

Software Architecture
with C++

Design modern systems using effective architecture
concepts, design patterns, and techniques with C++20

Adrian Ostrowski
Piotr Gaczkowski

BIRMINGHAM - MUMBAI

Software Architecture with C++
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Richa Tripathi
Senior Editor: Rohit Singh
Content Development Editor: Kinnari Chohan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Aparna Bhagat

First published: April 2021

Production reference: 2210421

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83855-459-0

www.packt.com

http://www.packt.com

To Agnieszka, for all her love and support
To Mateusz, for being a great mentor

To my parents, for sparking the curiosity in me
To my friends, for not being hidden and for all they do

– Adrian Ostrowski

To Emilia, who tolerated me when I was writing this book; my parents, who encouraged me to
learn coding; the mastermind group members who cheered me on in this journey; Hackerspace

Trójmiasto, for positive vibes; IOD, for reminding me that I love writing; 255, for the workouts;
and all the friends who shared the journey with me. Love you!

– Piotr Gaczkowski

Contributors

About the authors
Adrian Ostrowski is a modern C++ enthusiast interested in the development of both the
C++ language itself and the high-quality code written in it. A lifelong learner with over a
decade of experience in the IT industry and more than 8 years of experience with C++
specifically, he's always eager to share his knowledge. His past projects range from parallel
computing, through fiber networking, to working on a commodity exchange's trading
system. Currently, he's one of the architects of Intel and Habana's integration with machine
learning frameworks.

In his spare time, Adrian used to promote music bands together with Piotr and has learned
how to fly a glider. Currently, he likes riding his bicycle, going to music events, and
browsing memes.

Piotr Gaczkowski has more than 10 years of experience in programming and practicing
DevOps and uses his skills to improve people's lives. He likes building simple solutions to
human problems, organizing cultural events, and teaching fellow professionals. Piotr is
keen on automating boring activities and using his experience to share knowledge by
conducting courses and writing articles about personal growth and remote work.

He has worked in the IT industry both in full-time positions and as a freelancer, but his true
passion is music. When not making his skills useful at work, you can find him building
communities.

About the reviewer
Andrey Gavrilin is a senior software engineer working for an international company that
provides treasury management cloud solutions. He has an MSc degree in engineering
(industrial automation) and has worked in different areas such as accounting and staffing,
road data bank, web and Linux distribution development, and fintech. His interests include
mathematics, electronics, embedded systems, full-stack web development, retro gaming,
and retro programming.

Table of Contents
Preface 1

Section 1: Concepts and Components of Software
Architecture
Chapter 1: Importance of Software Architecture and Principles of Great
Design 7

Technical requirements 8
Understanding software architecture 8

Different ways to look at architecture 9
Learning the importance of proper architecture 9

Software decay 10
Accidental architecture 10

Exploring the fundamentals of good architecture 10
Architecture context 11
Stakeholders 11
Business and technical environments 11

Developing architecture using Agile principles 12
Domain-driven design 13

The philosophy of C++ 14
Following the SOLID and DRY principles 17

Single responsibility principle 17
Open-closed principle 18
Liskov substitution principle 19
Interface segregation principle 20
Dependency inversion principle 21
The DRY rule 25

Coupling and cohesion 26
Coupling 26
Cohesion 27

Summary 30
Questions 30
Further reading 30

Chapter 2: Architectural Styles 31
Technical requirements 31
Deciding between stateful and stateless approaches 32

Stateless and stateful services 34

Table of Contents

[ii]

Understanding monoliths—why they should be avoided, and
recognizing exceptions 36
Understanding services and microservices 37

Microservices 38
Benefits and disadvantages of microservices 38
Characteristics of microservices 39
Microservices and other architectural styles 41
Scaling microservices 42
Transitioning to microservices 42

Exploring event-based architecture 42
Common event-based topologies 43
Event sourcing 44

Understanding layered architecture 46
Backends for Frontends 48

Learning module-based architecture 50
Summary 50
Questions 51
Further reading 51

Chapter 3: Functional and Nonfunctional Requirements 52
Technical requirements documentation from sources, you must
have 53
Understanding the types of requirements 53

Functional requirements 53
Nonfunctional requirements 54

Quality attributes 54
Constraints 55

Recognizing architecturally significant requirements 55
Indicators of architectural significance 56
Hindrances in recognizing ASRs and how to deal with them 57

Gathering requirements from various sources 58
Knowing the context 58
Knowing existing documentation 59
Knowing your stakeholders 60
Gathering requirements from stakeholders 60

Documenting requirements 61
Documenting the context 62
Documenting the scope 62
Documenting functional requirements 63
Documenting nonfunctional requirements 64
Managing the version history of your documentation 64
Documenting requirements in Agile projects 65
Other sections 66

Documenting architecture 66
Understanding the 4+1 model 67

Table of Contents

[iii]

Understanding the C4 model 72
Documenting architecture in Agile projects 76

Choosing the right views to document 76
Functional view 77
Information view 78
Concurrency view 79
Development view 79
Deployment and operational views 80

Generating documentation 81
Generating requirements documentation 82
Generating diagrams from code 82
Generating (API) documentation from code 83

Summary 90
Questions 90
Further reading 90

Section 2: The Design and Development of
C++ Software
Chapter 4: Architectural and System Design 92

Technical requirements 93
Understanding the peculiarities of distributed systems 93

Different service models and when to use them 93
On-premises model 94
Infrastructure as a Service (IaaS) model 94
Platform as a Service (PaaS) model 95
Software as a Service (SaaS) model 96
Function as a Service (FaaS) model and serverless architecture 96

Avoiding the fallacies of distributed computing 97
The network is reliable 97
Latency is zero 98
Bandwidth is infinite 98
The network is secure 98
Topology doesn't change 99
There is one administrator 99
Transport cost is zero 100
The network is homogeneous 100

CAP theorem and eventual consistency 101
Sagas and compensating transactions 102

Choreography-based sagas 103
Orchestration-based sagas 103

Making your system fault tolerant and available 104
Calculating your system's availability 104
Building fault-tolerant systems 105

Redundancy 105
Leader election 106
Consensus 106

Table of Contents

[iv]

Replication 106
Master-slave replication 107
Multi-master replication 107

Queue-based load leveling 107
Back pressure 108

Detecting faults 109
Sidecar design pattern 109
Heartbeat mechanism 109
Leaky bucket counter 110

Minimizing the impact of faults 110
Retrying the call 110
Avoiding cascading failures 111

Circuit breaker 111
Bulkhead 111

Geodes 112
Integrating your system 112

Pipes and filters pattern 112
Competing consumers 113
Transitioning from legacy systems 114

Anti-corruption layer 114
Strangler pattern 114

Achieving performance at scale 115
CQRS and event sourcing 116

Command-query responsibility segregation 116
Command-query separation 118
Event sourcing 119

Caching 119
Updating caches 120

Write-through approach 120
Write-behind approach 121
Cache-aside 121

Deploying your system 121
The sidecar pattern 122

Deploying a service with tracing and a reverse proxy using Envoy 122
Zero-downtime deployments 126

Blue-green deployments 127
Canary releases 127

External configuration store 128
Managing your APIs 129

API gateways 130
Summary 131
Questions 131
Further reading 132

Chapter 5: Leveraging C++ Language Features 133
Technical requirements 134
Designing great APIs 134

Leveraging RAII 134

Table of Contents

[v]

Specifying the interfaces of containers in C++ 135
Using pointers in interfaces 138
Specifying preconditions and postconditions 140
Leveraging inline namespaces 140
Leveraging std::optional 141

Optional function parameters 142
Optional function return values 142
Optional class members 143

Writing declarative code 143
Showcasing a featured items gallery 145
Introducing standard ranges 150

Reducing memory overhead and increasing performance using ranges 152
Moving computations at compile time 153

Helping the compiler help you by using const 155
Leveraging the power of safe types 156

Constraining template parameters 156
Writing modular C++ 160
Summary 163
Questions 164
Further reading 164

Chapter 6: Design Patterns and C++ 165
Technical requirements 165
Writing idiomatic C++ 166

Automating scope exit actions using RAII guards 166
Managing copyability and movability 167

Implementing non-copyable types 167
Adhering to the rules of three and five 168
Adhering to the rule of zero 168

Using hidden friends 169
Providing exception safety using the copy-and-swap idiom 171
Writing niebloids 172
Policy-based design idiom 175

Curiously recurring template pattern 177
Knowing when to use dynamic versus static polymorphism 177
Implementing static polymorphism 177
Interlude – using type erasure 180

Creating objects 182
Using factories 183

Using factory methods 183
Using factory functions 184
Choosing the return type of a factory 185
Using factory classes 186

Using builders 188
Building with composites and prototypes 191

Tracking state and visiting objects in C++ 192

Table of Contents

[vi]

Dealing with memory efficiently 196
Reducing dynamic allocations using SSO/SOO 196
Saving memory by herding COWs 197
Leveraging polymorphic allocators 197

Using memory arenas 198
Using the monotonic memory resource 199
Using pool resources 199
Writing your own memory resource 200
Ensuring there are no unexpected allocations 201
Winking out memory 201

Summary 203
Questions 203
Further reading 203

Chapter 7: Building and Packaging 205
Technical requirements 205
Getting the most out of compilers 206

Using multiple compilers 206
Reducing build times 207

Using a fast compiler 207
Rethinking templates 207
Leveraging tools 209

Finding potential code issues 210
Using compiler-centric tools 212

Abstracting the build process 213
Introducing CMake 213

Creating CMake projects 214
Distinguishing between CMake directory variables 214
Specifying CMake targets 215
Specifying the output directories 217

Using generator expressions 217
Using external modules 219

Fetching dependencies 219
Using find scripts 221
Writing find scripts 222
Using the Conan package manager 225

Preparing Conan profiles 225
Specifying Conan dependencies 225
Installing Conan dependencies 226
Using Conan targets from CMake 227

Adding tests 228
Reusing quality code 229

Installing 230
Exporting 233
Using CPack 234

Packaging using Conan 236
Creating the conanfile.py script 237

Table of Contents

[vii]

Testing our Conan package 239
Adding Conan packaging code to our CMakeLists 241

Summary 242
Questions 243
Further reading 243

Section 3: Architectural Quality Attributes
Chapter 8: Writing Testable Code 245

Technical requirements 245
Why do you test code? 246

The testing pyramid 246
Non-functional testing 248
Regression testing 249
Root cause analysis 249
The groundwork for further improvement 250

Introducing testing frameworks 252
GTest examples 252
Catch2 examples 252
CppUnit examples 253
Doctest examples 255
Testing compile-time code 255

Understanding mocks and fakes 256
Different test doubles 256
Other uses for test doubles 257
Writing test doubles 257

GoogleMock example 257
Trompeloeil example 259

Test-driven class design 261
When tests and class design clash 261
Defensive programming 262
The boring refrain – write your tests first 263

Automating tests for continuous integration/continuous
deployment 264

Testing the infrastructure 265
Testing with Serverspec 266
Testing with Testinfra 266
Testing with Goss 267

Summary 267
Questions 268
Further reading 268

Chapter 9: Continuous Integration and Continuous Deployment 269
Technical requirements 270
Understanding CI 270

Table of Contents

[viii]

Release early, release often 270
Merits of CI 271
Gating mechanism 272
Implementing the pipeline with GitLab 272

Reviewing code changes 274
Automated gating mechanisms 274
Code review – the manual gating mechanism 275
Different approaches to a code review 276
Using pull requests (merge requests) for a code review 277

Exploring test-driven automation 277
Behavior-driven development 278
Writing tests for CI 280
Continuous testing 281

Managing deployment as code 282
Using Ansible 282
How Ansible fits with the CI/CD pipeline 283
Using components to create deployment code 284

Building deployment code 285
Building a CD pipeline 285

Continuous deployment and continuous delivery 286
Building an example CD pipeline 286

Using immutable infrastructure 288
What is immutable infrastructure? 289
The benefits of immutable infrastructure 290
Building instance images with Packer 290
Orchestrating the infrastructure with Terraform 292

Summary 294
Questions 294
Further reading 295

Chapter 10: Security in Code and Deployment 296
Technical requirements 296
Checking the code security 297

Security-conscious design 297
Making interfaces easy to use and hard to misuse 298
Enabling automatic resource management 299
Drawbacks of concurrency and how to deal with it 300

Secure coding, the guidelines, and GSL 302
Defensive coding, validating everything 303
The most common vulnerabilities 304

Checking whether the dependencies are secure 306
Common Vulnerabilities and Exposures 306
Automated scanners 307
Automated dependency upgrade management 307

Hardening your code 308

Table of Contents

[ix]

Security-oriented memory allocator 308
Automated checks 309

Compiler warnings 309
Static analysis 310
Dynamic analysis 311

Valgrind and Application Verifier 312
Sanitizers 312
Fuzz-testing 313

Process isolation and sandboxing 313
Hardening your environment 314

Static versus dynamic linking 314
Address space layout randomization 315
DevSecOps 316

Summary 316
Questions 317
Further reading 317

Chapter 11: Performance 318
Technical requirements 318
Measuring performance 319

Performing accurate and meaningful measurements 319
Leveraging different types of measuring tools 320
Using microbenchmarks 321

Setting up Google Benchmark 321
Writing your first microbenchmark 322
Passing arbitrary arguments to a microbenchmark 325
Passing numeric arguments to a microbenchmark 326

Generating the passed arguments programmatically 327
Choosing what to microbenchmark and optimize 329
Creating performance tests using benchmarks 329

Profiling 330
Choosing the type of profiler to use 330
Preparing the profiler and processing the results 331
Analyzing the results 331

Tracing 332
Correlation IDs 332

Helping the compiler generate performant code 333
Optimizing whole programs 333
Optimizing based on real-world usage patterns 334
Writing cache-friendly code 334
Designing your code with data in mind 335

Parallelizing computations 336
Understanding the differences between threads and processes 337
Using the standard parallel algorithms 338
Parallelizing computations using OpenMP and MPI 338

Using coroutines 339
Distinguishing between cppcoro utilities 341

Table of Contents

[x]

Looking under the hood of awaitables and coroutines 343
Summary 347
Questions 348
Further reading 348

Section 4: Cloud-Native Design Principles
Chapter 12: Service-Oriented Architecture 350

Technical requirements 350
Understanding Service-Oriented Arcitecture 351

Implementation approaches 351
Enterprise Service Bus 351
Web services 353

Benefits and disadvantages of web services 354
Messaging and streaming 354

Message queues 354
Message brokers 355

Cloud computing 356
Microservices 357

Benefits of Service-Oriented Architecture 358
Challenges with SOA 359

Adopting messaging principles 360
Low-overhead messaging systems 361

MQTT 361
ZeroMQ 362

Brokered messaging systems 362
Using web services 363

Tools for debugging web services 363
XML-based web services 364

XML-RPC 364
Relationship to SOAP 364

SOAP 365
WSDL 366
UDDI 366
SOAP libraries 367

JSON-based web services 367
JSON-RPC 368

REpresentational State Transfer (REST) 369
Description languages 370

OpenAPI 370
RAML 372
API Blueprint 373
RSDL 373

Hypermedia as the Engine of Application State 374
REST in C++ 376

GraphQL 377
Leveraging managed services and cloud providers 377

Cloud computing as an extension of SOA 378
Using API calls directly 378

Table of Contents

[xi]

Using API calls through a CLI tool 379
Using third-party tools that interact with the Cloud API 380
Accessing the cloud API 381
Using the cloud CLI 382
Using tools that interact with the Cloud API 382

Cloud-native architecture 383
Summary 383
Questions 383
Further reading 384

Chapter 13: Designing Microservices 385
Technical requirements 385
Diving into microservices 385

The benefits of microservices 386
Modularity 386
Scalability 386
Flexibility 387
Integration with legacy systems 387
Distributed development 388

Disadvantages of microservices 388
Reliance on a mature DevOps approach 388
Harder to debug 389
Additional overhead 389

Design patterns for microservices 389
Decomposition patterns 389

Decomposition by business capability 390
Decomposition by subdomain 390

Database per service pattern 390
Deployment strategies 391

Single service per host 391
Multiple services per host 391

Observability patterns 391
Log aggregation 392
Application metrics 392
Distributed tracing 392
Health check APIs 392

Building microservices 393
Outsourcing memory management 393

Memcached 394
Redis 394
Which in-memory cache is better? 396

Outsourcing storage 396
Outsourcing computing 397

Observing microservices 398
Logging 398

Logging with microservices 398
Logging in C++ with spdlog 399
Unified logging layer 399

Logstash 400

Table of Contents

[xii]

Filebeat 400
Fluentd 400
Fluent Bit 401
Vector 401

Log aggregation 401
Elasticsearch 402
Loki 402

Log visualization 402
Kibana 402
Grafana 403

Monitoring 403
Tracing 404

OpenTracing 404
Jaeger 405
OpenZipkin 405

Integrated observability solutions 405
Connecting microservices 405

Application programming interfaces (APIs) 406
Remote procedure calls 406

Apache Thrift 406
gRPC 407

Scaling microservices 409
Scaling a single service per host deployment 409
Scaling multiple services per host deployment 410

Summary 410
Questions 411
Further reading 411

Chapter 14: Containers 412
Technical requirements 412
Reintroducing containers 413

Exploring the container types 414
The rise of microservices 414
Choosing when to use containers 415

The benefits of containers 415
The disadvantages of containers 416

Building containers 417
Container images explained 417
Using Dockerfiles to build an application 418
Naming and distributing images 419
Compiled applications and containers 420
Targeting multiple architectures with manifests 423
Alternative ways to build application containers 425

Buildah 425
Ansible-bender 425
Others 426

Integrating containers with CMake 427
Configuring the Dockerfile with CMake 427

Table of Contents

[xiii]

Integrating containers with CMake 428
Testing and integrating containers 429

Runtime libraries inside containers 429
Alternative container runtimes 431

Understanding container orchestration 431
Self-hosted solutions 432

Kubernetes 432
Docker Swarm 435
Nomad 436
OpenShift 438

Managed services 438
AWS ECS 439
AWS Fargate 439
Azure Service Fabric 439

Summary 440
Questions 440
Further reading 441

Chapter 15: Cloud-Native Design 442
Technical requirements 442
Understanding cloud-native 443

Cloud-Native Computing Foundation 443
Cloud as an operating system 443

Load balancing and service discovery 444
Reverse proxies 445
Service Discovery 445

Using Kubernetes to orchestrate cloud-native workloads 446
Kubernetes structure 446

Control plane 447
Worker nodes 447

Possible approaches to deploying Kubernetes 448
Understanding the Kubernetes concepts 448

Declarative approach 449
Kubernetes networking 450

Container-to-container communication 451
Pod-to-pod communication 451
Pod-to-service communication 451
External-to-internal communication 451

When is using Kubernetes a good idea? 451
Observability in distributed systems 452

How tracing differs from logging 453
Choosing a tracing solution 454

Jaeger and OpenTracing 454
Zipkin 455

Instrumenting an application with OpenTracing 456
Connecting services with a service mesh 457

Introducing a service mesh 458

Table of Contents

[xiv]

Service mesh solutions 459
Istio 459

Envoy 459
Linkerd 460
Consul service mesh 460

Going GitOps 461
The principles of GitOps 461

Declarative description 461
The system's state versioned in Git 462
Auditable 462
Integrated with established components 462
Configuration drift prevention 463

The benefits of GitOps 463
Increased productivity 463
Better developer experience 464
Higher stability and reliability 464
Improved security 464

GitOps tools 465
FluxCD 465
ArgoCD 465
Jenkins X 466

Summary 466
Questions 466
Further reading 467

Appendix A 468

Assessments 472

About Packt 485

Other Books You May Enjoy 486

Index 489

Preface
Modern C++ allows you to write high-performing applications in a high-level language
without sacrificing readability and maintainability. There's more to software architecture
than just language, though. We're going to show you how to design and build applications
that are robust and scalable and that perform well.

Complete with step-by-step explanations of essential concepts, practical examples, and self-
assessment questions, you will begin by understanding the importance of architecture,
looking at a case study of an actual application.

You'll learn how to use established design patterns at the level of a single application,
exploring how to make your applications robust, secure, performant, and maintainable.
You'll then build higher-level services that connect multiple single applications using
patterns such as service-oriented architecture, microservices, containers, and serverless
technology.

By the end of this book, you will be able to build distributed services using modern C++
and associated tools to deliver solutions that your clients will recommend.

Are you interested in becoming a software architect or looking to learn more about modern
trends in architecture? If so, this book should help you!

Who this book is for
Developers working with modern C++ will be able to put their knowledge to work with this
practical guide to software architecture. The book takes a hands-on approach to
implementation and associated methodologies that will have you up and running and
productive in no time.

What this book covers
Chapter 1, Importance of Software Architecture and Principles of Great Design, looks at why we
design software in the first place.

Chapter 2, Architectural Styles, covers the different approaches you can take in terms of
architecture.

Preface

[2]

Chapter 3, Functional and Nonfunctional Requirements, explores understanding the needs of
clients.

Chapter 4, Architectural and System Design, is all about creating effective software solutions.

Chapter 5, Leveraging C++ Language Features, gets you speaking native C++.

Chapter 6, Design Patterns and C++, focuses on modern C++ idioms and useful code
constructs.

Chapter 7, Building and Packaging, is about getting code to production.

Chapter 8, Writing Testable Code, teaches you how to find bugs before the clients do.

Chapter 9, Continuous Integration and Continuous Deployment, introduces the modern way of
automating software releases.

Chapter 10, Security in Code and Deployment, is where you will learn how to make sure it's
hard to break your systems.

Chapter 11, Performance, looks at performance (of course!). C++ should be fast – can it be
even faster?

Chapter 12, Service-Oriented Architecture, sees you building systems based on services.

Chapter 13, Designing Microservices, focuses on doing one thing only – designing
microservices.

Chapter 14, Containers, gives you a unified interface to build, package, and run
applications.

Chapter 15, Cloud-Native Design, goes beyond traditional infrastructure to explore cloud-
native design.

To get the most out of this book
The code examples in this book are mostly written for GCC 10. They should work with
Clang or Microsoft Visual C++ as well, though certain features from C++20 may be missing
in older versions of the compilers. To get a development environment as close to the
authors' as possible, we advise you to use Nix (https://nixos.org/download.html) and
direnv (https://direnv. net/) in a Linux-like environment. These two tools should
configure the compilers and supporting packages for you if you run direnv allow in a
directory containing examples.

https://nixos.org/download.html
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/
https://direnv.net/

Preface

[3]

Without Nix and direnv, we can't guarantee that the examples will work correctly. If you're
on macOS, Nix should work just fine. If you're on Windows, the Windows Subsystem for
Linux 2 is a great way to have a Linux development environment with Nix.

To install both tools, you have to run the following:

Install Nix
curl -L https://nixos.org/nix/install | sh
Configure Nix in the current shell
. $HOME/.nix-profile/etc/profile.d/nix.sh
Install direnv
nix-env -i direnv
Download the code examples
git clone
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Cpp.
git
Change directory to the one with examples
cd Hands-On-Software-Architecture-with-Cpp
Allow direnv and Nix to manage your development environment
direnv allow

After executing the preceding command, Nix should download and install all the necessary
dependencies. This might take a while but it helps to ensure we're using exactly the same
tools.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https:/ /github.
com/PacktPublishing/ Software- Architecture- with- Cpp. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781838554590_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The first two fields (openapi and info) are metadata describing the document."

A block of code is set as follows:

using namespace CppUnit;
using namespace std;

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838554590_ColorImages.pdf

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Concepts and
Components of Software

Architecture
This section introduces you to the basics of software architecture, demonstrating effective
approaches to its design and documentation.

This section contains the following chapters:

Chapter 1, Importance of Software Architecture and Principles of Great Design
Chapter 2, Architectural Styles
Chapter 3, Functional and Nonfunctional Requirements

1
Importance of Software

Architecture and Principles of
Great Design

The purpose of this introductory chapter is to show what role software architecture plays in
software development. It will focus on the key aspects to keep in mind when designing the
architecture of a C++ solution. We'll discuss how to design efficient code with convenient
and functional interfaces. We'll also introduce a domain-driven approach for both code and
architecture.

In this chapter, we'll cover the following topics:

Understanding software architecture
Learning the importance of proper architecture
Exploring the fundamentals of good architecture
Developing architecture using Agile principles
The philosophy of C++
Following the SOLID and DRY principles
Domain-driven design
Coupling and cohesion

Importance of Software Architecture and Principles of Great Design Chapter 1

[8]

Technical requirements
To play with the code from this chapter, you'll need the following:

A Git client for checking out the repositories given shortly.
A C++20-compliant compiler to compile all the snippets. Most of them are
written in C++11/14/17, but concept support is required to experiment with the
few that touch the subject.
GitHub link for code snippets: https:/ /github. com/ PacktPublishing/
Software- Architecture- with- Cpp/tree/ master/ Chapter01.
GitHub link for GSL: https:/ /github. com/Microsoft/ GSL

Understanding software architecture
Let's begin by defining what software architecture actually is. When you create an
application, library, or any software component, you need to think about how the elements
you write will look and how they will interact with each other. In other words, you're
designing them and their relations with their surroundings. Just like with urban
architecture, it's important to think about the bigger picture to not end up in a haphazard
state. On a small scale, every single building looks okay, but they don't combine into a
sensible bigger picture – they just don't fit together well. This is what's called accidental
architecture and it is one of the outcomes you want to avoid. However, keep in mind that
whether you're putting your thoughts into it or not, when writing software you are creating
an architecture.

So, what exactly should you be creating if you want to mindfully define the architecture of
your solution? The Software Engineering Institute has this to say:

The software architecture of a system is the set of structures needed to reason about the
system, which comprise software elements, relations among them, and properties of both.

This means that in order to define an architecture thoroughly, we should think about it
from a few perspectives instead of just hopping into writing code.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter01
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL

Importance of Software Architecture and Principles of Great Design Chapter 1

[9]

Different ways to look at architecture
There are several scopes that can be used to look at architecture:

Enterprise architecture deals with the whole company or even a group of
companies. It takes a holistic approach and is concerned about the strategy of
whole enterprises. When thinking about enterprise architecture, you should be
looking at how all the systems in a company behave and cooperate with each
other. It's concerned about the alignment between business and IT.
Solution architecture is less abstract than its enterprise counterpart. It stands
somewhere in the middle between enterprise and software architecture. Usually,
solution architecture is concerned with one specific system and the way it
interacts with its surroundings. A solution architect needs to come up with a way
to fulfill a specific business need, usually by designing a whole software system
or modifying existing ones.
Software architecture is even more concrete than solution architecture. It
concentrates on a specific project, the technologies it uses, and how it interacts
with other projects. A software architect is interested in the internals of the
project's components.
Infrastructure architecture is, as the name suggests, concerned about the
infrastructure that the software will use. It defines the deployment environment
and strategy, how the application will scale, failover handling, site reliability, and
other infrastructure-oriented aspects.

Solution architecture is based on both software and infrastructure architectures to satisfy
the business requirements. In the following sections, we will talk about both those aspects
to prepare you for both small- and large-scale architecture design. Before we jump into that,
let's also answer one fundamental question: why is architecture important?

Learning the importance of proper
architecture
Actually, a better question would be: why is caring about your architecture important? As
we mentioned earlier, regardless of whether you put conscious effort into building it or not,
you will end up with some kind of architecture. If after several months or even years of
development you still want your software to retain its qualities, you need to take some
steps earlier in the process. If you won't think about your architecture, chances are it won't
ever present the required qualities.

Importance of Software Architecture and Principles of Great Design Chapter 1

[10]

So, in order for your product to meet the business requirements and attributes such as
performance, maintainability, scalability, or others, you need to take care of its architecture,
and it is best if you do it as early as you can in the process. Let's now discuss two things
that each good architect wants to protect their projects from.

Software decay
Even after you did the initial work and had a specific architecture in mind, you need to
continuously monitor how the system evolves and whether it still aligns with its users'
needs, as those may also change during the development and lifetime of your software.
Software decay, sometimes also called erosion, occurs when the implementation decisions
don't correspond to the planned architecture. All such differences should be treated as
technical debt.

Accidental architecture
Failing to track if the development adheres to the chosen architecture or failing to
intentionally plan how the architecture should look will often result in a so-called
accidental architecture, and it can happen regardless of applying best practices in other
areas, such as testing or having any specific development culture.

