‘\\‘\‘ N .' A | 2
2\

‘.
-

LY

Software Architecture "-‘;:

with C++ “‘

Design modern systems using effective architecture
concepts, design patterns, and techniques with C++20

Adrian Ostrowski | Piotr Gaczkowski

Software Architecture
with C++

Design modern systems using effective architecture
concepts, design patterns, and techniques with C++20

Adrian Ostrowski
Piotr Gaczkowski

BIRMINGHAM - MUMBAI

Software Architecture with C++

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Richa Tripathi
Senior Editor: Rohit Singh

Content Development Editor: Kinnari Chohan
Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Production Designer: Aparna Bhagat

First published: April 2021
Production reference: 2210421
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham
B3 2PB, UK.

ISBN 978-1-83855-459-0

www.packt.com

http://www.packt.com

To Agnieszka, for all her love and support
To Mateusz, for being a great mentor
To my parents, for sparking the curiosity in me
To my friends, for not being hidden and for all they do

— Adrian Ostrowski

To Emilia, who tolerated me when I was writing this book; my parents, who encouraged me to
learn coding; the mastermind group members who cheered me on in this journey; Hackerspace
Trojmiasto, for positive vibes; I0OD, for reminding me that I love writing; 255, for the workouts;
and all the friends who shared the journey with me. Love you!

— Piotr Gaczkowski

Contributors

About the authors

Adrian Ostrowski is a modern C++ enthusiast interested in the development of both the
C++ language itself and the high-quality code written in it. A lifelong learner with over a
decade of experience in the IT industry and more than 8 years of experience with C++
specifically, he's always eager to share his knowledge. His past projects range from parallel
computing, through fiber networking, to working on a commodity exchange's trading
system. Currently, he's one of the architects of Intel and Habana's integration with machine
learning frameworks.

In his spare time, Adrian used to promote music bands together with Piotr and has learned
how to fly a glider. Currently, he likes riding his bicycle, going to music events, and
browsing memes.

Piotr Gaczkowski has more than 10 years of experience in programming and practicing
DevOps and uses his skills to improve people's lives. He likes building simple solutions to
human problems, organizing cultural events, and teaching fellow professionals. Piotr is
keen on automating boring activities and using his experience to share knowledge by
conducting courses and writing articles about personal growth and remote work.

He has worked in the IT industry both in full-time positions and as a freelancer, but his true
passion is music. When not making his skills useful at work, you can find him building
communities.

About the reviewer

Andrey Gavrilin is a senior software engineer working for an international company that
provides treasury management cloud solutions. He has an MSc degree in engineering
(industrial automation) and has worked in different areas such as accounting and staffing,
road data bank, web and Linux distribution development, and fintech. His interests include
mathematics, electronics, embedded systems, full-stack web development, retro gaming,
and retro programming.

Table of Contents

Preface 1

Section 1: Concepts and Components of Software
Architecture

Chapter 1: Importance of Software Architecture and Principles of Great

Design 7
Technical requirements 8
Understanding software architecture 8

Different ways to look at architecture 9
Learning the importance of proper architecture 9
Software decay 10
Accidental architecture 10
Exploring the fundamentals of good architecture 10
Architecture context 11
Stakeholders 11
Business and technical environments 11
Developing architecture using Agile principles 12
Domain-driven design 13
The philosophy of C++ 14
Following the SOLID and DRY principles 17
Single responsibility principle 17
Open-closed principle 18
Liskov substitution principle 19
Interface segregation principle 20
Dependency inversion principle 21
The DRY rule 25
Coupling and cohesion 26
Coupling 26
Cohesion 27
Summary 30
Questions 30
Further reading 30

Chapter 2: Architectural Styles 31
Technical requirements 31
Deciding between stateful and stateless approaches 32

Stateless and stateful services 34

Table of Contents

Understanding monoliths—why they should be avoided, and
recognizing exceptions
Understanding services and microservices
Microservices
Benefits and disadvantages of microservices
Characteristics of microservices
Microservices and other architectural styles
Scaling microservices
Transitioning to microservices
Exploring event-based architecture
Common event-based topologies
Event sourcing
Understanding layered architecture
Backends for Frontends
Learning module-based architecture
Summary
Questions
Further reading

Chapter 3: Functional and Nonfunctional Requirements
Technical requirements documentation from sources, you must
have
Understanding the types of requirements

Functional requirements

Nonfunctional requirements

Quality attributes
Constraints

Recognizing architecturally significant requirements

Indicators of architectural significance

Hindrances in recognizing ASRs and how to deal with them
Gathering requirements from various sources

Knowing the context

Knowing existing documentation

Knowing your stakeholders

Gathering requirements from stakeholders
Documenting requirements

Documenting the context

Documenting the scope

Documenting functional requirements

Documenting nonfunctional requirements

Managing the version history of your documentation

Documenting requirements in Agile projects

Other sections
Documenting architecture

Understanding the 4+1 model

36
37
38
38
39

42
42
42
43
44
46
48
50
50
51
51

52

53
53
53
54
54
55
55
56
57
58
58
59
60
60
61
62
62
63
64
64
65
66
66
67

[ii]

Table of Contents

Understanding the C4 model 72
Documenting architecture in Agile projects 76
Choosing the right views to document 76
Functional view 77
Information view 78
Concurrency view 79
Development view 79
Deployment and operational views 80
Generating documentation 81
Generating requirements documentation 82
Generating diagrams from code 82
Generating (API) documentation from code 83
Summary 90
Questions 920
Further reading 90
Section 2: The Design and Development of
C++ Software
Chapter 4: Architectural and System Design 92
Technical requirements 93
Understanding the peculiarities of distributed systems 93
Different service models and when to use them 93
On-premises model 94
Infrastructure as a Service (IaaS) model 94
Platform as a Service (PaaS) model 95
Software as a Service (SaaS) model 96
Function as a Service (FaaS) model and serverless architecture 96
Avoiding the fallacies of distributed computing 97
The network is reliable 97
Latency is zero 98
Bandwidth is infinite 98
The network is secure 98
Topology doesn't change 99
There is one administrator 99
Transport cost is zero 100
The network is homogeneous 100
CAP theorem and eventual consistency 101
Sagas and compensating transactions 102
Choreography-based sagas 103
Orchestration-based sagas 103
Making your system fault tolerant and available 104
Calculating your system's availability 104
Building fault-tolerant systems 105
Redundancy 105
Leader election 106
Consensus 106

[iii]

Table of Contents

Replication
Master-slave replication
Multi-master replication
Queue-based load leveling
Back pressure
Detecting faults
Sidecar design pattern
Heartbeat mechanism
Leaky bucket counter
Minimizing the impact of faults
Retrying the call
Avoiding cascading failures
Circuit breaker
Bulkhead
Geodes
Integrating your system
Pipes and filters pattern
Competing consumers
Transitioning from legacy systems
Anti-corruption layer
Strangler pattern
Achieving performance at scale
CQRS and event sourcing
Command-query responsibility segregation
Command-query separation
Event sourcing
Caching
Updating caches
Write-through approach
Write-behind approach
Cache-aside
Deploying your system
The sidecar pattern
Deploying a service with tracing and a reverse proxy using Envoy
Zero-downtime deployments
Blue-green deployments
Canary releases
External configuration store
Managing your APIs
API gateways
Summary
Questions
Further reading

Chapter 5: Leveraging C++ Language Features
Technical requirements
Designing great APIs
Leveraging RAII

106
107
107
107
108
109
109
109
110
110
110
111
111
111
112
112
112
113
114
114
114
115
116
116
118
119
119
120
120
121
121

121
122
122
126
127
127
128
129
130
131
131
132

133
134
134
134

[iv]

Table of Contents

Specifying the interfaces of containers in C++
Using pointers in interfaces
Specifying preconditions and postconditions
Leveraging inline namespaces
Leveraging std::optional
Optional function parameters
Optional function return values
Optional class members
Writing declarative code
Showcasing a featured items gallery
Introducing standard ranges
Reducing memory overhead and increasing performance using ranges
Moving computations at compile time
Helping the compiler help you by using const
Leveraging the power of safe types
Constraining template parameters
Writing modular C++
Summary
Questions
Further reading

Chapter 6: Design Patterns and C++
Technical requirements
Writing idiomatic C++
Automating scope exit actions using RAIl guards
Managing copyability and movability
Implementing non-copyable types
Adhering to the rules of three and five
Adhering to the rule of zero
Using hidden friends
Providing exception safety using the copy-and-swap idiom
Writing niebloids
Policy-based design idiom
Curiously recurring template pattern
Knowing when to use dynamic versus static polymorphism
Implementing static polymorphism
Interlude — using type erasure
Creating objects
Using factories
Using factory methods
Using factory functions
Choosing the return type of a factory
Using factory classes
Using builders
Building with composites and prototypes
Tracking state and visiting objects in C++

135
138
140
140
141
142
142
143
143
145
150
152
153
155
156
156
160
163
164
164

165
165
166
166
167
167
168
168
169
171
172
175
177
177
177
180
182
183
183
184
185
186
188
191
192

[v]

Table of Contents

Dealing with memory efficiently
Reducing dynamic allocations using SSO/SOO
Saving memory by herding COWs
Leveraging polymorphic allocators
Using memory arenas
Using the monotonic memory resource
Using pool resources
Writing your own memory resource
Ensuring there are no unexpected allocations
Winking out memory
Summary
Questions
Further reading

Chapter 7: Building and Packaging
Technical requirements
Getting the most out of compilers
Using multiple compilers
Reducing build times
Using a fast compiler
Rethinking templates
Leveraging tools
Finding potential code issues
Using compiler-centric tools
Abstracting the build process
Introducing CMake
Creating CMake projects
Distinguishing between CMake directory variables
Specifying CMake targets
Specifying the output directories
Using generator expressions
Using external modules
Fetching dependencies
Using find scripts
Writing find scripts
Using the Conan package manager
Preparing Conan profiles
Specifying Conan dependencies
Installing Conan dependencies
Using Conan targets from CMake
Adding tests
Reusing quality code
Installing
Exporting
Using CPack
Packaging using Conan
Creating the conanfile.py script

196
196
197
197
198
199
199
200
201
201
203
203

203

205
205
206
206
207
207
207
209
210
212
213
213
214
214
215
217
217
219
219
221
222
225
225
225
226
227
228
229
230
233
234
236
237

[vil

Table of Contents

Testing our Conan package 239
Adding Conan packaging code to our CMakeLists 241
Summary 242
Questions 243
Further reading 243
Section 3: Architectural Quality Attributes
Chapter 8: Writing Testable Code 245
Technical requirements 245
Why do you test code? 246
The testing pyramid 246
Non-functional testing 248
Regression testing 249
Root cause analysis 249
The groundwork for further improvement 250
Introducing testing frameworks 252
GTest examples 252
Catch2 examples 252
CppUnit examples 253
Doctest examples 255
Testing compile-time code 255
Understanding mocks and fakes 256
Different test doubles 256
Other uses for test doubles 257
Writing test doubles 257
GoogleMock example 257
Trompeloeil example 259
Test-driven class design 261
When tests and class design clash 261
Defensive programming 262
The boring refrain — write your tests first 263
Automating tests for continuous integration/continuous
deployment 264
Testing the infrastructure 265
Testing with Serverspec 266
Testing with Testinfra 266
Testing with Goss 267
Summary 267
Questions 268
Further reading 268
Chapter 9: Continuous Integration and Continuous Deployment 269
Technical requirements 270
Understanding ClI 270

[vii]

Table of Contents

Release early, release often

Merits of ClI

Gating mechanism

Implementing the pipeline with GitLab
Reviewing code changes

Automated gating mechanisms

Code review — the manual gating mechanism

Different approaches to a code review

Using pull requests (merge requests) for a code review

Exploring test-driven automation
Behavior-driven development
Writing tests for ClI
Continuous testing
Managing deployment as code
Using Ansible
How Ansible fits with the CI/CD pipeline
Using components to create deployment code
Building deployment code
Building a CD pipeline
Continuous deployment and continuous delivery
Building an example CD pipeline
Using immutable infrastructure
What is immutable infrastructure?
The benefits of immutable infrastructure
Building instance images with Packer
Orchestrating the infrastructure with Terraform
Summary
Questions
Further reading

Chapter 10: Security in Code and Deployment
Technical requirements
Checking the code security
Security-conscious design
Making interfaces easy to use and hard to misuse
Enabling automatic resource management
Drawbacks of concurrency and how to deal with it
Secure coding, the guidelines, and GSL
Defensive coding, validating everything
The most common vulnerabilities
Checking whether the dependencies are secure
Common Vulnerabilities and Exposures
Automated scanners
Automated dependency upgrade management
Hardening your code

270
271
272
272
274
274
275
276
277
277
278
280
281
282
282
283
284
285
285
286
286
288
289
290
290
292
294
294
295

296
296
297
297
208
299
300
302
303
304
306
306
307
307
308

[viii]

Table of Contents

Security-oriented memory allocator
Automated checks
Compiler warnings
Static analysis
Dynamic analysis
Valgrind and Application Verifier
Sanitizers
Fuzz-testing

Process isolation and sandboxing

Hardening your environment
Static versus dynamic linking
Address space layout randomization
DevSecOps

Summary

Questions

Further reading

Chapter 11: Performance
Technical requirements
Measuring performance
Performing accurate and meaningful measurements
Leveraging different types of measuring tools
Using microbenchmarks
Setting up Google Benchmark
Writing your first microbenchmark
Passing arbitrary arguments to a microbenchmark
Passing numeric arguments to a microbenchmark
Generating the passed arguments programmatically
Choosing what to microbenchmark and optimize
Creating performance tests using benchmarks
Profiling
Choosing the type of profiler to use
Preparing the profiler and processing the results
Analyzing the results
Tracing
Correlation IDs
Helping the compiler generate performant code
Optimizing whole programs
Optimizing based on real-world usage patterns
Writing cache-friendly code
Designing your code with data in mind
Parallelizing computations
Understanding the differences between threads and processes
Using the standard parallel algorithms
Parallelizing computations using OpenMP and MPI
Using coroutines
Distinguishing between cppcoro utilities

308
309
309
310
311
312
312
313

313
314
314
315
316
316
317
317

318
318
319
319
320
321
321
322
325
326
327
329
329
330
330
331
331
332
332
333
333
334
334
335
336
337
338
338
339
341

[ix]

Table of Contents

Looking under the hood of awaitables and coroutines 343
Summary 347
Questions 348
Further reading 348

Section 4: Cloud-Native Design Principles
Chapter 12: Service-Oriented Architecture 350
Technical requirements 350
Understanding Service-Oriented Arcitecture 351
Implementation approaches 351
Enterprise Service Bus 351
Web services 353
Benefits and disadvantages of web services 354
Messaging and streaming 354
Message queues 354
Message brokers 355
Cloud computing 356
Microservices 357

Benefits of Service-Oriented Architecture 358

Challenges with SOA 359
Adopting messaging principles 360

Low-overhead messaging systems 361

MQTT 361
ZeroMQ 362

Brokered messaging systems 362
Using web services 363

Tools for debugging web services 363

XML-based web services 364

XML-RPC 364
Relationship to SOAP 364

SOAP 365
WSDL 366

uDDI 366

SOAP libraries 367
JSON-based web services 367
JSON-RPC 368
REpresentational State Transfer (REST) 369
Description languages 370
OpenAPI 370

RAML 372

API Blueprint 373

RSDL 373
Hypermedia as the Engine of Application State 374
REST in C++ 376

GraphQL 377
Leveraging managed services and cloud providers 377

Cloud computing as an extension of SOA 378

Using API calls directly 378

[x]

Table of Contents

Using API calls through a CLI tool

Using third-party tools that interact with the Cloud API

Accessing the cloud API
Using the cloud CLI

Using tools that interact with the Cloud API

Cloud-native architecture
Summary
Questions
Further reading

Chapter 13: Designing Microservices
Technical requirements
Diving into microservices
The benefits of microservices
Modularity
Scalability
Flexibility
Integration with legacy systems
Distributed development
Disadvantages of microservices
Reliance on a mature DevOps approach
Harder to debug
Additional overhead
Design patterns for microservices
Decomposition patterns
Decomposition by business capability
Decomposition by subdomain
Database per service pattern
Deployment strategies
Single service per host
Multiple services per host
Observability patterns
Log aggregation
Application metrics
Distributed tracing
Health check APIs
Building microservices
Outsourcing memory management
Memcached
Redis
Which in-memory cache is better?
Outsourcing storage
Outsourcing computing
Observing microservices
Logging
Logging with microservices
Logging in C++ with spdlog
Unified logging layer
Logstash

[xil

379
380
381
382
382
383
383
383
384

385
385
385
386
386
386
387
387
388
388
388
389
389
389
389
390
390
390
391
391
391
391
392
392
392
392
393
393
394
394
396
396
397
398
398
398
399
399
400

Table of Contents

Filebeat
Fluentd
Fluent Bit
Vector

Log aggregation
Elasticsearch
Loki

Log visualization
Kibana
Grafana

Monitoring
Tracing
OpenTracing
Jaeger
OpenZipkin
Integrated observability solutions
Connecting microservices
Application programming interfaces (APIs)
Remote procedure calls
Apache Thrift
gRPC
Scaling microservices
Scaling a single service per host deployment
Scaling multiple services per host deployment
Summary
Questions
Further reading

Chapter 14: Containers
Technical requirements
Reintroducing containers
Exploring the container types
The rise of microservices
Choosing when to use containers
The benefits of containers
The disadvantages of containers
Building containers
Container images explained
Using Dockerfiles to build an application
Naming and distributing images
Compiled applications and containers
Targeting multiple architectures with manifests
Alternative ways to build application containers
Buildah
Ansible-bender
Others
Integrating containers with CMake
Configuring the Dockerfile with CMake

400
400
401
401
401
402
402
402
402
403

403
404
404
405
405
405
405
406
406
406
407
409
409
410
410
411
411

412
412
413
414
414
415
415
416
417
417
418
419
420
423
425
425
425
426
427
427

[xii]

Table of Contents

Integrating containers with CMake
Testing and integrating containers
Runtime libraries inside containers
Alternative container runtimes
Understanding container orchestration
Self-hosted solutions
Kubernetes
Docker Swarm
Nomad
OpenShift
Managed services
AWS ECS
AWS Fargate
Azure Service Fabric
Summary
Questions
Further reading

Chapter 15: Cloud-Native Design
Technical requirements
Understanding cloud-native

Cloud-Native Computing Foundation
Cloud as an operating system
Load balancing and service discovery

Reverse proxies
Service Discovery

Using Kubernetes to orchestrate cloud-native workloads
Kubernetes structure
Control plane
Worker nodes
Possible approaches to deploying Kubernetes
Understanding the Kubernetes concepts
Declarative approach
Kubernetes networking
Container-to-container communication
Pod-to-pod communication
Pod-to-service communication
External-to-internal communication
When is using Kubernetes a good idea?
Observability in distributed systems
How tracing differs from logging
Choosing a tracing solution
Jaeger and OpenTracing
Zipkin
Instrumenting an application with OpenTracing
Connecting services with a service mesh
Introducing a service mesh

428
429
429
431
431
432
432
435
436
438
438
439
439
439
440
440
441

442
442
443
443
443
444
445
445
446
446
447
447
448
448
449
450
451
451
451
451
451
452
453
454
454
455
456
457
458

[xiii]

Table of Contents

Service mesh solutions 459

Istio 459

Envoy 459

Linkerd 460

Consul service mesh 460

Going GitOps 461
The principles of GitOps 461
Declarative description 461

The system's state versioned in Git 462

Auditable 462

Integrated with established components 462
Configuration drift prevention 463

The benefits of GitOps 463
Increased productivity 463

Better developer experience 464

Higher stability and reliability 464

Improved security 464

GitOps tools 465

FluxCD 465

ArgoCD 465

Jenkins X 466
Summary 466
Questions 466
Further reading 467
Appendix A 468
Assessments 472
About Packt 485
Other Books You May Enjoy 486
Index 489

[xiv]

Preface

Modern C++ allows you to write high-performing applications in a high-level language
without sacrificing readability and maintainability. There's more to software architecture
than just language, though. We're going to show you how to design and build applications
that are robust and scalable and that perform well.

Complete with step-by-step explanations of essential concepts, practical examples, and self-
assessment questions, you will begin by understanding the importance of architecture,
looking at a case study of an actual application.

You'll learn how to use established design patterns at the level of a single application,
exploring how to make your applications robust, secure, performant, and maintainable.
You'll then build higher-level services that connect multiple single applications using
patterns such as service-oriented architecture, microservices, containers, and serverless

technology.

By the end of this book, you will be able to build distributed services using modern C++
and associated tools to deliver solutions that your clients will recommend.

Are you interested in becoming a software architect or looking to learn more about modern
trends in architecture? If so, this book should help you!

Who this book is for

Developers working with modern C++ will be able to put their knowledge to work with this
practical guide to software architecture. The book takes a hands-on approach to
implementation and associated methodologies that will have you up and running and
productive in no time.

What this book covers

Chapter 1, Importance of Software Architecture and Principles of Great Design, looks at why we
design software in the first place.

