal can be constexpr, because if they’re invoked 2 

on a Point object with a value known during compilation (e.g., a constexpr 3 

Point object), the values of the data members x and y can be known during com-4 

pilation. That makes it possible to write constexpr functions that call Point’s 5 

getters and to initialize constexpr objects with the results of such functions: 6 

constexpr Point midpoint(const Point& p1, const Point& p2) 7 
{ 8 
  return { (p1.xVal() + p2.xVal()) / 2,    // call constexpr 9 
           (p1.yVal() + p2.yVal()) / 2 };  // member functions 10 
} 11 

constexpr auto mid = midpoint(p1, p2);     // init constexpr 12 
                                           // object w/result of 13 
                                           // constexpr function 14 

This is very exciting. It means that the object mid, though its initialization involves 15 

calls to constructors, getters, and a non-member function, can be created in read-16 

only memory! It means you could use an expression like mid.xVal() * 10 as an 17 

argument to a template or to specify the value of an enumerator! It means that the 18 

traditionally fairly strict line between work done during compilation and work 19 

done at runtime begins to blur, and in turn some computations traditionally done 20 

at runtime can migrate to compile-time. The more code taking part in the migra-21 

tion, the faster your software will run. (Compilation may take longer, however.) 22 

The setter functions setX and setY can’t be declared constexpr, because, among 23 

other things, they contain an assignment, and assignments are not permitted in 24 

constexpr functions, not even in C++14. (For a detailed treatment of the re-25 

strictions on constexpr function implementations, consult your favorite refer-26 

ences for C++11 and C++14, bearing in mind that C++11 imposes more constraints 27 

than C++14.) 28 

The advice of this Item is to use constexpr whenever possible, and by now I hope 29 

it’s clear why: both constexpr objects and constexpr functions can be employed 30 

in a wider range of contexts than non-constexpr objects and functions. By using 31 

constexpr whenever possible, you maximize the range of situations in which 32 

your objects and functions may be used.  33 
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It’s important to note that constexpr is part of an object’s or function’s interface. 1 

constexpr proclaims “I can be used in a context where C++ requires a constant 2 

expression.” If you declare an object or function constexpr, clients may use it in 3 

such contexts. If you later decide that your use of constexpr was a mistake and 4 

you remove it, you may cause arbitrarily large amounts of client code to stop com-5 

piling. (The simple act of adding I/O to a function for debugging or performance 6 

tuning could lead to such a problem, because I/O statements are generally not 7 

permitted in constexpr functions.) Part of “whenever possible” in “Use con-8 

stexpr whenever possible” is your willingness to make a long-term commitment 9 

to the constraints it imposes on the objects and functions you apply it to. 10 

Things to Remember 11 

 constexpr objects are const and are initialized with values known during 12 

compilation. 13 

 constexpr functions produce compile-time results when called with argu-14 

ments whose values are known during compilation. 15 

 constexpr objects and functions may be used in a wider range of contexts 16 

than non-constexpr objects and functions. 17 

 constexpr is part of an object’s or function’s interface. 18 

 Item 15: Make const member functions thread-safe. 19 

If we’re working in a mathematical domain, we might find it convenient to have a 20 

class representing polynomials. Within this class, it would probably be useful to 21 

have a function to compute the root(s) of the polynomial, i.e., values where the 22 

polynomial evaluates to zero. Such a function would not modify the polynomial, so 23 

it’d be natural to declare it const: 24 

class Polynomial {    25 
public:  26 
  using RootsType =          // data structure holding values 27 
    std::vector<double>;     // where polynomial evals to zero                                                                                     28 
  …                          // (see Item 9 for info on "using") 29 

  RootsType roots() const; 30 

  … 31 
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}; 1 

Computing the roots of a polynomial can be expensive, so we don’t want to do it if 2 

we don’t have to. And if we do have to do it, we certainly don’t want to do it more 3 

than once. We’ll thus cache the root(s) of the polynomial if we have to compute 4 

them, and we’ll implement roots to return the cached value. Here’s the basic ap-5 

proach: 6 

class Polynomial { 7 
public: 8 
  using RootsType = std::vector<double>; 9 

  RootsType roots() const  10 
  { 11 
    if (!rootsAreValid) {            // if cache not valid 12 

     …                               // compute roots, 13 
                                     // store them in rootVals 14 
     rootsAreValid = true; 15 
    } 16 

    return rootVals; 17 
  } 18 

private: 19 
  mutable bool rootsAreValid { false };   // see Item 7 for info 20 
  mutable RootsType rootVals {};          // on initializers 21 
}; 22 

Conceptually, roots doesn’t change the Polynomial object on which it operates, 23 

but, as part of its caching activity, it may need to modify rootVals and rootsAre-24 

Valid. That’s a classic use case for mutable, and that’s why it’s part of the declara-25 

tions for these data members. 26 

Imagine now that two threads simultaneously call roots on a Polynomial object: 27 

Polynomial p; 28 
 29 

/*-----  Thread 1  ----- */     /*-------  Thread 2  ------- */ 30 

auto rootsOfP = p.roots();      auto valsGivingZero = p.roots(); 31 

This client code is perfectly reasonable. roots is a const member function, and 32 

that means it represents a read operation. Having multiple threads perform a read 33 

operation without synchronization is safe. At least it’s supposed to be. In this case, 34 
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it’s not, because inside roots, one or both of these threads might try to modify the 1 

data members rootsAreValid and rootVals. That means that this code could 2 

have different threads reading and writing the same memory without synchroni-3 

zation, and that’s the definition of a data race. This code has undefined behavior. 4 

But there’s still nothing wrong with the client code. Clients are supposed to be able 5 

to rely on simultaneous reads being safe, and declaring a member function const 6 

is tantamount to proclaiming it a read operation. The notion that const member 7 

functions may be safely invoked without synchronization is so deeply engrained in 8 

C++11, the Standard Library takes it for granted. If you use any part of the Stand-9 

ard Library on a type where a const member function can’t safely be called with-10 

out synchronization, your program has undefined behavior. 11 

The problem here is that roots is declared const, but it’s not thread-safe. The 12 

const declaration is as correct in C++11 as it would be in C++98 (retrieving the 13 

roots of a polynomial doesn’t change the value of the polynomial), so what re-14 

quires rectification is the lack of thread safety. 15 

The easiest way to address the issue is the usual one: employ a mutex: 16 

class Polynomial { 17 
public: 18 
  using RootsType = std::vector<double>; 19 

  RootsType roots() const  20 
  { 21 
    std::lock_guard<std::mutex> g(m);     // lock mutex 22 

    if (!rootsAreValid) {                 // if cache not valid 23 

     …                                    // compute/store roots 24 

     rootsAreValid = true; 25 
    } 26 

    return rootVals;                      // release mutex 27 
  } 28 

private: 29 
  mutable std::mutex m; 30 
  mutable bool rootsAreValid { false }; 31 
  mutable RootsType rootVals {}; 32 
}; 33 
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The std::mutex, m, is declared mutable, because locking and unlocking it are 1 

non-const member functions, and within roots (a const member function), m 2 

would otherwise be considered a const object. 3 

It’s hard to go wrong using a mutex in this kind of context, but sometimes a mutex 4 

is overkill. For example, if all you’re doing is counting how many times a member 5 

function is called, an atomic variable will often be a less expensive way to go. 6 

(Whether it actually is less expensive depends on the hardware you’re running on 7 

and the implementation of mutexes in your Standard Library.) Here’s how you can 8 

count calls using an atomic variable: 9 

class Point {                              // 2D point 10 
public: 11 
  … 12 

  double distanceFromOrigin() const 13 
  { 14 
    ++callCount;                           // atomic increment 15 

    return std::sqrt((x * x) + (y * y)); 16 
  } 17 

private: 18 
  mutable std::atomic<unsigned> callCount { 0 }; 19 
  double x, y; 20 
}; 21 

All operations on atomic types in the Standard Library are guaranteed to be atomic 22 

(i.e., indivisible as observed by other threads), so even though the increment of 23 

callCount is a read-modify-write operation, you can rely on it proceeding atomi-24 

cally. 25 

In view of the fact that operations on atomic variables are often less expensive 26 

than mutex acquisition and release, you may be tempted to lean on atomic varia-27 

bles more heavily than you should. For example, in a class caching an expensive-28 

to-compute int, you might try to use a pair of atomic variables instead of a mutex: 29 

class Widget { 30 
public: 31 
  … 32 

  int magicValue() const  33 
  {  34 
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    if (cacheValid) return cachedValue; 1 
    else { 2 
      auto val1 = expensiveComputation1(); 3 
      auto val2 = expensiveComputation2(); 4 
      cachedValue = val1 + val2;               // uh oh, part 1 5 
      cacheValid = true;                       // uh oh, part 2 6 
      return cachedValue; 7 
    } 8 
  } 9 

private: 10 
  mutable std::atomic<bool> cacheValid { false }; 11 
  mutable std::atomic<int> cachedValue; 12 
}; 13 

This will work, but sometimes it will work a lot harder than it should. Consider: 14 

 A thread calls Widget::magicValue, sees cacheValid as false, performs 15 

the two expensive computations and assigns their sum to cachedValue. 16 

 At that point, a second thread calls Widget::magicValue, also sees ca-17 

cheValid as false and thus carries out the same expensive computations 18 

that the first thread has just finished performing. (This “second thread” may in 19 

fact be several other threads.) 20 

Such behavior is contrary to the goal of caching. Reversing the order of the as-21 

signments to cachedValue and CacheValid eliminates that problem, but the re-22 

sult is even worse: 23 

class Widget { 24 
public: 25 
  … 26 

  int magicValue() const  27 
  {  28 
    if (cacheValid) return cachedValue; 29 
    else { 30 
      auto val1 = expensiveComputation1(); 31 
      auto val2 = expensiveComputation2(); 32 
      cacheValid = true;                        // uh oh, part 1 33 
      return cachedValue = val1 + val2;         // uh oh, part 2 34 
    } 35 
  } 36 

  … 37 

}; 38 
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Imagine that cacheValid is false, and then: 1 

 One thread calls Widget::magicValue and executes through the point where 2 

cacheValid is set to true. 3 

 At that moment, a second thread calls Widget::magicValue and checks ca-4 

cheValid. Seeing it true, the thread returns cachedValue, even though the 5 

first thread has not yet made an assignment to it. The returned value is there-6 

fore incorrect. 7 

There’s a lesson here. For a single variable or memory location requiring synchro-8 

nization, use of a std::atomic is often adequate, but once you get to two or more 9 

variables or memory locations (e.g., distinct elements of a data structure) that re-10 

quire manipulation as a unit, you should reach for a mutex. For Widg-11 

et::magicValue, that would look like this: 12 

class Widget { 13 
public: 14 
  … 15 

  int magicValue() const 16 
  {   17 
    std::lock_guard<std::mutex> guard(m);   // lock m 18 

    if (cacheValid) return cachedValue; 19 
    else { 20 
      auto val1 = expensiveComputation1(); 21 
      auto val2 = expensiveComputation2(); 22 
      cachedValue = val1 + val2; 23 
      cacheValid = true; 24 
      return cachedValue; 25 
    } 26 
  }                                         // unlock m 27 
  … 28 

private: 29 
  mutable std::mutex m; 30 
  mutable int cachedValue;                  // no longer atomic 31 
  mutable bool cacheValid { false };        // no longer atomic 32 
}; 33 

Regardless of how you make your const member functions thread-safe, it’s essen-34 

tial that you do. Callers of const member functions have a right to assume that 35 

their calls will succeed without their performing any synchronization. Implemen-36 
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tations of const member functions achieve thread safety either by being bitwise 1 

const (i.e., not modifying any bits making up the value of the object) or by using 2 

some kind of internal synchronization, e.g., a mutex or an atomic variable. 3 

Things to Remember 4 

 Make const member functions thread safe. 5 

 Use of atomic variables may offer better performance than a mutex, but they’re 6 

generally only suited for manipulation of a single variable or memory location. 7 

 Item 16: Declare functions noexcept whenever possible. 8 

In C++98, exception specifications were rather temperamental creatures. You had 9 

to summarize the exception types a function might emit, so if the function’s im-10 

plementation was modified, the exception specification might need revision, too. 11 

Changing an exception specification could break client code, because callers might 12 

be dependent on the original exception specification. Compilers typically offered 13 

no help in maintaining consistency among function implementations, exception 14 

specifications, and client code. Most programmers ultimately decided that C++98 15 

exception specifications weren’t worth the trouble.  16 

Interest in the idea of exception specifications remained strong, however, and as 17 

work on C++ progressed, a consensus emerged that the truly meaningful infor-18 

mation about a function’s exception-emitting behavior was whether it had any. 19 

Black or white, either a function might emit an exception or it guaranteed that it 20 

wouldn’t. This maybe-or-never dichotomy forms the basis of C++11’s exception 21 

specifications, which essentially replace C++98’s. (C++98-style exception specifica-22 

tions remain valid, but they’re deprecated.) In C++11, noexcept is for functions 23 

that guarantee they won’t emit an exception.  24 

Whether a function should be so declared is fundamentally a matter of interface 25 

design. The exception-emitting behavior of a function is of key interest to clients. 26 

Callers can query a function’s noexcept status, and the results of such a query can 27 

affect the exception safety or efficiency of the calling code. As such, whether a func-28 

tion is noexcept is as important a piece of information as whether a member func-29 
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tion is const. Failure to declare a function noexcept when you know that it will 1 

never emit an exception is simply poor interface specification. 2 

But there’s an additional incentive to apply noexcept to functions that won’t pro-3 

duce exceptions: it permits compilers to generate better object code. To under-4 

stand why, it helps to examine the difference between the C++98 and C++11 ways 5 

of saying that a function won’t emit exceptions. Consider a function f that promis-6 

es callers they’ll never receive an exception. The two ways of expressing that are: 7 

int f(int x) throw();     // no exceptions from f: C++98 style 8 

int f(int x) noexcept;    // no exceptions from f: C++11 style 9 

If, at runtime, an exception leaves f, f’s exception specification is violated. With 10 

the C++98 approach, the call stack is unwound to f’s caller, and, after some actions 11 

not relevant here, program execution is terminated. With the C++11 approach, 12 

runtime behavior is a bit different: the stack is only possibly unwound before pro-13 

gram execution is terminated. 14 

The difference between unwinding the call stack and possibly unwinding it has a 15 

surprisingly large impact on code generation. In a noexcept function, optimizers 16 

need not keep the runtime stack in an unwindable state if an exception would 17 

propagate out of the function, nor must they ensure that objects in a noexcept 18 

function are destroyed in the inverse order of construction should an exception 19 

leave the function. The result is more opportunities for optimization, not only 20 

within the body of a noexcept function, but also at sites where the function is 21 

called. Such flexibility is present only for noexcept functions. Functions with 22 

“throw()” exception specifications lack it, as do functions with no exception speci-23 

fication at all. The situation can be summarized this way: 24 

RetType function(params) noexcept;     // most optimizable 25 

RetType function(params) throw();      // less optimizable 26 

RetType function(params);              // less optimizable 27 

This alone should provide sufficient motivation to declare functions noexcept 28 

whenever you can.  29 
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For some functions, the case is even stronger. The move operations are the 1 

preeminent example. Suppose you have a C++98 code base making use of 2 

std::vectors of Widgets. Widgets are added to the std::vectors from time to 3 

time, perhaps via push_back: 4 

std::vector<Widget> vw; 5 

… 6 

Widget w; 7 

…                        // work with w 8 

vw.push_back(w);         // add w to vw 9 

… 10 

Assume this code works fine, and you have no interest in modifying it for C++11. 11 

However, you do want to take advantage of the fact that C++11’s move semantics 12 

can improve the performance of legacy code when move-enabled types are in-13 

volved. You therefore ensure that Widget has move operations, either by writing 14 

them yourself or by seeing to it that the conditions for their automatic generation 15 

are fulfilled (see Item 19).  16 

When a new element is added to a std::vector via push_back, it’s possible that 17 

the std::vector lacks space for it, i.e., that the std::vector’s size is equal to its 18 

capacity. When that happens, the std::vector allocates a new, larger, chunk of 19 

memory to hold its elements, and it transfers the elements from the existing chunk 20 

of memory to the new one. In C++98, the transfer was accomplished by copying 21 

each element from the old memory to the new memory, then destroying the origi-22 

nals in the old memory. This approach enabled push_back to offer the strong ex-23 

ception safety guarantee: if an exception was thrown during the copying of the el-24 

ements, the state of the std::vector remained unchanged, because none of the 25 

elements in the original memory was destroyed until all elements had been suc-26 

cessfully copied into the new memory. 27 

In C++11, a natural optimization would be to replace the copying of std::vector 28 

elements with moves. Unfortunately, doing this runs the risk of violating 29 

push_back’s exception safety guarantee. If n elements have been moved from the 30 

old memory and an exception is thrown moving element n+1, the push_back op-31 
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eration can’t run to completion. But the original std::vector has been modified: 1 

n of its elements have been moved from. Restoring their original state may not be 2 

possible, because attempting to move each object back into the original memory 3 

may itself yield an exception. 4 

This is a serious problem, because the behavior of legacy code could depend on 5 

push_back’s strong exception safety guarantee. Therefore, C++11 implementa-6 

tions can’t silently replace copy operations inside push_back with moves. They 7 

must continue to employ copy operations. Unless, that is, it’s known that the move 8 

operations are guaranteed not to emit exceptions. In that case, replacing element 9 

copy operations inside push_back with move operations would be safe, and the 10 

only side effect would be improved performance.  11 

std::vector::push_back takes advantage of this “move if you can, but copy if 12 

you must” strategy, and it’s not the only function in the Standard Library that does. 13 

Other functions sporting the strong exception safety guarantee in C++98 (e.g., 14 

std::vector::reserve, std::deque::insert, etc.) behave the same way. All 15 

these functions replace calls to copy operations in C++98 with calls to move opera-16 

tions in C++11 if (and only if) the move operations are known to not emit excep-17 

tions. But how can a function know if a move operation won’t produce an excep-18 

tion? The answer is obvious: it checks to see if the operation is declared noex-19 

cept.*  20 

swap functions comprise another case where noexcept is particularly desirable.  21 

swap is a key component of many STL algorithm implementations, and it’s com-22 

monly employed in copy assignment operators, too. Its widespread use renders 23 

the optimizations that noexcept affords especially worthwhile. Furthermore, 24 

                                                             

* The checking is typically rather roundabout. Functions like std::vector::push_back 

call std::move_if_noexcept, a variation of std::move that conditionally casts to an 

rvalue (see Item 25), depending on whether the type’s move constructor is noexcept. In 

turn, std::move_if_noexcept calls std::is_nothrow_move_constructible, and the 

value of this type trait is set by compilers, based on whether the move constructor has a 

noexcept (or throw()) designation. 
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whether swaps in the Standard Library are noexcept is sometimes dependent on 1 

whether user-defined swaps are noexcept. For example, the declarations for the 2 

Standard Library’s swaps for arrays and for std::pair are: 3 

template <class T, size_t N> 4 
void swap(T (&a)[N], 5 
          T (&b)[N]) noexcept(noexcept(swap(*a, *b))); 6 

template <class T1, class T2> 7 
struct pair { 8 
  … 9 
  void swap(pair& p) noexcept(noexcept(swap(first, p.first)) && 10 
                              noexcept(swap(second, p.second))); 11 
  … 12 
}; 13 

These functions are conditionally noexcept: whether they are noexcept depends 14 

on whether the expressions inside the noexcepts are noexcept. Given two arrays 15 

of Widget, for example, swapping them is noexcept only if swapping individual 16 

elements from the arrays is noexcept, i.e., if swap for Widget is noexcept. The 17 

author of Widget’s swap thus determines whether swapping arrays of Widget is 18 

noexcept. That, in turn, determines whether other swaps, such as the one for ar-19 

rays of arrays of Widget, are noexcept. Similarly, whether swapping two 20 

std::pair objects containing Widgets is noexcept depends on whether swap for 21 

Widgets is noexcept. The fact that swapping higher-level data structures can 22 

generally be noexcept only if swapping their lower-level constituents is noex-23 

cept is the reason why you should strive to offer noexcept swap functions. 24 

By now, I hope you’re excited about the optimization opportunities that noexcept 25 

affords. Alas, I must temper your enthusiasm. Optimization is important, but cor-26 

rectness is more important. I noted at the beginning of this Item that noexcept is 27 

part of a function’s interface, so you should declare a function noexcept only if 28 

you are willing to commit to a noexcept implementation over the long term. If 29 

you declare a function noexcept and later regret that decision, your options are 30 

bleak. You can remove noexcept from the function’s declaration (i.e., change its 31 

interface), thus running the risk of breaking client code. You can change the im-32 

plementation such that an exception could escape, but keep the original (now in-33 

correct) exception specification. If you do that, your program will be terminated if 34 
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an exception tries to leave the function. Or you can resign yourself to your existing 1 

implementation, abandoning whatever motivated your desire to change the im-2 

plementation in the first place. None of these options is appealing. 3 

The fact of the matter is that most functions are exception-neutral. Such functions 4 

throw no exceptions themselves, but functions they call might emit one. When that 5 

happens, the calling function allows the emitted exception to pass through on its 6 

way to a handler further up the call chain. Exception-neutral functions are never 7 

noexcept, because they may emit such “just passing through” exceptions. Most 8 

functions, therefore, quite properly lack the noexcept designation. 9 

Some functions, however, have natural implementations that emit no exceptions, 10 

and for a few more—notably the move operations and swap—being noexcept has 11 

such a significant payoff, it’s worth implementing them in a noexcept manner if at 12 

all possible.† When you can honestly say that a function should never emit excep-13 

tions, you should definitely declare it noexcept.  14 

Please note that I said some functions have natural noexcept implementations. 15 

Twisting a function’s implementation to permit a noexcept declaration is the tail 16 

wagging the dog. Is putting the cart before the horse. Is not seeing the forest for 17 

the trees. Is…choose your favorite metaphor. If a straightforward function imple-18 

mentation might yield exceptions (e.g., by invoking a function that might throw), 19 

the hoops you’ll jump through to hide that from callers (e.g., catching all excep-20 

tions and replacing them with status codes or special return values) will not only 21 

complicate your function’s implementation, it will typically complicate code at call 22 

sites, too (e.g., code there may have to check for status codes or special return val-23 

                                                             

† The prescribed declarations for move operations on containers in the Standard Library 

lack noexcept. However, implementers are permitted to strengthen exception specifica-

tions for Standard Library functions, and, in practice, it is common for at least some con-

tainer move operations to be declared noexcept. That practice exemplifies this Item’s ad-

vice. Having found that it’s possible to write container move operations such that excep-

tions never need to be emitted, implementers often declare the operations noexcept, even 

though the Standard does not require them to do so. 
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ues). The runtime cost of those complications (e.g., extra branches, larger functions 1 

that put more pressure on instruction caches, etc.) could exceed any speedup 2 

you’d hope to achieve via noexcept, plus you’d be saddled with source code that’s 3 

more difficult to comprehend and maintain. That’d hardly be exemplary software 4 

engineering. As a general rule, the only time it makes sense to actively search for a 5 

noexcept algorithm is when you’re implementing the move functions or swap. 6 

Two more points about noexcept functions are worth mentioning. First, in C++98, 7 

it was considered bad style to permit the memory deallocation functions (i.e., op-8 

erator delete and operator delete[]) and destructors to emit exceptions, and 9 

in C++11, this style rule has been all but upgraded to a language rule. By default, all 10 

memory deallocation functions and all destructors—both user-defined and com-11 

piler-generated—are implicitly noexcept. There’s thus no need to declare them 12 

noexcept. (Doing so doesn’t hurt anything, it’s just unconventional.) The only 13 

time a destructor is not implicitly noexcept is when a data member of the class 14 

(including inherited members and those contained inside other data members) is 15 

of a type that expressly states that its destructor may emit exceptions (e.g., de-16 

clares it “noexcept(false)”). Such destructors are uncommon. There are none in 17 

the Standard Library. 18 

Second, let me elaborate on my earlier observation that compilers typically offer 19 

no help in identifying inconsistencies between function implementations and their 20 

exception specifications. Consider this code, which is perfectly legal: 21 

void setup();           // functions defined elsewhere 22 
void cleanup(); 23 

void doWork() noexcept 24 
{ 25 
  setup();              // set up work to be done 26 

  …                     // do the actual work 27 

  cleanup();            // perform cleanup actions 28 
} 29 

Here, doWork is declared noexcept, even though it calls the non-noexcept func-30 

tions setup and cleanup. This seems contradictory, but it could be that setup 31 

and cleanup document that they never emit exceptions, even though they’re not 32 
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declared that way. There could be good reasons for their non-noexcept declara-1 

tions. For example, they might be part of a library written in C.  (Even functions 2 

from the C Standard Library that have been moved into the std namespace lack 3 

exception specifications, e.g., std::strlen isn’t declared noexcept.) Or they 4 

could be part of a C++98 library that decided not to use C++98 exception specifica-5 

tions and hasn’t yet been revised for C++11. 6 

Because there are legitimate reasons for noexcept functions to rely on code lack-7 

ing the noexcept guarantee, C++ permits such code, and compilers generally don’t 8 

issue warnings about it.  9 

Things to Remember 10 

 noexcept is part of a function’s interface, so callers may depend on it. 11 

 noexcept functions are more optimizable than non-noexcept functions.  12 

 noexcept is particularly valuable for the move operations and for swap. 13 

 Most functions are exception-neutral rather than noexcept. 14 

 Item 17: Consider pass by value for cheap-to-move parame-15 

ters that are always copied. 16 

Some functions take parameters that are, at least under normal circumstances, al-17 

ways copied. Setters are a good example. Setter functions typically take a value and 18 

store it in a data member of an object. For such functions to operate with maximal 19 

efficiency, they should copy lvalue arguments and move rvalue arguments: 20 

class Widget { 21 
public: 22 
  void setName(const std::string& newName)    // take lvalue; 23 
  { name = newName; }                         // copy it 24 

  void setName(std::string&& newName)         // take rvalue; 25 
  { name = std::move(newName); }              // move it 26 
  … 27 

private: 28 
  std::string name; 29 
}; 30 
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This works, but it requires writing two functions that do essentially the same 1 

thing. That chafes a bit: two functions to declare, two functions to implement, two 2 

functions to document, two functions to maintain. Ugh.  3 

Furthermore, there will be two functions in the object code—something you might 4 

care about if you're concerned about your program's footprint. In this case, both 5 

functions will probably be inlined, and that's likely to eliminate any bloat issues 6 

related to the existence of two functions, but if these functions aren't inlined eve-7 

rywhere, you really will get two functions in your object code. (Inlining might not 8 

occur due to the creation of pointers to these functions, calls to these functions oc-9 

curring inside complicated calling contexts, or building the system with inlining 10 

disabled.) 11 

An alternative approach is to make setName a template function taking a universal 12 

reference (see Item 26): 13 

class Widget { 14 
public: 15 
  template<typename T> 16 
  void setName(T&& newName)             // take lvalues and 17 
  { name = std::forward<T>(newName); }  // rvalues; copy  18 
                                        // lvalues, move rvalues 19 
  … 20 

}; 21 

This reduces the source code you have to deal with, though, assuming this function 22 

is called with both lvalues and rvalues, there will still be two functions in the ob-23 

ject code. (The template will be instantiated differently for lvalues and rvalues.) 24 

Furthermore, the use of universal references has drawbacks. As Item 32 explains, 25 

not all argument types can be passed via universal reference, and, as noted in 26 

Item 29, if clients pass improper argument types to functions taking universal ref-27 

erences, compiler error messages can be, er, challenging.  28 

Wouldn’t it be nice if there were a way to write functions like setName such that 29 

lvalues were copied, rvalues were moved, there was only one function to deal with 30 

(in both source and object code), and the idiosyncrasies of universal references 31 

were avoided? As it happens, there is. All you have to do is abandon one of the very 32 

first rules you probably learned as a C++ programmer. That rule was to avoid pass-33 
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ing objects by value. For parameters like newName in functions like setName, pass 1 

by value may be exactly what you want. 2 

Before we discuss why pass-by-value is probably a good fit for newName and set-3 

Name, let's see how it would be implemented. 4 

class Widget { 5 
public: 6 
  void setName(std::string newName)    // take lvalue or  7 
  { name = std::move(newName); }       // rvalue; move it 8 

  … 9 

}; 10 

The only non-obvious part of this code is the application of std::move to the pa-11 

rameter, newName. Typically, std::move is used with rvalue references (see 12 

Item 27), but in this case, we know that (1) newName is a completely independent 13 

object from whatever the caller passed in, so changing newName won't affect call-14 

ers and (2) this is the final use of newName, so moving from it won't have any im-15 

pact on the rest of the function.  16 

The fact that there's only one setName function explains how we avoid code dupli-17 

cation—both in the source file as well as the corresponding object file. We’re not 18 

using a universal reference, so this approach doesn't lead to odd failure cases or 19 

confounding error messages. The question remaining regards the efficiency of this 20 

design. We're passing by value. Isn't that expensive? 21 

In C++98, it was a reasonable bet that it was, because no matter what callers 22 

passed in, the parameter newName would be created by copy construction. In 23 

C++11, newName will be copy-constructed only for lvalues. For rvalues, it will be 24 

move-constructed. Here, look: 25 

Widget w; 26 

… 27 

std::string widgetID("Bart"); 28 

w.setName(widgetID);               // call setName with lvalue 29 

… 30 
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w.setName(widgetID + "Jenne");     // call setName with rvalue 1 
                                   // (see below) 2 

In the first call to setName (when widgetID is passed), the parameter newName is 3 

initialized with an lvalue. newName is thus copy-constructed, just like it would be in 4 

C++98. In the second call, newName is initialized with the std::string object re-5 

sulting from a call to operator+ for std::string (i.e., the append operation). 6 

That object is an rvalue, and newName is therefore move-constructed. 7 

In sum, when callers pass lvalues, they're copied into newName, and when callers 8 

pass rvalues, they're moved into newName, just like we want. Neat, huh?  9 

“It can’t be that simple,” I hear you thinking. “There’s got to be a catch.”  Generally, 10 

there’s not, but there are some conditions you need to keep in mind. Doing that 11 

will be easier if we recap the three versions of setName we’ve considered: 12 

class Widget {                               // Approach 1: 13 
public:                                      // overload for 14 
  void setName(const std::string& newName)   // lvalues and 15 
  { name = newName; }                        // rvalues 16 

  void setName(std::string&& newName)  17 
  { name = std::move(newName); }  18 
  … 19 

private: 20 
  std::string name; 21 
}; 22 

class Widget {                               // Approach 2: 23 
public:                                      // use universal 24 
  template<typename T>                       // reference 25 
  void setName(T&& newName)  26 
  { name = std::forward<T>(newName); }  27 
  … 28 
}; 29 

class Widget {                               // Approach 3: 30 
public:                                      // pass by value 31 
  void setName(std::string newName)  32 
  { name = std::move(newName); } 33 
  … 34 
}; 35 

And here are the two calling scenarios we’ve examined: 36 
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Widget w; 1 
… 2 
std::string widgetID("Bart"); 3 

w.setName(widgetID);                         // pass lvalue 4 
… 5 
w.setName(widgetID + "Jenne");               // pass rvalue 6 

Now consider the cost, in terms of copy and move operations, of setting a Widget’s 7 

name for the two calling scenarios and each of the three setName implementations 8 

we’ve discussed: 9 

 Overloading: Regardless of whether an lvalue or an rvalue is passed, the call-10 

er’s argument is bound to a reference called newName. That costs nothing, in 11 

terms of copy and move operations. In the lvalue overload, newName is copied 12 

into Widget::name. In the rvalue overload, it’s moved. Cost summary: 1 copy 13 

for lvalues, 1 move for rvalues. 14 

 Using a universal reference: As with overloading, the caller’s argument is 15 

bound to the reference newName. This is a no-cost operation. Due to the use of 16 

std::forward (see Item 25) lvalue arguments are copied into Widg-17 

et::name, while rvalue arguments are moved. The cost summary is the same 18 

as with overloading: 1 copy for lvalues, 1 move for rvalues. This is to be ex-19 

pected. A template taking a universal reference parameter instantiates into 20 

two functions, one taking an lvalue reference parameter and one taking its 21 

rvalue reference counterpart. 22 

 Passing by value: Regardless of whether an lvalue or an rvalue is passed, the 23 

parameter newName must be constructed. If an lvalue is passed, this costs a 24 

copy operation. If an rvalue is passed, it typically costs a move. In the body of 25 

the function, newName is then unconditionally moved into Widget::name. The 26 

cost summary is thus 1 copy plus 1 move for lvalues, and 2 moves for rvalues. 27 

Look again at this Item’s title: 28 

Consider pass by value for cheap-to-move parameters that are always copied. 29 

It’s worded the way it is for a reason. Three reasons, in fact. 30 
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First, you should only consider using pass by value. Yes, it requires writing only 1 

one function. Yes, it generates only one function in the object code. Yes, it avoids 2 

the interface issues associated with universal references (i.e., failure cases and un-3 

pleasant error messages). But it has a higher cost than the alternatives. In particu-4 

lar, it costs an extra move for both lvalue and rvalue arguments.  5 

Which brings me to the second caveat. Consider pass by value only for cheap-to-6 

move parameters. When moves are cheap, the cost of the extra move is likely to be 7 

negligible. But when moves are not cheap, that extra move can incur an expense 8 

you can’t afford. Item 31 explains that not all types are cheap to move—not even 9 

all types in the Standard Library. When moves are not cheap, performing an un-10 

necessary move is analogous to performing an unnecessary copy, and the im-11 

portance of avoiding unnecessary copy operations is what lead to the C++98 rule 12 

about avoiding pass by value in the first place! 13 

Finally, you should consider pass by value only for parameters that are always cop-14 

ied. For setter functions (as well as for constructors taking initialization arguments 15 

for an object’s data members), this condition is typically fulfilled, but consider a 16 

function that adds a value to a data structure only if the value satisfies a constraint. 17 

Using pass by value, it could be written like this: 18 

class Widget { 19 
public: 20 
  bool insert(std::string s) 21 
  { 22 
    if ((s.length() >= MinLen) && (s.length() <= MaxLen)) { 23 
      values.insert(s); 24 
      return true; 25 
    } 26 
    else { 27 
      return false; 28 
    } 29 
  } 30 

  … 31 

private: 32 
  std::unordered_set<std::string> values; 33 
}; 34 

In this function, we’ll pay to construct s, even if it’s not copied, e.g., if the value 35 

passed in is too short or too long. For example, given this code, 36 
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Widget w; 1 

 2 
std::string finalGWTWWords("Tomorrow is another day"); 3 

… 4 

auto status = w.insert(finalGWTWWords); 5 

we'll pay to copy finalGWTWWords, even if its length is less than MinLen or great-6 

er than MaxLen. (Note that we'll really pay for a copy, not a move, because final-7 

GWTWWords is an lvalue.) This is hardly an efficiency win. 8 

Even when you're dealing with a function performing an unconditional copy on a 9 

type that's known to be cheap to move, there are times when pass by value may 10 

not be a suitable design decision. For code that has to be as fast as possible, avoid-11 

ing even cheap moves can be important. Besides, it's not always clear how many 12 

moves are truly being performed. In our Widget::setName example, pass by val-13 

ue incurs only a single extra move operation, but suppose that Widget::setName 14 

called Widget::validateName, and this function also passed by value. (Presum-15 

ably it has a reason for always copying its parameter, e.g., to store it in a data 16 

structure of all values it validates.) And suppose that validateName called a third 17 

function that also passed by value…  18 

You can see where this is headed. When there are chains of function calls, each of 19 

which employs pass by value because “it costs only one inexpensive move,” the 20 

cost for the entire chain of calls may not be something you can tolerate. Using by-21 

reference parameter passing (as is the case with lvalue and rvalue overloads and 22 

the use of universal references), chains of calls don’t incur this kind of accumulated 23 

overhead. 24 

If you were paying particularly close attention during this Item, you probably no-25 

ticed my comment that there’s “generally” no catch to using pass by value, provid-26 

ed the constraints we’ve discussed are satisfied, i.e., that moving the parameter 27 

type is cheap and that the parameter is unconditionally copied. “Generally?,” you 28 

probably wondered. “Generally?!” “What’s up with ‘generally’?!” 29 

What’s up with “generally” is the slicing problem. Pass by value is susceptible to it. 30 

Pass by reference isn’t. This is well-trod C++98 ground, so I won’t dwell on it, but if 31 
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you have a function that is designed to accept a parameter of a base class type or 1 

any type derived from it, you don’t want to declare a pass-by-value parameter of 2 

that type, because you’ll “slice off” the derived-class characteristics of any derived 3 

type object that may be passed in: 4 

class Widget { … };                          // base class 5 

class SpecialWidget: public Widget { … };    // derived class 6 

void processWidget(Widget w);   // func for any kind of Widget, 7 
                                // including derived types; 8 
…                               // suffers from slicing problem 9 

SpecialWidget sw; 10 

… 11 

processWidget(sw);              // processWidget sees a  12 
                                // Widget, not a SpecialWidget! 13 

If you’re not familiar with the slicing problem, search engines and the Internet are 14 

your friend; there’s lots of information available. You’ll find that the existence of 15 

the slicing problem is another reason (on top of the efficiency hit) why pass by 16 

value has a shady reputation in C++98. There are good reasons why one of the first 17 

things you probably learned about C++ programming was to avoid passing objects 18 

by value. 19 

C++11 doesn’t fundamentally change the C++98 wisdom regarding pass by value. 20 

In general, pass by value still entails a performance hit you’d prefer to avoid, and 21 

pass by value can still lead to the slicing problem.  What’s new in C++11 is the dis-22 

tinction between lvalue and rvalue arguments. Declaring functions that take ad-23 

vantage of move semantics for rvalues requires either writing multiple functions 24 

(i.e., overloading for lvalues and rvalues) or using universal references, both of 25 

which have drawbacks. For the special case of cheap-to-move types passed to 26 

functions that always copy them and where slicing is not a concern, pass by value 27 

offers an easy-to-implement alternative that’s nearly as efficient as its pass-by-28 

reference competitors, but avoids their disadvantages. 29 
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Things to Remember 1 

 For cheap-to-move parameters that are unconditionally copied, pass by value 2 

is nearly as efficient as pass by reference, it’s easier to implement, and it can 3 

generate less object code. 4 

 Pass by value is subject to the slicing problem, so it’s typically inappropriate 5 

for base class parameter types. 6 

 Item 18: Consider emplacement instead of insertion. 7 

If you have a container holding, say, std::strings, it seems logical that when you 8 

add a new element via an insertion function (i.e., insert, push_front,  9 

push_back, or, for std::forward_list, insert_after), the type of element 10 

you'll pass to the function will be std::string. After all, that's what the container 11 

has in it.  12 

Logical though this may be, it’s not always true. Consider this code: 13 

std::vector<std::string> vs;         // container of std::string 14 

vs.push_back("xyzzy");               // add string literal 15 

Here, the container holds std::strings, but what you have in hand—what you’re 16 

actually trying to push_back—is a string literal (i.e., a sequence of characters in-17 

side quotes). A string literal is not a std::string, and that means that the argu-18 

ment you’re passing to push_back is not of the type held by the container.  19 

push_back for std::vector is overloaded for lvalues and rvalues as follows: 20 

template <class T,                           // from the C++11 21 
          class Allocator = allocator<T> >   // Standard 22 
class vector { 23 
public: 24 
  … 25 
  void push_back(const T& x);                // insert lvalue 26 
  void push_back(T&& x);                     // insert rvalue 27 
  … 28 
}; 29 

In the call  30 

vs.push_back("xyzzy"); 31 
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compilers see a mismatch between the type of the argument (const char[6]—1 

see Item 1) and the type of the parameter taken by push_back (std::string). 2 

They address the mismatch by generating code to create a temporary 3 

std::string object from the string literal, and they pass that temporary object to 4 

push_back. In other words, they treat the call as if it had been written like this: 5 

vs.push_back(std::string("xyzzy"));  // create temp. std::string 6 
                                     // and pass it to push_back 7 

The code compiles and runs, and everybody goes home happy. Everybody except 8 

the performance freaks, that is, because the performance freaks recognize that this 9 

code isn’t as efficient as it should be.  10 

To create a new element in a container of std::strings, they understand, a 11 

std::string constructor is going to have to be called, but the code above doesn’t 12 

call just one constructor. It calls two. Furthermore, it tacks on a call to the 13 

std::string destructor, which seems not just gratuitous, but downright, well, 14 

tacky. 15 

Here’s what happens at runtime in the call to push_back: 16 

1. A temporary std::string object is created from the string literal, "xyzzy". 17 

This object has no name; we’ll call it temp. Construction of temp is the first 18 

std::string construction. Because it’s a temporary object,  temp is an rvalue. 19 

2. temp is passed to the rvalue overload for push_back, where it’s bound to the 20 

rvalue reference parameter, x. A copy of x is then constructed in the memory 21 

for the std::vector. This construction—the second one—is what actually 22 

creates a new object inside the std::vector. (The constructor that’s used to 23 

copy x into the std::vector is the move constructor, because x, being an 24 

rvalue reference, gets cast to an rvalue before it’s copied. For information 25 

about the casting of rvalue reference parameters to rvalues, see Item 27.) 26 

3. When push_back returns, temp is destroyed, thus calling the std::string 27 

destructor. 28 

The performance freaks can’t help but notice that if there were a way to take the 29 

string literal and pass it directly to the code in step 2 that constructs the 30 
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std::string object inside the std::vector, i.e., that performs the only con-1 

struction that’s actually required, we could avoid constructing and destroying 2 

temp. That would be maximally efficient, and even the performance freaks would 3 

go home happy. 4 

Because you’re a C++ programmer, there’s an above-average chance you’re a per-5 

formance freak. If you’re not, you’re still probably sympathetic to their point of 6 

view. (If you’re not at all interested in performance, shouldn’t you be in the Python 7 

room down the hall?) So I’m pleased to tell you that there is a way to do exactly 8 

what is needed for maximal efficiency in the call to push_back. It’s to not call 9 

push_back. push_back is the wrong function. The function you’re looking for is 10 

emplace_back. 11 

emplace_back does exactly what we want: it uses whatever argument is passed to 12 

it to construct a new std::string directly inside the std::vector. No tempo-13 

raries are involved: 14 

vs.emplace_back("xyzzy");   // construct std::string inside 15 
                            // vs directly from "xyzzy" 16 

emplace_back uses perfect forwarding, so, as long as you don’t bump into one of 17 

perfect forwarding’s limitations (see Item 32), you can pass any number of argu-18 

ments of any combination of types through emplace_back. For example, if you’d 19 

like to create a std::string in vs via the std::string constructor taking a 20 

character and a repeat count, this would do it: 21 

vs.emplace_back(50, 'x');   // insert std::string consisting 22 
                            // of 50 'x' characters 23 

emplace_back is available for every standard container that supports 24 

push_back. Similarly, every standard container that supports push_front sup-25 

ports emplace_front. And every standard container that supports insert 26 

(which is all but std::forward_list and std::array) supports emplace. The 27 

associative containers offer emplace_hint to complement their insert functions 28 

that take a “hint” iterator, and std::forward_list has emplace_after to match 29 

its insert_after. 30 
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All emplacement functions work the same way as emplace_back: they perfect-1 

forward their arguments to the code that creates a new object in the container. All 2 

avoid the cost of type conversions that arise through use of the insertion functions 3 

when the type of the passed-in argument doesn't match the type stored in the con-4 

tainer. Hence: 5 

std::vector<std::string> vs;         // as before 6 
… 7 
auto midPoint = vs.begin() + vs.size() / 2; 8 

vs.insert(midPoint, "hello");        // create temp std::string, 9 
                                     // move temp into vector, 10 
…                                    // destroy temp 11 

midPoint =                           // recompute midpoint 12 
  vs.begin() + vs.size() / 2; 13 

vs.emplace(midPoint, "world");       // create std::string 14 
                                     // directly in vector 15 

One of the nicest things about the emplacement functions is that when the type 16 

passed is the same as the type stored in the container (i.e., when there’s no type 17 

mismatch), they’re no less efficient than calling their insertion counterparts. This 18 

means that you can safely fall into the habit of using the emplacement functions all 19 

the time. They’re often more efficient than their insert/push_back/push_front 20 

siblings, and they’re never less efficient. 21 

At the same time, emplacement functions have a couple of sharp edges, and if 22 

you’re not careful, you can cut yourself. For example, suppose you have a container 23 

of std::shared_ptr<Widget>s, 24 

std::list<std::shared_ptr<Widget>> ptrs; 25 

and you want to add a std::shared_ptr to a Widget that should be released via 26 

a custom deleter (see Item 21). Item 23 explains that you should use 27 

std::make_shared to create std::shared_ptrs whenever you can, but it also 28 

concedes that there are situations where you can’t. One such situation is when you 29 

want to specify a custom deleter. In that case, you must call new directly to get the 30 

raw pointer to be managed by the std::shared_ptr. 31 

If the custom deleter is this function, 32 
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void killWidget(Widget* pWidget); 1 

the code using an insertion function could look like this: 2 

ptrs.push_back(std::shared_ptr<Widget>(new Widget, killWidget)); 3 

It could also look like this, though the meaning would be the same: 4 

ptrs.push_back( { new Widget, killWidget } ); 5 

Either way, a temporary std::shared_ptr would be constructed before calling 6 

push_back. push_back’s parameter is a reference to a std::shared_ptr, so 7 

there has to be a std::shared_ptr for this parameter to refer to.  8 

The creation of the temporary std::shared_ptr is what emplace_back would 9 

avoid, but in this case, that temporary is worth far more than it costs. Consider the 10 

following potential sequence of events: 11 

1. In either call above, a temporary std::shared_ptr<Widget> is constructed 12 

to hold the raw pointer resulting from “new Widget”. Call this object p.  13 

2. push_back takes p by reference. During allocation of a list node to hold a copy 14 

of p, an out-of-memory exception gets thrown. 15 

3. As the exception propagates out of push_back, p is destroyed. Being the sole 16 

std::shared_ptr referring to the Widget it’s managing, it automatically re-17 

leases that Widget, in this case by calling killWidget. 18 

Even though an exception occurred, nothing leaks: the Widget created via “new 19 

Widget” in the call to push_back is released in the destructor of the 20 

std::shared_ptr that was created to manage it (p). Life is good. 21 

But now consider what happens if emplace_back is called instead of push_back: 22 

ptrs.emplace_back(new Widget, killWidget); 23 

1. The raw pointer resulting from “new Widget” is perfect-forwarded to the point 24 

inside push_back where a list node is to be allocated. That allocation fails, and 25 

an out-of-memory exception is thrown. 26 
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2. As the exception propagates out of push_back, the raw pointer that was the 1 

only way to get at the Widget on the heap is lost. That Widget (and any re-2 

sources it owns) is leaked. 3 

In this scenario, life is not good, and the fault doesn’t lie with std::shared_ptr. 4 