There are several anti-patterns that suggest your architecture is accidental. Code
resembling a big ball of mud is the most obvious one. Having god objects is another
important sign of this. Generally speaking, if your software is getting tightly coupled,
perhaps with circular dependencies, but wasn't like that in the first place, it's an important
signal to put more conscious effort into how the architecture looks.

Let's now describe what an architect must understand to deliver a viable solution.

Exploring the fundamentals of good
architecture
It's important to know how to recognize a good architecture from a bad one, but it's not an
easy task. Recognizing anti-patterns is an important aspect of it, but for an architecture to
be good, primarily it has to support delivering what's expected from the software, whether
it's about functional requirements, attributes of the solution, or dealing with the constraints
coming from various places. Many of those can be easily derived from the architecture
context.

Importance of Software Architecture and Principles of Great Design Chapter 1

[11]

Architecture context
The context is what an architect takes into account when designing a solid solution. It
comprises requirements, assumptions, and constraints, which can come from the
stakeholders, as well as the business and technical environments. It also influences the
stakeholders and the environments, for example, by allowing the company to enter a new
market segment.

Stakeholders
Stakeholders are all the people that are somehow involved with the product. Those can be
your customers, the users of your system, or the management. Communication is a key skill
for every architect and properly managing your stakeholder's needs is key to delivering
what they expected and in a way they wanted.

Different things are important to different groups of stakeholders, so try to gather input
from all those groups.

Your customers will probably care about the cost of writing and running the software, the
functionality it delivers, its lifetime, time to market, and the quality of your solution.

The users of your system can be divided into two groups: end users and administrators.
The first ones usually care about things such as the usability, user experience, and
performance of the software. For the latter, more important aspects are user management,
system configuration, security, backups, and recovery.

Finally, things that could matter for stakeholders working in management are keeping the
development costs low, achieving business goals, being on track with the development
schedule, and maintaining product quality.

Business and technical environments
Architecture can be influenced by the business side of the company. Important related
aspects are the time to market, the rollout schedule, the organizational structure, utilization
of the workforce, and investment in existing assets.

Importance of Software Architecture and Principles of Great Design Chapter 1

[12]

By technical environment, we mean the technologies already used in a company or those
that are for any reason required to be part of the solution. Other systems that we need to
integrate with are also a vital part of the technical environment. The technical expertise of
the available software engineers is of importance here, too: the technological decisions an
architect makes can impact staffing the project, and the ratio of junior to senior developers
can influence how a project should be governed. Good architecture should take all of that
into account.

Equipped with all this knowledge, let's now discuss a somewhat controversial topic that
you'll most probably encounter as an architect in your daily work.

Developing architecture using Agile
principles
Seemingly, architecture and Agile development methodologies are in an adversarial
relationship, and there are many myths around this topic. There are a few simple principles
that you should follow in order to develop your product in an Agile way while still caring
about its architecture.

Agile, by nature, is iterative and incremental. This means preparing a big, upfront design is
not an option in an Agile approach to architecture. Instead, a small, but still reasonable
upfront design should be proposed. It's best if it comes with a log of decisions with the
rationale for each of them. This way, if the product vision changes, the architecture can
evolve with it. To support frequent release delivery, the upfront design should then be
updated incrementally. Architecture developed this way is called evolutionary architecture.

Managing architecture doesn't need to mean keeping massive documentation. In fact,
documentation should cover only what's essential as this way it's easier to keep it up to
date. It should be simple and cover only the relevant views of the system.

There's also the myth of the architect as the single source of truth and the ultimate decision-
maker. In Agile environments, it's the teams who are making decisions. Having said that,
it's crucial that the stakeholders are contributing to the decision-making process – after all,
their points of view shape how the solution should look.

An architect should remain part of the development team as often they're bringing strong
technical expertise and years of experience to the table. They should also take part in
making estimations and plan the architecture changes needed before each iteration.

Importance of Software Architecture and Principles of Great Design Chapter 1

[13]

In order for your team to remain Agile, you should think of ways to work efficiently and
only on what's important. A good idea to embrace to achieve those goals is domain-driven
design.

Domain-driven design
Domain-driven design, or DDD for short, is a term introduced by Eric Evans in his book of
the same title. In essence, it's about improving communication between business and
engineering and bringing the developers' attention to the domain model. Basing the
implementation of this model often leads to designs that are easier to understand and
evolve together with the model changes.

What has DDD got to do with Agile? Let's recall a part of the Agile Manifesto:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

— The Agile Manifesto

In order to make the proper design decisions, you must understand the domain first. To do
so, you'll need to talk to people a lot and encourage your developer teams to narrow the
gap between them and business people. The concepts in the code should be named after
entities that are part of ubiquitous language. It's basically the common part of business
experts' jargon and technical experts' jargon. Countless misunderstandings can be caused
by each of these groups using terms that the other understands differently, leading to flaws
in business logic implementations and often subtle bugs. Naming things with care and
using terms agreed by both groups can mean bliss for the project. Having a business
analyst or other business domain experts as part of the team can help a lot here.

If you're modeling a bigger system, it might be hard to make all the terms mean the same to
different teams. This is because each of those teams really operates in a different context.
DDD proposes the use of bounded contexts to deal with this. If you're modeling, say, an e-
commerce system, you might want to think of the terms just in terms of a shopping context,
but upon a closer look, you may discover that the inventory, delivery, and accounting
teams actually all have their own models and terms.

Importance of Software Architecture and Principles of Great Design Chapter 1

[14]

Each of those is a different subdomain of your e-commerce domain. Ideally, each can be
mapped to its own bounded context – a part of your system with its own vocabulary. It's
important to set clear boundaries of such contexts when splitting your solution into smaller
modules. Just like its context, each module has clear responsibilities, its own database
schema, and its own code base. To help communicate between the teams in larger systems,
you might want to introduce a context map, which will show how the terms from different
contexts relate to each other:

Figure 1.1 – Two bounding contexts with the matching terms mapped between them (image from one of Martin Fowler's articles on
DDD: https://martinfowler.com/bliki/BoundedContext.html)

As you now understand some of the important project-management topics, we can switch
to a few more technical ones.

The philosophy of C++
Let's now move closer to the programming language we'll be using the most throughout
this book. C++ is a multi-paradigm language that has been around for a few decades now.
During the years since its inception, it has changed a lot. When C++11 came out, Bjarne
Stroustrup, the creator of the language, said that it felt like a completely new language. The
release of C++20 marks another milestone in the evolution of this beast, bringing a similar
revolution to how we write code. One thing, however, stayed the same during all those
years: the language's philosophy.

Importance of Software Architecture and Principles of Great Design Chapter 1

[15]

In short, it can be summarized by three rules:

There should be no language beneath C++ (except assembly).
You only pay for what you use.
Offer high-level abstractions at low cost (there's a strong aim for zero-cost).

Not paying for what you don't use means that, for example, if you want to have your data
member created on the stack, you can. Many languages allocate their objects on the heap,
but it's not necessary for C++. Allocating on the heap has some cost to it – probably your
allocator will have to lock a mutex for this, which can be a big burden in some types of
applications. The good part is you can easily allocate variables without dynamically
allocating memory each time pretty easily.

High-level abstractions are what differentiate C++ from lower-level languages such as C or
assembly. They allow for expressing ideas and intent directly in the source code, which
plays great with the language's type safety. Consider the following code snippet:

struct Duration {
 int millis_;
};

void example() {
 auto d = Duration{};
 d.millis_ = 100;

 auto timeout = 1; // second
 d.millis_ = timeout; // ouch, we meant 1000 millis but assigned just 1
}

A much better idea would be to leverage the type-safety features offered by the language:

#include <chrono>

using namespace std::literals::chrono_literals;

struct Duration {
 std::chrono::milliseconds millis_;
};

void example() {
 auto d = Duration{};
 // d.millis_ = 100; // compilation error, as 100 could mean anything
 d.millis_ = 100ms; // okay

Importance of Software Architecture and Principles of Great Design Chapter 1

[16]

 auto timeout = 1s; // or std::chrono::seconds(1);
 d.millis_ =
 timeout; // okay, converted automatically to milliseconds
}

The preceding abstraction can save us from mistakes and doesn't cost us anything while
doing so; the assembly generated would be the same as for the first example. That's why it's
called a zero-cost abstraction. Sometimes C++ allows us to use abstractions that actually
result in better code than if they were not used. One example of a language feature that,
when used, could often result in such benefit is coroutines from C++20.

Another great set of abstractions, offered by the standard library, are algorithms. Which of
the following code snippets do you think is easier to read and easier to prove bug-free?
Which expresses the intent better?

// Approach #1
int count_dots(const char *str, std::size_t len) {
 int count = 0;
 for (std::size_t i = 0; i < len; ++i) {
 if (str[i] == '.') count++;
 }
 return count;
}

// Approach #2
int count_dots(std::string_view str) {
 return std::count(std::begin(str), std::end(str), '.');
}

Okay, the second function has a different interface, but even it if was to stay the same, we
could just create std::string_view from the pointer and the length. Since it's such a
lightweight type, it should be optimized away by your compiler.

Using higher-level abstractions leads to simpler, more maintainable code. The C++
language has strived to provide zero-cost abstractions since its inception, so build upon that
instead of redesigning the wheel using lower levels of abstraction.

Speaking of simple and maintainable code, the next section introduces some rules and
heuristics that are invaluable on the path to writing such code.

Importance of Software Architecture and Principles of Great Design Chapter 1

[17]

Following the SOLID and DRY principles
There are many principles to keep in mind when writing code. When writing object-
oriented code, you should be familiar with the quartet of abstraction, encapsulation,
inheritance, and polymorphism. Regardless of whether your writing C++ in a mostly object-
oriented programming manner or not, you should keep in mind the principles behind the
two acronyms: SOLID and DRY.

SOLID is a set of practices that can help you write cleaner and less bug-prone software. It's
an acronym made from the first letters of the five concepts behind it:

Single responsibility principle
Open-closed principle
Liskov substitution principle
Interface segregation
Dependency Inversion

We assume you already have the idea of how those principles relate to object-oriented
programming, but since C++ is not always object-oriented, let's look at how they apply to
different areas.

Some of the examples use dynamic polymorphism, but the same would apply to static
polymorphism. If you're writing performance-oriented code (and you probably are if you
chose C++), you should know that using dynamic polymorphism can be a bad idea in terms
of performance, especially on the hot path. Further on in the book, you'll learn how to write
statically polymorphic classes using the Curiously Recurring Template Pattern (CRTP).

Single responsibility principle
In short, the Single Responsibility Principle (SRP) means each code unit should have
exactly one responsibility. This means writing functions that do one thing only, creating
types that are responsible for a single thing, and creating higher-level components that are
focused on one aspect only.

This means that if your class manages some type of resources, such as file handles, it should
do only that, leaving parsing them, for example, to another type.

Often, if you see a function with "And" in its name, it's violating the SRP and should be
refactored. Another sign is when a function has comments indicating what each section of
the function (sic!) does. Each such section would probably be better off as a distinct
function.

Importance of Software Architecture and Principles of Great Design Chapter 1

[18]

A related topic is the principle of least knowledge. In its essence, it says that no object
should know no more than necessary about other objects, so it doesn't depend on any of
their internals, for example. Applying it leads to more maintainable code with fewer
interdependencies between components.

Open-closed principle
The Open-Closed Principle (OCP) means that code should be open for extension but
closed for modification. Open for extension means that we could extend the list of types the
code supports easily. Closed for modification means existing code shouldn't change, as this
can often cause bugs somewhere else in the system. A great feature of C++ demonstrating
this principle is operator<< of ostream. To extend it so that it supports your custom class,
all you need to do is to write code similar to the following:

std::ostream &operator<<(std::ostream &stream, const MyPair<int, int>
 &mp) {
 stream << mp.firstMember() << ", ";
 stream << mp.secondMember();
 return stream;
}

Note that our implementation of operator<< is a free (non-member) function. You should
prefer those to member functions if possible as it actually helps encapsulation. For more
details on this, consult the article by Scott Meyers in the Further reading section at the end of
this chapter. If you don't want to provide public access to some field that you wish to print
to ostream, you can make operator<< a friend function, like so:

class MyPair {
// ...
 friend std::ostream &operator<<(std::ostream &stream,
 const MyPair &mp);
};
std::ostream &operator<<(std::ostream &stream, const MyPair &mp) {
 stream << mp.first_ << ", ";
 stream << mp.second_ << ", ";
 stream << mp.secretThirdMember_;
 return stream;
}

Note that this definition of OCP is slightly different from the more common one related to
polymorphism. The latter is about creating base classes that can't be modified themselves,
but are open for others to inherit from them.

Importance of Software Architecture and Principles of Great Design Chapter 1

[19]

Speaking of polymorphism, let's move on to the next principle as it is all about using it
correctly.

Liskov substitution principle
In essence, the Liskov Substitution Principle (LSP) states that if a function works with a
pointer or reference to a base object, it must also work with a pointer or reference to any of
its derived objects. This rule is sometimes broken because the techniques we apply in
source code do not always work in real-world abstractions.

A famous example is a square and a rectangle. Mathematically speaking, the former is a
specialization of the latter, so there's an "is a" relationship from one to the other. This
tempts us to create a Square class that inherits from the Rectangle class. So, we could end
up with code like the following:

class Rectangle {
 public:
 virtual ~Rectangle() = default;
 virtual double area() { return width_ * height_; }
 virtual void setWidth(double width) { width_ = width; }
 virtual void setHeight(double height) { height_ = height; }
 private:
 double width_;
 double height_;
};

class Square : public Rectangle {
 public:
 double area() override;
 void setWidth(double width) override;
 void setHeight(double height) override;
};

How should we implement the members of the Square class? If we want to follow the LSP
and save the users of such classes from surprises, we can't: our square would stop being a
square if we called setWidth. We can either stop having a square (not expressible using
the preceding code) or modify the height as well, thus making the square look different
than a rectangle.

If your code violates the LSP, it's likely that you're using an incorrect abstraction. In our
case, Square shouldn't inherit from Rectangle after all. A better approach could be
making the two implement a GeometricFigure interface.

Importance of Software Architecture and Principles of Great Design Chapter 1

[20]

Since we are on the topic of interfaces, let's move on to the next item, which is also related
to them.

Interface segregation principle
The interface segregation principle is just about what its name suggests. It is formulated as
follows:

No client should be forced to depend on methods that it does not use.

That sounds pretty obvious, but it has some connotations that aren't that obvious. Firstly,
you should prefer more but smaller interfaces to a single big one. Secondly, when you're
adding a derived class or are extending the functionality of an existing one, you should
think before you extend the interface the class implements.

Let's show this on an example that violates this principle, starting with the following
interface:

class IFoodProcessor {
 public:
 virtual ~IFoodProcessor() = default;
 virtual void blend() = 0;
};

We could have a simple class that implements it:

class Blender : public IFoodProcessor {
 public:
 void blend() override;
};

So far so good. Now say we want to model another, more advanced food processor and we
recklessly tried to add more methods to our interface:

class IFoodProcessor {
 public:
 virtual ~IFoodProcessor() = default;
 virtual void blend() = 0;
 virtual void slice() = 0;
 virtual void dice() = 0;
};

class AnotherFoodProcessor : public IFoodProcessor {
 public:
 void blend() override;

Importance of Software Architecture and Principles of Great Design Chapter 1

[21]

 void slice() override;
 void dice() override;
};

Now we have an issue with the Blender class as it doesn't support this new interface –
there's no proper way to implement it. We could try to hack a workaround or throw
std::logic_error, but a much better solution would be to just split the interface into
two, each with a separate responsibility:

class IBlender {
 public:
 virtual ~IBlender() = default;
 virtual void blend() = 0;
};

class ICutter {
 public:
 virtual ~ICutter() = default;
 virtual void slice() = 0;
 virtual void dice() = 0;
};

Now our AnotherFoodProcessor can just implement both interfaces, and we don't need
to change the implementation of our existing food processor.

We have one last SOLID principle left, so let's learn about it now.

Dependency inversion principle
Dependency inversion is a principle useful for decoupling. In essence, it means that high-
level modules should not depend on lower-level ones. Instead, both should depend on
abstractions.

C++ allows two ways to inverse the dependencies between your classes. The first one is the
regular, polymorphic approach and the second uses templates. Let's see how to apply both
of them in practice.

Assume you're modeling a software development project that is supposed to have frontend
and backend developers. A simple approach would be to write it like so:

class FrontEndDeveloper {
 public:
 void developFrontEnd();
};

Importance of Software Architecture and Principles of Great Design Chapter 1

[22]

class BackEndDeveloper {
 public:
 void developBackEnd();
};

class Project {
 public:
 void deliver() {
 fed_.developFrontEnd();
 bed_.developBackEnd();
 }
 private:
 FrontEndDeveloper fed_;
 BackEndDeveloper bed_;
};

Each developer is constructed by the Project class. This approach is not ideal, though,
since now the higher-level concept, Project, depends on lower-level ones – modules for
individual developers. Let's see how applying dependency inversion using polymorphism
changes this. We can define our developers to depend on an interface as follows:

class Developer {
 public:
 virtual ~Developer() = default;
 virtual void develop() = 0;
};

class FrontEndDeveloper : public Developer {
 public:
 void develop() override { developFrontEnd(); }
 private:
 void developFrontEnd();
};

class BackEndDeveloper : public Developer {
 public:
 void develop() override { developBackEnd(); }
 private:
 void developBackEnd();
};

Now, the Project class no longer has to know the implementations of the developers.
Because of this, it has to accept them as constructor arguments:

class Project {
 public:
 using Developers = std::vector<std::unique_ptr<Developer>>;
 explicit Project(Developers developers)

Importance of Software Architecture and Principles of Great Design Chapter 1

[23]

 : developers_{std::move(developers)} {}

 void deliver() {
 for (auto &developer : developers_) {
 developer->develop();
 }
 }

 private:
 Developers developers_;
};

In this approach, Project is decoupled from the concrete implementations and instead
depends only on the polymorphic interface named Developer. The "lower-level" concrete
classes also depend on this interface. This can help you shorten your build time and allows
for much easier unit testing – now you can easily pass mocks as arguments in your test
code.

Using dependency inversion with virtual dispatch comes at a cost, however, as now we're
dealing with memory allocations and the dynamic dispatch has overhead on its own.
Sometimes C++ compilers can detect that only one implementation is being used for a given
interface and will remove the overhead by performing devirtualization (often you need to
mark the function as final for this to work). Here, however, two implementations are
used, so the cost of dynamic dispatch (commonly implemented as jumping through virtual
method tables, or vtables for short) must be paid.

There is another way of inverting dependencies that doesn't have those drawbacks. Let's
see how this can be done using a variadic template, a generic lambda from C++14, and
variant, either from C++17 or a third-party library such as Abseil or Boost. First are the
developer classes:

class FrontEndDeveloper {
 public:
 void develop() { developFrontEnd(); }
 private:
 void developFrontEnd();
};

class BackEndDeveloper {
 public:
 void develop() { developBackEnd(); }
 private:
 void developBackEnd();
};

Importance of Software Architecture and Principles of Great Design Chapter 1

[24]

Now we don't rely on an interface anymore, so no virtual dispatch will be done. The
Project class will still accept a vector of Developers:

template <typename... Devs>
class Project {
 public:
 using Developers = std::vector<std::variant<Devs...>>;

 explicit Project(Developers developers)
 : developers_{std::move(developers)} {}

 void deliver() {
 for (auto &developer : developers_) {
 std::visit([](auto &dev) { dev.develop(); }, developer);
 }
 }

 private:
 Developers developers_;
};

If you're not familiar with variant, it's just a class that can hold any of the types passed as
template parameters. Because we're using a variadic template, we can pass however many
types we like. To call a function on the object stored in the variant, we can either extract it
using std::get or use std::visit and a callable object – in our case, the generic lambda.
It shows how duck-typing looks in practice. Since all our developer classes implement the
develop function, the code will compile and run. If your developer classes would have
different methods, you could, for instance, create a function object that has overloads of
operator() for different types.

Because Project is now a template, we have to either specify the list of types each time we
create it or provide a type alias. You can use the final class like so:

using MyProject = Project<FrontEndDeveloper, BackEndDeveloper>;
auto alice = FrontEndDeveloper{};
auto bob = BackEndDeveloper{};
auto new_project = MyProject{{alice, bob}};
new_project.deliver();

This approach is guaranteed to not allocate separate memory for each developer or use a
virtual table. However, in some cases, this approach results in less extensibility, since once
the variant is declared, you cannot add another type to it.

Importance of Software Architecture and Principles of Great Design Chapter 1

[25]

As the last thing to mention about dependency inversion, we'd like to note that there is a
similarly named idea called dependency injection, which we even used in our examples. It's
about injecting the dependencies through constructors or setters, which can be beneficial to
code testability (think about injecting mock objects, for example). There are even whole
frameworks for injecting dependencies throughout whole applications, such as Boost.DI.
Those two concepts are related and often used together.

The DRY rule
DRY is short for "don't repeat yourself." It means you should avoid code duplication and
reuse when it's possible. This means you should extract a function or a function template
when your code repeats similar operations a few times. Also, instead of creating several
similar types, you should consider writing a template.

It's also important not to reinvent the wheel when it's not necessary, that is, not to repeat
others' work. Nowadays there are dozens of well-written and mature libraries that can help
you with writing high-quality software faster. We'd like to specifically mention a few of
them:

Boost C++ Libraries (https:/ /www.boost. org/)
Facebook's Folly (https:/ /github. com/ facebook/ folly)
Electronic Arts' EASTL (https:/ /github. com/electronicarts/ EASTL)
Bloomberg's BDE (https:/ /github. com/ bloomberg/ bde)
Google's Abseil (https:/ / abseil. io/)
The Awesome Cpp list (https:/ /github. com/ fffaraz/ awesome- cpp) with
dozens more

Sometimes duplicating code can have its benefits, however. One such scenario is
developing microservices. Of course, it's always a good idea to follow DRY inside a single
microservice, but violating the DRY rule for code used in multiple services can actually be
worth it. Whether we're talking about model entities or logic, it's easier to maintain
multiple services when code duplication is allowed.

Imagine having multiple microservices reusing the same code for an entity. Suddenly one
of them needs to modify one field. All the other services now have to be modified as well.
The same goes for dependencies of any common code. With dozens or more microservices
that have to be modified because of changes unrelated to them, it's often easier for
maintenance to just duplicate the code.

Since we're talking about dependencies and maintenance, let's proceed to the next section,
which discusses a closely related topic.

https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/electronicarts/EASTL
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://abseil.io/
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp
https://github.com/fffaraz/awesome-cpp

Importance of Software Architecture and Principles of Great Design Chapter 1

[26]

Coupling and cohesion
Coupling and cohesion are two terms that go hand in hand in software. Let's see what each
of them means and how they relate to each other.

Coupling
Coupling is a measure of how strongly one software unit depends on other units. A unit
with high coupling relies on many other units. The lower the coupling, the better.

For example, if a class depends on private members of another class, it means they're
tightly coupled. A change in the second class would probably mean that the first one needs
to be changed as well, which is why it's not a desirable situation.

To weaken the coupling in the preceding scenario, we could think about adding parameters
for the member functions instead of directly accessing other classes' private members.

Another example of tightly coupled classes is the first implementation of the Project and
developer classes in the dependency inversion section. Let's see what would happen if we
were to add yet another developer type:

class MiddlewareDeveloper {
 public:
 void developMiddleware() {}
};

class Project {
 public:
 void deliver() {
 fed_.developFrontEnd();
 med_.developMiddleware();
 bed_.developBackEnd();
 }

 private:
 FrontEndDeveloper fed_;
 MiddlewareDeveloper med_;
 BackEndDeveloper bed_;
};

Importance of Software Architecture and Principles of Great Design Chapter 1

[27]

It looks like instead of just adding the MiddlewareDeveloper class, we had to modify the
public interface of the Project class. This means they're tightly coupled and that this
implementation of the Project class actually breaks the OCP. For comparison, let's now
see how the same modification would be applied to the implementation using dependency
inversion:

class MiddlewareDeveloper {
 public:
 void develop() { developMiddleware(); }

 private:
 void developMiddleware();
};

No changes to the Project class were required, so now the classes are loosely coupled. All
we needed to do was to add the MiddlewareDeveloper class. Structuring our code this
way allows for smaller rebuilds, faster development, and easier testing, all with less code
that's easier to maintain. To use our new class, we only need to modify the calling code:

using MyProject = Project<FrontEndDeveloper, MiddlewareDeveloper,
BackEndDeveloper>;
auto alice = FrontEndDeveloper{};
auto bob = BackEndDeveloper{};
auto charlie = MiddlewareDeveloper{};
auto new_project = MyProject{{alice, charlie, bob}};
new_project.deliver();

This shows coupling on a class level. On a larger scale, for instance, between two services,
the low coupling can be achieved by introducing techniques such as message queueing.
The services wouldn't then depend on each other directly, but just on the message format. If
you're having a microservice architecture, a common mistake is to have multiple services
use the same database. This causes coupling between those services as you cannot freely
modify the database schema without affecting all the microservices that use it.

Let's now move on to cohesion.

Cohesion
Cohesion is a measure of how strongly a software unit's elements are related. In a highly
cohesive system, the functionality offered by components in the same module is strongly
related. It feels like such components just belong together.

Importance of Software Architecture and Principles of Great Design Chapter 1

[28]

On a class level, the more fields a method manipulates, the more cohesive it is to the class.
This means that the most commonly spotted low-cohesion data types are those big
monolithic ones. When there's too much going on in a class, it most probably is not
cohesive and breaks the SRP, too. This makes such classes hard to maintain and bug-prone.

Smaller classes can be incohesive as well. Consider the following example. It may seem
trivial, but posting real-life scenarios, often hundreds if not thousands of lines long, would
be impractical:

class CachingProcessor {
 public:
 Result process(WorkItem work);
 Results processBatch(WorkBatch batch);
 void addListener(const Listener &listener);
 void removeListener(const Listener &listener);

 private:
 void addToCache(const WorkItem &work, const Result &result);
 void findInCache(const WorkItem &work);
 void limitCacheSize(std::size_t size);
 void notifyListeners(const Result &result);
 // ...
};

We can see that our processor actually does three types of work: the actual work, the
caching of the results, and managing listeners. A common way to increase cohesion in such
scenarios is to extract a class or even multiple ones:

class WorkResultsCache {
 public:
 void addToCache(const WorkItem &work, const Result &result);
 void findInCache(const WorkItem &work);
 void limitCacheSize(std::size_t size);
 private:
 // ...
};

class ResultNotifier {
 public:
 void addListener(const Listener &listener);
 void removeListener(const Listener &listener);
 void notify(const Result &result);
 private:
 // ...
};

class CachingProcessor {

Importance of Software Architecture and Principles of Great Design Chapter 1

[29]

 public:
 explicit CachingProcessor(ResultNotifier ¬ifier);
 Result process(WorkItem work);
 Results processBatch(WorkBatch batch);
 private:
 WorkResultsCache cache_;
 ResultNotifier notifier_;
 // ...
};

Now each part is done by a separate, cohesive entity. Reusing them is now possible without
much hassle. Even making them a template class should require little work. Last but not
least, testing such classes should be easier as well.

Putting this on a component or system level is straightforward – each component, service,
and system you design should be concise and focus on doing one thing and doing it right:

Figure 1.2 – Coupling versus cohesion

Low cohesion and high coupling are usually associated with software that's difficult to test,
reuse, maintain, or even understand, so it lacks many of the quality attributes usually
desired to have in software.

Those terms often go together because often one trait influences the other, regardless of
whether the unit we talk about is a function, class, library, service, or even a whole system.
To give an example, usually, monoliths are highly coupled and low cohesive, while
distributed services tend to be at the other end of the spectrum.

This concludes our introductory chapter. Let's now summarize what we've learned.

Importance of Software Architecture and Principles of Great Design Chapter 1

[30]

Summary
In this chapter, we discussed what software architecture is and why it's worth caring about
it. We've shown what happens when architecture is not updated along with the changing
requirements and implementation and how to treat architecture in an Agile environment.
Then we moved on to some core principles of the C++ language.

We learned that many terms from software development can be perceived differently in
C++ because C++ allows more than writing object-oriented code. Finally, we discussed
terms such as coupling and cohesion.

You should now be able to point out many design flaws in code reviews and refactor your
solutions for greater maintainability, as well as being less bug-prone as a developer. You
can now design class interfaces that are robust, self-explanatory, and complete.