Chapter 2, Architectural Styles, covers the different approaches you can take in terms of
architecture.

Preface

Chapter 3, Functional and Nonfunctional Requirements, explores understanding the needs of
clients.

Chapter 4, Architectural and System Design, is all about creating effective software solutions.
Chapter 5, Leveraging C++ Language Features, gets you speaking native C++.

Chapter 6, Design Patterns and C++, focuses on modern C++ idioms and useful code
constructs.

Chapter 7, Building and Packaging, is about getting code to production.
Chapter 8, Writing Testable Code, teaches you how to find bugs before the clients do.

Chapter 9, Continuous Integration and Continuous Deployment, introduces the modern way of
automating software releases.

Chapter 10, Security in Code and Deployment, is where you will learn how to make sure it's
hard to break your systems.

Chapter 11, Performance, looks at performance (of course!). C++ should be fast — can it be
even faster?

Chapter 12, Service-Oriented Architecture, sees you building systems based on services.

Chapter 13, Designing Microservices, focuses on doing one thing only — designing
microservices.

Chapter 14, Containers, gives you a unified interface to build, package, and run
applications.

Chapter 15, Cloud-Native Design, goes beyond traditional infrastructure to explore cloud-
native design.

To get the most out of this book

The code examples in this book are mostly written for GCC 10. They should work with
Clang or Microsoft Visual C++ as well, though certain features from C++20 may be missing
in older versions of the compilers. To get a development environment as close to the
authors' as possible, we advise you to use Nix (https://nixos.org/download.html) and
direnv (https://direnv.net/) in a Linux-like environment. These two tools should
configure the compilers and supporting packages for you if you run direnv allowina
directory containing examples.

[2]

https://nixos.org/download.html
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/

Preface

Without Nix and direnv, we can't guarantee that the examples will work correctly. If you're
on macOS, Nix should work just fine. If you're on Windows, the Windows Subsystem for
Linux 2 is a great way to have a Linux development environment with Nix.

To install both tools, you have to run the following:

Install Nix

curl -L https://nixos.org/nix/install | sh

Configure Nix in the current shell

. SHOME/.nix-profile/etc/profile.d/nix.sh

Install direnv

nix-env —-i direnv

Download the code examples

git clone
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Cpp.
git

Change directory to the one with examples

cd Hands-On-Software-Architecture-with-Cpp

Allow direnv and Nix to manage your development environment
direnv allow

After executing the preceding command, Nix should download and install all the necessary
dependencies. This might take a while but it helps to ensure we're using exactly the same
tools.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.
com/PacktPublishing/Software—Architecture—with—Cpp.hlcasetheﬁfsanllpdatetothe
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

[3]

https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781838554590_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The first two fields (openapi and info) are metadata describing the document.

A block of code is set as follows:

using namespace CppUnit;
using namespace std;

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]

https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
Visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Section 1: Concepts and
Components of Software
Architecture

This section introduces you to the basics of software architecture, demonstrating effective
approaches to its design and documentation.

This section contains the following chapters:

® Chapter 1, Importance of Software Architecture and Principles of Great Design
® Chapter 2, Architectural Styles

e Chapter 3, Functional and Nonfunctional Requirements

Importance of Software
Architecture and Principles of
Great Design

The purpose of this introductory chapter is to show what role software architecture plays in
software development. It will focus on the key aspects to keep in mind when designing the
architecture of a C++ solution. We'll discuss how to design efficient code with convenient
and functional interfaces. We'll also introduce a domain-driven approach for both code and
architecture.

In this chapter, we'll cover the following topics:

¢ Understanding software architecture

¢ Learning the importance of proper architecture

e Exploring the fundamentals of good architecture
¢ Developing architecture using Agile principles

¢ The philosophy of C++

¢ Following the SOLID and DRY principles

e Domain-driven design

¢ Coupling and cohesion

Importance of Software Architecture and Principles of Great Design Chapter 1

Technical requirements

To play with the code from this chapter, you'll need the following;:

A Git client for checking out the repositories given shortly.

A C++20-compliant compiler to compile all the snippets. Most of them are
written in C++11/14/17, but concept support is required to experiment with the
few that touch the subject.

GitHub link for code snippets: https://github.com/PacktPublishing/

Software-Architecture-with-Cpp/tree/master/Chapter01l.

GitHub link for GSL: nttps://github.com/Microsoft /GSL

Understanding software architecture

Let's begin by defining what software architecture actually is. When you create an
application, library, or any software component, you need to think about how the elements
you write will look and how they will interact with each other. In other words, you're
designing them and their relations with their surroundings. Just like with urban
architecture, it's important to think about the bigger picture to not end up in a haphazard
state. On a small scale, every single building looks okay, but they don't combine into a
sensible bigger picture — they just don't fit together well. This is what's called accidental
architecture and it is one of the outcomes you want to avoid. However, keep in mind that
whether you're putting your thoughts into it or not, when writing software you are creating
an architecture.

So, what exactly should you be creating if you want to mindfully define the architecture of
your solution? The Software Engineering Institute has this to say:

The software architecture of a system is the set of structures needed to reason about the
system, which comprise software elements, relations among them, and properties of both.

This means that in order to define an architecture thoroughly, we should think about it
from a few perspectives instead of just hopping into writing code.

[8]

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL

Importance of Software Architecture and Principles of Great Design Chapter 1

Different ways to look at architecture

There are several scopes that can be used to look at architecture:

¢ Enterprise architecture deals with the whole company or even a group of
companies. It takes a holistic approach and is concerned about the strategy of
whole enterprises. When thinking about enterprise architecture, you should be
looking at how all the systems in a company behave and cooperate with each
other. It's concerned about the alignment between business and IT.

e Solution architecture is less abstract than its enterprise counterpart. It stands
somewhere in the middle between enterprise and software architecture. Usually,
solution architecture is concerned with one specific system and the way it
interacts with its surroundings. A solution architect needs to come up with a way
to fulfill a specific business need, usually by designing a whole software system
or modifying existing ones.

e Software architecture is even more concrete than solution architecture. It
concentrates on a specific project, the technologies it uses, and how it interacts
with other projects. A software architect is interested in the internals of the
project's components.

e Infrastructure architecture is, as the name suggests, concerned about the
infrastructure that the software will use. It defines the deployment environment
and strategy, how the application will scale, failover handling, site reliability, and
other infrastructure-oriented aspects.

Solution architecture is based on both software and infrastructure architectures to satisfy
the business requirements. In the following sections, we will talk about both those aspects
to prepare you for both small- and large-scale architecture design. Before we jump into that,
let's also answer one fundamental question: why is architecture important?

Learning the importance of proper
architecture

Actually, a better question would be: why is caring about your architecture important? As
we mentioned earlier, regardless of whether you put conscious effort into building it or not,
you will end up with some kind of architecture. If after several months or even years of
development you still want your software to retain its qualities, you need to take some
steps earlier in the process. If you won't think about your architecture, chances are it won't
ever present the required qualities.

[9]

Importance of Software Architecture and Principles of Great Design Chapter 1

So, in order for your product to meet the business requirements and attributes such as
performance, maintainability, scalability, or others, you need to take care of its architecture,
and it is best if you do it as early as you can in the process. Let's now discuss two things
that each good architect wants to protect their projects from.

Software decay

Even after you did the initial work and had a specific architecture in mind, you need to
continuously monitor how the system evolves and whether it still aligns with its users'
needs, as those may also change during the development and lifetime of your software.
Software decay, sometimes also called erosion, occurs when the implementation decisions
don't correspond to the planned architecture. All such differences should be treated as
technical debt.

Accidental architecture

Failing to track if the development adheres to the chosen architecture or failing to
intentionally plan how the architecture should look will often result in a so-called
accidental architecture, and it can happen regardless of applying best practices in other
areas, such as testing or having any specific development culture.

There are several anti-patterns that suggest your architecture is accidental. Code
resembling a big ball of mud is the most obvious one. Having god objects is another
important sign of this. Generally speaking, if your software is getting tightly coupled,
perhaps with circular dependencies, but wasn't like that in the first place, it's an important
signal to put more conscious effort into how the architecture looks.

Let's now describe what an architect must understand to deliver a viable solution.

Exploring the fundamentals of good
architecture

It's important to know how to recognize a good architecture from a bad one, but it's not an
easy task. Recognizing anti-patterns is an important aspect of it, but for an architecture to
be good, primarily it has to support delivering what's expected from the software, whether
it's about functional requirements, attributes of the solution, or dealing with the constraints
coming from various places. Many of those can be easily derived from the architecture
context.

[10]

Importance of Software Architecture and Principles of Great Design Chapter 1

Architecture context

The context is what an architect takes into account when designing a solid solution. It
comprises requirements, assumptions, and constraints, which can come from the
stakeholders, as well as the business and technical environments. It also influences the
stakeholders and the environments, for example, by allowing the company to enter a new
market segment.

Stakeholders

Stakeholders are all the people that are somehow involved with the product. Those can be
your customers, the users of your system, or the management. Communication is a key skill
for every architect and properly managing your stakeholder's needs is key to delivering
what they expected and in a way they wanted.

Different things are important to different groups of stakeholders, so try to gather input
from all those groups.

Your customers will probably care about the cost of writing and running the software, the
functionality it delivers, its lifetime, time to market, and the quality of your solution.

The users of your system can be divided into two groups: end users and administrators.
The first ones usually care about things such as the usability, user experience, and
performance of the software. For the latter, more important aspects are user management,
system configuration, security, backups, and recovery.

Finally, things that could matter for stakeholders working in management are keeping the
development costs low, achieving business goals, being on track with the development
schedule, and maintaining product quality.

Business and technical environments

Architecture can be influenced by the business side of the company. Important related
aspects are the time to market, the rollout schedule, the organizational structure, utilization
of the workforce, and investment in existing assets.

[11]

Importance of Software Architecture and Principles of Great Design Chapter 1

By technical environment, we mean the technologies already used in a company or those
that are for any reason required to be part of the solution. Other systems that we need to
integrate with are also a vital part of the technical environment. The technical expertise of
the available software engineers is of importance here, too: the technological decisions an
architect makes can impact staffing the project, and the ratio of junior to senior developers
can influence how a project should be governed. Good architecture should take all of that
into account.

Equipped with all this knowledge, let's now discuss a somewhat controversial topic that
you'll most probably encounter as an architect in your daily work.

Developing architecture using Agile
principles

Seemingly, architecture and Agile development methodologies are in an adversarial
relationship, and there are many myths around this topic. There are a few simple principles
that you should follow in order to develop your product in an Agile way while still caring
about its architecture.

Agile, by nature, is iterative and incremental. This means preparing a big, upfront design is
not an option in an Agile approach to architecture. Instead, a small, but still reasonable
upfront design should be proposed. It's best if it comes with a log of decisions with the
rationale for each of them. This way, if the product vision changes, the architecture can
evolve with it. To support frequent release delivery, the upfront design should then be
updated incrementally. Architecture developed this way is called evolutionary architecture.

Managing architecture doesn't need to mean keeping massive documentation. In fact,
documentation should cover only what's essential as this way it's easier to keep it up to
date. It should be simple and cover only the relevant views of the system.

There's also the myth of the architect as the single source of truth and the ultimate decision-
maker. In Agile environments, it's the teams who are making decisions. Having said that,
it's crucial that the stakeholders are contributing to the decision-making process — after all,
their points of view shape how the solution should look.

An architect should remain part of the development team as often they're bringing strong
technical expertise and years of experience to the table. They should also take part in
making estimations and plan the architecture changes needed before each iteration.

[12]

Importance of Software Architecture and Principles of Great Design Chapter 1

In order for your team to remain Agile, you should think of ways to work efficiently and
only on what's important. A good idea to embrace to achieve those goals is domain-driven
design.

Domain-driven design

Domain-driven design, or DDD for short, is a term introduced by Eric Evans in his book of
the same title. In essence, it's about improving communication between business and
engineering and bringing the developers' attention to the domain model. Basing the
implementation of this model often leads to designs that are easier to understand and
evolve together with the model changes.

What has DDD got to do with Agile? Let's recall a part of the Agile Manifesto:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

— The Agile Manifesto

In order to make the proper design decisions, you must understand the domain first. To do
so, you'll need to talk to people a lot and encourage your developer teams to narrow the
gap between them and business people. The concepts in the code should be named after
entities that are part of ubiquitous language. It's basically the common part of business
experts' jargon and technical experts' jargon. Countless misunderstandings can be caused
by each of these groups using terms that the other understands differently, leading to flaws
in business logic implementations and often subtle bugs. Naming things with care and
using terms agreed by both groups can mean bliss for the project. Having a business
analyst or other business domain experts as part of the team can help a lot here.

If you're modeling a bigger system, it might be hard to make all the terms mean the same to
different teams. This is because each of those teams really operates in a different context.
DDD proposes the use of bounded contexts to deal with this. If you're modeling, say, an e-
commerce system, you might want to think of the terms just in terms of a shopping context,
but upon a closer look, you may discover that the inventory, delivery, and accounting
teams actually all have their own models and terms.

[13]

Importance of Software Architecture and Principles of Great Design Chapter 1

Each of those is a different subdomain of your e-commerce domain. Ideally, each can be
mapped to its own bounded context — a part of your system with its own vocabulary. It's
important to set clear boundaries of such contexts when splitting your solution into smaller
modules. Just like its context, each module has clear responsibilities, its own database
schema, and its own code base. To help communicate between the teams in larger systems,

you might want to introduce a context map, which will show how the terms from different
contexts relate to each other:

- — -
- - = S e e e esea
’ - T T T T T T T,
Sales Context N RS
i L]
/ Orrortesty ' Support Context |
’
|) '
Customer Customer]
| ')
. ! :
' Pipeline Ticket '
Territory l '
‘ L
]
') X
* Product } [Product :
N\ 1 '
. Al Defect 1
L]
/ L]
\ Sales Person L] N
[])
. ’ .]
~ ” - . :rndyct :
- - - - . ersion s
-
v . B !
Figure 1.1 — Two bounding contexts with the matching terms mapped between them (image from one of Martin Fowler's articles on

DDD: https://martinfowler.com/bliki/BoundedContext.html)

As you now understand some of the important project-management topics, we can switch
to a few more technical ones.

The philosophy of C++

Let's now move closer to the programming language we'll be using the most throughout
this book. C++ is a multi-paradigm language that has been around for a few decades now.
During the years since its inception, it has changed a lot. When C++11 came out, Bjarne
Stroustrup, the creator of the language, said that it felt like a completely new language. The
release of C++20 marks another milestone in the evolution of this beast, bringing a similar
revolution to how we write code. One thing, however, stayed the same during all those
years: the language's philosophy.

[14]

Importance of Software Architecture and Principles of Great Design Chapter 1

In short, it can be summarized by three rules:

e There should be no language beneath C++ (except assembly).
¢ You only pay for what you use.
e Offer high-level abstractions at low cost (there's a strong aim for zero-cost).

Not paying for what you don't use means that, for example, if you want to have your data
member created on the stack, you can. Many languages allocate their objects on the heap,
but it's not necessary for C++. Allocating on the heap has some cost to it — probably your
allocator will have to lock a mutex for this, which can be a big burden in some types of
applications. The good part is you can easily allocate variables without dynamically
allocating memory each time pretty easily.

High-level abstractions are what differentiate C++ from lower-level languages such as C or
assembly. They allow for expressing ideas and intent directly in the source code, which
plays great with the language's type safety. Consider the following code snippet:

struct Duration {
int millis_;
}i

void example () {
auto d = Duration{};
d.millis_ = 100;
auto timeout = 1; // second
d.millis_ = timeout; // ouch, we meant 1000 millis but assigned just 1

}

A much better idea would be to leverage the type-safety features offered by the language:
#include <chrono>
using namespace std::literals::chrono_literals;

struct Duration {
std::chrono::milliseconds millis_;

bi

void example () {
auto d = Duration{};
// d.millis_ = 100; // compilation error, as 100 could mean anything
d.millis_ = 100ms; // okay

[15]

Importance of Software Architecture and Principles of Great Design Chapter 1

auto timeout = 1s; // or std::chrono::seconds(1);
d.millis_ =
timeout; // okay, converted automatically to milliseconds

}

The preceding abstraction can save us from mistakes and doesn't cost us anything while
doing so; the assembly generated would be the same as for the first example. That's why it's
called a zero-cost abstraction. Sometimes C++ allows us to use abstractions that actually
result in better code than if they were not used. One example of a language feature that,
when used, could often result in such benefit is coroutines from C++20.

Another great set of abstractions, offered by the standard library, are algorithms. Which of
the following code snippets do you think is easier to read and easier to prove bug-free?
Which expresses the intent better?

// BApproach #1
int count_dots (const char *str, std::size_t len) {

int count = 0;
for (std::size_t 1 = 0; 1 < len; ++i) {
if (str[i] == '.') count++;

}

return count;

}

// BApproach #2
int count_dots (std::string_view str) {
return std::count (std::begin(str), std::end(str), '.');

}

Okay, the second function has a different interface, but even it if was to stay the same, we
could just create std: : string_view from the pointer and the length. Since it's such a
lightweight type, it should be optimized away by your compiler.

Using higher-level abstractions leads to simpler, more maintainable code. The C++
language has strived to provide zero-cost abstractions since its inception, so build upon that
instead of redesigning the wheel using lower levels of abstraction.

Speaking of simple and maintainable code, the next section introduces some rules and
heuristics that are invaluable on the path to writing such code.

[16]

Importance of Software Architecture and Principles of Great Design Chapter 1

Following the SOLID and DRY principles

There are many principles to keep in mind when writing code. When writing object-
oriented code, you should be familiar with the quartet of abstraction, encapsulation,
inheritance, and polymorphism. Regardless of whether your writing C++ in a mostly object-
oriented programming manner or not, you should keep in mind the principles behind the
two acronyms: SOLID and DRY.

SOLID is a set of practices that can help you write cleaner and less bug-prone software. It's
an acronym made from the first letters of the five concepts behind it:

e Single responsibility principle
¢ Open-closed principle

Liskov substitution principle

Interface segregation
¢ Dependency Inversion

We assume you already have the idea of how those principles relate to object-oriented
programming, but since C++ is not always object-oriented, let's look at how they apply to
different areas.

Some of the examples use dynamic polymorphism, but the same would apply to static
polymorphism. If you're writing performance-oriented code (and you probably are if you
chose C++), you should know that using dynamic polymorphism can be a bad idea in terms
of performance, especially on the hot path. Further on in the book, you'll learn how to write
statically polymorphic classes using the Curiously Recurring Template Pattern (CRTP).

Single responsibility principle

In short, the Single Responsibility Principle (SRP) means each code unit should have
exactly one responsibility. This means writing functions that do one thing only, creating
types that are responsible for a single thing, and creating higher-level components that are
focused on one aspect only.

This means that if your class manages some type of resources, such as file handles, it should
do only that, leaving parsing them, for example, to another type.

Often, if you see a function with "And" in its name, it's violating the SRP and should be
refactored. Another sign is when a function has comments indicating what each section of
the function (sic!) does. Each such section would probably be better off as a distinct
function.

[17]

Importance of Software Architecture and Principles of Great Design Chapter 1

A related topic is the principle of least knowledge. In its essence, it says that no object
should know no more than necessary about other objects, so it doesn't depend on any of
their internals, for example. Applying it leads to more maintainable code with fewer
interdependencies between components.

Open-closed principle

The Open-Closed Principle (OCP) means that code should be open for extension but
closed for modification. Open for extension means that we could extend the list of types the
code supports easily. Closed for modification means existing code shouldn't change, as this
can often cause bugs somewhere else in the system. A great feature of C++ demonstrating
this principle is operator<< of ostream. To extend it so that it supports your custom class,
all you need to do is to write code similar to the following;:

std::ostream &operator<<(std::ostream &stream, const MyPair<int, int>
&mp) |
stream << mp.firstMember() << ", ";
stream << mp.secondMember () ;
return stream;

}

Note that our implementation of operator<<is a free (non-member) function. You should
prefer those to member functions if possible as it actually helps encapsulation. For more
details on this, consult the article by Scott Meyers in the Further reading section at the end of
this chapter. If you don't want to provide public access to some field that you wish to print
to ostream, you can make operator<< a friend function, like so:

class MyPair {
//
friend std::ostream &operator<<(std::ostream &stream,
const MyPair &mp);
}i
std::ostream &operator<<(std::ostream &stream, const MyPair &mp) {
stream << mp.first_ << ", ";
stream << mp.second_ << ", ";
stream << mp.secretThirdMember_;
return stream;

}

Note that this definition of OCP is slightly different from the more common one related to
polymorphism. The latter is about creating base classes that can't be modified themselves,
but are open for others to inherit from them.

[18]

Importance of Software Architecture and Principles of Great Design Chapter 1

Speaking of polymorphism, let's move on to the next principle as it is all about using it
correctly.

Liskov substitution principle

In essence, the Liskov Substitution Principle (LSP) states that if a function works with a
pointer or reference to a base object, it must also work with a pointer or reference to any of
its derived objects. This rule is sometimes broken because the techniques we apply in
source code do not always work in real-world abstractions.