The same kind of problem can arise through the use of std::unique_ptr with a 5 

custom deleter. Fundamentally, the effectiveness of resource-managing classes like 6 

std::shared_ptr and std::unique_ptr is predicated on resources (such as 7 

raw pointers returned from new) being immediately passed to the constructors of 8 

the resource-managing objects. The fact that functions like std::make_shared 9 

and std::make_unique automate this is one of the reasons they’re so important.  10 

In calls to the insertion functions of containers holding resource-managing objects 11 

(e.g., std::list<std::shared_ptr<Widget>>), the functions’ parameter types 12 

generally ensure that nothing gets between acquisition of a resource (e.g., use of 13 

naked new) and construction of the object managing the resource. In the emplace-14 

ment functions, perfect-forwarding defers the creation of the resource-managing 15 

objects until they can be constructed in the container’s memory, and that opens a 16 

window during which exceptions can lead to resource leaks.  When working with 17 

containers of resource-managing objects, you must take care to ensure that if you 18 

choose an emplacement function over its insertion counterpart, you’re not paying 19 

for improved code efficiency with diminished exception safety. 20 

The fundamental difference between insertion and emplacement functions is that 21 

insertion functions take objects to be inserted, while emplacement functions take 22 

constructor arguments for objects to be inserted. One consequence of this—the one 23 

driving this Item—is that emplacement functions can be more efficient, but a sec-24 

ond consequence is that you may get less benefit from explicit constructors 25 

than you expect. For example, suppose, in celebration of C++11’s support for regu-26 

lar expressions, you create a container of regular expression objects: 27 

std::vector<std::regex> regexes; 28 

Distracted by your colleagues’ quarreling over the ideal number of times per day 29 

to check one’s Facebook account, you accidently write the following seemingly 30 

meaningless  code: 31 
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regexes.emplace_back(nullptr);    // add nullptr to container 1 
                                  // of regexes? 2 

You don’t notice the error as you type it, and your compilers accept the code with-3 

out complaint, so you end up wasting a bunch of time debugging. At some point, 4 

you discover that you appear to have inserted a null pointer into your container of 5 

regular expressions. But how is that possible? Pointers aren’t regular expressions, 6 

and if you tried to do something like this, 7 

std::regex r = nullptr;           // error! won't compile 8 

compilers would reject your code. Interestingly, they would also reject it if you 9 

called push_back instead of emplace_back: 10 

regexes.push_back(nullptr);       // error! won't compile 11 

The curious behavior you’re experiencing stems from the fact that std::regex 12 

objects can be constructed from character strings, i.e., from const char* pointers. 13 

That’s what makes useful code like this legal: 14 

std::regex upperCaseWord("[A-Z]+"); 15 

However, because nullptr implicitly converts to all pointer types, the em-16 

place_back call that unexpectedly compiles is treated by compilers more or less 17 

as if you’d written this: 18 

regexes.emplace_back(static_cast<const char*>(nullptr)); 19 

Creation of a std::regex from a character string can exact a comparatively large 20 

runtime cost, so, to minimize the likelihood that such an expense will be incurred 21 

unintentionally, the std::regex constructor taking a const char* pointer is ex-22 

plicit. That’s why these lines don’t compile: 23 

std::regex r = nullptr;           // error! won't compile 24 

regexes.push_back(nullptr);       // error! won't compile 25 

In both cases, we’re requesting an implicit conversion from a pointer to a 26 

std::regex, and the explicitness of that constructor prevents such conver-27 

sions.  28 
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In the call to emplace_back, however, we’re not claiming to pass a std::regex 1 

object. Instead, we’re passing a constructor argument for a std::regex object. 2 

That’s not considered an implicit conversion request. Rather, it’s viewed as if you’d 3 

written this code: 4 

std::regex r(nullptr);           // compiles 5 

If the laconic comment “compiles” suggests a lack of enthusiasm, that’s good, be-6 

cause this code, though it will compile, has undefined behavior. The std::regex 7 

constructor taking a const char* pointer requires that the pointed-to string com-8 

prise a valid regular expression, and the null pointer fails that requirement. If you 9 

write and compile such code, the best you can hope for is that it crashes at 10 

runtime. If you’re not so lucky, you and your debugger could be in for a special 11 

bonding experience. 12 

Setting aside push_back, emplace_back, and bonding for a moment, notice how 13 

these very similar initialization syntaxes yield different results: 14 

std::regex r1 = nullptr;         // error! won't compile 15 

std::regex r2(nullptr);          // compiles 16 

In the official terminology of the Standard, there are two kinds of initialization: 17 

copy initialization and direct initialization. The syntax used to initialize r1 (em-18 

ploying the equals-sign) is defined to be copy initialization. The syntax used to ini-19 

tialize r2 (with the parentheses, although braces may also be used) is defined to be 20 

direct initialization. Copy initialization is not permitted to use explicit construc-21 

tors. Direct initialization is. That's why the line initializing r1 doesn’t compile, but 22 

the line initializing r2 does.  23 

But back to push_back and emplace_back (and, more generally, the insertion 24 

functions versus the emplacement functions). Insertion functions employ copy ini-25 

tialization, which means they can’t make use of explicit constructors. Emplace-26 

ment functions use direct initialization, so they can.  Hence: 27 

regexes.emplace_back(nullptr);  // fine, direct init permits 28 
                                // use of explicit 29 
                                // pointerstd::regex ctor 30 
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regexes.push_back(nullptr);     // error! copy init forbids  1 
                                // use of explicit 2 
                                // pointerstd::regex ctor 3 

The lesson to take away is that when you use an emplacement function, be espe-4 

cially careful to make sure you're passing the correct arguments, because even ex-5 

plicit constructors will be considered by compilers as they try to find a way to 6 

interpret your code as valid. 7 

Things to Remember 8 

 Emplacement functions are often more efficient than their insertion counter-9 

parts, and they’re never less efficient. 10 

 For containers of resource-managing objects, emplacement functions may suf-11 

fer resource leaks that would not arise through use of insertion functions. 12 

 Emplacement functions may perform type conversions that would be rejected 13 

by insertion functions. 14 

 Item 19: Understand special member function generation. 15 

In official C++ parlance, the “special member functions” are the ones that C++ gen-16 

erates on its own. C++98 has four such functions: the default constructor, the de-17 

structor, the copy constructor, and the copy assignment operator. There’s fine 18 

print, of course. These functions are generated only if they’re needed, i.e., if some 19 

code uses them without their being expressly declared in the class. A default con-20 

structor is generated only if the class declares no constructors at all. (This pre-21 

vents compilers from creating a default constructor for a class where you’ve speci-22 

fied that constructor arguments are required.) Generated special member func-23 

tions are implicitly inline, and they’re nonvirtual unless the function in question 24 

is a destructor in a derived class inheriting from a base class with a virtual destruc-25 

tor. In that case, the compiler-generated destructor is also virtual.  26 

But you already know these things. Yes, yes, ancient history: Mesopotamia, the 27 

Shang dynasty, FORTRAN, C++98. But times have changed, and the rules for special 28 

member function generation in C++ have changed with them. It’s important to be 29 

aware of the new rules, because few things are as central to effective C++ pro-30 
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gramming as knowing when compilers silently insert member functions into your 1 

classes. 2 

As of C++11, the special member functions club has two more inductees: the move 3 

constructor and the move assignment operator. For a class Widget, their signa-4 

tures are: 5 

class Widget { 6 
public: 7 
  … 8 
  Widget(Widget&& rhs);              // move constructor 9 

  Widget& operator=(Widget&& rhs);   // move assignment operator 10 
  … 11 
}; 12 

The rules governing their generation and behavior are analogous to those for their 13 

copying siblings. The move operations are generated only if they’re needed, and if 14 

they are generated, they perform “memberwise moves” on the data members of 15 

the class. That means that the move constructor move-constructs each data mem-16 

ber of the class from the corresponding member of its parameter, rhs, and the 17 

move assignment operator move-assigns each data member of the class from the 18 

corresponding member of its parameter, rhs. Furthermore, the move constructor 19 

move-constructs its base class parts (if there are any), and the move assignment 20 

operator move-assigns its base class parts, too. 21 

Now, when I refer to a move operation move-constructing or move-assigning a 22 

data member or base class, there is no guarantee that a move will actually take 23 

place. “Memberwise moves” are, in reality, more like memberwise move requests, 24 

because types that aren’t move-enabled (i.e., that offer no special support for move 25 

operations, e.g., most C++98 legacy classes) will be “moved” via their copy opera-26 

tions. The heart of each memberwise “move” is application of std::move to the 27 

source to be moved from, and the result of this application is used during function 28 

overload resolution to determine whether a move or a copy should be performed. 29 

Item 25 covers this process in detail. For this Item, simply remember that a mem-30 

berwise move consists of move operations on data members and base classes that 31 

support move operations, but for data members and base classes that offer only 32 

copy operations, a memberwise “move” entails making a copy. 33 
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As is the case with the copy operations, the move operations aren’t generated if 1 

you declare them yourself. However, the precise conditions under which they are 2 

generated differ a bit from those for the copy operations. 3 

The two copy operations are independent: declaring one doesn’t prevent compil-4 

ers from generating the other. So if you declare a copy constructor, but no copy 5 

assignment operator, then write code that requires copy assignment, compilers 6 

will generate the copy assignment operator for you. Similarly, if you declare a copy 7 

assignment operator, but no copy constructor, yet your code requires copy con-8 

struction, compilers will generate the copy constructor for you. That was true in 9 

C++98, and it’s still true in C++11. 10 

The two move operations are not independent. If you declare either, that prevents 11 

compilers from generating the other. The rationale is that if you declare, say, a 12 

move constructor for your class, you’re indicating that there’s something about 13 

how move construction should be implemented that’s different from the default 14 

memberwise move that compilers would generate. And if there’s something wrong 15 

with memberwise move construction, compilers reason, there’d probably be 16 

something wrong with memberwise move assignment, too. So declaring a move 17 

constructor prevents a move assignment operator from being generated, and de-18 

claring a move assignment operator prevents compilers from generating a move 19 

constructor. 20 

Furthermore, move operations won’t be generated for any class that explicitly de-21 

clares a copy operation. The justification is that declaring a copy operation (con-22 

struction or assignment) indicates that the normal approach to copying an object 23 

(memberwise copy) isn’t appropriate for the class, and compilers figure that if 24 

memberwise copy isn’t appropriate for the copy operations, memberwise move 25 

probably isn’t appropriate for the move operations.  26 

This goes in the other direction, too. Declaring a move operation (construction or 27 

assignment) in a class prevents compilers from generating copy operations. After 28 

all, if memberwise move isn’t the proper way to move an object, there’s no reason 29 

to expect that memberwise copy is the proper way to copy it. This may sound like 30 

it could break C++98 code, because the conditions under which the copy opera-31 
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tions are generated are more constrained in C++11 than in C++98, but further re-1 

flection reveals that this is not the case. C++98 code can’t have move operations, 2 

because there was no such thing as “moving” objects in C++98. The only way a leg-3 

acy class can have user-declared move operations is if they were added for C++11, 4 

and classes that are modified to take advantage of move semantics have to play by 5 

the C++11 rules for special member function generation. 6 

Perhaps you’ve heard of a guideline known as the Rule of Three. The Rule of Three 7 

emerged fairly early in the C++ era (the early 1990s), and it states that if you de-8 

clare any of a copy constructor, copy assignment operator, or destructor, you 9 

should declare all three. It grew out of the observation that the need to take over 10 

the meaning of a copy operation almost always stemmed from the class perform-11 

ing some kind of resource management, and that almost always implied that (1) 12 

whatever resource management was being done in one copy operation probably 13 

needed to be done in the other copy operation and (2) the class destructor would 14 

also be participating in management of the resource (e.g., releasing it).  The classic 15 

resource to be managed was memory, and this is why all the Standard Library 16 

classes that manage memory (e.g., the STL containers that perform dynamic 17 

memory management) all declare “the big three:” both copy operations and a de-18 

structor. 19 

A consequence of the Rule of Three is that the presence of a user-declared destruc-20 

tor indicates that simple memberwise copy is unlikely to be appropriate for the 21 

copying operations in the class. That, in turn, suggests that if a class declares a de-22 

structor, the copy operations probably shouldn’t be automatically generated, be-23 

cause they wouldn’t do the right thing. At the time C++98 was adopted, the signifi-24 

cance of this line of reasoning was not fully appreciated, so in C++98, the existence 25 

of a user-declared destructor had no impact on compilers’ willingness to generate 26 

copy operations. That continues to be the case in C++11, but only because restrict-27 

ing the conditions under which the copy operations are generated would break too 28 

much legacy code.  29 

The reasoning behind the Rule of Three remains valid, however, and combined 30 

with the observation that declaration of a copy operation precludes the implicit 31 
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generation of the move operations, C++11 does not generate move operations for a 1 

class with a user-declared destructor.  2 

So move operations are generated for classes (when needed) only if all of these 3 

three things are true: 4 

 No copy operations are declared in the class. 5 

 No move operations are declared in the class. 6 

 No destructor is declared in the class. 7 

At some point, analogous rules may be extended to the copy operations, because 8 

C++11 deprecates the automatic generation of copy operations for classes declar-9 

ing copy operations or a destructor.  This puts such function generation on death 10 

row. Feature deprecation is the Standard’s way of issuing a warning that behavior 11 

valid in the current Standard is officially frowned upon, and the feature may be 12 

removed in a future Standard.  13 

In practice, this means that if you have code that depends on the generation of 14 

copy operations in classes declaring a destructor or one of the copy operations, 15 

you should think about upgrading these classes to eliminate the dependence. Pro-16 

vided the behavior of the compiler-generated functions is correct (i.e, if member-17 

wise copying of the class’s nonstatic data members is what you want), your job is 18 

easy, because C++11’s “= default” lets you say that explicitly: 19 

class Widget { 20 
public: 21 
  … 22 
  ~Widget();                             // user-declared dtor 23 
 24 
  …                                      // default copy-ctor                                                 25 
  Widget(const Widget&) = default;       // behavior is OK                                                26 

  Widget&                                // default copy-assign 27 
    operator=(const Widget&) = default;  // behavior is OK 28 
  … 29 
};                            30 

In fact, you may want to adopt a policy of manually declaring all the copy and move 31 

functions you want your class to support, then using “= default” to force compil-32 
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ers to generate the default implementations for the functions where these imple-1 

mentations would be appropriate. It’s a bit more work than having compilers si-2 

lently generate those functions on their own, but it makes your intentions clearer, 3 

and it can help you side-step some fairly subtle bugs. For example, suppose you 4 

have a class representing a string table, i.e., a data structure that permits fast 5 

lookups of string values via an integer ID: 6 

class StringTable { 7 
public: 8 
  StringTable() {} 9 
  …                 // functions for insertion, erasure, lookup, 10 
                    // etc., but no copy/move/dtor functionality 11 

private: 12 
  std::map<int, std::string> values;  13 
}; 14 

Assuming that the class declares no copy operations, no move operations, and no 15 

destructor, compilers will automatically generate these functions if they are used. 16 

That’s very convenient.  17 

But suppose that sometime later, it’s decided that logging the default construction 18 

and the destruction of such objects would be useful. Adding that functionality is 19 

easy: 20 

class StringTable { 21 
public: 22 
  StringTable()  23 
  { makeLogEntry("Creating StringTable object"); }     // added 24 

  ~StringTable()                                       // also 25 
  { makeLogEntry("Destroying StringTable object"); }   // added 26 

  …                                     // other funcs as before 27 

private: 28 
  std::map<int, std::string> values;    // as before 29 
}; 30 

This seems innocuous, but it has a potentially significant side effect: it prevents the 31 

move operations from being generated. To be specific, the existence of the user-32 

declared destructor precludes their generation. That's why I've highlighted only 33 

the destructor declaration above. The modification to the default constructor and 34 

the body of the destructor is irrelevant for this discussion. 35 
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Although the addition of the destructor prevents the move operations from coming 1 

into existence, generation of the class's copy operations is unaffected. Your code is 2 

therefore likely to compile, run, and pass all your functional testing. That includes 3 

testing its move functionality, because even though this class is no longer move-4 

enabled, requests to move it will compile and run. Such requests will, as noted ear-5 

lier in this Item, cause copies to be made. Which means that code “moving” 6 

StringTable objects actually copies them, i.e., copies the underlying  7 

std::vector<std::string> objects. And copying a 8 

std::vector<std::string> is likely to be orders of magnitude slower than 9 

moving it. The simple act of adding a destructor to the class could thereby have 10 

introduced a significant performance problem! 11 

Fixing the problem is easy: just tell your compilers to start generating the move 12 

operations again: 13 

class StringTable { 14 
public: 15 
  StringTable() { … }                               // as before 16 
  ~StringTable() { … }                              // as before 17 

  StringTable(StringTable&&) = default;             // move ctor 18 

  StringTable& operator=(StringTable&&) = default;  // move op= 19 

  …                                     // other funcs as before 20 

private: 21 
  std::map<int, std::string> values;    // as before 22 
}; 23 

But as long as you’re doing that, you might as well do the same for the copy opera-24 

tions. That clearly expresses that you desire the compiler-generated copy behavior 25 

for this class, and it also future-proofs the class against the day when copy opera-26 

tions are no longer created for classes with user-declared destructors. The result 27 

looks like this: 28 

class StringTable { 29 
public: 30 
  StringTable() { … }                               // as before 31 
  ~StringTable() { … }                              // as before 32 

  StringTable(const StringTable&) = default;        // copy ctor 33 
  StringTable(StringTable&&) = default;             // move ctor 34 
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  StringTable& 1 
    operator=(const StringTable&) = default;        // copy op= 2 
  StringTable& operator=(StringTable&&) = default;  // move op= 3 

  …                                                 // as before 4 

private: 5 
  std::map<int, std::string> values;                // as before 6 
}; 7 

Now, having endured my endless blathering about the rules governing the copy 8 

and move operations in C++11, you may wonder when I’ll turn my attention to the 9 

two other special member functions, the default constructor and the destructor. 10 

That time is now, but only for this sentence, because nothing has changed for these 11 

member functions: the rules in C++11 are the same as in C++98.  12 

The C++11 rules governing the special member functions are thus: 13 

 Default constructor: Same rules as C++98. Generated only if the class con-14 

tains no user-declared constructors.  15 

 Destructor: Same rules as C++98. Virtual only if a base class destructor is vir-16 

tual. 17 

 Copy constructor: Same runtime behavior as C++98. Performs memberwise 18 

copying of (nonstatic) class data members. Generated only if the class contains 19 

neither a user-declared copy constructor nor any move operations. Generation 20 

of this function in a class with a user-declared copy assignment operator or de-21 

structor is deprecated. 22 

 Copy assignment operator: Same runtime behavior as C++98. Performs 23 

memberwise copying of (nonstatic) class data members. Generated only if the 24 

class contains neither a user-declared copy assignment operator nor any move 25 

operations. Generation of this function in a class with a user-declared copy 26 

constructor or destructor is deprecated. 27 

 Move constructor and move assignment operator: Performs memberwise 28 

moving of (nonstatic) class data members. Generated only if the class contains 29 

neither user-declared copy operations, move operations, nor destructor. 30 
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Note, by the way, that there’s nothing in the rules about the existence of a member 1 

function template preventing compilers from generating the special member func-2 

tions. That means that if Widget looks like this, 3 

class Widget { 4 
  … 5 
  template<typename T>                // copy-construct Widget 6 
  Widget(const T& rhs);               // from anything 7 

  template<typename T>                // copy-assign Widget 8 
  Widget& operator=(const T& rhs);    // from anything 9 
  … 10 
}; 11 

compilers will still generate copy and move operations for Widget (assuming the 12 

usual conditions governing their generation are fulfilled), even though these tem-13 

plates could be instantiated to produce the signatures for the copy constructor and 14 

copy assignment operator. (That would be the case when T is Widget.) In all like-15 

lihood, this will strike you as an edge case barely worth acknowledging, but there’s 16 

a reason I’m mentioning it. As Item 28 explains, it can have important consequenc-17 

es. 18 

Things to Remember 19 

 The special member functions are those compilers may generate on their own:  20 

the default constructor, destructor, copy operations, and move operations. 21 

 Move operations are generated only for classes lacking explicitly-declared 22 

move operations, copy operations, and a destructor. 23 

 The copy constructor is generated only for classes lacking an explicitly-24 

declared copy constructor and the move operations. The copy assignment op-25 

erator is generated only for classes lacking an explicitly-declared copy assign-26 

ment operator and the move operations. Generation of the copy operations in 27 

classes with an explicitly-declared destructor is deprecated,   28 

 Member function templates never suppress generation of special member 29 

functions. 30 
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 1 

Poets and songwriters have a thing about love. And sometimes about counting. 2 

Occasionally both. Inspired by the rather different takes on love and counting by 3 

Elizabeth Barrett Browning (“How do I love thee? Let me count the ways.”) and 4 

Paul Simon (“There must be 50 ways to leave your lover”), we might try to enu-5 

merate the reasons why a raw pointer is hard to love: 6 

1. Its declaration doesn’t indicate whether it points to a single object or to an ar-7 

ray. 8 

2. Its declaration reveals nothing about whether you should destroy what it 9 

points to when you’re done using it, i.e., if the pointer owns the thing it points 10 

to. 11 

3. If you somehow determine that you should destroy what the pointer points to, 12 

there’s no way to tell how. Should you use delete, or is there a different de-13 

struction mechanism (e.g., a dedicated destruction function the pointer should 14 

be passed to)? 15 

4. Even if you manage to find out that delete is the way to go, Reason 1 means 16 

it’s rarely possible to know whether to use the object form (“delete”) or the 17 

array form (“delete []”). If you use the wrong form, results are undefined. 18 

5. Assuming you ascertain that the pointer owns what it points to and you dis-19 

cover how to destroy it, it’s difficult to ensure that you perform the destruction 20 

exactly once along every control path in your code (including those due to ex-21 

ceptions). Missing a path leads to resource leaks, and doing the destruction 22 

more than once leads to undefined behavior. 23 

6. There’s typically no way to tell if the pointer dangles, i.e., points to memory 24 

that no longer holds the object the pointer is supposed to point to. Dangling 25 

pointers arise when objects are destroyed while pointers still point to them. 26 

Raw pointers are powerful tools, to be sure, but decades of experience have 27 

demonstrated that with only the slightest lapse in concentration or discipline, 28 

these tools can turn on their ostensible masters. Surely we can do better.  29 
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Smart pointers are one way to address these issues. Smart pointers are wrappers 1 

around raw pointers that act much like the raw pointers they wrap, but that avoid 2 

many of their pitfalls. You should therefore prefer smart pointers to raw pointers. 3 

Smart pointers can do virtually everything raw pointers can, but with far fewer 4 

opportunities for error.  5 

There are four smart pointers in C++11: std::auto_ptr, std::unique_ptr, 6 

std::shared_ptr, and std::weak_ptr. All are designed to help manage the life-7 

time of dynamically allocated objects, i.e., to avoid resource leaks by ensuring that 8 

such objects are destroyed in the appropriate manner at the appropriate time (in-9 

cluding in the event of exceptions). 10 

std::auto_ptr is a deprecated leftover from C++98. It was an attempt to stand-11 

ardize what later became C++11’s std::unique_ptr. Doing the job right required 12 

move semantics, but C++98 didn’t have them. As a workaround, std::auto_ptr 13 

co-opted its copy operations for moves. This led to surprising code (copying a 14 

std::auto_ptr sets it to null!) and frustrating usage restrictions (e.g., it’s not 15 

possible to store std::auto_ptrs in containers). 16 

std::unique_ptr does everything std::auto_ptr does, plus more. It does it as 17 

efficiently, and it does it without warping what it means to copy an object. It’s bet-18 

ter than std::auto_ptr in every way. The only legitimate use case for 19 

std::auto_ptr is a need to compile code with C++98 compilers. Unless you have 20 

that constraint, you should replace std::auto_ptr with std::unique_ptr and 21 

never look back. 22 

The smart pointer APIs are remarkably varied. About the only functionality com-23 

mon to all is default construction. Because comprehensive references for these 24 

APIs are widely available in both electronic and print form, I’ll focus my discus-25 

sions on information that’s often missing from API overviews, e.g., noteworthy use 26 

cases, runtime cost analyses, etc. Mastering such information can be the difference 27 

between merely using these smart pointers and using them effectively. 28 
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 Item 20: Use std::unique_ptr for exclusive-ownership re-1 

source management. 2 

When you reach for a smart pointer, std::unique_ptr should generally be the 3 

one closest at hand. By default, std::unique_ptrs are the same size as raw 4 

pointers, and for most operations (including dereferencing), they execute exactly 5 

the same instructions. This means you can use them even in situations where 6 

memory and cycles are tight. If a raw pointer is small enough and fast enough for 7 

you, a std::unique_ptr almost certainly is, too. 8 

Like std::auto_ptr before it, std::unique_ptr embodies exclusive ownership 9 

semantics. A non-null std::unique_ptr always owns what it points to. Moving a 10 

std::unique_ptr transfers ownership from the source pointer to the destination 11 

pointer. (The source pointer is set to null.) Copying a std::unique_ptr isn’t al-12 

lowed, because if you could copy a std::unique_ptr, you’d end up with two 13 

std::unique_ptrs to the same resource, each thinking it owned (and should 14 

therefore destroy) that resource. std::unique_ptr is thus a move-only type. Up-15 

on destruction, a non-null std::unique_ptr destroys its resource. By default, 16 

resource destruction is accomplished by applying delete to the raw pointer in-17 

side the std::unique_ptr. 18 

A common use for std::unique_ptr is as a factory function return type for ob-19 

jects in a hierarchy. Suppose we have a hierarchy for types of investments (e.g., 20 

stocks, bonds, real estate, etc.) with a base class Investment.  21 

22 
A factory function for such a hierarchy typically allocates an object on the heap and 23 

returns a pointer to it, with the caller being responsible for deleting the object 24 

class Investment { … }; 

class Stock: 
  public Investment { … }; 

class Bond: 
  public Investment { … }; 

class RealEstate: 
  public Investment { … }; 
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when it’s no longer needed. That’s a perfect match for std::unique_ptr, because 1 

the caller acquires responsibility for the resource returned by the factory  (i.e., ex-2 

clusive ownership of it), and the std::unique_ptr automatically deletes what it 3 

points to when it’s destroyed. A factory function for the Investment hierarchy 4 

could be declared like this: 5 

template<typename... Ts>          // return std::unique_ptr  6 
std::unique_ptr<Investment>       // to an object created  7 
  makeInvestment(Ts&&... args);   // from the given args 8 

Callers could use the returned std::unique_ptr in a single scope, as follows, 9 

{ 10 
  … 11 
  auto pInvestment =              // pInvestment is of type 12 
    makeInvestment( arguments );  // std::unique_ptr<Investment> 13 

  … 14 

}                                 // destroy *pInvestment 15 

but they could also use it in ownership-migration scenarios, such as when the 16 

std::unique_ptr returned from the factory is moved into a container, the con-17 

tainer element is subsequently moved into a data member of an object, and that 18 

object is later destroyed. When that happens, the object’s std::unique_ptr data 19 

member would also be destroyed, and its destruction would cause the resource 20 

returned from the factory to be destroyed. If the ownership chain got interrupted 21 

due to an exception or other atypical control flow (e.g., premature function return 22 

or break from a loop), the std::unique_ptr owning the managed resource 23 

would eventually have its destructor called,† and the resource it was managing 24 

would thereby be destroyed. 25 

By default, that destruction would take place via delete, but, during construction, 26 

std::unique_ptr objects can be configured to use custom deleters: arbitrary 27 

                                                             

† There are a few exceptions to this rule. All stem from abnormal program termination. If 

an exception propagates out of a thread’s primary function (e.g., main, for the program’s 

initial thread) or if a noexcept specification is violated (see Item 16), local objects may not 

be destroyed, and if std::abort is called, they definitely won’t be. 
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functions (or function objects, including those arising from lambda expressions) to 1 

be invoked when it’s time for their resources to be destroyed. If the object created 2 

by makeInvestment shouldn’t be directly deleted, but instead should first have a 3 

log entry written, makeInvestment could be implemented as follows. (An expla-4 

nation follows the code, so don’t worry if you see something whose motivation is 5 

less than obvious.) 6 

auto delInvmt = [](Investment* pInvestment)       // custom  7 
                {                                 // deleter 8 
                  makeLogEntry(pInvestment);      // (a lambda 9 
                  delete pInvestment;             // expression) 10 
                }; 11 

template<typename... Ts>                          // revised 12 
std::unique_ptr<Investment, decltype(delInvmt)>   // return type 13 
makeInvestment(Ts&&... args)                 14 
{ 15 
  std::unique_ptr<Investment, decltype(delInvmt)> // ptr to be 16 
    pInv(nullptr, delInvmt);                      // returned 17 

  if ( /* a Stock object should be created */ ) 18 
  { 19 
    pInv.reset(new Stock(std::forward<Ts>(args)...)); 20 
  } 21 
  else if ( /* a Bond object should be created */ ) 22 
  { 23 
    pInv.reset(new Bond(std::forward<Ts>(args)...)); 24 
  } 25 
  else if ( /* a RealEstate object should be created */ ) 26 
  { 27 
    pInv.reset(new RealEstate(std::forward<Ts>(args)...)); 28 
  } 29 

  return pInv;                               30 
}                                           31 

In a moment, I’ll explain how this works, but first consider how things look if 32 

you’re a caller. Assuming you store the result of the makeInvestment call in an 33 

auto variable, you frolic in blissful ignorance of the fact that the resource you’re 34 

using requires special treatment during deletion. In fact, you veritably bathe in 35 

bliss, because the use of std::unique_ptr means you need not concern yourself 36 

with when the resource should be destroyed, much less ensure that the destruc-37 

tion happens exactly once along every control path in the program. 38 
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std::unique_ptr takes care of all those things automatically. From a client’s 1 

perspective, makeInvestment’s interface is sweet. 2 

The implementation is pretty nice, too, once you understand the following: 3 

 delInvmt is the custom deleter for the object returned from makeInvest-4 

ment. All custom deletion functions accept a raw pointer to the object to be de-5 

stroyed, then do what is necessary to destroy that object. In this case, the ac-6 

tion is to call makeLogEntry and then apply delete. Using a lambda expres-7 

sion to create delInvmt is convenient, but, as we’ll see shortly, it’s also more 8 

efficient than writing a conventional function. 9 

 When a custom deleter is to be used, its type must be specified as the second 10 

type argument to std::unique_ptr. In this case, that’s the type of delInvmt, 11 

and that’s why the return type of makeInvestment is 12 

std::unique_ptr<Investment, decltype(delInvmt)>. (For information 13 

about decltype, see Item 3.) 14 

 The basic strategy of makeInvestment is to create a null  std::unique_ptr, 15 

make it point to an object of the appropriate type, and then return it.  To asso-16 

ciate the custom deleter (delInvmt) with pInv, we pass that as its second 17 

constructor argument. 18 

 As Item 23 explains, it’s preferable to use std::make_unique rather than new 19 

to create an object for a std::unique_ptr to point to, yet this code uses new 20 

in several places. That’s because std::make_unique offers no support for 21 

custom deleters. (Of course, it would be possible to encapsulate the use of new 22 

inside a std::make_unique-like template that supported the specification of 23 

a custom deleter. If you’ve been waiting for an opportunity to write some code 24 

whose development is “left as an exercise for the reader,” here’s your chance.) 25 

 Attempting to assign a raw pointer (e.g., from new) to a std::unique_ptr 26 

won’t compile, because it would constitute an implicit conversion from a raw 27 

to a smart pointer. Such implicit conversions can be problematic, so C++11’s 28 

smart pointers prohibit them. That’s why reset is used to have pInv assume 29 

ownership of the object created via new. 30 
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 With each use of new, we perfect-forward the arguments passed to 1 

makeInvestment (see Item 27). This makes all the information provided by 2 

callers available to the constructors of the objects being created.  3 

 The custom deleter takes a parameter of type Investment*.  Regardless of the 4 

actual type of object created inside makeInvestment (i.e., Stock, Bond, or Re-5 

alEstate), it will ultimately be deleted inside the lambda expression as an 6 

Investment* object. This means we’ll be deleting a derived class object via a 7 

base class pointer. For that to work, the base class—Investment—must have 8 

a virtual destructor: 9 

class Investment { 10 
public: 11 
  …                                           // essential 12 
  virtual ~Investment();                      // design 13 
  …                                           // component! 14 
}; 15 

In C++14, the existence of function return type deduction (see Item 3) means that  16 

makeInvestment could be implemented in this simpler and more encapsulated 17 

fashion: 18 

template<typename... Ts>  19 
auto makeInvestment(Ts&&... args)                // C++14 only 20 
{ 21 
  auto delInvmt = [](Investment* pInvestment)    // this is now 22 
                  {                              // inside 23 
                    makeLogEntry(pInvestment);   // make- 24 
                    delete pInvestment;          // Investment 25 
                  }; 26 

  std::unique_ptr<Investment, decltype(delInvmt)>   // as 27 
    pInv(nullptr, delInvmt);                        // before 28 

  if ( … )                                       // as before 29 
  { 30 
    pInv.reset(new Stock(std::forward<Ts>(args)...)); 31 
  } 32 
  else if ( … )                                  // as before 33 
  { 34 
    pInv.reset(new Bond(std::forward<Ts>(args)...)); 35 
  } 36 
  else if ( … )                                  // as before 37 
  { 38 
    pInv.reset(new RealEstate(std::forward<Ts>(args)...)); 39 
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  } 1 
  return pInv;                                   // as before 2 
}  3 

At the beginning of this Item, I emphasized that, when using the default deleter 4 

(i.e., delete), std::unique_ptr objects are the same size as raw pointers. When 5 

custom deleters enter the picture, this may no longer be the case. Deleters that are 6 

function pointers generally cause the size of the std::unique_ptr to grow from 7 

one word to two. For deleters that are function objects, the change in size depends 8 

on how much state is stored in the function object. Stateless function objects (e.g., 9 

from lambda expressions with no captures) incur no size penalty, and this means 10 

that when a custom deleter can be implemented as either a function or a capture-11 

less lambda expression, the lambda is preferable: 12 

auto delInvmt1 = [](Investment* pInvestment)      // custom  13 
                 {                                // deleter 14 
                   makeLogEntry(pInvestment);     // as  15 
                   delete pInvestment;            // stateless 16 
                 };                               // lambda 17 

template<typename... Ts>                          // return type 18 
std::unique_ptr<Investment, decltype(delInvmt1)>  // has size of 19 
makeInvestment(Ts&&... args);                     // Investment* 20 
 21 

void delInvmt2(Investment* pInvestment)           // custom 22 
{                                                 // deleter 23 
  makeLogEntry(pInvestment);                      // as function 24 
  delete pInvestment; 25 
} 26 

template<typename... Ts>                 // return type has 27 
std::unique_ptr<Investment,              // size of Investment* 28 
                void (*)(Investment*)>   // plus at least size 29 
makeInvestment(Ts&&... args);            // of function pointer! 30 

Function object deleters with extensive state can yield std::unique_ptr objects 31 

of significant size. However, large function objects are often ill-advised on other 32 

grounds, and there are ways to make them smaller; see Error! Reference source 33 

not found.. If you find yourself with a custom deleter with significant state, you 34 

probably need to change your design. 35 

Factory functions are not the only common use case for std::unique_ptrs. 36 

They’re even more popular as a mechanism for implementing the Pimpl Idiom. The 37 
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code for that isn’t complicated, but in some cases it’s less than straightforward, so 1 

I’ll refer you to Item 24, which is dedicated to the topic. 2 

std::unique_ptr comes in two forms, one for individual objects 3 

(std::unique_ptr<T>) and one for arrays (std::unique_ptr<T[]>). As a re-4 

sult, there’s never any ambiguity about what kind of entity a std::unique_ptr 5 

points to. The std::unique_ptr API is designed to match the form you’re using. 6 

For example, there’s no indexing operator (operator[]) for the single-object 7 

form, while the array form lacks dereferencing operators (operator* and opera-8 

tor->).  9 

The existence of std::unique_ptr for arrays should be of only intellectual inter-10 

est to you, because std::array, std::vector, and std::string are virtually 11 

always better data structure choices than raw arrays. The only situation I can con-12 

ceive of when a std::unique_ptr<T[]> would make sense would be when 13 

you’re using a C-like API that returns a raw pointer to a heap array that you as-14 

sume ownership of.  15 

std::unique_ptr is the C++11 way to express exclusive ownership, but one of its 16 

most attractive features is that it easily and efficiently converts to a 17 

std::shared_ptr: 18 

std::shared_ptr<Investment> sp =    // converts std::unique_ptr 19 
  makeInvestment( arguments );      // to std::shared_ptr 20 

This is a key part of why std::unique_ptr is so well suited as a factory function 21 

return type. Factory functions can’t know whether callers will want to use exclu-22 

sive-ownership semantics for the object they return or whether shared ownership 23 

(i.e., std::shared_ptr) would be more appropriate. By returning a 24 

std::unique_ptr, factories provide callers with the most efficient smart pointer, 25 

but they don’t impede callers from replacing it with its more flexible sibling. (For 26 

information about std::shared_ptr, proceed to Item 21.) 27 

Things to Remember 28 

 std::unique_ptr is a small, fast, move-only smart pointer for managing re-29 

sources with exclusive-ownership semantics. 30 
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 By default, resource destruction takes place via delete, but custom deleters 1 

can be specified. Stateful deleters and function pointers as deleters increase 2 

the size of std::unique_ptr objects. 3 

 Converting a std::unique_ptr to a std::shared_ptr is easy. 4 

 Item 21: Use std::shared_ptr for shared-ownership re-5 

source management. 6 

Programmers using languages with garbage collection point and laugh at what C++ 7 

programmers go through to prevent resource leaks. “How primitive!”, they jeer. 8 

“Didn’t you get the memo from Lisp in the 1960s? Machines should manage re-9 

source lifetimes, not humans.” C++ developers roll their eyes. “You mean the 10 

memo where the only resource is memory and the timing of resource reclamation 11 

is nondeterministic? We prefer the generality and predictability of destructors, 12 

thank you.” But our bravado is part bluster. Garbage collection really is convenient, 13 

and manual lifetime management really can seem akin to constructing a mnemonic 14 

memory circuit using stone knives and bear skins. Why can’t we have the best of 15 

both worlds: a system that works automatically (like garbage collection), yet ap-16 

plies to all resources and has predictable timing (like destructors)? 17 

std::shared_ptr is the C++11 way of binding these worlds together. An object 18 

accessed via std::shared_ptrs has its lifetime managed by those pointers 19 

through shared ownership. No specific std::shared_ptr owns the object. Instead, 20 

all std::shared_ptrs pointing to it collaborate to ensure its destruction at the 21 

point where it’s no longer needed. When the last std::shared_ptr pointing to an 22 

object stops pointing there (e.g., because the std::shared_ptr is destroyed or 23 

made to point to a different object), that std::shared_ptr destroys the object it 24 

points to. As with garbage collection, clients need not concern themselves with 25 

managing the lifetime of pointed-to objects, but as with destructors, the timing of 26 

the objects’ destruction is deterministic. 27 

A std::shared_ptr can tell whether it’s the last one pointing to a resource by 28 

consulting the resource’s reference count: a value associated with the resource that 29 

keeps track of how many std::shared_ptrs point to it. std::shared_ptr con-30 

structors increment this count  (usually—see below), std::shared_ptr destruc-31 
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tors decrement it, and copy assignment operators do both. (If sp1 and sp2 are 1 

std::shared_ptrs, the assignment “sp1 = sp2” modifies sp1 such that it points 2 

to the object pointed to by sp2. The net effect of the assignment, then, is that the 3 

reference count for the object originally pointed to by sp1 is decremented, while 4 

that for the object pointed to by sp2 is incremented.) If a std::shared_ptr sees a 5 

reference count of zero after performing a decrement, no more 6 

std::shared_ptrs point to the resource, so the std::shared_ptr destroys it. 7 

The existence of the reference count has performance implications: 8 

 std::shared_ptrs are twice the size of a raw pointer, because they internally 9 

contain a raw pointer to the resource as well as a raw pointer to the resource’s 10 

reference count.†  11 

 Memory for the reference count must be dynamically allocated. Conceptu-12 

ally, the reference count is associated with the object being pointed to, but 13 

pointed-to objects know nothing about this. They thus have no place to store a 14 

reference count. Storage for the count is hence dynamically allocated. Item 23 15 

explains that the cost of this allocation (but not the allocation itself) is avoided 16 

when the std::shared_ptr is created by std::make_shared, but there are 17 

situations where std::make_shared can’t be used. Either way, the reference 18 

count is stored as dynamically allocated runtime data. 19 

 Increments and decrements of the reference count must be atomic, be-20 

cause there can be simultaneous readers and writers in different threads. For 21 

example, a std::shared_ptr pointing to a resource in one thread could be 22 

executing its destructor (hence decrementing the reference count for the re-23 

source it points to), while, in a different thread, a std::shared_ptr to the 24 

same object could be copied (and therefore incrementing the same reference 25 

count). Atomic operations are typically slower than non-atomic operations, so 26 

                                                             

† This implementation is not required by the Standard, but there are sound technical rea-

sons why every Standard Library implementation I’m familiar with employs it. 
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even though reference counts are usually only a word in size, you should as-1 

sume that reading and writing them is comparatively costly. 2 

Did I pique your curiosity when I wrote that std::shared_ptr constructors only 3 

“usually” increment the reference count for the object they point to? Creating a 4 

new std::shared_ptr pointing to an object always yields one more 5 

std::shared_ptr pointing to that object, so why mustn’t we always increment 6 

the reference count?  7 

Move construction, that’s why. Move-constructing a std::shared_ptr from an-8 

other std::shared_ptr sets the source std::shared_ptr to null, and that 9 

means that the old std::shared_ptr stops pointing to the resource at the mo-10 

ment the new std::shared_ptr starts. As a result, no reference count manipula-11 

tion is required. Moving std::shared_ptrs is therefore faster than copying 12 

them: copying requires incrementing the reference count, but moving doesn’t. This 13 

is as true for assignment as for construction, so move construction is faster than 14 

copy construction, and move assignment is faster than copy assignment.  15 

Like std::unique_ptr (see Item 20), std::shared_ptr uses delete as its de-16 

fault resource-destruction mechanism, but it also supports custom deleters. The 17 

design of this support differs from that for std::unique_ptr, however. For 18 

std::unique_ptr, the type of the deleter is part of the type of the smart pointer. 19 

For std::shared_ptr, it’s not: 20 

auto loggingDel = [](Widget *pw)        // custom deleter 21 
                  {                     // (as in Item 20)  22 
                    makeLogEntry(pw); 23 
                    delete pw; 24 
                  }; 25 

std::unique_ptr<                        // deleter type is 26 
  Widget, decltype(loggingDel)          // part of ptr type 27 
  > upw(new Widget, loggingDel); 28 

std::shared_ptr<Widget>                 // deleter type is not 29 
  spw(new Widget, loggingDel);          // part of ptr type 30 

The std::shared_ptr design is more flexible. Consider two 31 

std::shared_ptr<Widget>s, each with a custom deleter of a unique type (e.g., 32 

because the custom deleters are specified via lambda expressions): 33 
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auto customDeleter1 = [](Widget *pw) { … };  // custom deleters, 1 
auto customDeleter2 = [](Widget *pw) { … };  // each with a  2 
                                             // different type 3 

std::shared_ptr<Widget> pw1(new Widget, customDeleter1); 4 
std::shared_ptr<Widget> pw2(new Widget, customDeleter2); 5 