In the next chapter, we will learn about the different architectural approaches or styles. We
will also learn about how and when we can use them to gain better results.

Questions
Why care about software architecture?1.
Should the architect be the ultimate decision-maker in an Agile team?2.
How is the SRP related to cohesion?3.
In what phases of a project's lifetime can it benefit from having an architect?4.
What's the benefit of following the SRP?5.

Further reading
Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software1.
Scott Meyers, How Non-member Functions Improve Encapsulation, https:/ /www.2.
drdobbs. com/ cpp/ how- non- member- functions- improve- encapsu/ 184401197

https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197

2
Architectural Styles

This chapter introduces the different architectural approaches or styles. Each section will
discuss a different approach to designing software with its pros and cons, as well as
describe when and how to apply it to reap its benefits. We'll begin this chapter by
comparing stateful and stateless architectures. Next, we'll go from monolith systems,
through various types of service-oriented designs, all the way to microservices. Then, we'll
start to look at architectural styles from different angles by describing event-based systems,
layered systems, and finally, modular designs.

Once you have completed this chapter, you'll be familiar with the following topics:

Deciding between stateful and stateless approaches
Understanding monoliths—why they should be avoided, and recognizing
exceptions
Understanding services and microservices
Exploring event-based architecture
Understanding layered architecture
Learning module-based architecture

Technical requirements
You will need to know what a software service is and be able to read code in C++11.

The code from this chapter can be found at the following GitHub page: https:/ / github.
com/PacktPublishing/ Software- Architecture- with- Cpp/tree/ master/ Chapter02.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter02

Architectural Styles Chapter 2

[32]

Deciding between stateful and stateless
approaches
Stateful and stateless are two opposite ways to write software, each with their own pros
and cons.

As the name suggests, stateful software's behavior depends on its internal state. Let's take a
web service, for instance. If it remembers its state, the consumer of the service can send less
data in each request, because the service remembers the context of those requests.
However, saving on the request size and bandwidth has a hidden cost on the web service's
side. If the user sends many requests at the same time, the service now has to synchronize
its work. As multiple requests could change the state, at the same time, not having
synchronization could lead to data races.

If the service was stateless, however, then each request coming to it would need to contain
all the data needed to process it successfully. This means that the requests would get bigger
and use up more bandwidth, but on the other hand, it would allow for better performance
and scaling of the service. If you're familiar with functional programming, you would
probably find stateless services intuitive. Processing each request can be understood as a
call to a pure function. In fact, many of the advantages that stateless programming provides
stem from its functional programming roots. Mutable state is the enemy of concurrent code.
Functional programming relies on immutable values, even if this means making copies
instead of modifying existing objects. Thanks to this, each thread can work independently
and no data races are possible.

Since there are no race conditions, no locks are required as well, which can be an enormous
boost in terms of performance. No locks also mean that you will no longer need to deal
with deadlocks. Having pure functions means that your code will be easier to debug, too,
since you don't have any side effects. Not having side effects, in turn, is also helpful for
compilers, as optimizing code without side effects is a much easier task and can be
performed more aggressively. Yet another benefit of writing code in a functional manner is
that the sources you write tend to be more terse and expressive, especially when compared
to code that heavily depends on the Gang of Four (GoF) design patterns.

This doesn't necessarily mean that if bandwidth is not an issue, you should always go with
stateless. Those decisions can be made on many levels, from single classes or functions to
whole applications.

Architectural Styles Chapter 2

[33]

Take classes, for example. If you're modeling, say, a Consultant, it makes sense that the
class would contain fields such as the consultant's name, contact data, hourly rate, current
and past projects, and whatnot. It is natural for it to be stateful. Now, imagine that you
need to calculate the pay they receive for their work. Should you create a
PaymentCalculator class? Should you add a member or a free function to calculate this?
If you go with the class approach, should you pass a Consultant as a constructor
parameter or a method argument? Should the class have properties such as allowances?

Adding a member function to calculate the pay would break the Single Responsibility
Principle (SRP), as now the class would then have two responsibilities: calculating the pay
and storing the consultant's data (state). This means introducing a free function or a
separate class for this purpose should be preferred to having such hybrid classes.

Should there be a state in such a class in the first place? Let's discuss the different
approaches to our PaymentCalculator class.

One approach would be to expose the properties required for calculation purposes:

class PaymentCalculator;
{
 public:
 double calculate() const;

 void setHours(double hours);
 void setHourlyRate(double rate);
 void setTaxPercentage(double tax);
 private:
 double hours_;
 double netHourlyRate_;
 double taxPercentage_;
};

This approach has two cons. The first is that it's not thread-safe; a single instance of such
a PaymentCalculator class cannot be used in multiple threads without locks. The second
is that once our calculations become more complicated, the class will probably start
duplicating more fields from our Consultant class.

To eliminate the duplication, we could rework our class to store a Consultant instance
like this:

class PaymentCalculator {
 public:
 double calculate() const;

 void setConsultant(const Consultant &c);

Architectural Styles Chapter 2

[34]

 void setTaxPercentage(double tax);

 private:
 gsl::not_null<const Consultant *> consultant_;
 double taxPercentage_;
};

Note that since we cannot rebind references easily, we're using a helper class from the
Guideline Support Library (GSL) to store a rebindable pointer in a wrapper that
automatically ensures we're not storing a null value.

This approach still has the disadvantage of not being thread-safe. Can we do any better? It
turns out that we can make the class thread-safe by making it stateless:

class PaymentCalculator {
 public:
 static double calculate(const Consultant &c, double taxPercentage);
};

If there is no state to manage, it doesn't really matter if you decide to create free functions
(perhaps in a distinct namespace) or group them as static functions of a class, as we did in
the preceding snippet. In terms of classes, it's useful to distinguish between value (entity)
types and operation types, as mixing them can lead to SRP violations.

Stateless and stateful services
The same principles that we discussed for classes can be mapped to higher-level concepts,
for instance, microservices.

What does a stateful service look like? Let's take FTP as an example. If it's not anonymous,
it requires the user to pass a username and password to create a session. The server stores
this data to identify the user as still connected, so it's constantly storing state. Each time the
user changes the working directory, the state gets updated. Each change done by the user is
reflected as a change of state, even when they disconnect. Having a stateful service means
that depending on the state, you can be returned different results for two identically
looking GET requests. If the server loses the state, your requests can even stop processing
correctly.

Architectural Styles Chapter 2

[35]

Stateful services can also have issues with incomplete sessions or unfinished transactions
and added complexity. How long should you keep the sessions open? How can you verify
whether the client has crashed or disconnected? When should we roll back any changes
made? While you can come up with answers to those questions, it's usually easier to rely on
the consumers of your service communicating with it in a dynamic, "intelligent" way. Since
they'll be maintaining some kind of state on their own, having a service that also maintains
the state is not only unnecessary but often wasteful.

Stateless services, as the REST ones described later in the book, take the opposite approach.
Each request must contain all the data required in order for it to be successfully processed,
so two identical idempotent requests (such as GET) will cause identical replies. This is
assuming the data stored on the server doesn't change, but data is not necessarily the same
thing as state. All that matters is that each request is self-contained.

Statelessness is fundamental in modern internet services. The HTTP protocol is stateless,
while many service APIs, for example, Twitter's, are stateless as well. REST, which Twitter's
API relies on, is designed to be functionally stateless. The whole concept behind this
acronym, Representational State Transfer (REST), carries the notion that all the state
required for processing the request must be transferred within it. If this is not the case, you
can't say you have a RESTful service. There are, however, some exceptions to the rule,
driven by practical needs.

If you're building an online store, you probably want to store information pertaining to
your customers, such as their order history and shipping addresses. The client on the
customer's side probably stores an authentication cookie, while the server will probably
store some user data in a database. The cookie replaces our need for managing a session, as
it'd be done in a stateful service.

Keeping sessions on the server side is a bad approach for services for several reasons: they
add a lot of complexity that could be avoided, they make bugs harder to replicate, and most
importantly, they don't scale. If you'd want to distribute the load to another server, chances
are you'd have trouble replicating the sessions with the load and synchronizing them
between servers. All session information should be kept on the client's side.

This means that if you wish to have a stateful architecture, you need to have a good reason
to. Take the FTP protocol, for instance. It has to replicate the changes both on the client side
and server side. The user only authenticates to a single, specific server, in order to perform
single-stated data transfers. Compare this with services such as Dropbox, where the data is
often shared between users and the file access is abstracted away through an API, to see
why a stateless model would suit this case better.

Architectural Styles Chapter 2

[36]

Understanding monoliths—why they should
be avoided, and recognizing exceptions
The simplest architectural style in which you can develop your application is a monolithic
one. This is why many projects are started using this style. A monolithic application is just
one big block, meaning that functionally distinguishable parts of the application, such as
dealing with I/O, data processing, and the user interface, are all interwoven instead of being
in separate architectural components. Another notable example of this architectural style is
the Linux kernel. Note that the kernel being monolithic does not stop it from being
modular.

It can be easier to deploy such a monolithic application than a multi-component one as
there is simply one thing that needs to be deployed. It can also be easier to test, as end-to-
end testing just requires that you launch a single component. Integration is easier too since,
as well as scaling your solution, you can just add more instances behind a load balancer.
With all those advantages, why would anyone dread this architectural style? It turns out
that despite those advantages, there are also many drawbacks.

The scalability offered sounds nice in theory, but what if your application has modules with
different resource requirements? How about needing to scale just one module from your
application? The lack of modularity, an inherent property of monolithic systems, is the
source of many flaws associated with this architecture.

What's more, the longer you develop a monolithic application, the more problems you'll
have in maintaining it. It's a challenge to keep the internals of such an application loosely
coupled, as it's so easy to just add yet another dependency between its modules. As such an
application grows, it becomes harder and harder to understand it, so the development
process will most probably slow down over time because of the added complexity. It can
also be hard to maintain Design-Driven Development's (DDD) bounded contexts when
developing monoliths.

Having one big application has drawbacks regarding the deployment and execution sides
as well. It will take a lot longer to start such an application than it would take to start more,
smaller services. And regardless of what you change in the application, you might not like
that it forces you to redeploy the whole application at once. Now, imagine that one of your
developers introduces a resource leak in the application. If the leaky code is executed over
and over, it will not only bring down its single aspect of the app's functionality, it can also
bring down the rest of the application as well.

Architectural Styles Chapter 2

[37]

If you're a fan of using bleeding-edge technologies in your project, a monolithic style
doesn't bring any great news either. Since you now need to migrate your whole application
at once, it's harder to update any libraries or frameworks.

The preceding explanation suggests that a monolithic architecture is only good for simple
and small applications. There is, however, one more situation where it could actually be a
good idea to use it. If you care about performance, having a monolith can sometimes help
you to squeeze more from your app in terms of latency or throughput when compared to
microservices. Inter-process communication will always incur some overhead, which
monolithic applications don't need to pay. If you're interested in measurements, see the
paper listed in the Further reading section of this chapter.

Understanding services and microservices
Because of the drawbacks of monolithic architectures, other approaches have emerged. A
common idea is to split your solution into multiple services that communicate with each
other. You can then split the development between different teams, each taking care of a
separate service. The boundaries of each team's work are clear, unlike in the monolithic
architecture style.

A service-oriented architecture, or SOA for short, means that the business functions are
modularized and presented as separate services for the consumer applications to use. Each
service should have a self-describing interface and hide any implementation details, such as
the internal architecture, technologies, or the programming language used. This allows for
multiple teams to develop the services however they like, meaning that under the hood,
each can use what suits their needs best. If you have two teams of developers, one
proficient in C# and one in C++, they can develop two services that can easily communicate
with one another.

Advocates of SOA came up with a manifesto prioritizing the following:

Business value over technical strategy
Strategic goals over project-specific benefits
Intrinsic interoperability over custom integration
Shared services over purpose-specific implementations
Flexibility over optimization
Evolutionary refinement over pursuit of initial perfection

Architectural Styles Chapter 2

[38]

Even though this manifesto doesn't bind you to a specific tech stack, or implementation, or
type of services, the two most common types of services are SOAP and REST. Aside from
those, recently, there's a third one that has been growing in popularity: gRPC-based. You
can find out more about these in the chapters on services-oriented architecture and
microservices.

Microservices
As the name suggests, microservices is a software development pattern where an
application is split as a collection of loosely-coupled services that communicate using
lightweight protocols. The microservices pattern is similar to the UNIX philosophy stating
that a program should only have one purpose. According to UNIX philosophy, advanced
problems are solved by composing such programs into UNIX pipelines. Similarly,
microservice-based systems are composed of many microservices and supporting services.

Let's start with an overview of the pros and cons of this architectural style.

Benefits and disadvantages of microservices
The small size of services in a microservice architecture means that they're faster to
develop, deploy, and understand. As the services are built independently of each other, the
time necessary to compile their new versions can be drastically reduced. Thanks to this, it is
easier to employ rapid prototyping and development when dealing with this architectural
style. This, in turn, makes it possible to reduce the lead-time, meaning that business
requirements can be introduced and evaluated much quicker.

Some other benefits of a microservice-based approach include the following:

Modularity, which is inherent to this architectural style.
Better testability.
Flexibility when replacing system parts (such as single services, databases,
message brokers, or cloud providers).
Integration with legacy systems: it is not necessary to migrate an entire
application, just the parts that require current development.
Enabling distributed development: independent development teams can work on
multiple microservices in parallel.
Scalability: a microservice may be scaled independently of the others.

Architectural Styles Chapter 2

[39]

On the other hand, here are some disadvantages of microservices:

They require a mature DevOps approach and reliance on CI/CD automation.
They are harder to debug, and require better monitoring and distributed tracing.
Additional overhead (in terms of auxiliary services) may outweigh the benefits
for smaller applications.

Let's now discuss what are the characteristics of services written in this architectural style.

Characteristics of microservices
Since the microservice style is fairly recent, there is no single definition for microservices.
According to Martin Fowler, there are several essential characteristics of microservices,
which we will describe next:

Each service should be an independently replaceable and upgradeable
component. This is connected to easier deployment and loose coupling between
the services, as opposed to components being libraries in a monolithic
application. In the latter case, when you replace one library, you often have to
redeploy the whole application.
Each service should be developed by a cross-functional team, focused on a
specific business capability. Ever heard of Conway's law?

"Any organization that designs a system (defined broadly) will produce a
design whose structure is a copy of the organization's communication
structure."

– Melvyn Conway, 1967

If you don't have cross-functional teams, you end up with software silos. The lack
of communication that comes with them will make you constantly jump through
hurdles to successfully deliver.

Each service should be a product, which is owned by the development team
throughout its lifetime. This stays in contrast to the project mentality, where you
develop software and just pass it on for someone to maintain.

Architectural Styles Chapter 2

[40]

Services should have smart endpoints and use dump pipes, not the other way
around. This stands in contrast to traditional services, which often rely on the
logic of an Enterprise Service Bus (ESB), which often manages the routing of
messages and transforms them according to business rules. In microservices, you
achieve cohesiveness by storing the logic in the service and avoid coupling with
messaging components. Using "dumb" message queues, such as ZeroMQ, can
help with this goal.
Services should be governed in a decentralized way. Monoliths are usually
written using one specific technology stack. When they're being split into
microservices, each one can choose whatever suits its own specific needs best.
Governing and assuring that each microservice runs 24/7 is done by a team
responsible for this specific service instead of a central department. Companies
such as Amazon, Netflix, and Facebook follow this approach and observe that
making developers responsible for the flawless execution of their services in
production helps to ensure high quality.
Services should manage their data in a decentralized way. Instead of having one
database for all of them, each microservice can choose a database that best
matches its needs. Having decentralized data can lead to some challenges with
handling updates, but allows for better scaling. This is why microservices often
coordinate in a transaction-free manner and offer eventual consistency.
The infrastructure used by services should be managed automatically. To deal
with dozens of microservices in an efficient manner, you need to have
Continuous Integration and Continuous Delivery in place, as otherwise,
deploying your services will be hell. Automated runs of all your tests will save
you lots of time and trouble. Implementing Continuous Deployment on top of
that will shorten the feedback loop and allow your customers to use your new
features faster, too.
Microservices should be prepared for the failure of other services that they
depend on. In a distributed deployment environment with so many moving
parts, it's normal for some of them to break from time to time. Your services
should be able to handle such failures gracefully. Patterns such as Circuit Breaker
or Bulkhead (described later in the book) can help to achieve this. To make your
architecture resilient, it's also critical to be able to bring failing services back up
efficiently or even to know ahead of time that they're going to crash. Real-time
monitoring of latency, throughput, and resource usage is essential for this. Get to
know Netflix's Simian Army toolkit as it's invaluable for creating a resilient
architecture.

Architectural Styles Chapter 2

[41]

Architectures based on microservices should be ready to constantly evolve. You
should design microservices and the cooperation between them in a manner that
allows for easy replacement of a single microservice, or sometimes even groups
of them. It's tricky to design the services properly, especially since some of the
complexity that was once in the code of one bigger module can now be present as
complex communication schemes between services, where it's harder to manage
– so-called Spaghetti Integration. This means the experience and skill set of the
architect plays a more important role than with traditional services or a
monolithic approach.

On top of that, here are some other characteristics shared by many (but not all)
microservices:

Using separate processes that communicate over network protocols
Using technology-agnostic protocols (such as HTTP and JSON)
Keeping services small and with a low runtime overhead

Now, you should have a good understanding of what the characteristics of microservice-
based systems are, so let's see how this approach compares with other architectural styles.

Microservices and other architectural styles
Microservices may be used as an architectural pattern on their own. However, they are
often combined with other architectural choices, such as cloud-native computing, serverless
applications, and mostly with lightweight application containers.

Service-oriented architectures bring loose coupling and high cohesion. Microservices can
do it too, when applied correctly. However, it can be somewhat challenging because it
requires good intuition to partition the system into the usually vast amount of
microservices.

There are more similarities between microservices and their bigger cousins as they, too, can
have SOAP-, REST-, or gRPC-based messaging and use technologies such as message
queues for being event-driven. They also have well-known patterns to help with achieving
the required quality attributes, such as fault tolerance (for example, through the isolation of
faulty components), but in order to have an efficient architecture, you must decide on your
approach to elements such as API gateways, service registries, load balancing, fault
tolerance, monitoring, configuration management, and, of course, the technology stack to
use.

Architectural Styles Chapter 2

[42]

Scaling microservices
Microservices scale differently to monolithic applications. In monoliths, the entire
functionality is handled by a single process. Scaling the application means replicating this
process across different machines. Such scaling doesn't take into account which of the
functionalities are heavily used and which do not require additional resources.

With microservices, each functional element is handled as a separate service, which means
a separate process. In order to scale a microservices-based application, only the parts that
require more resources can be replicated to different machines. Such an approach makes it
easier to better use the available resources.

Transitioning to microservices
Most companies have some kind of existing monolithic code that they don't want to
immediately rewrite using microservices, but still want to transition to this kind of
architecture. In such cases, it's possible to adapt microservices incrementally, by adding
more and more services that interact with the monolith. You can create new functionalities
as microservices or just cut out some parts of the monolith and create microservices out of
them.

More details regarding microservices, including how to build your own from scratch, are
available in Chapter 13, Designing Microservices.

Exploring event-based architecture
Event-based systems are those whose architecture revolves around processing events.
There are components that generate events, the channels through which the events
propagate, and the listeners who react to them, potentially triggering new events too. It's a
style that promotes asynchrony and loose coupling, which makes it a good way to increase
performance and scalability, as well as an easy solution to deploy.

With those advantages, there are also some challenges to solve. One of them is the
complexity to create a system of this type. All the queues must be made fault-tolerant so
that no events are lost in the middle of being processed. Processing transactions in a
distributed way is also a challenge on its own. Using the Correlation ID pattern to track
events between processes, along with monitoring techniques, can save you hours of
debugging and scratching your head.

Architectural Styles Chapter 2

[43]

Examples of event-based systems include stream processors and data integrations, as well
as systems aiming for low latency or high scalability.

Let's now discuss common topologies used in such systems.

Common event-based topologies
The two main topologies of event-driven architectures are broker-based and mediator-
based. Those topologies differ in how the events flow through the system.

The mediator topology is best used when processing an event that requires multiple tasks
or steps that can be performed independently. All events produced initially land in the
mediator's event queue. The mediator knows what needs to be done in order to handle the
event, but instead of performing the logic itself, dispatches the event to appropriate event
processors through each processor's event channel.

If this reminds you of how business processes flow, then you've got good intuition. You can
implement this topology in Business Process Management (BPM) or Business Process
Execution Language (BPEL). However, you can also implement it using technologies such
as Apache Camel, Mule ESB, and others:

Figure 2.1 – The mediator topology

Architectural Styles Chapter 2

[44]

A broker, on the other hand, is a lightweight component that contains all the queues and
doesn't orchestrate the processing of an event. It can require that the recipients subscribe to
specific kinds of events and then simply forwards all the ones that are interesting for them.
Many message queues rely on brokers, for example, ZeroMQ, which is written in C++ and
aims for zero waste and low latency:

Figure 2.2 – The broker topology

Now that you know the two common topologies used in event-based systems, let's learn
about a powerful architectural pattern using events at its core.

Event sourcing
You can think of events as notifications that contain additional data for the notified services
to process. There is, however, another way to think of them: a change of state. Think how
easy it would be to debug issues with your application logic if you'd be able to know the
state in which it was when the bug occurred and what change was requested of it. That's
one benefit of event sourcing. In essence, it captures all the changes that happen to the
system by simply recording all the events in the sequence they happened.

Architectural Styles Chapter 2

[45]

Often, you'll find that the service no longer needs to persist its state in a database, as storing
the events somewhere else in the system is enough. Even if it does, it can be done
asynchronously. Another benefit that you derive from event sourcing is a complete audit
log for free:

Figure 2.3 – Event sourcing architecture. Providing a unified view of the application state can allow for consuming it and creating periodic snapshots for faster recovery

Architectural Styles Chapter 2

[46]

Thanks to the reduced need for data synchronization, event-sourced systems often offer
low latency, which makes them a good fit for trading systems and activity trackers, among
others.

Let's now learn about another popular architectural style.

Understanding layered architecture
If your architecture starts to look like spaghetti or you just want to prevent it, having your
components structured in layers may help. Remember Model-View-Controller? Or maybe
similar patterns, such as Model-View-ViewModel or Entity-Control-Boundary? Those are
all typical examples of a layered architecture (also called N-tier architecture if the layers are
physically separated from each other). You can structure code in layers, you can create
layers of microservices, or apply this pattern to other areas where you think it could bring
its benefits. Layering provides abstraction and the separation of concerns, and this is the
main reason why it's being introduced. However, it can also help reduce complexity, while
improving modularity, reusability, and maintainability of your solution.

A real-world example would be in self-driving cars, where layers can be used to
hierarchically make decisions: the lowest layer would handle the car's sensors, then another
layer would deal with single features consuming the sensor data, and on top of that one,
there could be another one to ensure that all the features result in safe behavior. When
sensors are replaced in another model of the car, only the lowest layer will need to be
replaced.

A layered architecture is often pretty easy to implement since most developers already
know the notion of layers – they simply need to develop several layers and stack them as in
the following diagram:

Architectural Styles Chapter 2

[47]

Figure 2.4 – An example of a 3-tiered architecture using a textual interface in the presentation layer

The challenge with creating an efficient layered architecture lays in specifying stable, well-
defined interfaces between the layers. Often, you can have several layers on top of one. For
instance, if you have a layer for domain logic, it can be a base for a presentation layer and a
layer for providing APIs to other services.

Architectural Styles Chapter 2

[48]

This doesn't mean that layering is always a good thing. With microservices, there are two
main scenarios where layering emerges. The first is when you want to separate one group
of services from another. For instance, you could have a fast-changing layer to engage with
your business partners, with content that changes frequently, and another business
capabilities-oriented layer. The latter is not being changed at such a fast pace and is using
stable technologies. Separating those two makes sense. There's also a notion that less stable
components should rely on more stable components, so it's easy to see that you could have
two layers here with the customer-facing one depending on the business capabilities.

The other scenario is when layers are created to reflect the communication structure of the
organization (hello again, Conway's law). This will probably reduce communication
between the teams, which can result in a decrease in innovation as now the teams won't
know the internals or ideas of each other that well.

Let's now discuss another example of a layered architecture often used with
microservices—Backends for Frontends.

Backends for Frontends
It's not uncommon to see many frontends that rely on the same backend. Let's say you have
a mobile application and a web application, both using the same backend. It may be a good
design choice at first. However, once the requirements and usage scenarios of those two
applications diverge, your backend will require more and more changes, serving just one of
the frontends. This can lead to the backend having to support competing requirements, like
two separate ways to update the data store or different scenarios for providing data.
Simultaneously, the frontends start to require more bandwidth to communicate with the
backend properly, which also leads to more battery usage in mobile apps. At this point, you
should consider introducing a separate backend for each frontend.

Architectural Styles Chapter 2

[49]

This way, you can think of a user-facing application as being a single entity having two
layers: the frontend and the backend. The backend can depend on another layer, consisting
of downstream services. Refer to the following diagram:

Figure 2.5 – The Backends for Frontends pattern

The drawback of using Backends for Frontends (BFFs) is that some code must be
duplicated. As long as this speeds up development and is not a burden in the long term, it's
OK. But it also means that you should be on the watch for possibilities to aggregate
duplicated logic in a downstream service. Sometimes, introducing a service just to
aggregate similar calls can help solve duplication issues. Often, if you have many
frontends, some can still share a backend and not cause it to have competing requirements.
If you're creating mobile applications for iOS and Android, for instance, you could think of
reusing the same backend for those, and having separate ones for web and/or desktop
applications.

Architectural Styles Chapter 2

[50]

Learning module-based architecture
In this section, by modules, we mean software components that can be
loaded and unloaded in runtime. For C++20's modules, refer to Chapter 5,
Leveraging C++ Language Features.

If you've ever needed to run a component with as little downtime as possible, but for any
reason couldn't apply the usual fault-tolerance patterns, such as redundant copies of your
service, making this component module-based can come to save your day. Or you may just
be attracted by a vision of a modular system with versioning of all the modules, with an
easy lookup of all the available services, along with the decoupling, testability, and
enhancing teamwork that module-based systems can cause. All of this is why Open Service
Gateway Initiative (OSGi) modules were created for Java and got ported to C++ in more
than a few frameworks. Examples of architectures using modules include IDEs such as
Eclipse, Software Defined Networking (SDN) projects such as OpenDaylight, or home
automation software such as OpenHAB.

OSGi also allows for automatic dependency management between modules, controlling
their initialization and unloading, as well as controlling their discovery. Since it's service-
oriented, you can think of using OSGi services as something akin to having tiny (micro?)
services in one "container". This is why one of the C++ implementations is named C++
Micro Services. To see them in action, refer to their Getting Started guide from the Further
reading section.

One interesting concept adopted by the C++ Micro Services framework is a new way to deal
with singletons. The GetInstance() static function will, instead of just passing a static
instance object, return a service reference obtained from the bundled context. So effectively,
singleton objects will get replaced by services that you can configure. It can also save you
from the static deinitialization fiasco, where multiple singletons that depend on each other
have to unload in a specific order.

Summary
In this chapter, we've discussed the various architectural styles that you can encounter in
the wild and apply to your software. We've discussed monolithic architecture, went
through service-oriented architecture, moved onto microservices, and discussed the various
ways in which they can provide external interfaces and interact with each other. You
learned how to write RESTful services and how to create a resilient and easy-to-maintain
microservice architecture.

Architectural Styles Chapter 2

[51]

We've also shown how to create simple clients to consume equally simple services. Later
on, we discussed various other approaches to architecture: an event-driven one, a runtime
module-based one, and showed where layering can be spotted and why. You now know
how to implement event sourcing and recognize when to use BFFs. Moreover, you now
know how architecture styles can help you achieve several quality attributes and what
challenges this can bring.

In the next chapter, you'll learn how to know which of those attributes are important in a
given system.

Questions
1. What are the traits of a RESTful service?
2. What toolkit can you use to aid you in creating a resilient distributed architecture?
3. Should you use centralized storage for your microservices? Why/why not?
4. When should you write a stateful service instead of a stateless one?
5. How does a broker differ from a mediator?
6. What is the difference between an N-tier and an N-layer architecture?
7. How should you approach replacing a monolith with a microservice-based architecture?