A famous example is a square and a rectangle. Mathematically speaking, the former is a
specialization of the latter, so there's an "is a" relationship from one to the other. This
tempts us to create a Square class that inherits from the Rectangle class. So, we could end
up with code like the following:

class Rectangle {

public:

virtual ~Rectangle () = default;

virtual double area() { return width_ * height_; }

virtual void setWidth (double width) { width_ = width; }
virtual void setHeight (double height) { height_ = height; }
private:

double width_;
double height_;
}i

class Square : public Rectangle {
public:
double area () override;
void setWidth (double width) override;
void setHeight (double height) override;
}i

How should we implement the members of the Square class? If we want to follow the LSP
and save the users of such classes from surprises, we can't: our square would stop being a
square if we called setwidth. We can either stop having a square (not expressible using
the preceding code) or modify the height as well, thus making the square look different
than a rectangle.

If your code violates the LSP, it's likely that you're using an incorrect abstraction. In our
case, Square shouldn't inherit from Rectangle after all. A better approach could be
making the two implement a Geomet ricFigure interface.

[19]

Importance of Software Architecture and Principles of Great Design Chapter 1

Since we are on the topic of interfaces, let's move on to the next item, which is also related
to them.

Interface segregation principle

The interface segregation principle is just about what its name suggests. It is formulated as
follows:

No client should be forced to depend on methods that it does not use.

That sounds pretty obvious, but it has some connotations that aren't that obvious. Firstly,
you should prefer more but smaller interfaces to a single big one. Secondly, when you're
adding a derived class or are extending the functionality of an existing one, you should
think before you extend the interface the class implements.

Let's show this on an example that violates this principle, starting with the following
interface:

class IFoodProcessor {

public:
virtual ~IFoodProcessor () = default;
virtual void blend() = 0;

bi
We could have a simple class that implements it:

class Blender : public IFoodProcessor {
public:

void blend() override;
}i

So far so good. Now say we want to model another, more advanced food processor and we
recklessly tried to add more methods to our interface:

class IFoodProcessor {

public:

virtual ~IFoodProcessor () = default;
virtual void blend() = 0;

virtual void slice() = 0;

virtual void dice() = 0;

}i

class AnotherFoodProcessor : public IFoodProcessor {
public:
void blend() override;

[20]

Importance of Software Architecture and Principles of Great Design Chapter 1

void slice () override;
void dice () override;

bi

Now we have an issue with the Blender class as it doesn't support this new interface —
there's no proper way to implement it. We could try to hack a workaround or throw
std::logic_error, but a much better solution would be to just split the interface into
two, each with a separate responsibility:

class IBlender {

public:
virtual ~IBlender () = default;
virtual void blend() = 0;

}i

class ICutter {

public:
virtual ~ICutter () = default;
virtual void slice() = 0;
virtual void dice() = 0;

}i

Now our AnotherFoodProcessor can just implement both interfaces, and we don't need
to change the implementation of our existing food processor.

We have one last SOLID principle left, so let's learn about it now.

Dependency inversion principle

Dependency inversion is a principle useful for decoupling. In essence, it means that high-
level modules should not depend on lower-level ones. Instead, both should depend on
abstractions.

C++ allows two ways to inverse the dependencies between your classes. The first one is the
regular, polymorphic approach and the second uses templates. Let's see how to apply both
of them in practice.

Assume you're modeling a software development project that is supposed to have frontend
and backend developers. A simple approach would be to write it like so:

class FrontEndDeveloper {
public:

void developFrontEnd();
}i

[21]

Importance of Software Architecture and Principles of Great Design Chapter 1

class BackEndDeveloper {
public:

void developBackEnd();
i

class Project {
public:
void deliver () |
fed_.developFrontEnd() ;
bed_.developBackEnd() ;
t
private:
FrontEndDeveloper fed_;
BackEndDeveloper bed_;
i

Each developer is constructed by the Project class. This approach is not ideal, though,
since now the higher-level concept, Project, depends on lower-level ones — modules for
individual developers. Let's see how applying dependency inversion using polymorphism
changes this. We can define our developers to depend on an interface as follows:

class Developer {

public:
virtual ~Developer () = default;
virtual void develop() = 0;

}i

class FrontEndDeveloper : public Developer {
public:

void develop () override { developFrontEnd(); 1}
private:

void developFrontEnd() ;
bi

class BackEndDeveloper : public Developer {
public:

void develop() override { developBackEnd(); }
private:

void developBackEnd();
bi

Now, the Project class no longer has to know the implementations of the developers.
Because of this, it has to accept them as constructor arguments:

class Project {

public:
using Developers = std::vector<std::unique_ptr<Developer>>;
explicit Project (Developers developers)

[22]

Importance of Software Architecture and Principles of Great Design Chapter 1

: developers_{std::move (developers)} {}

void deliver () {
for (auto &developer : developers_) {
developer->develop () ;
t
t

private:
Developers developers_;

bi

In this approach, Project is decoupled from the concrete implementations and instead
depends only on the polymorphic interface named Developer. The "lower-level" concrete
classes also depend on this interface. This can help you shorten your build time and allows
for much easier unit testing — now you can easily pass mocks as arguments in your test
code.

Using dependency inversion with virtual dispatch comes at a cost, however, as now we're
dealing with memory allocations and the dynamic dispatch has overhead on its own.
Sometimes C++ compilers can detect that only one implementation is being used for a given
interface and will remove the overhead by performing devirtualization (often you need to
mark the function as £inal for this to work). Here, however, two implementations are
used, so the cost of dynamic dispatch (commonly implemented as jumping through virtual
method tables, or vtables for short) must be paid.

There is another way of inverting dependencies that doesn't have those drawbacks. Let's
see how this can be done using a variadic template, a generic lambda from C++14, and
variant, either from C++17 or a third-party library such as Abseil or Boost. First are the
developer classes:

class FrontEndDeveloper {
public:
void develop() { developFrontEnd(); }
private:
void developFrontEnd() ;
bi

class BackEndDeveloper {
public:
void develop() { developBackEnd(); 1}
private:
void developBackEnd();
Fi

[23]

Importance of Software Architecture and Principles of Great Design Chapter 1

Now we don't rely on an interface anymore, so no virtual dispatch will be done. The
Project class will still accept a vector of Developers:

template <typename... Devs>
class Project {
public:
using Developers = std::vector<std::variant<Devs...>>;

explicit Project (Developers developers)
developers_{std::move (developers)} {}

void deliver () {
for (auto &developer : developers_) A
std::visit ([] (auto &dev) { dev.develop(); }, developer);
}
}
private:

Developers developers_;
bi

If you're not familiar with variant, it's just a class that can hold any of the types passed as
template parameters. Because we're using a variadic template, we can pass however many
types we like. To call a function on the object stored in the variant, we can either extract it
using std: :get or use std: :visit and a callable object — in our case, the generic lambda.
It shows how duck-typing looks in practice. Since all our developer classes implement the
develop function, the code will compile and run. If your developer classes would have
different methods, you could, for instance, create a function object that has overloads of
operator () for different types.

Because Project is now a template, we have to either specify the list of types each time we
create it or provide a type alias. You can use the final class like so:

using MyProject = Project<FrontEndDeveloper, BackEndDeveloper>;
auto alice = FrontEndDeveloper{};

auto bob = BackEndDeveloper{};

auto new_project = MyProject{{alice, bob}};
new_project.deliver();

This approach is guaranteed to not allocate separate memory for each developer or use a
virtual table. However, in some cases, this approach results in less extensibility, since once
the variant is declared, you cannot add another type to it.

[24]

Importance of Software Architecture and Principles of Great Design Chapter 1

As the last thing to mention about dependency inversion, we'd like to note that there is a
similarly named idea called dependency injection, which we even used in our examples. It's
about injecting the dependencies through constructors or setters, which can be beneficial to
code testability (think about injecting mock objects, for example). There are even whole
frameworks for injecting dependencies throughout whole applications, such as Boost.DI.
Those two concepts are related and often used together.

The DRY rule

DRY is short for "don't repeat yourself." It means you should avoid code duplication and
reuse when it's possible. This means you should extract a function or a function template
when your code repeats similar operations a few times. Also, instead of creating several
similar types, you should consider writing a template.

It's also important not to reinvent the wheel when it's not necessary, that is, not to repeat
others' work. Nowadays there are dozens of well-written and mature libraries that can help
you with writing high-quality software faster. We'd like to specifically mention a few of
them:

Boost C++ Libraries (https://www.boost .org/)

Facebook's Folly (https://github.com/facebook/folly)

Electronic Arts' EASTL (https://github.com/electronicarts/EASTL)
Bloomberg's BDE (https ://github. com/bloomberg/bde)

Google's Abseil (https://abseil.io/)

The Awesome Cpp list (https://github.com/fffaraz/awesome—cpp) with
dozens more

Sometimes duplicating code can have its benefits, however. One such scenario is
developing microservices. Of course, it's always a good idea to follow DRY inside a single
microservice, but violating the DRY rule for code used in multiple services can actually be
worth it. Whether we're talking about model entities or logic, it's easier to maintain
multiple services when code duplication is allowed.

Imagine having multiple microservices reusing the same code for an entity. Suddenly one
of them needs to modify one field. All the other services now have to be modified as well.
The same goes for dependencies of any common code. With dozens or more microservices
that have to be modified because of changes unrelated to them, it's often easier for
maintenance to just duplicate the code.

Since we're talking about dependencies and maintenance, let's proceed to the next section,
which discusses a closely related topic.

[25]

https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp

Importance of Software Architecture and Principles of Great Design Chapter 1

Coupling and cohesion

Coupling and cohesion are two terms that go hand in hand in software. Let's see what each
of them means and how they relate to each other.

Coupling
Coupling is a measure of how strongly one software unit depends on other units. A unit
with high coupling relies on many other units. The lower the coupling, the better.

For example, if a class depends on private members of another class, it means they're
tightly coupled. A change in the second class would probably mean that the first one needs
to be changed as well, which is why it's not a desirable situation.

To weaken the coupling in the preceding scenario, we could think about adding parameters
for the member functions instead of directly accessing other classes' private members.

Another example of tightly coupled classes is the first implementation of the Project and
developer classes in the dependency inversion section. Let's see what would happen if we
were to add yet another developer type:

class MiddlewareDeveloper {
public:

void developMiddleware () {}
bi

class Project {
public:
void deliver () |
fed_.developFrontEnd() ;
med_.developMiddleware () ;
bed_.developBackEnd () ;
}

private:
FrontEndDeveloper fed_;
MiddlewareDeveloper med_;
BackEndDeveloper bed_;

bi

[26]

Importance of Software Architecture and Principles of Great Design Chapter 1

It looks like instead of just adding the MiddlewareDeveloper class, we had to modify the
public interface of the Project class. This means they're tightly coupled and that this
implementation of the Project class actually breaks the OCP. For comparison, let's now
see how the same modification would be applied to the implementation using dependency
inversion:

class MiddlewareDeveloper {
public:
void develop () { developMiddleware(); }

private:
void developMiddleware () ;
}i

No changes to the Project class were required, so now the classes are loosely coupled. All
we needed to do was to add the MiddlewareDeveloper class. Structuring our code this
way allows for smaller rebuilds, faster development, and easier testing, all with less code
that's easier to maintain. To use our new class, we only need to modify the calling code:

using MyProject = Project<FrontEndDeveloper, MiddlewareDeveloper,
BackEndDeveloper>;

auto alice = FrontEndDeveloper{};

auto bob = BackEndDeveloper{};

auto charlie = MiddlewareDeveloper{};

auto new_project = MyProject{{alice, charlie, bob}};
new_project.deliver();

This shows coupling on a class level. On a larger scale, for instance, between two services,
the low coupling can be achieved by introducing techniques such as message queueing.
The services wouldn't then depend on each other directly, but just on the message format. If
you're having a microservice architecture, a common mistake is to have multiple services
use the same database. This causes coupling between those services as you cannot freely
modify the database schema without affecting all the microservices that use it.

Let's now move on to cohesion.

Cohesion

Cohesion is a measure of how strongly a software unit's elements are related. In a highly
cohesive system, the functionality offered by components in the same module is strongly
related. It feels like such components just belong together.

[27]

Importance of Software Architecture and Principles of Great Design Chapter 1

On a class level, the more fields a method manipulates, the more cohesive it is to the class.
This means that the most commonly spotted low-cohesion data types are those big
monolithic ones. When there's too much going on in a class, it most probably is not
cohesive and breaks the SRP, too. This makes such classes hard to maintain and bug-prone.

Smaller classes can be incohesive as well. Consider the following example. It may seem
trivial, but posting real-life scenarios, often hundreds if not thousands of lines long, would
be impractical:

class CachingProcessor {
public:
Result process (WorkItem work);
Results processBatch (WorkBatch batch);
void addListener (const Listener &listener);
void removelListener (const Listener &listener);

private:
void addToCache (const WorkItem &work, const Result &result);
void findInCache (const WorkItem &work);
void limitCacheSize (std::size_t size);
void notifyListeners (const Result &result);
//
}i

We can see that our processor actually does three types of work: the actual work, the
caching of the results, and managing listeners. A common way to increase cohesion in such
scenarios is to extract a class or even multiple ones:

class WorkResultsCache {
public:
void addToCache (const WorkItem &work, const Result &result);
void findInCache (const WorkItem &work);
void limitCacheSize (std::size_t size);
private:
//
bi

class ResultNotifier {

public:
void addListener (const Listener &listener);
void removelListener (const Listener &listener);
void notify(const Result &result);

private:
//

bi

class CachingProcessor {

[28]

Importance of Software Architecture and Principles of Great Design Chapter 1

public:
explicit CachingProcessor (ResultNotifier ¬ifier);
Result process (WorkItem work);
Results processBatch (WorkBatch batch);
private:
WorkResultsCache cache_;
ResultNotifier notifier_;
//
bi

Now each part is done by a separate, cohesive entity. Reusing them is now possible without
much hassle. Even making them a template class should require little work. Last but not
least, testing such classes should be easier as well.

Putting this on a component or system level is straightforward — each component, service,
and system you design should be concise and focus on doing one thing and doing it right:

Low cohesion High cohesion
High coupling Low coupling
— |

T T

/§>

™
—

Figure 1.2 — Coupling versus cohesion

Low cohesion and high coupling are usually associated with software that's difficult to test,
reuse, maintain, or even understand, so it lacks many of the quality attributes usually
desired to have in software.

Those terms often go together because often one trait influences the other, regardless of
whether the unit we talk about is a function, class, library, service, or even a whole system.
To give an example, usually, monoliths are highly coupled and low cohesive, while
distributed services tend to be at the other end of the spectrum.

This concludes our introductory chapter. Let's now summarize what we've learned.

[29]

Importance of Software Architecture and Principles of Great Design Chapter 1

Summary

In this chapter, we discussed what software architecture is and why it's worth caring about
it. We've shown what happens when architecture is not updated along with the changing
requirements and implementation and how to treat architecture in an Agile environment.
Then we moved on to some core principles of the C++ language.

We learned that many terms from software development can be perceived differently in
C++ because C++ allows more than writing object-oriented code. Finally, we discussed
terms such as coupling and cohesion.

You should now be able to point out many design flaws in code reviews and refactor your
solutions for greater maintainability, as well as being less bug-prone as a developer. You
can now design class interfaces that are robust, self-explanatory, and complete.

In the next chapter, we will learn about the different architectural approaches or styles. We
will also learn about how and when we can use them to gain better results.

Questions

Why care about software architecture?

Should the architect be the ultimate decision-maker in an Agile team?

How is the SRP related to cohesion?

In what phases of a project's lifetime can it benefit from having an architect?
What's the benefit of following the SRP?

SR

Further reading

1. Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software

2. Scott Meyers, How Non-member Functions Improve Encapsulation, https://www.
drdobbs.com/cpp/how-non-member-functions—improve—-encapsu/184401197

[30]

https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197

Architectural Styles

This chapter introduces the different architectural approaches or styles. Each section will
discuss a different approach to designing software with its pros and cons, as well as
describe when and how to apply it to reap its benefits. We'll begin this chapter by
comparing stateful and stateless architectures. Next, we'll go from monolith systems,
through various types of service-oriented designs, all the way to microservices. Then, we'll
start to look at architectural styles from different angles by describing event-based systems,
layered systems, and finally, modular designs.

Once you have completed this chapter, you'll be familiar with the following topics:

¢ Deciding between stateful and stateless approaches

Understanding monoliths—why they should be avoided, and recognizing
exceptions

Understanding services and microservices

Exploring event-based architecture

Understanding layered architecture
¢ Learning module-based architecture

Technical requirements

You will need to know what a software service is and be able to read code in C++11.

The code from this chapter can be found at the following GitHub page: https://github.
com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02

Architectural Styles Chapter 2

Deciding between stateful and stateless
approaches

Stateful and stateless are two opposite ways to write software, each with their own pros
and cons.

As the name suggests, stateful software's behavior depends on its internal state. Let's take a
web service, for instance. If it remembers its state, the consumer of the service can send less
data in each request, because the service remembers the context of those requests.
However, saving on the request size and bandwidth has a hidden cost on the web service's
side. If the user sends many requests at the same time, the service now has to synchronize
its work. As multiple requests could change the state, at the same time, not having
synchronization could lead to data races.

If the service was stateless, however, then each request coming to it would need to contain
all the data needed to process it successfully. This means that the requests would get bigger
and use up more bandwidth, but on the other hand, it would allow for better performance
and scaling of the service. If you're familiar with functional programming, you would
probably find stateless services intuitive. Processing each request can be understood as a
call to a pure function. In fact, many of the advantages that stateless programming provides
stem from its functional programming roots. Mutable state is the enemy of concurrent code.
Functional programming relies on immutable values, even if this means making copies
instead of modifying existing objects. Thanks to this, each thread can work independently
and no data races are possible.

Since there are no race conditions, no locks are required as well, which can be an enormous
boost in terms of performance. No locks also mean that you will no longer need to deal
with deadlocks. Having pure functions means that your code will be easier to debug, too,
since you don't have any side effects. Not having side effects, in turn, is also helpful for
compilers, as optimizing code without side effects is a much easier task and can be
performed more aggressively. Yet another benefit of writing code in a functional manner is
that the sources you write tend to be more terse and expressive, especially when compared
to code that heavily depends on the Gang of Four (GoF) design patterns.

This doesn't necessarily mean that if bandwidth is not an issue, you should always go with
stateless. Those decisions can be made on many levels, from single classes or functions to
whole applications.

[32]

Architectural Styles Chapter 2

Take classes, for example. If you're modeling, say, a Consultant, it makes sense that the
class would contain fields such as the consultant's name, contact data, hourly rate, current
and past projects, and whatnot. It is natural for it to be stateful. Now, imagine that you
need to calculate the pay they receive for their work. Should you create a
PaymentCalculator class? Should you add a member or a free function to calculate this?
If you go with the class approach, should you pass a Consultant as a constructor
parameter or a method argument? Should the class have properties such as allowances?

Adding a member function to calculate the pay would break the Single Responsibility
Principle (SRP), as now the class would then have two responsibilities: calculating the pay
and storing the consultant's data (state). This means introducing a free function or a
separate class for this purpose should be preferred to having such hybrid classes.

Should there be a state in such a class in the first place? Let's discuss the different
approaches to our PaymentCalculator class.

One approach would be to expose the properties required for calculation purposes:

class PaymentCalculator;
{
public:
double calculate () const;

void setHours (double hours);

void setHourlyRate (double rate);

void setTaxPercentage (double tax);
private:

double hours_;

double netHourlyRate_;

double taxPercentage_;
}i

This approach has two cons. The first is that it's not thread-safe; a single instance of such

a PaymentCalculator class cannot be used in multiple threads without locks. The second
is that once our calculations become more complicated, the class will probably start
duplicating more fields from our Consultant class.

To eliminate the duplication, we could rework our class to store a Consultant instance
like this:
class PaymentCalculator {
public:

double calculate () const;

void setConsultant (const Consultant &c);

[33]

Architectural Styles Chapter 2

volid setTaxPercentage (double tax);

private:
gsl::not_null<const Consultant *> consultant_;
double taxPercentage_;

bi

Note that since we cannot rebind references easily, we're using a helper class from the
Guideline Support Library (GSL) to store a rebindable pointer in a wrapper that
automatically ensures we're not storing a null value.

This approach still has the disadvantage of not being thread-safe. Can we do any better? It
turns out that we can make the class thread-safe by making it stateless:

class PaymentCalculator {
public:

static double calculate(const Consultant &c, double taxPercentage);
}i

If there is no state to manage, it doesn't really matter if you decide to create free functions
(perhaps in a distinct namespace) or group them as static functions of a class, as we did in
the preceding snippet. In terms of classes, it's useful to distinguish between value (entity)

types and operation types, as mixing them can lead to SRP violations.

Stateless and stateful services

The same principles that we discussed for classes can be mapped to higher-level concepts,
for instance, microservices.