Because pw1 and pw2 have the same type, they can be placed in a container of ob-6 

jects of that type: 7 

std::vector<std::shared_ptr<Widget>> vpw { pw1, pw2 }; 8 

They could also be assigned to one another, and they could each be passed to a 9 

function taking a parameter of type std::shared_ptr<Widget>. None of these 10 

things can be done with std::unique_ptrs that differ in the types of their cus-11 

tom deleters, because the type of the custom deleter would affect the type of the 12 

std::unique_ptr. 13 

In another difference from std::unique_ptr, specifying a custom deleter doesn’t 14 

change the size of a std::shared_ptr object. Regardless of deleter, a 15 

std::shared_ptr object is two pointers in size. That’s great news, but it should 16 

make you vaguely uneasy. Custom deleters can be function objects, and function 17 

objects can contain arbitrary amounts of data. That means they can be arbitrarily 18 

large. How can a std::shared_ptr refer to a deleter of arbitrary size without us-19 

ing any more memory? 20 

It can’t. It may have to use more memory. However, that memory isn’t part of the 21 

std::shared_ptr object. It’s on the heap (or, if the creator of the 22 

std::shared_ptr took advantage of std::shared_ptr support for custom allo-23 

cators, it’s wherever the memory managed by that allocator is located). I remarked 24 

earlier that a std::shared_ptr object contains a pointer to the reference count 25 

for the object it points to. That’s true, but it’s a bit misleading, because the refer-26 

ence count is part of a larger data structure known as the control block. There’s a 27 

control block for each object managed by std::shared_ptrs. The control block 28 

contains, in addition to the reference count, a copy of the custom deleter, if one has 29 

been specified. If a custom allocator was specified, the control block contains a 30 

copy of that, too. (As Item 23 explains, it also contains a secondary reference count 31 

known as the weak count, but we’ll ignore that in this Item.) 32 
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The control block is created by the function creating the first std::shared_ptr to 1 

the object. At least that’s what’s supposed to happen. In general, it’s impossible for 2 

a function creating a std::shared_ptr to an object to know whether some other 3 

std::shared_ptr already points to that object, so the following rules for control 4 

block creation are used: 5 

 std::make_shared (see Item 23) always creates a control block. It manu-6 

factures a new object to point to, so there is certainly no control block for that 7 

object at the time std::make_shared is called. 8 

 When a std::shared_ptr constructor is called with a raw pointer, it creates 9 

a control block for the object the raw pointer points to. The thinking here 10 

is that if you wanted to create a std::shared_ptr from an object that already 11 

had a control block, you’d use a std::shared_ptr or a std::weak_ptr (see 12 

Item 22) as a constructor argument, not a raw pointer. std::shared_ptr 13 

constructors taking std::shared_ptrs or std::weak_ptrs as constructor 14 

arguments don’t create new control blocks, because they know that the smart 15 

pointers passed to them already point to control blocks.  16 

If a std::shared_ptr is created from a raw pointer that’s null, by the way, 17 

there’s no object to associate the control block with, so no control block is cre-18 

ated.  19 

A consequence of these rules is that constructing more than one 20 

std::shared_ptr from a single raw pointer gives you a complimentary ride on 21 

the particle accelerator of undefined behavior, because the pointed-to object will 22 

have multiple control blocks. Multiple control blocks means multiple reference 23 

counts, and multiple reference counts means the object will be destroyed multiple 24 

times (once for each reference count). That means that code like this is bad, bad, 25 

bad: 26 

auto pw = new Widget; 27 

… 28 

std::shared_ptr<Widget> spw1(pw, loggingDel);  // create control 29 
                                               // block for *pw 30 
… 31 
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std::shared_ptr<Widget> spw2(pw, loggingDel);  // create 2nd 1 
                                               // control block 2 
                                               // for *pw! 3 

The creation of the raw pointer pw to a dynamically allocated object is bad, be-4 

cause it runs contrary to the advice behind this entire chapter: to prefer smart 5 

pointers to raw pointers. (If you’ve forgotten the motivation for that advice, turn to 6 

page 148 to refresh your memory.) But set that aside. The line creating pw is a sty-7 

listic abomination, but at least it doesn’t cause undefined program behavior. The 8 

real problem here is that the constructor for spw1 is called with a raw pointer, so it 9 

creates a control block (and thereby a reference count) for what’s pointed to. In 10 

this case, that’s *pw (i.e., the object pointed to by pw). In and of itself, that’s okay, 11 

but the constructor for spw2 is called with the same raw pointer, so it also creates 12 

a control block (hence a reference count) for *pw. *pw thus has two reference 13 

counts, each of which will eventually become zero, and that will ultimately lead to 14 

an attempt to destroy *pw twice. The second destruction is responsible for the un-15 

defined behavior. 16 

There are at least two lessons regarding std::shared_ptr use here. First, try to 17 

avoid passing raw pointers to a std::shared_ptr constructor. The usual alterna-18 

tive is to use std::make_shared (see Item 23), but in the example above, we’re 19 

using custom deleters, and that’s not possible with std::make_shared. Second, if 20 

you must pass a raw pointer to a std::shared_ptr constructor, pass the result of 21 

new directly instead of going through a raw pointer variable. If the first part of the 22 

code above were rewritten like this, 23 

std::shared_ptr<Widget> spw1(new Widget,    // direct use of new 24 
                             loggingDel); 25 

it’d be a lot harder to create a second std::shared_ptr from the same raw 26 

pointer. Instead, the author of the code creating spw2 would naturally use spw1 as 27 

an initialization argument (i.e., would call the std::shared_ptr copy construc-28 

tor), and that would pose no problem whatsoever: 29 

std::shared_ptr<Widget> spw2(spw1);     // spw2 uses same 30 
                                        // control block as spw1 31 
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An especially surprising way that using raw pointer variables as 1 

std::shared_ptr constructor arguments can lead to multiple control blocks in-2 

volves the this pointer. Suppose our program uses std::shared_ptrs to man-3 

age Widget objects, and we have a data structure that keeps track of Widgets that 4 

have been processed: 5 

std::vector<std::shared_ptr<Widget>> processedWidgets; 6 

Further suppose that Widget has a member function that does the processing: 7 

class Widget { 8 
public: 9 
  … 10 
  void process(); 11 
  … 12 
}; 13 

Here’s a reasonable-looking approach for Widget::process: 14 

void Widget::process() 15 
{ 16 
  …                                       // process the Widget 17 

  processedWidgets.emplace_back(this);    // add it to list of 18 
}                                         // processed Widgets; 19 
                                          // this is wrong! 20 

The comment about this being wrong says it all—or at least most of it. (The part 21 

that’s wrong is the passing of this, not the use of emplace_back. If you’re not fa-22 

miliar with emplace_back, see Item 18.) This code will compile, but it’s passing a 23 

raw pointer (this) to a container of std::shared_ptrs. The std::shared_ptr 24 

thus constructed will create a new control block for the pointed-to Widget 25 

(*this). That doesn’t sound harmful until you realize that if there are 26 

std::shared_ptrs outside the member function that already point to that Widg-27 

et, it’s game, set, and match for undefined behavior. 28 

The std::shared_ptr API includes a facility for just this kind of situation. It has 29 

probably the oddest of all names in the Standard C++ Library: 30 

std::enable_shared_from_this. That’s a template for a base class you inherit 31 

from if you want a class managed by std::shared_ptrs to be able to safely cre-32 
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ate a std::shared_ptr from a this pointer. In our example, Widget would in-1 

herit from std::enable_shared_from_this as follows: 2 

class Widget: public std::enable_shared_from_this<Widget> { 3 
public: 4 
  … 5 
  void process(); 6 
  … 7 
}; 8 

As I said, std::enable_shared_from_this is a base class template. Its type pa-9 

rameter is always the name of the class being derived, so Widget inherits from 10 

std::enable_shared_from_this<Widget>. If the idea of a derived class inher-11 

iting from a base class templatized on the derived class makes your head hurt, try 12 

not to think about it. The code is completely legal, and the design pattern behind it 13 

is so well established, it has a standard name, albeit one that’s almost as odd as 14 

std::enable_shared_from_this. The name is The Curiously Recurring Tem-15 

plate Pattern (CRTP). If you’d like to learn more about it, unleash your search en-16 

gine, because here we need to get back to std::enable_shared_from_this. 17 

std::enable_shared_from_this defines a member function that creates a 18 

std::shared_ptr to the current object, but it does it without duplicating control 19 

blocks. The member function is shared_from_this, and you use it in member 20 

functions whenever you want a std::shared_ptr that points to the same object 21 

as the this pointer. Here’s a safe implementation of Widget::process: 22 

void Widget::process() 23 
{ 24 
  // as before, process the Widget 25 
  … 26 

  // add std::shared_ptr to current object to processedWidgets 27 
  processedWidgets.emplace_back(shared_from_this()); 28 
}                               29 

Internally, shared_from_this looks up the control block for the current object, 30 

and it creates a new std::shared_ptr that refers to that control block. The de-31 

sign relies on the current object having an associated control block. For that to be 32 

the case, there must be an existing std::shared_ptr (e.g., one outside the mem-33 

ber function calling shared_from_this) that points to the current object. If no 34 
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such std::shared_ptr exists (i.e., if the current object has no associated control 1 

block), shared_from_this throws an exception. 2 

At this point, you may only dimly recall that our discussion of control blocks was 3 

motivated by a desire to understand the costs associated with 4 

std::shared_ptrs. Now that we understand how to avoid creating too many 5 

control blocks, let’s return to the original topic.  6 

A control block is typically only a few words in size, although custom deleters and 7 

allocators may make it larger. The usual control block implementation is more so-8 

phisticated than you might expect. It makes use of inheritance, and there’s even a 9 

virtual function. (It’s used to ensure that the pointed-to object is properly de-10 

stroyed.) That means that using std::shared_ptrs also incurs the cost of the 11 

machinery for the virtual function used by the control block. 12 

Having read about dynamically allocated control blocks, arbitrarily large deleters 13 

and allocators, virtual function machinery, and atomic reference count manipula-14 

tions, your enthusiasm for std::shared_ptrs may have waned somewhat. That’s 15 

fine. They’re not the best solution to every resource management problem. But for 16 

the functionality they provide, std::shared_ptrs exact a very reasonable cost. 17 

Under typical conditions, where the default deleter and default allocator are used 18 

and where the std::shared_ptr is created by std::make_shared, the control 19 

block is only about three words in size, and its allocation is essentially free. (It’s 20 

incorporated into the memory allocation for the object being pointed to. For de-21 

tails, see Item 23.) Dereferencing a std::shared_ptr is no more expensive than 22 

dereferencing a raw pointer. Performing an operation requiring a reference count 23 

manipulation (e.g., copy construction or copy assignment, destruction) entails one 24 

or two atomic operations, but these operations typically map to individual ma-25 

chine instructions, so although they may be expensive compared to non-atomic 26 

instructions, they’re still just single instructions. The virtual function machinery in 27 

the control block is used only once per object managed by std::shared_ptrs: 28 

when the object is destroyed.   29 

In exchange for these rather modest costs, you get automatic lifetime management 30 

of dynamically allocated resources. Most of the time, using std::shared_ptr is 31 
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vastly preferable to trying to manage the lifetime of an object with shared owner-1 

ship by hand. If you find yourself doubting whether you can afford use of 2 

std::shared_ptr, reconsider whether you really need shared ownership. If ex-3 

clusive ownership will do or even may do, std::unique_ptr is a better choice. Its 4 

performance profile is close to that for raw pointers, and “upgrading” from 5 

std::unique_ptr to std::shared_ptr is easy, because a std::shared_ptr 6 

can be created from a std::unique_ptr. 7 

The reverse is not true. Once you’ve turned lifetime management of a resource 8 

over to a std::shared_ptr, there’s no changing your mind. Even if the reference 9 

count is one, you can’t reclaim ownership of the resource in order to, say, have a 10 

std::unique_ptr manage it. The ownership contract between a resource and the 11 

std::shared_ptrs that point to it is of the ’til-death-do-us-part variety. No di-12 

vorce, no annulment, no exceptions. 13 

Something else std::shared_ptrs can’t do is work with arrays. In yet another 14 

difference from std::unique_ptr, std::shared_ptr has an API that’s designed 15 

only for pointers to single objects. There’s no std::shared_ptr<T[]>. From time 16 

to time, “clever” programmers stumble on the idea of using a 17 

std::shared_ptr<T> to point to an array, specifying a custom deleter to perform 18 

an array delete (i.e., delete []). This can be made to compile, but it’s a horrible 19 

idea. For one thing, std::shared_ptr offers no operator[], so indexing into the 20 

array requires awkward expressions based on pointer arithmetic. For another, 21 

std::shared_ptr supports derived-to-base pointer conversions that make sense 22 

for single objects, but that open holes in the type system when applied to arrays. 23 

(For this reason, the std::unique_ptr<T[]> API prohibits such conversions.) 24 

Most importantly, given the variety of C++11 alternatives to built-in arrays (e.g., 25 

std::array, std::vector, std::string), declaring a smart pointer to a dumb 26 

array is almost always a sign of bad design. 27 

Things to Remember 28 

 std::shared_ptrs offer convenience approaching that of garbage collection 29 

for the shared lifetime management of arbitrary resources. 30 
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 Compared to std::unique_ptr, std::shared_ptr objects are twice as big, 1 

incur overhead for control blocks, and require atomic reference count manipu-2 

lations. 3 

 Default resource destruction is via delete, but custom deleters are supported. 4 

The type of the deleter is independent of the type of the std::shared_ptr. 5 

 Avoid creating std::shared_ptrs from variables of raw pointer type. 6 

 Item 22: Use std::weak_ptr for std::shared_ptr-like 7 

pointers that can dangle. 8 

Paradoxically, it can be convenient to have a smart pointer that acts like a 9 

std::shared_ptr (see Item 21), but that doesn’t participate in the shared own-10 

ership of the pointed-to resource. In other words, a pointer like 11 

std::shared_ptr that doesn’t affect an object’s reference count. This kind of 12 

smart pointer has to contend with a problem unknown to std::shared_ptrs: the 13 

possibility that what it points to has been destroyed. A truly smart pointer would 14 

deal with this problem by tracking when it dangles, i.e., when the object it is sup-15 

posed to point to no longer exists. That’s precisely the kind of smart pointer 16 

std::weak_ptr is.  17 

You may be wondering how a std::weak_ptr could be useful. You’ll probably 18 

wonder even more when you examine the std::weak_ptr API. It looks anything 19 

but smart. std::weak_ptrs can’t be dereferenced, nor can they be tested for null-20 

ness. That’s because std::weak_ptr isn’t a standalone smart pointer. It’s an 21 

augmentation of std::shared_ptr.  22 

The relationship begins at birth. std::weak_ptrs are typically created from 23 

std::shared_ptrs. They point to the same place as the std::shared_ptrs ini-24 

tializing them, but they don’t affect the reference count of the object they point to: 25 

auto spw =                       // after spw is constructed, 26 
  std::make_shared<Widget>();    // the pointed-to Widget's 27 
                                 // ref count (RC) is 1. (See 28 
                                 // Item 23 for info on 29 
                                 // std::make_shared.) 30 
… 31 
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std::weak_ptr<Widget> wpw(spw);  // wpw points to same Widget 1 
                                 // as spw. RC remains 1 2 

… 3 

spw = nullptr;                   // RC goes to 0, and the 4 
                                 // Widget is destroyed. 5 
                                 // wpw now dangles 6 

std::weak_ptrs that dangle are said to have expired. You can test for this direct-7 

ly, 8 

if (!wpw.expired()) …            // if wpw points to an object… 9 

but often what you desire is a check to see if a std::weak_ptr has expired and, if 10 

it hasn’t (i.e., if it’s not dangling), to access the object it points to. Alas, this is easier 11 

desired than done. Because std::weak_ptrs lacks dereferencing operations, 12 

there’s no way to write the code. Even if there were, separating the check and the 13 

dereference would introduce a race condition: between the call to expired and 14 

the dereferencing action, another thread might reassign or destroy the last 15 

std::shared_ptr pointing to the object, thus causing that object to be destroyed. 16 

In that case, your dereference would yield undefined behavior. 17 

What you need is an atomic operation that checks to see if the std::weak_ptr has 18 

expired and, if not, gives you access to the object it points to. This is done by creat-19 

ing a std::shared_ptr from the std::weak_ptr. The operation comes in two 20 

forms, depending on what you’d like to have happen if the std::weak_ptr has 21 

expired when you try to create a std::shared_ptr from it. One form is 22 

std::weak_ptr::lock, which returns a std::shared_ptr. The 23 

std::shared_ptr is null if the std::weak_ptr has expired: 24 

std::shared_ptr<Widget> spw1 = wpw.lock();  // if wpw's expired, 25 
                                            // spw1 is null 26 

auto spw2 = wpw.lock();                     // same as above,  27 
                                            // but uses auto 28 

The other form is the std::shared_ptr constructor taking a std::weak_ptr as 29 

an argument. In this case, if the std::weak_ptr has expired, an exception is 30 

thrown: 31 
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std::shared_ptr<Widget> spw3(wpw);    // if wpw's expired, 1 
                                      // throw std::bad_weak_ptr 2 

But you’re probably still wondering about how std::weak_ptrs can be useful. 3 

Consider a factory function that produces smart pointers to read-only objects 4 

based on a unique ID. In accord with Item 20’s advice regarding factory function 5 

return types, it returns a std::unique_ptr:  6 

std::unique_ptr<const Widget> loadWidget(WidgetID id); 7 

If loadWidget is an expensive call (e.g., because it performs file or database I/O) 8 

and it’s common for IDs to be used repeatedly, a reasonable optimization would be 9 

to write a function that does what loadWidget does, but also caches its results. 10 

Clogging the cache with every Widget that has ever been requested can lead to 11 

performance problems of its own, however, so another reasonable optimization 12 

would be to destroy cached Widgets when they’re no longer in use. 13 

For this caching factory function, a std::unique_ptr return type is not a good fit. 14 

The caller should certainly receive a smart pointer to the cached object, and the 15 

caller should certainly determine the lifetime of that object, but the cache needs a 16 

pointer to the object, too. The cache’s pointer needs to be able to detect when it 17 

dangles, because when a factory client is finished using an object returned by the 18 

factory, that object will be destroyed, and the corresponding cache entry will dan-19 

gle. The cached pointer should therefore be a std::weak_ptr—a pointer that can 20 

detect when it dangles. That means that the factory’s return type should be a 21 

std::shared_ptr, because std::weak_ptrs can detect when they dangle only 22 

when an object’s lifetime is managed by std::shared_ptrs.  23 

Here’s a quick-and-dirty implementation of a caching version of loadWidget: 24 

std::shared_ptr<const Widget> fastLoadWidget(WidgetID id) 25 
{ 26 
  using SPType = std::shared_ptr<const Widget>; 27 
  using WPType = std::weak_ptr<const Widget>; 28 

  static std::unordered_map<WidgetID, WPType> cache; 29 

  auto retPtr = cache[id].lock();     // retPtr points to cached 30 
                                      // object or is null 31 
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  if (!retPtr) {                                   // if not in 1 
                                                   // cache, 2 
    retPtr = static_cast<SPType>(loadWidget(id));  // load it  3 
    cache[id] = static_cast<WPType>(retPtr);       // cache it 4 
  } 5 

  return retPtr; 6 
} 7 

This implementation employs one of C++11’s hash table containers 8 

(std::unordered_map), though it doesn’t show the WidgetID hashing and equal-9 

ity-comparison functions that would also have to be present.  10 

There are two smart pointer type conversions in the code, both made obvious by 11 

the use of static_casts. In the assignment to retPtr (a std::shared_ptr), the 12 

std::unique_ptr returned from loadWidget is used to create a temporary 13 

std::shared_ptr (via the alias SPType) to act as the source of the assignment. In 14 

the following line, retPtr (still a std::shared_ptr) is used to create a tempo-15 

rary std::weak_ptr (via the alias WPType) that is moved into the cache (via as-16 

signment to cache[id]). Neither cast is doing anything underhanded. Each simply 17 

causes a smart pointer object of one type to be constructed from a smart pointer 18 

object of a different type. 19 

This implementation of fastLoadWidget ignores the fact that the cache may ac-20 

cumulate expired std::weak_ptrs corresponding to Widgets that are no longer 21 

in use (and have therefore been destroyed). The implementation can be refined, 22 

but rather than spend time on an issue that lends no additional insight into 23 

std::weak_ptrs, let’s consider a second use case: the Observer design pattern. 24 

The primary components of this pattern are subjects (objects whose state may 25 

change) and observers (objects to be notified when state changes occur). In most 26 

implementations, each subject contains a data member holding pointers to its ob-27 

servers. That makes it easy for subjects to issue state change notifications. Subjects 28 

have no interest in controlling the lifetime of their observers (i.e., when they’re 29 

destroyed), but they have a great interest in making sure that if an observer gets 30 

destroyed, subjects don’t try to subsequently access it. A reasonable design is for 31 

each subject to hold a container of std::weak_ptrs to its observers, thus making 32 
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it possible for the subject to ensure that the pointers don’t dangle when it tries to 1 

use them. 2 

As a final example of std::weak_ptrs utility, consider a data structure with ob-3 

jects A, B, and C in it, where A and C share ownership of B and therefore hold 4 

std::shared_ptrs to it: 5 

6 
Suppose it’d be useful to also have a pointer from B back to A. What kind of pointer 7 

should this be?  8 

9 
There are three choices: 10 

 A raw pointer. With this approach, if A is destroyed, but C continues to point 11 

to B, B will contain a pointer to A that will dangle. B won’t be able to detect that, 12 

so B may inadvertently dereference the dangling pointer. That would yield un-13 

defined behavior. 14 

 A std::shared_ptr. In this design, A and B contain  std::shared_ptrs to one 15 

another. The resulting std::shared_ptr cycle (A points to B and B points to 16 

A) will prevent both A and B from being destroyed. Even if A and B are un-17 

reachable from other program data structures (i.e., because C no longer points 18 

to B), each will have a reference count of one. If that happens, A and B will have 19 

been leaked, for all practical purposes: it will be impossible for the program to 20 

access them, yet their resources will never be reclaimed. 21 

 A std::weak_ptr. This avoids both problems above. If A is destroyed, B’s point-22 

er back to it will dangle, but B will be able to detect that. Furthermore, though 23 

A and B will point to one another, B’s pointer won’t affect A’s reference count, 24 

hence can’t keep A from being destroyed when std::shared_ptrs no longer 25 

point to it. 26 

A B C 
std::shared_ptr std::shared_ptr 

A B C 
std::shared_ptr std::shared_ptr 

 
??? 
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The std::weak_ptr is clearly the best of these choices. However, it’s worth not-1 

ing that the need to employ std::weak_ptrs to break prospective cycles of 2 

std::shared_ptrs is not terribly common. In strictly hierarchal data structures 3 

such as trees, child nodes are typically owned only by their parents. When a parent 4 

node is destroyed, its child nodes should be destroyed, too. Links from parents to 5 

children are thus generally best represented by std::unique_ptrs. Back-links 6 

from children to parents can be safely implemented as raw pointers, because a 7 

child node should never have a lifetime longer than its parent. There’s thus no risk 8 

of a child node dereferencing a dangling parent pointer. 9 

Of course, not all pointer-based data structures are strictly hierarchical, and when 10 

that’s the case, as well as in situations such as caching and the implementation of 11 

lists of observers, it’s nice to know that std::weak_ptr stands at the ready. 12 

From an efficiency perspective, the std:weak_ptr story is essentially the same as 13 

that for std::shared_ptr. std::weak_ptr objects are the same size as 14 

std::shared_ptr objects, they make use of the same control blocks as 15 

std::shared_ptrs (see Item 21), and operations such as construction, destruc-16 

tion, and assignment involve atomic reference count manipulations. That probably 17 

surprises you, because I wrote at the beginning of this Item that std::weak_ptrs 18 

don’t  participate in reference counting. Except that’s not quite what I wrote. What 19 

I wrote was that std::weak_ptrs don’t participate in the shared ownership of ob-20 

jects and hence don’t affect the pointed-to object’s reference count. There’s actually 21 

a second reference count in the control block, and it’s this second reference count 22 

that std::weak_ptrs manipulate. For details, continue on to Item 23. 23 

Things to Remember 24 

 Use std::weak_ptr for std::shared_ptr-like pointers that can dangle. 25 

 Potential use cases for std::weak_ptr include caching, observer lists, and the 26 

prevention of std::shared_ptr cycles. 27 
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 Item 23: Prefer std::make_unique and std::make_shared 1 

to direct use of new. 2 

Let’s begin by leveling the playing field for std::make_unique and 3 

std::make_shared. std::make_shared is part of C++11, but, sadly, 4 

std::make_unique isn’t. It joined the Standard Library as of C++14. If you’re us-5 

ing C++11, never fear, because a basic version of std::make_unique is easy to 6 

write yourself. Here, look: 7 

template<typename T, typename... Args> 8 
std::unique_ptr<T> make_unique(Args&&... args) 9 
{ 10 
  return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); 11 
} 12 

As you can see, make_unique simply perfect-forwards its arguments to the con-13 

structor of the object being created, constructs a std::unique_ptr from the raw 14 

pointer new produces, and returns the std::unique_ptr so created. This form of 15 

the function doesn’t support arrays or custom deleters (see Item 20), but it 16 

demonstrates that, with only a little effort, you can create make_unique yourself, 17 

if you need to.† 18 

std::make_unique and std::make_shared are two of the three make functions: 19 

functions that take an arbitrary set of arguments, perfect-forward them to the con-20 

structor for a dynamically-allocated object, and return a smart pointer to that ob-21 

ject. The third make function is std::allocate_shared. It acts just like 22 

std:make_shared, except its first argument is an allocator object to be used for 23 

the dynamic memory allocation. 24 

Even the most trivial comparison of smart pointer creation using and not using a 25 

make function reveals the first reason why using such functions is preferable. Con-26 

sider: 27 

                                                             

† To create a full-featured make_unique with the smallest effort possible, search for the 

standardization document that gave rise to it, then copy the implementation you’ll find 

there. The document you want is N3588 by Stephan T. Lavavej, dated 2013-03-15. 



Page 171 

 

auto upw1(std::make_unique<Widget>());      // with make func 1 

std::unique_ptr<Widget> upw2(new Widget);   // without make func 2 
 3 

auto spw1(std::make_shared<Widget>());      // with make func 4 

std::shared_ptr<Widget> spw2(new Widget);   // without make func 5 

I’ve highlighted the essential difference: the versions using new repeat the type 6 

being created, but the make functions don’t. Repeating types runs afoul of a key 7 

tenet of software engineering: code duplication should be avoided. Duplication in 8 

source code increases compilation times, can lead to bloated object code, and gen-9 

erally renders a code base more difficult to work with. It often evolves into incon-10 

sistency in a code base, and inconsistency in a code base often leads to bugs. Be-11 

sides, typing something twice takes more effort than typing it once, and who’s not 12 

a fan of reducing their typing burden? 13 

The second reason to prefer make functions has to do with exception safety. Sup-14 

pose we have a function to process a Widget in accord with some priority: 15 

void processWidget(std::shared_ptr<Widget> spw, int priority); 16 

Passing the std::shared_ptr by value may look suspicious, but Item 17 explains 17 

that if processWidget always makes a copy of the std::shared_ptr (e.g., by 18 

storing it in a data structure tracking Widgets that have been processed), this can 19 

be a reasonable design choice. 20 

Now suppose we have a function to compute the relevant priority,  21 

int computePriority(); 22 

and we use that in a call to processWidget that uses new instead of 23 

std::make_shared: 24 

processWidget(std::shared_ptr<Widget>(new Widget),  // potential 25 
              computePriority());                   // resource 26 
                                                    // leak! 27 

As the comment indicates, this code could leak the Widget conjured up by new. But 28 

how? Both the calling code and the called function are using std::shared_ptrs, 29 

and std::shared_ptrs are designed to prevent resource leaks. They automati-30 
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cally destroy what they point to when the last std::shared_ptr pointing there 1 

goes away. If everybody is using std::shared_ptrs everywhere, how can this 2 

code leak? 3 

The answer has to do with compilers’ translation of source code into object code. 4 

At runtime, the arguments for a function must be evaluated before the function can 5 

be invoked, so in the call to processWidget, the following things must occur be-6 

fore processWidget can begin execution: 7 

 The expression “new Widget” must be evaluated, i.e., a Widget must be creat-8 

ed on the heap. 9 

 The constructor for the std::shared_ptr<Widget> responsible for manag-10 

ing the pointer produced by new must be executed.  11 

 computePriority must run. 12 

Compilers are not required to generate code that executes them in this order. “new 13 

Widget” must be executed before the std::shared_ptr constructor may be 14 

called, because the result of that new is used as an argument to that constructor, 15 

but computePriority may be executed before those calls, after them, or, crucial-16 

ly, between them. That is, compilers may emit code to execute the operations 17 

above in this order: 18 

1. Perform “new Widget”. 19 

2. Execute computePriority. 20 

3. Run std::shared_ptr constructor. 21 

If such code is generated and, at runtime, computePriority produces an excep-22 

tion, the dynamically allocated Widget from Step 1 will be leaked, because it will 23 

never be stored in the std::shared_ptr that’s supposed to start managing it in 24 

Step 3. 25 

Using std::make_shared avoids this problem. Calling code would look like this: 26 

processWidget(std::make_shared<Widget>(),   // no potential 27 
              computePriority());           // resource leak 28 
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At runtime, either std::make_shared or computePriority will be called first. If 1 

it’s std::make_shared, the raw pointer to the dynamically allocated Widget is 2 

safely stored in the returned std::shared_ptr before computePriority is 3 

called. If computePriority then yields an exception, the std::shared_ptr de-4 

structor will see to it that the Widget it owns is destroyed.  And if computePrior-5 

ity is called first and yields an exception, std::make_shared will not be invoked, 6 

and there will hence be no dynamically allocated Widget to worry about. 7 

If we replace std::shared_ptr and std::make_shared with 8 

std::unique_ptr and std::make_unique, exactly the same reasoning applies. 9 

Using std::make_unique instead of new is thus just as important in writing ex-10 

ception-safe code as using std::make_shared. 11 

A special feature of std::make_shared (compared to direct use of new) is im-12 

proved efficiency. Using std::make_shared allows compilers to generate smaller, 13 

faster code that employs leaner data structures. Consider the following direct use 14 

of new: 15 

std::shared_ptr<Widget> spw(new Widget); 16 

It’s obvious that this code entails a memory allocation, but it actually requires two. 17 

Item 21 explains that every std::shared_ptr points to a control block contain-18 

ing, among other things, the reference count for the pointed-to object. Memory for 19 

this control block is allocated in the std::shared_ptr constructor. Direct use of 20 

new, then, requires one memory allocation for the Widget and a second allocation 21 

for the control block. 22 

If std::make_shared is used instead, 23 

auto spw = std::make_shared<Widget>(); 24 

one allocation suffices. That’s because std::make_shared allocates a single 25 

chunk of memory to hold both the Widget object and the control block. This opti-26 

mization reduces the static size of the program, because the code contains only 27 

one memory allocation call, and it increases the speed of the executable code, be-28 

cause memory is allocated only once. Furthermore, using std::make_shared ob-29 
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viates the need for some of the bookkeeping information in the control block, thus 1 

reducing the total memory footprint for the program.  2 

The efficiency analysis for std::make_shared is equally applicable to 3 

std::allocate_shared, so the performance advantages of std::make_shared 4 

extend to that make function, as well. 5 

Clearly, the argument for preferring make functions over direct use of new is a 6 

strong one. Despite their software engineering, exception-safety, and efficiency 7 

advantages, however, this Item’s guidance is to prefer the make functions, not to 8 

rely on them exclusively. That’s because there are circumstances where they can’t 9 

or shouldn’t be used.  10 

For example, none of the make functions permit the specification of custom 11 

deleters (see Items 20 and 21), but both std::unique_ptr and 12 

std::shared_ptr have constructors that do. Given a custom deleter for a Widg-13 

et, 14 

auto widgetDeleter = [](Widget* pw) { … }; 15 

creating a smart pointer using it is straightforward using new: 16 

std::unique_ptr<Widget, decltype(widgetDeleter)> 17 
  upw(new Widget, widgetDeleter); 18 

std::shared_ptr<Widget> spw(new Widget, widgetDeleter); 19 

There’s no way to do the same thing with a make function. 20 

Item 7 explains that when creating an object whose type overloads constructors 21 

both with and without std::initializer_list parameters, creating the object 22 

using braces calls the std::initializer_list constructor, while creating the 23 

object using parentheses calls the non-std::initializer_list constructor. The 24 

make functions perfect-forward their parameters to an object’s constructor, but do 25 

they do so using parentheses or using braces? For some types, this seemingly trivi-26 

al syntactic detail can make a big difference. For example, in these calls, 27 

auto upv = std::make_unique<std::vector<int>>(10, 20); 28 

auto spv = std::make_shared<std::vector<int>>(10, 20); 29 
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do the resulting smart pointers point to std::vectors with 10 elements, each of 1 

value 20, or to std::vectors with two elements, one with value 10 and the other 2 

with value 20? Or is the result indeterminate? 3 

The good news is that it’s not indeterminate: both calls create std::vectors of 4 

size 10 with all values set to 20. That means that within the make functions, the 5 

perfect forwarding code uses parentheses, not braces. The bad news is that if you 6 

want to achieve the effect of using braces, you must use new directly. Using a make 7 

function would require the ability to perfect-forward a braced initializer through a 8 

function, but, as Item 32 explains, braced initializers can’t be perfect-forwarded. 9 

For std::unique_ptr, these two scenarios (custom deleters and braced initializ-10 

ers) are the only ones where its make function can’t be used. For 11 

std::shared_ptr and its make functions, there are two more. Both are edge cas-12 

es, but some developers live on the edge, and you may be one of them. 13 

Some classes define their own versions of operator new and operator delete. 14 

The presence of these functions implies that the global memory allocation and 15 

deallocation routines for objects of these types are inappropriate. Often, these 16 

class-specific routines are designed only to allocate and deallocate chunks of 17 

memory of precisely the size of objects of the class, e.g., operator new and opera-18 

tor delete for class Widget are often designed only to handle allocation and 19 

deallocation of chunks of memory of exactly size sizeof(Widget). Such routines 20 

are a poor fit for std::shared_ptr’s support for custom allocation (via 21 

std::allocate_shared) and deallocation (via custom deleters), because the 22 

amount of memory that std::allocate_shared requests isn’t the size of the dy-23 

namically allocated object, it’s the size of that object plus the size of a  control 24 

block. Consequently, using make functions to create objects of types with class-25 

specific versions of operator new and operator delete is typically a poor idea. 26 

The size and speed advantages of std::make_shared vis-à-vis direct use of new 27 

stem from std::shared_ptr’s control block being placed in the same chunk of 28 

memory as the managed object. When that object’s reference count goes to zero, 29 

the object is destroyed (i.e., its destructor is called). However, the memory it occu-30 



Page 176 

 

pies can’t be released until the control block has also been destroyed, because the 1 

same chunk of dynamically allocated memory contains both. 2 

As I noted, the control block contains bookkeeping information beyond just the 3 

reference count itself. The reference count tracks how many std::shared_ptrs 4 

refer to the control block, but the control block contains a second reference count, 5 

one that tallies how many std::weak_ptrs refer to the control block. This second 6 

reference count is known as the weak count.† When a std::weak_ptr checks to 7 

see if it has expired (see Item 21), it does so by examining the reference count (not 8 

the weak count) in the control block that it refers to. If the reference count is zero 9 

(i.e., if the pointed-to object has no std::shared_ptrs referring to it and has thus 10 

been destroyed), the std::weak_ptr has expired. Otherwise, it hasn’t.  11 

As long as std::weak_ptrs refer to a control block (i.e., the weak count is greater 12 

than zero), that control block must continue to exist. And as long as a control block 13 

exists, the dynamically allocated memory containing it must remain allocated. The 14 

memory allocated by a std::shared_ptr make function, then, can’t be deallocat-15 

ed until the last std::shared_ptr and the last std::weak_ptr referring to it has 16 

been destroyed. 17 

When the final std::shared_ptr referring to a control block is destroyed, the 18 

object it referred to is destructed, but the memory that object occupied remains 19 

allocated until the final std::weak_ptr referring to the control block is also de-20 

stroyed. If the object type is quite large and the time between destruction of the 21 

last std::shared_ptr and the last std::weak_ptr is significant, the result could 22 

be notable lags between when an object is destroyed and when the memory it oc-23 

cupied is freed: 24 

                                                             

† In practice, the value of the weak count isn’t always equal to the number of outstanding 

std::weak_ptrs, because library implementers have found ways to encode additional 

information that permits the generation of better code. For purposes of this Item, we’ll ig-

nore this discrepancy and assume that the weak count’s value is the number of 

std::weak_ptrs referring to the control block. 
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class ReallyBigType { … }; 1 

auto pBigObj =                          // create very large 2 
  std::make_shared<ReallyBigType>();    // object via 3 
                                        // std::make_shared 4 

…            // create std::shared_ptrs and std::weak_ptrs to 5 
             // large object, use them to work with it 6 

…            // final std::shared_ptr to object destroyed here, 7 
             // but std::weak_ptrs to it remain 8 

…            // during this period, memory formerly occupied 9 
             // by large object remains allocated 10 

…            // final std::weak_ptr to object destroyed here; 11 
             // memory for control block and object is released 12 

With a direct use of new, the memory for the ReallyBigType object can be re-13 

leased as soon as the last std::shared_ptr to it is destroyed: 14 

class ReallyBigType { … };              // as before 15 

std::shared_ptr<ReallyBigType> pBigObj(new ReallyBigType); 16 
                                        // create very large 17 
                                        // object via new 18 

…            // as before, create std::shared_ptrs and  19 
             // std::weak_ptrs to object, use them with it 20 

…            // final std::shared_ptr to object destroyed here, 21 
             // but std::weak_ptrs to it remain; 22 
             // memory for object is deallocated 23 

…            // during this period, only memory for the 24 
             // control block remains allocated 25 

…            // final std::weak_ptr to object destroyed here; 26 
             // memory for control block is released 27 

Should you find yourself in a situation where use of std::make_shared is impos-28 

sible or inappropriate, you’ll want to guard yourself against the kind of exception-29 

safety problems we saw earlier. The best way to do that is to make sure that when 30 

you use new directly, you pass the result to a smart pointer constructor in a state-31 

ment that does nothing else. This prevents compilers from generating code corre-32 

sponding to operations being inserted between the use of new and the call of the 33 

constructor for the smart pointer that will manage the newed object.  34 
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As an example, consider a minor revision to the exception-unsafe call to the pro-1 

cessWidget function we examined earlier. This time, we’ll specify a custom 2 

deleter: 3 

void cusDel(Widget *ptr);                      // custom deleter 4 

Here’s the exception-unsafe call: 5 

processWidget(                                   // as before, 6 
  std::shared_ptr<Widget>(new Widget, cusDel),   // potential 7 
  computePriority()                              // resource 8 
);                                               // leak! 9 

Recall: if computePriority is called after “new Widget” but before the 10 

std::shared_ptr constructor, and if computePriority yields an exception, the 11 

dynamically allocated Widget will be leaked. 12 

In this example, the need for a custom deleter precludes use of 13 

std::make_shared, so the way to avoid the problem is to put the allocation of the 14 

Widget and the construction of the std::shared_ptr into their own statement, 15 

then call processWidget with the std::shared_ptr object: 16 

std::shared_ptr<Widget> spw(new Widget, cusDel); 17 

processWidget(spw, computePriority()); 18 

This works, because a std::shared_ptr assumes ownership of the raw pointer 19 

passed to its constructor, even if that constructor yields an exception. In this ex-20 

ample, if pw’s constructor throws an exception (e.g., due to an inability to dynami-21 

cally allocate memory for a control block), it’s still guaranteed that cusDel will be 22 

invoked on the pointer resulting from “new Widget”. 23 

That’s interesting and worth knowing, but it’s also typically irrelevant, because in 24 

most cases, there’s no reason not to use a make function. And unless you have a 25 

compelling reason for doing otherwise, using a make function is what you should 26 

do. 27 
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Things to Remember 1 

 Compared to direct use of new, the make functions eliminate source code du-2 

plication,  improve exception safety, and, for std::make_shared and 3 

std::allocate_shared, generate code that’s smaller and faster. 4 

 Situations where use of the make functions is inappropriate include the need to 5 

specify custom deleters and a desire to pass braced initializers. 6 

 For std::shared_ptrs, additional situations where make functions may be 7 

ill-advised include (1) classes with custom memory management and (2) sys-8 

tems with memory concerns, very large objects, and std::weak_ptrs that 9 

outlive the corresponding std::shared_ptrs. 10 

 Item 24: When using the Pimpl Idiom, define special mem-11 

ber functions in the implementation file. 12 

If you’ve ever had to combat excessive build times, you’re familiar with the Pimpl 13 

(“pointer to implementation”) Idiom. That’s the technique whereby you replace the 14 

data members of a class with a pointer to an implementation class (or struct), put 15 

the data members that used to be in the primary class into the implementation 16 

class, and access those data members indirectly through the pointer. For example, 17 

suppose Widget looks like this: 18 

class Widget {                     // in header "widget.h" 19 
public: 20 
  Widget(); 21 
  … 22 

private: 23 
  std::string name; 24 
  std::vector<double> data; 25 
  Gadget g1, g2, g3; 26 
}; 27 

Because Widget’s data members are of types std::string, std::vector, and 28 

Gadget, headers for those types must be present for Widget to compile, and that 29 

means that Widget clients must #include <string>, <vector>, and gadget.h. 30 

Those headers increase the compilation time for Widget clients, plus they make 31 

those clients dependent on the contents of the headers. If a header’s content 32 

changes, Widget clients must recompile. The standard headers <string> and 33 
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<vector> don’t change very often, but it could be that gadget.h is subject to fre-1 

quent revision. 2 

Applying the Pimpl Idiom in C++98 could have Widget replace its data members 3 

with a raw pointer to a struct that has been declared, but not defined: 4 

class Widget {                 // still in header "widget.h" 5 
public: 6 
  Widget();  7 
  ~Widget();                   // dtor is needed—see below 8 
  … 9 

private: 10 
  struct Impl;                 // declare implementation struct 11 
  Impl *pImpl;                 // and pointer to it 12 
}; 13 

Because Widget no longer mentions the types std::string, std::vector, and 14 

Gadget, Widget clients no longer need to #include the headers for these types. 15 

That speeds compilation, and it also means that if something in these headers 16 

changes, Widget clients are unaffected. 17 

A type that has been declared, but not defined, is known as an incomplete type. 18 

Widget::Impl is such a type. There are very few things you can do with an in-19 

complete type, but declaring a pointer to it is one of them. The Pimpl Idiom takes 20 

advantage of that.  21 

Part 1 of the Pimpl Idiom is the declaration of a data member that’s a pointer to an 22 

incomplete type. Part 2 is the dynamic allocation and deallocation of the object 23 

that holds the data members that used to be in the original class. The allocation 24 

and deallocation code goes in the implementation file, e.g., for Widget, in widg-25 

et.cpp: 26 

#include "widget.h"            // in impl. file "widget.cpp" 27 
#include "gadget.h" 28 
#include <string> 29 
#include <vector> 30 

struct Widget::Impl {          // definition of Widget::Impl 31 
  std::string name;            // with data members formerly 32 
  std::vector<double> data;    // in Widget 33 
  Gadget g1, g2, g3; 34 
}; 35 
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Widget::Widget()               // allocate data members for 1 
: pImpl(new Impl)              // this Widget object 2 
{} 3 

Widget::~Widget()              // destroy data members for 4 
{ delete pImpl; }              // this object 5 

Here I’m showing #include directives to make clear that the overall dependen-6 

cies on the headers for std::string, std::vector, and Gadget continue to ex-7 

ist. However, these dependencies have been moved from widget.h (which is visi-8 

ble to and used by Widget clients) to widget.cpp (which is visible to and used 9 

only by the Widget implementer). I’ve also highlighted the code that dynamically 10 

allocates and deallocates the Impl object. The need to deallocate this object when 11 

a Widget is destroyed is what necessitates the Widget destructor. 12 

But I’ve shown you C++98 code, and that reeks of a bygone millennium. It uses raw 13 

pointers and raw new and raw delete and it’s all just so…raw. This chapter is built 14 

on the idea that smart pointers are preferable to raw pointers, and if what we want 15 

is to dynamically allocate a Widget::Impl object inside the Widget constructor 16 

and have it destroyed at the same time the Widget is, std::unique_ptr (see 17 

Item 20) is precisely the tool we need. Replacing the raw pImpl pointer with a 18 

std::unique_ptr yields this code for the header file, 19 

class Widget {                      // in "widget.h" 20 
public: 21 
  Widget();  22 
  … 23 

private: 24 
  struct Impl;  25 
  std::unique_ptr<Impl> pImpl;      // use smart pointer 26 
};                                  // instead of raw pointer 27 

and this for the implementation file: 28 

#include "widget.h"                 // in "widget.cpp" 29 
#include "gadget.h" 30 
#include <string> 31 
#include <vector> 32 

struct Widget::Impl {               // as before 33 
  std::string name;  34 
  std::vector<double> data;  35 
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  Gadget g1, g2, g3; 1 
}; 2 

Widget::Widget()                    // per Item 23, create 3 
: pImpl(std::make_unique<Impl>())   // std::unique_ptr 4 
{}                                  // via std::make_unique 5 

You’ll note that the Widget destructor is no longer present. That’s because we 6 

have no code to put into it. std::unique_ptr automatically deletes what it points 7 

to when it (the std::unique_ptr) is destroyed, so we need not delete anything 8 

ourselves. That’s one of the attractions of smart pointers: they eliminate the need 9 

for us to sully our hands with manual resource release. 10 

This code compiles, but, alas, the most trivial client use doesn’t: 11 

#include "widget.h" 12 

Widget w;                           // error! 13 

The error message you get depends on the compiler you’re using, but the text gen-14 

erally mentions something about applying sizeof or delete to an incomplete 15 

type. Those operations aren’t among the very few things you can do with such 16 

types. 17 

This apparent failure of the Pimpl Idiom using std::unique_ptrs is alarming, 18 

because (1) std::unique_ptr is advertised as  supporting incomplete types, and 19 

(2) the Pimpl Idiom is one of std::unique_ptrs most common use cases. Fortu-20 

nately, getting the code to work is easy. All that’s required is a basic understanding 21 

of the cause of the problem. 22 

The issue arises due to the code that’s generated when w is destroyed (e.g., goes 23 

out of scope). At that point, its destructor is called. In the class definition using 24 

std::unique_ptr, we didn’t declare a destructor, because we didn’t have any 25 

code to put into it. In accord with the usual rules for compiler-generated special 26 

member functions (see Item 19), the compiler generates a destructor for us. With-27 

in that destructor, the compiler inserts code to call the destructor for Widget’s da-28 

ta member, pImpl. pImpl is a std::unique_ptr<Widget::Impl>, i.e., a 29 

std::unique_ptr using the default deleter. The default deleter is a function that 30 

uses delete on the raw pointer inside the std::unique_ptr. Prior to using de-31 
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lete, however, implementations typically have the default deleter employ C++11’s 1 

static_assert to ensure that the raw pointer doesn’t point to an incomplete 2 

type. When the compiler generates code for the destruction of the Widget w, then, 3 

it encounters a static_assert that fails, and that’s what leads to the error mes-4 

sage.† This message is associated with the point where w is destroyed, because 5 

Widget’s destructor, like all compiler-generated special member functions, is im-6 

plicitly inline. The message itself often refers to the line where w is created, be-7 

cause it’s the source code explicitly creating the object that leads to its later implic-8 

it destruction. 9 

Fixing the problem is easy. You just need to make sure that at the point where the 10 

code to destroy the std::unique_ptr<Widget::Impl> is generated, Widg-11 

et::Impl is a complete type. The type becomes complete when its definition has 12 

been seen, and Widget::Impl is defined inside widget.cpp. The key to success-13 

ful compilation, then, is to have the compiler see the body of Widget’s destructor 14 