Further reading
Flygare, R., and Holmqvist, A. (2017). Performance characteristics between monolithic
and microservice-based systems (Dissertation). Retrieved from http:/ /urn. kb. se/
resolve? urn= urn:nbn:se:bth- 14888

Engelen, Robert. (2008). A framework for service-oriented computing with C and C++
web service components. ACM Trans. Internet Techn. 8. 10.1145/1361186.1361188
Fowler, Martin. Microservices – A definition of this new architectural term. Retrieved
from https:/ /martinfowler. com/ articles/ microservices.
html#MicroservicesAndSoa

Getting Started – C++ Micro Services documentation. Retrieved from http:/ /docs.
cppmicroservices. org/ en/ stable/ doc/ src/ getting_ started. html

http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14888
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html
http://docs.cppmicroservices.org/en/stable/doc/src/getting_started.html

3
Functional and Nonfunctional

Requirements
As an architect, it is important for you to recognize which requirements are significant for
the architecture and why. This chapter will teach you about the various requirements of a
solution—functional and nonfunctional. Functional requirements are those that tell you
what your solution should do. On the other hand, nonfunctional ones are those that tell you
how your solution should be.

In this chapter, we'll cover the following topics:

Understanding the types of requirements
Recognizing architecturally significant requirements
Gathering requirements from various sources
Documenting requirements
Documenting architecture
Choosing the right views to document
Generating documentation

By the end of this chapter, you will have learned how to recognize and categorize both
types of requirements and how to create documentation that describes them in a clear
manner.

Functional and Nonfunctional Requirements Chapter 3

[53]

Technical requirements documentation from
sources, you must have
To replicate our steps to generate documentation from sources, you must have CMake,
Doxygen, Sphinx, m2r2 and Breathe installed. We're using the ReadTheDocs Sphinx theme,
so please install it as well. Feel free to use the latest versions of the tools mentioned.

You can find the related code at https:/ /github. com/ PacktPublishing/ Software-
Architecture-with- Cpp/ tree/ master/ Chapter03.

Understanding the types of requirements
While creating a software system, you should constantly ask yourself whether what you're
making is what your customers need. Many times, they won't even know what requirement
fulfills their needs best. It's the role of a successful architect to discover the requirements of
the product and to make sure they are being met. There are three distinct types of
requirements that you need to consider: functional requirements, quality attributes, and
constraints. Let's have a look at each of these.

Functional requirements
The first group is the functional requirements. These are the ones that define what your
system should do, or what functionality it should offer.

Remember that functionality does not always influence architecture, so
you'll have to keep an eye on which of those requirements will actually
dictate what your solution will look like.

Often, if a functional requirement has some qualities that must be met, it can become
architecturally significant. Consider an app for merchants and visitors of the Dominican
Fair, an annual event with music, various arts, and shops, happening in the city of Gdańsk.
A few examples of functional requirements for it could be the following:

As a shopkeeper, I want to filter orders that contain a specific product.
Clicking the Subscribe button adds the customer to a list of notified watchers of a selected
merchant.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter03

Functional and Nonfunctional Requirements Chapter 3

[54]

The first of those requirements tells us we'll have to have a component for tracking orders
and products with search capabilities. Depending on how exactly the UI should appear and
what scale our app should be, we could just add a simple page to our app, or it could
require features such as Lucene or Elasticsearch. This means that we could be looking at an
Architecturally Significant Requirement (ASR), one that can influence our architecture.

The second example is even more straightforward; now we know we need to have a service
for subscribing and sending notifications. This is definitely an architecturally significant
functional requirement. Let's now look at some Non-Functional Requirements (NFRs) that
can also be ASRs.

By the way, the first requirement is actually given as a user story. User stories are
requirements given in the following format: "As a <role>, I can/want to <capability>, so that
<benefit>." This is a common way to phrase requirements and can help stakeholders and
developers find common ground and communicate better.

Nonfunctional requirements
Instead of focusing on what functionality your system should have, nonfunctional
requirements focus on how well and under which conditions the system should perform
said functionality. This group consists of two main subgroups: Quality Attributes (QAs)
and constraints.

Quality attributes
Quality attributes (QAs) are the traits of your solution, such as performance,
maintainability, and user-friendliness. There are dozens, if not hundreds, of different
qualities your software can have. Try to focus just on the important ones instead of listing
all that come to your mind when choosing which ones your software should have.
Examples of quality attribute requirements include the following:

The system will respond in under 500 ms for 99.9% of all requests under usual
load (don't forget to specify what the usual load is or will be).
The website will not store customer credit card data used in the payment process
(an example of confidentiality).
When updating the system, if updating any component fails, the system will be
rolled back to a state prior to the update (survivability).
As a user of Windows, macOS, and Android, I want to be able to use the system
from all of them (portability; try to understand whether it's needed to support
platforms such as desktop, mobile, and/or web).

Functional and Nonfunctional Requirements Chapter 3

[55]

While catching functional requirements in a backlog is pretty straightforward, we cannot
say the same regarding quality attribute requirements. Fortunately, there are a few ways
you could approach this:

Some of them can be expressed in the Definition of done or Acceptance criteria
for your tasks, stories, and releases.
Others can be expressed directly as user stories, as shown in the last example
previously.
You can also check them as part of design and code reviews and create
automated tests for some of them.

Constraints
Constraints are the non-negotiable decisions that you must follow while delivering the
project. Those can be design decisions, technological ones, or even political (regarding
people or organizational matters). Two other common constraints are time and budget.
Examples of constraints could be as follows:

The team will never grow beyond four developers, one QA engineer, and one sysadmin.
Since our company leverages Oracle DB in all its current products, the new product
must use it too so we can make the most of our expertise.

nonfunctional requirements are always going to influence your architecture. It's essential
not to over-specify them, as having false positives will be a constant burden during product
development. It's equally important to not under-specify them as this can later come out in
missed sales opportunities or failing to comply with regulatory bodies' requirements.

In the next section, you will learn how to strike a balance between those two extremes and
to focus on just those requirements that really matter in your specific case.

Recognizing architecturally significant
requirements
When designing a software system, it's common to deal with dozens or hundreds of
various requirements. In order to make sense of them and come up with a good design, you
need to know which of them are important and which could be implemented regardless of
your design decisions, or even dismissed. You should learn how to recognize the most
important ones so you can focus on them first and deliver the most value in the shortest
possible time.

Functional and Nonfunctional Requirements Chapter 3

[56]

You should prioritize requirements using two metrics: the business value
and the impact on architecture. Those that will be high on both scales are
most important and should be dealt with as a matter of priority. If you
come up with too many such requirements, you should revisit your
prioritization scheme. If it doesn't help, it might be that the system just
isn't achievable.

ASRs are those that have a measurable impact on your system's architecture. They can be
both functional and nonfunctional. How can you identify which ones are actually
significant? If the absence of a specific requirement were to allow you to create a different
architecture, you are looking at an ASR. Late discovery of such requirements will often cost
you both time and money, as you'll need to redesign some part of your system, if not the
whole solution. You can only hope it won't cost you other resources and your reputation,
too.

It's a common mistake to start by applying concrete technologies to your
architecture from the very beginning of your architectural work. We
strongly suggest that you first gather all the requirements, focus on the
ones significant for the architecture, and only then decide what
technologies and technology stacks to build your project on.

Since it's that important to recognize ASRs, let's talk about a few patterns that can help you
with this.

Indicators of architectural significance
If you have a requirement to integrate with any external system, this is most likely going to
influence your architecture. Let's go through some common indicators that a requirement is
an ASR:

Needing to create a software component to handle it: Examples include sending
emails, pushing notifications, exchanging data with the company's SAP server, or
using a specific data storage.
Having a significant impact on the system: Core functionality often defines
what your system should look like. Cross-cutting concerns, such as
authorization, auditability, or having transactional behavior, are other good
examples.
Being hard to achieve: Having low latency is a great example: unless you think
of it early in development, it can be a long battle to achieve it, especially if you
suddenly realize you can't really afford to have garbage collections when you're
on your hot path.

Functional and Nonfunctional Requirements Chapter 3

[57]

Forcing trade-offs when satisfying certain architectures: Perhaps your design
decision will even need to compromise some requirements in favor of other,
more important ones if the cost is too high. It's a good practice to log such
decisions somewhere and to notice that you're dealing with ASRs here. If any
requirement constrains you or limits the product in any way, it's very likely
significant for the architecture. If you want to come up with the best architecture
given many trade-offs, then be sure to read about the Architecture Trade-off
Analysis Method (ATAM), which you can read about under one of the links in
the Further reading section.

Constraints and the environment your application will run in can also impact your
architecture. Embedded apps need to be designed in a different way to those running in the
cloud, and apps being developed by less-experienced developers should probably use a
simple and safe framework instead of using one with a steep learning curve or developing
their own.

Hindrances in recognizing ASRs and how to deal
with them
Contrary to intuition, many architecturally significant requirements are difficult to spot at
first glance. This is caused by two factors: they can be hard to define and even if they're
described, this can be done vaguely. Your customers might not yet be clear about what they
need, but you should still be proactive in asking questions to steer clear of any
assumptions. If your system is to send notifications, you must know whether those are real
time or whether a daily email will suffice, as the former could require you to create a
publisher-subscriber architecture.

In most cases, you'll need to make some assumptions since not everything is known
upfront. If you discover a requirement that challenges your assumptions, it might be an
ASR. If you assume you can maintain your service between 3 a.m. and 4 a.m. and you
realize your customers from a different time zone will still need to use it, it will challenge
your assumption and likely change the product's architecture.

What's more, people often tend to treat quality attributes vaguely during the earlier phases
of projects, especially less-experienced or less-technical individuals. On the other hand,
that's the best moment to address such ASRs, as the cost of implementing them in the
system is the lowest.

Functional and Nonfunctional Requirements Chapter 3

[58]

It's worth noting, however, that many people, when specifying requirements, like to use
vague phrases without actually thinking it through. If you were designing a service similar
to Uber, some examples could be: when receiving a DriverSearchRequest, the system must reply
with an AvailableDrivers message fast, or the system must be available 24/7.

Upon asking questions, it often turns out that 99.9% monthly availability is perfectly fine,
and fast is actually a few seconds. Such phrases always require clarification, and it's often
valuable to know the rationale behind them. Perhaps it is just someone's subjective opinion,
not backed by any data or business needs. Also, note that in the request and response case,
the quality attribute is hidden inside another requirement, making it even harder to catch.

Finally, requirements being architecturally significant for one system aren't necessarily of
the same importance to another, even if those systems serve similar purposes. Some will
become more important over time, once the system grows and starts to communicate with
more and more other systems. Others may become important once the needs for the
product change. This is why there's no silver bullet in telling which of your requirements
will be ASRs, and which won't.

Equipped with all this knowledge on how to distinguish the important requirements from
the rest, you know what to look for. Let's now say a few words about where to look.

Gathering requirements from various
sources
Now that you know what requirements to focus on, let's discuss a few techniques for
gathering these requirements.

Knowing the context
When mining requirements, you should take into account the broader context. You must
identify what potential problems may have a negative impact on your product in the
future. Those risks often come from the outside. Let's revisit our Uber-like service scenario.
An example risk for your service could be a potential change in legislation: you should be
aware that some countries may try to change the law to remove you from their market.
Uber's way to mitigate those risks is to have local partners cope with regional limitations.

Functional and Nonfunctional Requirements Chapter 3

[59]

Future risks aside, you must also be aware of current issues, such as the lack of subject
matter experts in the company, or heavy competition on the market. Here's what you can
do:

Be aware of and note any assumptions being made. It's best to have a dedicated
document for tracking those.
Ask questions to clarify or eliminate your assumptions, if possible.
You need to consider the dependencies inside your project, as they can influence
the development schedule. Other useful areas are the business rules that shape
the day-to-day behavior of the company, as your product will likely need to
adhere to and possibly enhance those.
Moreover, if there's enough data relating to the users or the business, you should
try to mine it to get insights and find useful patterns that can help with making
decisions regarding the future product and its architecture. If you already have
some users but are unable to mine data, it's often useful to just observe how they
behave.

Ideally, you could record them when they perform their daily tasks using the currently
deployed systems. This way, you could not only automate parts of their work but also
change their workflow to a more efficient one entirely. However, remember that users don't
like changing their habits, so it's better to introduce changes gradually where possible.

Knowing existing documentation
Existing documents can be a great source of information, even though they can also have
their issues. You should reserve some time to at least get familiar with all the existing
documents related to your work. Chances are that there are some requirements hidden in
them. On the other hand, keep in mind that the documentation is never perfect; highly
likely it will lack some significant information. You should also be prepared for it to be
outdated. There is never one source of truth when it comes to architecture, so aside from
reading documents, you should have lots of discussions with the people involved.
Nonetheless, reading documents can be a great way of preparing yourself for such
discussions.

Functional and Nonfunctional Requirements Chapter 3

[60]

Knowing your stakeholders
To be a successful architect, you must learn to communicate with business people as
requirements come, directly or indirectly, from them. Whether they're from your company
or a customer, you should get to know the context of their business. For instance, you must
know the following:

What drives the business?
What goals does the company have?
What specific objectives will your product help to achieve?

Once you are aware of this, it will be much easier to establish a common ground with many
people coming from management or executives, as well as gathering more specific
requirements regarding your software. If the company cares about the privacy of its users,
for instance, it can have a requirement to store as little data about its users as possible and
to encrypt it using a key stored only on a user's device. Often, if such requirements come
from the company culture, it will be too obvious for some employees to even articulate
them. Knowing the context of the business can help you to ask proper questions and help
the company in return.

Having said that, remember that your stakeholders can, and will, have needs that aren't
necessarily directly reflected in the company's objectives. They can have their own ideas for
functionality to provide or metrics that the software should achieve. Perhaps a manager
promised his employees a chance to learn a new technology or work with a specific one. If
this project is important for their career, they can be a strong ally and even convince others
as to your decisions.

Another important group of stakeholders is the people responsible for deploying your
software. They can come with their own subgroup of needs, called transition requirements.
Examples of those include user and database migration, infrastructure transition, or data
conversion, so don't forget to reach out to them to gather these as well.

Gathering requirements from stakeholders
At this point, you should have a list of stakeholders with their roles and contact
information. Now it's time to make use of it: be sure to make time to talk with each
stakeholder about what they need from the system and how they envision it. You can hold
interviews such as 1:1 meetings or group ones. When talking with your stakeholders, help
them to make informed decisions – show the potential outcomes of their answers on the
end product.

Functional and Nonfunctional Requirements Chapter 3

[61]

It's common for stakeholders to say that all of their requirements are equally important. Try
to persuade them to prioritize their requirements according to the value they bring to their
business. Certainly, there will be some mission-critical requirements, but most probably,
the project won't fail if a bunch of others won't be delivered, not to mention any nice-to-
haves that will land on your requirements wish list.

Aside from interviews, you can also organize workshops for them, which could work like
brainstorming sessions. In such workshops, once the common ground is established and
everybody knows why they're taking part in such a venture, you can start asking everyone
for as many usage scenarios as they can think of. Once these have been established, you can
proceed with consolidating similar ones, after which you should prioritize and, finally,
refine all the stories. Workshops are not just about functional requirements; each usage
scenario can have a quality attribute assigned as well. After refining, all the quality
attributes should be measurable. The final thing to note is this: you don't need to bring all
stakeholders into such events, as they can sometimes take more than a day, depending on
the size of the system.

Now that you know how to mine for requirements using various techniques and sources,
let's discuss how to pour your findings into well-crafted documents.

Documenting requirements
Once you're done with the steps described previously, it's time to put all the requirements
you've gathered and refine them together in a single document. It doesn't matter what form
the document will take and how you will manage it. What matters is that you have a
document that puts all the stakeholders on the same page with regard to what is required
from the product and what value each requirement brings.

Requirements are produced and consumed by all stakeholders, and a broad set of them will
need to read your document. This means that you should write it so that it brings value for
people of various technical skills from customers, salespeople, and marketers, through
designers and project managers, to software architects, developers, and testers.

Sometimes it makes sense to prepare two versions of the document, one for the people
closest to the business side of the project, and another, a more technical one, for the
development team. However, usually, it's enough to just have one document written to be
understandable by everyone, with sections (sometimes single paragraphs) or whole
chapters meant to cover the more technical details.

Let's now take a tour of what sections could go into your requirements document.

Functional and Nonfunctional Requirements Chapter 3

[62]

Documenting the context
A requirements document should act as one of the entry points for people getting on board
with your project: it should outline the purpose of your product, who will use it, and how it
can be used. Before design and development, the product team members should read it to
have a clear idea of what they'll actually work on.

The context section should provide an overview of the system – why it's being built, what
business goals is it trying to accomplish, and what key functionality it will deliver.

You can describe a few typical user personas, such as John the CTO, or Ann the driver, to give
the readers a better chance to think about the users of the system as actual human beings
and know what to expect from them.

All those things described in the Knowing the context section should also be summarized as
parts of this context section, or sometimes even given separate sections in the document.
The context and scope sections should provide all the information required by most non-
project stakeholders. They should be concise and precise.

The same goes for any open questions you may want to research and decide on later. For
each decision you make, it's best to note the following:

What the decision itself was
Who made it and when
What rationale stands behind it

Now that you know how to document the context of your project, let's learn how to
properly describe its scope too.

Documenting the scope
This section should define what's in the scope of the project, as well as what is beyond the
scope. You should provide a rationale for why the scope is defined in a particular way,
especially when writing about things that won't make the cut.

This section should also cover the high-level functional and nonfunctional requirements,
but details should go into the subsequent sections of the document. If you're familiar with
Agile practices, just describe epics and bigger user stories here.

If you or your stakeholders have any assumptions regarding the scope, you should mention
those here. If the scope is subject to change due to any issues or risks, you should also write
some words about it, and similarly for any trade-offs you had to make.

Functional and Nonfunctional Requirements Chapter 3

[63]

Documenting functional requirements
Each requirement should be precise and testable. Consider this example: "The system will
have a ranking system for the drivers." How would you create tests against it? It's better to
create a section for the ranking system and specify the precise requirements for it there.

Consider this other example: If there's a free driver close to the rider, they should be
notified of the incoming ride request. What if there's more than one driver available? What
maximum distance can we still describe as being close?

This requirement is both imprecise and lacking parts of the business logic. We can only
hope that the case where there are no free drivers is covered by another requirement.

In 2009, Rolls Royce developed its Easy Approach to Requirements Syntax (EARS), to help
cope with this. In EARS, there are five basic types of requirements, which should be written
in a different way and serve different purposes. They can be later combined to create more
complex requirements. Those basic ones are as follows:

Ubiquitous requirement: "The $SYSTEM shall $REQUIREMENT," for example, the
application will be developed in C++.
Event-driven: "When $TRIGGER $OPTIONAL_PRECONDITION the $SYSTEM
shall $REQUIREMENT," for example, "When an order arrives, the gateway will
produce a NewOrderEvent.
Unwanted behavior: "If $CONDITION, then the $SYSTEM shall $REQUIREMENT,"
for example if the processing of the request takes longer than 1 second, the tool
will display a progress bar.
State-driven: "While $STATE, the $SYSTEM shall $REQUIREMENT," for example,
while a ride is taking place, the app will display a map to help the driver
navigate to the destination.
Optional feature: "Where $FEATURE, the $SYSTEM shall $REQUIREMENT," for
example, where A/C is present, the app will let the user set the temperature
through the mobile application.

An example of a more complex requirement would be: When using a dual-server setup, if
the backup server doesn't hear from the primary one for 5 seconds, it should try to register
itself as a new primary server.

You don't need to use EARS, but it can help if you struggle with ambiguous, vague, overly
complex, untestable, omissive, or otherwise badly worded requirements. Whatever way or
wording you choose, be sure to use a concise model, which is based on common syntax and
uses predefined keywords. It's also good practice to assign an identificator for each
requirement you list, so you'll have an easy way to refer to them.

Functional and Nonfunctional Requirements Chapter 3

[64]

When it comes to more detailed requirements formats, it should have the following fields:

ID or Index: To easily identify a specific requirement.
Title: You can use the EARS template here.
Detailed Description: You can put whatever information you find relevant here,
for example, user stories.
Owner: Who this requirement serves. This can be the product owner, the sales
team, legal, IT, and so on.
Priority: Pretty self-explanatory.
Deliver By: If this requirement is needed for any key date, you can note it here.

Now that we know how to document functional requirements, let's discuss how you
should approach documenting the nonfunctional ones.

Documenting nonfunctional requirements
Each quality attribute, such as performance or scalability, should have its own section in
your document, with specific, testable requirements listed. Most of the QAs are measurable,
so having specific metrics can do a world of good to resolve future questions. You can also
have a separate section about the constraints that your project has.

With regard to wording, you can use the same EARS template to document your NFRs.
Alternatively, you can also specify them as user stories using the personas that you defined
in the context of this chapter.

Managing the version history of your
documentation
You can take one of the two following approaches: either create a version log inside the
document or use an external versioning tool. Both have their pros and cons, but we
recommend going with the latter approach. Just like you use a version control system for
your code, you can use it for your documentation. We're not saying you must use a
Markdown document stored in a Git repo, but that's a perfectly valid approach as long as
you're also generating a business people-readable version of it, be it a web page or a PDF
file. Alternatively, you can just use online tools, such as RedmineWikis, or Confluence
pages, which allow you to put a meaningful comment describing what's been changed on
each edit you publish and to view the differences between versions.

Functional and Nonfunctional Requirements Chapter 3

[65]

If you decided to take a revision log approach, it's usually a table that includes the
following fields:

Revision: A number identifying which iteration of the document the changes
were introduced at. You can also add tags for special revisions, such as the first
draft, if you so wish.
Updated by: Who made the change.
Reviewed by: Who reviewed the change.
Change description: A commit message for this revision. It states what changes
have taken place.

Documenting requirements in Agile projects
Many proponents of Agile would claim that documenting all the requirements is simply a
waste of time as they will probably change anyway. However, a good approach is to treat
them similarly to items in your backlog: the ones that will be developed in the upcoming
sprints should be defined in more detail than the ones that you wish to implement later.
Just like you won't split your epics into stories and stories into tasks before it's necessary,
you can get away with having just roughly described, less granular requirements until
you're certain that you need them implemented.

Note who or what was the source of a given requirement so that you'll
know how who can provide you with necessary input for refining it in the
future.

Let's take our Dominican Fair, for example. Say in the next sprint, we'll be building the
shop page for a visitor to view, and in the sprint after that one, we'll be adding a
subscription mechanism. Our requirements could look like the following:

ID Priority Description Stakeholders

DF-42 P1 The shop's page must show the shop's inventory, with a
photo and price for each item. Josh, Rick

DF-43 P2 The shop's page must feature a map with the shop's
location.

Josh,
Candice

DF-44 P2 Customers must be able to subscribe to shops. Steven

Functional and Nonfunctional Requirements Chapter 3

[66]

As you can see, the first two items relate to the feature we'll be doing next. so they are
described in more detail. Who knows, maybe before the next sprint, the requirement about
subscriptions will be dropped, so it doesn't make sense to think about every detail of it.

There are cases, on the other hand, that would still require you to have a complete list of
requirements. If you need to deal with external regulators or internal teams such as
auditing, legal, or compliance, chances are they'll still require a well-written physical
document from you. Sometimes just handing them a document containing work items
extracted from your backlog is OK. It's best to communicate with such stakeholders just like
with any other ones: gather their expectations to know the minimum viable documentation
that satisfies their needs.

What's important about documenting requirements is to have an understanding between
you and the parties proposing specific requirements. How can this be achieved? Once you
have a draft ready to go, you should show your documentation to them and gather
feedback. This way, you'll know what was ambiguous, unclear, or missing. Even if it takes
a few iterations, it will help you have a common ground with your stakeholders, so you'll
gain more confidence that you're building the right thing.

Other sections
It's a good idea to have a links and resources section in which you point to stuff such as the
issue tracker boards, artifacts, CI, the source repo, and whatever else you'll find handy.
Architectural, marketing, and other kinds of documents can also be listed here.

If needed, you can also include a glossary.

You now know how to document your requirements and related information. Let's now
say a few words about documenting the designed system.

Documenting architecture
Just as you should document your requirements, you should also document the emerging
architecture. It's certainly not just for the sake of having documentation: it should help each
person involved in the project to be more productive by making them better understand
what's required from them and from the final product. Not all diagrams you'll make will be
useful for everyone, but you should create them from the perspective of their future
readers.

Functional and Nonfunctional Requirements Chapter 3

[67]

There's a multitude of frameworks to document your vision and many of them serve
specific fields, project types, or architectural scopes. If you're interested in documenting
enterprise architecture, for instance, you could be interested in TOGAF. This is an acronym
for The Open Group Architecture Framework. It relies on four domains, namely the following:

Business architecture (strategy, organization, key processes, and governance)
Data architecture (logical and physical data management)
Application architecture (blueprints for individual systems)
Technical architecture (hardware, software, and network infrastructure)

Such grouping is useful if you document your software in the scope of the whole company
or even broader ones. Other similar-scale frameworks include those developed by the
British Ministry of Defence (MODAF) and the American equivalent (DoDAF).

If you're not documenting enterprise architectures, and especially if you're just starting on
your architectural self-development path, you'll probably be more interested in other
frameworks, such as the 4+1 and C4 models.

Understanding the 4+1 model
The 4+1 view model was created by Philippe Kruchten in 1995. The author then claimed it
is intended for "describing the architecture of software-intensive systems, based on the use
of multiple, concurrent views." Its name comes from the views it consists of.

This model is widely known since it has been on the market for so long and does its job. It's
well suited for bigger projects and while it can be used for small- and medium-sized ones
as well, it can also turn out too complex for their needs (especially if they're written in an
Agile way). If that's your case, you should try out the C4 model described in the next
section.

A downside to the 4+1 model is that it uses a fixed set of views, while a pragmatic approach
to document architecture would be to choose views based on the specifics of your project
(more on that later).

A nice upside, on the other hand, is how the views link together, especially when it comes
to scenarios. At the same time, each stakeholder can easily get the parts of the model
relevant to them. This brings us to how the model appears:

Functional and Nonfunctional Requirements Chapter 3

[68]

Figure 3.1 – An overview of the 4+1 model

Actors in the preceding diagram are the ones most interested in their corresponding views.
All the views can be represented using different kinds of Unified Modeling Language
(UML) diagrams. Let's now discuss each view:

The logical view shows how functionality is provided to users. It shows the
system's components (objects) and how they interact with each other. Most
commonly, it consists of class and state diagrams. If you have thousands of
classes or just want to better show the interactions between them, you should
also have communication or sequence diagrams, both being parts of our next
view:

Figure 3.2 – Class diagrams can be used to show what types we plan to have, along with their relations

Functional and Nonfunctional Requirements Chapter 3

[69]

The process view revolves around the system's runtime behavior. It shows
processes, the communication between them, and interactions with external
systems. It's represented by activity and interaction diagrams. This view
addresses many NFRs, including concurrency, performance, availability, and
scalability:

Figure 3.3 – Activity diagrams are graphical representations of workflows and processes

The development view is for decomposing into subsystems and revolves around
software organization. Reuse, tooling constraints, layering, modularization,
packaging, execution environments – this view can represent them by showing a
building-block decomposition of the system. It does so by using components and
package diagrams:

Functional and Nonfunctional Requirements Chapter 3

[70]

Figure 3.4 – Package diagrams can show the parts of a system from a higher perspective, as well as dependencies or relations between specific components

The physical view is used to map software to hardware using deployment
diagrams. Aimed at system engineers, it can cover a subset of NFRs concerned
with the hardware, for example, communication:

Figure 3.5 – Deployment diagrams demonstrate the hardware on which each software component will run. It can also be used to pass on information regarding the network

Functional and Nonfunctional Requirements Chapter 3

[71]

The scenarios are gluing all the other views together. Represented by use case
diagrams, these can be useful for all stakeholders. This view shows whether the
system does what it should and that it is consistent. When all other views are
finished, the scenario view can be redundant. However, all the other views
wouldn't be possible without usage scenarios. This view shows the system from
a high level, while the other views go into the details:

Figure 3.6 – Use case diagrams show how specific actors interact with the system and how the interactions relate to each other

Each of those views is interconnected with the others and often they must coexist to show
the full picture. Let's think about expressing concurrency. It can't be done using only the
logical view, as it's more expressive to map them to tasks and processes; we need the
process view. On the other hand, the processes will be mapped to physical, often
distributed, nodes. This means we'll need to effectively document it in three views, each of
which will be relevant for a specific group of stakeholders. Other connections between the
views include the following:

Both logical and process views are used in analysis and design to conceptualize
the product.