What does a stateful service look like? Let's take FTP as an example. If it's not anonymous,
it requires the user to pass a username and password to create a session. The server stores
this data to identify the user as still connected, so it's constantly storing state. Each time the
user changes the working directory, the state gets updated. Each change done by the user is
reflected as a change of state, even when they disconnect. Having a stateful service means
that depending on the state, you can be returned different results for two identically
looking GET requests. If the server loses the state, your requests can even stop processing
correctly.

[34]

Architectural Styles Chapter 2

Stateful services can also have issues with incomplete sessions or unfinished transactions
and added complexity. How long should you keep the sessions open? How can you verify
whether the client has crashed or disconnected? When should we roll back any changes
made? While you can come up with answers to those questions, it's usually easier to rely on
the consumers of your service communicating with it in a dynamic, "intelligent" way. Since
they'll be maintaining some kind of state on their own, having a service that also maintains
the state is not only unnecessary but often wasteful.

Stateless services, as the REST ones described later in the book, take the opposite approach.
Each request must contain all the data required in order for it to be successfully processed,
so two identical idempotent requests (such as GET) will cause identical replies. This is
assuming the data stored on the server doesn't change, but data is not necessarily the same
thing as state. All that matters is that each request is self-contained.

Statelessness is fundamental in modern internet services. The HTTP protocol is stateless,
while many service APIs, for example, Twitter's, are stateless as well. REST, which Twitter's
APl relies on, is designed to be functionally stateless. The whole concept behind this
acronym, Representational State Transfer (REST), carries the notion that all the state
required for processing the request must be transferred within it. If this is not the case, you
can't say you have a RESTful service. There are, however, some exceptions to the rule,
driven by practical needs.

If you're building an online store, you probably want to store information pertaining to
your customers, such as their order history and shipping addresses. The client on the
customer's side probably stores an authentication cookie, while the server will probably
store some user data in a database. The cookie replaces our need for managing a session, as
it'd be done in a stateful service.

Keeping sessions on the server side is a bad approach for services for several reasons: they
add a lot of complexity that could be avoided, they make bugs harder to replicate, and most
importantly, they don't scale. If you'd want to distribute the load to another server, chances
are you'd have trouble replicating the sessions with the load and synchronizing them
between servers. All session information should be kept on the client's side.

This means that if you wish to have a stateful architecture, you need to have a good reason
to. Take the FTP protocol, for instance. It has to replicate the changes both on the client side
and server side. The user only authenticates to a single, specific server, in order to perform
single-stated data transfers. Compare this with services such as Dropbox, where the data is
often shared between users and the file access is abstracted away through an AP, to see
why a stateless model would suit this case better.

[35]

Architectural Styles Chapter 2

Understanding monoliths—why they should
be avoided, and recognizing exceptions

The simplest architectural style in which you can develop your application is a monolithic
one. This is why many projects are started using this style. A monolithic application is just
one big block, meaning that functionally distinguishable parts of the application, such as
dealing with I/O, data processing, and the user interface, are all interwoven instead of being
in separate architectural components. Another notable example of this architectural style is
the Linux kernel. Note that the kernel being monolithic does not stop it from being
modular.

It can be easier to deploy such a monolithic application than a multi-component one as
there is simply one thing that needs to be deployed. It can also be easier to test, as end-to-
end testing just requires that you launch a single component. Integration is easier too since,
as well as scaling your solution, you can just add more instances behind a load balancer.
With all those advantages, why would anyone dread this architectural style? It turns out
that despite those advantages, there are also many drawbacks.

The scalability offered sounds nice in theory, but what if your application has modules with
different resource requirements? How about needing to scale just one module from your
application? The lack of modularity, an inherent property of monolithic systems, is the
source of many flaws associated with this architecture.

What's more, the longer you develop a monolithic application, the more problems you'll
have in maintaining it. It's a challenge to keep the internals of such an application loosely
coupled, as it's so easy to just add yet another dependency between its modules. As such an
application grows, it becomes harder and harder to understand it, so the development
process will most probably slow down over time because of the added complexity. It can
also be hard to maintain Design-Driven Development's (DDD) bounded contexts when
developing monoliths.

Having one big application has drawbacks regarding the deployment and execution sides
as well. It will take a lot longer to start such an application than it would take to start more,
smaller services. And regardless of what you change in the application, you might not like
that it forces you to redeploy the whole application at once. Now, imagine that one of your
developers introduces a resource leak in the application. If the leaky code is executed over
and over, it will not only bring down its single aspect of the app's functionality, it can also
bring down the rest of the application as well.

[36]

Architectural Styles Chapter 2

If you're a fan of using bleeding-edge technologies in your project, a monolithic style
doesn't bring any great news either. Since you now need to migrate your whole application
at once, it's harder to update any libraries or frameworks.

The preceding explanation suggests that a monolithic architecture is only good for simple
and small applications. There is, however, one more situation where it could actually be a
good idea to use it. If you care about performance, having a monolith can sometimes help
you to squeeze more from your app in terms of latency or throughput when compared to
microservices. Inter-process communication will always incur some overhead, which
monolithic applications don't need to pay. If you're interested in measurements, see the
paper listed in the Further reading section of this chapter.

Understanding services and microservices

Because of the drawbacks of monolithic architectures, other approaches have emerged. A
common idea is to split your solution into multiple services that communicate with each
other. You can then split the development between different teams, each taking care of a
separate service. The boundaries of each team's work are clear, unlike in the monolithic
architecture style.

A service-oriented architecture, or SOA for short, means that the business functions are
modularized and presented as separate services for the consumer applications to use. Each
service should have a self-describing interface and hide any implementation details, such as
the internal architecture, technologies, or the programming language used. This allows for
multiple teams to develop the services however they like, meaning that under the hood,
each can use what suits their needs best. If you have two teams of developers, one
proficient in C# and one in C++, they can develop two services that can easily communicate
with one another.

Advocates of SOA came up with a manifesto prioritizing the following:

e Business value over technical strategy
e Strategic goals over project-specific benefits

Intrinsic interoperability over custom integration

Shared services over purpose-specific implementations

Flexibility over optimization

Evolutionary refinement over pursuit of initial perfection

[371]

Architectural Styles Chapter 2

Even though this manifesto doesn't bind you to a specific tech stack, or implementation, or
type of services, the two most common types of services are SOAP and REST. Aside from
those, recently, there's a third one that has been growing in popularity: gRPC-based. You
can find out more about these in the chapters on services-oriented architecture and
microservices.

Microservices

As the name suggests, microservices is a software development pattern where an
application is split as a collection of loosely-coupled services that communicate using
lightweight protocols. The microservices pattern is similar to the UNIX philosophy stating
that a program should only have one purpose. According to UNIX philosophy, advanced
problems are solved by composing such programs into UNIX pipelines. Similarly,
microservice-based systems are composed of many microservices and supporting services.

Let's start with an overview of the pros and cons of this architectural style.

Benefits and disadvantages of microservices

The small size of services in a microservice architecture means that they're faster to
develop, deploy, and understand. As the services are built independently of each other, the
time necessary to compile their new versions can be drastically reduced. Thanks to this, it is
easier to employ rapid prototyping and development when dealing with this architectural
style. This, in turn, makes it possible to reduce the lead-time, meaning that business
requirements can be introduced and evaluated much quicker.

Some other benefits of a microservice-based approach include the following;:

e Modularity, which is inherent to this architectural style.
e Better testability.

e Flexibility when replacing system parts (such as single services, databases,
message brokers, or cloud providers).

e Integration with legacy systems: it is not necessary to migrate an entire
application, just the parts that require current development.

¢ Enabling distributed development: independent development teams can work on
multiple microservices in parallel.

e Scalability: a microservice may be scaled independently of the others.

[38]

Architectural Styles Chapter 2

On the other hand, here are some disadvantages of microservices:

¢ They require a mature DevOps approach and reliance on CI/CD automation.
¢ They are harder to debug, and require better monitoring and distributed tracing.

e Additional overhead (in terms of auxiliary services) may outweigh the benefits
for smaller applications.

Let's now discuss what are the characteristics of services written in this architectural style.

Characteristics of microservices

Since the microservice style is fairly recent, there is no single definition for microservices.
According to Martin Fowler, there are several essential characteristics of microservices,
which we will describe next:

¢ Each service should be an independently replaceable and upgradeable
component. This is connected to easier deployment and loose coupling between
the services, as opposed to components being libraries in a monolithic
application. In the latter case, when you replace one library, you often have to
redeploy the whole application.

e Each service should be developed by a cross-functional team, focused on a
specific business capability. Ever heard of Conway's law?

" Any organization that designs a system (defined broadly) will produce a
design whose structure is a copy of the organization’s communication
structure.”

— Melvyn Conway, 1967

If you don't have cross-functional teams, you end up with software silos. The lack
of communication that comes with them will make you constantly jump through
hurdles to successfully deliver.

e Each service should be a product, which is owned by the development team
throughout its lifetime. This stays in contrast to the project mentality, where you
develop software and just pass it on for someone to maintain.

[39]

Architectural Styles Chapter 2

¢ Services should have smart endpoints and use dump pipes, not the other way
around. This stands in contrast to traditional services, which often rely on the
logic of an Enterprise Service Bus (ESB), which often manages the routing of
messages and transforms them according to business rules. In microservices, you
achieve cohesiveness by storing the logic in the service and avoid coupling with
messaging components. Using "dumb" message queues, such as ZeroMQ, can
help with this goal.

e Services should be governed in a decentralized way. Monoliths are usually
written using one specific technology stack. When they're being split into
microservices, each one can choose whatever suits its own specific needs best.
Governing and assuring that each microservice runs 24/7 is done by a team
responsible for this specific service instead of a central department. Companies
such as Amazon, Netflix, and Facebook follow this approach and observe that
making developers responsible for the flawless execution of their services in
production helps to ensure high quality.

e Services should manage their data in a decentralized way. Instead of having one
database for all of them, each microservice can choose a database that best
matches its needs. Having decentralized data can lead to some challenges with
handling updates, but allows for better scaling. This is why microservices often
coordinate in a transaction-free manner and offer eventual consistency.

¢ The infrastructure used by services should be managed automatically. To deal
with dozens of microservices in an efficient manner, you need to have
Continuous Integration and Continuous Delivery in place, as otherwise,
deploying your services will be hell. Automated runs of all your tests will save
you lots of time and trouble. Implementing Continuous Deployment on top of
that will shorten the feedback loop and allow your customers to use your new
features faster, too.

¢ Microservices should be prepared for the failure of other services that they
depend on. In a distributed deployment environment with so many moving
parts, it's normal for some of them to break from time to time. Your services
should be able to handle such failures gracefully. Patterns such as Circuit Breaker
or Bulkhead (described later in the book) can help to achieve this. To make your
architecture resilient, it's also critical to be able to bring failing services back up
efficiently or even to know ahead of time that they're going to crash. Real-time
monitoring of latency, throughput, and resource usage is essential for this. Get to
know Netflix's Simian Army toolkit as it's invaluable for creating a resilient
architecture.

[40]

Architectural Styles Chapter 2

e Architectures based on microservices should be ready to constantly evolve. You
should design microservices and the cooperation between them in a manner that
allows for easy replacement of a single microservice, or sometimes even groups
of them. It's tricky to design the services properly, especially since some of the
complexity that was once in the code of one bigger module can now be present as
complex communication schemes between services, where it's harder to manage
- so-called Spaghetti Integration. This means the experience and skill set of the
architect plays a more important role than with traditional services or a
monolithic approach.

On top of that, here are some other characteristics shared by many (but not all)
microservices:

e Using separate processes that communicate over network protocols
¢ Using technology-agnostic protocols (such as HTTP and JSON)
¢ Keeping services small and with a low runtime overhead

Now, you should have a good understanding of what the characteristics of microservice-
based systems are, so let's see how this approach compares with other architectural styles.

Microservices and other architectural styles

Microservices may be used as an architectural pattern on their own. However, they are
often combined with other architectural choices, such as cloud-native computing, serverless
applications, and mostly with lightweight application containers.

Service-oriented architectures bring loose coupling and high cohesion. Microservices can
do it too, when applied correctly. However, it can be somewhat challenging because it
requires good intuition to partition the system into the usually vast amount of
microservices.

There are more similarities between microservices and their bigger cousins as they, too, can
have SOAP-, REST-, or gRPC-based messaging and use technologies such as message
queues for being event-driven. They also have well-known patterns to help with achieving
the required quality attributes, such as fault tolerance (for example, through the isolation of
faulty components), but in order to have an efficient architecture, you must decide on your
approach to elements such as API gateways, service registries, load balancing, fault
tolerance, monitoring, configuration management, and, of course, the technology stack to
use.

[41]

Architectural Styles Chapter 2

Scaling microservices

Microservices scale differently to monolithic applications. In monoliths, the entire
functionality is handled by a single process. Scaling the application means replicating this
process across different machines. Such scaling doesn't take into account which of the
functionalities are heavily used and which do not require additional resources.

With microservices, each functional element is handled as a separate service, which means
a separate process. In order to scale a microservices-based application, only the parts that
require more resources can be replicated to different machines. Such an approach makes it
easier to better use the available resources.

Transitioning to microservices

Most companies have some kind of existing monolithic code that they don't want to
immediately rewrite using microservices, but still want to transition to this kind of
architecture. In such cases, it's possible to adapt microservices incrementally, by adding
more and more services that interact with the monolith. You can create new functionalities
as microservices or just cut out some parts of the monolith and create microservices out of
them.

More details regarding microservices, including how to build your own from scratch, are
available in Chapter 13, Designing Microservices.

Exploring event-based architecture

Event-based systems are those whose architecture revolves around processing events.
There are components that generate events, the channels through which the events
propagate, and the listeners who react to them, potentially triggering new events too. It's a
style that promotes asynchrony and loose coupling, which makes it a good way to increase
performance and scalability, as well as an easy solution to deploy.

With those advantages, there are also some challenges to solve. One of them is the
complexity to create a system of this type. All the queues must be made fault-tolerant so
that no events are lost in the middle of being processed. Processing transactions in a
distributed way is also a challenge on its own. Using the Correlation ID pattern to track
events between processes, along with monitoring techniques, can save you hours of
debugging and scratching your head.

[42]

Architectural Styles Chapter 2

Examples of event-based systems include stream processors and data integrations, as well
as systems aiming for low latency or high scalability.

Let's now discuss common topologies used in such systems.

Common event-based topologies

The two main topologies of event-driven architectures are broker-based and mediator-
based. Those topologies differ in how the events flow through the system.

The mediator topology is best used when processing an event that requires multiple tasks
or steps that can be performed independently. All events produced initially land in the
mediator's event queue. The mediator knows what needs to be done in order to handle the
event, but instead of performing the logic itself, dispatches the event to appropriate event
processors through each processor's event channel.

If this reminds you of how business processes flow, then you've got good intuition. You can
implement this topology in Business Process Management (BPM) or Business Process
Execution Language (BPEL). However, you can also implement it using technologies such
as Apache Camel, Mule ESB, and others:

Event Channel

)—> Event Processor

| —

Event Processor

Event Channel

LN

Event Processor

———

o
Event Channel)—l’ Event Processor
e —

Figure 2.1 — The mediator topology

[43]

Architectural Styles Chapter 2

A broker, on the other hand, is a lightweight component that contains all the queues and
doesn't orchestrate the processing of an event. It can require that the recipients subscribe to
specific kinds of events and then simply forwards all the ones that are interesting for them.
Many message queues rely on brokers, for example, ZeroMQ, which is written in C++ and
aims for zero waste and low latency:

Event Processor l Event Processor Event Processor

Event Broker
Event Channel . I: Event Channel :I Event Channel)

A

b J v

Event Processor Event Processor Event Processor

Figure 2.2 — The broker topology

Now that you know the two common topologies used in event-based systems, let's learn
about a powerful architectural pattern using events at its core.

Event sourcing

You can think of events as notifications that contain additional data for the notified services
to process. There is, however, another way to think of them: a change of state. Think how
easy it would be to debug issues with your application logic if you'd be able to know the
state in which it was when the bug occurred and what change was requested of it. That's
one benefit of event sourcing. In essence, it captures all the changes that happen to the
system by simply recording all the events in the sequence they happened.

[44]

Architectural Styles Chapter 2

Often, you'll find that the service no longer needs to persist its state in a database, as storing
the events somewhere else in the system is enough. Even if it does, it can be done
asynchronously. Another benefit that you derive from event sourcing is a complete audit

log for free:

Application Logic ﬁ
(for example Order Processors) _L_q____—_____ﬂ,/

Event Store

Events
Event#1

¥
Event Bus ()—D
Event #2

: Event#3

Event Handlers —

State Snapshots (optional)

Downstream Consumers
(Business Intelligence,
Analytics and so on)

Figure 2.3 — Event sourcing architecture. Providing a unified view of the application state can allow for consuming it and creating periodic snapshots for faster recovery

[45]

Architectural Styles Chapter 2

Thanks to the reduced need for data synchronization, event-sourced systems often offer
low latency, which makes them a good fit for trading systems and activity trackers, among
others.

Let's now learn about another popular architectural style.

Understanding layered architecture

If your architecture starts to look like spaghetti or you just want to prevent it, having your
components structured in layers may help. Remember Model-View-Controller? Or maybe
similar patterns, such as Model-View-ViewModel or Entity-Control-Boundary? Those are
all typical examples of a layered architecture (also called N-tier architecture if the layers are
physically separated from each other). You can structure code in layers, you can create
layers of microservices, or apply this pattern to other areas where you think it could bring
its benefits. Layering provides abstraction and the separation of concerns, and this is the
main reason why it's being introduced. However, it can also help reduce complexity, while
improving modularity, reusability, and maintainability of your solution.

A real-world example would be in self-driving cars, where layers can be used to
hierarchically make decisions: the lowest layer would handle the car's sensors, then another
layer would deal with single features consuming the sensor data, and on top of that one,
there could be another one to ensure that all the features result in safe behavior. When
sensors are replaced in another model of the car, only the lowest layer will need to be
replaced.

A layered architecture is often pretty easy to implement since most developers already
know the notion of layers — they simply need to develop several layers and stack them as in
the following diagram:

[46]

Architectural Styles Chapter 2

Presentation tier P
=GET SALES

The top-most level of the application TETAL
is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

=GET SALES
TOTAL

4 TOTAL SALES

Logic tier

This layer coordinates the
application, processes commands, Y
makes logical decisions and GET LIST OF ALL * ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and . (LA ot "

processes data between the two
surrounding layers,

SALE 1
QUERY SALE 2
. SALE 3
Data tier SALE 4
Here, information is stored and retrieved
from a database or filesystem. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user,
—
—
Storage

Database

Figure 2.4 — An example of a 3-tiered architecture using a textual interface in the presentation layer

The challenge with creating an efficient layered architecture lays in specifying stable, well-
defined interfaces between the layers. Often, you can have several layers on top of one. For
instance, if you have a layer for domain logic, it can be a base for a presentation layer and a
layer for providing APlIs to other services.

[47]

Architectural Styles Chapter 2

This doesn't mean that layering is always a good thing. With microservices, there are two
main scenarios where layering emerges. The first is when you want to separate one group
of services from another. For instance, you could have a fast-changing layer to engage with
your business partners, with content that changes frequently, and another business
capabilities-oriented layer. The latter is not being changed at such a fast pace and is using
stable technologies. Separating those two makes sense. There's also a notion that less stable
components should rely on more stable components, so it's easy to see that you could have
two layers here with the customer-facing one depending on the business capabilities.

The other scenario is when layers are created to reflect the communication structure of the
organization (hello again, Conway's law). This will probably reduce communication
between the teams, which can result in a decrease in innovation as now the teams won't
know the internals or ideas of each other that well.

Let's now discuss another example of a layered architecture often used with
microservices—Backends for Frontends.

Backends for Frontends

It's not uncommon to see many frontends that rely on the same backend. Let's say you have
a mobile application and a web application, both using the same backend. It may be a good
design choice at first. However, once the requirements and usage scenarios of those two
applications diverge, your backend will require more and more changes, serving just one of
the frontends. This can lead to the backend having to support competing requirements, like
two separate ways to update the data store or different scenarios for providing data.
Simultaneously, the frontends start to require more bandwidth to communicate with the
backend properly, which also leads to more battery usage in mobile apps. At this point, you
should consider introducing a separate backend for each frontend.

[48]

Architectural Styles Chapter 2

This way, you can think of a user-facing application as being a single entity having two
layers: the frontend and the backend. The backend can depend on another layer, consisting
of downstream services. Refer to the following diagram:

Mohile Web
Frontends App App
Backends
for Backend for Mobile Backend for Web
Frontends

Downstream
Services

Figure 2.5 — The Backends for Frontends pattern

The drawback of using Backends for Frontends (BFFs) is that some code must be
duplicated. As long as this speeds up development and is not a burden in the long term, it's
OK. But it also means that you should be on the watch for possibilities to aggregate
duplicated logic in a downstream service. Sometimes, introducing a service just to
aggregate similar calls can help solve duplication issues. Often, if you have many
frontends, some can still share a backend and not cause it to have competing requirements.
If you're creating mobile applications for iOS and Android, for instance, you could think of
reusing the same backend for those, and having separate ones for web and/or desktop
applications.