(i.e., the place where the compiler will generate code to destroy the 15 

std::unique_ptr data member) only inside widget.cpp after Widget::Impl 16 

has been defined.  17 

Arranging for that is simple. Declare (but don’t define!) Widget’s destructor in 18 

widget.h, 19 

class Widget {                     // as before, in "widget.h" 20 
public: 21 
  Widget();  22 
  ~Widget();                       // declaration only! 23 
  … 24 

private:                           // as before 25 
  struct Impl;  26 
  std::unique_ptr<Impl> pImpl;  27 
};   28 

                                                             

† Implementations need not have a static_assert in the default deleter. Nor, for that 

matter, are they required to reject code deleting an incomplete type. But all implementa-

tions I’m familiar with take steps to ensure that code involving the destruction of a 

std::unique_ptr to an incomplete type won’t compile. 
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and define it in widget.cpp after Widget::Impl has been defined: 1 

#include "widget.h"                // as before, in "widget.cpp" 2 
#include "gadget.h" 3 
#include <string> 4 
#include <vector> 5 

struct Widget::Impl {              // as before, definition of 6 
  std::string name;                // Widget::Impl 7 
  std::vector<double> data;  8 
  Gadget g1, g2, g3; 9 
}; 10 

Widget::Widget()                   // as before 11 
: pImpl(std::make_unique<Impl>())  12 
{} 13 

Widget::~Widget()                  // ~Widget definition 14 
{} 15 

This works well, and it requires the least typing, but if you want to emphasize that 16 

the compiler-generated destructor would do the right thing—that the only reason 17 

you declared it was to cause its definition to be generated in Widget’s implemen-18 

tation file, you can define the destructor body with =default: 19 

Widget::~Widget() = default;       // same effect as above 20 

Classes using the Pimpl Idiom are natural candidates for move support, because 21 

compiler-generated move operations do exactly what’s desired: perform a move 22 

on the underlying std::unique_ptr. As Item 19 explains, the declaration of a de-23 

structor in Widget prevents compilers from generating the move operations, so if 24 

you want move support, you must declare the functions yourself. Given that the 25 

compiler-generated versions would behave correctly, you might be tempted to im-26 

plement them thusly: 27 

class Widget {                                 // still in 28 
public:                                        // "widget.h" 29 
  Widget();  30 
  ~Widget(); 31 

  Widget(Widget&& rhs) = default;              // right idea, 32 
  Widget& operator=(Widget&& rhs) = default;   // wrong code! 33 

  … 34 
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private:                                       // as before 1 
  struct Impl;  2 
  std::unique_ptr<Impl> pImpl;  3 
};   4 

This approach leads to the same kind of problem as declaring the class without a 5 

destructor, and for the same fundamental reason. The compiler-generated move 6 

assignment operator needs to destroy the object pointed to by pImpl before reas-7 

signing it, but in the Widget header file, pImpl points to an incomplete type. The 8 

situation is different for the move constructor. The problem there is that compilers 9 

typically generate code to destroy pImpl in the event that an exception arises in-10 

side the move constructor, and destroying pImpl requires that Impl be complete.  11 

Because the problem is the same as before, so is the fix: move the definition of the 12 

move operations into the implementation file: 13 

class Widget {                       // still in "widget.h" 14 
public:  15 
  Widget();  16 
  ~Widget(); 17 

  Widget(Widget&& rhs);              // declarations 18 
  Widget& operator=(Widget&& rhs);   // only 19 

  … 20 

private:                             // as before 21 
  struct Impl;  22 
  std::unique_ptr<Impl> pImpl;  23 
};   24 

 25 
#include <string>                    // as before,  26 
…                                    // in "widget.cpp" 27 

struct Widget::Impl { … };           // as before 28 

Widget::Widget()                     // as before 29 
: pImpl(std::make_unique<Impl>())  30 
{} 31 

Widget::~Widget() = default;         // as before 32 

Widget::Widget(Widget&& rhs) = default;              // defini- 33 
Widget& Widget::operator=(Widget&& rhs) = default;   // tions 34 
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The Pimpl Idiom is a way to reduce compilation dependencies between a class’s 1 

implementation and the class’s clients, but, conceptually, use of the idiom doesn’t 2 

change what the class represents. The original Widget class contained 3 

std::string, std::vector, and Gadget data members, and, assuming that 4 

Gadgets, like std::strings and std::vectors, can be copied, it would make 5 

sense for Widget to support the copy operations. We have to write these functions 6 

ourselves, because (1) compilers won’t generate copy operations for classes with 7 

move-only types like std::unique_ptr and (2) even if they did, the generated 8 

functions would copy only the std::unique_ptr (i.e., perform a shallow copy), 9 

and we want to copy what the pointer points to (i.e., perform a deep copy). 10 

In a ritual that is by now familiar, we declare the functions in the header file and 11 

implement them in the implementation file: 12 

class Widget {                       // still in "widget.h" 13 
public:  14 
  …                                  // other funcs, as before 15 

  Widget(const Widget& rhs);              // declarations 16 
  Widget& operator=(const Widget& rhs);   // only 17 

private:                                  // as before 18 
  struct Impl;  19 
  std::unique_ptr<Impl> pImpl;  20 
};   21 

 22 

#include "widget.h"                  // as before,  23 
…                                    // in "widget.cpp" 24 

struct Widget::Impl { … };           // as before 25 

Widget::~Widget() = default;         // other funcs, as before 26 

Widget::Widget(const Widget& rhs)              // copy ctor 27 
: pImpl(std::make_unique<Impl>(*rhs.pImpl)) 28 
{} 29 

Widget& Widget::operator=(const Widget& rhs)   // copy operator= 30 
{ 31 
  if (this != &rhs) {                // detect self-assignment 32 
    *pImpl = *rhs.pImpl; 33 
  } 34 
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  return *this; 1 
} 2 

Both function implementations are conventional. In each case, we simply copy  the 3 

fields of the Impl struct from the source object (rhs) to the destination object 4 

(*this). Rather than copy the fields one by one, we take advantage of the fact that 5 

compilers will create the copy operations for Impl, and these operations will copy 6 

each field automatically. We thus implement Widget’s copy operations by calling 7 

Widget::Impl’s compiler-generated copy operations. In the copy constructor, 8 

note that we still follow the advice of Item 23 to prefer use of std::make_unique 9 

over direct use of new, and in the copy assignment operator, we adhere to common 10 

C++ convention by doing nothing if we detect that an object is being assigned to 11 

itself. 12 

For purposes of implementing the Pimpl Idiom, std::unique_ptr is the smart 13 

pointer to use, because the pImpl pointer inside an object (e.g., inside a Widget) 14 

has exclusive ownership of the corresponding implementation object (e.g., the 15 

Widget::Impl object). Still, it’s interesting to note that if we were to use 16 

std::shared_ptr instead of std::unique_ptr for pImpl, we’d find that the ad-17 

vice of this Item no longer applied. There’d be no need to declare a destructor in 18 

Widget, and without a user-declared destructor, compilers would happily gener-19 

ate the move operations, which would do exactly what we’d want them to. That is, 20 

given this code in widget.h, 21 

class Widget {                     // in "widget.h" 22 
public: 23 
  Widget();  24 
  …                                // no declarations for dtor 25 
                                   // or move operations 26 
private: 27 
  struct Impl;  28 
  std::shared_ptr<Impl> pImpl;     // std::shared_ptr 29 
};                                 // instead of std::unique_ptr 30 

and this client code that #includes widget.h, 31 

Widget w1; 32 

auto w2(std::move(w1));            // move-construct w2 33 

w1 = std::move(w2);                // move-assign w1 34 
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everything would compile and run as we’d hope: w1 would be default-constructed, 1 

its value would be moved into w2, that value would be moved back into w1, and 2 

then both w1 and w2 would be destroyed (thus causing the pointed-to Widg-3 

et::Impl object to be destroyed). 4 

The difference in behavior between std::unique_ptr and std::shared_ptr 5 

for pImpl pointers stems from the differing ways that these smart pointers sup-6 

port custom deleters. For std::unique_ptr, the type of the deleter is part of the 7 

type of the smart pointer, and this makes it possible for compilers to generate 8 

smaller runtime data structures and faster runtime code. A consequence of this 9 

greater efficiency is that pointed-to types must be complete when compiler-10 

generated special functions (e.g., destructors or move operations) are used. For 11 

std::shared_ptr, the type of the deleter is not part of the type of the smart 12 

pointer. This necessitates larger runtime data structures and somewhat slower 13 

code, but pointed-to types need not be complete when compiler-generated special 14 

functions are employed.  15 

For the Pimpl Idiom, there’s not really a trade-off between the characteristics of 16 

std::unique_ptr and std::shared_ptr, because the relationship between 17 

classes like Widget and classes like Widget::Impl is exclusive ownership, and 18 

that makes std::unique_ptr the proper tool for the job. Nevertheless, it’s worth 19 

knowing that in other situations—situations where shared ownership exists (and 20 

std::shared_ptr is hence a good design choice), there’s no need to jump 21 

through the function-definition hoops that use of std::unique_ptr entails. 22 

Things to Remember 23 

 The Pimpl Idiom decreases build times by reducing compilation dependencies 24 

between class implementations and class clients. 25 

 For std::unique_ptr pImpl pointers, declare special member functions in 26 

the class header, but implement them in the implementation file. Do this even 27 

if the default function implementations are acceptable. 28 

 The above advice applies to std::unique_ptr, but not to std::shared_ptr. 29 
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 1 

2 

When you first learn about them, move semantics and perfect forwarding seem 3 

pretty straightforward: 4 

 Move semantics makes it possible for compilers to replace expensive copying 5 

operations with less expensive moves. In the same way that copy constructors 6 

and copy assignment operators give developers control over what it means to 7 

copy objects, move constructors and move assignment operators offer control 8 

over the semantics of moving.  9 

 Perfect forwarding makes it possible to write function templates that take 10 

arbitrary arguments and forward them to other functions such that the target 11 

functions receive exactly the same arguments as were passed to the forward-12 

ing functions.   13 

Rvalue references are the glue that ties these two rather disparate features togeth-14 

er. They’re the underlying language mechanism that makes both move semantics 15 

and perfect forwarding possible.  16 

The more experience you have with these features, the more you realize that your 17 

initial impression was based on only the metaphorical tip of the proverbial ice-18 

berg. The world of move semantics, perfect forwarding, and rvalue references is 19 

more nuanced than it appears. std::move doesn’t move anything, for example, 20 

and perfect forwarding is imperfect. Move operations aren’t always cheaper than 21 

copying; when they are, they’re not always as cheap as you’d expect; and they’re 22 

not always called in a context where moving is valid. The construct T&& doesn’t 23 

always represent an rvalue reference.  24 

No matter how far you dig into these features, it can seem that there’s always more 25 

to uncover. Fortunately, there is a limit to the depths of move semantics, perfect 26 

forwarding, and rvalue references. This chapter will take you to the bedrock. Once 27 

you arrive, this part of C++11 will make a lot more sense. You’ll know the usage 28 

conventions for std::move and std::forward, for example. You’ll be comforta-29 
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ble with the ambiguous nature of “T&&”. You’ll understand the reasons for the sur-1 

prisingly varied behavioral profiles of move operations. All those pieces will come 2 

together and fall into place. At that point, you’ll be back where you started, because 3 

move semantics, perfect forwarding, and rvalue references will once again seem 4 

pretty straightforward. But this time, they’ll stay that way. 5 

In the Items in this chapter, it’s especially important to bear in mind that a param-6 

eter is always an lvalue, even if its type is an rvalue reference. That is, given 7 

void f(Widget&& w); 8 

the parameter w is an lvalue, even though its type is rvalue-reference-to-Widget. 9 

(If this surprises you, please review the overview of lvalues and rvalues that be-10 

gins on page Error! Bookmark not defined..) 11 

 Item 25: Understand std::move and std::forward. 12 

It’s useful to approach std::move and std::forward in terms of what they don’t 13 

do. std::move doesn’t move anything. std::forward doesn’t forward anything. 14 

At runtime, neither does anything at all. That’s because they generate no executa-15 

ble code. Not a single byte.  16 

std::move and std::forward are merely functions that perform casts. 17 

std::move unconditionally casts its argument to an rvalue, while std::forward 18 

performs this cast only if a particular condition is fulfilled. That’s it. The explana-19 

tion leads to a new set of questions, but, fundamentally, that’s the complete story. 20 

To make the story more concrete, here’s a sample implementation of std::move 21 

in C++11. It’s not fully conforming to the details of the Standard, but it’s very close. 22 

template<typename T>                       // in namespace std 23 
typename remove_reference<T>::type&& 24 
move(T&& param) 25 
{ 26 
  using ReturnType =                       // alias declaration; 27 
    typename remove_reference<T>::type&&;  // see Item 9 28 

  return static_cast<ReturnType>(param); 29 
} 30 
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I’ve highlighted two parts of the code for you. One is the name of the function, be-1 

cause the return type specification is rather noisy, and I don’t want you to lose 2 

your bearings in the din. The other thing is the cast that comprises the essence of 3 

the function. As you can see, std::move takes a reference to an object (a universal 4 

reference, to be precise (see Item 26)) and it returns a reference to the same ob-5 

ject.  6 

The “&&” part of the function’s return type implies that std::move returns an 7 

rvalue reference, but, as Item 30 explains, if the type T happens to be an lvalue ref-8 

erence, T&& would become an lvalue reference. To prevent this from happening, 9 

the type trait (see Item 9) std::remove_reference is applied to T, thus ensuring 10 

that “&&” is applied to a type that isn’t a reference. That guarantees that 11 

std::move truly returns an rvalue reference, and that’s important, because rvalue 12 

references returned from functions are rvalues. (Why? Because the C++ Standard 13 

says they are.)  Thus, std::move casts its argument to an rvalue, and that’s all it 14 

does. 15 

As an aside, std::move can be implemented with less fuss in C++14. Thanks to 16 

function return type deduction (see Item 3) and to the Standard Library’s alias 17 

template std::remove_reference_t (see Item 9), std::move can be written 18 

this way: 19 

template<typename T>                       // C++14 only; still 20 
decltype(auto) move(T&& param)             // in namespace std 21 
{ 22 
  using ReturnType = remove_reference_t<T>&&; 23 
  return static_cast<ReturnType>(param); 24 
} 25 

Easier on the eyes, no? 26 

Because std::move does nothing but cast its argument to an rvalue, there have 27 

been suggestions that a better name for it might be something like rvalue_cast. 28 

Be that as it may, the name we have is std::move, so it’s important to remember 29 

what std::move does and doesn’t do. It does cast. It doesn’t move. 30 

Of course, rvalues are candidates for moving, so applying std::move to an object 31 

tells the compiler that that object is eligible to be moved from. That’s why 32 
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std::move has the name it does: to make it easy to designate objects that may be 1 

moved from. 2 

Actually, rvalues are only usually candidates for moving.  Suppose you’re writing a 3 

function taking a std::string parameter, and you know that inside your func-4 

tion, you’ll copy that parameter. Flush with the advice proffered by Item 17, you 5 

declare a by-value parameter: 6 

void f(std::string s);       // s to be copied, so per Item 17, 7 
                             // pass by value 8 

But suppose you also know that inside f, you only need to read s’s value; you’ll 9 

never need to modify it. In accord with the time-honored tradition of using const 10 

whenever possible, you revise your declaration such that s is const: 11 

void f(const std::string s);     12 

Finally, assume that at the end of f, s will be copied into some data structure. Ex-13 

cept that you don’t want to pay for the copy, so, again in accord with Item 17, you 14 

apply std::move to s to turn it into an rvalue: 15 

struct SomeDataStructure { 16 
  std::string name; 17 
  … 18 
}; 19 

SomeDataStructure sds; 20 

void f(const std::string s) 21 
{ 22 
  …                         // read operations on s 23 

  sds.name = std::move(s);  // "move" s into sds.name; this code 24 
}                           // doesn't do what it seems to! 25 

This code compiles. This code links. This code runs.  This code sets sds.name to 26 

the value you expect. The only thing separating this code from a perfect realization 27 

of your vision is that s is not moved into sds.name, it’s copied. Sure, s is cast to an 28 

rvalue by std::move, but s is declared as a const std::string, so before the 29 

cast, s is an lvalue const std::string, and the result of the cast is an rvalue 30 

const std::string, but throughout it all, s remains const.  31 
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Consider the effect that has when compilers have to determine which 1 

std::string assignment operator to call. There are two possibilities: 2 

class string {            // std::string is actually a  3 
public:                   // typedef for std::basic_string<char> 4 
  … 5 
  string& operator=(const string& rhs);  // copy assignment 6 
  string& operator=(string&& rhs);       // move assignment 7 
  … 8 
}; 9 

In our function f, the result of std::move(s) is an rvalue of type const 10 

std::string. That rvalue can’t be passed to std::string’s move assignment 11 

operator, because the move assignment operator takes an rvalue reference to a 12 

non-const std::string. The rvalue can, however, be passed to the copy assign-13 

ment operator, because an lvalue reference-to-const is permitted to bind to a 14 

const rvalue. The statement 15 

  sds.name = std::move(s); 16 

therefore invokes the copy assignment operator in std::string, even though s 17 

has been cast to an rvalue! Such behavior is essential to maintaining const-18 

correctness. Moving a value out of an object generally modifies the object, so the 19 

language should not permit const objects to be passed to functions (such as move 20 

assignment operators) that could modify them. 21 

There are two lessons to be drawn from this example. First, don’t declare objects 22 

const if you want to be able to move from them. Move requests on const objects 23 

are silently transformed into copy operations.  24 

Second, std::move not only doesn’t actually move anything, it doesn’t even guar-25 

antee that the object it’s casting will be eligible to be moved. The only thing you 26 

know for sure about an object that has been std::moved is that it’s an rvalue. 27 

The story for std::forward is similar to that for std::move, but whereas 28 

std::move unconditionally casts its argument to an rvalue, std::forward does it 29 

only under certain conditions. std::forward is a conditional cast. To understand 30 

when it casts and when it doesn’t, recall how std::forward is typically used. The 31 
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most common scenario is a function template taking a universal reference parame-1 

ter that is to be passed to another function: 2 

void process(const Widget& lvalParam);   // process lvalues 3 
void process(Widget&& rvalParam);        // process rvalues 4 

template<typename T>                     // template that passes 5 
void logAndProcess(T&& param)            // param to process 6 
{  7 
  auto now =                             // get current time 8 
    std::chrono::system_clock::now(); 9 

  makeLogEntry("Calling 'process'", now); 10 
  process(std::forward<T>(param)); 11 
   12 
} 13 

Consider two calls to logAndProcess, one with an lvalue, the other with an rval-14 

ue: 15 

Widget w; 16 

logAndProcess(w);                  // call with lvalue 17 
logAndProcess(std::move(w));       // call with rvalue 18 

Inside logAndProcess, the parameter param is passed to the function process. 19 

process is overloaded for lvalues and rvalues. When we call logAndProcess 20 

with an lvalue, we naturally expect that lvalue to be forwarded to process as an 21 

lvalue, and when we call logAndProcess with an rvalue, we expect the rvalue 22 

overload of process to be invoked.  23 

But param, like all function parameters, is an lvalue. Every call to process inside 24 

logAndProcess will thus want to invoke the lvalue overload for process. To pre-25 

vent this, we need a mechanism for param to be cast to an rvalue if and only if the 26 

argument with which param was initialized—the argument passed to lo-27 

gAndProcess—was an rvalue. This is precisely what std::forward does. That's 28 

why std::forward is a conditional cast: it casts to an rvalue only if its argument 29 

was initialized with an rvalue. 30 

You may wonder how std::forward can know whether its argument was initial-31 

ized with an rvalue. In the code above, for example, how can std::forward tell 32 

whether param was initialized with an lvalue or an rvalue? The brief answer is that 33 
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that information is encoded in logAndProcess´s template parameter T. That pa-1 

rameter is then passed to std::forward, which recovers the encoded infor-2 

mation. Item 30 covers all the details, but for now, simply accept that T will be an 3 

lvalue reference only if param was initialized with an lvalue. That means that 4 

std::forward can, in concept, be implemented something like this: 5 

template<typename T>                   // conceptual impl. of 6 
T&&                                    // std::forward (in 7 
forward(T&& param)                     // namespace std) 8 
{ 9 
  if (is_lvalue_reference<T>::value) { // if T indicates lvalue 10 
    return param;                      // return param as lvalue 11 
  } else {                             // else 12 
    return move(param);                // return param as rvalue 13 
  } 14 
} 15 

Don’t be misled by forward’s return type declaration into thinking that it returns 16 

an rvalue reference. Item 30 will make clear that when an lvalue is being returned 17 

from this function, std::forward’s return type will be an lvalue reference. 18 

Note that this is a conceptual implementation. This code won’t even compile for 19 

some uses, and when it does compile, it’ll generate runtime code. Real 20 

std::forward implementations compile for all uses, and they never generate 21 

runtime code. For purposes of understanding how std::forward determines 22 

whether to cast to an rvalue, however, this suffices. 23 

Given that both std::move and std::forward boil down to casts, the only differ-24 

ence being that std::move always casts, while std::forward only sometimes 25 

does, you may wonder whether we can dispense with std::move and just use 26 

std::forward everywhere. From a purely technical perspective, the answer is 27 

yes: std::forward can do it all. std::move isn’t necessary. (Strictly speaking, 28 

neither function is necessary, because we could write our own casts everywhere, 29 

but I hope we agree that that would be, well, yucky.) 30 

std::move’s advantage is convenience. Consider a conventional move constructor 31 

for a class with a single data member of type std::string: 32 

class Widget { 33 
public: 34 
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  Widget(Widget&& rhs)                       // conventional  1 
  : s(std::move(rhs.s)) {}                   // move constructor 2 
  … 3 

private: 4 
  std::string s; 5 
}; 6 

If we wanted to implement the same behavior using std::forward instead of 7 

std::move, we’d have to write it this way:  8 

class Widget { 9 
public: 10 
  Widget(Widget&& rhs)                       // move ctor using 11 
  : s(std::forward<std::string>(rhs.s)) {}   // std::forward 12 
  …                                          // instead of  13 
};                                           // std::move 14 

Note first that std::move requires only a function argument (i.e., rhs.s), while 15 

std::forward requires both a function argument (rhs.s) and a template type 16 

argument (std::string). Note second that the type we pass to std::forward 17 

should be a non-reference, because that’s the standard mechanism for encoding 18 

that the argument being passed is an rvalue (see Item 30). Together, this means 19 

that std::move requires less typing than std::forward, and it spares us the 20 

trouble of passing a type argument that encodes that the argument we’re passing 21 

is an rvalue. 22 

More importantly, the use of std::move conveys the use of an unconditional cast 23 

to an rvalue, while the use of std::forward indicates a cast to an rvalue only for 24 

references to which rvalues have been bound. Those are two very different ac-25 

tions. The first one typically sets up a move, while the second one just passes—26 

forwards—an object to another function in a way that retains its original lvalue-27 

ness or rvalueness. Because these actions are so different, it’s good that we have 28 

two different functions (and function names) to distinguish them. 29 

Things to Remember 30 

 std::move performs an unconditional cast to an rvalue. In and of itself, it 31 

doesn’t move anything. 32 



Page 197 

 

 std::forward casts its argument to an rvalue only if that argument is bound 1 

to an rvalue.  2 

 Neither std::move nor std::forward do anything at runtime. 3 

 Item 26: Distinguish universal references from rvalue ref-4 

erences. 5 

It’s been said that the truth shall set you free, but under the right circumstances, a 6 

well-chosen lie can be equally liberating. This entire Item is such a lie. Because 7 

we’re dealing with software, however, let’s eschew the word “lie” and instead say 8 

that this Item comprises an abstraction. 9 

To declare an rvalue reference to some type T, you write T&&. It thus seems rea-10 

sonable to assume that if you see “T&&” in source code, you’re looking at an rvalue 11 

reference. Alas, it’s not quite that simple: 12 

void f(Widget&& param);             // rvalue reference 13 

Widget&& var1 = Widget();           // rvalue reference 14 

auto&& var2 = var1;                 // not rvalue reference 15 

template<typename T> 16 
void f(std::vector<T>&& param);     // rvalue reference 17 

template<typename T> 18 
void f(T&& param);                  // not rvalue reference 19 

In fact, “T&&” has two different meanings. One is rvalue reference, of course. Such 20 

references behave exactly the way you expect: they bind only to rvalues, and their 21 

primary raison d’être is to identify objects that may be moved from.  22 

The other possible meaning for “T&&” is either rvalue reference or lvalue reference. 23 

Such references look like rvalue references in the source code (i.e., “T&&”), but they 24 

can behave as if they were lvalue references (i.e., “T&”). Their dual nature permits 25 

them to bind to rvalues (like rvalue references) as well as lvalues (like lvalue ref-26 

erences). Furthermore, they can bind to const or non-const objects, to volatile 27 

or non-volatile objects, even to objects that are both const and volatile. They 28 

can bind to virtually anything. Such unprecedentedly flexible references deserve a 29 

name of their own. I call them universal references.  30 
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Universal references arise in two contexts. The most common is function template 1 

parameters, such as this example from the sample code above: 2 

template<typename T> 3 
void f(T&& param);             // param is a universal reference 4 

The second context is auto declarations, including this one from the sample code 5 

above: 6 

auto&& var2 = var1;            // var2 is a universal reference 7 

What these contexts have in common is the presence of type deduction. In the tem-8 

plate f, the type of param is being deduced, and in the declaration for var2, var2’s 9 

type is being deduced. Compare that with the following examples (also from the 10 

sample code above), where type deduction is missing. If you see “T&&” without 11 

type deduction, you’re looking at an rvalue reference: 12 

void f(Widget&& param);        // no type deduction;  13 
                               // param is an rvalue reference 14 

Widget&& var1 = Widget();      // no type deduction;  15 
                               // var1 is an rvalue reference 16 

Because universal references are references, they must be initialized. The initializ-17 

er for a universal reference determines whether it represents an rvalue reference 18 

or an lvalue reference.  If the initializer is an rvalue, the universal reference corre-19 

sponds to an rvalue reference. If the initializer is an lvalue, the universal reference 20 

corresponds to an lvalue reference. For universal references that are function pa-21 

rameters, the initializer is provided at the call site: 22 

template<typename T>  23 
void f(T&& param);     // param is a universal reference 24 

Widget w; 25 
f(w);                  // lvalue passed to f; param's type is 26 
                       // Widget& (i.e., an lvalue reference) 27 

f(std::move(w));       // rvalue passed to f; param's type is 28 
                       // Widget&& (i.e., an rvalue reference) 29 

For a reference to be universal, type deduction is necessary, but it’s not sufficient. 30 

The form of the reference declaration must also be correct, and that form is quite 31 
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constrained. It must be precisely “T&&”.  Look again at this example from the sam-1 

ple code we saw earlier: 2 

template<typename T> 3 
void f(std::vector<T>&& param);  // param is an rvalue reference 4 

When f is invoked, the type  T will be deduced (unless the caller explicitly specifies 5 

it, an edge case we’ll not concern ourselves with). But the form of param’s type 6 

declaration isn’t “T&&,” it’s “std::vector<T>&&.” That rules out the possibility 7 

that param is a universal reference. param is therefore an rvalue reference, some-8 

thing that your compilers will be happy to confirm for you if you try to pass an 9 

lvalue to f: 10 

std::vector<int> v; 11 
f(v);                             // error! can't bind lvalue to 12 
                                  // rvalue reference 13 

Even the simple presence of a const qualifier is enough to disqualify a reference 14 

from being universal: 15 

template<typename T>  16 
void f(const T&& param);         // param is an rvalue reference 17 

If you’re in a template and you see a function parameter of type “T&&,” you might 18 

think you can assume that it’s a universal reference. You can’t. That’s because be-19 

ing in a template doesn’t guarantee the presence of type deduction.  Consider this 20 

push_back member function in std::vector: 21 

template<class T, class Allocator = allocator<T>>  // from C++ 22 
class vector {                                     // Standard 23 
public:                                          24 
  void push_back(T&& x);  25 
  … 26 
}; 27 

push_back’s parameter certainly has the right form for a universal reference, but 28 

there’s no type deduction in this case. That’s because push_back can’t exist with-29 

out a particular vector instantiation for it to be part of, and the type of that in-30 

stantiation fully determines the declaration for push_back. That is, saying 31 

std::vector<Widget> v; 32 

causes   33 
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class vector<Widget, allocator<Widget>> { 1 
public: 2 
  void push_back(Widget&& x);               // rvalue reference 3 
  … 4 
}; 5 

to be generated, and now you can see clearly that push_back employs no type de-6 

duction. This push_back for vector<T> (there are two—the function is overload-7 

ed) always declares a parameter of type rvalue-reference-to-T. 8 

In contrast, the conceptually similar emplace_back member function in 9 

std::vector does employ type deduction: 10 

template<class T, class Allocator = allocator<T>>  // still from 11 
class vector {                                     // C++ 12 
public:                                            // Standard 13 
  template <class... Args>  14 
  void emplace_back(Args&&... args); 15 
  … 16 
}; 17 

Here, the type parameter Args is independent of vector’s type parameter T, so 18 

Args must be deduced each time emplace_back is called. (Okay, Args is really a 19 

parameter pack, not a type parameter, but for purposes of this discussion, we can 20 

treat it as if it were a type parameter.) 21 

The fact that emplace_back’s type parameter is named Args, yet it’s still a uni-22 

versal reference, reinforces my earlier comment that it’s the form of a universal 23 

reference that must be “T&&”.  There’s no requirement that you use the name T. For 24 

example, the following template takes a universal reference, because the form 25 

(“type&&”) is right, and param’s type will be deduced (again, excluding the corner 26 

case where the caller explicitly specifies the type): 27 

template<typename MyTemplateType>         // param is a 28 
void someFunc(MyTemplateType&& param);    // universal reference 29 

I remarked earlier that auto variables can also be universal references. To be 30 

more precise, variables declared with the type auto&& are universal references, 31 

because type deduction takes place and they have the correct form (“T&&”). auto 32 

universal references are not as common as universal references used for function 33 

template parameters, but they do crop up from time to time in C++11. They crop 34 
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up a lot more in C++14, because C++14 lambda expressions may declare auto&& 1 

parameters. For example, if you wanted to write a C++14 lambda to record the 2 

time taken in an arbitrary function invocation, you could do this: 3 

auto timeFuncInvocation = [](auto&& func, auto&&... args) 4 
  { 5 
    start timer; 6 
    std::forward<decltype(func)>(func)(        // invoke func on 7 
      std::forward<decltype(args)>(args)...    // args in C++14 8 
      );  9 
    stop timer and record elapsed time; 10 
  }; 11 

If your reaction to the “std::forward<decltype(blah blah blah)>” code in-12 

side the lambda is, “What the…?!”, that probably just means you haven’t yet read 13 

Item 35. Don’t worry about it. The important thing in this Item is the auto&& pa-14 

rameters that the lambda declares. func is a universal reference that can be bound 15 

to any callable entity, lvalue or rvalue. args is one or more universal references 16 

(i.e., a universal reference parameter pack) that can be bound to any number of 17 

objects of arbitrary types. The result, thanks to auto universal references, is that 18 

timeFuncInvocation can time pretty much any function execution. (For infor-19 

mation on the difference between “any” and “pretty much any,” turn to Item 32.) 20 

Bear in mind that this entire Item—the foundation of universal references—is a 21 

lie…er, an abstraction. The underlying truth is known as reference-collapsing, a 22 

topic to which Item 30 is dedicated. But the truth doesn’t make the abstraction any 23 

less useful. Distinguishing between rvalue references and universal references will 24 

help you read source code more accurately (“Does that “T&&” I’m looking at bind to 25 

rvalues only or to everything?”), and it will avoid ambiguities when you communi-26 

cate with your colleagues (“I’m using a universal reference here, not an rvalue ref-27 

erence…”). It will also allow you to make sense of Items 27 and 28, which rely on 28 

the distinction. So embrace the abstraction. Revel in it. Just as Newton’s laws of 29 

motion (which are technically incorrect) are typically just as useful as and easier to 30 

apply than Einstein’s theory of general relativity (“the truth”), so is the notion of 31 

universal references normally preferable to working through the details of refer-32 

ence-collapsing. 33 
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Things to Remember 1 

 If a variable or parameter has type T&& for some deduced type T, it’s a univer-2 

sal reference.  3 

 If the form of the type isn’t precisely T&&, or if type deduction does not occur, 4 

T&& denotes an rvalue reference. 5 

 Universal references correspond to rvalue references if they’re initialized with 6 

rvalues. They correspond to lvalue references if they’re initialized with lvalues. 7 

 Item 27: Use std::move on rvalue references, std::forward 8 

on universal references. 9 

Rvalue references bind only to objects that are candidates for moving. If you have 10 

an rvalue reference parameter, you know that the object it’s bound to may be 11 

moved:  12 

class Widget { 13 
  Widget(Widget&& rhs);        // rhs definitely refers to an 14 
  …                            // object eligible for moving 15 
}; 16 

That being the case, you’ll want to pass such objects to other functions in a way 17 

that permits those functions to take advantage of the object’s  rvalueness. The way 18 

to do that is to cast parameters bound to such objects to rvalues. As Item 25 ex-19 

plains, that’s not only what std::move does, it’s what it was created for: 20 

class Widget { 21 
public: 22 
  Widget(Widget&& rhs)               // rhs is rvalue reference  23 
  : name(std::move(rhs.name)), 24 
    p(std::move(rhs.p)) 25 
    { … } 26 
  … 27 

private: 28 
  std::string name; 29 
  std::shared_ptr<SomeDataStructure> p; 30 
}; 31 

A universal reference, on the other hand (see Item 26), might be bound to an ob-32 

ject that’s eligible for moving. Universal references should be cast to rvalues only if 33 
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they were initialized with rvalues. Item 25 explains that this is precisely what 1 

std::forward does: 2 

class Widget { 3 
public: 4 
  template<typename T> 5 
  void setName(T&& newName)               // newName is 6 
  { name = std::forward<T>(newName); }    // universal reference  7 

  …  8 
}; 9 

In short, rvalue references should be unconditionally cast to rvalues (via 10 

std::move) when forwarding them to other functions, because they’re always 11 

bound to rvalues, and universal references should be conditionally cast to rvalues 12 

(via std::forward) when forwarding them, because they’re only sometimes 13 

bound to rvalues. 14 

 Item 25 explains that using std::forward on rvalue references can be made to 15 

exhibit the proper behavior, but the source code is wordy and unidiomatic, so you 16 

should avoid using std::forward with rvalue references. Even worse is the idea 17 

of using std::move with universal references, because that can have the effect of 18 

unexpectedly modifying lvalues (e.g., local variables): 19 

class Widget { 20 
public: 21 
  template<typename T> 22 
  void setName(T&& newName)         // universal reference 23 
  { name = std::move(newName); }    // compiles, but is 24 
  …                                 // bad, bad, bad! 25 

private: 26 
  std::string name; 27 
  std::shared_ptr<SomeDataStructure> p; 28 
}; 29 

std::string getWidgetName();        // factory function 30 

Widget w; 31 

auto n = getWidgetName();           // n is local variable 32 

w.setName(n);                       // moves n into w! 33 

…                                   // n's value now unknown 34 
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Here, the local variable n is passed to w.setName, which the caller can be forgiven 1 

for assuming is a read-only operation. But because setName internally uses 2 

std::move to unconditionally cast its reference parameter to an rvalue, n’s value 3 

will be moved into w.name, and n will come back from the call to setName with an 4 

unspecified value. That’s the kind of behavior that can move callers to despair—5 

possibly to violence. 6 

You might argue that setName shouldn’t have declared its parameter to be a uni-7 

versal reference.  Such references can't be const (see Item 26), yet setName sure-8 

ly shouldn't modify its parameter. You might point out that if setName had simply 9 

been overloaded for const lvalues and for rvalues, the whole problem could have 10 

been avoided. Like this: 11 

class Widget { 12 
public: 13 
  void setName(const std::string& newName)      // set from 14 
  { name = newName; }                           // const lvalue 15 

  void setName(std::string&& newName)           // set from 16 
  { name = std::move(newName); }                // rvalue 17 

  … 18 
}; 19 

That would certainly work in this case, but there are drawbacks. First, it’s more 20 

source code to write and maintain (two functions instead of a single template). 21 

Second, it can be less efficient.  For example, consider this use of setName: 22 

w.setName("Adela Novak"); 23 

With the version of setName taking a universal reference, the string literal "Adela 24 

Novak" would be passed to setName, where it would be conveyed to the construc-25 

tor for the std::string inside w. w's name data member would thus be construct-26 

ed directly from the string literal; no temporary std::string objects would arise. 27 

With the overloaded versions of setName, however, a temporary std::string 28 

object would be created for setName's parameter to bind to, and this temporary 29 

std::string would then be moved into w's data member. A call to setName 30 

would thus entail execution of one std::string constructor (to create the tem-31 

porary), one std::string move constructor (to move newName into w.name), and 32 
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one std::string destructor (to destroy the temporary). That's almost certainly a 1 

more expensive execution sequence than invoking only the std::string con-2 

structor taking a const char* pointer. The additional cost is likely to vary from 3 

implementation to implementation, and whether that cost is worth worrying 4 

about will vary from application to application and library to library, but the fact is 5 

that replacing a template taking a universal reference with a pair of functions 6 

overloaded on lvalue references and rvalue references is likely to incur a runtime 7 

cost in some cases.  If we generalize the example such that Widget’s data member 8 

may be of an arbitrary type (rather than knowing that it’s std::string), the per-9 

formance gap can widen considerably, because not all types are as cheap to move 10 

as std::string (see Item 31). 11 

The most serious problem with overloading on lvalues and rvalues, however, isn't 12 

the volume or idiomaticity of the source code, nor is it the code’s runtime perfor-13 

mance. It’s its lack of  scalability. Widget::setName takes only one parameter, so 14 

only two overloads are necessary in this example, but for functions taking more 15 

parameters, each of which could be an lvalue or an rvalue, the number of over-16 

loads grows geometrically: n parameters necessitates 2n overloads. And that's not 17 

the worst of it. Some functions—function templates, actually—take an unlimited 18 

number of parameters, each of which could be an lvalue or rvalue. The poster chil-19 

dren for such functions are std::make_shared, and, as of C++14, 20 

std::make_unique (see Item 23). Check out the declarations of their most com-21 

monly-used overloads: 22 

template<class T, class... Args>                 // from C++11 23 
shared_ptr<T> make_shared(Args&&... args);       // Standard 24 

template<class T, class... Args>                 // from C++14 25 
unique_ptr<T> make_unique(Args&&... args);       // Standard 26 

For functions like this, overloading on lvalues and rvalues is not an option: univer-27 

sal references are the only way to go. And inside such functions, I assure you, 28 

std::forward is applied to the universal reference parameters when they're 29 

passed to other functions. Which is exactly what you should do. 30 

Well, usually. Eventually. But not necessarily initially. In some cases, you'll want to 31 

use the object bound to an rvalue reference or a universal references more than 32 
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once in a single function, and you'll want to make sure that it's not moved from 1 

until you're otherwise done with it. In that case, you'll want to apply std::move 2 

(for rvalue references) or std::forward (for universal references) to only the 3 

final use of the reference. For example: 4 

template<typename T>                       // text is  5 
void setSignText(T&& text)                 // univ. reference 6 
{ 7 
  sign.setText(text);                      // use text, but 8 
                                           // don't modify it  9 

  auto now =                               // get current time 10 
    std::chrono::system_clock::now(); 11 

  signHistory.add(now, 12 
                  std::forward<T>(text));  // conditionally cast 13 
}                                          // text to rvalue 14 

Here, we want to make sure that text's value doesn't get changed by 15 

sign.setText, because we want to use that value when we call signHisto-16 

ry.add. Ergo the use of std::forward on only the final use of the universal ref-17 

erence. 18 

For std::move, the same thinking applies (i.e., apply std::move to an rvalue ref-19 

erence the last time it's used), but it's important to note that in a few  cases, you’ll 20 

want to call std::move_if_noexcept instead of std::move. To learn when and 21 

why, consult Item 16. 22 

If you're in a function that returns by value, and you're returning an object bound 23 

to an rvalue reference or a universal reference, you'll want to apply std::move or 24 

std::forward when you return the reference. To see why, consider an opera-25 

tor+ function to add two matrices together, where the left-hand matrix is known 26 

to be an rvalue (and can hence have its storage reused to hold the sum of the ma-27 

trices):  28 

Matrix operator+(Matrix&& lhs,     // by-value return 29 
                 const Matrix& rhs)  30 
{  31 
  lhs += rhs; 32 
  return std::move(lhs);           // move lhs into return value 33 
}   34 
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By casting lhs to an rvalue in the return statement (via std::move), lhs will be 1 

moved into the function's return value location. If the call to std::move were 2 

omitted, 3 

Matrix operator+(Matrix&& lhs,     // as above 4 
                 const Matrix& rhs)  5 
{  6 
  lhs += rhs; 7 
  return lhs;                      // copy lhs into return value 8 
}   9 

the fact that lhs is an lvalue would force compilers to instead copy it into the re-10 

turn value location.  Assuming that the Matrix type supports move construction 11 

that is more efficient than copy construction, using std::move in the return 12 

statement yields more efficient code.  13 

If Matrix does not support moving, casting it to an rvalue won't hurt, because the 14 

rvalue will simply be copied by Matrix’s copy constructor (see Item 25). If Matrix 15 

is later revised to support moving, operator+ will benefit from that change the 16 

next time it (operator+) is compiled. That being the case, there's nothing to be 17 

lost (and much to be gained) by applying std::move to rvalue references being 18 

returned from functions that return by value. 19 

The situation is similar for universal references and std::forward. Consider a 20 

function (really a function template) reduceAndCopy that takes a possibly-21 

unreduced Fraction object, reduces it, and then returns a copy of the reduced 22 

value. If the original object is an rvalue, its value should be moved into the return 23 

value (thus avoiding the expense of making a copy), but if the original is an lvalue, 24 

an actual copy must be created. Hence: 25 

template<typename T>               // universal reference param, 26 
Fraction reduceAndCopy(T&& frac)   // by-value return 27 
{ 28 
  frac.reduce(); 29 
  return std::forward<T>(frac);    // move rvalue into return 30 
}                                  // value, copy lvalue 31 

If the call to std::forward were omitted, frac would be unconditionally copied  32 

into reduceAndCopy's return value. 33 
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Some programmers take the information above and try to extend it to cover situa-1 

tions where it doesn't apply. “If applying std::move to an rvalue reference pa-2 

rameter being copied into a return value turns a copy construction into a move 3 

construction,” they reason, “I can perform the same optimization on local variables 4 

that I’m returning.”  In other words, they figure that given a function returning a 5 

local variable by value, such as this, 6 

Widget makeWidget()        // "Copying" version of makeWidget 7 
{ 8 
  Widget w;                // local variable 9 

  …                        // configure w 10 

  return w;                // "copy" w into return value 11 
} 12 

they can “optimize” it by turning the “copy” into a move: 13 

Widget makeWidget()        // Moving version of makeWidget 14 
{ 15 
  Widget w; 16 
  … 17 
  return std::move(w);     // move w into return value 18 
} 19 

My liberal use of quotation marks should have tipped you off that this line of rea-20 

soning is flawed. But why is it flawed?  21 

It’s flawed, because the Standardization Committee is way ahead of such pro-22 

grammers when it comes to this kind of optimization. It was recognized long ago 23 

that the “copying” version of makeWidget can avoid the need to copy the local var-24 

iable w by constructing it in the memory set aside for the function’s return value. 25 

This is known as the return value optimization (RVO), and it’s been expressly 26 

blessed by the C++ Standard for as long as there’s been one.  27 

Wording such a blessing is finicky business, because you want to permit such copy 28 

elision only in places where it won’t affect the observable behavior of the software. 29 

Paraphrasing the legalistic (arguably toxic) prose of the Standard, this particular 30 

blessing says that compilers may elide the copying (or the moving) of a local vari-31 

able (or a parameter that was passed by value) in a function returning by value if 32 

(1) the type of the local variable is the same as that returned by the function and 33 
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(2) the local variable is what’s being returned. With that in mind, look again at the 1 

“copying” version of makeWidget: 2 

Widget makeWidget()        // "Copying" version of makeWidget 3 
{ 4 
  Widget w; 5 
  … 6 
  return w;                // "copy" w into return value 7 
} 8 

Both conditions are fulfilled here, and you can trust me when I tell you that every 9 

decent C++ compiler will employ the RVO to avoid copying w.  That means that the 10 

“copying”  version of makeWidget doesn’t, in fact, copy anything—at least not in a 11 

release build. 12 

The moving version of makeWidget does just what its name says it does (assuming 13 

Widget offers a move constructor): it moves the contents of w into makeWidget’s 14 

return value location. But why don’t compilers use the RVO to eliminate the move, 15 

again constructing w in the memory set aside for the function’s return value? The 16 

answer is simple: they’re not allowed to. Condition (2) stipulates that the RVO may 17 

be performed only if what’s being returned is a local variable, but that’s not what 18 

the moving version of makeWidget is doing.  Look again at its return statement: 19 

return std::move(w); 20 

What’s being returned here isn’t w, it’s the result of calling a function, namely, 21 

std::move. Returning the result of a function call doesn’t satisfy the conditions 22 

required for the RVO to be valid, so compilers must move w into the function’s re-23 

turn value location. Developers trying to help their compilers optimize by applying 24 

std::move to a local variable that’s being returned are actually limiting the opti-25 

mization options available to the compilers! There are situations where applying 26 

std::move to a local variable can be a reasonable thing to do (i.e., when you’re 27 

passing it to a function and you know you won’t be using the variable any more), 28 

but as part of a return statement when the RVO would otherwise be available is 29 

assuredly not one of them. 30 
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Things to remember 1 