Functional and Nonfunctional Requirements Chapter 3

[72]

Development and deployment in conjunction describe how the software is
packaged and when each package will get deployed.
The logical and development views show how the functionality is reflected in the
source code.
The process and deployment views are meant to collectively describe NFRs.

Now that you're familiar with the 4+1 model, let's discuss another one, which is simple, yet
extremely effective: the C4 model. We hope using it will be a blast (pun intended).

Understanding the C4 model
The C4 model is a great fit for small- to medium-sized projects. It's easy to apply, as it's
quite simple and it doesn't rely on any predefined notation. If you want to start
diagramming using it, you can try out Tobias Shochguertel's c4-draw.io plugin (https:/ /
github.com/tobiashochguertel/ c4- draw. io) for the free online drawing tool – draw.io
(https://www.draw. io/).

In the C4 model, there are four main types of diagram, namely the following:

Context
Container
Component
Code

Just like zooming in and out using a map, you can use those four types to show more
details of a particular code region or "zoom out" to show more about the interactions and
surroundings of either a specific module or even the whole system.

https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://github.com/tobiashochguertel/c4-draw.io
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/

Functional and Nonfunctional Requirements Chapter 3

[73]

The system context is a great starting point for looking at the architecture, as it shows the
system as a whole, surrounded by its users and other systems that it interacts with. You can
take a look at an example C4 context diagram here:

Figure 3.7 – A C4 context diagram

Functional and Nonfunctional Requirements Chapter 3

[74]

As you can see, it shows the "big picture," so it shouldn't focus on specific technologies or
protocols. Instead, think of it as a diagram that could also be shown to non-technical
stakeholders. Just by looking at the diagram, it should be clear that there's one actor
involved (the human-shaped depiction of the customer), who interacts with one of the
components of our solution, namely, the customer service system. This system, on the other
hand, interacts with two more, with each of the interactions described along with the
arrows.

The context diagram we described is used to provide an overview of the system with few
details. Let's now look at the other diagrams one by one:

Container diagram: This one is for showing the overview of the system internals.
If your system uses a database, offers services, or just consists of certain
applications, this diagram will show it. It can also show the major technology
choices for the containers. Note that containers don't mean Docker containers;
although each is a separately runnable and deployable unit, this diagram type is
not about deployment scenarios. The container view is meant for technical
people but isn't limited to the development team only. Architects, as well as
operations and support, are the intended audience, too.
Component diagram: If you want more details about a specific container, this is
where the component diagram comes into play. It shows how the components
inside a selected container interact with each other, as well as with elements and
actors outside the container. By looking at this diagram, you can learn about the
responsibilities of each component and what technology it's being built with. The
intended audience for component diagrams is mostly focused around a specific
container and consists of the development team and the architect.
Code diagrams: We finally come to code diagrams, which emerge when you
zoom in to a specific component. This view consists mostly of UML diagrams,
including class, entity-relationship, and others, and ideally should be created
automatically from source code by standalone tools and IDEs. You should
definitely not make such diagrams for each component in your system; instead,
focus on making them for the most important ones in a way that allows them to
actually tell the reader what you wanted to tell. This means that less can be more
in such diagrams, so you should omit unnecessary elements from code diagrams.
In many systems, especially smaller ones, this class of diagram is omitted. The
target audience is the same as in the case of component diagrams.

Functional and Nonfunctional Requirements Chapter 3

[75]

You may find the C4 model lacking some specific views. If you're wondering how to
demonstrate how your system should be deployed, for instance, you might be interested to
learn that aside from the main diagrams, there are also a few supplementary ones. One of
them is the deployment diagram, which you can see next. It shows how containers in your
system are mapped to nodes in your infrastructure. In general, it's a simpler version of
UML's deployment diagram:

Figure 3.8 – A C4 deployment diagram

Speaking of UML diagrams with regard to the C4 model, you might also wonder why it
puts such little effort into presenting the system's use cases. If that's your case, then you
should think about supplementing the preceding models with either the use case diagram
from UML or perhaps think about introducing some sequence diagrams.

When documenting architecture, it's more important what you document and what
knowledge you share than to follow a specific hard set of rules. Choose whatever tools suit
your needs the best.

Functional and Nonfunctional Requirements Chapter 3

[76]

Documenting architecture in Agile projects
In Agile environments, your approach to documenting architecture should be similar to the
one about documenting requirements. First and foremost, consider who will be reading the
materials you prepare to be sure you're describing the right things in the right way. Your
documentation doesn't need to be a lengthy Word document. You can use presentations,
wiki pages, single diagrams, or even recordings from meetings when someone describes
the architecture.

What is important is to gather feedback on the documented architecture. Again, in the same
way, as with the documented requirements, it's important to reiterate the documents with
your stakeholders to know where to improve them. Even though this may seem like you're
wasting time, if done properly, it should save you some time in terms of delivering the
product. Good enough documentation should help newcomers to start being productive
faster and guide more familiar stakeholders down the road. If you just discuss the
architecture at some meetings, chances are, a quarter later, no one will remember why you
made the decisions you made and whether they will remain valid in the ever-changing,
Agile landscape.

Reiteration is important when creating documentation because most probably there will be
some misunderstanding of an important detail or two. Other times, you or your
stakeholders will gain more knowledge and decide to change things. Be prepared to go
through the document at least a few times before it will be considered mature and done.
Often, a few conversations over IM, phone, or in-person will help you finish it quicker and
address any follow-ups that could arise, so prefer those to emails or other asynchronous
ways of communication.

Choosing the right views to document
Architecture is way too complex a topic to be described by a single big diagram. Imagine
you're the architect of a building. To design the whole thing, you'd need separate diagrams
for different aspects: one for plumbing, another one for electricity and other cables, and so
on. Each of those diagrams would show a different view of the project. The same goes for
software architecture: you need to present the software from different perspectives, aimed
at different stakeholders.

Functional and Nonfunctional Requirements Chapter 3

[77]

Moreover, if you were building a smart house, chances are you would draw some plan of
the devices you want to place around. Although not all projects will require such views,
since it plays a role in your project, it may be worth adding it. The same approach is also
valid for architecture: if you find a different view valuable to the document, you should do
it. So, how do you know which views could be valuable? You can try to perform the
following steps:

Start with the views from either the 4+1 model or the C4 model.1.
Ask your stakeholders what is essential for them to have documented and think2.
about modifying your set of views.
Choose views that will help you to evaluate whether the architecture meets its3.
objectives and that all the ASRs are satisfied. Read the first paragraph of each of
the views from the next sections to check whether they suit your needs.

If you're still not sure which views to document, here's a set of tips:

Try to just pick the most important views, because when there are too
many of them, the architecture will become too hard to follow. A good set
of views should not only showcase the architecture but also expose the
technical risks to the project.

There are a few things you should think about when choosing what views you should
describe in your documentation. We'll describe them shortly here, but if you're interested,
you should grab Rozanski and Woods' book mentioned in the Further reading section.

Functional view
If your software is being developed as part of a bigger system, especially with teams that
don't communicate on a daily basis, you should include a functional view (as in the 4+1
model).

One important and often overlooked aspect of documenting your architecture is the
definition of the interfaces you provide, despite it being one of the most important things to
describe. Whether it's an interface between two of your components or an entry point for
the outside world, you should take the time to document it clearly, describing the semantics
of objects and calls, as well as usage examples (which you can sometimes reuse as tests).

Functional and Nonfunctional Requirements Chapter 3

[78]

Another great benefit of including a functional view in your documentation is that it
clarifies the responsibilities between components of your system. Each team developing the
system should understand where the boundaries are and who's responsible for developing
which functionality. All requirements should be explicitly mapped to components to
eliminate gaps and duplicated work.

An important thing to note here is to avoid overloading your functional
view. If it gets messy, no one will want to read it. If you're starting to
describe infrastructure on it, consider adding a deployment view. If you
end up having a God object in your models, try to rethink the design and
split it into smaller, more cohesive pieces.

One last important note about the functional view: try to keep each diagram you include on
one level of abstraction. On the other hand, don't make it too vague by choosing an overly
abstract level; ensure that every element is properly defined and understood by the
interested parties.

Information view
If your system has non-straightforward needs with regard to information, its processing
flow, management process, or storage, perhaps it's a good idea to include this kind of view.

Take the most important, data-rich entities and demonstrate how they flow through the
system, who owns them, and who the producers and consumers are. It may be useful to
mark how long certain data remains "fresh" and when it can be safely discarded, what the
expected latency for it to arrive at certain points of the system is, or how to deal with
identifiers if your system works in a distributed environment. If your system manages
transactions, this process, along with any rollbacks, should also be clear to your
stakeholders. Techniques for transforming, sending, and persisting data can also be
important for some of them. If you are operating in the financial domain or have to deal
with personal data, you most probably must obey some regulations, so describe how your
system plans to tackle this.

The structure of your data can be diagrammed using UML class models. Remember to be
clear about the format of your data, especially if it flows between two different systems.
NASA lost the $125 million-worth Mars Climate Orbiter, which it co-developed with
Lockheed Martin, because they used different units unknowingly, so keep an eye out for
data inconsistencies between systems.

The processing flow of your data can use UML's activity model, and to show the life cycle
of information, a state diagram can be used.

Functional and Nonfunctional Requirements Chapter 3

[79]

Concurrency view
If running many concurrent units of execution is an important aspect of your product,
consider adding a concurrency view. It can show what issues and bottlenecks you may
have (unless that sounds too detailed). Other good reasons to include it are the reliance on
interprocess communication, having a non-straightforward task structure, concurrent state
management, synchronization, or task failure handling logic.

Use whatever notation you want for this view, as long as it captures the units of execution
and their communication. Assign priorities to your processes and threads, if necessary, and
then analyze any potential issues, such as deadlocks or contention. You can use state
diagrams to show the possible states and their transitions for important units of execution
(waiting for queries, executing a query, distributing results, and so on).

If you're not sure about the need to introduce concurrency to your system, a good rule of
thumb is don't. And if you must, strive for a simple design. Debugging concurrency issues
is never easy and always long, so if possible, try to optimize what you have first instead of
just throwing more threads at the problem at hand.

If, by looking at your diagram, you're worried about resource contention, try to replace
locks on big objects with more locks, but finer-grained, use lightweight synchronization
(sometimes atomics are enough), introduce optimistic locking, or reduce what's shared
(creating an additional copy of some data in a thread and processing it can be faster than
sharing access to the only copy).

Development view
If you're building a big system with lots of modules, and you need to structure your code,
have system-wide design constraints, or if you want to share some common aspects
between parts of your system, presenting the solution from a development viewpoint
should benefit you, along with software developers and testers.

A package diagram of the development view can be handy to show where different
modules in your system are located, what their dependencies are, and other related
modules (for example, residing in the same software layer). It doesn't need to be a UML
diagram – even boxes and lines would do. If you plan for a module to be replaceable, this
kind of diagram can show you what other software packages can be affected.

Functional and Nonfunctional Requirements Chapter 3

[80]

Tactics to increase reuse in your system, such as creating your own runtime framework for
components, or tactics for increasing the coherence of your systems, such as a common
approach to authentication, logging, internationalization, or other kinds of processing, are
all part of the development view. If you see any common parts of the system, document it
to be sure that all developers see them too.

A common approach to code organization, building, and configuration management
should also go into this section of your documentation. If all this sounds like a lot to
document, then focus on the most important parts and cover the rest just briefly, if at all.

Deployment and operational views
If you have a non-standard or complex deployment environment, such as specific needs
with regard to hardware, third-party software or networking requirements, consider
documenting it in a separate deployment section, aimed at system administrators,
developers, and testers.

If necessary, cover the following things:

The amount of memory required
The CPU thread count (with or without hyperthreading)
Pinning and affinity with regard to NUMA nodes
Specialist networking equipment requirements, such as switches that mark
packages to measure latency and throughput in a black-box manner
The networking topology
The estimated bandwidth required
Storage requirements for your app
Any third-party software that you plan to use

Once you have the requirements, you can map them to specific hardware and put them into
a runtime platform model. You can use a UML deployment diagram with stereotypes if
you desire formal modeling. This should show your processing nodes and client nodes,
online and offline storage, network links, specialized hardware, such as firewalls or FPGA
or ASIC devices, and a mapping between functional elements and the nodes they'll run on.

Functional and Nonfunctional Requirements Chapter 3

[81]

If you have non-straightforward networking needs, you can add another diagram showing
the networking nodes and the connections between them.

If you depend on specific technologies (including specific versions of software), it's a good
idea to list them to see whether there are any compatibility issues between the software you
use. Sometimes, two third-party components will require the same dependency, but in
different versions.

If you have a specific installation and upgrade plan in your head, it might be a good idea to
write a few words about it. Things such as A/B testing, blue-green deployments, or any
particular container magic that your solution will rely on should be clear to everyone
involved. Data migration plans should also be covered, if needed, including how long the
migration can take and when it could be scheduled.

Any plans for configuration management, performance monitoring, operational
monitoring, and control, as well as backup strategies, can all be things worth describing.
You'll probably want to create a few groups, identify the dependencies of each, and define
the approach for each such group. If you can think about any probable errors that may
occur, have a plan to detect and recover from them.

A few notes to the support team can also go into this section: what support is required by
which stakeholder group, what classes of incidents you plan to have, how to escalate, and
what each level of support will be responsible for.

It's best to engage early with the operational staff and create diagrams specifically for them
in order to keep them engaged.

Now that we've discussed how to create documentation about your system and its
requirements manually, let's switch to documenting your APIs in an automated manner.

Generating documentation
As engineers, we don't like manual labor. This is why, if something can be automated and
save us work, it most likely will be. With all this effort to create good enough
documentation, having the possibility to automate at least parts of the work can actually be
bliss.

Functional and Nonfunctional Requirements Chapter 3

[82]

Generating requirements documentation
If you're creating a project from scratch, it can be hard to generate documentation out of
thin air. However, sometimes it's possible to generate documentation if you have nothing
but the requirements in an appropriate tool. If you're using JIRA, for instance, a starting
point would be to just export all items from an issue navigator view. You can use whatever
filter you like and get printouts just for those items. If you don't like the default set of fields
or just feel this is not what you're looking for, you can try out one of JIRA's plugins for
requirements management. They allow a whole lot more than to just export requirements;
for example, R4J (Requirements for Jira) allows you to create whole hierarchies of
requirements, trace them, manage changes and propagate them through your whole
project, perform impact analyses of any requirements changes, and, of course, export using
user-defined templates. Many such tools will also aid you in creating test suites for your
requirements, but none that we saw were free.

Generating diagrams from code
If you want to get to know your code structure without taking an initial deep dive into the
sources, you might be interested in tools that generate diagrams from code.

One such tool is CppDepend. It enables you to create various dependency diagrams
between different parts of your sources. What's more, it allows you to query and filter the
code based on various parameters. Whether you want to just grasp how the code is
structured, discover what the dependencies are between different software components
and how tightly they're coupled, or want to quickly locate parts with the most technical
debt, you might be interested in this tool. It's proprietary, but offers a fully functional trial.

Some diagramming tools allow you to create code from class diagrams and class diagrams
from code. Enterprise Architect enables you to take your class and interface diagrams and
generate code in multiple languages. C++ is one of these, and allows UML class diagrams to
be generated directly from source code. Another tool that can do that is Visual Paradigm.

Functional and Nonfunctional Requirements Chapter 3

[83]

Generating (API) documentation from code
To help others navigate your existing code and use the APIs you provide, a good idea is to
provide documentation generated from the comments in your code. There's no better place
for such documentation than just right next to the functions and data types it describes, and
this helps a lot in keeping them in sync.

A de facto standard tool for writing such documentation is Doxygen. Its positives are that
it's fast (especially for big projects and HTML document generation), the generator has
some built-in correctness checks (for example, for partially documented parameters in a
function – a good marker to check whether the documentation is still up to date), and it
allows the navigation of class and file hierarchies. Its disadvantages include not being able
to do a full-text search, less than ideal PDF generation, and an interface some may find
cumbersome.

Fortunately, the usability flaws can be remediated by using another popular tool for
documentation. If you've ever read any Python documentation, you have probably
stumbled upon Sphinx. It has a fresh-looking and usable interface and uses
reStructuredText as a markup language. The good news is that there's a bridge between
those two, so you can take XML generated from Doxygen and use it in Sphinx. This
bridging software is called Breathe.

Let's now see how to set it up in your project. Let's assume we keep our sources in src,
public headers in include, and documentation in doc. First, let's create a
CMakeLists.txt file:

cmake_minimum_required(VERSION 3.10)

project("Breathe Demo" VERSION 0.0.1 LANGUAGES CXX)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake")
add_subdirectory(src)
add_subdirectory(doc)

We've set requirements on the CMake version supported by our project, specified its name,
version, and the languages used (in our case, it's just C++), and added the cmake directory
to the path under which CMake looks for its include files.

Functional and Nonfunctional Requirements Chapter 3

[84]

In the cmake subdirectory, we'll create one file, FindSphinx.cmake, which we'll use just as
the name suggests, since Sphinx doesn't offer one already:

find_program(
 SPHINX_EXECUTABLE
 NAMES sphinx-build
 DOC "Path to sphinx-build executable")

handle REQUIRED and QUIET arguments, set SPHINX_FOUND variable
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(
 Sphinx "Unable to locate sphinx-build executable" SPHINX_EXECUTABLE)

Now, CMake will look for our Sphinx build tool and, if found, will set appropriate CMake
variables to mark the Sphinx package as found. Next, let's create our sources to generate the
documentation. Let's have an include/breathe_demo/demo.h file:

#pragma once

// the @file annotation is needed for Doxygen to document the free
// functions in this file
/**
 * @file
 * @brief The main entry points of our demo
 */

/**
 * A unit of performable work
 */
struct Payload {
 /**
 * The actual amount of work to perform
 */
 int amount;
};

/**
 @brief Performs really important work
 @param payload the descriptor of work to be performed
 */
void perform_work(struct Payload payload);

Note the comment syntax. Doxygen recognizes it while parsing our header file so that it
knows what to put in the generated documentation.

Functional and Nonfunctional Requirements Chapter 3

[85]

Now, let's add a corresponding src/demo.cpp implementation for our header:

#include "breathe_demo/demo.h"

#include <chrono>
#include <thread>

void perform_work(Payload payload) {
 std::this_thread::sleep_for(std::chrono::seconds(payload.amount));
}

No Doxygen comments here. We prefer to document our types and functions in the header
files since they're the interface to our library. The source files are just implementation and
they don't add anything new to the interface.

Aside from the preceding files, we also need a simple CMakeLists.txt file in src:

add_library(BreatheDemo demo.cpp)
target_include_directories(BreatheDemo PUBLIC
 ${PROJECT_SOURCE_DIR}/include)
target_compile_features(BreatheDemo PUBLIC cxx_std_11)

Here, we specify the source files for our target, the directory with the header files for it, and
the required C++ standard to compile against.

Now, let's move to the doc folder, where the magic happens; first, its CMakeLists.txt file,
beginning with a check to establish whether Doxygen is available and omitting generation
if so:

find_package(Doxygen)
if (NOT DOXYGEN_FOUND)
 return()
endif()

If Doxygen is not installed, we'll just skip documentation generation. Note also the
return() call, which will exit the current CMake list file, a not-that-widely-known, but
nevertheless useful, trick.

Next, assuming Doxygen was found, we need to set some variables to steer the generation.
We want just the XML output for Breathe, so let's set the following variables:

set(DOXYGEN_GENERATE_HTML NO)
set(DOXYGEN_GENERATE_XML YES)

Functional and Nonfunctional Requirements Chapter 3

[86]

To force relative paths, use set(DOXYGEN_STRIP_FROM_PATH
${PROJECT_SOURCE_DIR}/include). If you have any implementation details to hide, you
can do this using set(DOXYGEN_EXCLUDE_PATTERNS "*/detail/*"). OK, since we have
all the variables set, let's now generate:

Note: Use doxygen_add_docs(doxygen-doc ALL ...) if you want your
documentation to be created by default each time you build. Without the
keyword you need to explicitly invoke building of the 'doc' target.
doxygen_add_docs(doxygen-doc ${PROJECT_SOURCE_DIR}/include COMMENT
 "Generating API documentation with Doxygen")

Here, we call a CMake function specifically written for using Doxygen. We define a target,
doxygen-doc, which we'll need to explicitly invoke to generate our docs on demand, just
like the comment says.

Now we need to create a Breathe target to consume what we got from Doxygen. We can use
our FindSphinx module to this end:

find_package(Sphinx REQUIRED)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/conf.py.in
 ${CMAKE_CURRENT_BINARY_DIR}/conf.py @ONLY)
add_custom_target(
 sphinx-doc ALL
 COMMAND ${SPHINX_EXECUTABLE} -b html -c ${CMAKE_CURRENT_BINARY_DIR}
 ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}
 WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
 COMMENT "Generating API documentation with Sphinx"
 VERBATIM)

First, we invoke our module. Then, we fill in a Python configuration file with variables
from our project for Sphinx to use. We create a sphinx-doc target that will generate HTML
files as its output and will print a line in the build's output when doing so.

Finally, let's force CMake to call Doxygen each time we generate Sphinx docs:
add_dependencies(sphinx-doc doxygen-doc).

If you wish to have more targets for documentation, it may be useful to introduce some
CMake functions that will handle documentation-related targets for you.

Functional and Nonfunctional Requirements Chapter 3

[87]

Let's now see what lies inside our conf.py.in file, used to steer our feline tool. Let's create
it and let it point Sphinx to Breathe:

extensions = ["breathe", "m2r2"]
breathe_projects = { "BreatheDemo": "@CMAKE_CURRENT_BINARY_DIR@/xml" }
breathe_default_project = "BreatheDemo"

project = "Breathe Demo"
author = "Breathe Demo Authors"
copyright = "2021, Breathe Demo Authors"
version = "@PROJECT_VERSION@"
release = "@PROJECT_VERSION@

html_theme = 'sphinx_rtd_theme'

As you can see from the preceding listing, we set the extensions for Sphinx to use, the name
of the documented project, and a few other related variables. Note @NOTATION@, used by
CMake to fill in the output file with the value of appropriate CMake variables. Finally, we
tell Sphinx to use our ReadTheDocs theme (sphinx_rtd_theme).

The final pieces of the puzzle are reStructuredText files, which define what to include
where in the docs. First, let's create an index.rst file, containing a table of contents and a
few links:

Breathe Demo
============

Welcome to the Breathe Demo documentation!

.. toctree::
 :maxdepth: 2
 :caption: Contents:

Introduction <self>
 readme
 api_reference

Functional and Nonfunctional Requirements Chapter 3

[88]

The first link points to this page, so we can get back to it from other ones. We'll display
Introduction as the label. Other names point to other files with the .rst extension. Since
we're including the M2R2 Sphinx extension, we can include our README.md file in the docs,
which can save you some duplication. The contents of the readme.rst file are simply ..
mdinclude:: ../README.md. Now for the last part: merging Doxygen's output. This is
done in the api_reference.rst file using just the following command:

API Reference
=============

.. doxygenindex::

So we just named the reference page as we liked and specified that the Doxygen-generated
docs should be listed here, and that's all! Just build the sphinx-doc target and you'll get a
page looking like so:

Figure 3.9 – The main page of our documentation, consolidating both the generated and manually written parts

Functional and Nonfunctional Requirements Chapter 3

[89]

And when we look at the API docs page, it should look like this:

Figure 3.10 – The automatically generated API documentation

As you can see, the documentation was automatically generated for our Payload type with
each of its members, as well as for the free perform_work function, including each of its
parameters, and was grouped based on the file that defines them. Neat!

Functional and Nonfunctional Requirements Chapter 3

[90]

Summary
In this chapter, you got to know all the essentials regarding requirements and
documentation. You learned how to gather requirements successfully and how to identify
the most important ones. You can now prepare lean and useful documentation that shows
only what's important in a view-oriented manner. You are able to distinguish between
different types and styles of diagrams and use the one that suits your needs the best. Last,
but not least, you are now able to automatically generate aesthetic documentation.

In the next chapter, you'll learn about useful architectural design patterns that will help you
fulfill your system's requirements. We'll discuss various patterns and how to apply them to
provide many important quality attributes, both on a single-component scale in distributed
systems.

Questions
What are quality attributes?1.
What sources should be used when gathering requirements?2.
How can you tell whether a requirement is architecturally significant?3.
When is development view documentation useful?4.
How can you automatically check whether your code's API documentation is out5.
of date?
How can you indicate on a diagram that a given process is handled by different6.
components of the system?

Further reading
Evaluate the Software Architecture using ATAM, JC Olamendy, blog post: https:/ /1.
johnolamendy. wordpress. com/ 2011/ 08/12/ evaluate- the-software-
architecture- using- atam/

EARS: The Easy Approach to Requirements Syntax, John Terzakis, Intel Corporation,2.
conference talk from the ICCGI conference: https:/ /www. iaria. org/
conferences2013/ filesICCGI13/ ICCGI_ 2013_ Tutorial_ Terzakis. pdf

Eoin Woods and Nick Rozanski, Software Systems Architecture: Working With3.
Stakeholders Using Viewpoints and Perspectives

https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://johnolamendy.wordpress.com/2011/08/12/evaluate-the-software-architecture-using-atam/
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf
https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf

2
Section 2: The Design and

Development of C++ Software
This section presents techniques for creating effective software solutions with C++. It
demonstrates techniques for solving common challenges and avoiding pitfalls when
designing, developing, and building C++ code. The techniques come from the C++ language
itself, as well as design patterns, tools, and build systems.

This section contains the following chapters:

Chapter 4, Architectural and System Design
Chapter 5, Leveraging C++ Language Features
Chapter 6, Design Patterns and C++
Chapter 7, Building and Packaging

4
Architectural and System

Design
 Patterns help us deal with complexity. At the level of a single software component, you
can use software patterns such as the ones described by the four authors of the book (better
known as the Gang of Four) Design Patterns: Elements of Reusable Object-Oriented Software.
When we move higher up and start looking at the architecture between different
components, knowing when and how to apply architectural patterns can go a long way.

There are countless such patterns that are useful for different scenarios. In fact, to even get
to know all of them, you would need to read more than just one book. That being said, we
selected several patterns for this book, suited for achieving various architectural goals.

In this chapter, we'll introduce you to a few concepts and fallacies related to architectural
design; we'll show when to use the aforementioned patterns and how to design high-
quality components that are easy to deploy.

The following topics will be covered in this chapter:

The different service models and when to use each of them
How to avoid the fallacies of distributed computing
The outcomes of the CAP theorem and how to achieve eventual consistency
Making your system fault-tolerant and available
Integrating your system
Achieving performance at scale
Deploying your system
Managing your APIs

By the end of this chapter, you'll know how to design your architecture to provide several
important qualities, such as fault tolerance, scalability, and deployability. Before that, let's
first learn about two inherent aspects of distributed architectures.

Architectural and System Design Chapter 4

[93]

Technical requirements
The code from this chapter requires the following tools to build and run:

Docker
Docker Compose

The source code snippets from the chapter can be found at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter04.

Understanding the peculiarities of
distributed systems
There are many types of different software systems, each of them suited for different
scenarios, built for different needs, and using different sets of assumptions. Writing and
deploying a classical, standalone desktop application is nothing like writing and deploying
a microservice that needs to communicate with many others over a network.

In this section, we'll go through the various models that you can use to deploy your
software, the common mistakes that people should avoid when creating distributed
systems, and some of the compromises people need to make to create such systems
successfully.

Different service models and when to use them
Let's first start with service models. When designing a bigger system, you need to decide
how much of the infrastructure you will manage versus how much you can build upon
existing building blocks. Sometimes, you might want to leverage existing software without
the need to manually deploy an app or back up data, for example, by using Google Drive
through its API as storage for your app. Other times, you can rely on an existing cloud
platform such as Google's App Engine to deploy your solution without the need to worry
about providing a language runtime or databases. If you can decide to deploy everything in
your own way, you can either leverage an infrastructure from a cloud provider or use your
company's one.