[49]

Architectural Styles Chapter 2

Learning module-based architecture

In this section, by modules, we mean software components that can be
loaded and unloaded in runtime. For C++20's modules, refer to Chapter 5,
Leveraging C++ Language Features.

If you've ever needed to run a component with as little downtime as possible, but for any
reason couldn't apply the usual fault-tolerance patterns, such as redundant copies of your
service, making this component module-based can come to save your day. Or you may just
be attracted by a vision of a modular system with versioning of all the modules, with an
easy lookup of all the available services, along with the decoupling, testability, and
enhancing teamwork that module-based systems can cause. All of this is why Open Service
Gateway Initiative (OSGi) modules were created for Java and got ported to C++ in more
than a few frameworks. Examples of architectures using modules include IDEs such as
Eclipse, Software Defined Networking (SDN) projects such as OpenDaylight, or home
automation software such as OpenHAB.

OSGi also allows for automatic dependency management between modules, controlling
their initialization and unloading, as well as controlling their discovery. Since it's service-
oriented, you can think of using OSGi services as something akin to having tiny (micro?)
services in one "container”. This is why one of the C++ implementations is named C++
Micro Services. To see them in action, refer to their Getting Started guide from the Further
reading section.

One interesting concept adopted by the C++ Micro Services framework is a new way to deal
with singletons. The Get Instance () static function will, instead of just passing a static
instance object, return a service reference obtained from the bundled context. So effectively,
singleton objects will get replaced by services that you can configure. It can also save you
from the static deinitialization fiasco, where multiple singletons that depend on each other
have to unload in a specific order.

Summary

In this chapter, we've discussed the various architectural styles that you can encounter in
the wild and apply to your software. We've discussed monolithic architecture, went
through service-oriented architecture, moved onto microservices, and discussed the various
ways in which they can provide external interfaces and interact with each other. You
learned how to write RESTful services and how to create a resilient and easy-to-maintain
microservice architecture.

[50]

Architectural Styles Chapter 2

We've also shown how to create simple clients to consume equally simple services. Later
on, we discussed various other approaches to architecture: an event-driven one, a runtime
module-based one, and showed where layering can be spotted and why. You now know
how to implement event sourcing and recognize when to use BFFs. Moreover, you now
know how architecture styles can help you achieve several quality attributes and what
challenges this can bring.

In the next chapter, you'll learn how to know which of those attributes are important in a
given system.

Questions

1. What are the traits of a RESTful service?

2. What toolkit can you use to aid you in creating a resilient distributed architecture?

3. Should you use centralized storage for your microservices? Why/why not?

4. When should you write a stateful service instead of a stateless one?

5. How does a broker differ from a mediator?

6. What is the difference between an N-tier and an N-layer architecture?

7. How should you approach replacing a monolith with a microservice-based architecture?

Further reading

e Flygare, R., and Holmqvist, A. (2017). Performance characteristics between monolithic
and microservice-based systems (Dissertation). Retrieved from http://urn.kb.se/
resolve?urn=urn:nbn:se:bth-14888

e Engelen, Robert. (2008). A framework for service-oriented computing with C and C++
web service components. ACM Trans. Internet Techn. 8. 10.1145/1361186.1361188

e Fowler, Martin. Microservices — A definition of this new architectural term. Retrieved

from https://martinfowler.com/articles/microservices.
html#MicroservicesAndSoa

e Getting Started — C++ Micro Services documentation. Retrieved from http://docs.
cppmicroservices.org/en/stable/doc/src/getting_started.html

[51]

http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html

Functional and Nonfunctional
Requirements

As an architect, it is important for you to recognize which requirements are significant for
the architecture and why. This chapter will teach you about the various requirements of a
solution—functional and nonfunctional. Functional requirements are those that tell you
what your solution should do. On the other hand, nonfunctional ones are those that tell you
how your solution should be.

In this chapter, we'll cover the following topics:

Understanding the types of requirements
¢ Recognizing architecturally significant requirements

Gathering requirements from various sources
¢ Documenting requirements
¢ Documenting architecture

Choosing the right views to document
¢ Generating documentation

By the end of this chapter, you will have learned how to recognize and categorize both
types of requirements and how to create documentation that describes them in a clear
manner.

Functional and Nonfunctional Requirements Chapter 3

Technical requirements documentation from
sources, you must have

To replicate our steps to generate documentation from sources, you must have CMake,
Doxygen, Sphinx, m2r2 and Breathe installed. We're using the ReadTheDocs Sphinx theme,
so please install it as well. Feel free to use the latest versions of the tools mentioned.

You can find the related code at https://github.com/PacktPublishing/Software—
Architecture-with-Cpp/tree/master/Chapter03.

Understanding the types of requirements

While creating a software system, you should constantly ask yourself whether what you're
making is what your customers need. Many times, they won't even know what requirement
fulfills their needs best. It's the role of a successful architect to discover the requirements of
the product and to make sure they are being met. There are three distinct types of
requirements that you need to consider: functional requirements, quality attributes, and
constraints. Let's have a look at each of these.

Functional requirements

The first group is the functional requirements. These are the ones that define what your
system should do, or what functionality it should offer.

you'll have to keep an eye on which of those requirements will actually

Remember that functionality does not always influence architecture, so
8 dictate what your solution will look like.

Often, if a functional requirement has some qualities that must be met, it can become
architecturally significant. Consider an app for merchants and visitors of the Dominican
Fair, an annual event with music, various arts, and shops, happening in the city of Gdarsk.
A few examples of functional requirements for it could be the following;:

e As a shopkeeper, I want to filter orders that contain a specific product.

e Clicking the Subscribe button adds the customer to a list of notified watchers of a selected
merchant.

[53]

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03

Functional and Nonfunctional Requirements Chapter 3

The first of those requirements tells us we'll have to have a component for tracking orders
and products with search capabilities. Depending on how exactly the UI should appear and
what scale our app should be, we could just add a simple page to our app, or it could
require features such as Lucene or Elasticsearch. This means that we could be looking at an
Architecturally Significant Requirement (ASR), one that can influence our architecture.

The second example is even more straightforward; now we know we need to have a service
for subscribing and sending notifications. This is definitely an architecturally significant
functional requirement. Let's now look at some Non-Functional Requirements (NFRs) that
can also be ASRs.

By the way, the first requirement is actually given as a user story. User stories are
requirements given in the following format: "As a <role>, I can/want to <capability>, so that
<benefit>." This is a common way to phrase requirements and can help stakeholders and
developers find common ground and communicate better.

Nonfunctional requirements

Instead of focusing on what functionality your system should have, nonfunctional
requirements focus on how well and under which conditions the system should perform
said functionality. This group consists of two main subgroups: Quality Attributes (QAs)
and constraints.

Quality attributes

Quality attributes (QAs) are the traits of your solution, such as performance,
maintainability, and user-friendliness. There are dozens, if not hundreds, of different
qualities your software can have. Try to focus just on the important ones instead of listing
all that come to your mind when choosing which ones your software should have.
Examples of quality attribute requirements include the following:

e The system will respond in under 500 ms for 99.9% of all requests under usual
load (don't forget to specify what the usual load is or will be).

¢ The website will not store customer credit card data used in the payment process
(an example of confidentiality).

¢ When updating the system, if updating any component fails, the system will be
rolled back to a state prior to the update (survivability).

¢ As a user of Windows, macOS, and Android, I want to be able to use the system
from all of them (portability; try to understand whether it's needed to support
platforms such as desktop, mobile, and/or web).

[54]

Functional and Nonfunctional Requirements Chapter 3

While catching functional requirements in a backlog is pretty straightforward, we cannot
say the same regarding quality attribute requirements. Fortunately, there are a few ways
you could approach this:

e Some of them can be expressed in the Definition of done or Acceptance criteria
for your tasks, stories, and releases.

¢ Others can be expressed directly as user stories, as shown in the last example
previously.

® You can also check them as part of design and code reviews and create
automated tests for some of them.

Constraints

Constraints are the non-negotiable decisions that you must follow while delivering the
project. Those can be design decisions, technological ones, or even political (regarding
people or organizational matters). Two other common constraints are time and budget.
Examples of constraints could be as follows:

o The team will never grow beyond four developers, one QA engineer, and one sysadmin.

e Since our company leverages Oracle DB in all its current products, the new product
must use it too so we can make the most of our expertise.

nonfunctional requirements are always going to influence your architecture. It's essential
not to over-specify them, as having false positives will be a constant burden during product
development. It's equally important to not under-specify them as this can later come out in
missed sales opportunities or failing to comply with regulatory bodies' requirements.

In the next section, you will learn how to strike a balance between those two extremes and
to focus on just those requirements that really matter in your specific case.

Recognizing architecturally significant
requirements

When designing a software system, it's common to deal with dozens or hundreds of
various requirements. In order to make sense of them and come up with a good design, you
need to know which of them are important and which could be implemented regardless of
your design decisions, or even dismissed. You should learn how to recognize the most
important ones so you can focus on them first and deliver the most value in the shortest
possible time.

[551]

Functional and Nonfunctional Requirements Chapter 3

You should prioritize requirements using two metrics: the business value
and the impact on architecture. Those that will be high on both scales are
most important and should be dealt with as a matter of priority. If you
come up with too many such requirements, you should revisit your
prioritization scheme. If it doesn't help, it might be that the system just
isn't achievable.

ASRs are those that have a measurable impact on your system's architecture. They can be
both functional and nonfunctional. How can you identify which ones are actually
significant? If the absence of a specific requirement were to allow you to create a different
architecture, you are looking at an ASR. Late discovery of such requirements will often cost
you both time and money, as you'll need to redesign some part of your system, if not the
whole solution. You can only hope it won't cost you other resources and your reputation,
too.

It's a common mistake to start by applying concrete technologies to your
architecture from the very beginning of your architectural work. We
strongly suggest that you first gather all the requirements, focus on the
ones significant for the architecture, and only then decide what
technologies and technology stacks to build your project on.

Since it's that important to recognize ASRs, let's talk about a few patterns that can help you
with this.

Indicators of architectural significance

If you have a requirement to integrate with any external system, this is most likely going to
influence your architecture. Let's go through some common indicators that a requirement is
an ASR:

¢ Needing to create a software component to handle it: Examples include sending
emails, pushing notifications, exchanging data with the company's SAP server, or
using a specific data storage.

e Having a significant impact on the system: Core functionality often defines
what your system should look like. Cross-cutting concerns, such as
authorization, auditability, or having transactional behavior, are other good
examples.

¢ Being hard to achieve: Having low latency is a great example: unless you think
of it early in development, it can be a long battle to achieve it, especially if you
suddenly realize you can't really afford to have garbage collections when you're
on your hot path.

[561]

Functional and Nonfunctional Requirements Chapter 3

e Forcing trade-offs when satisfying certain architectures: Perhaps your design
decision will even need to compromise some requirements in favor of other,
more important ones if the cost is too high. It's a good practice to log such
decisions somewhere and to notice that you're dealing with ASRs here. If any
requirement constrains you or limits the product in any way, it's very likely
significant for the architecture. If you want to come up with the best architecture
given many trade-offs, then be sure to read about the Architecture Trade-off
Analysis Method (ATAM), which you can read about under one of the links in
the Further reading section.

Constraints and the environment your application will run in can also impact your
architecture. Embedded apps need to be designed in a different way to those running in the
cloud, and apps being developed by less-experienced developers should probably use a
simple and safe framework instead of using one with a steep learning curve or developing
their own.

Hindrances in recognizing ASRs and how to deal
with them

Contrary to intuition, many architecturally significant requirements are difficult to spot at
first glance. This is caused by two factors: they can be hard to define and even if they're
described, this can be done vaguely. Your customers might not yet be clear about what they
need, but you should still be proactive in asking questions to steer clear of any
assumptions. If your system is to send notifications, you must know whether those are real
time or whether a daily email will suffice, as the former could require you to create a
publisher-subscriber architecture.

In most cases, you'll need to make some assumptions since not everything is known
upfront. If you discover a requirement that challenges your assumptions, it might be an
ASR. If you assume you can maintain your service between 3 a.m. and 4 a.m. and you
realize your customers from a different time zone will still need to use it, it will challenge
your assumption and likely change the product's architecture.

What's more, people often tend to treat quality attributes vaguely during the earlier phases
of projects, especially less-experienced or less-technical individuals. On the other hand,
that's the best moment to address such ASRs, as the cost of implementing them in the
system is the lowest.

[571

Functional and Nonfunctional Requirements Chapter 3

It's worth noting, however, that many people, when specifying requirements, like to use
vague phrases without actually thinking it through. If you were designing a service similar
to Uber, some examples could be: when receiving a DriverSearchRequest, the system must reply
with an AvailableDrivers message fast, or the system must be available 24/7.

Upon asking questions, it often turns out that 99.9% monthly availability is perfectly fine,
and fast is actually a few seconds. Such phrases always require clarification, and it's often
valuable to know the rationale behind them. Perhaps it is just someone's subjective opinion,
not backed by any data or business needs. Also, note that in the request and response case,
the quality attribute is hidden inside another requirement, making it even harder to catch.

Finally, requirements being architecturally significant for one system aren't necessarily of
the same importance to another, even if those systems serve similar purposes. Some will
become more important over time, once the system grows and starts to communicate with
more and more other systems. Others may become important once the needs for the
product change. This is why there's no silver bullet in telling which of your requirements
will be ASRs, and which won't.

Equipped with all this knowledge on how to distinguish the important requirements from
the rest, you know what to look for. Let's now say a few words about where to look.

Gathering requirements from various
sources

Now that you know what requirements to focus on, let's discuss a few techniques for
gathering these requirements.

Knowing the context

When mining requirements, you should take into account the broader context. You must
identify what potential problems may have a negative impact on your product in the
future. Those risks often come from the outside. Let's revisit our Uber-like service scenario.
An example risk for your service could be a potential change in legislation: you should be
aware that some countries may try to change the law to remove you from their market.
Uber's way to mitigate those risks is to have local partners cope with regional limitations.

[581]

Functional and Nonfunctional Requirements Chapter 3

Future risks aside, you must also be aware of current issues, such as the lack of subject
matter experts in the company, or heavy competition on the market. Here's what you can
do:

¢ Be aware of and note any assumptions being made. It's best to have a dedicated
document for tracking those.

e Ask questions to clarify or eliminate your assumptions, if possible.

* You need to consider the dependencies inside your project, as they can influence
the development schedule. Other useful areas are the business rules that shape
the day-to-day behavior of the company, as your product will likely need to
adhere to and possibly enhance those.

e Moreover, if there's enough data relating to the users or the business, you should
try to mine it to get insights and find useful patterns that can help with making
decisions regarding the future product and its architecture. If you already have
some users but are unable to mine data, it's often useful to just observe how they
behave.

Ideally, you could record them when they perform their daily tasks using the currently
deployed systems. This way, you could not only automate parts of their work but also
change their workflow to a more efficient one entirely. However, remember that users don't
like changing their habits, so it's better to introduce changes gradually where possible.

Knowing existing documentation

Existing documents can be a great source of information, even though they can also have
their issues. You should reserve some time to at least get familiar with all the existing
documents related to your work. Chances are that there are some requirements hidden in
them. On the other hand, keep in mind that the documentation is never perfect; highly
likely it will lack some significant information. You should also be prepared for it to be
outdated. There is never one source of truth when it comes to architecture, so aside from
reading documents, you should have lots of discussions with the people involved.
Nonetheless, reading documents can be a great way of preparing yourself for such
discussions.

[591]

Functional and Nonfunctional Requirements Chapter 3

Knowing your stakeholders

To be a successful architect, you must learn to communicate with business people as
requirements come, directly or indirectly, from them. Whether they're from your company
or a customer, you should get to know the context of their business. For instance, you must
know the following:

e What drives the business?
e What goals does the company have?
e What specific objectives will your product help to achieve?

Once you are aware of this, it will be much easier to establish a common ground with many
people coming from management or executives, as well as gathering more specific
requirements regarding your software. If the company cares about the privacy of its users,
for instance, it can have a requirement to store as little data about its users as possible and
to encrypt it using a key stored only on a user's device. Often, if such requirements come
from the company culture, it will be too obvious for some employees to even articulate
them. Knowing the context of the business can help you to ask proper questions and help
the company in return.

Having said that, remember that your stakeholders can, and will, have needs that aren't
necessarily directly reflected in the company's objectives. They can have their own ideas for
functionality to provide or metrics that the software should achieve. Perhaps a manager
promised his employees a chance to learn a new technology or work with a specific one. If
this project is important for their career, they can be a strong ally and even convince others
as to your decisions.

Another important group of stakeholders is the people responsible for deploying your
software. They can come with their own subgroup of needs, called transition requirements.
Examples of those include user and database migration, infrastructure transition, or data
conversion, so don't forget to reach out to them to gather these as well.

Gathering requirements from stakeholders

At this point, you should have a list of stakeholders with their roles and contact
information. Now it's time to make use of it: be sure to make time to talk with each
stakeholder about what they need from the system and how they envision it. You can hold
interviews such as 1:1 meetings or group ones. When talking with your stakeholders, help
them to make informed decisions — show the potential outcomes of their answers on the
end product.

[60]

Functional and Nonfunctional Requirements Chapter 3

It's common for stakeholders to say that all of their requirements are equally important. Try
to persuade them to prioritize their requirements according to the value they bring to their
business. Certainly, there will be some mission-critical requirements, but most probably,
the project won't fail if a bunch of others won't be delivered, not to mention any nice-to-
haves that will land on your requirements wish list.

Aside from interviews, you can also organize workshops for them, which could work like
brainstorming sessions. In such workshops, once the common ground is established and
everybody knows why they're taking part in such a venture, you can start asking everyone
for as many usage scenarios as they can think of. Once these have been established, you can
proceed with consolidating similar ones, after which you should prioritize and, finally,
refine all the stories. Workshops are not just about functional requirements; each usage
scenario can have a quality attribute assigned as well. After refining, all the quality
attributes should be measurable. The final thing to note is this: you don't need to bring all
stakeholders into such events, as they can sometimes take more than a day, depending on
the size of the system.

Now that you know how to mine for requirements using various techniques and sources,
let's discuss how to pour your findings into well-crafted documents.

Documenting requirements

Once you're done with the steps described previously, it's time to put all the requirements
you've gathered and refine them together in a single document. It doesn't matter what form
the document will take and how you will manage it. What matters is that you have a
document that puts all the stakeholders on the same page with regard to what is required
from the product and what value each requirement brings.

Requirements are produced and consumed by all stakeholders, and a broad set of them will
need to read your document. This means that you should write it so that it brings value for
people of various technical skills from customers, salespeople, and marketers, through
designers and project managers, to software architects, developers, and testers.

Sometimes it makes sense to prepare two versions of the document, one for the people
closest to the business side of the project, and another, a more technical one, for the
development team. However, usually, it's enough to just have one document written to be
understandable by everyone, with sections (sometimes single paragraphs) or whole
chapters meant to cover the more technical details.

Let's now take a tour of what sections could go into your requirements document.

[61]

Functional and Nonfunctional Requirements Chapter 3

Documenting the context

A requirements document should act as one of the entry points for people getting on board
with your project: it should outline the purpose of your product, who will use it, and how it
can be used. Before design and development, the product team members should read it to
have a clear idea of what they'll actually work on.

The context section should provide an overview of the system — why it's being built, what
business goals is it trying to accomplish, and what key functionality it will deliver.

You can describe a few typical user personas, such as John the CTO, or Ann the driver, to give
the readers a better chance to think about the users of the system as actual human beings
and know what to expect from them.

All those things described in the Knowing the context section should also be summarized as
parts of this context section, or sometimes even given separate sections in the document.
The context and scope sections should provide all the information required by most non-
project stakeholders. They should be concise and precise.

The same goes for any open questions you may want to research and decide on later. For
each decision you make, it's best to note the following;:

e What the decision itself was
¢ Who made it and when
e What rationale stands behind it

Now that you know how to document the context of your project, let's learn how to
properly describe its scope too.

Documenting the scope

This section should define what's in the scope of the project, as well as what is beyond the
scope. You should provide a rationale for why the scope is defined in a particular way,
especially when writing about things that won't make the cut.

This section should also cover the high-level functional and nonfunctional requirements,
but details should go into the subsequent sections of the document. If you're familiar with
Agile practices, just describe epics and bigger user stories here.

If you or your stakeholders have any assumptions regarding the scope, you should mention
those here. If the scope is subject to change due to any issues or risks, you should also write
some words about it, and similarly for any trade-offs you had to make.

[62]

Functional and Nonfunctional Requirements Chapter 3

Documenting functional requirements

Each requirement should be precise and testable. Consider this example: "The system will
have a ranking system for the drivers." How would you create tests against it? It's better to
create a section for the ranking system and specify the precise requirements for it there.

Consider this other example: If there's a free driver close to the rider, they should be
notified of the incoming ride request. What if there's more than one driver available? What
maximum distance can we still describe as being close?