 Apply std::move to rvalue references and std::forward to universal refer-2 

ences the last time each is used. 3 

 Do the same thing for rvalue references and universal references being re-4 

turned from functions that return by value. 5 

 Never apply std::move or std::forward to local objects (including by-value 6 

parameters) if they would otherwise be eligible for the return value optimiza-7 

tion. 8 

 Item 28: Avoid overloading on universal references. 9 

Suppose you need to write a function that takes a name as a parameter, logs the 10 

current date and time, then adds the name to a global data structure. That is, you 11 

need to write a function that looks something like this: 12 

std::set<std::string> names;            // global data structure  13 

void logAndAdd(const std::string& name)  14 
{ 15 
  auto now =                            // get current time 16 
    std::chrono::system_clock::now(); 17 

  log(now, "logAndAdd");                // make log entry 18 

  names.emplace(name);                  // add name to global  19 
}                                       // structure; Item 18  20 
                                        // has info on emplace 21 

This isn’t unreasonable code, but it’s not as efficient as it could be.  Consider three 22 

potential calls: 23 

std::string petName("Darla"); 24 

logAndAdd(petName);                   // pass lvalue std::string 25 

logAndAdd(std::string("Persephone")); // pass rvalue std::string 26 

logAndAdd("Patty Dog");               // pass string literal 27 

In the first call, logAndAdd’s parameter name is bound to the variable petName. 28 

Within logAndAdd, name is ultimately passed to names.emplace. Because name is 29 
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an lvalue, it is copied into names.  There’s no way to avoid that copy, because an 1 

lvalue (petName) was passed into logAndAdd in the first place. 2 

In the second call, the parameter name is bound to an rvalue (the temporary 3 

std::string explicitly created from "Persephone"). name itself is an lvalue, so 4 

it’s copied into names, but we recognize that, in principle, its value could be moved 5 

into names. In this call, we pay for a copy, but we should be able to get by with only 6 

a move. 7 

In the third call, the parameter name is again bound to an rvalue, but this time it’s 8 

to a temporary std::string that’s implicitly created from "Patty Dog". As in the 9 

second call, name is copied into names, but in this case, the argument originally 10 

passed to logAndAdd was a string literal. Had that string literal been passed di-11 

rectly to the call to emplace, there would have been no need to create a temporary 12 

std::string at all. Instead, emplace would have used the string literal to create 13 

the std::string object directly inside the std::set. In this third call, then, 14 

we’re paying to copy a std::string, yet there’s really no reason to pay even for a 15 

move, much less a copy. 16 

We can eliminate the inefficiencies in the second and third calls by rewriting lo-17 

gAndAdd to take a universal reference (see Item 26) and, in accord with Item 27,    18 

std::forwarding this reference to emplace. The results speak for themselves: 19 

template<typename T>  20 
void logAndAdd(T&& name) 21 
{ 22 
  auto now = std::chrono::system_clock::now(); 23 
  log(now, "logAndAdd"); 24 
  names.emplace(std::forward<T>(name));  25 
} 26 

std::string petName("Darla");          // as before 27 

logAndAdd(name);                       // as before, copy 28 
                                       // lvalue into set 29 

logAndAdd(std::string("Persephone"));  // move rvalue instead 30 
                                       // of copying it 31 

logAndAdd("Patty Dog");                // create std::string 32 
                                       // in set instead of  33 
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                                       // copying a temporary 1 
                                       // std::string 2 

Hurray, optimal efficiency! 3 

Were this the end of the story, we could stop here and go home happy, but I ha-4 

ven’t told you that clients don’t always have direct access to the names that lo-5 

gAndAdd requires. Some clients have only an index that logAndAdd uses to look 6 

up the corresponding name in a table. To support such clients, logAndAdd is over-7 

loaded: 8 

std::string nameFromIdx(int idx);      // return name 9 
                                       // corresponding to idx 10 

void logAndAdd(int idx)  11 
{ 12 
  auto now = std::chrono::system_clock::now(); 13 
  log(now, "logAndAdd"); 14 
  names.emplace(nameFromIdx(idx)); 15 
} 16 

Resolution of calls to the two overloads works as expected: 17 

std::string petName("Darla");          // as before 18 

logAndAdd(petName);                    // as before, these  19 
logAndAdd(std::string("Persephone"));  // calls all invoke  20 
logAndAdd("Patty Dog");                // the T&& overload 21 

logAndAdd(22);                         // calls int overload 22 

Actually, resolution works as expected only if you don’t expect too much. Suppose 23 

a client has a short holding an index and passes that to logAndAdd: 24 

short nameIdx; 25 
…                                      // give nameIdx a value 26 

logAndAdd(nameIdx);                    // error! 27 

The comment on the last line isn’t terribly illuminating, so let me explain what 28 

happens here. 29 

There are two logAndAdd overloads. The one taking a universal reference can de-30 

duce T to be short, thus yielding an exact match. The overload with an int pa-31 

rameter can match the short argument only with a promotion. Per the normal 32 
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overload resolution rules, an exact match beats a match with a promotion, so the 1 

universal reference overload is invoked. 2 

Within that overload, the parameter name is bound to the short that’s passed in.  3 

name is then std::forwarded to the emplace member function on a 4 

std::set<std::string>, which, in turn, dutifully forwards it to the 5 

std::string constructor. There is no constructor for std::string that takes a 6 

short, so the std::string constructor call inside the call to set::emplace in-7 

side the call to logAndAdd fails. All because the universal reference overload was a 8 

better match for a short argument than an int. 9 

Functions taking universal references are the greediest functions in C++.  They in-10 

stantiate to create exact matches for almost any type of argument. (The few kinds 11 

of arguments where this isn’t the case are described in Item 32.) This is why com-12 

bining overloading and universal references is almost always a bad idea: the uni-13 

versal reference overload vacuums up far more argument types than the developer 14 

doing the overloading generally expects. 15 

An easy way to topple into this pit is to write a perfect forwarding constructor. A 16 

small modification to the logAndAdd example demonstrates the problem. Instead 17 

of writing a function that can take either a std::string or an index that can be 18 

used to look up a std::string, imagine a class Person to which we can pass ei-19 

ther a std::string or an index: 20 

class Person { 21 
public: 22 
  template<typename T>          23 
  explicit Person(T&& n)           // perfect forwarding ctor; 24 
  : name(std::forward<T>(n)) {}    // initializes data member 25 

  explicit Person(int idx)         // int ctor 26 
  : name(nameFromIdx(idx)) {}  27 
  … 28 

private: 29 
  std::string name; 30 
}; 31 

As was the case with logAndAdd, passing an integral type other than int (e.g., 32 

std::size_t, short, long, etc.) will call the universal reference constructor 33 
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overload instead of the int overload, and that will lead to compilation failures. 1 

The problem is much worse in this case, however, because there’s more overload-2 

ing present in Person that meets the eye. Item 19 explains that, under the appro-3 

priate conditions, C++ will generate both copy and move constructors, and this is 4 

true even if the class contains a templatized constructor that could be instantiated 5 

to produce the signature of the copy or move constructor. If the copy and move 6 

constructors for Person are thus generated, Person will effectively look like this: 7 

class Person { 8 
public: 9 
  template<typename T>        // perfect forwarding ctor 10 
  explicit Person(T&& n); 11 

  explicit Person(int idx);   // int ctor 12 

  Person(const Person& rhs);  // copy ctor (compiler-generated) 13 

  Person(Person&& rhs);       // move ctor (compiler-generated) 14 
  … 15 

}; 16 

This leads to behavior that’s intuitive only if you’ve spent so much time around 17 

compilers and compiler-writers, you’ve forgotten what it’s like to be human: 18 

Person p("Bart"); 19 

auto clone(p);                // create new Person from p; 20 
                              // this won't compile! 21 

Here we’re trying to create a Person from another Person, which seems like 22 

about as obvious a case for copy construction as one can get. (p’s an lvalue, so we 23 

can banish any thoughts we might have about the “copying” being accomplished 24 

through a move operation.) But this code won’t call the copy constructor. It will 25 

call the perfect-forwarding constructor. That function will then try to initialize 26 

Person’s std::string data member with a Person object (p). std::string 27 

having no constructor taking a Person, your compilers will throw up their hands 28 

in exasperation, possibly punishing you with a long and incomprehensible error 29 

message as an expression of their displeasure. 30 

“Why,” you might wonder, “does the perfect-forwarding constructor get called in-31 

stead of the copy constructor? We’re initializing a Person with another Person!” 32 
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Indeed we are, but compilers are sworn to uphold the rules of C++, and the rules of 1 

relevance here are the ones governing the resolution of calls to overloaded func-2 

tions. 3 

Compilers reason as follows. clone is being initialized with a non-const lvalue 4 

(p), and that means that the templatized constructor can be instantiated to take a 5 

non-const lvalue of type Person. After such instantiation, the Person class looks 6 

like this: 7 

class Person { 8 
public: 9 
  explicit Person(Person& n);  // instantiated from perfect- 10 
                               // forwarding template 11 

  explicit Person(int idx);    // as before 12 

  Person(const Person& rhs);   // copy ctor (compiler-generated) 13 

  … 14 

}; 15 

In the statement, 16 

auto clone(p); 17 

p could be passed to either the copy constructor or the instantiated template. Call-18 

ing the copy constructor would require adding const to p to match the copy con-19 

structor’s parameter’s type, but calling the instantiated template requires no such 20 

addition. The overload generated from the template is thus a better match, so 21 

compilers do what they’re designed to do: generate a call to the better-matching 22 

function. “Copying” non-const lvalues of type Person is thus handled by the per-23 

fect-forwarding constructor, not the copy constructor.  24 

If we change the example slightly so that the object to be copied is const, we hear 25 

an entirely different tune: 26 

const Person cp("Bart");      // object is now const 27 

auto clone(cp);               // calls copy constructor! 28 
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Because the object to be copied is now const, it’s an exact match for the parame-1 

ter taken by the copy constructor. The templatized constructor can be instantiated 2 

to have the same signature, 3 

class Person { 4 
public: 5 
  explicit Person(const Person& n);    // instantiated from 6 
                                       // template 7 

  Person(const Person& rhs);           // copy ctor 8 
                                       // (compiler-generated) 9 
  … 10 
}; 11 

but this doesn’t matter, because one of the overloading-resolution rules in C++ is 12 

that in situations where a template instantiation and a non-template function (i.e., 13 

a “normal” function) are equally good matches for a function call, the normal func-14 

tion is preferred.  The copy constructor (a normal function) thereby trumps an in-15 

stantiated template with the same signature.  16 

(If you’re wondering why compilers generate a copy constructor when they could 17 

instantiate a templatized constructor to get the signature that the copy constructor 18 

would have, review Item 19.) 19 

The interaction among perfect-forwarding constructors and compiler-generated 20 

copy and move operations develops even more wrinkles when inheritance enters 21 

the picture. In particular, the conventional implementations of derived class copy 22 

and move operations behave quite surprisingly. Here, take a look: 23 

class SpecialPerson: public Person { 24 
public: 25 
  SpecialPerson(const SpecialPerson& rhs)  // copy ctor; calls 26 
  : Person(rhs)                            // base class  27 
  { … }                                    // forwarding ctor! 28 

  SpecialPerson(SpecialPerson&& rhs)       // move ctor; calls 29 
  : Person(std::move(rhs))                 // base class  30 
  { … }                                    // forwarding ctor! 31 
}; 32 

As the comments indicate, the derived class copy and move constructors don’t call 33 

their base class’s copy and move constructors, they call the base class’s perfect-34 

forwarding constructor! To understand why, note that the derived class functions 35 
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are using arguments of type SpecialPerson to pass to their base class (they actu-1 

ally pass const SpecialPersons, but in this case, const is immaterial), then 2 

work through the template instantiation and overloading-resolution consequences 3 

for the constructors in class Person. Ultimately, the code won’t compile, because 4 

there’s no std::string constructor taking a SpecialPerson. 5 

I hope that by now I’ve convinced you that overloading on universal reference pa-6 

rameters is something you should avoid if at all possible. But if overloading on 7 

universal references is a bad idea, what do you do if you need a function that for-8 

wards most argument types, yet needs to treat some argument types in a special 9 

fashion? That egg can be unscrambled in a number of ways. So many, in fact, that 10 

I’ve devoted an entire Item to them. It’s Item 29. The next Item. Keep reading, 11 

you’ll bump right into it. 12 

Things to Remember 13 

 Overloading on universal references almost always leads to the universal ref-14 

erence overload being called more frequently than expected. 15 

 Perfect-forwarding constructors are especially problematic, because they’re 16 

typically better matches than copy constructors for non-const lvalues, and they 17 

can hijack derived class calls to base class copy and move constructors. 18 

 Item 29: Familiarize yourself with alternatives to overload-19 

ing on universal references. 20 

Item 28 explains that overloading on universal references can lead to a variety of 21 

problems, both for freestanding and for member functions (especially construc-22 

tors). Yet it also gives examples where such overloading could be useful. If only it 23 

would behave the way we’d like! This Item explores ways to achieve the desired 24 

behavior, either through designs that avoid overloading on universal references or 25 

by employing them in ways that constrain the types of arguments they can match. 26 

The discussion that follows builds on the examples introduced in Item 28. If you 27 

haven’t read that Item recently, you’ll want to review it before continuing.  28 
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Abandoning overloading 1 

The first example in Item 28, logAndAdd, is representative of the many functions 2 

that can avoid the drawbacks of overloading on universal references by simply us-3 

ing different names for the would-be overloads. The two logAndAdd overloads, for 4 

example, could be broken into logAndAddName and logAndAddNameIdx. Alas, this 5 

approach won’t work for the second example we considered, the Person construc-6 

tor, because constructor names are fixed by the language. Besides, who wants to 7 

give up overloading?  8 

Passing by const T& 9 

An alternative is to revert to C++98 and replace pass-by-universal-reference with 10 

pass-by-(lvalue)-reference-to-const. In fact, that’s the first approach Item 28 con-11 

siders (on page 213). The drawback is that the design isn’t as efficient as we’d pre-12 

fer. Knowing what we now know about the interaction of universal references and 13 

overloading, giving up some efficiency to keep things simple might be a more at-14 

tractive trade-off than it initially appeared. 15 

Passing by value 16 

An approach that often allows you to dial up performance without any increase in 17 

complexity is to replace pass-by-reference parameters with, counterintuitively, 18 

pass-by-value. “Pass by reference” here refers to any kind of reference. This strate-19 

gy can supplant both C++98’s pass-by-lvalue-reference-to-const and C++11’s 20 

pass-by-universal-reference. The design adheres to the advice in Item 17 to pass 21 

objects by value when you know you’ll copy them, so I’ll defer to that Item for a 22 

detailed discussion of how things work and how efficient they are. Here, I’ll just 23 

show how the technique could be used in the Person example: 24 

class Person { 25 
public: 26 
  Person(std::string n)          // replaces T&& ctor; see 27 
  : name(std::move(n)) {}        // Item 17 for use of std::move 28 

  Person(int idx)                // as before 29 
  : name(nameFromIdx(idx)) {}  30 
  … 31 
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private: 1 
  std::string name; 2 
}; 3 

Because there’s no std::string constructor taking only an integer, all int and 4 

int-like arguments to a Person constructor (e.g., std::size_t, short, long, 5 

etc.) get funneled to the int overload. Similarly, all arguments of type 6 

std::string (and things from which std::strings can be created, e.g., literals 7 

such as "Ruth") get passed to the constructor taking a std::string. There are 8 

thus no surprises for callers. You could argue, I suppose, that some people might 9 

be surprised that using 0 or NULL to indicate a null pointer would invoke the int 10 

overload, but such people should be referred to Item 8 and required to read it re-11 

peatedly until the thought of using 0 or NULL as a null pointer makes them recoil. 12 

Tag dispatch 13 

Neither pass by lvalue-reference-to-const nor pass by value offer support for per-14 

fect forwarding. If your motivation for the use of a universal reference is perfect 15 

forwarding, you have to use a universal reference; there’s no other choice. Yet we 16 

don’t want to abandon overloading. So if we don’t give up overloading and we 17 

don’t give up universal references, how can we avoid overloading on universal ref-18 

erences? 19 

It’s actually not that hard. Calls to overloaded functions are resolved by looking at 20 

all the parameters of all the overloads as well as all the arguments at the call site, 21 

then choosing the function with the best overall match—taking into account all 22 

parameter/argument combinations. A universal reference parameter generally 23 

provides an exact match for whatever’s passed in, but if the universal reference is 24 

part of a parameter list containing other parameters that are not universal refer-25 

ences, sufficiently poor matches on the non-universal reference parameters can 26 

knock an overload with a universal reference out of the running. That’s the basis 27 

behind the tag dispatch approach, and an example will make the foregoing descrip-28 

tion easier to understand.  29 

We’ll apply tag dispatch to the logAndAdd example from page 214. Here’s that 30 

code, to save you the trouble of looking it up: 31 
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std::set<std::string> names;           // global data structure  1 

template<typename T>                   // make log entry, add 2 
void logAndAdd(T&& name)               // name to data structure 3 
{ 4 
  auto now = std::chrono::system_clock::now(); 5 
  log(now, "logAndAdd"); 6 
  names.emplace(std::forward<T>(name));  7 
} 8 

By itself, this function works fine, but were we to introduce the overload taking an 9 

int that’s used to look up objects by index, we’d be back in the troubled land of 10 

Item 28. The goal of this Item is to avoid that. Rather than adding the overload, 11 

we’ll reimplement logAndAdd to delegate to two other functions, one for integral 12 

values and one for everything else. logAndAdd itself will accept all argument 13 

types, both integral and non-integral.  14 

The two functions doing the real work will be named logAndAddImpl, i.e., we’ll 15 

use overloading. One of the functions will take a universal reference. So we’ll have 16 

both overloading and universal references. But each function will also take a sec-17 

ond parameter, one that indicates whether the argument being passed is integral. 18 

This second parameter is what will prevent us from tumbling into the morass de-19 

scribed in Item 28, because we’ll arrange it so that the second parameter will be 20 

the factor that determines which overload is selected. 21 

Yes, I know, “Blah, blah, blah. Stop talking and show me the code!” No problem. 22 

Here’s an almost- correct version of the updated logAndAdd:  23 

template<typename T> 24 
void logAndAdd(T&& name)  25 
{  26 
  logAndAddImpl(std::forward<T>(name),       27 
                std::is_integral<T>());     // not quite correct 28 
} 29 

This function forwards its parameter to logAndAddImpl, but it also passes an ar-30 

gument indicating whether the type it received (T) is integral. At least, that's what 31 

it's supposed to do. For integral arguments that are rvalues, it’s also what it does. 32 

But, as Item 30 explains, if an lvalue argument is passed to the universal reference 33 

name, the type deduced for T will be an lvalue reference. So if an lvalue of type int 34 

is passed to logAndAdd, T will be deduced to be int&. int& is not an integral type, 35 
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because references aren't integral types. That means that std::is_integral<T> 1 

will be false for any lvalue argument, even if the argument really does represent an 2 

integral value. 3 

Recognizing the problem is tantamount to identifying the solution, because the 4 

ever-handy Standard C++ Library has a type trait, std::remove_reference, that 5 

does both what its name suggests and what we need: remove any reference quali-6 

fiers from a type. The proper way to write logAndAdd is therefore: 7 

template<typename T> 8 
void logAndAdd(T&& name)  9 
{  10 
  logAndAddImpl( 11 
    std::forward<T>(name),       12 
    std::is_integral<typename std::remove_reference<T>::type>() 13 
  );  14 
} 15 

This does the trick. (In C++14, you can save a few keystrokes by using 16 

std::remove_reference_t<T> in place of the highlighted text. For details, see 17 

Item 9.) 18 

With that taken care of, we can shift our attention to the function being called, lo-19 

gAndAddImpl. There are two overloads, and the first is applicable only to non-20 

integral types (i.e., to types where std::is_integral<typename 21 

std::remove_reference<T>::type> is false): 22 

template<typename T>                             // non-integral 23 
void logAndAddImpl(T&& name, std::false_type)    // argument:  24 
{                                                // add it to  25 
  auto now = std::chrono::system_clock::now();   // global data 26 
  log(now, "logAndAdd");                         // structure 27 
  names.emplace_back(std::forward<T>(name));  28 
}                                        29 

This is straightforward code, once you understand the mechanics behind the high-30 

lighted parameter. Conceptually, logAndAdd passes a boolean to logAndAddImpl 31 

indicating whether an integral type was passed to logAndAdd, but true and 32 

false are runtime values, and we need to use overload resolution—a compile-time 33 

phenomenon—to choose the correct logAndAddImpl overload. That means we 34 

need a type that corresponds to true and a different type that corresponds to 35 
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false. This need is common enough that the Standard Library provides what is 1 

required under the names  std::true_type and std::false_type. The argu-2 

ment passed to logAndAddImpl by logAndAdd is an object of a type that inherits 3 

from std::true_type if T is integral and from std::false_type if T is not inte-4 

gral. The net result is that this logAndAddImpl overload is a viable candidate for 5 

the call in logAndAdd only if T is not an integral type. 6 

The second overload covers the opposite case: when T is an integral type. In that 7 

event, logAndAddImpl simply finds the name corresponding to the passed-in in-8 

dex and passes that name back to logAndAdd: 9 

std::string nameFromIdx(int idx);             // as in Item 28 10 

void logAndAddImpl(int idx, std::true_type)   // integral 11 
{                                             // argument: look 12 
  logAndAdd(anyFromIdx(idx));                 // up name and 13 
}                                             // call logAndAdd 14 
                                              // with it 15 

By having logAndAddImpl for an index look up the corresponding name and pass 16 

it to logAndAdd (from where it will be std::forwarded to the other logAn-17 

dAddImpl overload), we avoid the need to put the logging code in both logAn-18 

dAddImpl overloads. 19 

In this design, the types std::true_type and std::false_type are “tags” 20 

whose only purpose is to force overload resolution to go the way we want. Notice 21 

that we don’t even name those parameters. They serve no purpose at runtime, and 22 

in fact we hope that compilers will recognize that tag parameters are unused and 23 

will optimize them out of the program's execution image. (Some compilers do, at 24 

least some of the time.) The call to the overloaded implementation functions inside 25 

logAndAdd “dispatches” the work to the correct overload by causing the proper 26 

tag object to be created. Hence the name for this design: tag dispatch. It’s a stand-27 

ard building block of template metaprogramming, and the more you look at code 28 

inside contemporary C++ libraries, the more often you’ll encounter it.  29 

For our purposes, what’s important about tag dispatch is less how it works and 30 

more how it permits us to combine universal references and overloading without 31 

the problems described in Item 28. The dispatching function—logAndAdd—takes 32 



Page 223 

 

an unconstrained universal reference parameter, but this function is not overload-1 

ed. The implementation functions—logAndAddImpl—are overloaded, and one 2 

takes a universal reference parameter, but resolution of calls to these functions 3 

depends not just on the universal reference parameter, but also on the tag parame-4 

ter, and the tag values are designed so that no more than one overload will ever be 5 

a viable match. As a result, it’s the tag that determines which overload gets called. 6 

The fact that the universal reference parameter will always generate an exact 7 

match for its argument is immaterial. 8 

Tag dispatch constructors 9 

A keystone of tag dispatch is the existence of a single (unoverloaded) function as 10 

the client API. This single function dispatches the work to be done to the imple-11 

mentation functions. Creating an unoverloaded dispatch function is usually easy, 12 

but the second problem case Item 28 considers, that of the perfect-forwarding 13 

constructor for the Person class (see page 216), is an exception. Compilers may 14 

generate copy and move constructors themselves, so even if you write only one 15 

constructor and use tag dispatch within it, some constructor calls may be handled 16 

by compiler-generated functions that bypass the tag dispatch system.  17 

Frankly, the real problem is not that the compiler-generated functions sometimes 18 

bypass the tag dispatch design, it’s that they don’t always pass it by. We virtually 19 

always want the copy constructor for a class to handle requests to copy lvalues of 20 

that type, but, as Item 28 demonstrates, providing a constructor taking a universal 21 

reference causes the universal reference constructor (instead of the copy construc-22 

tor) to be called when copying non-const lvalues.  23 

What we need is a way to tell compilers, “Look, when I’m constructing an object 24 

from another object of the same type, just do the normal thing: copy each member 25 

of an lvalue object, and move each member of an rvalue object. Don’t worry about 26 

whether the initializing object is const or not, just do a normal copy or move.” 27 

Brace yourself for good news, because there is, in fact, a way to say that. 28 

Before we see what it is, let’s look at a tag-dispatching Person constructor. The 29 

design is identical to that we saw for logAndAdd, but we’ll apply a minor twist. 30 

We’ll take advantage of C++11’s constructor delegation to have other constructors 31 
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act as implementation functions. Using constructor delegation isn’t necessary in 1 

this example, but it’s a good habit to get into in contexts such as this, because it 2 

also works with const and reference data members, which may be initialized only 3 

during construction. The constructors we’ll delegate to aren’t designed to be called 4 

directly, so we’ll declare them private. 5 

Here’s the code, where I’m employing C++14’s std::remove_reference_t<T> 6 

instead of C++11’s wordier “typename std::remove_reference<T>::type”: 7 

class Person { 8 
public: 9 
  template<typename T>               // dispatch to other ctors 10 
  explicit Person(T&& initVal)       // via ctor delegation 11 
  : Person( 12 
      initVal, 13 
      std::is_integral<std::remove_reference_t<T>>()  // C++14 14 
    )                                                 // only 15 
  {}  16 

  … 17 

private: 18 
  template<typename T>                      // private ctor for 19 
  Person(T&& n, std::true_type)             // integral args  20 
  : Person(nameFromIdx(std::forward<T>(n)))  21 
  {} 22 

  template<typename T>                      // private ctor for  23 
  Person(T&& n, std::false_type)            // non-integral args 24 
  : name(std::forward<T>(n))  25 
  {} 26 

  std::string name;                         // as in Item 28 27 
}; 28 

Our goal is to modify this class so that the universal reference constructor never 29 

gets invoked if a Person is created from another Person.  30 

Our approach is based on three observations. First, a class may contain variants of 31 

the copy operations. In particular, classes may specify different copy constructors 32 

for const and non-const objects. Second, =default can be used to get the “nor-33 

mal” implementation of any special member function (see Item 19), including all 34 

copy operation variants. Third, as Item 28 explains, if a template can be instantiat-35 
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ed with the same signature as a non-template function, calls to that function signa-1 

ture invoke the normal function, not the template instantiation.  2 

So what we’ll do is manually declare the copy and move operation signatures we 3 

want to behave “normally,” (i.e., to not use tag dispatch), and we’ll implement them 4 

using =default. The existence of these functions will prevent the universal refer-5 

ence constructor from being instantiated with their signatures. Hence: 6 

class Person { 7 
public: 8 
  template<typename T>                // as before,  9 
  explicit Person(T&& initVal);       // tag-dispatching ctor 10 

  Person(const Person&) = default;    // copy-construct from 11 
                                      // const lvalue 12 

  Person(Person&) = default;          // copy-construct from 13 
                                      // non-const lvalue 14 

  Person(Person&&) = default;         // move-construct 15 
                                      // from (non-const) rvalue 16 
  … 17 
}; 18 

You might wonder why there’s only a single move constructor here, i.e., why 19 

there’s no “move constructor” taking a const Person&&. That’s because the only 20 

valid move constructor signature is the one above; there’s no const variant. 21 

Item 25 explains that it makes no sense to try to move from a const object, so C++ 22 

doesn’t recognize a constructor taking a const rvalue reference as a special mem-23 

ber function.  24 

Because this Item is already too long, I’ll leave it to you to verify that when Person 25 

is defined like this, creation of a Person from another Person will bypass the uni-26 

versal reference constructor and do the “normal” thing, regardless of whether the 27 

source object is an lvalue or an rvalue and regardless of whether it’s const. 28 

Item 28 points out that a second problem with tag-dispatching constructors is that 29 

they interact poorly with inheritance, and it gives this example:  30 

class SpecialPerson: public Person { 31 
public: 32 
  SpecialPerson(const SpecialPerson& rhs)  // copy ctor; calls 33 
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  : Person(rhs)                            // base class  1 
  { … }                                    // forwarding ctor! 2 

  SpecialPerson(SpecialPerson&& rhs)       // move ctor; calls 3 
  : Person(std::move(rhs))                 // base class  4 
  { … }                                    // forwarding ctor! 5 
}; 6 

The good news is that if you can live with the compiler-generated copy and move 7 

operations, this problem doesn’t arise. Such operations will call their base class 8 

counterparts, just as you’d hope.  9 

If you need to implement these functions yourself, you have to make sure that you 10 

pass base class arguments to your base class constructors. That’s not what hap-11 

pens in the code above. There, both SpecialPerson constructors pass rhs as an 12 

argument to the Person constructor, but rhs’s basic type is SpecialPerson, not 13 

Person. That will cause the universal reference constructor in Person to instanti-14 

ate and “steal” what you’d like to be calls to the Person copy and move construc-15 

tors. The solution is to cast away the derived-ness of the argument you pass to the 16 

base class by casting it to a base class reference: 17 

class SpecialPerson: public Person { 18 
public: 19 
  SpecialPerson(const SpecialPerson& rhs)          // now calls 20 
  : Person(static_cast<const Person&>(rhs))        // base copy 21 
  { … }                                            // ctor 22 

  SpecialPerson(SpecialPerson&& rhs)               // now calls  23 
  : Person(static_cast<Person&&>(std::move(rhs)))  // base move 24 
  { … }                                            // ctor 25 
}; 26 

Note how the copy constructor casts rhs to an lvalue reference, while the move 27 

constructor casts it to an rvalue reference. Subtilties such as this are one of the 28 

reasons you should really try to follow Item 19’s advice to avoid writing your own 29 

copy and move operations. 30 

Trade-offs 31 

The first three techniques considered in this Item—abandoning overloading, pass-32 

ing by const T&, and passing by value—specify a type for each parameter in the 33 

function(s) to be called. Tag dispatch uses perfect forwarding, hence doesn’t speci-34 
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fy types for the parameters. This fundamental decision—to specify a type or not—1 

has important consequences. 2 

As a rule, perfect forwarding is more efficient, because it avoids the creation of 3 

temporary objects solely for the purpose of conforming to the type of a parameter 4 

declaration. In the case of the Person constructor, perfect forwarding permits a 5 

string literal such as "Nancy" to be forwarded to the constructor for the 6 

std::string inside Person, whereas techniques not using perfect forwarding 7 

must create a temporary std::string object from the string literal to satisfy the 8 

parameter specification for the Person constructor.  9 

But perfect forwarding has drawbacks. One is that some kinds of arguments can’t 10 

be perfect-forwarded, even though they can be passed to functions taking specific 11 

types. Item 32 explores these perfect forwarding failure cases.  12 

A second issue is the comprehensibility of error messages when clients pass inva-13 

lid arguments. Suppose, for example, a client creating a Person object passes a 14 

string literal made up of char16_ts (a type introduced in C++11 to represent 16-15 

bit characters) instead of chars (which is what a std::string consists of): 16 

Person p(u"Konrad Zuse");    // "Konrad Zuse" consists of 17 
                             // characters of type std::char16_t 18 

With the first three approaches examined in this Item, compilers will see that the 19 

available constructors take either int or std::string, and they'll produce a 20 

more or less straightforward message explaining that there's no conversion from 21 

char16_t* to int or std::string.  22 

With an approach based on universal reference parameters, however, the 23 

char16_t* pointer gets bound to the constructor’s parameter without complaint. 24 

From there it’s forwarded to the constructor of Person’s std::string data 25 

member, and it’s only at that point that the mismatch between what the caller 26 

passed in (essentially a char16_t* pointer) and what’s required (any type ac-27 

ceptable to the std::string constructor) is discovered. The resulting error mes-28 

sage is likely to be, er, impressive. With one of the compilers I use, it’s 158 lines 29 

long. In this example, the universal reference is forwarded only once (from the 30 

Person constructor to the std::string constructor), but the more complex the 31 
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system, the more likely that a universal reference is forwarded through several 1 

layers of function calls before finally arriving at a site that knows what argument 2 

type(s) are acceptable. The more times the universal reference is forwarded, the 3 

more baffling the error message when something goes wrong. Many developers 4 

find that this issue alone is grounds to reserve universal reference parameters for 5 

interfaces where performance is a foremost concern. 6 

Things to Remember 7 

 Alternatives to the combination of universal references and overloading in-8 

clude the use of distinct function names, passing parameters by (lvalue)-9 

reference-to-const, passing parameters by value, and using tag dispatch. 10 

 Universal reference parameters often have efficiency advantages, but they also 11 

have usability disadvantages. 12 

 Item 30: Understand reference collapsing. 13 

Item 25 remarks that when an argument is passed to a template function, the de-14 

duced type for the template parameter encodes whether that argument is an 15 

lvalue or an rvalue. The Item fails to mention that this happens only when the ar-16 

gument is used to initialize a parameter that’s a universal reference, but there’s a 17 

good reason for the omission: universal references aren’t introduced until Item 26. 18 

Together, these observations about universal references and lvalue/rvalue encod-19 

ing mean that for this template, 20 

template<typename T> 21 
void func(T&& param); 22 

the deduced template parameter T will encode whether the argument passed to 23 

param was an lvalue or an rvalue.  24 

The encoding mechanism is simple. When an lvalue is passed as an argument, T is 25 

deduced to be an lvalue reference. When an rvalue is passed, T is deduced to be a 26 

non-reference. (Note the asymmetry: lvalues are encoded as lvalue references, but 27 

rvalues are encoded as non-references.) Hence: 28 

Widget widgetFactory();     // function returning rvalue 29 
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Widget w;                   // a variable (an lvalue) 1 

func(w);                    // call func with lvalue; T deduced 2 
                            // to be Widget& 3 

func(widgetFactory());      // call func with rvalue; T deduced 4 
                            // to be Widget 5 

In both calls to func, a Widget is passed, yet because one Widget is an lvalue and 6 

one is an rvalue, different types are deduced for the template parameter T.  This, as 7 

we shall soon see, is what determines whether universal references become rvalue 8 

references or lvalue references, and it’s also the underlying mechanism through 9 

which std::forward does its work. 10 

Before we can look more closely at std::forward and universal references, we 11 

must observe that references to references are illegal in C++. Should you be so 12 

bold as to try to declare one, your compilers will reprimand you: 13 

int x; 14 
… 15 
auto& & rx = x;   // error! can't declare reference to reference 16 

But consider what happens when an lvalue is passed to a template function taking 17 

a universal reference: 18 

template<typename T> 19 
void func(T&& param);    // as before 20 

func(w);                 // invoke func with lvalue;  21 
                         // T deduced as Widget& 22 

If we take the type deduced for T (i.e., Widget&) and use it to instantiate the specif-23 

ic function we’re calling, we get this: 24 

void func(Widget& && param); 25 

A reference to a reference! And yet compilers issue no protest. We know from Item 26 

26 that because the universal reference param is being initialized with an lvalue, 27 

param’s type is supposed to be an lvalue reference, but how does the compiler get 28 

from the result of taking the deduced type for T and substituting it into the tem-29 

plate to the following, which is the ultimate function signature? 30 

void func(Widget& param); 31 
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The answer is reference collapsing. Yes, you are forbidden from declaring refer-1 

ences to references, but compilers may do it in particular contexts, template instan-2 

tiation being among them. When compilers generate references to references, ref-3 

erence collapsing dictates what happens next. 4 

There are two kinds of references (lvalue and rvalue), so there are four possible 5 

reference-reference combinations (lvalue to lvalue, lvalue to rvalue, rvalue to 6 

lvalue, and rvalue to rvalue). If a reference to a reference arises in a context where 7 

this is permitted (e.g., during template instantiation), the references collapse to a 8 

single reference according to this simple rule: 9 

 If either reference is an lvalue reference, the result is an lvalue reference. Oth-10 

erwise the result is an rvalue reference. 11 

In our example above, substitution of the deduced type Widget& into the template 12 

func yields an rvalue reference to an lvalue reference, and the reference-13 

collapsing rule tells us that the result is an lvalue reference.  14 

Reference collapsing is a key part of what makes std::forward work. Item 25 15 

introduces the following conceptual implementation:  16 

template<typename T>                   // conceptual impl.  17 
T&& forward(T&& param)                 // of std::forward 18 
{                                      // (in namespace std) 19 
  if (is_lvalue_reference<T>::value) { // if T indicates lvalue 20 
    return param;                      // return param as lvalue 21 
  } else {                             // else 22 
    return move(param);                // return param as rvalue 23 
  } 24 
} 25 

A real std::forward implementation looks more like this: 26 

template<typename T>                   // in namespace std 27 
T&& forward(T&& param) 28 
{ 29 
  return static_cast<T&&>(param); 30 
} 31 

This isn’t quite standards-conformant (I’ve omitted a few interface details), but it 32 

makes clear that, as Item 25 claims, std::forward is simply a cast. 33 
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But how does this work? As explained in Item 27, std::forward is generally used 1 

on universal reference parameters, so a typical use case could look like this: 2 

template<typename T> 3 
void f(T&& fParam) 4 
{ 5 
  …                                  // do some work 6 
  func(std::forward<T>(fParam));     // forward fParam to func 7 
} 8 

Because fParam is a universal reference, we know that the type parameter T will 9 

encode whether the argument passed to f (i.e., the expression used to initialize 10 

fParam) was an lvalue or an rvalue. std::forward’s job is to cast fParam (an 11 

lvalue) to an rvalue if and only if T encodes that the argument passed to f was an 12 

rvalue, i.e., if T is a non-reference type. Let’s go through this step by step. 13 

Suppose that the argument passed to f is an lvalue of type Widget. In that case, T 14 

will be deduced as Widget&. The call to std::forward will instantiate as 15 

std::forward<Widget&>. Plugging Widget& into the above implementation 16 

yields 17 

Widget& && forward(Widget& && param)  18 
{ return static_cast<Widget& &&>(param); } 19 

which, after reference collapsing, becomes: 20 

Widget& forward(Widget& param) 21 
{ return static_cast<Widget&>(param);  } 22 

So when an lvalue argument is passed to the function template f, std::forward 23 

is instantiated to take and return an lvalue reference. Lvalue references are, by 24 

definition, lvalues, so an lvalue argument passed to f will be forwarded to func as 25 

an lvalue, just like it’s supposed to be. 26 

Now suppose that the argument passed to f is an rvalue of type Widget. In this 27 

case, the deduced type for the f’s type parameter, T,  will simply be Widget. The 28 

call inside f to std::forward will thus be to std::forward<Widget>. Substitut-29 

ing Widget for T in std::forward gives this: 30 

Widget&& forward(Widget&& fwdParam) 31 
{ return static_cast<Widget&&>(param); } 32 
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No references to references arise in this case, so no reference collapsing occurs. 1 

Because rvalue references returned from functions are defined to be rvalues, this 2 

means that std::forward will turn f’s parameter fParm (an lvalue) into an rval-3 

ue. The end result is that an rvalue argument passed to f will be forwarded to 4 

func as an rvalue, which is precisely what is supposed to happen. 5 

Reference collapsing occurs in four contexts.  The first and most common is tem-6 

plate instantiation. The second is type generation for auto variables. The details 7 

are essentially the same as for templates, because type deduction for auto varia-8 

bles is essentially the same as type deduction for templates (see Item 2).  Consider 9 

again this example from earlier in the Item: 10 

template<typename T> 11 
void func(T&& param); 12 

Widget widgetFactory();     // function returning rvalue 13 

Widget w;                   // a variable (an lvalue) 14 

func(w);                    // call func with lvalue; T deduced 15 
                            // to be Widget& 16 

func(widgetFactory());      // call func with rvalue; T deduced 17 
                            // to be Widget 18 

This example can be mimicked in auto form. The declaration 19 

auto&& w1 = w; 20 

initializes w1 with an lvalue, thus deducing the type Widget& for auto. Plugging 21 

Widget& in for auto in the declaration for w1 yields this reference-to-reference 22 

code, 23 

Widget& && w1 = w; 24 

which, after reference collapsing, becomes  25 

Widget& w1 = w; 26 

As a result, w1 is an lvalue reference. 27 

On the other hand, this declaration, 28 

auto&& w2 = widgetFactory(); 29 
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initializes w2 with an rvalue, causing the non-reference type Widget to be deduced 1 

for auto. Substituting Widget for auto gives us this: 2 

Widget&& w2 = widgetFactory(); 3 

There are no references to references here, so we’re done: w2 is an rvalue refer-4 

ence.  5 

We’re now in a position to truly understand the universal references introduced in 6 

Item 26. A universal reference isn’t a new kind of reference, it’s simply an rvalue 7 

reference in a reference collapsing context. The concept of universal references is 8 

useful, because it frees you from having to recognize the existence of reference col-9 

lapsing contexts, to mentally deduce different types for lvalues and rvalues, and to 10 

apply the reference collapsing rule after mentally substituting the deduced types 11 

into the contexts in which they occur. 12 

I said there were four such contexts, but we’ve discussed only two: template in-13 

stantiation and auto type generation. The third is the generation and use of 14 

typedefs and alias declarations (see Item 9). If, during creation or evaluation of a 15 

typedef, references to references arise, reference collapsing intervenes to elimi-16 

nate them. For example, suppose we have a Widget class template with an em-17 

bedded typedef for an rvalue reference type, 18 

template<typename T> 19 
class Widget { 20 
public: 21 
  typedef T&& RvalueRefToT; 22 
  … 23 
}; 24 

and suppose we instantiate Widget with an lvalue reference type: 25 

Widget<int&> w; 26 

Substituting int& for T in the Widget template gives us the following typedef:  27 

typedef int& && RvalueRefToT; 28 

Reference collapsing reduces it to this, 29 

typedef int& RvalueRefToT; 30 
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which makes clear that the name we chose for the typedef is perhaps not as de-1 

scriptive as we’d hoped: RvalueRefToT is a typedef for an lvalue reference when 2 

Widget is instantiated with an lvalue reference type. 3 

The final context in which reference collapsing takes place is uses of decltype. If, 4 

during evaluation of an expression involving decltype, a reference to reference 5 

arises, reference collapsing will kick in to eliminate it. 6 

Things to Remember 7 

 Reference collapsing occurs in four contexts: template instantiation, auto type 8 

generation, creation and use of typedefs and alias declarations, and 9 

decltype. 10 

 When compilers generate a reference to a reference in a reference collapsing 11 

context, the result becomes a single reference. If either of the original refer-12 

ences is an lvalue reference, the result is an lvalue reference. Otherwise it’s an 13 

rvalue reference. 14 

 Universal references are rvalue references in reference collapsing contexts. 15 

 Item 31: Assume that move operations are not present, not 16 

cheap, and not used. 17 

Move semantics is arguably the premier feature of C++11.  “Moving containers is 18 

now as cheap as copying pointers!,” you’re likely to hear, and “Copying temporary 19 

objects is now so efficient, coding to avoid it is tantamount to premature optimiza-20 

tion!” Such sentiments are easy to understand. Move semantics is truly an im-21 

portant feature. It doesn’t just allow compilers to replace expensive copy opera-22 

tions with comparatively cheap moves, it actually requires that they do so (when 23 

the proper conditions are fulfilled). Take your C++98 code base, recompile with a 24 

C++11-conformant compiler and Standard Library, and—shazam!—your software 25 

runs faster!  26 

Move semantics can really pull that off, and that grants the feature an aura worthy 27 

of legend. Legends, however, are generally the result of exaggeration. The purpose 28 

of this Item is to keep your expectations grounded.  29 
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Let’s begin with the observation that many types fail to support move semantics. 1 

The entire C++98 Standard Library was overhauled for C++11 to add move opera-2 

tions for types where moving could be implemented faster than copying, and the 3 

implementation of the library components was revised to take advantage of these 4 

operations, but chances are that you’re working with a code base that has not been 5 

completely revised to take advantage of C++11.  For types in your applications (or 6 

in the libraries you use) where no modifications for C++11 have been made, the 7 

existence of move support in your compilers is likely to do you little good. True, 8 

C++11 is willing to generate move operations for classes that lack them, but that 9 

happens only for classes declaring no copy operations, move operations, or de-10 

structors (see Item 19). Data members or base classes that can’t be moved will also 11 

suppress compiler-generated move operations. For types without explicit support 12 

for moving and that don’t qualify for compiler-generated move operations, there is 13 

no reason to expect C++11 to deliver any kind of performance improvement over 14 

C++98. 15 

Even types with explicit move support may not benefit as much as you’d hope. All 16 

containers in the standard C++11 library support moving, for example, but it 17 

would be a mistake to assume that moving all containers is cheap.  For some con-18 

tainers, this is because there’s no truly cheap way to move their contents. For oth-19 

ers, it’s because the truly cheap move operations the containers offer come with 20 

caveats the container elements can’t satisfy.  21 

Consider std::array, a new container in C++11. std::array is essentially a 22 

built-in array with an STL interface.  This is fundamentally different from the other 23 

standard containers, each of which store their contents on the heap. Objects of 24 

such container types hold (as data members), conceptually, only a pointer to the 25 

heap memory storing the contents of the container. (The reality is more complex, 26 

but for purposes of this analysis, the differences are not important.) The existence 27 

of this pointer makes it possible to move the contents of an entire container in 28 

constant time: just move  the pointer to the container’s contents from the source 29 

container to the target, and set the source’s pointer to null: 30 
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 1 

std::array objects lack such a pointer, because the data for a std::array’s con-2 

tents are stored directly in the std::array object: 3 

 4 

Note that the elements in aw1 are moved into aw2. Assuming that Widget is a type 5 

where moving is faster than copying, moving a std::array of Widget will be 6 

faster than copying the same std::array. So std::array certainly offers move 7 

support. Yet both moving and copying a std::array have linear-time computa-8 

tional complexity, because each element in the container must be copied or moved. 9 

This is far from the “moving a container is now as cheap as assigning a couple of 10 

pointers” claim that one sometimes hears.  11 

On the other hand, std::string offers constant-time moves and linear-time cop-12 

ies. That makes it sound like moving is faster than copying, but that may not be the 13 

case. Many string implementations employ the small string optimization (SSO).  14 