Let's discuss the different models and where each can be useful.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter04

Architectural and System Design Chapter 4

[94]

On-premises model
The classical way, and the only way available in the pre-cloud era, is to just deploy
everything on your own premises. You need to buy all the hardware and software required
and make sure it will provide enough capacity for your needs. If you're working for a start-
up company, this may be a big upfront cost. Along with the growth of your userbase, you
need to buy and set up more resources so that your service can deal even with the
occasional spikes in load. All this means you need to predict the growth of your solution
and act proactively, as there's no way you could just automatically scale depending on the
current load.

Even in the cloud era, deploying on-premises is still useful and often spotted in the wild.
Sometimes you're dealing with data that shouldn't, or even can't, leave your company's
premises, either due to data privacy issues or compliance ones. Other times, you need to
have as little latency as possible and you need your own data center to do so. Sometimes
you may calculate the costs and decide that in your case, on-premises will be cheaper than
a cloud solution. Last, but not least, your company might just already have an existing data
center that you can use.

Deploying on-premises doesn't mean you need to have a monolith system. Often,
companies have their own private clouds deployed on-premises. This helps to cut costs by
better utilization of the available infrastructure. You can also mix a private cloud solution
with one of the other service models, which can be useful when you need that extra
capacity from time to time. This is called a hybrid deployment and is offered by all major
cloud providers as well as provided by OpenStack's Omni project.

Infrastructure as a Service (IaaS) model
Speaking of other models, the most basic cloud service model is called Infrastructure as a
Service (IaaS). It's also the most similar to on-premises: you can think of IaaS as a way to
have a virtual data center. As the name suggests, the cloud provider offers you a slice of the
infrastructure they host, which consists of three types of resources:

Compute, such as virtual machines, containers, or bare-metal machines
(excluding operating systems)
Networking, which aside from the network itself includes DNS servers, routing,
and firewalls
Storage, including backup and recovery capabilities

It's still up to you to provide all the software: operating systems, middleware, and your
applications.

Architectural and System Design Chapter 4

[95]

IaaS can be used in scenarios ranging from hosting websites (might be cheaper than
traditional web hosting), through storage (for example, Amazon's S3 and Glacier services),
to high-performance computing and big data analysis (requires huge computing power).
Some companies use it to quickly set up and purge test and development environments
when needed.

Using IaaS instead of on-premises infrastructure can be a cheap way to test new ideas while
saving you the time needed for configuration.

If your service observes spikes in usage, for example, during the weekends, you might
want to leverage your cloud's automatic scaling capabilities: scale up when needed and
scale back down later to save money.

IaaS solutions are offered by all the popular cloud service providers.

A similar concept, sometimes thought of as a subset of IaaS, is Containers as a Service
(CaaS). In CaaS, instead of bare-metal systems and virtual machines, the service provides
you with containers and orchestration capabilities that you can use to build your own
container clusters. CaaS offerings can be found with Google Cloud Platform and AWS,
among others.

Platform as a Service (PaaS) model
If the infrastructure itself is not enough for your needs, you can use the Platform as a
Service (PaaS) model instead. In this model, the cloud service provider manages not only
the infrastructure (just like in IaaS), but also the operating systems, any required
middleware, and the runtime – the platform that you will deploy your software on.

Often a PaaS solution will provide you with app versioning capabilities, service monitoring
and discovery, database management, business intelligence, and even development tools.

With PaaS, you're covered throughout the whole development pipeline: from building and
testing to deploying, updating, and managing your service. However, PaaS solutions are
more costly than IaaS offerings. On the other hand, with the whole platform provided, you
can cut the costs and time to develop parts of your software and easily provide the same
setup for development teams scattered around the globe.

All main cloud providers have their own offerings, for example, Google App Engine or
Azure App Service. There are also independent ones, such as Heroku.

Architectural and System Design Chapter 4

[96]

Aside from the more generic PaaS, there's also Communications Platform as a Service
(CPaaS), in which you're provided with the whole communications backend, including
audio and video, which you can integrate into your solution. This technology allows you to
easily provide video-enabled help desks or just integrate live chats into your apps.

Software as a Service (SaaS) model
Sometimes you might not want to develop a software component on your own and just
want to use an existing one. Software as a Service (SaaS) basically gives you a hosted
application. With SaaS, you don't need to worry about either the infrastructure or the
platform built upon it, and not even about the software itself. The provider is responsible
for installing, running, updating, and maintaining the whole software stack, as well as
backups, licensing, and scaling.

There's quite a variety to what software you can get in the SaaS model. Examples vary from
office suites such as Office 365 and Google Docs to messaging software such as Slack,
through Customer Relationship Management (CRM) systems, and span even to gaming
solutions such as cloud gaming services, allowing you to play resource-hungry video
games hosted on the cloud.

Usually, to access such services, all you need is a browser, so this can be a great step in
providing remote work capabilities for your employees.

You can create your own SaaS applications and provide them to users either by deploying
them however you like, or through means such as AWS Marketplace.

Function as a Service (FaaS) model and serverless
architecture
With the advent of cloud-native, another model that is growing in popularity is Function as
a Service (FaaS). It can be helpful if you want to achieve a serverless architecture. With
FaaS, you get a platform (similarly to PaaS) on which you can run short-lived applications,
or functions.

With PaaS, you typically always need to have at least one instance of your service running,
while in FaaS you can run them only when they're actually needed. Running your function
can make the time to handle requests longer (measured in seconds; you need to launch the
function after all). However, some of those requests can be cached to reduce both the
latency and costs. Speaking about costs, FaaS can get way more expensive than PaaS if you
run the functions for a long time, so you must do the math when designing your system.

Architectural and System Design Chapter 4

[97]

If used correctly, FaaS abstracts away the servers from the developers, can reduce your
costs, and can provide you with better scalability, as it can be based on events, not
resources. This model is commonly used for running prescheduled or manually triggered
tasks, processing batches or streams of data, and handling incoming, not-so-urgent
requests. A few popular providers of FaaS are AWS Lambda, Azure Functions, and Google
Cloud Functions.

Now that we've covered the common service models in the cloud, let's discuss some of the
wrong assumptions people make when designing distributed systems.

Avoiding the fallacies of distributed computing
When people new to distributed computing begin their journey with designing such
systems, they tend to forget or ignore a few aspects of such systems. Although they were
first noticed back in the 90s, they remain current today.

The fallacies are discussed in the following sub-sections. Let's have a quick rundown on
each of them.

The network is reliable
Networking equipment is designed for long years of flawless operation. Despite that, many
things can still cause packet loss, ranging from power outages through poor wireless
networking signal, configuration errors, someone tripping over a cable, or even animals
biting through wires. For instance, Google had to protect their underwater cables with
Kevlar because they were being bitten by sharks (yes, really). You should always assume
that data can get lost somewhere over the network. Even if that doesn't happen, software
issues can still occur on the other side of the wire.

To fend off such issues, be sure you have a policy for automatically retrying failed network
requests and a way to handle common networking issues. When retrying, try to not
overload the other party and not commit the same transaction multiple times. You can use
a message queue to store and retry sending for you.

Patterns such as circuit breaker, which we'll show later in this chapter, can also help. Oh,
and be sure to not just wait infinitely, hogging up resources with each failed request.

Architectural and System Design Chapter 4

[98]

Latency is zero
Both the network and the services you're running have to take some time to respond even
under normal conditions. Occasionally they'll have to take longer, especially when being
under a bigger-than-average load. Sometimes instead of a few milliseconds, your requests
can take seconds to complete.

Try to design your system so it doesn't wait on too many fine-grained remote calls, as each
such call can add to your total processing time. Even in a local network, 10,000 requests for
1 record will be much slower than 1 request for 10,000 records. To reduce network latency,
consider sending and handling requests in bulk. You can also try to hide the cost of small
calls by doing other processing tasks while waiting for their results.

Other ways to deal with latency are to introduce caches, push the data in a publisher-
subscriber model instead of waiting for requests, or deploy closer to the customers, for
example, by using Content Delivery Networks (CDNs).

Bandwidth is infinite
When adding a new service to your architecture, make sure you take note of how much
traffic it's going to use. Sometimes you might want to reduce the bandwidth by
compressing the data or by introducing a throttling policy.

This fallacy also has to do with mobile devices. If the signal is weak, often the network will
become the bottleneck. This means the amount of data a mobile app uses should generally
be kept low. Using the Backends for Frontends pattern described in Chapter 2, Architectural
Styles, can often help save precious bandwidth.

If your backend needs to transfer lots of data between some components, try to make sure
such components are close together: don't run them in separate data centers. With
databases, this often boils down to better replication. Patterns such as CQRS (discussed
later in this chapter) are also handy.

The network is secure
This is a dangerous fallacy. A chain is only as strong as its weakest link, and unfortunately,
there are many links in distributed systems. Here are a few ways to make those links
stronger:

Be sure to always apply security patches to every component that you use, to
your infrastructure, operating systems, and other components.

Architectural and System Design Chapter 4

[99]

Train your personnel and try to protect your system from the human factor;
sometimes it's a rogue employee that compromises a system.
If your system will be online, it will get attacked, and it's possible that a breach
will happen at one point. Be sure to have a written plan on how to react to such
events.
You might have heard about the defense in depth principle. It boils down to
having different checks for different parts of your system (your infrastructure,
your applications, and so on) so that when a breach happens, its range, and the
associated damage, will be limited.
Use firewalls, certificates, encryption, and proper authentication.

For more on security, refer to Chapter 10, Security in Code and Deployment.

Topology doesn't change
This one became especially true in the microservices era. Autoscaling and the emergence of
the cattle, not pets approach to managing infrastructure mean that the topology will
constantly change. This can affect latency and bandwidth, so some of this fallacy's
outcomes are the same as the ones described earlier.

Fortunately, the mentioned approach also comes with guidelines on how to effectively
manage your herd of servers. Relying on hostnames and DNS instead of hardcoding IPs is a
step in the right direction, and service discovery, described later in this book, is another
one. A third, even bigger, step is to always assume your instances can fail and automate
reacting to such scenarios. Netflix's Chaos Monkey tool can also help you test your
preparedness.

There is one administrator
The knowledge about distributed systems, due to their nature, is often distributed itself.
Different people are responsible for the development, configuration, deployment, and
administration of such systems and their infrastructure. Different components are often
upgraded by different people, not necessarily in sync. There's also the so-called bus factor,
which in short is the risk factor for a key project member being hit by a bus.

Architectural and System Design Chapter 4

[100]

How do we deal with all of this? The answer consists of a few parts. One of them is the
DevOps culture. By facilitating close collaboration between development and operations,
people share the knowledge about the system, thus reducing the bus factor. Introducing
continuous delivery can help with upgrading the project and keeping it always up.

Try to model your system to be loosely coupled and backward compatible, so upgrades of
components don't require other components to be upgraded too. An easy way to decouple
is by introducing messaging between them, so consider adding a queue or two. It will help
you with downtime during upgrades as well.

Finally, try to monitor your system and gather logs in a centralized place. Decentralization
of your system shouldn't mean you now need to manually look at logs at a dozen different
machines. The ELK (Elasticsearch, Logstash, Kibana) stack is invaluable for this. Grafana,
Prometheus, Loki, and Jaeger are also very popular, especially with Kubernetes. If you're
looking for something more lightweight than Logstash, consider Fluentd and Filebeat,
especially if you're dealing with containers.

Transport cost is zero
This fallacy is important for planning your project and its budget. Building and
maintaining a network for a distributed system costs both time and money, regardless of
whether you deploy on-premises or in the cloud – it's just a matter of when you pay the
cost. Try to estimate the costs of the equipment, the data to be transferred (cloud providers
charge for this), and the required manpower.

If you're relying on compression, be wary that while this reduces networking costs, it can
increase the price for your compute. In general, using binary APIs such as gRPC-based will
be cheaper (and faster) than JSON-based ones, and those are still cheaper than XML. If you
send images, audio, or video, it's a must to estimate how much this will cost you.

The network is homogeneous
Even if you plan what hardware to have and what software to run on your network, it's
easy to end up with at least some heterogeneity. A slightly different configuration on some
of the machines, a different communication protocol used by that legacy system that you
need to integrate with, or different mobile phones sending requests to your system are just
a few examples of this. Another one is extending your on-premises solution by using
additional workers in the cloud.

Architectural and System Design Chapter 4

[101]

Try to limit the number of protocols and formats used, strive to use standard ones, and
avoid vendor lock-in to ensure your system can still communicate properly in such
heterogeneous environments. Heterogeneity can also mean differences in resiliency. Try to
use the circuit breaker pattern along with retries to handle this.

Now that we've discussed all the fallacies, let's discuss yet another pretty important aspect
of distributed architectures.

CAP theorem and eventual consistency
To design successful systems that spread across more than one node, you need to know and
use certain principles. One of them is the CAP theorem. It's about one of the most
important choices you need to make when designing a distributed system and owes its
name to the three properties a distributed system can have. They are as follows:

Consistency: Every read would get you the data after the most recent write (or
an error).
Availability: Every request will get a non-error response (without the guarantee
that you'll get the most recent data).
Partition tolerance: Even if a network failure occurs between two nodes, the
system as a whole will continue working.

In essence, the theorem states that you can pick at most two of those three properties for a
distributed system.

As long as the system operates properly, it looks like all three of the properties can be
satisfied. However, as we know from looking at the fallacies, the network is unreliable, so
partitions will occur. In such cases, a distributed system should still operate properly. This
means the theorem actually makes you choose between delivering partition tolerance and
consistency (that is CP), or partition tolerance and availability (that is AP). Usually, the
latter is the better choice. If you want to choose CA, you have to remove the network
entirely and be left with a single-node system.

If under a partition, you decide to deliver consistency, you will have to either return an
error or risk timeouts when waiting for the data to be consistent. If you choose availability
over consistency, you risk returning stale data – the latest writes might be unable to
propagate across the partition.

Architectural and System Design Chapter 4

[102]

Both those approaches are suited for different needs. If your system requires atomic reads
and writes, for instance, because a customer could lose their money, go with CP. If your
system must continue operating under partitions, or you can allow eventual consistency, go
with AP.

Okay, but what is eventual consistency? Let's discuss the different levels of consistency to
understand this.

In a system offering strong consistency, each write is synchronously propagated. This
means all reads will always see the latest writes, even at the cost of higher latency or lower
availability. This is the type that relational DBMSes offer (based on ACID guarantees) and
is best suited for systems that require transactions.

In a system offering eventual consistency, on the other hand, you only guarantee that after
a write, reads will eventually see the change. Usually, eventually means in a couple of
milliseconds. This is due to the asynchronous nature of data replication in such systems, as
opposed to the synchronous propagation from the previous paragraph. Instead of
providing ACID guarantees, for example, using an RDBMS, here we have BASE semantics,
often provided by NoSQL databases.

For a system to be asynchronous and eventually consistent (as AP systems often are), it's
needed to have a way to solve state conflicts. A common way to do so is to exchange
updates between instances and choose either the first or the last write as the accepted one.

Let's now discuss two related patterns that can help in achieving eventual consistency.

Sagas and compensating transactions
The saga pattern is useful when you need to perform distributed transactions.

Before the microservice era, if you had one host with one database, you could rely on the
database engine to do the transaction for you. With multiple databases on one host, you
could use Two-Phase Commits (2PCs) to do so. With 2PCs, you would have a coordinator,
who would first tell all the databases to prepare, and once they all report being ready, it
would tell them all to commit the transaction.

Now, as each microservice likely has its own database (and it should if you want
scalability), and they're spanned all over your infrastructure, you can no longer rely on
simple transactions and 2PCs (losing this ability often means you no longer want an
RDBMS, as NoSQL databases can be much faster).

Architectural and System Design Chapter 4

[103]

Instead, you can use the saga pattern. Let's demonstrate it in an example.

Imagine you want to create an online warehouse that tracks how much supply it has and
allows payment by credit cards. To process an order, above all other services, you need
three: one for processing the order, one for reserving the supplies, and one for charging the
card.

Now, there are two ways the saga pattern can be implemented: choreography-based (also
called event-based) and orchestration-based (also called command-based).

Choreography-based sagas
In the first case, the first part of the saga would be the order processing service sending an
event to the supply service. This one would do its part and send another event to the
payment service. The payment service would then send yet another event back to the order
service. This would complete the transaction (the saga), and the order could now be
happily shipped.

If the order service would want to track the state of the transaction, it would simply need to
listen to all those events as well.

Of course, sometimes the order would be impossible to complete, and a rollback would
need to happen. In this case, each step of the saga would need to be rolled back separately
and carefully, as other transactions could run in parallel, for example, modifying the supply
state. Such rollbacks are called compensating transactions.

This way of implementing the saga pattern is pretty straightforward, but if there any many
dependencies between the involved services it might be better to use the orchestration
approach. Speaking of which, let's now say a few words about this second approach to
sagas.

Orchestration-based sagas
In this case, we'll need a message broker to handle communication between our services,
and an orchestrator that would coordinate the saga. Our order service would send a request
to the orchestrator, which would then send commands to both the supply and payment
services. Each of those would then do their part and send replies back to the orchestrator,
through a reply channel available at the broker.

In this scenario, the orchestrator has all the logic needed to, well, orchestrate the
transaction, and the services themselves don't need to be aware of any other services taking
part in the saga.

Architectural and System Design Chapter 4

[104]

If the orchestrator is sent a message that one of the services failed, for example, if the credit
card has expired, it would then need to start the rollback. In our case, it would again use
the broker to send an appropriate rollback command to specific services.

Okay, that's enough about eventual consistency for now. Let's now switch to other topics
related to availability.

Making your system fault tolerant and
available
Availability and fault tolerance are software qualities that are at least somewhat important
for every architecture. What's the point of creating a software system if the system can't be
reached? In this section, we'll learn what exactly those terms mean and a few techniques to
provide them in your solutions.

Calculating your system's availability
Availability is the percentage of the time that a system is up, functional, and reachable.
Crashes, network failures, or extremely high load (for example, from a DDoS attack) that
prevents the system from responding can all affect its availability.

Usually, it's a good idea to strive for as high a level of availability as possible. You may
stumble upon the term counting the nines, as availability is often specified as 99% (two
nines), 99.9% (three), and so on. Each additional nine is much harder to obtain, so be careful
when making promises. Take a look at the following table to see how much downtime you
could afford if you specified it on a monthly basis:

Downtime/month Uptime
7 hours 18 minutes 99% (“two nines”)
43 minutes 48 seconds 99.9% (“three nines”)
4 minutes 22.8 seconds 99.99% (“four nines”)
26.28 seconds 99.999% (“five nines”)
2.628 seconds 99.9999% (“six nines”)
262.8 ms 99.99999% (“seven nines”)
26.28 ms 99.999999% (“eight nines”)
2.628 ms 99.9999999% (“nine nines”)

Architectural and System Design Chapter 4

[105]

A common practice for cloud applications is to provide a Service-Level Agreement (SLA),
which specifies how much downtime can occur per a given period of time (for example, a
year). An SLA for your cloud service will strongly depend on the SLAs of the cloud services
you build upon.

To calculate a compound availability between two services that need to cooperate, you
should just multiply their uptimes. This means if you have two services with 99.99%
availability, their compound availability will be 99.99% * 99.99% = 99.98%. To calculate the
availability of redundant services (such as two independent regions), you should multiply
their unavailability. For instance, if two regions have 99.99% availability, their total
unavailability will be (100% – 99.99%) * (100% – 99.99%) = 0.01% * 0.01% = 0.0001%, so their
compound availability is 99.9999%.

Unfortunately, it's impossible to provide 100% availability. Failures do occur from time to
time, so let's learn how to make your system tolerate them.

Building fault-tolerant systems
Fault tolerance is a system's ability to detect such failures and to handle them gracefully. It's
essential that your cloud-based services are resilient, as due to the nature of the cloud,
many different things can suddenly go south. Good fault tolerance can help your service's
availability.

Different types of issues require different handling: from prevention, through detection, to
minimizing the impact. Let's start with common ways to avoid having a single point of
failure.

Redundancy
One of the most basic preventions is introducing redundancy. Similar to how you can have
a spare tire for your car, you can have a backup service that takes over when your primary
server goes down. This stepping-in is also known as failover.

How does the backup server know when to step in? One way to implement this is by using
the heartbeat mechanism described in the Detecting faults section.

To make the switch faster, you can send all the messages that are going into the primary
server also to the backup one. This is called a hot standby, as opposed to a cold one –
initializing from zero. A good idea in such a case is to stay one message behind, so if a
poisoned message kills the primary server, the backup one can simply reject it.

Architectural and System Design Chapter 4

[106]

The preceding mechanism is called an active-passive (or master-slave) failover, as the
backup server doesn't handle incoming traffic. If it did, we would have an active-active (or
master-master) failover. For more on active-active architectures, refer to the last link in the
Further reading section.

Be sure you don't lose any data when the failover happens. Using a message queue with
backing storage may help with this.

Leader election
It's also important for both the servers to know which one is which – if both start behaving
as primary instances, you'll likely be in trouble. Choosing the primary server is called the
leader election pattern. There are a few ways to do so, for example, by introducing a third-
party arbiter, by racing to take exclusive ownership of a shared resource, by choosing the
instance with the lowest rank, or by using algorithms such as bully election or token ring
election.

Leader election is also an essential part of the next related concept: achieving consensus.

Consensus
If you want your system to operate even when network partitions happen or some
instances of your service experience faults, you need a way for your instances to reach
consensus. They must agree what values to commit and often in what order. A simple
approach is by allowing each instance to vote on the correct state. However, in some cases
this is not enough to reach a consensus correctly or at all. Another approach would be to
elect a leader and let it propagate its value. Because it's not easy to implement such
algorithms by hand, we'd recommend using popular industry-proven consensus protocols
such as Paxos and Raft. The latter is growing in popularity as it is simpler and easier to
understand.

Let's now discuss another way to prevent your system from faulting.

Replication
This one is especially popular with databases, and it helps with scaling them, too.
Replication means you will run a few instances of your service in parallel with duplicated
data, all handling incoming traffic.

Architectural and System Design Chapter 4

[107]

Don't confuse replication with sharding. The latter doesn't require any
data redundancy, but can often bring you great performance at scale. If
you're using Postgres, we recommend you try out Citus (https:/ /www.
citusdata. com).

In terms of databases, there are two ways you can replicate.

Master-slave replication
In this scenario, all the servers are able to perform read-only operations, but there's only
one master server that can also write. The data is replicated from the master, through the
slaves, either in a one-to-many topology or using a tree topology. If the master fails, the
system can still operate in read-only mode until this fault is remediated.

Multi-master replication
You can also have a system with multiple master servers. If there are two servers, you have
a master-master replication scheme. If one of the servers dies, the others can still operate
normally. However, now you either need to synchronize the writes or provide looser
consistency guarantees. Also, you need to provide a load balancer.

Examples of such replication include Microsoft's Active Directory, OpenLDAP, Apache's
CouchDB, or Postgres-XL.

Let's now discuss two ways to prevent faults caused by too high a load.

Queue-based load leveling
This tactic is aimed at reducing the impact of sudden spikes in your system's load. Flooding
a service with requests can cause performance issues, reliability ones, and even dropping
valid requests. Once again, queues are there to save the day.

To implement this pattern, we just need to introduce a queue for the incoming requests to
be added asynchronously. You can use Amazon's SQS, Azure's Service Bus, Apache Kafka,
ZeroMQ, or other queues to achieve that.

Now, instead of having spikes in incoming requests, the load will get averaged. Our service
can grab the requests from the said queue and process them without even knowing that the
load was increased. Simple as that.

https://www.citusdata.com
https://www.citusdata.com
https://www.citusdata.com
https://www.citusdata.com
https://www.citusdata.com
https://www.citusdata.com
https://www.citusdata.com
https://www.citusdata.com

Architectural and System Design Chapter 4

[108]

If your queue is performant and your tasks can be parallelized, a side benefit of this pattern
would be better scalability.

Also, if your service isn't available, the requests will still get added into the queue for said
service to process when it recovers, so this may be a way to help with bumping the
availability.

If the requests come infrequently, consider implementing your service as a function that
runs only when there are items in the queue to save costs.

Keep in mind that when using this pattern, the overall latency will increase by the addition
of the queue. Apache Kafka and ZeroMQ should yield low latency, but if that's a deal-
breaker, there's yet another way to deal with increased load.

Back pressure
If the load remains high, chances are you'll have more tasks than you're able to handle. This
can cause cache misses and swapping if the requests will no longer fit into memory, as well
as dropping requests and other nasty things. If you expect a heavy load, applying back
pressure might be a great way to deal with it.

In essence, back pressure means that instead of putting more pressure on our service with
each incoming request, we push back into the caller so it needs to handle the situation.
There are a few different ways to do so.

For instance, we can block our thread that receives network packets. The caller will then see
that it is unable to push the request to our service – instead, we push the pressure up the
stream.

Another way is to recognize greater load and simply return an error code, for example, 503.
You can model your architecture so that this is done for you by another service. One such
service is the Envoy Proxy (https:/ /envoyproxy. io), which can come in handy on many
other occasions too.

Envoy can apply back pressure based on predefined quotas, so your service will actually
never get overloaded. It can also measure the time it takes to process requests and apply
back pressure only if it goes above a certain threshold. There are many other cases for
which a variety of error codes will get returned. Hopefully, the caller has a plan on what to
do if the pressure goes back on them.

Now that we know how to prevent faults, let's learn how to detect them once they occur.

https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io
https://envoyproxy.io

Architectural and System Design Chapter 4

[109]

Detecting faults
Proper and fast fault detection can save you a lot of trouble, and often money. There are
many ways to detect faults tailored to different needs. Let's go over a selection of them.

Sidecar design pattern
Since we were discussing Envoy, it might be worth saying that it's an example of the
sidecar design pattern. This pattern is useful in many more cases than just error prevention
and detection, and Envoy is a great example of this.

In general, sidecars allow you to add a number of capabilities to your services without the
need to write additional code. Similarly, as a physical sidecar can be attached to a
motorcycle, a software sidecar can be attached to your service – in both cases extending the
offered functionality.

How can a sidecar be helpful in detecting faults? First of all, by providing health checking
capabilities. When it comes to passive health checking, Envoy can detect whether any
instance in a service cluster has started behaving badly. This is called outlier detection.
Envoy can look for consecutive 5XX error codes, gateway failures, and so on. Aside from
detecting such faulty instances, it can eject them so the overall cluster remains healthy.

Envoy also offers active health checking, meaning it can probe the service itself instead of
just observing its reactions to incoming traffic.

Throughout this chapter, we'll show a few other usages for the sidecar pattern in general,
and Envoy in particular. Let's now discuss the next mechanism of fault detection.

Heartbeat mechanism
One of the most common ways of fault detection is through the heartbeat mechanism. A
heartbeat is a signal or a message that is sent on regular intervals (usually a few seconds)
between two services.

If a few consecutive heartbeats are missing, the receiving service can consider the sending
service dead. In the case of our primary-backup service pair from a few sections previously,
this can cause a failover to happen.

When implementing a heartbeat mechanism, be sure that it's reliable. False alarms can be
troublesome, as the services may get confused, for example, about which one should be the
new master. A good idea might be to provide a separate endpoint just for heartbeats, so it
won't be as easily affected by the traffic on the regular endpoints.

Architectural and System Design Chapter 4

[110]

Leaky bucket counter
Another way to detect faults is by adding a so-called leaky bucket counter. With each
error, the counter would get incremented, and after a certain threshold is reached (the
bucket is full), a fault would get signaled and handled. In regular time intervals, the
counter would get decreased (hence, leaky bucket). This way, the situation would only be
considered a fault if many errors occurred in a short time period.

This pattern can be useful if in your case it's normal to sometimes have errors, for instance,
if you're dealing with networking.

Now that we know how to detect faults, let's learn what to do once they happen.

Minimizing the impact of faults
It takes time to detect an ongoing fault, and it takes even more of this precious resource to
resolve it. This is why you should strive to minimize the impact of faults. Here are a few
ways that can help.

Retrying the call
When your application calls another service, sometimes the call will fail. The simplest
remedy for such a case is to just retry the call. If the fault was transient and you don't retry,
that fault will likely get propagated through your system, making more damage than it
should. Implementing an automated way to retry such calls can save you a lot of hassle.

Remember our sidecar proxy, Envoy? Turns out it can perform the automatic retries on
your behalf, saving you from doing any changes to your sources.