This requirement is both imprecise and lacking parts of the business logic. We can only
hope that the case where there are no free drivers is covered by another requirement.

In 2009, Rolls Royce developed its Easy Approach to Requirements Syntax (EARS), to help
cope with this. In EARS, there are five basic types of requirements, which should be written
in a different way and serve different purposes. They can be later combined to create more
complex requirements. Those basic ones are as follows:

e Ubiquitous requirement: "The $SYSTEM shall SREQUIREMENT," for example, the
application will be developed in C++.

e Event-driven: "When STRIGGER SOPTIONAL_PRECONDITION the $SYSTEM
shall SREQUIREMENT," for example, "When an order arrives, the gateway will
produce a NewOrderEvent.

¢ Unwanted behavior: "If SCONDITION, then the $SYSTEM shall SREQUIREMENT,"
for example if the processing of the request takes longer than 1 second, the tool
will display a progress bar.

e State-driven: "While $STATE, the $SYSTEM shall SREQUIREMENT," for example,
while a ride is taking place, the app will display a map to help the driver
navigate to the destination.

¢ Optional feature: "Where $SFEATURE, the $SYSTEM shall $SREQUIREMENT," for
example, where A/C is present, the app will let the user set the temperature
through the mobile application.

An example of a more complex requirement would be: When using a dual-server setup, if
the backup server doesn't hear from the primary one for 5 seconds, it should try to register
itself as a new primary server.

You don't need to use EARS, but it can help if you struggle with ambiguous, vague, overly
complex, untestable, omissive, or otherwise badly worded requirements. Whatever way or
wording you choose, be sure to use a concise model, which is based on common syntax and
uses predefined keywords. It's also good practice to assign an identificator for each
requirement you list, so you'll have an easy way to refer to them.

[63]

Functional and Nonfunctional Requirements Chapter 3

When it comes to more detailed requirements formats, it should have the following fields:

e ID or Index: To easily identify a specific requirement.
Title: You can use the EARS template here.

Detailed Description: You can put whatever information you find relevant here,
for example, user stories.

Owner: Who this requirement serves. This can be the product owner, the sales
team, legal, IT, and so on.

Priority: Pretty self-explanatory.

Deliver By: If this requirement is needed for any key date, you can note it here.

Now that we know how to document functional requirements, let's discuss how you
should approach documenting the nonfunctional ones.

Documenting nonfunctional requirements

Each quality attribute, such as performance or scalability, should have its own section in
your document, with specific, testable requirements listed. Most of the QAs are measurable,
so having specific metrics can do a world of good to resolve future questions. You can also
have a separate section about the constraints that your project has.

With regard to wording, you can use the same EARS template to document your NFRs.
Alternatively, you can also specify them as user stories using the personas that you defined
in the context of this chapter.

Managing the version history of your
documentation

You can take one of the two following approaches: either create a version log inside the
document or use an external versioning tool. Both have their pros and cons, but we
recommend going with the latter approach. Just like you use a version control system for
your code, you can use it for your documentation. We're not saying you must use a
Markdown document stored in a Git repo, but that's a perfectly valid approach as long as
you're also generating a business people-readable version of it, be it a web page or a PDF
file. Alternatively, you can just use online tools, such as RedmineWikis, or Confluence
pages, which allow you to put a meaningful comment describing what's been changed on
each edit you publish and to view the differences between versions.

[64]

Functional and Nonfunctional Requirements Chapter 3

If you decided to take a revision log approach, it's usually a table that includes the
following fields:

¢ Revision: A number identifying which iteration of the document the changes
were introduced at. You can also add tags for special revisions, such as the first
draft, if you so wish.

Updated by: Who made the change.

Reviewed by: Who reviewed the change.

Change description: A commit message for this revision. It states what changes
have taken place.

Documenting requirements in Agile projects

Many proponents of Agile would claim that documenting all the requirements is simply a
waste of time as they will probably change anyway. However, a good approach is to treat
them similarly to items in your backlog: the ones that will be developed in the upcoming
sprints should be defined in more detail than the ones that you wish to implement later.
Just like you won't split your epics into stories and stories into tasks before it's necessary,
you can get away with having just roughly described, less granular requirements until
you're certain that you need them implemented.

know how who can provide you with necessary input for refining it in the

Note who or what was the source of a given requirement so that you'll
8 future.

Let's take our Dominican Fair, for example. Say in the next sprint, we'll be building the
shop page for a visitor to view, and in the sprint after that one, we'll be adding a
subscription mechanism. Our requirements could look like the following:

ID Priority [Description Stakeholders

DE-42 |1 The shop's page must shc?w the shop's inventory, with a Josh, Rick
photo and price for each item.

DF-43 |P2 The s.hop s page must feature a map with the shop's Josh, '
location. Candice

DF-44 |P2 Customers must be able to subscribe to shops. Steven

[65]

Functional and Nonfunctional Requirements Chapter 3

As you can see, the first two items relate to the feature we'll be doing next. so they are
described in more detail. Who knows, maybe before the next sprint, the requirement about
subscriptions will be dropped, so it doesn't make sense to think about every detail of it.

There are cases, on the other hand, that would still require you to have a complete list of
requirements. If you need to deal with external regulators or internal teams such as
auditing, legal, or compliance, chances are they'll still require a well-written physical
document from you. Sometimes just handing them a document containing work items
extracted from your backlog is OK. It's best to communicate with such stakeholders just like
with any other ones: gather their expectations to know the minimum viable documentation
that satisfies their needs.

What's important about documenting requirements is to have an understanding between
you and the parties proposing specific requirements. How can this be achieved? Once you
have a draft ready to go, you should show your documentation to them and gather
feedback. This way, you'll know what was ambiguous, unclear, or missing. Even if it takes
a few iterations, it will help you have a common ground with your stakeholders, so you'll
gain more confidence that you're building the right thing.

Other sections

It's a good idea to have a links and resources section in which you point to stuff such as the
issue tracker boards, artifacts, CI, the source repo, and whatever else you'll find handy.
Architectural, marketing, and other kinds of documents can also be listed here.

If needed, you can also include a glossary.

You now know how to document your requirements and related information. Let's now
say a few words about documenting the designed system.

Documenting architecture

Just as you should document your requirements, you should also document the emerging
architecture. It's certainly not just for the sake of having documentation: it should help each
person involved in the project to be more productive by making them better understand
what's required from them and from the final product. Not all diagrams you'll make will be
useful for everyone, but you should create them from the perspective of their future
readers.

[66]

Functional and Nonfunctional Requirements Chapter 3

There's a multitude of frameworks to document your vision and many of them serve
specific fields, project types, or architectural scopes. If you're interested in documenting
enterprise architecture, for instance, you could be interested in TOGAF. This is an acronym
for The Open Group Architecture Framework. It relies on four domains, namely the following;:

¢ Business architecture (strategy, organization, key processes, and governance)
¢ Data architecture (logical and physical data management)

Application architecture (blueprints for individual systems)

Technical architecture (hardware, software, and network infrastructure)

Such grouping is useful if you document your software in the scope of the whole company
or even broader ones. Other similar-scale frameworks include those developed by the
British Ministry of Defence (MODAF) and the American equivalent (DoDAF).

If you're not documenting enterprise architectures, and especially if you're just starting on
your architectural self-development path, you'll probably be more interested in other
frameworks, such as the 4+1 and C4 models.

Understanding the 4+1 model

The 4+1 view model was created by Philippe Kruchten in 1995. The author then claimed it
is intended for "describing the architecture of software-intensive systems, based on the use
of multiple, concurrent views." Its name comes from the views it consists of.

This model is widely known since it has been on the market for so long and does its job. It's
well suited for bigger projects and while it can be used for small- and medium-sized ones
as well, it can also turn out too complex for their needs (especially if they're written in an
Agile way). If that's your case, you should try out the C4 model described in the next
section.

A downside to the 4+1 model is that it uses a fixed set of views, while a pragmatic approach
to document architecture would be to choose views based on the specifics of your project
(more on that later).

A nice upside, on the other hand, is how the views link together, especially when it comes
to scenarios. At the same time, each stakeholder can easily get the parts of the model
relevant to them. This brings us to how the model appears:

[671]

Functional and Nonfunctional Requirements

Chapter 3

Customers
End Users

Integrators|

Logical View

¥

(Scenarios
h J

Process View

Development View

) |

Physical View

System Engineers,

Developers
Managers

Figure 3.1 — An overview of the 4+1 model

Actors in the preceding diagram are the ones most interested in their corresponding views.
All the views can be represented using different kinds of Unified Modeling Language
(UML) diagrams. Let's now discuss each view:

¢ The logical view shows how functionality is provided to users. It shows the
system's components (objects) and how they interact with each other. Most
commonly, it consists of class and state diagrams. If you have thousands of
classes or just want to better show the interactions between them, you should
also have communication or sequence diagrams, both being parts of our next

view:
Merchant Store Item

Name Name Name

Address 1 owns ° Address <1‘>—Descnpt|on

Account Category
Photos
Price
Quantity

|

Customizableltem

CustomizationCost

Customizations

AddReferenceMedia()

Figure 3.2 — Class diagrams can be used to show what types we plan to have, along with their relations

[68]

Functional and Nonfunctional Requirements Chapter 3

e The process view revolves around the system's runtime behavior. It shows
processes, the communication between them, and interactions with external
systems. It's represented by activity and interaction diagrams. This view
addresses many NFRs, including concurrency, performance, availability, and
scalability:

Send item order to
warehouse

Start

Mark items arrived

enough items i
stock?

Figure 3.3 — Activity diagrams are graphical representations of workflows and processes

e The development view is for decomposing into subsystems and revolves around
software organization. Reuse, tooling constraints, layering, modularization,
packaging, execution environments — this view can represent them by showing a
building-block decomposition of the system. It does so by using components and
package diagrams:

[69]

Functional and Nonfunctional Requirements Chapter 3

Store Sales Warehouse
S oders | [T > ltem Catalog
kS =7

Workforce

Employees

Reports

i fif

Figure 3.4 — Package diagrams can show the parts of a system from a higher perspective, as well as dependencies or relations between specific components

e The physical view is used to map software to hardware using deployment
diagrams. Aimed at system engineers, it can cover a subset of NFRs concerned
with the hardware, for example, communication:

Prod En\y
GDN-WEB-01: XY7 Server GDN-BE-01: ABC Server
RAM: 128 GB RAM: 256 GB
Storage: 4x256 GB 55D RAID 5 Storage: 4x512 GB 35D RAID 5
CPU: Model X, 12 cores CPU: 2xModel ¥, 32 cores
Aenserver 19216802 19216803 | |KenServer
10 Gbps
Nginx Docker Mongo Docker
API GW Docker App + Envoy
Docker

Figure 3.5 — Deployment diagrams demonstrate the hardware on which each software component will run. It can also be used to pass on information regarding the network

[70]

Functional and Nonfunctional Requirements Chapter 3

e The scenarios are gluing all the other views together. Represented by use case
diagrams, these can be useful for all stakeholders. This view shows whether the
system does what it should and that it is consistent. When all other views are
finished, the scenario view can be redundant. However, all the other views
wouldn't be possible without usage scenarios. This view shows the system from
a high level, while the other views go into the details:

Search for items Send order

Handle ammiving

Place order shipment

Customer

Order more items
from producer

Warehouse Worker

Cancel order

Change order status

Merchant Modify item

Catalogue

Figure 3.6 — Use case diagrams show how specific actors interact with the system and how the interactions relate to each other

Each of those views is interconnected with the others and often they must coexist to show
the full picture. Let's think about expressing concurrency. It can't be done using only the
logical view, as it's more expressive to map them to tasks and processes; we need the
process view. On the other hand, the processes will be mapped to physical, often
distributed, nodes. This means we'll need to effectively document it in three views, each of
which will be relevant for a specific group of stakeholders. Other connections between the
views include the following:

¢ Both logical and process views are used in analysis and design to conceptualize
the product.

[71]

Functional and Nonfunctional Requirements Chapter 3

¢ Development and deployment in conjunction describe how the software is
packaged and when each package will get deployed.

e The logical and development views show how the functionality is reflected in the
source code.

e The process and deployment views are meant to collectively describe NFRs.

Now that you're familiar with the 4+1 model, let's discuss another one, which is simple, yet
extremely effective: the C4 model. We hope using it will be a blast (pun intended).

Understanding the C4 model

The C4 model is a great fit for small- to medium-sized projects. It's easy to apply, as it's
quite simple and it doesn't rely on any predefined notation. If you want to start
diagramming using it, you can try out Tobias Shochguertel's c4-draw.io plugin (https://
github.com/tobiashochguertel/c4-draw.io) for the free online drawing tool — draw.io
(https://www.draw.io/).

In the C4 model, there are four main types of diagram, namely the following:

o Context

¢ Container
e Component
e Code

Just like zooming in and out using a map, you can use those four types to show more
details of a particular code region or "zoom out" to show more about the interactions and
surroundings of either a specific module or even the whole system.

[72]

https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/

Functional and Nonfunctional Requirements Chapter 3

The system context is a great starting point for looking at the architecture, as it shows the
system as a whole, surrounded by its users and other systems that it interacts with. You can

take a look at an example C4 context diagram here:

Customer
[Person]

A visitor to the Fair

1
Views booths, articles,
and makes payments using

Customer Service System
[Software System]

Pushes notifications

Allows customers to view using

booths and navigate through
the Fair

Gets booths information from

Figure 3.7 — A C4 context diagram

[73]

Functional and Nonfunctional Requirements Chapter 3

As you can see, it shows the "big picture,” so it shouldn't focus on specific technologies or
protocols. Instead, think of it as a diagram that could also be shown to non-technical
stakeholders. Just by looking at the diagram, it should be clear that there's one actor
involved (the human-shaped depiction of the customer), who interacts with one of the
components of our solution, namely, the customer service system. This system, on the other
hand, interacts with two more, with each of the interactions described along with the
arrows.

The context diagram we described is used to provide an overview of the system with few
details. Let's now look at the other diagrams one by one:

¢ Container diagram: This one is for showing the overview of the system internals.
If your system uses a database, offers services, or just consists of certain
applications, this diagram will show it. It can also show the major technology
choices for the containers. Note that containers don't mean Docker containers;
although each is a separately runnable and deployable unit, this diagram type is
not about deployment scenarios. The container view is meant for technical
people but isn't limited to the development team only. Architects, as well as
operations and support, are the intended audience, too.

e Component diagram: If you want more details about a specific container, this is
where the component diagram comes into play. It shows how the components
inside a selected container interact with each other, as well as with elements and
actors outside the container. By looking at this diagram, you can learn about the
responsibilities of each component and what technology it's being built with. The
intended audience for component diagrams is mostly focused around a specific
container and consists of the development team and the architect.

¢ Code diagrams: We finally come to code diagrams, which emerge when you
zoom in to a specific component. This view consists mostly of UML diagrams,
including class, entity-relationship, and others, and ideally should be created
automatically from source code by standalone tools and IDEs. You should
definitely not make such diagrams for each component in your system; instead,
focus on making them for the most important ones in a way that allows them to
actually tell the reader what you wanted to tell. This means that less can be more
in such diagrams, so you should omit unnecessary elements from code diagrams.
In many systems, especially smaller ones, this class of diagram is omitted. The
target audience is the same as in the case of component diagrams.

[74]

Functional and Nonfunctional Requirements Chapter 3

You may find the C4 model lacking some specific views. If you're wondering how to
demonstrate how your system should be deployed, for instance, you might be interested to
learn that aside from the main diagrams, there are also a few supplementary ones. One of
them is the deployment diagram, which you can see next. It shows how containers in your
system are mapped to nodes in your infrastructure. In general, it's a simpler version of
UML's deployment diagram:

e ™
p N
=" —Y‘\ __ 4
. - A
Sends notifications to~ ~ hs I
[Push] Amazon SNS ~ '
_ - e {Push] .. Amazon RDS i
L= " < [PostgreSaL] '
< Pushes not‘m:at\ons using Stores and retrieves all persistent data
Amazon Web Services [AWS C++ SDK] [AWS C++ SDK]
[eu-central-1] . ' Y,
R !
S ,
<2 :
y
~ !
. ~ . i
- 7
Seal Views booths, o !
Customer's mobile device ~q articles, and o
,‘_leS or Android] makes payments N
using .
[gRPC] ==~
=~ {- -Gets booths information from
[gRPFC] >
domifair-fe domifair-be
[Ubuntu 20.04] [Ubuntu 20.04]
x4 %6
[Docker]
Fair Organizers
[On-prem data center]

Figure 3.8 — A C4 deployment diagram

Speaking of UML diagrams with regard to the C4 model, you might also wonder why it
puts such little effort into presenting the system's use cases. If that's your case, then you
should think about supplementing the preceding models with either the use case diagram
from UML or perhaps think about introducing some sequence diagrams.

When documenting architecture, it's more important what you document and what
knowledge you share than to follow a specific hard set of rules. Choose whatever tools suit
your needs the best.

[75]

Functional and Nonfunctional Requirements Chapter 3

Documenting architecture in Agile projects

In Agile environments, your approach to documenting architecture should be similar to the
one about documenting requirements. First and foremost, consider who will be reading the
materials you prepare to be sure you're describing the right things in the right way. Your
documentation doesn't need to be a lengthy Word document. You can use presentations,
wiki pages, single diagrams, or even recordings from meetings when someone describes
the architecture.

What is important is to gather feedback on the documented architecture. Again, in the same
way, as with the documented requirements, it's important to reiterate the documents with
your stakeholders to know where to improve them. Even though this may seem like you're
wasting time, if done properly, it should save you some time in terms of delivering the
product. Good enough documentation should help newcomers to start being productive
faster and guide more familiar stakeholders down the road. If you just discuss the
architecture at some meetings, chances are, a quarter later, no one will remember why you
made the decisions you made and whether they will remain valid in the ever-changing,
Agile landscape.

Reiteration is important when creating documentation because most probably there will be
some misunderstanding of an important detail or two. Other times, you or your
stakeholders will gain more knowledge and decide to change things. Be prepared to go
through the document at least a few times before it will be considered mature and done.
Often, a few conversations over IM, phone, or in-person will help you finish it quicker and
address any follow-ups that could arise, so prefer those to emails or other asynchronous
ways of communication.

Choosing the right views to document

Architecture is way too complex a topic to be described by a single big diagram. Imagine
you're the architect of a building. To design the whole thing, you'd need separate diagrams
for different aspects: one for plumbing, another one for electricity and other cables, and so
on. Each of those diagrams would show a different view of the project. The same goes for
software architecture: you need to present the software from different perspectives, aimed
at different stakeholders.

[76]

Functional and Nonfunctional Requirements Chapter 3

Moreover, if you were building a smart house, chances are you would draw some plan of
the devices you want to place around. Although not all projects will require such views,
since it plays a role in your project, it may be worth adding it. The same approach is also
valid for architecture: if you find a different view valuable to the document, you should do
it. So, how do you know which views could be valuable? You can try to perform the
following steps:

1. Start with the views from either the 4+1 model or the C4 model.

2. Ask your stakeholders what is essential for them to have documented and think
about modifying your set of views.

3. Choose views that will help you to evaluate whether the architecture meets its
objectives and that all the ASRs are satisfied. Read the first paragraph of each of
the views from the next sections to check whether they suit your needs.

If you're still not sure which views to document, here's a set of tips:

Try to just pick the most important views, because when there are too
many of them, the architecture will become too hard to follow. A good set
of views should not only showcase the architecture but also expose the
technical risks to the project.

There are a few things you should think about when choosing what views you should
describe in your documentation. We'll describe them shortly here, but if you're interested,
you should grab Rozanski and Woods' book mentioned in the Further reading section.

Functional view

If your software is being developed as part of a bigger system, especially with teams that
don't communicate on a daily basis, you should include a functional view (as in the 4+1
model).

One important and often overlooked aspect of documenting your architecture is the
definition of the interfaces you provide, despite it being one of the most important things to
describe. Whether it's an interface between two of your components or an entry point for
the outside world, you should take the time to document it clearly, describing the semantics
of objects and calls, as well as usage examples (which you can sometimes reuse as tests).

[77]

Functional and Nonfunctional Requirements Chapter 3

Another great benefit of including a functional view in your documentation is that it
clarifies the responsibilities between components of your system. Each team developing the
system should understand where the boundaries are and who's responsible for developing
which functionality. All requirements should be explicitly mapped to components to
eliminate gaps and duplicated work.

An important thing to note here is to avoid overloading your functional
view. If it gets messy, no one will want to read it. If you're starting to
describe infrastructure on it, consider adding a deployment view. If you
end up having a God object in your models, try to rethink the design and
split it into smaller, more cohesive pieces.

One last important note about the functional view: try to keep each diagram you include on
one level of abstraction. On the other hand, don't make it too vague by choosing an overly
abstract level; ensure that every element is properly defined and understood by the
interested parties.

Information view

If your system has non-straightforward needs with regard to information, its processing
flow, management process, or storage, perhaps it's a good idea to include this kind of view.