With the SSO, “small” strings (typically those with a capacity of no more than 15 15 

characters) are stored in a buffer within the std::string object; no heap-16 

std::vector<Widget> vw1;  

// put data into vw1 

… 
 

// move vw1 into vw2. Runs in 
// constant time. Only ptrs  
// in vw1 and vw2 are modified   
auto vw2 = std::move(vw1); 

Widgets  

vw1 

Widgets  null 

vw1 

  

vw2 

std::array<Widget, 10000> aw1; 

// put data into aw1 

… 

 

// move aw1 into aw2. Runs in  
// linear time. All elements in  
// aw1 are moved into aw2 
auto aw2 = std::move(aw1);   

Widgets 

aw1 

Widgets (moved from) 

aw1 

Widgets (moved to) 

aw2 
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allocated storage is used. Moving small strings using an SSO-based implementation 1 

is no faster than copying them, because the copy-only-a-pointer trick that general-2 

ly underlies the performance advantage of moves over copies isn’t applicable.  3 

The motivation for the SSO is extensive evidence that for many applications, short 4 

strings are the norm. Using an internal buffer to store such strings’ values elimi-5 

nates the need to dynamically allocate memory for them, and that’s typically an 6 

efficiency win. An implication of the win, however, is that moves are no faster than 7 

copies, though one could just as well take a glass-half-full approach and say that 8 

for such strings, copying is no slower than moving. 9 

Even for types supporting speedy move operations, some seemingly sure-fire 10 

move situations can still end up making copies. Item 16 explains that some con-11 

tainer operations in the Standard Library offer the strong exception safety guaran-12 

tee, and that to ensure that legacy C++98 code dependent on these exception safe-13 

ty guarantees isn’t broken when upgrading to C++11, the underlying copy opera-14 

tions may be replaced with move operations only if the move operations are 15 

known not to throw. A consequence is that even if a type offers move operations 16 

that are more efficient than the corresponding copy operations, and even if, at a 17 

particular point in the code, a move operation would generally be appropriate 18 

(e.g., if the source object is an rvalue), compilers might still be forced to invoke a 19 

copy operation, because the corresponding move operation isn’t declared noex-20 

cept. 21 

There are thus several scenarios in which C++11’s move semantics do you no 22 

good: 23 

 No move operations: The object to be moved from fails to offer move opera-24 

tions. The move request therefore becomes a copy request. 25 

 Move not faster: The object to be moved from has move operations that are 26 

no faster than its copy operations. 27 

 Move not usable: The context in which the moving would take place requires 28 

a nothrow move operation, but that operation isn’t declared noexcept. 29 
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It’s worth mentioning, too, another scenario where move semantics offers no effi-1 

ciency gain: 2 

 Source object is lvalue: With very few exceptions (see e.g., Item 27) only 3 

rvalues may be used as the source of a move operation. 4 

But the title of this Item is to assume that move operations are not present, not 5 

cheap, and not used. This is typically the case in generic code, e.g., when writing 6 

templates, because you don’t know all the types you’re working with. In such cir-7 

cumstances, you must be as conservative about copying objects as you were in 8 

C++98—before move semantics existed. This is also the case for “unstable” code, 9 

i.e., code where the characteristics of the types being used are subject to relatively 10 

frequent modification. 11 

Often, however, you know the types your code uses, and you can rely on their 12 

characteristics not changing (e.g., whether they support inexpensive move opera-13 

tions).  When that’s the case, you don’t need to make assumptions. You can simply 14 

look up the move support details for the types you’re using. If those types offer 15 

cheap move operations, and if you’re using objects in contexts where those move 16 

operations will be invoked, there’s no need for assumptions: you can safely rely on  17 

move semantics to replace copy operations with their less expensive move coun-18 

terparts. 19 

Things to remember 20 

 Assume that move operations are not present, not cheap, and not used. 21 

 In code with known types or support for move semantics, there is no need for 22 

assumptions. 23 

 Item 32: Familiarize yourself with perfect forwarding fail-24 

ure cases. 25 

One of the features most prominently emblazoned on the C++11 box is perfect 26 

forwarding. Perfect forwarding. It’s perfect! Alas, tear the box open, and you’ll find 27 

that there’s “perfect” (the ideal), and then there’s “perfect” (the reality). C++11’s 28 

perfect forwarding is very good, but it achieves true perfection only if you’re will-29 
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ing to overlook an epsilon or two. This Item is devoted to familiarizing you with 1 

the epsilons. 2 

Before embarking on our epsilon exploration, it’s worthwhile to review what’s 3 

meant by “perfect forwarding.” “Forwarding” just means that one function pass-4 

es—forwards—its parameters to another function. The goal is for the second func-5 

tion (the one being forwarded to) to receive the same objects that the first function 6 

(the one doing the forwarding) received. That rules out by-value parameters, be-7 

cause they’re copies of what the original caller passed in; we want the forwarded-8 

to function to be able to work with the originally-passed-in objects. Pointer pa-9 

rameters are also ruled out, because we don’t want to force callers to pass point-10 

ers. When it comes to general-purpose forwarding, we’ll be dealing with parame-11 

ters that are references. 12 

Perfect forwarding means we don’t just forward objects, we also forward their sa-13 

lient characteristics: their types, whether they’re lvalues or rvalues, and whether 14 

they’re const or volatile. In conjunction with the observation that we’ll be deal-15 

ing with reference parameters, this implies that we’ll be using universal references 16 

(see Item 26), because only universal reference parameters encode information 17 

about the lvalueness and rvalueness of the arguments that are passed to them.  18 

Let’s assume we have some function f, and we’d like to write a function (in truth, a 19 

function template) that forwards to it. The core of what we need looks like this: 20 

template<typename T>  21 
void fwd(T&& param)                  // accept any argument 22 
{ 23 
  f(std::forward<T>(param));         // forward it to f 24 
} 25 

Forwarding functions are, by their nature, generic. The fwd template, for example, 26 

accepts any type of argument, and it forwards whatever it gets. A logical extension 27 

of this genericity is for forwarding functions to be not just templates, but variadic 28 

templates, thus accepting any number of arguments. The variadic form for fwd 29 

looks like this: 30 

template<typename... Ts> 31 
void fwd(Ts&&... params)             // accept any arguments 32 
{ 33 
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  f(std::forward<Ts>(params)...);    // forward them to f 1 
} 2 

This is the form you’ll see in, among other places, the standard containers’ em-3 

placement functions (see Item 18) and the smart pointer factory functions, 4 

std::make_shared and std::make_unique (see Item 23). 5 

Given our target function f and our forwarding function fwd, perfect forwarding 6 

fails if calling f with a particular argument does one thing, but calling fwd with the 7 

same argument does something different: 8 

f( expression );      // if this does one thing, 9 
fwd( expression );    // but this does something else, fwd fails 10 
                      // to perfectly forward expression to f 11 

Several kinds of arguments lead to this kind of failure. Knowing what they are and 12 

how to work around them is important, so let’s tour the arguments that can’t be 13 

perfect-forwarded. 14 

Braced initializers 15 

Suppose f is declared like this: 16 

void f(const std::vector<int>& v); 17 

In that case, calling f with a braced initializer compiles, 18 

f({ 1, 2, 3 });       // fine, "{1, 2, 3}" implicitly 19 
                      // converted to std::vector<int> 20 

but passing the same braced initializer to fwd doesn’t compile: 21 

fwd({ 1, 2, 3 });     // error! doesn't compile 22 

That’s because the use of a braced initializer is a perfect forwarding failure cases. 23 

All such failure cases have the same cause. In a direct call to f (such as 24 

f({ 1, 2, 3 })), compilers see the types of arguments passed at the call site, 25 

and they see the types of the parameters declared by f. They compare the argu-26 

ments at the call site to the parameter declarations to see if they’re compatible, 27 

and, if necessary, they perform implicit type conversions to make the call succeed. 28 
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In the example above, they generate a temporary std::vector<int> object from 1 

{ 1, 2, 3 } so that f’s parameter v has a std::vector<int> object to bind to.  2 

When calling f indirectly through the forwarding function template fwd, compilers 3 

no longer compare the arguments passed at fwd’s call site to the parameter decla-4 

rations in f. Instead, they deduce the types of the arguments being passed to fwd, 5 

and they compare the deduced types to f’s parameter declarations. Perfect for-6 

warding fails when either of the following occurs: 7 

 Compilers are unable to deduce a type for one or more of fwd’s parameters. 8 

In this case, the code fails to compile. 9 

 Compilers deduce the “wrong” type for one or more of fwd’s parameters. 10 

Here, “wrong” could mean that fwd’s instantiation won’t compile with the 11 

types that were deduced, but it could also mean that the call to f using fwd’s 12 

deduced types behaves differently from a direct call to f with the arguments 13 

that were passed to fwd. One source of such divergent behavior would be if f 14 

were an overloaded function name, and, due to “incorrect” type deduction, the 15 

overload of f called inside fwd were different from the overload that would be 16 

invoked if f were called directly. 17 

In the “fwd({ 1, 2, 3 })” call above, the problem is that passing a braced ini-18 

tializer to a function template parameter that’s not declared to be a 19 

std::initializer_list is decreed to be, as the Standard puts it, a “non-20 

deduced context.” In plain English, that means that compilers are forbidden from 21 

deducing a type for the expression { 1, 2, 3 } in the call to fwd, because fwd’s 22 

parameter isn’t declared to be a std::initializer_list. Being prevented from 23 

deducing a type for fwd’s parameter, compilers must understandably reject the 24 

call.  25 

Interestingly, Item 2 explains that type deduction succeeds for auto variables ini-26 

tialized with a braced initializer. Such variables are deemed to be 27 

std::initializer_list objects, and this affords a simple workaround for cases 28 

where the type the forwarding function should deduce is a 29 
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std::initializer_list: declare a local variable using auto, then pass the local 1 

variable to the forwarding function: 2 

auto il = { 1, 2, 3 };     // il's type deduced to be 3 
                           // std::initializer_list<int> 4 

fwd(il);                   // fine, perfect-forwards il to f 5 

0 or NULL as null pointers 6 

Item 8 explains that when you try to pass 0 or NULL as a null pointer to a template, 7 

type deduction goes awry, deducing an integral type (typically int) instead of a 8 

pointer type for the argument you pass. The result is that neither 0 nor NULL can 9 

be perfect-forwarded as a null pointer. The fix is easy, however: pass nullptr in-10 

stead of 0 or NULL. For details, consult Item 8. 11 

Declaration-only integral static const data members 12 

As a general rule, there’s no need to define integral static const data members 13 

in classes; declarations alone suffice. That’s because compilers perform const-14 

propagation on such members’ values, thus eliminating the need to set aside 15 

memory for them. For example, consider this code: 16 

class Widget { 17 
public: 18 
  static const std::size_t MinVals = 28; // MinVals' declaration 19 
  …  20 
}; 21 
…                                        // no defn. for MinVals 22 

std::vector<int> widgetData; 23 
widgetData.reserve(Widget::MinVals);     // use of MinVals 24 

Here, we’re using Widget::MinVals (henceforth simply MinVals) to specify 25 

widgetData’s initial capacity, even though MinVals lacks a definition. Compilers 26 

work around the missing definition (as they are required to do) by plopping the 27 

value 28 into all places where MinVals is mentioned; the fact that no storage has 28 

been set aside for MinVals’ value is unproblematic. If MinVals’ address were to 29 

be taken (e.g., if somebody created a pointer to MinVals), then MinVals would 30 

require storage (so that the pointer had something to point to), and the code 31 
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above, though it would compile, would fail at link-time until a definition for Min-1 

Vals was provided. 2 

With that in mind, imagine that f (the function fwd forwards its argument to) is 3 

declared like this: 4 

void f(std::size_t val); 5 

Calling f with MinVals is fine, because compilers will just replace MinVals with 6 

its value: 7 

f(Widget::MinVals);         // fine, treated as "f(28)" 8 

Alas, things may not go so smoothly if we try to call f through fwd: 9 

fwd(Widget::MinVals);       // error! shouldn't link 10 

This code will compile, but it shouldn’t link. If that reminds you of what happens if 11 

we write code that takes MinVals’ address, that’s good, because the underlying 12 

problem is the same.  13 

Although nothing in the source code takes MinVals’ address, fwd’s parameter is a 14 

universal reference, and references, in the code generated by compilers, are usual-15 

ly treated like pointers. In the program’s underlying binary code (and on the 16 

hardware), pointers and references are essentially the same thing. At this level, 17 

there’s truth to the adage that references are simply pointers that are automatical-18 

ly dereferenced.  That being the case, passing MinVals by reference is effectively 19 

the same as passing it by pointer, and as such, there has to be some memory for 20 

the pointer to point to. Passing integral static const data members by reference, 21 

then, generally requires that they be defined, and that requirement can cause code 22 

using perfect forwarding to fail where the equivalent code without perfect for-23 

warding succeeds. 24 

But perhaps you noticed the weasel words I sprinkled through the preceding dis-25 

cussion.  The code “shouldn’t” link. References are “usually” treated like pointers. 26 

Passing integral static const data member by reference “generally” requires 27 

that they be defined. It’s almost like I know something I don’t really want to tell 28 

you… 29 
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That’s because I do. According to the Standard, passing MinVals by reference re-1 

quires that it be defined. But not all build systems (i.e., compiler-linker combina-2 

tions) enforce this requirement. So, depending on your build system, you may find 3 

that you can perfect-forward integral static const data members that haven’t 4 

been defined. If you do, congratulations, but there is no reason to expect such code 5 

to port. To make it portable, simply provide a definition for the integral static 6 

const data member in question. For MinVals, that’d look like this: 7 

const std::size_t Widget::MinVals;     // in Widget's .cpp file 8 

Note that the definition doesn’t repeat the initializer (28, in the case of MinVals). 9 

Don’t stress over this detail, however. If you forget and provide the initializer in 10 

both places, your compilers will complain, thus reminding you to specify it only 11 

once. 12 

Overloaded function names and template names 13 

Suppose our function f (the one we keep wanting to forward arguments to via 14 

fwd) can have its behavior customized by passing it a function that does some of 15 

its work. Assuming this function takes and returns ints, f could be declared like 16 

this: 17 

void f(int (*pf)(int));         // pf = "processing function" 18 

It’s worth noting that f could also be declared using a simpler non-pointer syntax. 19 

Such a declaration would look like this, though it’d have the same meaning as the 20 

declaration above: 21 

void f(int pf(int));            // declares same f as above 22 

Either way, now suppose we have an overloaded function, processVal: 23 

int processVal(int value); 24 
int processVal(int value, int priority); 25 

We can pass processVal to f, 26 

f(processVal);                  // fine 27 

but it’s something of a surprise that we can. f demands a pointer to a function as 28 

its argument, but processVal isn’t a function pointer or even a function, it’s the 29 
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name of two different functions. However, compilers know which processVal 1 

they need: the one matching f’s parameter type. They thus choose the pro-2 

cessVal taking one int, and they pass that function’s address to f. 3 

What makes this work is that f’s declaration lets compilers figure out which ver-4 

sion of processVal is required. fwd, however, being a function template, doesn’t 5 

have any information about what type it needs, and that makes it impossible for 6 

compilers to determine which overload should be passed: 7 

fwd(processVal);            // error! which processVal? 8 

processVal alone has no type. Without a type, there can be no type deduction, 9 

and without type deduction, we’re left with another perfect forwarding failure 10 

case. 11 

The same problem arises if we try to use a function template instead of (or in addi-12 

tion to) an overloaded function name. A function template doesn’t represent one 13 

function, it represents many functions: 14 

template<typename T> 15 
void workOnVal(T param)     // template for processing values 16 
{ … } 17 

fwd(workOnVal);             // error! which workOnVal 18 
                            // instantiation? 19 

The way to get a perfect-forwarding function like fwd to accept an overloaded 20 

function name or a template name is to manually specify the overload or instantia-21 

tion you want to have forwarded. For example, you can create a function pointer of 22 

the same type as f’s parameter, initialize that pointer with processVal or wor-23 

kOnVal (thus causing the proper version of processVal to be selected or the 24 

proper instantiation of workOnVal to be generated), and pass the pointer to fwd: 25 

using ProcessFuncType =                        // make typedef;  26 
  int (*)(int);                                // see Item 9 27 

ProcessFuncType processValPtr = processVal;    // specify needed 28 
                                               // signature for  29 
                                               // processVal                                          30 

fwd(processValPtr);                            // fine 31 
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fwd(static_cast<ProcessFuncType>(workOnVal));  // also fine 1 

Of course, this requires that you know the type of function pointer that fwd is for-2 

warding to. It’s not unreasonable to assume that a perfect-forwarding function will 3 

document that. After all, perfect-forwarding functions are designed to accept any-4 

thing, so if there’s no documentation telling you what to pass, how would you 5 

know? 6 

Bitfields 7 

The final failure case for perfect forwarding is when a bitfield is used as a function 8 

argument. To see what this means in practice, observe that an IPv4 header can be 9 

modeled as follows:† 10 

struct IPv4Header { 11 
  std::uint32_t version:4, 12 
                IHL:4, 13 
                DSCP:6, 14 
                ECN:2, 15 
                totalLength:16; 16 
  … 17 
}; 18 

If our long-suffering function f (the perennial target of our forwarding function 19 

fwd) is declared to take a std::size_t parameter, calling it with, say, the total-20 

Length field of an IPv4Header object compiles without fuss: 21 

void f(std::size_t sz);        // function to call 22 

IPv4Header h;  23 
… 24 
f(h.totalLength);              // fine 25 

Trying to forward h.totalLength to f via fwd, however, is a different story: 26 

fwd(h.totalLength);            // error! 27 

                                                             

† This assumes that bitfields are laid out lsb (least significant bit) to msb (most significant 

bit). C++ doesn’t guarantee that, but compilers often provide a mechanism that allows pro-

grammers to control bitfield layout. 
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The problem is that fwd’s parameter is a reference, and h.totalLength is a non-1 

const bitfield. That may not sound so bad, but the C++ Standard condemns the 2 

combination in unusually clear prose: “A non-const reference shall not be bound 3 

to a bit-field.” There’s an excellent reason for the prohibition. Bitfields may consist 4 

of arbitrary parts of machine words (e.g., bits 3-5 of a 32-bit int), but there’s no 5 

way to directly address such things. I mentioned earlier that references and point-6 

ers are the same thing at the hardware level, and just as there’s no way to create a 7 

pointer to arbitrary bits (C++ dictates that the smallest thing you can point to is a 8 

char), there’s no way to bind a reference to arbitrary bits, either. 9 

Working around the impossibility of perfect-forwarding a bitfield is easy, once you 10 

realize that any function that accepts a bitfield as an argument will receive a copy 11 

of the bitfield’s value. After all, no function can bind a reference to a bitfield, nor 12 

can any function accept pointers to bitfields, because pointers to bitfields don’t 13 

exist. The only kinds of parameters to which a bitfield can be passed are by-value 14 

parameters and, counterintuitively, references-to-const. In the case of by-value 15 

parameters, the called function obviously receives a copy of the value in the bit-16 

field, and it turns out that in the case of a reference-to-const parameter, the 17 

Standard requires that the reference actually bind to a copy of the bitfield’s value 18 

that’s stored in an object of some standard integral type (e.g., int). References-to-19 

const don’t bind to bitfields, they bind to “normal” objects into which the values 20 

of the bitfields have been copied. 21 

The key to passing a bitfield into a perfect-forwarding function, then, is to take ad-22 

vantage of the fact that the forwarded-to function will always receive a copy of the 23 

bitfield’s value. You can thus make a copy yourself and call the forwarding function 24 

with the copy. In the case of our example with IPv4Header, this code would do the 25 

trick: 26 

// copy bitfield value; see Item 6 for info on init. form 27 
auto length = static_cast<std::uint16_t>{h.totalLength}; 28 

fwd(length);                        // forward the copy  29 
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Upshot 1 

In most cases, perfect forwarding works exactly as advertised. You rarely have to 2 

think about it. But when it doesn’t work—when reasonable-looking code fails to 3 

compile or, worse, compiles, but doesn’t behave the way you anticipate, it’s im-4 

portant to know about perfect forwarding’s imperfections. Equally important is 5 

knowing how to work around them. In most cases, this is straightforward. 6 

Things to remember 7 

 Perfect forwarding fails when template type deduction fails or when it deduces 8 

the wrong type. 9 

 The kinds of arguments that lead to perfect forwarding failure are braced ini-10 

tializers, null pointers expressed as 0 or NULL, declaration-only integral const 11 

static data members, template and overloaded function names, and bitfields. 12 
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 1 

Lambda expressions—lambdas—are a game-changer in C++ programming. That’s 2 

somewhat surprising, because they bring no new expressive power to the lan-3 

guage. Everything a lambda can do is something you can do by hand with a bit 4 

more typing. But lambdas are such a convenient way to create function objects, the 5 

impact on day-to-day C++ software development is enormous. Without lambdas, 6 

the STL “_if” algorithms (e.g., std::find_if, std::remove_if, 7 

std::count_if, etc.) tend to be employed with only the most trivial predicates, 8 

but when lambdas are available, use of these algorithms with nontrivial conditions 9 

blossoms. The same is true of algorithms that can be customized with comparison 10 

functions (e.g., std::sort, std::nth_element, std::lower_bound, etc.). Out-11 

side the STL, lambdas make it possible to quickly create custom deleters for 12 

std::unique_ptr and std::shared_ptr (see Items 20 and 21), and they make 13 

the specification of predicates for condition variables in the threading API equally 14 

straightforward. Beyond the Standard Library, lambdas facilitate the on-the-fly 15 

specification of callback functions, interface adaption functions, and context-16 

specific functions for one-off calls. Lambdas really make C++ a more pleasant pro-17 

gramming language. 18 

The Items in this chapter cover important dos and don’ts for effective software 19 

development with lambdas. The chapter begins with an admonition to steer clear 20 

of what initially looks like an attractive feature: default capture modes. It then ad-21 

dresses how to accomplish move capture in C++14 (where it’s more or less direct-22 

ly supported) and C++11 (where the way is more circuitous). That’s followed by a 23 

C++14-specific Item on implementing perfect-forwarding with generic lambdas, 24 

and the chapter concludes with an Item explaining why programmers accustomed 25 

to std::bind should switch to lambdas.  26 

The vocabulary associated with lambdas can be confusing. Here’s a brief refresher: 27 

 A lambda expression is just that: an expression. It’s part of the source code. In 28 

std::find_if(container.begin(), container.end(), 29 
             [](auto val) { return 0 < val && val < 10; }); 30 
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the highlighted expression is the lambda. 1 

 A closure is the runtime object created by a lambda. Closures hold copies of all 2 

captured data (although by-reference captures are typically optimized away). 3 

In the call to std::find_if above, the closure is the object that’s passed at 4 

runtime as the third argument to std::find_if. (The first two arguments are 5 

the begin and end iterators for container.) 6 

 A closure class is a class from which a closure is instantiated. Each lambda 7 

causes compilers to generate a unique closure class. The statements inside a 8 

lambda become executable instructions in the member functions of its closure 9 

class (modulo inlining and other optimizations). 10 

A lambda is often used to create a closure that’s used only as an argument to a 11 

function. That’s the case in the call to std::find_if above. However, closures 12 

may generally be copied, so it’s usually possible to have multiple closures of a clo-13 

sure type corresponding to a single lambda. For example, in the following code, 14 

{                                       // begin a scope 15 

  int x;                                // x is local variable 16 
  … 17 

  auto c1 =                             // c1 is copy of the 18 
    [x](int y) { return x * y = 5; };   // closure produced 19 
                                        // by the lambda 20 

  auto c2 = c1;                         // c2 is copy of c1 21 

  auto c3 = c2;                         // c3 is copy of c2 22 

  … 23 

}                                       // end the scope 24 

c1, c2, and c3 are all copies of the closure produced by the lambda. 25 

Informally, it’s perfectly acceptable to blur the lines between lambdas, closures, 26 

and closure classes. But in the Items that follow, it’s often important to distinguish 27 

what exists during compilation (lambdas and closure classes), what exists at 28 

runtime (closures), and how they relate to one another. 29 
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 Item 33: Avoid default capture modes. 1 

There are two default capture modes in C++11: by-reference and by-value. Default 2 

by-reference capture can lead to easy-to-overlook dangling references. Default by-3 

value capture lures you into thinking you’re immune to that problem (you’re not), 4 

and it lulls you into thinking your closures are self-contained (they may not be).  5 

That’s the executive summary for this Item. If you’re more engineer than execu-6 

tive, you’ll want some meat on those bones, so let’s start with the danger of default 7 

by-reference capture.  8 

A by-reference capture causes the code inside the lambda to refer to a local varia-9 

ble or a parameter that’s available in the scope where the lambda is defined. If the 10 

lifetime of a closure created from that lambda exceeds the lifetime of the local var-11 

iable or parameter, the reference in the code will dangle. For example, suppose we 12 

have a container of filtering functions, each of which takes an int and returns a 13 

bool indicating whether a passed-in value satisfies the filter: 14 

using FilterContainer =                      // typedef;  15 
  std::vector<std::function<bool(int)>>;     // see Item 9 16 

FilterContainer filters;                     // filtering funcs 17 

We could add a filter for multiples of 5 like this: 18 

filters.emplace_back(                        // see Item 18 for 19 
  [](int value) { return value % 5 == 0; }   // info on  20 
);                                           // emplace_back 21 

However, it may be that we need to compute the divisor at runtime, i.e., we can’t 22 

just hard-code 5 into the lambda. So adding the filter might look more like this: 23 

void addDivisorFilter() 24 
{ 25 
  auto calc1 = computeSomeValue1(); 26 
  auto calc2 = computeSomeValue2(); 27 

  auto divisor = computeDivisor(calc1, calc2); 28 

  filters.emplace_back(                              // danger! 29 
    [&](int value) { return value % divisor == 0; }  // divisor 30 
  );                                                 // might 31 
}                                                    // dangle! 32 
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This code is a problem waiting to happen. The lambda refers to the local variable 1 

divisor, but that variable ceases to exist when addDivisorFilter returns. 2 

That’s immediately after filters.emplace_back returns, so the function that’s 3 

added to filters is essentially dead on arrival. Using that filter yields undefined 4 

behavior from virtually the moment it’s created. 5 

Now, the same problem would exist if divisor’s by-reference capture were ex-6 

plicit, 7 

  filters.emplace_back( 8 
    [&divisor](int value)                // danger! divisor can 9 
    { return value % divisor == 0; }     // still dangle! 10 
  ); 11 

but with an explicit capture, it’s easier to see that the viability of the lambda is de-12 

pendent on divisor’s lifetime. Also, writing out the name, “divisor,” reminds us to 13 

ensure that divisor lives at least as long as the lambda’s closures. That’s a more 14 

specific memory jog than the general “make sure nothing dangles” admonition that 15 

“[&]” conveys. 16 

If you know that the lambda will be used only once (e.g., in a call to an STL algo-17 

rithm), there is no risk that its closure will outlive the local variables and parame-18 

ters in the environment where the lambda is created. In that case, you might argue, 19 

there’s no risk of dangling references, hence no reason to avoid a default by-20 

reference capture mode. For example, our filtering lambda might be used only as 21 

an argument to C++11’s std::all_of, which returns whether all elements in a 22 

range satisfy a condition:  23 

template<typename C>                          24 
void workWithContainer(const C& container) 25 
{ 26 
  auto calc1 = computeSomeValue1();             // as above 27 
  auto calc2 = computeSomeValue2();             // as above 28 

  auto divisor = computeDivisor(calc1, calc2);  // as above 29 

  using ContElemT = typename C::value_type;     // type of  30 
                                                // elements in  31 
                                                // container 32 

  if (std::all_of(                              // if all values 33 
        container.begin(), container.end(),     // in container 34 
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        [&](const ContElemT& value)             // are multiples 1 
        { return value % divisor == 0; })       // of divisor... 2 
      ) { 3 
    …                                           // they are... 4 
  } else { 5 
    …                                           // at least one 6 
  }                                             // isn't... 7 
} 8 

It’s true, this is safe, but its safety is somewhat precarious. If the lambda were 9 

found to be useful in other contexts (e.g., as a function to be added to the filters 10 

container) and was copy-and-pasted into a context where its closure could outlive 11 

divisor, you’d be back in dangle-city, and there’d be nothing in the capture clause 12 

to specifically remind you to perform lifetime analysis on divisor.  13 

Long-term, it’s simply better software engineering to explicitly list the local varia-14 

bles and parameters that a lambda depends on.  15 

By the way, the ability to use auto in C++14 lambda parameter specifications 16 

means that the code above can be simplified in C++14. The ContElemT typedef can 17 

be eliminated, and the if condition can be revised as follows: 18 

if (std::all_of(container.begin(), container.end(), 19 
                [&](const auto& value)                // C++14 20 
                { return value % divisor == 0; }))    // only 21 

One way to solve our problem with divisor would be a default by-value capture 22 

mode. That is, we could add the lambda to filters as follows: 23 

filters.emplace_back(                                 // now 24 
  [=](int value) { return value % divisor == 0; }     // divisor 25 
);                                                    // can't 26 
                                                      // dangle 27 

This suffices for this example, but, in general, default by-value capture isn’t the an-28 

ti-dangling elixir you might imagine. The problem is that if you capture a pointer 29 

by value, you copy the pointer into the closures arising from the lambda, but you 30 

don’t prevent code outside the lambda from deleteing the pointer and causing 31 

your copies to dangle.  32 

“That could never happen!,” you protest. “Having read Chapter 4, I worship at the 33 

house of smart pointers. Only loser C++98 programmers use raw pointers and de-34 
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lete.” That may be true, but it’s irrelevant, because you do, in fact, use raw point-1 

ers, and they can, in fact, be deleted out from under you. It’s just that in your 2 

modern C++ programming style, there’s often little sign of it in the source code.  3 

Suppose one of the things Widgets can do is add entries to the container of filters: 4 

class Widget { 5 
public: 6 
  …                                  // ctors, etc. 7 

  void addFilter() const;            // add an entry to filters 8 

private: 9 
  int divisor;                       // used in Widget's filter 10 
}; 11 

Widget::addFilter could be defined like this: 12 

void Widget::addFilter() const 13 
{ 14 
  filters.emplace_back( 15 
    [=](int value) { return value % divisor == 0; } 16 
  ); 17 
} 18 

To the blissfully uninitiated, this looks like safe code. The lambda is dependent on 19 

divisor, but the default by-value capture mode ensures that divisor is copied 20 

into any closures arising from the lambda, right?  21 

Wrong. Completely wrong. Horribly wrong. Fatally wrong. 22 

Captures apply only to non-static local variables (including parameters) visible 23 

in the scope where the lambda is created. In the body of Widget::addFilter, 24 

divisor is not a local variable, it’s a data member of the Widget class. It can’t be 25 

captured. Yet if the default capture mode is eliminated, the code won’t compile: 26 

void Widget::addFilter() const 27 
{ 28 
  filters.emplace_back(                             // error! 29 
    [](int value) { return value % divisor == 0; }  // divisor 30 
  );                                                // not  31 
}                                                   // available 32 
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Furthermore, if an attempt is made to explicitly capture divisor (either by value 1 

or by reference—it doesn’t matter), the capture won’t compile, because divisor 2 

isn’t a local variable or a parameter: 3 

void Widget::addFilter() const 4 
{ 5 
  filters.emplace_back(    6 
    [divisor](int value)                // error! no local  7 
    { return value % divisor == 0; }    // divisor to capture 8 
  );    9 
} 10 

So if the default by-value capture clause isn’t capturing divisor, yet without the 11 

default by-value capture clause, the code won’t compile, what’s going on?  12 

The explanation hinges on your implicit use of a raw pointer: this. Every non-13 

static member function has a this pointer, and you use that pointer every time 14 

you mention a data member of the class. Inside any Widget member function, for 15 

example, compilers internally replace uses of divisor with this->divisor. In 16 

the version of Widget::addFilter with a default by-value capture, 17 

void Widget::addFilter() const 18 
{ 19 
  filters.emplace_back( 20 
    [=](int value) { return value % divisor == 0; } 21 
  ); 22 
} 23 

what’s being captured is the Widget’s this pointer, not divisor. Compilers treat 24 

the code as if it had been written as follows: 25 

void Widget::addFilter() const 26 
{ 27 
  auto currentObjectPtr = this; 28 

  filters.emplace_back( 29 
    [currentObjectPtr](int value) 30 
    { return value % currentObjectPtr->divisor == 0; } 31 
  ); 32 
} 33 

Understanding this is tantamount to understanding that the viability of the clo-34 

sures arising  from this lambda are tied to the lifetime of the Widget whose this 35 
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pointer they contain a copy of. In particular, consider this code, which, in accord 1 

with Chapter 4, uses pointers of only the smart variety: 2 

using FilterContainer =                     // as before  3 
  std::vector<std::function<bool(int)>>;  4 

FilterContainer filters;                    // as before 5 

void doSomeWork() 6 
{ 7 
  auto pw =                       // create Widget; see 8 
    std::make_unique<Widget>();   // Item 23 for  9 
                                  // std::make_unique 10 

  pw->addFilter();                // add filter that uses 11 
                                  // Widget::divisor 12 
  … 13 
}                                 // destroy Widget; filter 14 
                                  // now holds dangling pointer! 15 

When a call is made to doSomeWork, a filter is created that depends on the Widget 16 

object produced by std::make_unique, i.e., a filter that contains a copy of a 17 

pointer to that Widget—the Widget’s this pointer. This filter is added to fil-18 

ters, but when doSomeWork finishes, the Widget is destroyed by the 19 

std::unique_ptr managing its lifetime (see Item 20). From that point on, fil-20 

ters contains an entry with a dangling pointer. 21 

This particular problem can be solved by making a local copy of the data member 22 

you want to capture and then capturing the copy: 23 

void Widget::addFilter() const 24 
{ 25 
  auto divisorCopy = divisor;                // copy data member 26 

  filters.emplace_back( 27 
    [divisorCopy](int value)                 // capture the copy 28 
    { return value % divisorCopy == 0; }     // use the copy 29 
  ); 30 
} 31 

To be honest, if you take this approach, default by-value capture will work, too, 32 

void Widget::addFilter() const 33 
{ 34 
  auto divisorCopy = divisor;                // copy data member 35 
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  filters.emplace_back( 1 
    [=](int value)                           // capture the copy 2 
    { return value % divisorCopy == 0; }     // use the copy 3 
  ); 4 
} 5 

but why tempt fate? A default capture mode is what made it possible to accidental-6 

ly capture this when you thought you were capturing divisor in the first place. 7 

In C++14, a better way to capture a data member is to use generalized lambda cap-8 

ture (see Item 34): 9 

void Widget::addFilter() const 10 
{ 11 
  filters.emplace_back(               // C++14 only: 12 
    [divisor = divisor](int value)    // copy divisor to closure 13 
    { return value % divisor == 0; }  // use the copy 14 
  ); 15 
} 16 

There’s no such thing as a default capture mode for a generalized lambda capture, 17 

however, so even in C++14, the advice of this Item—to avoid default capture 18 

modes—stands. 19 

An additional drawback to default by-value captures is that they can suggest that 20 

the corresponding closures are self-contained and insulated from changes to data 21 

outside the closures. In general, that’s not true, because lambdas may be depend-22 

ent not just on local variables and parameters (which may be captured), but also 23 

on objects with static storage duration. Such objects are defined at global or 24 

namespace scope or are declared static inside classes, functions, or files. These 25 

objects can be used inside lambdas, but they can’t be captured. Yet specification of 26 

a default by-value capture mode can lend the impression that they are. Consider 27 

this  revised version of the addDivisorFilter template we saw earlier: 28 

void addDivisorFilter() 29 
{ 30 
  static auto calc1 = computeSomeValue1();      // now static 31 
  static auto calc2 = computeSomeValue2();      // now static 32 

  static auto divisor =                         // now static 33 
    computeDivisor(calc1, calc2); 34 
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  filters.emplace_back( 1 
    [=](int value)                     // captures nothing! 2 
    { return value % divisor == 0; }   // refers to above static 3 
  );  4 

  ++divisor;                           // modify divisor 5 
} 6 

A casual reader of this code could be forgiven for seeing “[=]” and thinking, “Okay, 7 

the lambda makes a copy of all the objects it uses and is therefore self-contained.” 8 

But it’s not self-contained. This lambda doesn’t use any non-static local variables, 9 

so nothing is captured. Rather, the code for the lambda refers to the static varia-10 

ble divisor. When, at the end of each invocation of addDivisorFilter, divisor 11 

is incremented, any lambdas that have been added to filters via this function 12 

will exhibit new behavior (corresponding to the new value of divisor). Practical-13 

ly speaking, this lambda captures divisor by reference, a direct contradiction to 14 

what the default by-value capture clause seems to imply. If you stay away from 15 

default by-value capture clauses, you eliminate the risk of your code being misread 16 

in this way. 17 

Things to Remember 18 

 Default by-reference capture can lead to hidden dangling references. 19 

 Default by-value capture is susceptible to hidden dangling pointers (especially 20 

this), and it misleadingly suggests that lambdas are self-contained. 21 

 Item 34: Use init capture to move objects into closures. 22 

Sometimes neither by-value capture nor by-reference capture is what you want. If 23 

you have a move-only object (e.g., a std::unique_ptr or a std::future) that 24 

you want to get into a closure, C++11 offers no way to do it. If you have an object 25 

that’s expensive to copy but cheap to move (e.g., most containers in the Standard 26 

Library), and you’d like to get that object into a closure, you’d much rather move it 27 

than copy it. Again, however, C++11 gives you no way to accomplish that. 28 

But that’s C++11. C++14 is a different story. It offers direct support for moving ob-29 

jects into closures. If your compilers are C++14-compliant, rejoice and read on. If 30 
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you’re still working with C++11 compilers, you should rejoice and read on, too, 1 

because there are ways to approximate move capture in C++11. 2 

The absence of move capture was recognized as a shortcoming even as C++11 was 3 

adopted. The straightforward remedy would have been to add it in C++14, but the 4 

Standardization Committee chose a different path. They introduced a new capture 5 

mechanism that’s so flexible, capture-by-move is only one of the tricks it can per-6 

form. The new capability is called init capture. It can do virtually everything the 7 

C++11 capture forms can do, plus more. The one thing you can’t express with an 8 

init capture is a default capture mode, but Item 33 explains that you should stay 9 

away from those, anyway. (For situations covered by C++11 captures, init cap-10 

ture’s syntax is a bit wordier, so in cases where a C++11 capture gets the job done, 11 

it’s perfectly reasonable to use it.) 12 

Using an init capture makes it possible for you to specify 13 

1. the name of a data member in the closure class generated from the lambda 14 

and 15 

2. an expression initializing that data member. 16 

Here’s how you can use init capture to move a std::unique_ptr into a closure: 17 

class Widget {                          // some useful type 18 
public: 19 
  … 20 

  bool isValidated() const; 21 
  bool isProcessed() const; 22 
  bool isArchived() const; 23 

private: 24 
  … 25 
}; 26 

 27 

auto pw = std::make_unique<Widget>();   // create Widget; see 28 
                                        // Item 23 for info on 29 
                                        // std::make_unique 30 

…                                       // configure *pw 31 
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auto func = [pw = std::move(pw)]               // init data mbr 1 
            { return pw->isValidated()         // in closure w/ 2 
                     && pw->isArchived(); };   // std::move(pw) 3 

The highlighted text comprises the init capture. To the left of the “=” is the name of 4 

the data member in the closure class you’re specifying, and to the right is the ini-5 

tializing expression. Interestingly, the scope on the left of the “=” is different from 6 

the scope on the right. The scope on the left is that of the closure class. The scope 7 

on the right is the same as where the lambda is being defined. In the example 8 

above, the name pw on the left of the “=” refers to a data member in the closure 9 

class, while the name pw on the right refers to the object declared above the lamb-10 

da, i.e., the variable initialized by the call to std::make_unique. So “pw = 11 

std::move(pw)” means “create a data member pw in the closure, and initialize 12 

that data member with the result of applying std::move to the local variable pw.” 13 

As usual, code in the body of the lambda is in the scope of the closure class, so uses 14 

of pw there refer to the closure class data member. 15 

The comment “configure *pw” in this example indicates that after the Widget is 16 

created by std::make_unique and before the std::unique_ptr to that Widget 17 

is captured by the lambda, the Widget is modified in some way. If no such configu-18 

ration is necessary, i.e., if the Widget created by std::make_unique is in a state 19 

suitable to be captured by the lambda, the local variable pw is unnecessary, be-20 

cause the closure class’s data member can be directly initialized by 21 

std::make_unique: 22 

auto func = [pw = std::make_unique<Widget>()]  // init data mbr 23 
            { return pw->isValidated()         // in closure w/ 24 
                     && pw->isArchived(); };   // result of call 25 
                                               // to make_unique 26 

This should make clear that the C++14 notion of “capture” is considerably general-27 

ized from C++11, because in C++11, it’s not possible to capture the result of an ex-28 

pression. As a result, another name for init capture is generalized lambda capture. 29 

But what if one or more of the compilers you use lacks support for C++14’s init 30 

capture? How can you accomplish move capture in a language lacking support for 31 

move capture? 32 
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Remember that a lambda expression is simply a way to cause a class to be gener-1 

ated and an object of that type to be created. There is nothing you can do with a 2 

lambda that you can’t do by hand. The example C++14 code we just saw, for exam-3 

ple, can be written in C++11 like this: 4 

class IsValAndArch {                         // "is validated 5 
public:                                      // and archived" 6 
  using DataType = std::unique_ptr<Widget>; 7 

  explicit IsValAndArch(DataType&& ptr)      // Item 27 explains 8 
  : pw(std::move(ptr)) {}                    // use of std::move 9 

  bool operator()() const 10 
  { return pw->isValidated() && pw->isArchived(); } 11 

private: 12 
  DataType pw; 13 
}; 14 

auto func = IsValAndArch(std::make_unique<Widget>()); 15 

That’s more work than writing the lambda, but it doesn’t change the fact that if you 16 

want a class in C++11 that supports move-initialization of its data members, the 17 

only thing between you and your desire is a bit of time with your keyboard. 18 

If you want to stick with lambdas (and given their convenience, you probably do), 19 

move capture can be emulated in C++11 by  20 

1. moving the object to be captured into a function object produced by 21 

std::bind and  22 

2. giving the lambda a reference to the “captured” object.  23 

If you’re familiar with std::bind, the code is pretty straightforward. If you’re not 24 

familiar with std::bind, the code takes a little getting used to, but it’s worth the 25 

trouble. 26 

Suppose you’d like to create a local std::vector, put an appropriate set of values 27 

into it, then move it into a closure. In C++14, this is easy: 28 

std::vector<double> data;                 // object to be moved 29 
                                          // into closure 30 

…                                         // populate data 31 
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auto func = [data = std::move(data)]      // C++14 init capture 1 
            { /* uses of data */ }; 2 

I’ve highlighted key parts of this code: the type of object you want to move 3 

(std::vector<double>), the name of that object (data), and the initializing ex-4 

pression for the init capture (std::move(data)). The C++11 equivalent is as fol-5 

lows, where I’ve highlighted the same key things: 6 

std::vector<double> data;                 // as above 7 

…                                         // as above 8 

auto func = 9 
  std::bind(                              // C++11 emulation 10 
    [](std::vector<double>& data)         // of init capture 11 
    { /* uses of data */ }, 12 
    std::move(data) 13 
  ); 14 

Like lambda expressions, std::bind produces function objects. I call function ob-15 

jects returned by std::bind bind objects. The first argument to std::bind is al-16 

ways something callable (e.g., a callable entity). Subsequent arguments represent 17 

values to be passed to the first argument.  18 

A bind object contains copies of all the arguments passed to std::bind. For each 19 

lvalue argument, the corresponding object in the bind object is copy constructed. 20 

For each rvalue, it’s move constructed. In this example, the second argument is an 21 

rvalue (the result of std::move—see Item 25), so data is move-constructed into 22 

the bind object. This move construction is the crux of move capture emulation, be-23 

cause moving an rvalue into a bind object is how we work around the inability to 24 

move an rvalue into a C++11 closure. 25 

When a bind object is “called” (i.e., its function call operator is invoked) the objects 26 

it stores are passed to the callable entity originally passed to std::bind. In this 27 

example, that means that when func (the bind object) is called, the move-28 

constructed copy of data inside func is passed as an argument to the lambda that 29 

was passed to std::bind. 30 

This lambda is the same as the lambda we’d use in C++14, except a parameter, da-31 

ta, has been added to correspond to our pseudo-move-captured object. This pa-32 
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rameter is an lvalue reference to the copy of data in the bind object. (It’s not an 1 

rvalue reference, because although the expression used to initialize the copy of 2 

data (“std::move(data)”) is an rvalue, the copy of data itself is an lvalue.) Uses 3 

of data inside the lambda will thus operate on the move-constructed copy of data 4 

inside the bind object.  5 

Because a bind object stores copies of all the arguments passed to std::bind, the 6 

bind object in our example contains a copy of the closure produced by the lambda 7 

that is its first argument. The lifetime of the closure is therefore the same as the 8 

lifetime of the bind object. That’s important, because it means that as long as the 9 

closure exists, the bind object containing the pseudo-move-captured object exists, 10 

too.  11 

If this is your first exposure to std::bind, you may need to consult your favorite 12 

C++11 reference before all the details of the foregoing discussion fall into place. 13 

Even if that’s the case, these fundamental points should be clear: 14 

 It’s not possible to move-construct an object into a C++11 closure, but it is pos-15 

sible to move-construct an object into a C++11 bind object. 16 

 Emulating move-capture in C++11 consists of move-constructing an object into 17 

a bind object, then passing the move-constructed object to the lambda by ref-18 

erence. 19 

 Because the lifetime of the bind object is the same as that of the closure, it’s 20 

possible to treat objects in the bind object as if they were in the closure. 21 

As a second example of using std::bind to emulate move capture, here’s the 22 

C++14 code we saw earlier to create a std::unique_ptr in a closure: 23 

auto func = [pw = std::make_unique<Widget>()]    // as before, 24 
            { return pw->isValidated()           // create pw 25 
                     && pw->isArchived(); };     // in closure 26 