For instance, see this example configuration of a retry policy that can be added to a route in
Envoy:

retry_policy:
 retry_on: "5xx"
 num_retries: 3
 per_try_timeout: 2s

This will make Envoy retry calls if they return errors such as the 503 HTTP code or gRPC
errors that map to 5XX codes. There will be three retries, each considered failed if not
finished within 2 seconds.

Architectural and System Design Chapter 4

[111]

Avoiding cascading failures
We mentioned that without retries the error will get propagated, causing a cascade of
failures throughout the system. Let's now show more ways to prevent this from happening.

Circuit breaker
The circuit breaker pattern is a very useful tool for this. It allows us to quickly notice that a
service is unable to process requests, so the calls to it can be short-circuited. This can
happen both close to the callee (Envoy provides such a capability), or on the caller side
(with the additional benefit of shaving off time from the calls). In Envoy's case, it can be as
simple as adding the following to your config:

circuit_breakers:
 thresholds:
 - priority: DEFAULT
 max_connections: 1000
 max_requests: 1000
 max_pending_requests: 1000

In both cases, the load caused by the calls to the service may drop, which in some cases can
help the service return to normal operation.

How do we implement a circuit breaker on the caller side? Once you've made a few calls,
and, say, your leaky bucket overflows, you can just stop making new calls for a specified
period of time (for example, until the bucket no longer overflows). Simple and effective.

Bulkhead
Another way to limit fault from spreading is taken straight from the stockyards. When
building ships, you usually don't want the ship to get full of water if a hole breaks in the
hull. To limit the damage of such holes, you would partition the hull into bulkheads, each
of which would be easy to isolate. In this case, only the damaged bulkhead would get filled
with water.

The same principle applies to limiting the fault impact in software architecture. You can
partition your instances into groups, and you can assign the resources they use into groups
as well. Setting quotas can also be considered an example of this pattern.

Separate bulkheads can be created for different groups of users, which can be useful if you
need to prioritize them or provide a different level of service to your critical consumers.

Architectural and System Design Chapter 4

[112]

Geodes
The last way we'll show is called Geodes. The name comes from geographical nodes. It can
be used when your service is deployed in multiple regions.

If a fault occurs in one region, you can just redirect the traffic to other, unaffected regions.
This will of course make the latency much higher than if you'd made calls to other nodes in
the same data center, but usually redirecting less critical users to remote regions is a much
better choice than just failing their calls entirely.

Now that you know how to provide availability and fault tolerance through your system's
architecture, let's discuss how to integrate its components together.

Integrating your system
A distributed system is not just isolated instances of your applications running unaware of
the existing world. They constantly communicate with each other and have to be properly
integrated together to provide the most value.

Much was already said on the topic of integration, so in this section, we'll try to showcase
just a handful of patterns for effective integration of both entirely new systems, as well as
new parts of the system that needs to coexist with other existing parts, often legacy ones.

To not make this chapter be a whole book on its own, let's start this section with a
recommendation of an existing one. If you're interested in integration patterns, especially
focused on messaging, then Gregor Hohpe and Bobby Woolf's Enterprise Integration Patterns
book is a must-read for you.

Let's take a brief look at two patterns covered by this book.

Pipes and filters pattern
The first integration pattern that we'll discuss is called pipes and filters. Its purpose is to
decompose a big processing task into a series of smaller, independent ones (called filters),
which you can then connect together (using pipes, such as message queues). This approach
gives you scalability, performance, and reusability.

Assume you need to receive and process an incoming order. You can do it in one big
module, so you don't need extra communication, but the different functions of such a
module would be hard to test and it would be harder to scale them well.

Architectural and System Design Chapter 4

[113]

Instead, you can split the order processing into separate steps, each handled by a distinct
component: one for decoding, one for validating, another one for the actual processing of
the order, and then yet another one for storing it somewhere. With this approach, you can
now independently perform each of those steps, easily replace or disable them if needed,
and reuse them for processing different types of input messages.

If you want to process multiple orders at the same time, you can also pipeline your
processing: while one thread validates a message, another thread decodes the next one, and
so on.

The downside is that you need to use synchronized queues as your pipes, which introduces
some overhead.

To scale one step of your processing, you might want to use this pattern along with the next
one on our list.

Competing consumers
The idea of competing consumers is simple: you have an input queue (or a messaging
channel) and a few instances of consumers that fetch and process items from the queue
concurrently. Each of the consumers can process the message, so they compete with each
other to be the receiver.

This way, you get scalability, free load balancing, and resilience. With the addition of the
queue, you now also have the queue-based load leveling pattern in place.

This pattern integrates effortlessly with priority queues if you need to shave latency from a
request or just want a specific task submitted to your queue to be performed in a more
urgent manner.

This pattern can get tricky to use if the ordering is important. The order in
which your consumers receive and finish to process messages may vary,
so make sure that either this doesn't impact your system, or you find a
way to reorder the results later on. If you need to process messages in
sequence, you might not be able to use this pattern.

Let's now see a few more patterns, this time to help us integrate with existing systems.

Architectural and System Design Chapter 4

[114]

Transitioning from legacy systems
Developing a system from scratch can be a blissful experience. Development instead of
maintenance and a possibility to use a bleeding-edge technology stack – what's not to like?
Unfortunately, that bliss often ends when integrating with an existing, legacy system starts.
Fortunately, though, there are some ways to ease that pain.

Anti-corruption layer
Introducing an anti-corruption layer can help your solution in painless integration with a
legacy system that has different semantics. This additional layer is responsible for
communication between those two sides.

Such a component allows your solution to be designed with more flexibility – without the
need to compromise your technology stack nor architectural decisions. To achieve that
requires only a minimal set of changes in the legacy system (or none, if the legacy system
doesn't need to make calls to the new system).

For instance, if your solution is based on microservices, the legacy system can just
communicate with the anti-corruption layer instead of locating and reaching each
microservice directly. Any translations (for example, due to outdated protocol versions) are
also done in the additional layer.

Keep in mind that adding such a layer can introduce latency and has to satisfy quality
attributes for your solution, for example, scalability.

Strangler pattern
The strangler pattern allows the gradual migration from a legacy system to a new one.
While the anti-corruption layer we just looked at is useful for communication between the
two systems, the strangler pattern is meant for providing services from both to the outside
world.

Architectural and System Design Chapter 4

[115]

Early in the migration process, the strangler facade will route most of the requests into the
legacy system. During the migration, more and more calls can be forwarded into the new
one, while strangling the legacy system more and more, limiting the functionality it offers.
As the final step of the migration, the strangler, along with the legacy system, can be retired
– the new system will now provide all the functionality:

Figure 4.1 – The strangling of a monolith. After the migration, the strangler can still be used as an entry point, or adapter, for legacy requests

This pattern can be overkill for small systems and can get tricky if the datastore should be
shared or is for event-sourced systems. When adding it to your solution, be sure to plan for
achieving the proper performance and scalability.

Speaking of those two attributes, let's now discuss a few things that help achieve them.

Achieving performance at scale
When designing C++ applications, performance is usually a key factor. While using the
language can go a long way in the scope of a single application, the proper high-level
design is also essential to achieving optimal latency and throughput. Let's discuss a few
crucial patterns and aspects.

Architectural and System Design Chapter 4

[116]

CQRS and event sourcing
There are many ways to scale compute but scaling data access can be tricky. However, it's
often necessary when your userbase grows. Command-query responsibility segregation
(CQRS) is a pattern that can help here.

Command-query responsibility segregation
In traditional CRUD systems, both reads and writes are performed using the same data
model and the data flows the same way. The titular segregation basically means to treat
queries (reads) and commands (writes) in two separate ways.

Many applications have a strongly biased ratio of reads to writes – there's usually a lot
more reading from the database than updating it in a typical app. This means making the
reads as fast as possible can yield better performance: reads and writes can now be
optimized and scaled separately. Other than that, introducing CQRS can help if many
writes are competing with each other, or if a track of all the writes needs to be maintained,
or if a set of your API users should have read-only access.

Having separate models for reads and writes can allow having different teams to work on
both sides. The developers working on the read side of things don't need to have a deep
understanding of the domain, which is required to perform updates properly. When they
make a request, they get a data transfer object (DTO) from a thin read layer in just one
simple call instead of going through the domain model.

If you're not aware of what a DTO is, think of returning item data from the database. If the
caller asks for a list of items, you could provide them with an ItemOverview object
containing just the names and thumbnails of items. On the other hand, if they want items
for a specific store, you could also provide a StoreItem object containing a name, more
pictures, a description, and a price. Both ItemOverview and StoreItem are DTOs,
grabbing data from the same Item objects in the database.

Architectural and System Design Chapter 4

[117]

The read layer can reside either on top of the data storage used for writes, or it can be a
different data storage that gets updated via events as you can see in the following figure:

Figure 4.2 – CQRS with event sourcing

Architectural and System Design Chapter 4

[118]

Using the approach pictured here, you can create as many different commands as you like,
each having its own handler. Usually, the commands are asynchronous and don't return
any values to the caller. Each handler uses domain objects and persists the changes done.
After doing that, events are published, which event handlers can use to update the storage
used by read operations. Continuing our last example, item data queries would grab
information from a database updated by events such as ItemAdded or
ItemPriceChanged, which could be triggered by commands such as AddItem or
ModifyItem.

Using CQRS allows us to have different data models for read and write operations. For
instance, you can create stored procedures and materialized views to speed up reads. Using
different types of storage (SQL and NoSQL) for the read and domain stores can also be
beneficial: one efficient way to persist data is to use an Apache Cassandra cluster while
using Elasticsearch is a great way to search through the stored data quickly.

Aside from the preceding pros, CQRS also has its cons. Due to the complexity it introduces,
it's usually not a good fit for small or less requiring architectures. It's often useful to apply it
only to the parts of your system where it would bring the biggest benefits. You should also
notice that updating the read store after the domain store means that now we have eventual
consistency instead of strong consistency.

Command-query separation
CQRS is actually based on a simpler idea introduced long ago in the Eiffel programming
language (the same one that introduced contracts). Command-query separation (CQS) is a
principle that devises to separate API calls into, well, commands and queries – just like in
CQRS, but regardless of the scale. It plays really well with objective programming and
imperative programming in general.

If your function's name starts with a has, is, can, or a similar word, it should be just a query
and not modify the underlying state or have any side effects. This brings two great benefits:

Much easier reasoning about the code: It's clear that such functions are
semantically just reads, never writes. This can make looking for a change of state
much easier when debugging.
Reduce heisenbugs: If you have ever had to debug an error that manifested in a
release build, but not in the debug one (or the other way around), you have dealt
with a heisenbug. It's rarely something pleasurable. Many such errors can be
caused by assert calls that modify the state. Following CQS eliminates such bugs.

Architectural and System Design Chapter 4

[119]

Similarly to asserts, if you want to have contracts (pre- and post-conditions), it's super
important to only use queries in them. Otherwise disabling some contract checks could also
lead to heisenbugs, not to mention how counterintuitive it would be.

Let's now say a few more words about event sourcing.

Event sourcing
As introduced in Chapter 2, Architectural Styles, event sourcing means that instead of
always storing the whole state of your application, possibly dealing with conflicts during
updates, you can just store the changes that happened to your application's state. Using
event sourcing can boost your app's performance by eliminating concurrent updates and
allowing all interested parties to perform gradual changes to their state. Saving the history
of the operations done (for example, market transactions) can allow easier debugging (by
replaying them later) and auditing. This also brings more flexibility and extensibility to the
table. Some domain models can get much simpler when event sourcing is introduced.

One cost of event sourcing is being eventually consistent. Another one is slowing down the
startup of your application – unless you make periodic snapshots of the state or can use the
read-only store as in CQRS, discussed in the previous section.

Okay, enough of CQRS and related patterns. Let's now move on to another hot topic when
it comes to performance (no pun intended): caching.

Caching
Proper usage of caches can yield better performance, lower latency, reduce the server load
(and thus, costs of running in the cloud), and help with scalability concerns (fewer servers
required) – what's not to like?

If you're here for tips on CPU caches, you can find them in Chapter 11,
Performance.

Caching is a big topic, so we'll only cover a few aspects of it here.

Architectural and System Design Chapter 4

[120]

Caching works by simply storing the data that is read most often in non-persistent storage
with fast access times. There are many different types of caches:

Client-side caches: For storing data specifically for a given customer, often
placed on the client's machine or browser.
Web server caches: For speeding up reading from web pages, for instance,
through HTTP accelerators such as Varnish that can cache the web server
responses.
Database caches: Many database engines have built-in, tunable caching.
Application caches: For speeding up your application, which can now read data
from a cache instead of reaching out to its database.
CDNs can be treated as caches too: For serving content from a location close to
the user in order to reduce latency.

Some types of caches can be replicated or deployed in clusters to provide performance at
scale. An alternative can also be to shard them: similarly to as you would shard databases,
you can use different instances of your caches for distinct parts of your data.

Let's now go through the different approaches to updating the data in the cache. After all,
no one likes to be served stale data.

Updating caches
There are a few approaches to keeping the cached data fresh. Whether it's you who decided
how to update cached items or another company, it's worth knowing them. In this section,
we'll discuss their pros and cons.

Write-through approach
If you require strong consistency, synchronously updating both the database and the cache
is the valid approach for you. This approach protects you from data loss: if data became
visible to a user, it means it is already written to the database. A downside of write-through
caches is that the latency to perform the update is bigger than in other approaches.

Architectural and System Design Chapter 4

[121]

Write-behind approach
An alternative approach, also known as write-back, is to provide the user with just access
to the cache. When the user performs an update, the cache will then queue the incoming
update, which will then be asynchronously executed, thus updating the database. The
obvious downside here is that if something goes wrong, the data can never be written. It's
also not as easy to implement as the other approaches. The upside, however, is the lowest
latency as seen by the user.

Cache-aside
This last approach, also called lazy loading, is about filling the cache on-demand. In this
case, data access looks as follows:

A call to the cache is made to check whether the value is already there. If so, just1.
return it.
Reach the main data store or service that provides the value.2.
Store the value in the cache and return it to the user.3.

This type of caching is often done using Memcached or Redis. It can be really fast and
efficient – the cache only contains data that was requested.

However, if data that is not in the cache is often requested, the preceding three calls can
increase the latency noticeably. To mitigate this for cache restarts, the cache can be primed
(initialized) with selected data from the persistent store.

The items in the cache can also become stale, so it's best to set a time-to-live for each entry.
If the data is to be updated, it can happen in a write-through manner by removing the
record from the cache and updating it in the database. Take care when using multi-level
caches with just a time-based update policy (for instance, as in DNS caches). This may lead
to using stale data for long periods of time.

We've discussed the types of caches and strategies to update them, so that's enough about
caches for now. Let's move on to a different aspect of providing scalable architectures.

Deploying your system
Even though deploying services sounds easy, there's a lot of things to think about if you
take a closer look. This section will describe how to perform efficient deployments,
configure your services after installing them, check that they stay healthy after being
deployed, and how to do it all while minimizing downtime.

Architectural and System Design Chapter 4

[122]

The sidecar pattern
Remember Envoy from earlier in this chapter? It's a very useful tool for efficient application
development. Instead of embedding infrastructure services such as logging, monitoring, or
networking into your application, you can deploy the Envoy proxy along with your app,
just like a sidecar would be deployed next to a motorbike. Together, they can do much more
than the app without the sidekick (another name for this pattern).

Using a sidecar can speed up development, as many of the functionality it brings would
need to be developed independently by each of your microservices. Because it's separate
from your application, a sidecar can be developed using any programming language you
find best for the job. The sidecar, along with all the functionality it provides, can be
maintained by an independent team of developers and updated independently from your
main service.

Because sidecars reside right next to the app they enhance, they can use local means of
inter-process communication. Usually, it's fast enough and much faster than
communicating from another host, but remember that it can sometimes be too big a burden.

Even if you deploy a third-party service, deploying your selected sidecar next to it can still
provide value: you can monitor the resource usage and the condition of both the host and
the service, as well as tracing requests throughout your distributed system. Sometimes it's
also possible to reconfigure the service dynamically based on its condition, via editing the
config file or a web interface.

Deploying a service with tracing and a reverse proxy
using Envoy
Let's now use Envoy as a front proxy for our deployment. Start by creating Envoy's
configuration file, in our case named envoy-front_proxy.yaml, with the address of our
proxy:

static_resources:
 listeners:
 - address:
 socket_address:
 address: 0.0.0.0
 port_value: 8080
 traffic_direction: INBOUND

Architectural and System Design Chapter 4

[123]

We've specified that Envoy is going to listen for incoming traffic on port 8080. Later in the
config, we'll route it to our service. Now, let's specify that we'd like to handle HTTP
requests using our set of service instances and adding some tracing capabilities on top.
First, let's add an HTTP endpoint:

 filter_chains:
 - filters:
 - name: envoy.filters.network.http_connection_manager
 typed_config:
 "@type":
type.googleapis.com/envoy.extensions.filters.network.http_connection_manage
r.v3.HttpConnectionManager

Now, let's specify that requests should have IDs assigned and be traced by a distributed
tracing system, Jaeger:

 generate_request_id: true
 tracing:
 provider:
 name: envoy.tracers.dynamic_ot
 typed_config:
 "@type":
type.googleapis.com/envoy.config.trace.v3.DynamicOtConfig
 library: /usr/local/lib/libjaegertracing_plugin.so
 config:
 service_name: front_proxy
 sampler:
 type: const
 param: 1
 reporter:
 localAgentHostPort: jaeger:6831
 headers:
 jaegerDebugHeader: jaeger-debug-id
 jaegerBaggageHeader: jaeger-baggage
 traceBaggageHeaderPrefix: uberctx-
 baggage_restrictions:
 denyBaggageOnInitializationFailure: false
 hostPort: ""

We'll create IDs for requests and use the OpenTracing standard (DynamicOtConfig) with
the native Jaeger plugin. The plugin will report to a Jaeger instance running under the
specified address and add the specified headers.

Architectural and System Design Chapter 4

[124]

We also need to specify that all traffic (see the match section) from all domains shall be
routed into our service cluster:

 codec_type: auto
 stat_prefix: ingress_http
 route_config:
 name: example_route
 virtual_hosts:
 - name: front_proxy
 domains:
 - "*"
 routes:
 - match:
 prefix: "/"
 route:
 cluster: example_service
 decorator:
 operation: example_operation

We'll define our example_service cluster in a second. Note that each request coming to
the cluster will be marked by a predefined operation decorator. We also need to specify
what router address to use:

 http_filters:
 - name: envoy.filters.http.router
 typed_config: {}
 use_remote_address: true

Now we know how to handle and trace the requests, so what's left is to define the clusters
we used. Let's start with our service's cluster:

 clusters:
 - name: example_service
 connect_timeout: 0.250s
 type: strict_dns
 lb_policy: round_robin
 load_assignment:
 cluster_name: example_service
 endpoints:
 - lb_endpoints:
 - endpoint:
 address:
 socket_address:
 address: example_service
 port_value: 5678

Architectural and System Design Chapter 4

[125]

Each cluster can have multiple instances (endpoints) of our service. Here, if we decide to
add more endpoints, the incoming requests will be load-balanced using the round-robin
strategy.

Let's also add an admin interface:

admin:
 access_log_path: /tmp/admin_access.log
 address:
 socket_address:
 address: 0.0.0.0
 port_value: 9901

Let's now place the config inside a container that will run Envoy using a Dockerfile, which
we named Dockerfile-front_proxy:

FROM envoyproxy/envoy:v1.17-latest

RUN apt-get update && \
 apt-get install -y curl && \
 rm -rf /var/lib/apt/lists/*
RUN curl -Lo -
https://github.com/tetratelabs/getenvoy-package/files/3518103/getenvoy-cent
os-jaegertracing-plugin.tar.gz | tar -xz && mv libjaegertracing.so.0.4.2
/usr/local/lib/libjaegertracing_plugin.so

COPY envoy-front_proxy.yaml /etc/envoy/envoy.yaml

We also downloaded the Jaeger native plugin that we used in our Envoy config.

Now let's specify how to run our code in several containers using Docker Compose. Create
a docker-compose.yaml file, starting with the front proxy service definition:

version: "3.7"

services:
 front_proxy:
 build:
 context: .
 dockerfile: Dockerfile-front_proxy
 networks:
 - example_network
 ports:
 - 12345:12345
 - 9901:9901

Architectural and System Design Chapter 4

[126]

We use our Dockerfile here, a simple network, and we expose two ports from the container
on the host: our service and the admin interface. Let's now add the service our proxy will
direct to:

 example_service:
 image: hashicorp/http-echo
 networks:
 - example_network
 command: -text "It works!"

In our case, the service will just display a predefined string in a simple web server.

Now, let's run Jaeger in another container, exposing its port to the outside world:

 jaeger:
 image: jaegertracing/all-in-one
 environment:
 - COLLECTOR_ZIPKIN_HTTP_PORT=9411
 networks:
 - example_network
 ports:
 - 16686:16686

The last step will be to define our network:

networks:
 example_network: {}

And we're done. You can now run the service using docker-compose up --build and
point your browser to the endpoints we specified.

Using a sidecar proxy has one more benefit: even if your service will die, the sidecar is
usually still alive and can respond to external requests while the main service is down. The
same applies when your service is redeployed, for example, because of an update. Speaking
of which, let's learn how to minimize the related downtime.

Zero-downtime deployments
There are two common ways to minimize the risk of downtime during deployments: blue-
green deployments and canary releases. You can use the Envoy sidecar when introducing
any of those two.

Architectural and System Design Chapter 4

[127]

Blue-green deployments
Blue-green deployments can help you minimize both the downtime and the risk related to
deploying your app. To do so, you'll need two identical production environments, called
blue and green. While green serves the customers, you can perform the update in the blue
one. Once the update was made, the services were tested, and all looks stable, you can
switch the traffic so it now flows to the updated (blue) environment.

If any issues are spotted in the blue environment after the switch, the green one is still there
– you can just switch them back. The users probably won't even notice any changes, and
because both the environments are up and running, no downtime should be visible during
the switch. Just make sure you won't lose any data during the switch (for example,
transactions made in the new environment).

Canary releases
The simplest way to not have all your service instances fail after an update is often, well,
not updating all of them at once. That's the key idea behind the incremental variant of blue-
green deployments, also called a canary release.

In Envoy, you could put the following in the routes section of your config:

- match:
 prefix: "/"
 route:
 weighted_clusters:
 clusters:
 - name: new_version
 weight: 5
 - name: old_version
 weight: 95

You should also remember to define the two clusters from the preceding snippet, the first
one with the old version of your service:

clusters:
 - name: old_version
 connect_timeout: 0.250s
 type: strict_dns
 lb_policy: round_robin
 load_assignment:
 cluster_name: old_version
 endpoints:
 - lb_endpoints:
 - endpoint:

Architectural and System Design Chapter 4

[128]

 address:
 socket_address:
 address: old_version
 port_value: 5678

The second cluster will run the new version:

- name: new_version
 connect_timeout: 0.250s
 type: strict_dns
 lb_policy: round_robin
 load_assignment:
 cluster_name: new_version
 endpoints:
 - lb_endpoints:
 - endpoint:
 address:
 socket_address:
 address: new_version
 port_value: 5678

When an update gets deployed, the new version of a service will only be seen and used by
a small fraction (here: 5%) of your users. If the updated instances remain stable and no
checks and verifications fail, you can gradually update more and more hosts in several
steps, until all of them are switched to a new version. You can do it either by updating the
config files by hand or by using the admin endpoint. Voila!

Let's now move on to the last deployment pattern that we'll cover here.

External configuration store
If you're deploying a simple application, it can be okay to just deploy its configuration
along with it. However, when you want to have a more complex deployment with many
application instances, it can quickly become a burden to redeploy a new version of the app
just to reconfigure it. At the same time, manual configuration changes are a no-go if you
want to treat your services like cattle, not pets. Introducing an external configuration store
can be an elegant way to overcome such hurdles.

Architectural and System Design Chapter 4

[129]

In essence, your apps can grab their configuration from said store instead of just relying on
their local config files. This allows you to provide common settings for multiple instances
and tune parameters for some of them, while having an easy and centralized way to
monitor all your configs. If you want an arbiter to decide which nodes will be master nodes
and which will serve as backup ones, an external config store can provide the instances
with such information. It's also useful to implement a configuration update procedure so
that your instances can be easily reconfigured during operation. You can use ready
solutions such as Firebase Remote Config, leverage the Java-based Netflix Archaius, or
write a configuration store on your own leveraging cloud storage and change notifications.

Now that we've learned some useful deployment patterns, let's move to another important
topic when it comes to high-level design: APIs.

Managing your APIs
Proper APIs are essential for the success of your development team and product. We can
divide this topic into two smaller ones: system-level APIs and component-level APIs. In
this section, we'll discuss handling APIs on the first of those levels, while the next chapter
will present you with tips on the second.

Aside from managing objects, you'll also want to manage your whole API. If you want to
introduce policies regarding API usage, control access to said API, gather performance
metrics and other analytical data, or just charge your customers based on their use of your
interfaces, API management (APIM) is the solution you're looking for.

Typically a set of APIM tools consists of these components:

An API gateway: A single entry point for all users of an API. More on this in the
next section.
Reporting and analytics: To monitor the performance and latency of your APIs,
resources consumed, or data sent. Such tools can be leveraged to detect trends in
usage, know which parts of the API and which components behind them are
performance bottlenecks, or what SLAs are reasonable to offer and how to
improve them.
A portal for developers: To help them get up to speed with your API quickly,
and to subscribe to your APIs at all.
A portal for administrators: To manage policies, users, and package APIs into
sellable products.
Monetization: To charge your customers based on how they use your APIs and
to aid related business processes.

Architectural and System Design Chapter 4

[130]

APIM tools are provided both by cloud providers and independent parties, for example,
NGINX's Controller or Tyk.

When designing APIs for a given cloud, get to know the good practices the cloud provider
usually documents. For instance, you can find common design patterns for Google Cloud
Platform in the Further reading section. In their case, lots of the practices revolve around
using Protobufs.

Choosing the right way to consume APIs can take you a long way. The most simple way to
file requests to your servers is by connecting to the services directly. While easy to set up
and okay for small apps, it can lead to performance issues down the road. An API
consumer will likely need to call a few different services, leading to high latency. Proper
scalability is also impossible to achieve using this approach.

A better approach is to use an API gateway. Such gateways are often an essential part of an
APIM solution, but can also be used on their own.

API gateways
An API gateway is an entry point for clients who want to use your API. It can then route
the incoming requests into a specific instance or cluster of services. This can simplify your
client code, as it no longer needs to know all the backend nodes, or how they cooperate
with each other. All a client needs to know is the address of an API gateway — the gateway
will handle the rest. Thanks to hiding the backend architecture from the client, it can be
easily remodeled without even touching the client's code.

The gateway can aggregate multiple parts of your system's API into one, and then use
layer-7 routing (for example, based on the URL) to a proper part of your system. Layer-7
routing is offered by both cloud providers themselves, as well as tools such as Envoy.

As with many patterns described in this chapter, always consider whether it's worth it to
add more complexity by introducing another pattern to your architecture. Think about how
adding it will affect your availability, fault tolerance, and performance if they matter to
you. After all, a gateway usually is just a single node, so try to not make it a bottleneck or a
single point of failure.

Architectural and System Design Chapter 4

[131]

The Backends for Frontends pattern we mentioned a few chapters earlier can be thought of
as a variant of the API gateway pattern. In the Backends for Frontends case, each frontend
connects to its own gateway.

Now that you know how system design relates to API design, let's summarize what we've
discussed in the last sections.

Summary
In this chapter, we've learned quite a lot of stuff. You now know when to apply which
service model and how to avoid the common pitfalls of designing distributed systems.
You've learned about the CAP theorem and what practical outcomes it has for distributed
architectures. You can now run transactions in such systems successfully, reduce their
downtime, prevent issues, and gracefully recover from errors. Dealing with unusually high
load is no longer black magic. Integrating parts of your system, even legacy ones, with your
newly designed parts is also something you're able to perform. You now also have some
tricks up your sleeve to increase the performance and scalability of your system. Deploying
and load balancing your system are also demystified, so you can now perform them
efficiently. Last but not least, discovering services and designing and managing their APIs
are all things that you have now learned to perform. Nice!

In the next chapter, we'll learn how you can use specific C++ features to travel on the road
to excellent architecture in a more pleasant and efficient way.