Take the most important, data-rich entities and demonstrate how they flow through the
system, who owns them, and who the producers and consumers are. It may be useful to
mark how long certain data remains "fresh" and when it can be safely discarded, what the
expected latency for it to arrive at certain points of the system is, or how to deal with
identifiers if your system works in a distributed environment. If your system manages
transactions, this process, along with any rollbacks, should also be clear to your
stakeholders. Techniques for transforming, sending, and persisting data can also be
important for some of them. If you are operating in the financial domain or have to deal
with personal data, you most probably must obey some regulations, so describe how your
system plans to tackle this.

The structure of your data can be diagrammed using UML class models. Remember to be
clear about the format of your data, especially if it flows between two different systems.
NASA lost the $125 million-worth Mars Climate Orbiter, which it co-developed with
Lockheed Martin, because they used different units unknowingly, so keep an eye out for
data inconsistencies between systems.

The processing flow of your data can use UML's activity model, and to show the life cycle
of information, a state diagram can be used.

[78]

Functional and Nonfunctional Requirements Chapter 3

Concurrency view

If running many concurrent units of execution is an important aspect of your product,
consider adding a concurrency view. It can show what issues and bottlenecks you may
have (unless that sounds too detailed). Other good reasons to include it are the reliance on
interprocess communication, having a non-straightforward task structure, concurrent state
management, synchronization, or task failure handling logic.

Use whatever notation you want for this view, as long as it captures the units of execution
and their communication. Assign priorities to your processes and threads, if necessary, and
then analyze any potential issues, such as deadlocks or contention. You can use state
diagrams to show the possible states and their transitions for important units of execution
(waiting for queries, executing a query, distributing results, and so on).

If you're not sure about the need to introduce concurrency to your system, a good rule of
thumb is don’t. And if you must, strive for a simple design. Debugging concurrency issues
is never easy and always long, so if possible, try to optimize what you have first instead of
just throwing more threads at the problem at hand.

If, by looking at your diagram, you're worried about resource contention, try to replace
locks on big objects with more locks, but finer-grained, use lightweight synchronization
(sometimes atomics are enough), introduce optimistic locking, or reduce what's shared
(creating an additional copy of some data in a thread and processing it can be faster than
sharing access to the only copy).

Development view

If you're building a big system with lots of modules, and you need to structure your code,
have system-wide design constraints, or if you want to share some common aspects
between parts of your system, presenting the solution from a development viewpoint
should benefit you, along with software developers and testers.

A package diagram of the development view can be handy to show where different
modules in your system are located, what their dependencies are, and other related
modules (for example, residing in the same software layer). It doesn't need to be a UML
diagram — even boxes and lines would do. If you plan for a module to be replaceable, this
kind of diagram can show you what other software packages can be affected.

[79]

Functional and Nonfunctional Requirements Chapter 3

Tactics to increase reuse in your system, such as creating your own runtime framework for
components, or tactics for increasing the coherence of your systems, such as a common
approach to authentication, logging, internationalization, or other kinds of processing, are
all part of the development view. If you see any common parts of the system, document it
to be sure that all developers see them too.

A common approach to code organization, building, and configuration management
should also go into this section of your documentation. If all this sounds like a lot to
document, then focus on the most important parts and cover the rest just briefly, if at all.

Deployment and operational views

If you have a non-standard or complex deployment environment, such as specific needs
with regard to hardware, third-party software or networking requirements, consider
documenting it in a separate deployment section, aimed at system administrators,
developers, and testers.

If necessary, cover the following things:

¢ The amount of memory required
e The CPU thread count (with or without hyperthreading)
¢ Pinning and affinity with regard to NUMA nodes

¢ Specialist networking equipment requirements, such as switches that mark
packages to measure latency and throughput in a black-box manner

¢ The networking topology

¢ The estimated bandwidth required

e Storage requirements for your app

¢ Any third-party software that you plan to use

Once you have the requirements, you can map them to specific hardware and put them into
a runtime platform model. You can use a UML deployment diagram with stereotypes if
you desire formal modeling. This should show your processing nodes and client nodes,
online and offline storage, network links, specialized hardware, such as firewalls or FPGA
or ASIC devices, and a mapping between functional elements and the nodes they'll run on.

[80]

Functional and Nonfunctional Requirements Chapter 3

If you have non-straightforward networking needs, you can add another diagram showing
the networking nodes and the connections between them.

If you depend on specific technologies (including specific versions of software), it's a good
idea to list them to see whether there are any compatibility issues between the software you
use. Sometimes, two third-party components will require the same dependency, but in
different versions.

If you have a specific installation and upgrade plan in your head, it might be a good idea to
write a few words about it. Things such as A/B testing, blue-green deployments, or any
particular container magic that your solution will rely on should be clear to everyone
involved. Data migration plans should also be covered, if needed, including how long the
migration can take and when it could be scheduled.

Any plans for configuration management, performance monitoring, operational
monitoring, and control, as well as backup strategies, can all be things worth describing.
You'll probably want to create a few groups, identify the dependencies of each, and define
the approach for each such group. If you can think about any probable errors that may
occur, have a plan to detect and recover from them.

A few notes to the support team can also go into this section: what support is required by
which stakeholder group, what classes of incidents you plan to have, how to escalate, and
what each level of support will be responsible for.

It's best to engage early with the operational staff and create diagrams specifically for them
in order to keep them engaged.

Now that we've discussed how to create documentation about your system and its
requirements manually, let's switch to documenting your APIs in an automated manner.

Generating documentation

As engineers, we don't like manual labor. This is why, if something can be automated and
save us work, it most likely will be. With all this effort to create good enough

documentation, having the possibility to automate at least parts of the work can actually be
bliss.

[81]

Functional and Nonfunctional Requirements Chapter 3

Generating requirements documentation

If you're creating a project from scratch, it can be hard to generate documentation out of
thin air. However, sometimes it's possible to generate documentation if you have nothing
but the requirements in an appropriate tool. If you're using JIRA, for instance, a starting
point would be to just export all items from an issue navigator view. You can use whatever
filter you like and get printouts just for those items. If you don't like the default set of fields
or just feel this is not what you're looking for, you can try out one of JIRA's plugins for
requirements management. They allow a whole lot more than to just export requirements;
for example, R4] (Requirements for Jira) allows you to create whole hierarchies of
requirements, trace them, manage changes and propagate them through your whole
project, perform impact analyses of any requirements changes, and, of course, export using
user-defined templates. Many such tools will also aid you in creating test suites for your
requirements, but none that we saw were free.

Generating diagrams from code

If you want to get to know your code structure without taking an initial deep dive into the
sources, you might be interested in tools that generate diagrams from code.

One such tool is CppDepend. It enables you to create various dependency diagrams
between different parts of your sources. What's more, it allows you to query and filter the
code based on various parameters. Whether you want to just grasp how the code is
structured, discover what the dependencies are between different software components
and how tightly they're coupled, or want to quickly locate parts with the most technical
debt, you might be interested in this tool. It's proprietary, but offers a fully functional trial.

Some diagramming tools allow you to create code from class diagrams and class diagrams
from code. Enterprise Architect enables you to take your class and interface diagrams and
generate code in multiple languages. C++ is one of these, and allows UML class diagrams to
be generated directly from source code. Another tool that can do that is Visual Paradigm.

[82]

Functional and Nonfunctional Requirements Chapter 3

Generating (APl) documentation from code

To help others navigate your existing code and use the APIs you provide, a good idea is to
provide documentation generated from the comments in your code. There's no better place
for such documentation than just right next to the functions and data types it describes, and
this helps a lot in keeping them in sync.

A de facto standard tool for writing such documentation is Doxygen. Its positives are that
it's fast (especially for big projects and HTML document generation), the generator has
some built-in correctness checks (for example, for partially documented parameters in a
function — a good marker to check whether the documentation is still up to date), and it
allows the navigation of class and file hierarchies. Its disadvantages include not being able
to do a full-text search, less than ideal PDF generation, and an interface some may find
cumbersome.

Fortunately, the usability flaws can be remediated by using another popular tool for
documentation. If you've ever read any Python documentation, you have probably
stumbled upon Sphinx. It has a fresh-looking and usable interface and uses
reStructuredText as a markup language. The good news is that there's a bridge between
those two, so you can take XML generated from Doxygen and use it in Sphinx. This
bridging software is called Breathe.

Let's now see how to set it up in your project. Let's assume we keep our sources in src,
public headers in include, and documentation in doc. First, let's create a
CMakeLists.txt file:

cmake_minimum_required (VERSION 3.10)
project ("Breathe Demo" VERSION 0.0.1 LANGUAGES CXX)

list (APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake")
add_subdirectory (src)
add_subdirectory (doc)

We've set requirements on the CMake version supported by our project, specified its name,
version, and the languages used (in our case, it's just C++), and added the cmake directory
to the path under which CMake looks for its include files.

[83]

Functional and Nonfunctional Requirements Chapter 3

In the cmake subdirectory, we'll create one file, FindSphinx.cmake, which we'll use just as
the name suggests, since Sphinx doesn't offer one already:

find_program/(
SPHINX_EXECUTABLE
NAMES sphinx-build
DOC "Path to sphinx-build executable")

handle REQUIRED and QUIET arguments, set SPHINX_FOUND variable
include (FindPackageHandleStandardArgs)
find_package_handle_standard_args (

Sphinx "Unable to locate sphinx-build executable" SPHINX_EXECUTABLE)

Now, CMake will look for our Sphinx build tool and, if found, will set appropriate CMake
variables to mark the Sphinx package as found. Next, let's create our sources to generate the
documentation. Let's have an include/breathe_demo/demo.h file:

#pragma once

// the @file annotation is needed for Doxygen to document the free
// functions in this file

/**
* @file
* @brief The main entry points of our demo
*/
/**
* A unit of performable work
*/
struct Payload {
/**
* The actual amount of work to perform
*/

int amount;
}i

/**

@brief Performs really important work

@param payload the descriptor of work to be performed
*/

void perform_work (struct Payload payload);

Note the comment syntax. Doxygen recognizes it while parsing our header file so that it
knows what to put in the generated documentation.

[84]

Functional and Nonfunctional Requirements Chapter 3

Now, let's add a corresponding src/demo . cpp implementation for our header:
#include "breathe_demo/demo.h"

#include <chrono>
#include <thread>

void perform_work (Payload payload) {
std::this_thread::sleep_for (std::chrono::seconds (payload.amount));

}

No Doxygen comments here. We prefer to document our types and functions in the header
files since they're the interface to our library. The source files are just implementation and
they don't add anything new to the interface.

Aside from the preceding files, we also need a simple CMakeLists.txt filein src:

add_library (BreatheDemo demo.cpp)

target_include_directories (BreatheDemo PUBLIC
${PROJECT_SOURCE_DIR}/include)

target_compile_features (BreatheDemo PUBLIC cxx_std_11)

Here, we specify the source files for our target, the directory with the header files for it, and
the required C++ standard to compile against.

Now, let's move to the doc folder, where the magic happens; first, its CMakeLists. txt file,
beginning with a check to establish whether Doxygen is available and omitting generation
if so:

find_package (Doxygen)

if (NOT DOXYGEN_FOUND)
return ()

endif ()

If Doxygen is not installed, we'll just skip documentation generation. Note also the
return () call, which will exit the current CMake list file, a not-that-widely-known, but
nevertheless useful, trick.

Next, assuming Doxygen was found, we need to set some variables to steer the generation.
We want just the XML output for Breathe, so let's set the following variables:

set (DOXYGEN_GENERATE_HTML NO)
set (DOXYGEN_GENERATE_XML YES)

[85]

Functional and Nonfunctional Requirements Chapter 3

To force relative paths, use set (DOXYGEN_STRIP_FROM_PATH
${PROJECT_SOURCE_DIR}/include). If you have any implementation details to hide, you
can do this using set (DOXYGEN_EXCLUDE_PATTERNS "*/detail/*").OK, since we have
all the variables set, let's now generate:

Note: Use doxygen_add_docs (doxygen-doc ALL ...) if you want your

documentation to be created by default each time you build. Without the

keyword you need to explicitly invoke building of the 'doc' target.

doxygen_add_docs (doxygen-doc ${PROJECT_SOURCE_DIR}/include COMMENT
"Generating API documentation with Doxygen")

Here, we call a CMake function specifically written for using Doxygen. We define a target,
doxygen-doc, which we'll need to explicitly invoke to generate our docs on demand, just
like the comment says.

Now we need to create a Breathe target to consume what we got from Doxygen. We can use
our FindSphinx module to this end:

find_package (Sphinx REQUIRED)
configure_file (${CMAKE_CURRENT_SOURCE_DIR}/conf.py.in
${CMAKE_CURRENT_BINARY_DIR}/conf.py @ONLY)
add_custom_target (
sphinx-doc ALL
COMMAND ${SPHINX_EXECUTABLE} -b html -c ${CMAKE_CURRENT_BINARY_DIR}
${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
COMMENT "Generating API documentation with Sphinx"
VERBATIM)

First, we invoke our module. Then, we fill in a Python configuration file with variables
from our project for Sphinx to use. We create a sphinx-doc target that will generate HTML
files as its output and will print a line in the build's output when doing so.

Finally, let's force CMake to call Doxygen each time we generate Sphinx docs:
add_dependencies (sphinx—-doc doxygen-doc).

If you wish to have more targets for documentation, it may be useful to introduce some
CMake functions that will handle documentation-related targets for you.

[86]

Functional and Nonfunctional Requirements Chapter 3

Let's now see what lies inside our conf.py. in file, used to steer our feline tool. Let's create
it and let it point Sphinx to Breathe:

extensions = ["breathe", "m2r2"]

breathe_projects = { "BreatheDemo": "@CMAKE_CURRENT_BINARY_DIRQ@/xml" }
breathe_default_project = "BreatheDemo"

project = "Breathe Demo"

author = "Breathe Demo Authors"

copyright = "2021, Breathe Demo Authors"

version = "@PROJECT_VERSION@"

release = "@PROJECT_VERSION@

html_theme = 'sphinx_rtd_theme'

As you can see from the preceding listing, we set the extensions for Sphinx to use, the name
of the documented project, and a few other related variables. Note @NOTATIONGE, used by
CMake to fill in the output file with the value of appropriate CMake variables. Finally, we
tell Sphinx to use our ReadTheDocs theme (sphinx_rtd_theme).

The final pieces of the puzzle are reStructuredText files, which define what to include
where in the docs. First, let's create an index. rst file, containing a table of contents and a
few links:

Breathe Demo

Welcome to the Breathe Demo documentation!

toctree::
:maxdepth: 2
:caption: Contents:

Introduction <self>
readme
api_reference

[871]

Functional and Nonfunctional Requirements Chapter 3

The first link points to this page, so we can get back to it from other ones. We'll display
Introduction as the label. Other names point to other files with the . rst extension. Since
we're including the M2R2 Sphinx extension, we can include our README . md file in the docs,
which can save you some duplication. The contents of the readme. rst file are simply . .
mdinclude:: ../README.md. Now for the last part: merging Doxygen's output. This is
done in the api_reference. rst file using just the following command:

API Reference

doxygenindex: :

So we just named the reference page as we liked and specified that the Doxygen-generated
docs should be listed here, and that's all! Just build the sphinx-doc target and you'll get a
page looking like so:

Breathe Demo

Docs » Breathe Demo View page source

Breathe Demo

Introduction Welcome to the Breathe Demo documentation!

Autogenerated Documentation Demo

Contents:

API Reference

» Introduction
« Autogenerated Documentation Demo

= API| Reference
Next ©

© Copyright 2021, Breathe Demo Authors

Built with Sphinx using a theme provided by Read the Docs.

Figure 3.9 — The main page of our documentation, consolidating both the generated and manually written parts

[881]

Functional and Nonfunctional Requirements Chapter 3

And when we look at the API docs page, it should look like this:

Docs » APl Reference View page source

API Reference

Introduction struct Payload

Autogenerated Documentation Demo

#include <demo.h>
API Reference A unit of performable work

Public Members
int amount

The actual amount of work to perform

filedemo.h
The main entry points of our demo.

Functions

void perform_work(Payloadpayload)

Performs really important work.
Parameters

» payload : the descriptor of work to be performed
dirbreathe_demo
Q@ Previous

© Copyright 2021, Breathe Demo Authors

Built with Sphinx using a theme provided by Read the Docs.

Figure 3.10 — The automatically generated API documentation

As you can see, the documentation was automatically generated for our Payload type with
each of its members, as well as for the free perform_work function, including each of its
parameters, and was grouped based on the file that defines them. Neat!

[891]

Functional and Nonfunctional Requirements Chapter 3

Summary

In this chapter, you got to know all the essentials regarding requirements and
documentation. You learned how to gather requirements successfully and how to identify
the most important ones. You can now prepare lean and useful documentation that shows
only what's important in a view-oriented manner. You are able to distinguish between
different types and styles of diagrams and use the one that suits your needs the best. Last,
but not least, you are now able to automatically generate aesthetic documentation.

In the next chapter, you'll learn about useful architectural design patterns that will help you
fulfill your system's requirements. We'll discuss various patterns and how to apply them to
provide many important quality attributes, both on a single-component scale in distributed
systems.

Questions

What are quality attributes?

What sources should be used when gathering requirements?

How can you tell whether a requirement is architecturally significant?
When is development view documentation useful?

S e

How can you automatically check whether your code's API documentation is out
of date?

6. How can you indicate on a diagram that a given process is handled by different
components of the system?

Further reading

1. Evaluate the Software Architecture using ATAM, JC Olamendy, blog post: https://
johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-
architecture-using-atam/

2. EARS: The Easy Approach to Requirements Syntax, John Terzakis, Intel Corporation,
conference talk from the ICCGI conference: https://www.iaria.org/
conferences2013/£f11esICCGI13/ICCGI_2013_Tutorial_ Terzakis.pdf

3. Eoin Woods and Nick Rozanski, Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives

[90]

https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf

Section 2: The Design and
Development of C++ Software

This section presents techniques for creating effective software solutions with C++. It
demonstrates techniques for solving common challenges and avoiding pitfalls when
designing, developing, and building C++ code. The techniques come from the C++ language
itself, as well as design patterns, tools, and build systems.

This section contains the following chapters:

® Chapter 4, Architectural and System Design

e Chapter 5, Leveraging C++ Language Features
e Chapter 6, Design Patterns and C++

e Chapter 7, Building and Packaging

Architectural and System
Design

Patterns help us deal with complexity. At the level of a single software component, you
can use software patterns such as the ones described by the four authors of the book (better
known as the Gang of Four) Design Patterns: Elements of Reusable Object-Oriented Software.
When we move higher up and start looking at the architecture between different
components, knowing when and how to apply architectural patterns can go a long way.

There are countless such patterns that are useful for different scenarios. In fact, to even get
to know all of them, you would need to read more than just one book. That being said, we
selected several patterns for this book, suited for achieving various architectural goals.

In this chapter, we'll introduce you to a few concepts and fallacies related to architectural
design; we'll show when to use the aforementioned patterns and how to design high-
quality components that are easy to deploy.

The following topics will be covered in this chapter:

e The different service models and when to use each of them
e How to avoid the fallacies of distributed computing
¢ The outcomes of the CAP theorem and how to achieve eventual consistency
e Making your system fault-tolerant and available
e Integrating your system
¢ Achieving performance at scale
¢ Deploying your system
e Managing your APIs
By the end of this chapter, you'll know how to design your architecture to provide several

important qualities, such as fault tolerance, scalability, and deployability. Before that, let's
first learn about two inherent aspects of distributed architectures.

Architectural and System Design Chapter 4

Technical requirements

The code from this chapter requires the following tools to build and run:

e Docker
¢ Docker Compose

The source code snippets from the chapter can be found at https://github.com/
PacktPublishing/Software—-Architecture-with-Cpp/tree/master/Chapter04.

Understanding the peculiarities of
distributed systems

There are many types of different software systems, each of them suited for different
scenarios, built for different needs, and using different sets of assumptions. Writing and
deploying a classical, standalone desktop application is nothing like writing and deploying
a microservice that needs to communicate with many others over a network.

In this section, we'll go through the various models that you can use to deploy your
software, the common mistakes that people should avoid when creating distributed
systems, and some of the compromises people need to make to create such systems
successfully.

Different service models and when to use them

Let's first start with service models. When designing a bigger system, you need to decide
how much of the infrastructure you will manage versus how much you can build upon
existing building blocks. Sometimes, you might want to leverage existing software without
the need to manually deploy an app or back up data, for example, by using Google Drive
through its API as storage for your app. Other times, you can rely on an existing cloud
platform such as Google's App Engine to deploy your solution without the need to worry
about providing a language runtime or databases. If you can decide to deploy everything in
your own way, you can either leverage an infrastructure from a cloud provider or use your
company's one.

Let's discuss the different models and where each can be useful.

[93]

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04

Architectural and System Design Chapter 4

On-premises model

The classical way, and the only way available in the pre-cloud era, is to just deploy
everything on your own premises. You need to buy all the hardware and software required
and make sure it will provide enough capacity for your needs. If you're working for a start-
up company, this may be a big upfront cost. Along with the growth of your userbase, you
need to buy and set up more resources so that your service can deal even with the
occasional spikes in load. All this means you need to predict the growth of your solution
and act proactively, as there's no way you could just automatically scale depending on the
current load.