And here’s the C++11 emulation: 27 

auto func = std::bind( 28 
              [](std::unique_ptr<Widget>& pw) 29 
              { return pw->isValidated() 30 
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                     && pw->isArchived(); }, 1 
              std::make_unique<Widget>() 2 
            ); 3 

It’s ironic that I’m showing how to use std::bind to work around limitations in 4 

C++11 lambdas, because in Item 36, I advocate the use of lambdas over 5 

std::bind. However, that Item explains that there are some cases in C++11 6 

where std::bind can be useful, and this is one of them. (In C++14, features such 7 

as init capture and auto parameters eliminate those cases.) 8 

Things to Remember 9 

 Use C++14’s init capture to move objects into closures. 10 

 In C++11, emulate init capture via hand-written classes or std::bind. 11 

 Item 35: Use decltype on auto&& parameters to 12 

std::forward them. 13 

One of the most exciting features of C++14 is generic lambdas—lambdas that use 14 

auto in their parameter specifications. The implementation of this feature is 15 

straightforward: the operator() in the closure class arising from the lambda is a 16 

template. Given this lambda, for example,  17 

auto f = [](auto x){ return func(normalize(x)); }; 18 

the closure class’s function call operator looks like this: 19 

class SomeCompilerGeneratedClassName { 20 
public: 21 
  template<typename T>                   // see Item 3 for  22 
  auto operator()(T x) const             // auto return type 23 
  { return func(normalize(x)); }  24 

  …                                      // other closure class 25 
};                                       // functionality 26 

In this example, the only thing the lambda does with its parameter x is forward it 27 

to normalize. If normalize treats lvalues differently from rvalues, this lambda 28 

isn’t really written properly, because it always passes an lvalue (the parameter x) 29 

to normalize, even if the argument that was passed to the lambda was an rvalue. 30 
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The correct way to write the lambda is to have it perfect-forward x to normalize. 1 

Doing that requires two changes to the code. First, x has to become a universal ref-2 

erence (see Item 26), and second, it has to be passed to normalize via 3 

std::forward (see Item 27). In concept, these are trivial modifications: 4 

auto f = [](auto&& x) 5 
         { return func(normalize(std::forward<???>(x))); }; 6 

Between concept and realization, however, is the question of what type to pass to 7 

std::forward, ie., to determine what should go where I’ve written ??? above.  8 

Normally, when you employ perfect forwarding, you’re in a template function tak-9 

ing some type parameter T, so you just write std::forward<T>. In the lambda, 10 

though, there’s no type parameter T available to you. There is a T in the tem-11 

platized operator() inside the closure class generated by the lambda, but it’s not 12 

possible to refer to it from the lambda, so it does you no good. 13 

Item 30 explains that if an lvalue argument is passed to a universal reference pa-14 

rameter, the type of that parameter becomes an lvalue reference. If an rvalue is 15 

passed, the parameter becomes an rvalue reference. This means that in our lamb-16 

da, we can determine whether the argument passed was an lvalue or an rvalue by 17 

inspecting the type of the parameter, x. decltype gives us a way to do that (see 18 

Item 3). If an lvalue was passed in, decltype(x) will produce a type that’s an 19 

lvalue reference. If an rvalue was passed, decltype(x) will produce an rvalue 20 

reference type. 21 

Item 30 also explains that when calling std::forward, the type argument should 22 

be an lvalue reference for lvalues, and it should be a non-reference for rvalues. In 23 

our lambda, if x is bound to an lvalue, decltype(x) will yield an lvalue reference, 24 

which is exactly what std::forward wants. However, if x is bound to an rvalue, 25 

decltype(x) will yield an rvalue reference—not the non-reference that 26 

std::forward expects. 27 

But look at the sample implementation for std::forward from Item 30: 28 

template<typename T>                       // from Item 30 29 
T&& forward(T&& param) 30 
{ 31 
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  return static_cast<T&&>(param); 1 
} 2 

If client code wants to perfect-forward an rvalue of type Widget, it’ll call 3 

std::forward with the type Widget (i.e, a non-reference type), and the 4 

std::forward template will be instantiated to yield this function: 5 

Widget&& forward(Widget&& param)           // instantiation of 6 
{                                          // std::forward when 7 
  return static_cast<Widget&&>(param);     // T is Widget 8 
} 9 

But consider what would happen if the client code wanted to perfect-forward the 10 

same rvalue of type Widget, but instead of following the convention of specifying T 11 

to be a non-reference type, it specified it to be an rvalue reference. That is, consid-12 

er what would happen if T were specified to be Widget&&. After instantiation of 13 

std::forward but before reference collapsing (once again, see Item 30), 14 

std::forward would look like this: 15 

Widget&& && forward(Widget&& && param)     // instantiation of 16 
{                                          // std::forward when 17 
  return static_cast<Widget&& &&>(param);  // T is Widget&&  18 
}                                          // (before reference- 19 
                                           // collapsing) 20 

Applying the reference-collapsing rule that an rvalue reference to an rvalue refer-21 

ence becomes a single rvalue reference, this instantiation emerges: 22 

Widget&& forward(Widget&& param)           // instantiation of 23 
{                                          // std::forward when 24 
  return static_cast<Widget&&>(param);     // T is Widget&&  25 
}                                          // (after reference- 26 
                                           // collapsing) 27 

If you compare this instantiation with the one that results when std::forward is 28 

called with T set to Widget, you’ll see that they’re identical. That means that call-29 

ing std::forward with a non-reference type yields the same result as calling it 30 

with an rvalue reference type.  31 

That’s wonderful news, because decltype(x) yields an rvalue reference type 32 

when an rvalue is passed as an argument to our lambda’s parameter x. We estab-33 

lished above that when an lvalue is passed to our lambda, decltype(x) yields the 34 
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proper type to pass to std::forward, and now we realize that for rvalues, 1 

decltype(x) yields a type to pass to std::forward that’s not conventional, but 2 

that nevertheless yields the same outcome as the conventional type. So for both 3 

lvalues and rvalues, passing decltype(x) to std::forward gives us the result 4 

we want. Our perfect-forwarding lambda can therefore be written like this: 5 

auto f = 6 
  [](auto&& x) 7 
  { return func(normalize(std::forward<decltype(x)>(x))); }; 8 

From there, it’s just a hop, skip, and three dots to a perfect-forwarding lambda that 9 

accepts not just a single parameter, but any number of parameters, because C++14 10 

lambdas can also be variadic: 11 

auto f = 12 
  [](auto&&... x) 13 
  { return func(normalize(std::forward<decltype(x)>(x)...)); }; 14 

Things to Remember 15 

 Use decltype on auto&& parameters to std::forward them. 16 

 Item 36: Prefer lambdas to std::bind. 17 

std::bind is the C++11 successor to C++98’s std::bind1st and std::bind2nd, 18 

but, informally, it’s been part of the Standard Library since 2005. That’s when the 19 

Standardization Committee adopted a document known as TR1, which included 20 

bind’s specification. (In TR1, bind was in a different namespace, so it was 21 

std::tr1::bind, not std::bind, and a few interface details were different.) This 22 

history means that some programmers have a decade or more of experience using 23 

std::bind. If you’re one of them, you may be reluctant to abandon a tool that’s 24 

served you well. That’s understandable, but in this case, change is good, because in 25 

C++11, lambdas are almost always a better choice than std::bind. As of C++14, 26 

the case for lambdas isn’t just stronger, it’s downright iron-clad.  27 

This Item assumes that you’re familiar with std::bind. If you’re not, you’ll want 28 

to acquire a basic understanding before continuing. Such an understanding is 29 

worthwhile in any case, because you never know when you might encounter uses 30 

of std::bind in a code base you have to read or maintain. 31 
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The most important reason to prefer lambdas over std::bind is that lambdas are 1 

more readable. Suppose, for example, we have a function to set up an audible 2 

alarm: 3 

// typedef for a point in time (see Item 9 for syntax) 4 
using Time = std::chrono::time_point<std::chrono::steady_clock>; 5 

// see Item 10 for "enum class" 6 
enum class Sound { Beep, Siren, Whistle }; 7 

// typedef for a length of time 8 
using Duration = std::chrono::steady_clock::duration; 9 

// at time t, make sound s for duration d 10 
void setAlarm(Time t, Sound s, Duration d); 11 

Further suppose that at some point in the program, we’ve determined we’ll want 12 

an alarm that will go off an hour after it’s set and that will stay on for 30 seconds. 13 

The alarm sound, however, remains undecided. We can write a lambda that revises 14 

setAlarm’s interface so that only a sound needs to be specified: 15 

// setSoundL ("L" for "lambda") is a function object allowing a 16 
// sound to be specified for a 30-sec alarm to go off an hour  17 
// after it's set 18 
auto setSoundL =                              19 
  [](Sound s)  20 
  {  21 
    // make std::chrono components available w/o qualification 22 
    using namespace std::chrono; 23 

    setAlarm(steady_clock::now() + hours(1),  // alarm to go off 24 
             s,                               // in an hour for 25 
             seconds(30));                    // 30 seconds 26 
  }; 27 

I’ve highlighted the call to setAlarm inside the lambda. This is a normal-looking 28 

function call, and even a reader with little lambda experience can see that the pa-29 

rameter s passed to the lambda is passed as an argument to setAlarm. 30 

The corresponding std::bind call looks like this: 31 

using namespace std::chrono;           // as above 32 

using namespace std::placeholders;     // needed for use of "_1"  33 

auto setSoundB =                       // "B" for "bind" 34 
  std::bind(setAlarm, 35 
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            steady_clock::now() + hours(1), 1 
            _1, 2 
            seconds(30)); 3 

I’d like to highlight the call to setAlarm here as I did above, but there’s no call to 4 

highlight. Readers of this code simply have to know that calling setSoundB in-5 

vokes setAlarm with the time and duration specified in the call to std::bind. To 6 

the uninitiated, the placeholder “_1” is essentially magic, but even readers in the 7 

know have to mentally map from the number in that placeholder to its position in 8 

the std::bind parameter list in order to understand that the first argument in a 9 

call to setSoundB is passed as the second argument to setAlarm. The type of this 10 

argument is not identified in the call to std::bind, so readers have to consult the 11 

setAlarm declaration to determine what kind of argument to pass to setSoundB. 12 

If setAlarm is overloaded, the situation becomes more interesting. Suppose 13 

there’s an overload taking a fourth parameter specifying the alarm volume: 14 

enum class Volume { Normal, Loud, LoudPlusPlus }; 15 

void setAlarm(Time t, Sound s, Duration d, Volume v); 16 

The lambda continues to work as before, because overload resolution chooses the 17 

three-argument version of setAlarm: 18 

auto setSoundL =                               // same as before 19 
  [](Sound s)  20 
  {  21 
    using namespace std::chrono; 22 

    setAlarm(steady_clock::now() + hours(1),   // fine, calls 23 
             s,                                // 3-arg version 24 
             seconds(30));                     // of setAlarm 25 
  }; 26 

The std::bind call, on the other hand, now fails to compile: 27 

auto setSoundB = 28 
  std::bind(setAlarm,                          // error! which 29 
            steady_clock::now() + hours(1),    // setAlarm? 30 
            _1, 31 
            seconds(30)); 32 
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The problem is that compilers have no way to determine which of the two 1 

setAlarm functions they should pass to std::bind. All they have is a function 2 

name, and the name alone is ambiguous. 3 

To get the std::bind call to compile, setAlarm must be cast to the proper func-4 

tion pointer type: 5 

using SetAlarm3ParamType = void(*)(Time t, Sound s, Duration d); 6 

auto setSoundB =                                        // now 7 
  std::bind(static_cast<SetAlarm3ParamType>(setAlarm),  // okay 8 
            steady_clock::now() + hours(1),  9 
            _1, 10 
            seconds(30)); 11 

But this brings up another difference between lambdas and std::bind. Inside the 12 

function call operator for setSoundL (i.e., the function call operator of the lamb-13 

da’s closure class), the call to setAlarm is a normal function invocation that can be 14 

inlined by compilers in the usual fashion. Furthermore, C++ specifies that the func-15 

tion call operator on the closure class resulting from the lambda is inline, so in a 16 

call to the lambda, it’s entirely possible that the body of setAlarm is inlined at the 17 

call site: 18 

setSoundL(Sound::Siren);      // body of setAlarm may  19 
                              // well be inlined here 20 

The call to std::bind, however, passes a function pointer to setAlarm, and that 21 

means that inside the function call operator for setSoundB (i.e., the function call 22 

operator for the class of the object returned by std::bind), the call to setAlarm 23 

takes place through a function pointer. Compilers are much less likely to inline 24 

function calls through function pointers, and that means that  calls to setAlarm 25 

through setSoundB are less likely to be fully inlined than those through 26 

setSoundL: 27 

setSoundB(Sound::Siren);      // body of setAlarm is less 28 
                              // likely to be inlined here 29 

It’s thus probable that using lambdas generates faster code than using std::bind. 30 

The setAlarm example involves only a simple function call. If you want to do any-31 

thing more complicated, the scales tip even further in favor of lambdas. For exam-32 
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ple, consider this C++14 lambda, which returns whether its argument is between a 1 

minimum value (lowVal) and a maximal value (highVal), where lowVal and 2 

highVal are local variables: 3 

auto betweenL =                     4 
  [lowVal, highVal] 5 
  (const auto& val)                          // C++14 only  6 
  { return lowVal <= val && val <= highVal; }; 7 

std::bind can express the same thing, but the construct is an example of job se-8 

curity through code obscurity: 9 

using namespace std::placeholders;           // as above 10 

auto betweenB = 11 
  std::bind(std::logical_and<>(),            // C++14 only 12 
              std::bind(std::less_equal<>(), _1, lowVal), 13 
              std::bind(std::less_equal<>(), _1, highVal)); 14 

Within this use of std::bind, I’m taking advantage of the C++14 feature of not 15 

having to specify a template type argument for the standard operator templates 16 

(e.g., std::logical_and, std::less_equal, etc.). In C++11, we’d have to specify 17 

the types we wanted to compare, and the std::bind call would look like this: 18 

using namespace std::placeholders; 19 

auto betweenB =                              // C++11 version 20 
  std::bind(std::logical_and<bool>(), 21 
              std::bind(std::greater_equal<int>(), _1, lowVal), 22 
              std::bind(std::less_equal<int>(), _1, highVal)); 23 

Of course, in C++11, the lambda couldn’t take an auto parameter, so it’d have to 24 

commit to a type, too: 25 

auto betweenL =                              // C++11 version 26 
  [lowVal, highVal] 27 
  (int x) 28 
  { return x >= lowVal && x <= highVal; }; 29 

Either way, I hope we can agree that the lambda version is not just shorter, but 30 

also more comprehensible and maintainable. 31 

Earlier, I remarked that for those with little std::bind experience, its placehold-32 

ers (e.g., _1, _2, etc.) are essentially magic. But it’s not just the behavior of the 33 
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placeholders that’s opaque. Suppose we have a function to create compressed cop-1 

ies of  Widgets, 2 

enum class CompLevel { Low, Normal, High };  // compression 3 
                                             // level 4 

Widget compress(const Widget& w,             // make compressed 5 
                CompLevel lev);              // copy of w 6 

and we want to create a function object that allows us to specify how much a par-7 

ticular Widget w should be compressed. This use of std::bind will create such an 8 

object: 9 

Widget w; 10 

using namespace std::placeholders; 11 

auto compressRateB = std::bind(compress, w, _1);   12 

Now, when we pass w to std::bind, it has to be stored for the later call to com-13 

press. It’s stored inside the object compressRate, but how is it stored—by value 14 

or by reference? It makes a difference, because if w is modified between the call to 15 

std::bind and a call to compressRate, storing w by reference will reflect the 16 

changes, while storing it by value won’t. 17 

The answer is that it’s stored by value, but the only way to know that is to memo-18 

rize how std::bind works; there’s no sign of it in the call to std::bind. † Con-19 

trast that with a lambda approach, where whether w is captured by value or by ref-20 

erence is explicit: 21 

auto compressRateL =                         // w is captured by 22 
  [w](CompLevel lev)                         // value; lev is  23 
  { return compress(w, lev); };              // passed by value 24 

                                                             

† std::bind always copies its arguments, but callers can achieve the effect of having an 

argument stored by reference by applying std::ref to it. The result of 

auto compressRateB = std::bind(compress, std::ref(w), _1); 

is that compressRateB acts as if it holds a reference to w, rather than a copy. A lambda, of 

course, would simply use an explicit by-reference capture mode to achieve this effect. 
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Equally explicit is how parameters are passed to the lambda. Here, it’s clear that 1 

the parameter lev is passed by value. Hence: 2 

compressRateL(CompLevel::High);              // arg is passed 3 
                                             // by value 4 

But in the call to the object resulting from std::bind, how is the argument 5 

passed? 6 

compressRateB(CompLevel::High);              // how is arg 7 
                                             // passed? 8 

Again, the only way to know is to memorize how std::bind works. (The answer 9 

is that all arguments passed to objects created by std::bind are passed by refer-10 

ence, because the function call operator for such objects uses perfect forwarding.) 11 

Compared to lambdas, then, code using std::bind is less readable, less expres-12 

sive, and less efficient. In C++14, there are no reasonable use cases for std::bind. 13 

In C++11, however, std::bind can be justified in two constrained situations: 14 

 Move capture. C++11 lambdas don’t offer move capture, but it can be emulat-15 

ed through a combination of a lambda and std::bind. For details, consult 16 

Item 34, which also explains that in C++14, lambdas’ support for init capture 17 

eliminates the need for the emulation. 18 

 Polymorphic function objects. Because the function call operator on the ob-19 

ject returned from std::bind uses perfect forwarding, it can accept argu-20 

ments of any type (modulo the restrictions on perfect forwarding described in 21 

Item 32). This can be useful when you want to bind an object with a tem-22 

platized function call operator. For example, given this class, 23 

class PolyWidget { 24 
public: 25 
    template<typename T> 26 
    void operator()(const T& param); 27 
    … 28 
}; 29 

std::bind can bind a PolyWidget as follows: 30 

PolyWidget pw; 31 
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auto boundPW = std::bind(pw, _1); 1 

boundPW can then be called with different types of arguments: 2 

boundPW(1930);              // pass int to 3 
                            // PolyWidget::operator() 4 

boundPW(nullptr);           // pass nullptr to  5 
                            // PolyWidget::operator() 6 

boundPW("Rosebud");         // pass string literal to  7 
                            // PolyWidget::operator() 8 

There is no way to do this with a C++11 lambda. In C++14, however, it's easily 9 

achieved via a lambda with an auto parameter: 10 

auto boundPW = [pw](const auto& param)    // C++14 only 11 
               { pw(param); }; 12 

These are edge cases, of course, and they're transient edge cases at that, because 13 

compilers supporting C++14 lambdas are increasingly common.  14 

When bind was unofficially added to C++ in 2005, it was a big improvement over 15 

its 1998 predecessors. The addition of lambda support to C++11 rendered 16 

std::bind all but obsolete, however, and as of C++14, there are just no use cases 17 

for it. 18 

Things to Remember 19 

 Lambas are more readable, more expressive, and more efficient than using 20 

std::bind. 21 

 In C++11 only, std::bind may be useful for implementing move capture or 22 

for binding objects with templatized function call operators. 23 



Page 275 

 

 1 

One of C++11’s great triumphs is the incorporation of concurrency into the lan-2 

guage and library. Programmers familiar with other threading APIs (e.g., pthreads 3 

or Windows’ Threads) are sometimes surprised at the comparatively Spartan fea-4 

ture set that C++ offers, but that’s because a great deal of C++’s support for concur-5 

rency is in the form of constraints on compiler-writers. The resulting language as-6 

surances mean that for the first time in C++’s history, programmers can write mul-7 

tithreaded programs with standard behavior across all computing platforms. This 8 

establishes a solid foundation on which expressive libraries can be built, and the 9 

concurrency elements of the Standard Library (tasks, futures, threads, mutexes, 10 

condition variables, atomic objects, and more) are merely the beginning of what is 11 

sure to become an increasingly rich set of tools for the development of concurrent 12 

C++ software. 13 

The existing features are impressive in their own right, of course, and this chapter 14 

focuses on the questions that inform their effective application. What are the dif-15 

ferences between tasks and threads, and which should be used when? What be-16 

havioral guarantees does std::async offer, and how can they be controlled? 17 

What are the implications of the varying behaviors of thread handle destructors? 18 

What are the pros and cons of different inter-thread event communication strate-19 

gies? How do std::atomics differ from volatiles, and what is the proper appli-20 

cation of each? The coming pages address these issue, and more. 21 

In the Items that follow, bear in mind that the Standard Library has two templates 22 

for futures: std::future and std::shared_future. In many cases, the distinc-23 

tion is not important, so I often simply talk about futures, by which I mean both 24 

kinds. 25 

 Item 37: Prefer task-based programming to thread-based. 26 

If you want to run a function doAsyncWork asynchronously, you have two basic 27 

choices. You can create a std::thread and run doAsyncWork on it, thus employ-28 

ing a thread-based approach: 29 
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int doAsyncWork(); 1 

std::thread t(doAsyncWork); 2 

Or you can pass doAsyncWork to std::async, a strategy known as task-based:  3 

auto fut = std::async(doAsyncWork);        // "fut" for "future" 4 

In such calls, the callable entity passed to std::async (e.g., doAsyncWork) is con-5 

sidered a task. 6 

The task-based approach is typically superior to its thread-based counterpart, and 7 

the tiny amount of code we've seen already demonstrates some reasons why. Here, 8 

doAsyncWork produces a return value, which we can reasonably assume the code 9 

invoking doAsyncWork is interested in. With the thread-based invocation, there’s 10 

no straightforward way to get access to it. With the task-based approach, it’s easy, 11 

because the future returned from std::async offers the get function. The get 12 

function is even more important if doAsyncWork emits an exception, because get 13 

provides access to that, too. With the thread-based approach, if doAsyncWork 14 

throws, the program dies (via a call to std::terminate or, if there was one, the 15 

function most recently specified via std::set_terminate). 16 

A more fundamental difference between thread-based and task-based program-17 

ming is the higher level of abstraction that task-based embodies. It frees you from 18 

the details of thread management, an observation that reminds me that I need to 19 

summarize the three meanings of “thread” in concurrent C++ software: 20 

 Hardware threads are the threads that actually perform computation. Contem-21 

porary machine architectures offer one or more hardware threads per CPU 22 

core. 23 

 Software threads (also known as OS threads or system threads) are the threads 24 

that the operating system† manages across all processes and schedules for ex-25 

ecution on hardware threads. Typically, it’s possible to create many more 26 

software threads than hardware threads, because when a software thread is 27 

                                                             

† Assuming you have one. Some embedded systems don’t. 
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blocked (e.g., on I/O or waiting for a mutex or condition variable), throughput 1 

can be improved by executing other, unblocked, threads.  2 

 std::threads are objects in a C++ process that act as handles to underlying 3 

software threads. Some std::thread objects represent “null” handles, i.e., 4 

correspond to no software thread, because they’re in a default-constructed 5 

state (hence have no function to execute), have been moved from (the moved-6 

to std::thread then acts as the handle to the underlying software thread), 7 

have been joined (the function they were to run has finished), or detached 8 

(the connection between them and their underlying software thread has been 9 

severed). 10 

Software threads are a limited resource. If you try to create more than the system 11 

can offer, a std::system_error exception is thrown. This is true even if the func-12 

tion you want to run can’t throw. For example, even if doAsyncWork is noexcept, 13 

int doAsyncWork() noexcept;          // see Item 16 for noexcept 14 

this statement could result in an exception: 15 

std::thread t(doAsyncWork);          // throws if no more 16 
                                     // threads are available 17 

Well-written software must somehow deal with this possibility, but how? One ap-18 

proach is to run doAsynchWork on the current thread, but that could lead to un-19 

balanced loads and, if the current thread is a GUI thread, responsiveness issues. 20 

Another option is to wait for some existing software threads to complete and then 21 

try to create a new std::thread again, but it’s possible that the existing threads 22 

are waiting for an action that doAsyncWork is supposed to perform  (e.g., produce 23 

a result or notify a condition variable). 24 

Even if you don’t run out of threads, you can have trouble with oversubscription. 25 

That’s when there are more ready-to-run (i.e., unblocked) software threads than 26 

hardware threads. When that happens, the thread scheduler (typically part of the 27 

OS) time-slices the software threads on the hardware. When one thread’s time-28 

slice is finished and another’s begins, a context switch is performed. Such context 29 

switches increase the overall thread management overhead of the system, and 30 

they can be particularly costly when the hardware thread on which a software 31 
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thread is scheduled is on a different core than the software thread was for its last 1 

time-slice. In that case, (1) the CPU caches are typically cold for that software 2 

thread and (2) the running of the “new” software thread on that core “pollutes” the 3 

CPU caches for “old” threads that had been running on that core and are likely to 4 

be scheduled to run there again. 5 

Avoiding oversubscription is difficult, because the optimal ratio of software to 6 

hardware threads depends on how often the software threads are runnable, and 7 

that can change dynamically, e.g., when a program goes from an I/O-heavy region 8 

to a computation-heavy region. The best ratio of software to hardware threads is 9 

also dependent on the cost of context switches and how effectively the software 10 

threads use the CPU caches. Furthermore the number of hardware threads and the 11 

details of the CPU caches (e.g., how large they are and their relative speeds) de-12 

pend on the machine architecture, so even if you tune your application to avoid 13 

oversubscription (while still keeping the hardware busy) on one platform, there’s 14 

no guarantee that your solution will work well on other kinds of machines. 15 

Your life will be easier if you dump these problems on somebody else, and using 16 

std::async does exactly that. 17 

auto fut = std::async(doAsyncWork);   // onus of thread mgmt is 18 
                                      // on implementer of  19 
                                      // the Standard Library 20 

This call shifts all the thread management responsibility to the implementers of 21 

the C++ Standard Library. For example, you don’t need to worry about an out-of-22 

threads exception arising, because this call will never yield one. “How can that 23 

be?”, you might wonder. “If I ask for more software threads than the system can 24 

provide, why does it matter whether I do it by creating std::threads or by call-25 

ing std::async?” It matters, because std::async, when called in this form (i.e., 26 

with the default launch policy—see Item 38), doesn’t guarantee that it will create a 27 

new software thread. Rather, it permits the scheduler to arrange for the specified 28 

function (in this example, doAsyncWork) to be run on the current thread, and the 29 

scheduler will take advantage of that freedom if the system is oversubscribed or is 30 

out of threads.  31 



Page 279 

 

If you pulled this “run it on the current thread” trick yourself, of course, I remarked 1 

that it could lead to load-balancing or responsiveness issues, and those issues 2 

don’t go away simply because it’s std::async and the runtime scheduler that 3 

confront them instead of you. When it comes to load-balancing, however, the 4 

runtime scheduler is likely to have a more comprehensive picture of what’s hap-5 

pening on the machine than you do, because it manages the threads from all pro-6 

cesses, not just the one your code is running in.  7 

With std::async, responsiveness on a GUI thread can still be problematic, be-8 

cause the scheduler has no way of knowing which of your threads has tight re-9 

sponsiveness requirements. In that case, you’ll want to pass the 10 

std::launch::async launch policy to std::async. That will ensure that the 11 

function you want to run really executes on a different thread (see Item 38). How-12 

ever, you’ll have to be prepared for the possibility of an exception, because 13 

std::async called with std::launch::async can run out of threads and emit a 14 

std::system_error exception, just like the std::thread constructor can. 15 

State-of-the-art thread schedulers employ system-wide thread pools to avoid 16 

oversubscription, and they improve load balancing across hardware cores through 17 

work-stealing algorithms. The C++ Standard does not require the use of thread 18 

pools or work-stealing, but it’s deliberately written to permit them, and some ven-19 

dors already take advantage of this technology in their Standard Library imple-20 

mentations. More are expected to follow. If you take a task-based approach to your 21 

concurrent programming, you automatically reap the benefits of such technology 22 

as it becomes more widespread. If, on the other hand, you program directly with 23 

std::threads, you assume the burden of dealing with thread exhaustion, over-24 

subscription, and load balancing yourself, not to mention how your solutions to 25 

these problems mesh with the solutions implemented in programs running in oth-26 

er processes on the same machine. 27 

Compared to thread-based programming, a task-based design spares you the trav-28 

ails of manual thread management, and it provides a natural way to examine the 29 

results of asynchronously executed functions (i.e., return values or exceptions). 30 

Nevertheless, there are some situations where using threads directly may be ap-31 

propriate. They include: 32 
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 You need access to the API of the underlying threading implementation. 1 

The C++ concurrency API is typically implemented using a lower-level plat-2 

form-specific API, usually pthreads or Windows’ Threads. Those APIs are cur-3 

rently richer than what C++ offers. (For example, C++ has no notion of thread 4 

priorities or affinities.) To provide access to the API of the underlying thread-5 

ing implementation, std::thread objects offer the native_handle member 6 

function. There is no counterpart to this functionality for std::futures (i.e., 7 

what std::async returns). 8 

 You need to and are able to optimize thread usage for your application. 9 

This could be the case, for example, if you’re developing server software with a 10 

known execution profile that will be deployed as the only significant process 11 

on a machine with fixed hardware characteristics. 12 

 You need to implement threading technology beyond the C++ concurren-13 

cy API, e.g., thread pools on platforms where your C++ implementations don’t 14 

offer them. 15 

These are uncommon cases, however. Most of the time, you should choose task-16 

based designs instead of programming with threads. 17 

Things to Remember 18 

 The std::thread API offer no direct way to get return values from asynchro-19 

nously-run functions, and if those functions throw, the program is terminated. 20 

 Thread-based programming calls for manual management of thread exhaus-21 

tion, oversubscription, load balancing, and adaptation to new platforms. 22 

 Task-based programming via std::async with the default launch policy suf-23 

fers from none of these drawbacks. 24 

 Item 38: Specify std::launch::async if asynchronicity is 25 

essential. 26 

When you call std::async to execute a function (or other callable entity), you’re 27 

generally intending to run the function asynchronously. But that’s not necessarily 28 

what you’re asking std::async to do. You’re really requesting that the function 29 
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be run in accord with a std::async launch policy. There are two standard poli-1 

cies, each represented by an enumerator in the std::launch scoped enum.  (See 2 

Item 10 for information on scoped enums.) Assuming a function f is passed to 3 

std::async for execution,  4 

 The std::launch::async launch policy means that f must be run asynchro-5 

nously, i.e., on a different thread. 6 

 The std::launch::deferred launch policy means that f may run only when 7 

get or wait is called on the future returned by std::async.† That is, f’s exe-8 

cution is deferred until such a call is made. When get or wait is invoked, f will 9 

execute synchronously, i.e., on the thread that made the invocation. (The caller 10 

will block until f finishes running.) If neither get nor wait is ever called, f will 11 

never run. 12 

Perhaps surprisingly, std::async’s default launch policy—the one it uses if you 13 

don’t expressly specify one—is neither of these. Rather, it’s these or-ed together. 14 

The following two calls have exactly the same meaning: 15 

auto fut1 = std::async(f);                     // run f using  16 
                                               // default launch 17 
                                               // policy 18 

auto fut2 = std::async(std::launch::async |    // run f either 19 
                       std::launch::deferred,  // async or 20 
                       f);                     // deferred 21 

The default policy thus permits f to be run either asynchronously or synchronous-22 

ly. As Item 37 points out, this flexibility permits std::async and the thread-23 

                                                             

† This is not rigorously true. What matters isn’t the future on which get or wait is invoked, 

it’s the shared state to which the future refers. (Item 40 discusses the relationship between 

futures and shared states.) Because std::futures support moving and can also be used to 

construct std::shared_futures, and because std::shared_futures can be copied, the 

future object referring to the shared state arising from the call to std::async  to which f 

was passed is likely to be different from the one returned by std::async. That’s a mouth-

ful, however, so it’s common to fudge the truth and simply talk about invoking get or wait 

on the future returned from std::async. 



Page 282 

 

management components of the Standard Library to assume full responsibility for 1 

thread creation and destruction, avoidance of oversubscription, and load balanc-2 

ing. That’s among the things that make concurrent programming with 3 

std::async so convenient. 4 

But using std::async with the default launch policy has some noteworthy impli-5 

cations. Given a thread t executing this statement, 6 

auto fut = std::async(f);                 // run f using default 7 
                                          // launch policy 8 

 It’s not possible to predict whether f will run concurrently with t, because f 9 

might be scheduled to run deferred. 10 

 It’s not possible to predict whether f runs on a thread different from t. 11 

 It may not be possible to predict whether f runs at all, because it may not be 12 

possible to guarantee that get or wait will be called on the future correspond-13 

ing to f along every path through the program. 14 

The default launch policy’s scheduling flexibility often mixes poorly with the use of 15 

thread_local variables, because it means that if f reads or writes such thread-16 

local storage (TLS), it’s not possible to predict which thread’s variables will be ac-17 

cessed: 18 

auto fut = std::async(f);         // TLS for f possibly for  19 
                                  // different thread, but  20 
                                  // possibly for current thread 21 

It also complicates wait-based loops using timeouts, because calling wait_for or 22 

wait_until on a task (see Item 37) that’s deferred yields the value 23 

std::launch::deferred. This means that the following loop, which looks like it 24 

should eventually terminate,  may, in reality, run forever: 25 

void f()                                      // f sleeps for 26 
{                                             // 1 second, 27 
  std::this_thread::sleep_for(                // then returns 28 
    std::chrono::seconds(1) 29 
  ); 30 
} 31 
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auto fut = std::async(f);                     // run f  1 
                                              // asynchronously 2 
                                              // (conceptually) 3 

while (fut.wait_for(                          // loop until f 4 
         std::chrono::milliseconds(100)) !=   // has finished 5 
       std::future_status::ready)             // running... 6 
{                                             // which may  7 
  …                                           // never happen! 8 
} 9 

If f runs concurrently with the thread calling std::async (i.e., if the launch policy 10 

chosen for f is std::launch::async), there’s no problem here, but if f is de-11 

ferred, fut.wait_for will always return std::future_status::deferred. 12 

That will never be equal to std::future_status::ready, so the loop will never 13 

terminate.  14 

This kind of bug is easy to overlook during development and unit testing, because 15 

it’s likely to manifest itself only under heavy loads. Those are the conditions that 16 

push the machine towards oversubscription or thread exhaustion, and that’s when 17 

a task is most likely to be deferred. After all, if the hardware isn’t threatened by 18 

oversubscription or thread exhaustion, there’s no reason for the runtime system 19 

not to schedule the task for concurrent execution. 20 

The fix is simple: just check the future corresponding to the std::async call to 21 

see whether the task is deferred, and, if so, avoid entering the timeout-based loop. 22 

Unfortunately, there’s no direct way to ask a future whether its task is deferred. 23 

Instead, you have to call a timeout-based function—a function such as wait_for. 24 

Of course, you don’t really want to wait for anything, you just want to see if the re-25 

turn value is std::future_status::deferred, so stifle your mild disbelief at 26 

the necessary circumlocution and call wait_for with a zero timeout: 27 

auto fut = std::async(f);                       // as above 28 

if (fut.wait_for(std::chrono::seconds(0)) !=    // if task 29 
    std::future_status::deferred)               // isn't 30 
{                                               // deferred... 31 

  while (fut.wait_for(                          // infinite loop 32 
           std::chrono::milliseconds(100)) !=   // no longer 33 
           std::future_status::ready) {         // possible 34 
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    …                   // fut is neither deferred nor ready, so 1 
                        // do concurrent work until it's ready 2 
  } 3 

  …                     // fut is ready 4 

} else { 5 

  …                     // task is deferred, so use wait or  6 
                        // get to call it synchronously 7 
} 8 

C++14 offers nothing to improve testing a future to see if it corresponds to a de-9 

ferred task, but it does make the specification of time durations more palatable, 10 

because it takes advantage of C++11’s support for user-defined literals to offer suf-11 

fixes for seconds (s), milliseconds (ms), hours (h), etc. These suffixes are imple-12 

mented in the std::literals namespace, so the above code can be rewritten as 13 

follows: 14 

using namespace std::literals;          // for duration suffixes 15 

if (fut.wait_for(0s) != std::future_status::deferred) { // C++14 16 
  while (fut.wait_for(100ms) !=                         // only   17 
         std::future_status::ready) { 18 

    …                  19 

  } 20 

  …                                     // as before 21 

The upshot of these various considerations is that using std::async with the de-22 

fault launch policy for a task is fine as long as the following conditions are fulfilled: 23 

 Execution of the task need not run concurrently with the calling thread. 24 

 It doesn’t matter which thread’s thread_local variables are read or written. 25 

 There’s either (1) a guarantee that get or wait will always be called on the 26 

future returned by std::async or (2) it’s acceptable that the task may never 27 

be executed. 28 

 Code using wait_for or wait_until always checks for deferred status. 29 
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If any of these conditions fails to hold, you probably want to guarantee that 1 

std::async will schedule the task for truly asynchronous execution. The way to 2 

do that is to pass std::launch::async as the first argument when you make the 3 

call: 4 

auto fut = std::async(std::launch::async, f);  // launch f 5 
                                               // asynchronously 6 

In fact, having a function that acts like std::async, but that automatically uses 7 

std::launch::async as the launch policy, is a convenient tool to have around, so 8 

it’s nice that it’s easy to write: 9 

template<typename F, typename... Args> 10 
inline 11 
std::future<typename std::result_of<F(Args...)>::type> 12 
reallyAsync(F&& f, Args&&... args)         // return future 13 
{                                          // for asynchronous 14 
  return std::async(std::launch::async,    // call to f(args...) 15 
                    std::forward<F>(f), 16 
                    std::forward<Args>(args)...); 17 
} 18 

This function takes an executable entity f and zero or more arguments args and 19 

perfect-forwards them (see Item 27) to std::async, passing 20 

std::launch::async as the launch policy. Like std::async, it returns a 21 

std::future for the result of invoking f on args. Determining the type of that 22 

result is easy, because the type trait std::result_of gives it to you. (See Item 9 23 

for information on type traits.) 24 

reallyAsync is used just like std::sync, except that, as Item 37 explains, it may 25 

emit an exception indicating that it’s not possible to create a new thread: 26 

auto fut = reallyAsync(f);            // run f asynchronously or 27 
                                      // throw std::system_error 28 

In C++14, the ability to deduce reallyAsync’s return type streamlines the func-29 

tion declaration: 30 

template<typename F, typename... Args> 31 
inline 32 
auto                                           // C++14 only 33 
reallyAsync(F&& f, Args&&... args) 34 
{ 35 



Page 286 

 

  return std::async(std::launch::async,  1 
                    std::forward<F>(f), 2 
                    std::forward<Args>(args)...); 3 
} 4 

This version makes it even clearer that reallyAsync does nothing but invoke 5 

std::async with the std::launch::async launch policy. 6 

Things to Remember 7 

 The default launch policy for std::async permits both asynchronous and 8 

synchronous task execution. 9 

 This flexibility leads to uncertainty when accessing thread_locals, implies  10 

that the task may never execute, and complicates program logic for timeout-11 

based wait calls. 12 

 Specify std::launch::async if asynchronous task execution is essential. 13 

 Item 39: Make std::threads unjoinable on all paths. 14 

Every std::thread object is in one of two states: joinable or unjoinable. A joina-15 

ble std::thread corresponds to an underlying asynchronous thread of execution 16 

that is or could be running. A std::thread corresponding  to an underlying 17 

thread that’s blocked or waiting to be scheduled is joinable, for example. 18 

An unjoinable std::thread is what you’d expect: a std::thread that’s not join-19 

able. Unjoinable std::thread objects include: 20 

 Default-constructed std::threads. Such std::threads have no function to 21 

execute, hence don’t correspond to an underlying thread of execution. 22 

 std::thread objects that have been moved from. The result of a move is 23 

that the underlying thread of execution a std::thread used to correspond to 24 

(if any) now corresponds to a different std::thread. 25 

 std::threads that have been joined. After a join, a std::thread’s under-26 

lying thread of execution has finished running. 27 
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 std::threads that have been detached. A detach severs the connection 1 

between a std::thread object and the underlying thread of execution it cor-2 

responds to. 3 

One reason a std::thread’s joinability is important is that if the destructor for a 4 

joinable thread is invoked, execution of the program is terminated.  5 

For example, suppose  we have a function doWork that takes a filtering function, 6 

filter, and a maximum value, maxVal, as parameters. doWork checks to make 7 

sure that all conditions necessary for its computation are satisfied, then performs 8 

the computation with all the values between 0 and maxVal that pass the filter. If 9 

it’s time-consuming to do the filtering and it’s also time-consuming to determine 10 

whether doWork’s conditions are satisfied, it would be reasonable to do those two 11 

things concurrently. We might come up with code like this: 12 

constexpr int tenMillion = 10000000;          // see Item 14  13 
                                              // for constexpr 14 

bool doWork(std::function<bool(int)> filter,  // returns whether 15 
            int maxVal = tenMillion)          // computation was 16 
{                                             // performed 17 

  std::vector<int> vals;                      // values that 18 
                                              // satisfy filter  19 

  std::thread t([&filter, maxVal, &vals]      // compute vals' 20 
                {                             // content  21 
                  for (auto i = 0; i <= maxVal; ++i) 22 
                   { if (filter(i)) vals.push_back(i); } 23 
                }); 24 

  if (conditionsAreSatisfied()) { 25 
    t.join();                                 // let t finish 26 
    performComputation(vals);  27 
    return true;                              // computation was 28 
  }                                           // performed 29 

  return false;                               // computation was 30 
};                                            // not performed 31 

Before I explain why this code is problematic, I’ll remark that tenMillion’s ini-32 

tializing value can be made more readable in C++14 by taking advantage of 33 

C++14’s ability to use an apostrophe as a digit separator: 34 
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constexpr auto tenMillion = 10'000'000;       // C++ 14 only 1 

But back to doWork. If conditionsAreSatisfied() returns true, all is well, but 2 

if it returns false or throws an exception, the std::thread object t will be join-3 

able when its destructor is called at the end of doWork. That would cause program 4 

execution to be terminated. 5 

You might wonder why the std::thread destructor behaves this way. It’s be-6 

cause the two other obvious options are arguably worse. They are: 7 

 An implicit join. In this case, a std::thread’s destructor would wait for its 8 

underlying asynchronous thread of execution to complete. That sounds rea-9 

sonable, but it could lead to performance anomalies that would be difficult to 10 

track down. For example, it would be counterintuitive that doWork would wait 11 

for its filter to be applied to all values if conditionsAreSatisfied() had al-12 

ready returned false.   13 

 An implicit detach. In this case, a std::thread’s destructor would sever the 14 

connection between the std::thread object and its underlying thread of exe-15 

cution. The underlying thread would continue to run. This sounds no less rea-16 

sonable than the join approach, but the debugging problems it can lead to are 17 

actually worse. In doWork, for example, vals is a local stack variable that is 18 

captured by reference. It's also modified inside the lambda (via the call to 19 

push_back). Suppose, then, that while the lambda is running asynchronously, 20 

conditionsAreSatisfied() returns false. In that case, doWork would re-21 

turn, and its local variables (including vals) would be destroyed. Its stack 22 

frame would be popped, and execution of its thread would continue at 23 

doWork’s call site.  24 

Statements following that call site would, at some point, make additional func-25 

tion calls, and at least one such call would probably end up using some or all of 26 

the memory that had once been occupied by the doWork stack frame. Let’s call 27 

such a function f. While f was running, the lambda that doWork initiated 28 

would still be running asynchronously. That lambda could call push_back on 29 

the stack memory that used to be vals, but that is now somewhere inside f’s 30 

stack frame. Such a call would modify the memory that used to be vals, and 31 
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that means that from f’s perspective, the content of memory in its stack frame 1 

could spontaneously change! Imagine the fun you’d have debugging that.  2 

The Standardization Committee decided that the consequences of destroying a 3 

joinable thread were sufficiently dire that they essentially banned it (by specifying 4 

that destruction of a joinable thread causes program termination). 5 

This puts the onus on you to ensure that if you use a std::thread object, it’s 6 

made unjoinable on every path out of the scope in which it’s defined. But covering 7 

every path can be complicated. It includes flowing off the end of the scope as well 8 

as jumping out via a return, continue, break, goto or exception. That can be a 9 

lot of paths. 10 

Any time you want to perform some action along every path out of a scope, the 11 

normal approach is to put that action in the destructor of a local object. Such ob-12 

jects are known as RAII objects, and the classes they come from are known as RAII 13 

classes. (RAII itself stands for “resource acquisition is initialization,” although the 14 

crux of the technique is destruction, not initialization). RAII classes are common in 15 

the Standard Library. Examples include the STL containers (each container’s de-16 

structor destroy the container’s contents and releases its memory), the standard 17 

smart pointers (Items 20-22 explain that std::unique_ptr’s destructor invokes 18 

its deleter on the object it points to, and the destructors in std::shared_ptr and 19 

std::weak_ptr decrement reference counts), std::fstream objects (their de-20 

structors close the files they correspond to), and many more. And yet there is no 21 

standard RAII class for std::thread objects—perhaps because the Standardiza-22 

tion Committee, having rejected both join and detach as default options, simply 23 

didn’t know what such a class should do.  24 

Fortunately, it’s not difficult to write one yourself. For example, the following class 25 

allows callers to specify a std::thread member function (e.g., join or detach) 26 

that should be called when a ThreadRAII object (an RAII object for a 27 

std::thread) is destroyed: 28 

class ThreadRAII { 29 
public: 30 
  using RAIIAction =                // type of mbr func to 31 
    void (std::thread::*)();        // invoke in ThreadRAII dtor 32 
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  ThreadRAII(std::thread&& t, RAIIAction a)  // in dtor, 1 
  : action(a), t(std::move(t)) {}            // invoke a on t 2 

  ~ThreadRAII()                              // see below for 3 
  { if (t.joinable()) (t.*action)(); }       // joinability test 4 

  std::thread& get() { return t; }           // see below 5 

private: 6 
  RAIIAction action; 7 
  std::thread t; 8 
}; 9 

With any luck, this code is largely self-explanatory, but the following points may be 10 

helpful: 11 

 The constructor accepts only std::thread rvalues, because we want to move 12 

the passed-in std::thread into the ThreadRAII object. 13 

 The parameter order in the constructor is designed to be intuitive to callers 14 

(specifying the std::thread first and the destructor action second makes 15 

more sense than vice-versa), but the member initialization list is designed to 16 

match the order of the data members’ declarations. That order puts the 17 

std::thread object last. In this class, the order makes no difference, but in 18 

general, it’s possible for the initialization of one data member to depend on 19 

another, and because std::thread objects may start running a function im-20 

mediately after they are initialized, it’s a good habit to declare them last in a 21 

class. That guarantees that at the time they are constructed, all the data mem-22 

bers that precede them have already been initialized and can therefore be safe-23 

ly accessed by the asynchronously running thread that corresponds to the 24 

std::thread data member. 25 

 ThreadRAII offers a get function to provide access to the underlying 26 

std::thread object. This is analogous to the get functions offered by the 27 

standard smart pointer classes that give access to their underlying raw point-28 

ers. Providing get avoids the need for ThreadRAII to replicate the full 29 

std::thread interface, and it also means that ThreadRAII objects can be 30 

used in contexts where std::thread objects are required, e.g., because an in-31 

terface requires that a reference to a std::thread be passed.  32 
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 Before the ThreadRAII destructor invokes the action a on the std::thread 1 

object t, it checks to make sure that t is joinable. This is necessary, because in-2 

voking join or detach on an unjoinable thread yields undefined behavior, 3 

and it’s possible that a client constructed a std::thread, created a Thread-4 

RAII object from it, used get to acquire access to t, and then did a move from 5 

t or called join or detach on it. Each of those actions would render t unjoin-6 

able. 7 

If you’re worried that in the statement, 8 

if (t.joinable()) (t.*action)(); 9 

a race condition exists, because between execution of t.joinable() and 10 

(t.*action)(), another thread could render t unjoinable, your intuition is 11 

commendable, but your fears are unfounded. A std::thread object can 12 

change state from joinable to unjoinable only through a member function call, 13 

e.g., join, detach, or a move operation. At the time a ThreadRAII object’s de-14 

structor is invoked, no other thread should be making member function calls 15 

on that object. If there are simultaneous calls, there is certainly a race condi-16 

tion, but the race isn’t inside the destructor, it’s in the client code that is trying 17 

to invoke two  member functions (the destructor and something else) on one 18 

object at the same time. In general, simultaneous member function calls on a 19 

single object are safe only if all are to const member functions (see Item 15). 20 

Employing ThreadRAII in our doWork example would look like this: 21 

bool doWork(std::function<bool(int)> filter,  // as before 22 
            int maxVal = tenMillion)  23 
{  24 
  std::vector<int> vals;                      // as before  25 

  ThreadRAII t( 26 
    std::thread([&filter, maxVal, &vals]      // use RAII object 27 
                {                              28 
                  for (auto i = 0; i <= maxVal; ++i) 29 
                    { if (filter(i)) vals.push_back(i); } 30 
                }), 31 
                &std::thread::join           // RAII action 32 
  ); 33 
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  if (conditionsAreSatisfied()) { 1 
    t.get().join();                           // let t finish 2 
    performComputation(vals);  3 
    return true;  4 
  }                                     5 

  return false;          6 
};                                            // join thread 7 
                                              // running lambda 8 

In this case, we’ve chosen to do a join on the asynchronously running thread in 9 

the ThreadRAII destructor, because, as we saw earlier, doing a detach could lead 10 

to some truly nightmarish debugging. We also saw earlier that doing a join could 11 

lead to performance anomalies (that, to be frank, could also be unpleasant to de-12 

bug), but given a choice between undefined behavior (which detach would get 13 

us), program termination (which use of a raw std::thread would yield), or per-14 

formance anomalies, performance anomalies seems like the best of a bad lot.  15 

Alas, Item 41 demonstrates that using ThreadRAII to perform a join on 16 

std::thread destruction can sometimes lead not just to a performance anomaly, 17 

but to a hung program. The “proper” solution to these kinds of problems would be 18 

to communicate to the asynchronously running lambda that we no longer need its 19 

work and that it should return early, but there’s no support in C++11 or C++14 for 20 

interruptible threads. They can be implemented by hand, but that’s a topic beyond 21 

the scope of this book.†  22 

Item 19 explains that because ThreadRAII declares a destructor, there will be no 23 

compiler-generated move operations, but there is no reason ThreadRAII objects 24 

shouldn’t be movable. If compilers were to generate these functions, the functions 25 

would do the right thing, so explicitly requesting their creation is appropriate: 26 

class ThreadRAII { 27 
public: 28 
  using RAIIAction = void (std::thread::*)();       // as before 29 

                                                             

† A nice treatment of this topic is in Anthony Williams’ C++ Concurrency in Action (Manning 

Publications, 2012), section 9.2.  
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  ThreadRAII(std::thread&& thread, RAIIAction a)    // as before 1 
  : action(a), t(std::move(thread)) {} 2 

  ~ThreadRAII()                                     // as before 3 
  { if (t.joinable()) (t.*action)(); }  4 

  ThreadRAII(ThreadRAII&&) = default;               // support 5 
  ThreadRAII& operator=(ThreadRAII&&) = default;    // moving 6 

  std::thread& get() { return t; } 7 

private:                                            // as before 8 
  RAIIAction action; 9 
  std::thread t; 10 
}; 11 

A class like ThreadRAII helps avoid early program termination due to destruction 12 

of joinable std::threads, but the drawbacks associated with join-on-13 

destruction and detach-on-destruction may convince you that a better solution is 14 

to follow the advice of Item 37 and stay away from std::threads in the first 15 

place. Doing that would allow you to deal with futures instead of std::threads, 16 

and futures don’t invoke std::terminate in their destructors. What they do in 17 

their destructors is sufficiently interesting, however, that it’s worth an Item of its 18 

own. That Items is Item 40. It’s coming right up. 19 

Things to Remember 20 

 Make std::threads unjoinable on all paths. 21 

 join-on-destruction can lead to difficult-to-debug performance anomalies. 22 

 detach-on-destruction can lead to difficult-to-debug undefined behavior. 23 

 Item 40: Be aware of varying thread handle destructor  be-24 

havior. 25 

Item 39 explains that a joinable std::thread corresponds to an underlying sys-26 

tem thread of execution. A future for a non-deferred task (see Item 38) has a simi-27 

lar relationship to a system thread. As such, both std::thread objects and future 28 

objects can be thought of as handles to system threads.  29 

From this perspective, it’s interesting that std::threads and futures have such 30 

different behaviors in their destructors. As noted in Item 39, destruction of a join-31 
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able std::thread terminates your program, because the two obvious alterna-1 

tives—an implicit join and an implicit detach—were considered worse choices. 2 

Yet destruction of a future sometimes performs an implicit join, sometimes it per-3 

forms an implicit detach, and sometimes it does neither. It never causes program 4 

termination.  5 

This thread handle behavioral bouillabaisse deserves closer examination. 6 

We’ll begin with the observation that a future is one end of a communications 7 

channel through which a callee transmits a result to a caller.† The callee (running 8 

asynchronously, except in the case of deferred tasks) writes the result of its com-9 

putation into the communications channel (typically via a std::promise object), 10 

and the caller reads that result using a future. You can think of it as follows, where 11 

the dashed arrow shows the flow of information from callee to caller: 12 

 13 

But where is the callee’s result stored? The callee could finish before the caller in-14 

vokes get on a corresponding future, so the result can’t be stored in the callee’s 15 

std::promise. That object, being local to the callee, would be destroyed when the 16 

callee finished. 17 

The result can’t be stored in the caller’s future, either, because (among other rea-18 

sons) a std::future may be used to create a std::shared_future (thus trans-19 

ferring ownership of the callee’s result from the std::future to the 20 

std::shared_future), which may then be copied many times after the original 21 

std::future is destroyed. Given that not all result types can be copied (e.g., 22 

std::unique_ptr—see Item 20) and that the result must live at least as long as 23 

the last future referring to it, which of the potentially many futures corresponding 24 

to the callee would be the one to contain its result? 25 

                                                             

† Item 41 explains that the kind of  communications channel associated with a future can be 

employed for other purposes. For this Item, however, we’ll consider only its use as a mech-

anism for a callee to convey its result to a caller. 



Page 295 

 

Because neither objects associated with the callee nor objects associated with the 1 

caller are suitable places to store the callee’s result, it’s stored in a location outside 2 

both. This location is known as the shared state. The shared state is typically rep-3 

resented by a heap-based object, but its type, interface, and implementation are 4 

not specified by the Standard. Standard Library authors are free to implement 5 

shared states in any way they like.  6 

We can envision the relationship among the callee, the caller, and the shared state 7 

like this, where dashed arrows once again represent the flow of information: 8 

 9 

The existence of the shared state is important, because the behavior of a future’s 10 

destructor—the topic of this Item—is determined by the shared state associated 11 

with the future. In particular, 12 

 The destructor for the last future referring to a shared state for a non-13 

deferred task launched via std::async blocks until the task completes. In 14 

essence, the destructor for such a future does an implicit join on the thread 15 

on which the asynchronously-executing task is running.  16 

 The destructor for all other futures simply destroys the future object. For 17 

asynchronously running tasks, this amounts to an implicit detach on the un-18 

derlying thread. For deferred tasks for which this is the final future, it means 19 

that the deferred task will never run. 20 

These rules sound more complicated than they are. What we’re really dealing with 21 

is a simple “normal” behavior and one lone exception to it. The “normal” behavior 22 

is that a future’s destructor destroys the future object. That’s it. It doesn’t join 23 

with anything, it doesn’t detach from anything, it doesn’t run anything. It just de-24 

stroys the future’s data members. (Well, okay, it does one more thing. It also dec-25 

rements the reference count inside the shared state that’s manipulated by both the 26 

futures referring to it and the callee’s std::promise. This reference count makes 27 
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it possible for the library to know when the shared state can be destroyed. For in-1 

formation about reference counting, see Item 21.) 2 

The exception to this normal behavior arises only for a future for which all of the 3 

following apply: 4 

 It refers to a shared state that was created due to a call to std::async. 5 

 The task’s launch policy is std::launch::async (see Item 38), either be-6 

cause that was chosen by the runtime system or because it was specified in the 7 

call to std::async. 8 

 The future is the last future referring to the shared state. For 9 

std::futures, this will always be the case. For std::shared_futures, how-10 

ever, if other std::shared_futures refer to the same shared state as the fu-11 

ture being destroyed, the future being destroyed follows the “normal” behavior 12 

(i.e., it simply destroys its data members). 13 

Only when all of these conditions are fulfilled does a future’s destructor exhibit 14 

special behavior, and that behavior is to block until the asynchronously running 15 

task completes. Practically speaking, this amounts to an implicit join on the 16 

thread running the std::async-created task. 17 

It’s not uncommon to hear this exception to “normal” future destructor behavior 18 

summarized as “Futures from std::async block in their destructors.” To a first 19 

approximation, that’s correct, but sometimes you need more than a first approxi-20 

mation. Now you know the truth in all its glory and wonder. 21 

What you may wonder is why there’s a special rule for shared states for non-22 

deferred tasks that are launched by std::async. It’s a reasonable question. From 23 

what I can tell, the Standardization Committee wanted to avoid the problems asso-24 

ciated with an implicit detach (see Item 39), but they didn’t want to adopt as radi-25 

cal a policy as mandatory program termination (as they did for joinable 26 

std::threads—again, see Item 39), so they compromised on an implicit join. 27 

The decision was not without controversy, and there was serious talk about aban-28 
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doning this behavior for C++14. In the end, however, no change was made, so the 1 

behavior of destructors for futures is consistent in C++11 and C++14.  2 

The API for futures offers no way to determine whether a future refers to a shared 3 

state arising from a call to std::async, so given a random future object, it’s not 4 

possible to know whether it will block in its destructor waiting for an asynchro-5 

nously running task to finish. This has some interesting implications: 6 

// this container might block in its dtor, because one or more 7 
// contained futures could refer to shared state for a non- 8 
// deferred task launched via std::async 9 
std::vector<std::future<void>> futs;   // see Item 41 for info 10 
                                       // on std::future<void> 11 

class Widget {                         // Widget objects might 12 
public:                                // block in their dtors 13 
  … 14 

private:                               15 
  std::shared_future<double> fut;  16 
};                         17 

void doWork(std::future<int> fut);     // fut might block  18 
                                       // in its dtor  19 
                                       // (see Item 17 for info 20 
                                       // on by-value params) 21 

Of course, if you have a way of knowing that a given future does not satisfy the 22 

conditions that trigger the special destructor behavior (e.g., due to program logic), 23 

you’re assured that that future won’t block in its destructor. For example, only 24 

shared states arising from calls to std::async qualify for the special behavior, but 25 

there are other ways that shared states get created. One is the use of 26 

std::packaged_task.  A std::packaged_task object prepares a function (or 27 

other callable entity) for asynchronous execution by wrapping it such that its re-28 

sult is put into a shared state. A future referring to that shared state can then be 29 

obtained via std::packaged_task’s get_future function: 30 

int calcValue();                      // func to run 31 

std::packaged_task<int()>             // wrap calcValue so it 32 
  pt(calcValue);                      // can run asynchronously 33 

auto ptFut = pt.get_future();         // get future for pt 34 
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Once created, the std::packaged task pt can be run on a thread. (It could be run 1 

via a call to std::async, too, but if you want to run a task using std::async, 2 

there’s little reason to create a std::packaged task, because std::async does 3 

everything std::packaged_task does before it schedules the task for execution.)  4 

std::packaged_tasks aren’t copyable, so when pt is passed to the 5 

std::thread constructor, it must be cast to an rvalue (via std::move—see 6 

Item 25), thus ensuring that it will be moved into the data area associated with the 7 

thread, not copied: 8 

std::thread t(std::move(pt));         // run pt on t 9 

At this point, we know that the future ptFut doesn’t refer to a shared state created 10 

by a call to std::async, so its destructor will behave normally. We can therefore 11 

call the doWork function (declared above) without fear that when doWork’s by-12 

value parameter fut is destroyed, it will block waiting for t to finish.  13 

std::packaged_task::get_future returns a std::future object, which is a 14 

move-only type, so for the call to doWork to compile, we must apply std::move to 15 

ptFut , just as we did when passing pt to the std::thread constructor:  16 

doWork(std::move(ptFut));             // doWork won't block on t 17 

This example actually lends some insight into the normal behavior for future de-18 

structors, but it’s easier to see if the statements are put together inside a scope: 19 

{                                         // begin scope 20 

  std::packaged_task<int()>               // as above 21 
    pt(calcValue); 22 

  auto ptFut = pt.get_future();           // as above 23 

  std::thread t(std::move(pt));           // as above 24 

  doWork(std::move(ptFut));               // as above 25 

  …                                       // see below 26 

}                                         // end scope 27 
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The most interesting code here is the “…” that follows the call to doWork and pre-1 

cedes the end of the scope. What makes it interesting is what can happen to the 2 

std::thread object t inside the “…” region. There are three basic possibilities: 3 

 Nothing happens to t. In this case, t will be joinable at the end of the scope. 4 

That will cause the program to be terminated (see Item 39). 5 

 A join is done on t. In this case, there would be no need for ptFut (or the 6 

parameter fut) to block in its destructor, because the join call is already pre-7 

sent in the calling code. 8 

 A detach is done on t. In this case, there would be no need for ptFut (or 9 

fut) to detach in its destructor, because the calling code already does that. 10 

In other words, when you have a future corresponding to a shared state that arose 11 

due to a std::packaged_task, there’s usually no need to adopt a special destruc-12 

tion policy, because the decision among termination, joining, or detaching will be 13 

made in the code that manipulates the std::thread on which the 14 

std::packaged_task is typically run. 15 

Things to Remember 16 

 Future destructors normally just destroy the future’s data members. 17 

 The final future referring to a shared state for a non-deferred task launched via 18 

std::async blocks until the task completes. 19 

 Item 41: Consider void futures for one-shot event commu-20 

nication. 21 

Sometimes it’s useful for a task to tell a second (asynchronously-running) task that 22 

a particular event has occurred, because the second task can’t proceed until the 23 

event has taken place. Perhaps a data structure has been initialized, a stage of 24 

computation has been completed, or a significant sensor value has been detected. 25 

When that’s the case, what’s the best way for this kind of inter-thread communica-26 

tion to take place? 27 
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An obvious approach is to use a condition variable. If we call the task that detects 1 

the condition the detecting task and the task reacting to the condition the reacting 2 

task, the strategy is simple: the reacting task waits on a condition variable 3 

(condvar), and the detecting thread notifies that condvar when the event occurs. 4 

Given 5 

std::condition_variable cv;             // condvar for event 6 

std::mutex m;                           // mutex for use with cv 7 

the code in the detecting task is as simple as simple can be: 8 

…                                       // detect event 9 

cv.notify_one();                        // tell reacting task 10 

If there were multiple reacting tasks to be notified, it would be appropriate to re-11 

place notify_one with notify_all, but for now, we’ll assume there’s only one 12 

reacting task. 13 

The code for the reacting task is a bit more complicated, because before calling 14 

wait on the condvar, it must lock the mutex through a std::unique_lock object. 15 

(Locking a mutex before waiting on a condition variable is typical for threading 16 

libraries. The need to lock the mutex through a std::unique_lock object is 17 

simply part of the C++11 API.) Here’s the conceptual approach, although by this 18 

point in this book, you probably suspect that when I call code “conceptual,” it’s not 19 

really correct. Your suspicion is well-founded, but set that aside for a moment: 20 

…                                      // prepare to react 21 

{                                      // open critical section 22 

  std::unique_lock<std::mutex> lk(m);  // lock mutex 23 

  cv.wait(lk);                         // wait for notify; 24 
                                       // this isn’t correct! 25 

  …                                    // react to event  26 
                                       // (mutex is locked) 27 

}                                      // close crit. section; 28 
                                       // unlock mutex via 29 
                                       // lk’s dtor 30 
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…                                      // continue reacting 1 
                                       // (mutex now unlocked) 2 

The first issue with this code is what’s sometimes termed a code smell: even if the 3 

code works, something doesn’t seem quite right. In this case, the odor emanates 4 

from the need to use a mutex. Mutexes are used to control access to shared data, 5 

but it’s entirely possible that the detecting and reacting tasks have no need for 6 

such mediation. For example, the detecting task might be responsible for initializ-7 

ing a global data structure, then turning it over to the reacting task for use. If the 8 

detecting task never accesses the data structure after initializing it, and if the re-9 

acting task never accesses it before the detecting task indicates that it’s ready, the 10 

two tasks will stay out of each other’s way through program logic. There will be no 11 

need for a mutex. The fact that the condvar approach requires one leaves behind 12 

the unsettling aroma of suspect design. 13 

Even if you look past that, there are two other problems you should definitely pay 14 

attention to: 15 

 If the detecting task notifies the condvar before the reacting task waits, 16 

the reacting task will hang. In order for notification of a condvar to wake an-17 

other task, the other task must be waiting on that condvar. If the detecting task 18 

happens to execute the notification before the reacting task executes the wait, 19 

the reacting task will miss the notification, and it will wait forever.  20 

 The wait statement fails to account for spurious wakeups. A fact of life in 21 

threading APIs (in many languages—not just C++) is that code waiting on a 22 

condition variable may be awakened even if the condvar wasn’t notified. Such 23 

awakenings are known as spurious wakeups. Proper code deals with them by 24 

confirming that the condition being waited for has actually occurred, and it 25 

does this as its first action after waking. The C++ condvar API makes this ex-26 

ceptionally easy, because it permits a lambda (or other callable entity) that 27 

tests for the waited-for condition to be passed to wait. That is, the wait call in 28 

the reacting task could be written like this: 29 

cv.wait(lk, 30 
        []{ return whether the event has occurred; }); 31 
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Taking advantage of this capability requires that the reacting task be able to 1 

determine whether the condition it’s waiting for is true. But in the scenario 2 

we’ve been considering, the condition it’s waiting for is the occurrence of an 3 

event that the detecting thread is responsible for recognizing. The reacting 4 

thread may have no way of determining whether the event it’s waiting for has 5 

taken place. That’s why it’s waiting on a condition variable! 6 

There are many situations where having tasks communicate using a condvar is an 7 

good fit for the problem at hand, but this doesn’t seem to be one of them. 8 

For many developers, the next trick in their bag is a shared boolean flag. The flag is 9 

initially false. When the detecting thread recognizes the event of interest, it sets 10 

the flag: 11 

std::atomic<bool> flag(false);      // shared flag; see  12 
                                    // Item 42 for std::atomic 13 
 14 

…                                   // detect event 15 

flag = true;                        // tell reacting task 16 

For its part, the reacting thread simply polls the flag. When it sees that the flag is 17 

set, it knows that the event it’s been waiting for has occurred: 18 

…                                   // prepare to react 19 

while (!flag);                      // wait for event 20 

…                                   // react to event 21 

This approach suffers from none of the drawbacks of the condvar-based design. 22 

There’s no need for a mutex, no problem if the detecting task sets the flag before 23 

the reacting task starts polling, and nothing akin to a spurious wakeup. Good, good, 24 

good. 25 

Less good is the cost of polling in the reacting task. During the time the task is 26 

waiting for the flag to be set, the task is essentially blocked, yet it’s still running. As 27 

such, it occupies a hardware thread that another task might be able to make use of, 28 

it incurs the cost of a context switch each time it starts or completes its timeslice, 29 

and it could keep a core running that might otherwise be shut down to save power. 30 



Page 303 

 

A truly blocked task would do none of these things. That’s an advantage of the 1 

condvar-based approach, because a task in a wait call is truly blocked. 2 

But there’s another way to block a task—one that doesn’t suffer from the problems 3 

associated with condition variables. It’s to have the reacting task wait on a future 4 

that’s set by the detecting task. This may seem like an odd idea. After all, Item 40 5 

explains that a future represents the receiving end of a communications channel 6 

from a callee to a (typically asynchronous) caller, and here there’s no callee-caller 7 

relationship between the detecting and reacting tasks. However, Item 40 also 8 

notes that a communications channel whose transmitting end is a std::promise 9 

and whose receiving end is a future can be used for more than just callee-caller 10 

communication. Such a communications channel can be used in any situation 11 

where you need to transmit information from one place in your program to anoth-12 

er. In this case, we’ll use it to transmit information from the detecting task to the 13 

reacting task, and the information we’ll convey will be that the event of interest 14 

has taken place. 15 

The design is simple. The detecting task has a std::promise object (i.e., the writ-16 

ing end of the communications channel), and the reacting task has a corresponding 17 

future. When the detecting task sees that the event of interest has occurred, it sets 18 

the std::promise (i.e., write into the communications channel). Meanwhile, the 19 

reacting task waits on its future. That wait blocks the reacting task until the 20 

std::promise has been set. 21 

Now, both std::promise and futures (i.e., std::future and 22 

std::shared_future) are templates that require a type parameter. That param-23 

eter indicates the type of data to be transmitted through the communications 24 

channel. In our case, however, there’s no data to be conveyed. The only thing of 25 

interest to the reacting task is that its future has been set (via the corresponding 26 

std::promise). What we need for the std::promise and future templates is a 27 

type that indicates that no data is to be conveyed across the communications 28 

channel. That type is void. The detecting task will thus use a 29 

std::promise<void>, and the reacting task a std::future<void> or 30 

std::shared_future<void>. The detecting task will set its 31 

std::promise<void> when the event of interest occurs, and the reacting task 32 
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will wait on its future. Even though the reacting task won’t receive any data from 1 

the detecting task, the communications channel will permit the reacting task to 2 

know when the detecting task has “written” its void data by calling set_value on 3 

its std::promise. 4 

So given  5 

std::promise<void> p;               // promise for 6 
                                    // communications channel 7 

the detecting task’s code is trivial, 8 

…                                   // detect event 9 

p.set_value();                      // tell reacting task 10 

and the reacting task’s code is equally simple: 11 

…                                   // prepare to react 12 

p.get_future().wait();              // wait on future 13 
                                    // corresponding to p 14 

…                                   // react to event 15 

Like the approach using a flag, this design requires no mutex, works regardless of 16 

whether the detecting task sets its std::promise before the reacting task waits, 17 

and is immune to spurious wakeups. (Only condition variables are susceptible to 18 

that problem.) Like the condvar-based approach, the reacting task is truly blocked 19 

after making the wait call, so it consumes no system resources while waiting. Per-20 

fect, right?  21 

Not exactly. Sure, a future-based approach  skirts those shoals, but there are other 22 

hazards to worry about. For example, Item 40 explains that between a 23 

std::promise and a future is a shared state, and shared states are typically dy-24 

namically allocated. You should therefore assume that this design incurs the cost 25 

of heap-based memory allocation and deallocation.  26 

Perhaps more importantly, a std::promise may be set only once. The communi-27 

cations channel between a std::promise and a future is a one-shot mechanism: it 28 

can’t be used repeatedly. This is a notable difference from the condvar- and flag-29 
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based designs, both of which can be used to communicate multiple times. (A 1 

condvar can be repeatedly notified, and a flag can always be cleared and set again.) 2 

The one-shot restriction isn’t as limiting as you might think. Suppose you’d like to 3 

create a system thread in a suspended state. That is, you’d like to get all the over-4 

head associated with thread creation out of the way, so that when you’re ready to 5 

execute something on the thread, the normal thread-creation latency will be 6 

avoided. Or you might want to create a suspended thread so that you could config-7 

ure it before letting it run. Such configuration might include things like setting its 8 

priority or core affinity. The C++ concurrency API offers no way to do those things, 9 

but std::thread objects offer the native_handle member function, the result 10 

of which is intended to give you access to the platform’s underlying threading API 11 

(usually POSIX threads or Windows threads). The lower-level API often does make 12 

it possible to configure thread characteristics such as priority and affinity. 13 

Assuming you want to suspend a thread only once (after creation, but before it’s 14 

running its thread function), a design using a void future is a reasonable choice. 15 

Here’s the essence of the technique: 16 

std::promise<void> p; 17 

void react();                        // func for reacting task 18 

void detect()                        // func for detecting task         19 
{ 20 
  std::thread t([]                   // create thread 21 
                {  22 
                  p.get_future().wait();     // suspend t until 23 
                  react();                   // future is set 24 
                });  25 
  …                                  // here, t is suspended 26 
                                     // prior to call to react 27 

  p.set_value();                     // unsuspend t (and thus 28 
                                     // call reset) 29 

  …                                  // do additional work 30 

  t.join();                          // make t unjoinable 31 
};                                   // (see Item 39) 32 
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Because it’s important that t become unjoinable on all paths out of detect, use of 1 

an RAII class like Item 39’s ThreadRAII seems like it would be advisable. Code 2 

like this comes to mind: 3 

void detect() 4 
{ 5 
  ThreadRAII tr(                          // use RAII object 6 
    std::thread([] 7 
                {                        8 
                  p.get_future().wait(); 9 
                  react(); 10 
                }),  11 
    &std::thread::join                    // risky! (see below)  12 
  ); 13 

  …                                       // t's suspended here 14 

  p.set_value();                          // unsuspend t 15 

  … 16 

}; 17 

This looks safer than it is. The problem is that if in the first "…" region (the one with 18 

the “t’s suspended here” comment), an exception is emitted, set_value will never 19 

be called on p. That means that the call to wait inside the lambda that’s running on 20 

t will never return. That, in turn, means that t will never finish running, and that’s 21 

a problem, because the RAII object tr has been configured to perform a join on t 22 

in tr’s destructor. In other words, if an exception is emitted from the first “…” re-23 

gion of code, this function will hang, because tr’s destructor will never complete. 24 

There are ways to address this problem, but I’ll leave them in the form of the hal-25 

lowed exercise for the reader.† Here, I’d like to show how the original code (i.e., not 26 

using ThreadRAII) can be extended to suspend and then unsuspend not just one 27 

reacting task, but many. It’s a simple generalization, because the key is to use 28 

std::shared_futures instead of a std::future in the react code. Once you 29 

                                                             

† A reasonable place to begin researching the matter is the 24 December 2013 blog post, 

“ThreadRAII + Thread Suspension = Trouble?” 

 

http://scottmeyers.blogspot.com/2013/12/threadraii-thread-suspension-trouble.html
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know that the std::future’s share member function transfers ownership of its 1 

shared state to the std::shared_future object produced by share, the code 2 

nearly writes itself. The only subtlety is that each reacting thread needs its own 3 

copy of the std::shared_future that refers to the shared state, so the 4 

std::shared_future obtained from share is captured by value by the lambdas 5 

running on the reacting threads: 6 

std::promise<void> p;                // as before 7 

void detect()                        // now for multiple  8 
{                                    // reacting tasks 9 

  auto sf = p.get_future().share();  // sf's type is 10 
                                     // std::shared_future<void> 11 

  std::vector<std::thread> vt;              // container for 12 
                                            // reacting threads 13 

  for (int i = 0; i < threadsToRun; ++i) { 14 
    vt.emplace_back([sf]{ sf.wait();        // wait on local 15 
                          react(); });      // copy of sf; see 16 
  }                                         // Item 18 for info 17 
                                            // on emplace_back 18 

  …                                  // detect hangs if  19 
                                     // this "…" code throws!                          20 

  p.set_value();                     // unsuspend all threads 21 

  … 22 

  for (auto& t : vt) t.join();       // make all threads 23 
};                                   // unjoinable; see Item 2 24 
                                     // for info on "auto&" 25 

The fact that design using futures can achieve this effect is noteworthy, and that’s 26 

why you should consider it for one-shot event communication. Other approaches 27 

also work, however. Use of a boolean flag yields source code that’s just as simple, 28 

but its tradeoffs are different: reacting threads don’t block (bad), but there’s no 29 

need for use of the heap (good). A condvar-based design could also be made to 30 

work here, but because there’s no shared data to protect by the mutex a condvar 31 

requires, that approach isn't really appropriate.  32 
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Things to Remember 1 

 For simple event communication, condvar-based designs require a superfluous 2 

mutex, impose constraints on the relative progress of detecting and reacting 3 

tasks, and require reacting tasks to verify that the event has taken place. 4 

 Designs employing a boolean flag avoid those problems, but are based on poll-5 

ing, not blocking. 6 

 Using std::promises and futures dodges these issue, but it uses heap 7 

memory for shared states, and it’s limited to one-shot communication. 8 

 Item 42: Use std::atomic for concurrency, volatile for 9 

special memory. 10 

Poor volatile. So misunderstood. It shouldn’t even be in this chapter, because it 11 

has nothing to do with concurrent programming. But in other programming lan-12 

guages (e.g., Java and C#), it is useful for such programming, and even in C++, some 13 

compilers have imbued volatile with semantics that render it helpful in concur-14 

rent software (but only when compiled with those compilers). It’s thus worthwhile 15 

to discuss volatile in a chapter on currency if for no other reason than to dispel 16 

the confusion surrounding it. 17 

The C++ feature that programmers sometimes confuse volatile with—the fea-18 

ture that definitely does belong in this chapter—is the std::atomic template. 19 

Instantiations of this template (e.g., std::atomic<int>, std::atomic<bool>, 20 

std::atomic<Widget*>, etc.) offer operations that are guaranteed to be seen as 21 

atomic by other threads. Operations on std::atomic objects behave as if they 22 

were inside a mutex-protected critical section, but the operations are generally 23 

implemented using special machine instructions that are more efficient than they 24 

would be if a mutex were employed.  25 

Consider this code using std::atomic: 26 

std::atomic<int> ai(0);    // atomically initialize ai to 0 27 

ai = 10;                   // atomically set ai to 10 28 

std::cout << ai;           // atomically read ai's value 29 
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++ai;                      // atomically increment ai to 11 1 

ai--;                      // atomically decrement ai to 10 2 

During execution of these statements, other threads reading ai may see only val-3 

ues of 0, 10, or 11. No other values are possible (assuming, of course, that this is 4 

the only thread modifying ai). 5 

Two aspects of this example are worth noting. First, in the “std::cout << ai;” 6 

statement, the fact that ai is a std::atomic guarantees only that the read of ai is 7 

atomic. There is no guarantee that the entire statement proceeds atomically. Be-8 

tween the time ai’s value is read and operator<< is invoked to write it to the 9 

standard output, another thread—possibly several threads—may have modified 10 

ai’s value. That has no effect on the behavior of the statement, because opera-11 

tor<< for ints uses a by-value parameter for the int to output (the outputted 12 

value will therefore be the one that was read from ai), but it’s important to under-13 

stand that what’s atomic in that statement is nothing more than the read of ai. 14 

The second noteworthy aspect of the example is the behavior of the last two 15 

statements—the increment and decrement of ai. These are each read-modify-16 

write (RMW) operations, yet, they execute atomically. This is one of the nicest 17 

characteristics of the std::atomic types: all the member functions, including 18 

those comprising RMW operations, are guaranteed to be seen by other threads as 19 

atomic. 20 

In contrast, the corresponding code using volatile guarantees virtually nothing 21 

in a multithreaded context: 22 

volatile int vi(0);        // initialize vi to 0 23 

vi = 10;                   // set vi to 10 24 

std::cout << vi;           // read vi's value 25 

++vi;                      // increment vi to 11 26 

vi--;                      // decrement vi to 10 27 

During execution of this code, if other threads are reading the value of vi, they 28 

may see anything (e.g, -12, 68, 4090727—anything!). Such code would have unde-29 

fined behavior, because these statements modify vi, so if other threads are read-30 
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ing vi at the same time, there are simultaneous readers and writers of memory 1 

that’s neither std::atomic nor protected by a mutex, and that’s the definition of a 2 

data race.  3 

As a concrete example of how the behavior of std::atomics and volatiles can 4 

differ in a multithreaded program, consider a simple counter of each type that’s 5 

incremented by multiple threads. We’ll initialize each to 0: 6 

std::atomic<int> ac(0);    // "atomic counter" 7 

volatile int vc(0);        // "volatile counter"  8 

We'll then increment each counter one time in two simultaneously-running 9 

threads: 10 

/*-----  Thread 1  ----- */     /*-------  Thread 2  ------- */ 11 

         ac++;                             ac++; 12 
         vc++;                             vc++; 13 

When both threads have finished, ac’s value (i.e., the value of the std::atomic) 14 

must be 2, because each increment occurs as an indivisible operation. vc’s value, 15 

on the other hand, need not be 2, because its increments may not occur atomically. 16 

Each increment consists of reading vc’s value, incrementing the value that was 17 

read, and writing the result back into vc. But these three operations are not guar-18 

anteed to proceed atomically for volatile objects, so it’s possible that the com-19 

ponent parts of the two increments of vc are interleaved as follows: 20 

1. Thread 1 reads vc’s value, which is 0. 21 

2. Thread 2 reads vc’s value, which is still 0. 22 

3. Thread 1 increments the 0 it read to 1, then writes that value into vc. 23 

4. Thread 2 increments the 0 it read to 1, then writes that value into vc. 24 

vc’s final value is therefore 1, even though it was incremented twice.  25 

This is not the only possible outcome. vc’s final value is, in general, not predicta-26 

ble, because vc is involved in a data race, and the Standard’s decree that data races 27 

cause undefined behavior means that compilers may generate code to do literally 28 
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anything. Compilers don’t use this leeway to be malicious, of course. Rather, they 1 

perform optimizations that would be valid in programs without data races, and 2 

these optimizations yield unexpected and unpredictable behavior in programs 3 

where races are present. 4 

The use of RMW operations isn’t the only situation where std::atomics com-5 

prise a concurrency success story and volatiles suffer ignominious failure.  Sup-6 

pose one task computes an important value needed by a second task. When the 7 

first task has computed the value, it must communicate this to the second task. 8 

Item 41 explains that one way for the first task to communicate the availability of 9 

the desired value to the second task is by using a std::atomic<bool>. Code in 10 

the task computing the value would look something like this: 11 

std::atomic<bool> valAvailable(false); 12 

auto imptValue = computeImportantValue();  // compute value 13 

valAvailable = true;                       // tell other task 14 
                                           // it's available 15 

As humans reading this code, we know it’s crucial that the assignment to impt-16 

Value take place before the assignment to valAvailable, but all compilers see is 17 

a pair of assignments to independent variables. As a general rule, compilers are 18 

permitted to reorder such unrelated assignments. That is, given this sequence of 19 

assignments (where a, b, x, and y correspond to independent variables), 20 

a = b; 21 
x = y; 22 

compilers may generally reorder them as follows: 23 

x = y; 24 
a = b; 25 

Even if compilers don't reorder them, the underlying hardware might do it (or 26 

might make it seem to other cores as if it had), because that can sometimes make 27 

the code run faster. 28 

However, the use of std::atomics imposes restrictions on how code can be reor-29 

dered, and one such restriction is that no code that, in the source code, precedes a 30 
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write of a std::atomic variable may take place (or appear to other cores to take 1 

place) afterwards. That means that in our code, 2 

auto imptValue = computeImportantValue();  // compute value 3 

valAvailable = true;                       // tell other task 4 
                                           // it's available 5 

not only must compilers retain the order of the assignments to imptValue and 6 

valAvailable, they must generate code that ensures that the underlying hard-7 

ware does, too. As a result, declaring valAvailable as std::atomic ensures that 8 

our critical ordering requirement—imptValue must be seen by all threads to 9 

change no later than valAvailable does—is maintained. 10 

Declaring valAvailable as volatile doesn't impose the same code reordering 11 

restrictions: 12 

volatile bool valAvailable(false); 13 

auto imptValue = computeImportantValue(); 14 

valAvailable = true;  // other threads might see this assignment 15 
                      // before the one to imptValue! 16 

Here, compilers might flip the order of the assignments to imptValue and 17 

valAvailable, and even if they don’t, they might fail to generate machine code 18 

that would prevent the underlying hardware from making it possible for code on 19 

other cores to see valAvailable change before imptValue. 20 

These two issues—no guarantee of operation atomicity and insufficient re-21 

strictions on code reordering—explain why volatile’s not useful for concurrent 22 

programming, but it doesn’t explain what it is useful for. In a nutshell, it’s for tell-23 

ing compilers that they’re dealing with memory that doesn’t behave normally.  24 

“Normal” memory has the characteristic that if you write a value to a memory loca-25 

tion, the value remains there until something overwrites it. So if I have a normal 26 

int, 27 

int x; 28 

and a compiler sees the following sequence of operations on it, 29 
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auto y = x;           // read x 1 
y = x;                // read x again 2 

the compiler can optimize the generated code by eliminating the assignment to y, 3 

because it’s redundant with y’s initialization.  4 

Normal memory also has the characteristic that if you write a value to a memory 5 

location, never read it, and then write to that memory location again, the first write 6 

can be eliminated, because it was never used. So given these two adjacent state-7 

ments, 8 

x = 10;               // write x  9 
x = 20;               // write x again 10 

compilers can eliminate the first one. That means that if we have this in the source 11 

code, 12 

auto y = x;           // read x 13 
y = x;                // read x again 14 

x = 10;               // write x  15 
x = 20;               // write x again 16 

compilers can treat it as if it had been written like this: 17 

auto y = x;           // read x 18 

x = 20;               // write x 19 

Lest you wonder who’d write code that performs these kinds of redundant reads 20 

and superfluous writes (technically known as redundant loads and dead stores), 21 

the answer is that humans don’t write it directly—at least we hope they don’t. 22 

However, after compilers take reasonable-looking source code and perform tem-23 

plate instantiation, inlining, and various common kinds of reordering optimiza-24 

tions, it’s not uncommon for the result to have redundant loads and dead stores 25 

that compilers can get rid of. 26 

Such optimizations are valid only if memory behaves normally. “Special” memory 27 

doesn’t. Probably the most common kind of special memory is memory used for 28 

memory-mapped I/O. Locations in such memory actually communicate with pe-29 

ripherals, e.g., external sensors or displays, printers, network ports, etc. rather 30 
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than reading or writing normal memory (e.g., RAM). In such a context, consider 1 

again the code with seemingly redundant reads: 2 

auto y = x;           // read x 3 
y = x;                // read x again 4 

If x corresponds to, say, the temperature reported by a temperature sensor, the 5 

second read of x is not redundant, because the temperature may have changed be-6 

tween the first and second reads.  7 

It’s a similar situation for seemingly superfluous writes. In this code, for example, 8 

x = 10;               // write x  9 
x = 20;               // write x again 10 

if x corresponds to the control port for a radio transmitter, it could be that the 11 

code is issuing commands to the radio, and the value 10 corresponds to a different 12 

command from the value 20. Optimizing out the first assignment would change the 13 

sequence of commands sent to the radio. 14 

volatile is the way we tell compilers that we’re dealing with special memory. Its 15 

meaning to compilers is “Don’t perform any optimizations on operations on this 16 

memory.” So if x corresponds to special memory, it’d be declared volatile: 17 

volatile int x; 18 

Consider the effect that has on our original code sequence: 19 

auto y = x;           // read x  20 
y = x;                // read x again (can't be optimized away) 21 

x = 10;               // write x  22 
x = 20;               // write x again (can't be optimized away) 23 

This is precisely what we want if x is memory-mapped (or has been mapped to a 24 

memory location shared across processes, etc.).  25 
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Pop quiz! In that last piece of code, what is y’s type: int or volatile int?†  1 

The fact that seemingly redundant loads and dead stores must be preserved when 2 

dealing with special memory explains, by the way, why std::atomics are unsuit-3 

able for this kind of work. Compilers are permitted to eliminate such redundant 4 

operations on std::atomics. The code isn’t written quite the same way it is for 5 

volatiles, but if we overlook that for a moment and focus on what compilers are 6 

permitted to do, we can say that, conceptually, compilers may take this, 7 

std::atomic<int> x; 8 

auto y = x;           // conceptually read x (see below) 9 
y = x;                // conceptually read x again (see below) 10 

x = 10;               // write x  11 
x = 20;               // write x again 12 

and optimize it to this: 13 

auto y = x;           // conceptually read x (see below) 14 
x = 20;               // write x  15 

For special memory, this is clearly unacceptable behavior. 16 

Now, as it happens, neither of these two statements will compile when x is 17 

std::atomic: 18 

auto y = x;           // error! 19 
y = x;                // error! 20 

That’s because the copy operations for std::atomic are deleted (see Item 11). 21 

And with good reason. Consider what would happen if the initialization of y with x 22 

compiled. Because x is std::atomic, y’s type would be deduced to be 23 

                                                             

† y’s type is auto-deduced, so it uses the rules described in Item 2. Those rules dictate that 

for the declaration of non-reference non-pointer types (which is the case for y), const 

and volatile qualifiers are dropped. y’s type is therefore simply int. This means that 

redundant reads of and writes to y can be eliminated. In the example, compilers must per-

form both the initialization of and the assignment to y, because x is volatile, so the sec-

ond read of x might yield a different value from the first one. 
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std::atomic, too (see Item 2.) I remarked earlier that one of the best things 1 

about std::atomics is that all their operations are atomic, but in order for the 2 

copy construction of y from x to be atomic, compilers would have to generate code 3 

to read x and write y in a single atomic operation. Hardware generally can’t do 4 

that, so copy construction isn’t supported for std::atomic types. Copy assign-5 

ment is deleted for the same reason, which is why the assignment from x to y 6 

won’t compile. (The move operations aren’t explicitly declared in std::atomic, 7 

so, per the rules for compiler-generated special functions described in Item 19, 8 

std::atomic offers neither move construction nor move assignment.) 9 

It’s possible, of course, to get the value of x into y, but it requires use of 10 

std::atomic’s member functions load and store. The load member function 11 

reads a std::atomic’s value atomically, while the store member function writes 12 

it atomically. To initialize y with x, then, followed by putting x’s value in y, the 13 

code must be written like this: 14 

std::atomic<int> y(x.load());     // read x 15 

y.store(x.load());                // read x again 16 

This compiles, but the fact that reading x (via x.load()) is a separate function call 17 

from initializing or storing to y makes clear that there is no reason to expect either 18 

statement as a whole to execute as a single atomic operation. 19 

Given that code, compilers could “optimize” it by storing x’s value in a register in-20 

stead of reading it twice: 21 

register = x.load();              // read x into register 22 

std::atomic<int> y(register);     // init y with register value 23 

y.store(register);                // store register value into y 24 

The result, as you can see, reads from x only once, and that’s the kind of optimiza-25 

tion that must be avoided when dealing with special memory. (The optimization 26 

isn’t permitted for volatile variables.) 27 

The situation should thus be clear: 28 
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 std::atomic is useful for concurrent programming, but not for accessing spe-1 

cial memory. 2 

 volatile is useful for accessing special memory, but not for concurrent pro-3 

gramming. 4 

Because std::atomic and volatile serve different purposes, they can even be 5 

used together: 6 

volatile std::atomic<int> vai;    // operations on vai are 7 
                                  // atomic and can't be  8 
                                  // optimized away 9 

This could be useful if vai corresponded to a memory-mapped I/O location that 10 

was concurrently accessed by multiple threads. 11 

As a final note, some developers prefer to use std::atomic’s load and store 12 

member functions even when they’re not syntactically required, because it makes 13 

explicit in the source code that the variables involved aren’t “normal.” Emphasiz-14 

ing that fact isn’t unreasonable. Accessing a std::atomic is typically much slower 15 

than accessing a non-std::atomic, and we’ve already seen that the use of 16 

std::atomics prevents compilers from performing certain kinds of statement 17 

reorderings that would otherwise be permitted. Calling out loads and stores of 18 

std::atomics can therefore help identify potential scalability chokepoints. From 19 

a correctness perspective, not seeing a call to store on a variable meant to com-20 

municate information to other threads (e.g., a flag indicating the availability of da-21 

ta) could mean that the variable wasn’t declared std::atomic when it should 22 

have been. 23 

This is more a stylistic issue, however, and as such is quite different from the 24 

choice between std::atomic and volatile. std::atomic is a tool for writing 25 

concurrent software. volatile is a tool for working with special memory. 26 

Things to Remember 27 

 std::atomic is for data accessed from multiple threads without using mutex-28 

es. 29 
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 volatile is for memory where reads and writes should never be optimized 1 

away. 2 
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