Even in the cloud era, deploying on-premises is still useful and often spotted in the wild.
Sometimes you're dealing with data that shouldn't, or even can't, leave your company's
premises, either due to data privacy issues or compliance ones. Other times, you need to
have as little latency as possible and you need your own data center to do so. Sometimes
you may calculate the costs and decide that in your case, on-premises will be cheaper than
a cloud solution. Last, but not least, your company might just already have an existing data
center that you can use.

Deploying on-premises doesn't mean you need to have a monolith system. Often,
companies have their own private clouds deployed on-premises. This helps to cut costs by
better utilization of the available infrastructure. You can also mix a private cloud solution
with one of the other service models, which can be useful when you need that extra
capacity from time to time. This is called a hybrid deployment and is offered by all major
cloud providers as well as provided by OpenStack's Omni project.

Infrastructure as a Service (laaS) model

Speaking of other models, the most basic cloud service model is called Infrastructure as a
Service (IaaS). It's also the most similar to on-premises: you can think of IaaS as a way to
have a virtual data center. As the name suggests, the cloud provider offers you a slice of the
infrastructure they host, which consists of three types of resources:

e Compute, such as virtual machines, containers, or bare-metal machines
(excluding operating systems)

¢ Networking, which aside from the network itself includes DNS servers, routing,
and firewalls

e Storage, including backup and recovery capabilities

It's still up to you to provide all the software: operating systems, middleware, and your
applications.

[94]

Architectural and System Design Chapter 4

IaaS can be used in scenarios ranging from hosting websites (might be cheaper than
traditional web hosting), through storage (for example, Amazon's S3 and Glacier services),
to high-performance computing and big data analysis (requires huge computing power).
Some companies use it to quickly set up and purge test and development environments
when needed.

Using laaS instead of on-premises infrastructure can be a cheap way to test new ideas while
saving you the time needed for configuration.

If your service observes spikes in usage, for example, during the weekends, you might
want to leverage your cloud's automatic scaling capabilities: scale up when needed and
scale back down later to save money.

Iaa$S solutions are offered by all the popular cloud service providers.

A similar concept, sometimes thought of as a subset of IaaS, is Containers as a Service
(CaaS). In CaaS, instead of bare-metal systems and virtual machines, the service provides
you with containers and orchestration capabilities that you can use to build your own
container clusters. CaaS offerings can be found with Google Cloud Platform and AWS,
among others.

Platform as a Service (PaaS) model

If the infrastructure itself is not enough for your needs, you can use the Platform as a
Service (PaaS) model instead. In this model, the cloud service provider manages not only
the infrastructure (just like in IaaS), but also the operating systems, any required
middleware, and the runtime — the platform that you will deploy your software on.

Often a PaaS solution will provide you with app versioning capabilities, service monitoring
and discovery, database management, business intelligence, and even development tools.

With Paa$, you're covered throughout the whole development pipeline: from building and
testing to deploying, updating, and managing your service. However, PaaS solutions are
more costly than IaaS offerings. On the other hand, with the whole platform provided, you
can cut the costs and time to develop parts of your software and easily provide the same
setup for development teams scattered around the globe.

All main cloud providers have their own offerings, for example, Google App Engine or
Azure App Service. There are also independent ones, such as Heroku.

[95]

Architectural and System Design Chapter 4

Aside from the more generic PaaS, there's also Communications Platform as a Service
(CPaaS), in which you're provided with the whole communications backend, including
audio and video, which you can integrate into your solution. This technology allows you to
easily provide video-enabled help desks or just integrate live chats into your apps.

Software as a Service (SaaS) model

Sometimes you might not want to develop a software component on your own and just
want to use an existing one. Software as a Service (SaaS) basically gives you a hosted
application. With Saa$S, you don't need to worry about either the infrastructure or the
platform built upon it, and not even about the software itself. The provider is responsible
for installing, running, updating, and maintaining the whole software stack, as well as
backups, licensing, and scaling.

There's quite a variety to what software you can get in the SaaS model. Examples vary from
office suites such as Office 365 and Google Docs to messaging software such as Slack,
through Customer Relationship Management (CRM) systems, and span even to gaming
solutions such as cloud gaming services, allowing you to play resource-hungry video
games hosted on the cloud.

Usually, to access such services, all you need is a browser, so this can be a great step in
providing remote work capabilities for your employees.

You can create your own SaaS applications and provide them to users either by deploying
them however you like, or through means such as AWS Marketplace.

Function as a Service (FaaS) model and serverless
architecture

With the advent of cloud-native, another model that is growing in popularity is Function as
a Service (FaaS). It can be helpful if you want to achieve a serverless architecture. With
FaaS, you get a platform (similarly to PaaS) on which you can run short-lived applications,
or functions.

With PaaS, you typically always need to have at least one instance of your service running,
while in FaaS you can run them only when they're actually needed. Running your function
can make the time to handle requests longer (measured in seconds; you need to launch the
function after all). However, some of those requests can be cached to reduce both the
latency and costs. Speaking about costs, FaaS can get way more expensive than PaaS if you
run the functions for a long time, so you must do the math when designing your system.

[961]

Architectural and System Design Chapter 4

If used correctly, FaaS abstracts away the servers from the developers, can reduce your
costs, and can provide you with better scalability, as it can be based on events, not
resources. This model is commonly used for running prescheduled or manually triggered
tasks, processing batches or streams of data, and handling incoming, not-so-urgent
requests. A few popular providers of FaaS are AWS Lambda, Azure Functions, and Google
Cloud Functions.

Now that we've covered the common service models in the cloud, let's discuss some of the
wrong assumptions people make when designing distributed systems.

Avoiding the fallacies of distributed computing

When people new to distributed computing begin their journey with designing such
systems, they tend to forget or ignore a few aspects of such systems. Although they were
first noticed back in the 90s, they remain current today.

The fallacies are discussed in the following sub-sections. Let's have a quick rundown on
each of them.

The network is reliable

Networking equipment is designed for long years of flawless operation. Despite that, many
things can still cause packet loss, ranging from power outages through poor wireless
networking signal, configuration errors, someone tripping over a cable, or even animals
biting through wires. For instance, Google had to protect their underwater cables with
Kevlar because they were being bitten by sharks (yes, really). You should always assume
that data can get lost somewhere over the network. Even if that doesn't happen, software
issues can still occur on the other side of the wire.

To fend off such issues, be sure you have a policy for automatically retrying failed network
requests and a way to handle common networking issues. When retrying, try to not
overload the other party and not commit the same transaction multiple times. You can use
a message queue to store and retry sending for you.

Patterns such as circuit breaker, which we'll show later in this chapter, can also help. Oh,
and be sure to not just wait infinitely, hogging up resources with each failed request.

[97]

Architectural and System Design Chapter 4

Latency is zero

Both the network and the services you're running have to take some time to respond even
under normal conditions. Occasionally they'll have to take longer, especially when being
under a bigger-than-average load. Sometimes instead of a few milliseconds, your requests
can take seconds to complete.

Try to design your system so it doesn't wait on too many fine-grained remote calls, as each
such call can add to your total processing time. Even in a local network, 10,000 requests for
1 record will be much slower than 1 request for 10,000 records. To reduce network latency,
consider sending and handling requests in bulk. You can also try to hide the cost of small
calls by doing other processing tasks while waiting for their results.

Other ways to deal with latency are to introduce caches, push the data in a publisher-
subscriber model instead of waiting for requests, or deploy closer to the customers, for
example, by using Content Delivery Networks (CDNS).

Bandwidth is infinite

When adding a new service to your architecture, make sure you take note of how much
traffic it's going to use. Sometimes you might want to reduce the bandwidth by
compressing the data or by introducing a throttling policy.

This fallacy also has to do with mobile devices. If the signal is weak, often the network will
become the bottleneck. This means the amount of data a mobile app uses should generally
be kept low. Using the Backends for Frontends pattern described in chapter 2, Architectural
Styles, can often help save precious bandwidth.

If your backend needs to transfer lots of data between some components, try to make sure
such components are close together: don't run them in separate data centers. With
databases, this often boils down to better replication. Patterns such as CQRS (discussed
later in this chapter) are also handy.

The network is secure

This is a dangerous fallacy. A chain is only as strong as its weakest link, and unfortunately,
there are many links in distributed systems. Here are a few ways to make those links
stronger:

¢ Be sure to always apply security patches to every component that you use, to
your infrastructure, operating systems, and other components.

[981]

Architectural and System Design Chapter 4

¢ Train your personnel and try to protect your system from the human factor;
sometimes it's a rogue employee that compromises a system.

e If your system will be online, it will get attacked, and it's possible that a breach
will happen at one point. Be sure to have a written plan on how to react to such
events.

¢ You might have heard about the defense in depth principle. It boils down to
having different checks for different parts of your system (your infrastructure,
your applications, and so on) so that when a breach happens, its range, and the
associated damage, will be limited.

¢ Use firewalls, certificates, encryption, and proper authentication.

For more on security, refer to chapter 10, Security in Code and Deployment.

Topology doesn't change

This one became especially true in the microservices era. Autoscaling and the emergence of
the cattle, not pets approach to managing infrastructure mean that the topology will
constantly change. This can affect latency and bandwidth, so some of this fallacy's
outcomes are the same as the ones described earlier.

Fortunately, the mentioned approach also comes with guidelines on how to effectively
manage your herd of servers. Relying on hostnames and DNS instead of hardcoding IPs is a
step in the right direction, and service discovery, described later in this book, is another
one. A third, even bigger, step is to always assume your instances can fail and automate
reacting to such scenarios. Netflix's Chaos Monkey tool can also help you test your
preparedness.

There is one administrator

The knowledge about distributed systems, due to their nature, is often distributed itself.
Different people are responsible for the development, configuration, deployment, and
administration of such systems and their infrastructure. Different components are often
upgraded by different people, not necessarily in sync. There's also the so-called bus factor,
which in short is the risk factor for a key project member being hit by a bus.

[991]

Architectural and System Design Chapter 4

How do we deal with all of this? The answer consists of a few parts. One of them is the
DevOps culture. By facilitating close collaboration between development and operations,
people share the knowledge about the system, thus reducing the bus factor. Introducing
continuous delivery can help with upgrading the project and keeping it always up.

Try to model your system to be loosely coupled and backward compatible, so upgrades of
components don't require other components to be upgraded too. An easy way to decouple
is by introducing messaging between them, so consider adding a queue or two. It will help
you with downtime during upgrades as well.

Finally, try to monitor your system and gather logs in a centralized place. Decentralization
of your system shouldn't mean you now need to manually look at logs at a dozen different
machines. The ELK (Elasticsearch, Logstash, Kibana) stack is invaluable for this. Grafana,
Prometheus, Loki, and Jaeger are also very popular, especially with Kubernetes. If you're
looking for something more lightweight than Logstash, consider Fluentd and Filebeat,
especially if you're dealing with containers.

Transport cost is zero

This fallacy is important for planning your project and its budget. Building and
maintaining a network for a distributed system costs both time and money, regardless of
whether you deploy on-premises or in the cloud - it's just a matter of when you pay the
cost. Try to estimate the costs of the equipment, the data to be transferred (cloud providers
charge for this), and the required manpower.

If you're relying on compression, be wary that while this reduces networking costs, it can
increase the price for your compute. In general, using binary APIs such as gRPC-based will
be cheaper (and faster) than JSON-based ones, and those are still cheaper than XML. If you
send images, audio, or video, it's a must to estimate how much this will cost you.

The network is homogeneous

Even if you plan what hardware to have and what software to run on your network, it's
easy to end up with at least some heterogeneity. A slightly different configuration on some
of the machines, a different communication protocol used by that legacy system that you
need to integrate with, or different mobile phones sending requests to your system are just
a few examples of this. Another one is extending your on-premises solution by using
additional workers in the cloud.

[100]

Architectural and System Design Chapter 4

Try to limit the number of protocols and formats used, strive to use standard ones, and
avoid vendor lock-in to ensure your system can still communicate properly in such
heterogeneous environments. Heterogeneity can also mean differences in resiliency. Try to
use the circuit breaker pattern along with retries to handle this.

Now that we've discussed all the fallacies, let's discuss yet another pretty important aspect
of distributed architectures.

CAP theorem and eventual consistency

To design successful systems that spread across more than one node, you need to know and
use certain principles. One of them is the CAP theorem. It's about one of the most
important choices you need to make when designing a distributed system and owes its
name to the three properties a distributed system can have. They are as follows:

¢ Consistency: Every read would get you the data after the most recent write (or
an error).

e Availability: Every request will get a non-error response (without the guarantee
that you'll get the most recent data).

e Partition tolerance: Even if a network failure occurs between two nodes, the
system as a whole will continue working.

In essence, the theorem states that you can pick at most two of those three properties for a
distributed system.

As long as the system operates properly, it looks like all three of the properties can be
satisfied. However, as we know from looking at the fallacies, the network is unreliable, so
partitions will occur. In such cases, a distributed system should still operate properly. This
means the theorem actually makes you choose between delivering partition tolerance and
consistency (that is CP), or partition tolerance and availability (that is AP). Usually, the
latter is the better choice. If you want to choose CA, you have to remove the network
entirely and be left with a single-node system.

If under a partition, you decide to deliver consistency, you will have to either return an
error or risk timeouts when waiting for the data to be consistent. If you choose availability
over consistency, you risk returning stale data — the latest writes might be unable to
propagate across the partition.

[101]

Architectural and System Design Chapter 4

Both those approaches are suited for different needs. If your system requires atomic reads
and writes, for instance, because a customer could lose their money, go with CP. If your
system must continue operating under partitions, or you can allow eventual consistency, go
with AP.

Okay, but what is eventual consistency? Let's discuss the different levels of consistency to
understand this.

In a system offering strong consistency, each write is synchronously propagated. This
means all reads will always see the latest writes, even at the cost of higher latency or lower
availability. This is the type that relational DBMSes offer (based on ACID guarantees) and
is best suited for systems that require transactions.

In a system offering eventual consistency, on the other hand, you only guarantee that after
a write, reads will eventually see the change. Usually, eventually means in a couple of
milliseconds. This is due to the asynchronous nature of data replication in such systems, as
opposed to the synchronous propagation from the previous paragraph. Instead of
providing ACID guarantees, for example, using an RDBMS, here we have BASE semantics,
often provided by NoSQL databases.

For a system to be asynchronous and eventually consistent (as AP systems often are), it's
needed to have a way to solve state conflicts. A common way to do so is to exchange
updates between instances and choose either the first or the last write as the accepted one.

Let's now discuss two related patterns that can help in achieving eventual consistency.

Sagas and compensating transactions

The saga pattern is useful when you need to perform distributed transactions.

Before the microservice era, if you had one host with one database, you could rely on the
database engine to do the transaction for you. With multiple databases on one host, you
could use Two-Phase Commits (2PCs) to do so. With 2PCs, you would have a coordinator,
who would first tell all the databases to prepare, and once they all report being ready, it
would tell them all to commit the transaction.

Now, as each microservice likely has its own database (and it should if you want
scalability), and they're spanned all over your infrastructure, you can no longer rely on
simple transactions and 2PCs (losing this ability often means you no longer want an
RDBMS, as NoSQL databases can be much faster).

[102]

Architectural and System Design Chapter 4

Instead, you can use the saga pattern. Let's demonstrate it in an example.

Imagine you want to create an online warehouse that tracks how much supply it has and
allows payment by credit cards. To process an order, above all other services, you need
three: one for processing the order, one for reserving the supplies, and one for charging the
card.

Now, there are two ways the saga pattern can be implemented: choreography-based (also
called event-based) and orchestration-based (also called command-based).

Choreography-based sagas

In the first case, the first part of the saga would be the order processing service sending an
event to the supply service. This one would do its part and send another event to the
payment service. The payment service would then send yet another event back to the order
service. This would complete the transaction (the saga), and the order could now be
happily shipped.

If the order service would want to track the state of the transaction, it would simply need to
listen to all those events as well.

Of course, sometimes the order would be impossible to complete, and a rollback would
need to happen. In this case, each step of the saga would need to be rolled back separately
and carefully, as other transactions could run in parallel, for example, modifying the supply
state. Such rollbacks are called compensating transactions.

This way of implementing the saga pattern is pretty straightforward, but if there any many
dependencies between the involved services it might be better to use the orchestration
approach. Speaking of which, let's now say a few words about this second approach to
sagas.

Orchestration-based sagas

In this case, we'll need a message broker to handle communication between our services,
and an orchestrator that would coordinate the saga. Our order service would send a request
to the orchestrator, which would then send commands to both the supply and payment
services. Each of those would then do their part and send replies back to the orchestrator,
through a reply channel available at the broker.

In this scenario, the orchestrator has all the logic needed to, well, orchestrate the
transaction, and the services themselves don't need to be aware of any other services taking
part in the saga.

[103]

Architectural and System Design Chapter 4

If the orchestrator is sent a message that one of the services failed, for example, if the credit
card has expired, it would then need to start the rollback. In our case, it would again use
the broker to send an appropriate rollback command to specific services.

Okay, that's enough about eventual consistency for now. Let's now switch to other topics
related to availability.

Making your system fault tolerant and
available

Availability and fault tolerance are software qualities that are at least somewhat important
for every architecture. What's the point of creating a software system if the system can't be
reached? In this section, we'll learn what exactly those terms mean and a few techniques to
provide them in your solutions.

Calculating your system's availability

Availability is the percentage of the time that a system is up, functional, and reachable.
Crashes, network failures, or extremely high load (for example, from a DDoS attack) that
prevents the system from responding can all affect its availability.

Usually, it's a good idea to strive for as high a level of availability as possible. You may
stumble upon the term counting the nines, as availability is often specified as 99% (two
nines), 99.9% (three), and so on. Each additional nine is much harder to obtain, so be careful
when making promises. Take a look at the following table to see how much downtime you
could afford if you specified it on a monthly basis:

Downtime/month Uptime
7 hours 18 minutes 99% (“two nines”)
43 minutes 48 seconds 99.9% (“three nines”)
4 minutes 22.8 seconds 99.99% (“four nines”)
26.28 seconds 99.999% (“five nines”)
2.628 seconds 99.9999% (“six nines”)
262.8 ms 99.99999% (“seven nines”)
26.28 ms 99.999999% (“eight nines”)
2.628 ms 99.9999999% (“nine nines”)

[104]

Architectural and System Design Chapter 4

A common practice for cloud applications is to provide a Service-Level Agreement (SLA),
which specifies how much downtime can occur per a given period of time (for example, a
year). An SLA for your cloud service will strongly depend on the SLAs of the cloud services
you build upon.

To calculate a compound availability between two services that need to cooperate, you
should just multiply their uptimes. This means if you have two services with 99.99%
availability, their compound availability will be 99.99% * 99.99% = 99.98%. To calculate the
availability of redundant services (such as two independent regions), you should multiply
their unavailability. For instance, if two regions have 99.99% availability, their total
unavailability will be (100% — 99.99%) * (100% — 99.99%) = 0.01% * 0.01% = 0.0001%, so their
compound availability is 99.9999%.

Unfortunately, it's impossible to provide 100% availability. Failures do occur from time to
time, so let's learn how to make your system tolerate them.

Building fault-tolerant systems

Fault tolerance is a system's ability to detect such failures and to handle them gracefully. It's
essential that your cloud-based services are resilient, as due to the nature of the cloud,
many different things can suddenly go south. Good fault tolerance can help your service's
availability.

Different types of issues require different handling: from prevention, through detection, to
minimizing the impact. Let's start with common ways to avoid having a single point of
failure.

Redundancy

One of the most basic preventions is introducing redundancy. Similar to how you can have
a spare tire for your car, you can have a backup service that takes over when your primary
server goes down. This stepping-in is also known as failover.

How does the backup server know when to step in? One way to implement this is by using
the heartbeat mechanism described in the Detecting faults section.

To make the switch faster, you can send all the messages that are going into the primary
server also to the backup one. This is called a hot standby, as opposed to a cold one —
initializing from zero. A good idea in such a case is to stay one message behind, so if a
poisoned message kills the primary server, the backup one can simply reject it.

[105]

Architectural and System Design Chapter 4

The preceding mechanism is called an active-passive (or master-slave) failover, as the
backup server doesn't handle incoming traffic. If it did, we would have an active-active (or
master-master) failover. For more on active-active architectures, refer to the last link in the
Further reading section.

Be sure you don't lose any data when the failover happens. Using a message queue with
backing storage may help with this.

Leader election

It's also important for both the servers to know which one is which — if both start behaving
as primary instances, you'll likely be in trouble. Choosing the primary server is called the
leader election pattern. There are a few ways to do so, for example, by introducing a third-
party arbiter, by racing to take exclusive ownership of a shared resource, by choosing the
instance with the lowest rank, or by using algorithms such as bully election or token ring
election.

Leader election is also an essential part of the next related concept: achieving consensus.

Consensus

If you want your system to operate even when network partitions happen or some
instances of your service experience faults, you need a way for your<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>