Questions
What is event sourcing?1.
What are the practical consequences of the CAP theorem?2.
What can you use Netflix's Chaos Monkey for?3.
Where can caching be applied?4.
How do you prevent your app from going down when a whole data center does?5.
Why use an API Gateway?6.
How can Envoy help you to achieve various architectural goals?7.

Architectural and System Design Chapter 4

[132]

Further reading
Microsoft Azure cloud design patterns: https:/ /docs. microsoft. com/ en- us/
azure/architecture/ patterns/

Common design patterns for cloud APIs by Google: https:/ /cloud. google. com/
apis/design/ design_ patterns

Microsoft REST API guidelines: https:/ /github. com/ microsoft/ api-
guidelines/ blob/ vNext/ Guidelines. md

Envoy Proxy's Getting Started page: https:/ /www. envoyproxy. io/ docs/ envoy/
latest/start/ start

Active-active application architectures with MongoDB: https:/ / developer.
mongodb. com/ article/ active- active- application- architectures

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://cloud.google.com/apis/design/design_patterns
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures
https://developer.mongodb.com/article/active-active-application-architectures

5
Leveraging C++ Language

Features
The C++ language is a unique beast. It's used in a plethora of cases, varying from creating
firmware and operating systems, desktop and mobile applications, to server software,
frameworks, and services. C++ code runs on all kinds of hardware, is massively deployed
on compute clouds, and can even be found in outer space. Such success wouldn't have been
possible without the broad set of features this multi-paradigm language has.

This chapter describes how to leverage what the C++ language offers so that we can achieve
safe and performant solutions. We will demonstrate the best industry practices for type
safety, avoiding memory issues, and creating efficient code in an equally efficient manner.
We will also teach you how to use certain language features when designing APIs.

In this chapter, we'll cover the following topics:

Managing resources and avoiding leaks
Moving computations from runtime to compile time
Leveraging the power of safe types
Creating easy to read and performant code
Dividing code into modules

During this journey, you'll learn about the features and techniques that are available in
various standards of C++, ranging from C++98 all the way to C++20. This will include
declarative programming, RAII, constexpr, templates, concepts, and modules. Without
further ado, let's begin this journey.

Leveraging C++ Language Features Chapter 5

[134]

Technical requirements
You will need the following tools to build the code in this chapter:

A compiler that supports C++20 (GCC 11+ is recommended)
CMake 3.15+

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Software-Architecture- with- Cpp/ tree/ master/ Chapter05.

Designing great APIs
Although C++ allows you to use the well-known object-oriented APIs that you may be
familiar with if you write code in so-called coffee-based languages, it has some other tricks
up its sleeves. We'll mention a few of them in this section.

Leveraging RAII
What's the main difference between a C API and a C++ one? Usually, it's not about
polymorphism or having classes per se, but about an idiom called RAII.

RAII stands for Resource Acquisition Is Initialization, but it's actually more about
releasing resources than acquiring them. Let's take a look at a similar API written in C and
C++ to show this feature in action:

struct Resource;

// C API
Resource* acquireResource();
void releaseResource(Resource *resource);

// C++ API
using ResourceRaii = std::unique_ptr<Resource, decltype(&releaseResource)>;
ResourceRaii acquireResourceRaii();

The C++ API is based on the C one, but this doesn't always need to be the case. What's
important here is that in the C++ API, there's no need for a separate function to free our
precious resource. Thanks to the RAII idiom, it's done automatically once a ResourceRaii
object goes out of scope. This takes the burden of manual resource management away from
the user, and the best part is that it comes at no extra cost.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter05

Leveraging C++ Language Features Chapter 5

[135]

What's more, we didn't need to write any class of our own – we just reused the standard
library's unique_ptr, which is a lightweight pointer. It ensures that the object it manages
will always be freed, and it will always be freed exactly once.

Since we're managing some special kinds of resources and not memory, we had to use a
custom deleter type. Our acquireResourceRaii function would need to pass the actual
pointer to the releaseResource function. The C API itself doesn't need to be exposed to
the user if you only want to consume it from C++.

An important thing to note here is that RAII is not just for managing memory: you can use
it to easily handle ownership of any resource, such as locks, file handles, database
connections, and anything else that should be released once its RAII wrappers go out of
scope.

Specifying the interfaces of containers in C++
Implementations of the standard library are great places to search for idiomatic and
performant C++ code. For instance, if you want to read some really interesting template
code, you should give std::chrono a shot, as it demonstrates some useful techniques and
has a fresh approach to this. A link to libstdc++'s implementation can be found in the
Further reading section.

When it comes to other places of the library, even a quick peek at its containers shows that
their interfaces tend to differ from their counterparts in other programming languages. To
show this, let's take a look at a pretty straightforward class from the standard library,
std::array, and analyze it bit by bit:

template <class T, size_t N>
struct array {
 // types:
 typedef T& reference;
 typedef const T& const_reference;
 typedef /*implementation-defined*/ iterator;
 typedef /*implementation-defined*/ const_iterator;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef T value_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef reverse_iterator<iterator> reverse_iterator;
 typedef reverse_iterator<const_iterator> const_reverse_iterator;

Leveraging C++ Language Features Chapter 5

[136]

The first thing you can see when you start reading the class definition is that it creates
aliases for some types. This is common across the standard containers, and the names of
those aliases are the same in many of them. This happens for a few reasons. One of them is
the rule of least surprise – having it this way reduces the time developers spend scratching
their heads and trying to understand what you meant and how a specific alias was named.
Another reason is that the users of your class and library writers will often depend on such
type traits when they're writing their own code. If your container won't provide such
aliases, it will make using it with some standard utilities or type traits harder, so the users
of your APIs will have to work around this or even use a completely different class.

Having such type aliases can be useful even if you're not using them in your templates. It's
not uncommon to rely on those types for function parameters and class member fields, so
always remember to provide them if you're writing a class that other people could use. For
instance, if you're writing an allocator, many of its consumers will rely on specific type
aliases being present.

Let's see what the array class will bring us:

 // no explicit construct/copy/destroy for aggregate type

So, the next interesting thing about std::array is that it has no definition of a constructor,
including copy/move constructors; assign operators; or destructors. It's simply because
having those wouldn't add any value. Often, adding such members when it's not necessary
is actually harmful to performance. With a non-defaulted constructor (and T() {} is
already non-defaulted, as opposed to T() = default;), your class is no longer trivial nor
trivially constructible, which prevents the compiler from making optimizations to it.

Let's see what other declarations our class has:

 constexpr void fill(const T& u);
 constexpr void swap(array<T, N>&) noexcept(is_nothrow_swappable_v<T&>);

Now, we can see two member functions, including a member swap. Often, it's profitable to
not rely on the default behavior of std::swap and to provide our own. For instance, in the
case of std::vector, the underlying storage is swapped as a whole instead of each
element being swapped. When you're writing a member swap function, be sure to also
introduce a free function named swap so that it can be detected via argument-dependent
lookup (ADL). It could just call your member's swap function.

Leveraging C++ Language Features Chapter 5

[137]

One more thing regarding the swap function that's worth mentioning is that it's
conditionally noexcept. If the stored type can be swapped without throwing exceptions,
the array's swap will be noexcept as well. Having a non-throwing swap can help you
achieve strong exception safety guarantees in copy operations for classes that are storing
our type as a member.

As shown in the following code block, now comes a big set of functions that show us
another important aspect of many classes – their iterators:

 // iterators:
 constexpr iterator begin() noexcept;
 constexpr const_iterator begin() const noexcept;
 constexpr iterator end() noexcept;
 constexpr const_iterator end() const noexcept;

 constexpr reverse_iterator rbegin() noexcept;
 constexpr const_reverse_iterator rbegin() const noexcept;
 constexpr reverse_iterator rend() noexcept;
 constexpr const_reverse_iterator rend() const noexcept;

 constexpr const_iterator cbegin() const noexcept;
 constexpr const_iterator cend() const noexcept;
 constexpr const_reverse_iterator crbegin() const noexcept;
 constexpr const_reverse_iterator crend() const noexcept;

Iterators are vital for every container. If you don't provide iterator access for your class, you
won't be able to use it in range-based for loops and it won't be compatible with all the
useful algorithms from the standard library. This doesn't mean that you need to write your
own iterator types – you could just use a simple pointer if your storage is contiguous.
Providing const iterators can help you use your class in an immutable manner, and
providing reverse iterators can help with enabling more use cases for your container.

Let's see what comes next:

 // capacity:
 constexpr size_type size() const noexcept;
 constexpr size_type max_size() const noexcept;
 constexpr bool empty() const noexcept;

 // element access:
 constexpr reference operator[](size_type n);
 constexpr const_reference operator[](size_type n) const;
 constexpr const_reference at(size_type n) const;
 constexpr reference at(size_type n);
 constexpr reference front();
 constexpr const_reference front() const;

Leveraging C++ Language Features Chapter 5

[138]

 constexpr reference back();
 constexpr const_reference back() const;

 constexpr T * data() noexcept;
 constexpr const T * data() const noexcept;
private:
 // the actual storage, like T elements[N];
};

Following the iterators, we have a few ways to inspect and modify the container's data. In
the case of array, all of them are constexpr. This means that if we were to write some
compile-time code, we could use our array class. We'll look at this in more detail later in
this chapter, in the Moving computations at compile time section.

Finally, we made it through the whole definition of our array. Its interface doesn't end
there, however. Starting with C++17, after a type definition, you can spot lines similar to the
following:

template<class T, class... U>
 array(T, U...) -> array<T, 1 + sizeof...(U)>;

Such statements are called deduction guides. They're part of a feature called Class
Template Argument Deduction (CTAD), which was introduced in C++17. It allows you to
omit the template parameters when you're declaring a variable. It's handy for
array because now, you can just write the following:

auto ints = std::array{1, 2, 3};

However, it could be even handier for more complex types, such as maps, as follows:

auto legCount = std::unordered_map{ std::pair{"cat", 4}, {"human", 2},
{"mushroom", 1} };

There is, however, a catch here: we needed to specify that we're passing the key-value pair
when we passed the first argument (note that we also used a deduction guide for it).

Since we're on the topic of interfaces, let's point to some other aspects of them.

Using pointers in interfaces
The types that you use in your interfaces matter a lot. Even if there's documentation, a good
API should still be intuitive at a glance. Let's see how different approaches to passing
resource parameters to a function can suggest different things to the API consumer.

Leveraging C++ Language Features Chapter 5

[139]

Consider the following function declarations:

void A(Resource*);
void B(Resource&);
void C(std::unique_ptr<Resource>);
void D(std::unique_ptr<Resource>&);
void E(std::shared_ptr<Resource>);
void F(std::shared_ptr<Resource>&);

When should you use which of those functions?

Since smart pointers are now the standard way to deal with resources, A and B should be
left for simple parameter passing and shouldn't be used if you don't do anything with the
ownership of the passed objects. A should only be used for a single resource. For example, if
you want to pass multiple instances, you could use a container, such as std::span. If you
know the object you want to pass is not null, it's best to pass it by using a reference, such as
a const reference. You can also consider passing by value if the object is not too big.

A good rule of thumb regarding functions C to F is that you should only pass smart
pointers as arguments if you want to manipulate the pointers themselves; for example, for
transferring ownership.

The C function takes a unique_ptr by value. This means it's a resource sink. In other
words, it consumes and then frees the resource. Note that just by selecting a specific type,
the interface expresses its intent clearly.

The D function should only be used if you want to pass in a unique_ptr containing one
resource and receive another resource in the same unique_ptr as an out parameter. It's not
a good idea to have such a function for simply passing a resource since it requires that the
caller stores it specifically in a unique_ptr. In other words, if you think about passing a
const unique_ptr<Resource>&, just pass a Resource* (or Resource&) instead.

The E function is meant for sharing resource ownership with the callee. Passing a
shared_ptr by value can be relatively costly, as it is required to increment its reference
counters. However, in this case, passing shared_ptr by value is okay, since a copy must
be made somewhere if the callee really wants to become a shared owner.

The F function is similar to D and should only be used when you want to manipulate the
shared_ptr instance and propagate the change through this in/out parameter. If you're
unsure if the function should take ownership or not, consider passing a const
shared_ptr&.

Leveraging C++ Language Features Chapter 5

[140]

Specifying preconditions and postconditions
It's not uncommon for a function to have some requirements regarding its parameters. Each
requirement should be stated as a precondition. If a function guarantees that its result has
some properties – for example, it is non-negative – the function should make that clear as
well. Some developers resort to placing comments to inform others about this, but it doesn't
really enforce the requirement in any way. Placing if statements is better, but hides the
reason for the check. Currently, the C++ standard still doesn't offer a way to deal with this
(contracts were first voted into the C++20 standard, just to be removed later on).
Fortunately, libraries such as Microsoft's Guideline Support Library (GSL) provide their
own checks.

Let's assume that, for whatever reason, we're writing our own queue implementation. The
push member function could look like this:

template<typename T>
T& Queue::push(T&& val) {
 gsl::Expects(!this->full());
 // push the element
 gsl::Ensures(!this->empty());
}

Note that the user doesn't even need access to the implementation to be sure that some
checks are in place. The code is also self-documenting as it's clear what the function
requires and what the result will be.

Leveraging inline namespaces
In systems programming, oftentimes, you're not always just writing code against an API;
often, you need to care about ABI compatibility as well. A famous ABI break happened
when GCC released its fifth version, with one of the major changes being the change of the
class layout of std::string. This meant that libraries working with older GCC versions
(or still using the new ABI in newer versions, which is still a thing in recent GCC releases)
would not work with code written using a later ABI. In the case of an ABI break, if you
receive a linker error, you can consider yourself lucky. In some cases, such as mixing
NDEBUG code with debug code, you'll likely get memory corruption if a class only has
members available in one such configuration' for instance, special members being added for
better debugging.

Leveraging C++ Language Features Chapter 5

[141]

Some memory corruptions, which are often hard to debug, can easily be turned into linker
errors with the use of C++11's inline namespaces. Consider the following code:

#ifdef NDEBUG
inline namespace release {
#else
inline namespace debug {
#endif

struct EasilyDebuggable {
// ...
#ifndef NDEBUG
// fields helping with debugging
#endif
};

} // end namespace

Because the preceding code uses inline namespaces, the users won't see a difference
between the two build types when you're declaring objects of this class: all declarations
from an inline namespace are visible in the surrounding scope. The linker, however, will
end up with different symbol names, which will cause the linker to fail if it tries to link
incompatible libraries, giving us the ABI safety we're looking for and a nice error message
mentioning the inline namespace.

For more tips on providing safe and elegant ABIs, please see Arvid Norberg's The ABI
Challenge talk from C++Now 2019, which is linked in the Further reading section.

Leveraging std::optional
Going back from ABIs to APIs, let's mention one more type that we omitted when we were
designing great APIs earlier in this book. The hero of this section can save the day when it
comes to optional parameters for functions as it can help your types have components that
may or may not hold value, and it can also be used for designing clean interfaces or as a
replacement for pointers. This hero is called std::optional and was standardized in
C++17. If you can't use C++17, you can still find it in Abseil (absl::optional), or find a
very similar version from Boost (boost::optional). A big plus of using those classes is
that they express the intent very clearly, which helps with writing clean and self-
documenting interfaces. Let's see it in action.

Leveraging C++ Language Features Chapter 5

[142]

Optional function parameters
We'll start by passing arguments to functions that can, but may not, hold value. Have you
ever stumbled upon a function signature similar to the following?

void calculate(int param); // If param equals -1 it means "no value"

void calculate(int param = -1);

Sometimes, it's just too easy to pass a -1 by mistake when you didn't want to if param was
calculated somewhere else in code – perhaps where it was even a valid value. How about
the following signature?

void calculate(std::optional<int> param);

This time, it's much clearer what to do if you don't want to pass a value: just pass an
empty optional. The intent is clear, and -1 can still be used as a valid value instead of you
having to give it any special meaning in a type-unsafe manner.

That's just one usage of our optional template. Let's see some others.

Optional function return values
Just like with accepting special values to signify the no value of a parameter, a function can
sometimes return no value. Which of the following would you prefer?

int try_parse(std::string_view maybe_number);
bool try_parse(std::string_view maybe_number, int &parsed_number);
int *try_parse(std::string_view maybe_number);
std::optional<int> try_parse(std::string_view maybe_number);

How can you tell what value the first function will return in case of errors? Or will it throw
an exception instead of returning a magic value? Moving on to the second signature, it
looks like false will be returned if there is an error, but it's still easy to just forget to check
it and read parsed_number directly, potentially causing trouble. In the third case, while it's
relatively safe to assume a nullptr will be returned on errors and an integer in case of
success, it's now unclear if the returned int should be freed.

With the last signature, it's clear by just looking at it that an empty value will be returned in
case of errors and that there's nothing else that needs to be done. It's simple,
understandable, and elegant.

Leveraging C++ Language Features Chapter 5

[143]

Optional return values can also be used to just mark a no value being returned, not
necessarily that an error had occurred. Having said that, let's move on to our last use case
for optionals.

Optional class members
Achieving coherence in a class state is not always an easy task. For instance, sometimes,
you want to have a member or two that can simply not be set. Instead of creating another
class for such a case (which increases code complexity) or reserving a special value (which
is easy to pass unnoticed), you can use an optional class member. Consider the following
type:

struct UserProfile {
 std::string nickname;
 std::optional <std::string> full_name;
 std::optional <std::string> address;
 std::optional <PhoneNumber> phone;
};

Here, we can see which fields are necessary and which ones don't need to be filled. The
same data could be stored using empty strings, but this wouldn't be clearly visible just from
the struct's definition. Another alternative would be to use std::unique_ptr's, but then
we would lose data locality, which is often essential for performance. For such cases,
std::optional can be of great value. It should definitely be a part of your toolbox when
you want to design clean and intuitive APIs.

This knowledge can help you provide high-quality and intuitive APIs. There's one more
thing you can do to improve them further that will also help you write less buggy code by
default. We will discuss this in the next section.

Writing declarative code
Are you familiar with imperative versus declarative coding styles? The former is when
your code tells the machine how to achieve what you want step by step. The latter is when
you tell the machine just what you want to achieve. Certain programming languages favor
one over the other. For instance, C is imperative, while SQL is declarative, just like many
functional languages. Some languages allow you to mix the styles – think of LINQ in C#.

Leveraging C++ Language Features Chapter 5

[144]

C++ is a flexible beast that allows you to write code in both ways. Is there one you should
prefer? It turns out that when you're writing declarative code, usually a higher level of
abstraction is kept, which leads to fewer bugs and easier-to-spot errors. So, how can we
write C++ declaratively? There are two main tactics to apply.

The first one is to write functional-style C++, which is where you prefer a pure-functional
style (no side effects of functions) if possible. Instead of writing loops by hand, you should
try using standard library algorithms. Consider the following code:

auto temperatures = std::vector<double>{ -3., 2., 0., 8., -10., -7. };
// ...
for (std::size_t i = 0; i < temperatures.size() - 1; ++i) {
 for (std::size_t j = i + 1; j < temperatures.size(); ++j) {
 if (std::abs(temperatures[i] - temperatures[j]) > 5)
 return std::optional{i};
 }
}
return std::nullopt;

Now, compare the preceding code with the following snippet, which does the same:

auto it = std::ranges::adjacent_find(temperatures,
 [](double first, double second) {
 return std::abs(first - second) > 5);
});
if (it != std::end(temperatures))
 return std::optional{std::distance(std::begin(temperatures), it)};
return std::nullopt);

Both snippets return the last day that had a relatively stable temperature. Which one of
those would you rather read? Which one is easier to understand? Even if you're not that
familiar with C++ algorithms now, after encountering them a few times in code, they just
feel simpler, safer, and cleaner than hand-crafted loops. That's because they often are.

The second tactic for writing declarative code in C++ is already somewhat present in the
previous snippet. You should prefer using declarative APIs, such as the one from the
ranges library. And although no range views were used in our snippet, they can make a lot
of difference. Consider the following snippet:

using namespace std::ranges;
auto is_even = [](auto x) { return x % 2 == 0; };
auto to_string = [](auto x) { return std::to_string(x); };
auto my_range = views::iota(1)
 | views::filter(is_even)
 | views::take(2)

Leveraging C++ Language Features Chapter 5

[145]

 | views::reverse
 | views::transform(to_string);
std::cout << std::accumulate(begin(my_range), end(my_range), ""s) << '\n';

This is a great example of declarative coding: you just specify what should happen, not
how. The preceding code takes the first two even numbers, reverses their order, and prints
them as a string, thus printing the famous answer to life, the universe, and everything: 42.
All of this is done in an intuitive and easily modifiable way.

Showcasing a featured items gallery
Enough with the toy examples, though. Remember our Dominican Fair application from
Chapter 3, Functional and Nonfunctional Requirements? Let's write a component that will
select and display a few featured items from the stores that a customer saved as their
favorites. This can be pretty handy when we're writing a mobile app, for example.

Let's start with a mostly C++17 implementation, which we'll update to C++20 throughout
this chapter. This will include adding support for ranges.

First, let's start with some code for obtaining information about the current user:

using CustomerId = int;

CustomerId get_current_customer_id() { return 42; }

Now, let's add the store owners:

struct Merchant {
 int id;
};

The stores also need to have items in them:

struct Item {
 std::string name;
 std::optional<std::string> photo_url;
 std::string description;
 std::optional<float> price;
 time_point<system_clock> date_added{};
 bool featured{};
};

Some items may not have photos or prices, which is why we used std::optional for
those fields.

Leveraging C++ Language Features Chapter 5

[146]

Next, let's add some code that describes our items:

std::ostream &operator<<(std::ostream &os, const Item &item) {
 auto stringify_optional = [](const auto &optional) {
 using optional_value_type =
 typename std::remove_cvref_t<decltype(optional)>::value_type;
 if constexpr (std::is_same_v<optional_value_type, std::string>) {
 return optional ? *optional : "missing";
 } else {
 return optional ? std::to_string(*optional) : "missing";
 }
 };

 auto time_added = system_clock::to_time_t(item.date_added);

 os << "name: " << item.name
 << ", photo_url: " << stringify_optional(item.photo_url)
 << ", description: " << item.description
 << ", price: " << std::setprecision(2)
 << stringify_optional(item.price)
 << ", date_added: "
 << std::put_time(std::localtime(&time_added), "%c %Z")
 << ", featured: " << item.featured;
 return os;
}

First, we created a helper lambda for converting our optionals into strings. Since we only
want to use it in our << operator, we defined it inside it.

Note how we used C++14's generic lambdas (the auto parameter), along with C++17's
constexpr and the is_same_v type trait, so that we have a different implementation
when we're dealing with an optional <string> versus other cases. Achieving the same pre-
C++17 would require writing templates with overloads, resulting in more complicated
code:

enum class Category {
 Food,
 Antiques,
 Books,
 Music,
 Photography,
 Handicraft,
 Artist,
};

Leveraging C++ Language Features Chapter 5

[147]

Finally, we can define the store itself:

struct Store {
 gsl::not_null<const Merchant *> owner;
 std::vector<Item> items;
 std::vector<Category> categories;
};

What's worth noting here is the use of the gsl::not_null template from the Guidelines
Support Library, which signals that the owner will always be set. Why not use just a plain
old reference? That's because we may want our store to be moveable and copyable. Using a
reference would hinder that.

Now that we have those building blocks, let's define how to get a customer's favorite stores.
For simplicity, let's assume we're dealing with hardcoded stores and merchants instead of
creating code to deal with external data stores.

First, let's define a type alias for the stores and begin our function definition:

using Stores = std::vector<gsl::not_null<const Store *>>;

Stores get_favorite_stores_for(const CustomerId &customer_id) {

Next, let's hardcode some merchants, as follows:

 static const auto merchants = std::vector<Merchant>{{17}, {29}};

Now, let's add a store with some items, as shown here:

 static const auto stores = std::vector<Store>{
 {.owner = &merchants[0],
 .items =
 {
 {.name = "Honey",
 .photo_url = {},
 .description = "Straight outta Compton's apiary",
 .price = 9.99f,
 .date_added = system_clock::now(),
 .featured = false},
 {.name = "Oscypek",
 .photo_url = {},
 .description = "Tasty smoked cheese from the Tatra
 mountains",
 .price = 1.23f,
 .date_added = system_clock::now() - 1h,
 .featured = true},
 },
 .categories = {Category::Food}},

Leveraging C++ Language Features Chapter 5

[148]

 // more stores can be found in the complete code on GitHub
 };

Here, we introduced our first C++20 feature. You might not be familiar with the .field =
value; syntax unless you've coded in C99 or newer. Starting from C++20, you can use this
notation (officially called designated initializers) to initialize aggregate types. It's more
constrained than in C99 because the order is important, although it has some other minor
differences. Without those initializers, it can be hard to understand which value initializes
which field. With them, the code is more verbose but easier to comprehend, even for people
unfamiliar with programming.

Once we've defined our stores, we can write the last part of our function, which will do the
actual lookup:

 static auto favorite_stores_by_customer =
 std::unordered_map<CustomerId, Stores>{{42, {&stores[0],
&stores[1]}}};
 return favorite_stores_by_customer[customer_id];
}

Now that we have our stores, let's write some code to obtain the featured items for those
stores:

using Items = std::vector<gsl::not_null<const Item *>>;

Items get_featured_items_for_store(const Store &store) {
 auto featured = Items{};
 const auto &items = store.items;
 for (const auto &item : items) {
 if (item.featured) {
 featured.emplace_back(&item);
 }
 }
 return featured;
}

The preceding code was for obtaining items from one store. Let's also write a function that
will obtain items from all the given stores:

Items get_all_featured_items(const Stores &stores) {
 auto all_featured = Items{};
 for (const auto &store : stores) {
 const auto featured_in_store = get_featured_items_for_store(*store);
 all_featured.reserve(all_featured.size() + featured_in_store.size());
 std::copy(std::begin(featured_in_store), std::end(featured_in_store),
 std::back_inserter(all_featured));
 }

Leveraging C++ Language Features Chapter 5

[149]

 return all_featured;
}

The preceding code uses std::copy to insert elements into a vector, with memory
preallocated by the reserve call.

Now that we have a way to obtain interesting items, let's sort them by "freshness" so that
the most recently added ones will appear first:

void order_items_by_date_added(Items &items) {
 auto date_comparator = [](const auto &left, const auto &right) {
 return left->date_added > right->date_added;
 };
 std::sort(std::begin(items), std::end(items), date_comparator);
}

As you can see, we leveraged std::sort with a custom comparator. If you like, you could
also force the same type for both left and right. To do so in a generic manner, let's use
another C++20 feature: template lambdas. Let's apply them to the preceding code:

void order_items_by_date_added(Items &items) {
 auto date_comparator = []<typename T>(const T &left, const T &right) {
 return left->date_added > right->date_added;
 };
 std::sort(std::begin(items), std::end(items), date_comparator);
}

The T type for the lambda will be deduced just like it would for any other template.

The last two parts that are missing are the actual rendering code and the main function to
glue it all together. In our example case, rendering will be as simple as printing to an
ostream:

void render_item_gallery(const Items &items) {
 std::copy(
 std::begin(items), std::end(items),
 std::ostream_iterator<gsl::not_null<const Item *>>(std::cout, "\n"));
}

In our case, we just copy each element to the standard output and insert a newline between
the elements. Using copy and an ostream_iterator allows you to handle the element's
separators for yourself. This can be handy in some cases; for instance, if you don't want a
comma (or a newline, in our case) after the last element.

Leveraging C++ Language Features Chapter 5

[150]

Finally, our main function will look like this:

int main() {
 auto fav_stores = get_favorite_stores_for(get_current_customer_id());

 auto selected_items = get_all_featured_items(fav_stores);

 order_items_by_date_added(selected_items);

 render_item_gallery(selected_items);
}

Voila! Feel free to run the code to see how it prints our featured items:

name: Handmade painted ceramic bowls, photo_url:
http://example.com/beautiful_bowl.png, description: Hand-crafted and hand-
decorated bowls made of fired clay, price: missing, date_added: Sun Jan 3
12:54:38 2021 CET, featured: 1
name: Oscypek, photo_url: missing, description: Tasty smoked cheese from
the Tatra mountains, price: 1.230000, date_added: Sun Jan 3 12:06:38 2021
CET, featured: 1

Now that we're done with our base implementation, let's see how we can improve it by
using some new language features from C++20.

Introducing standard ranges
Our first addition will be the ranges library. As you may recall, it can help us achieve
elegant, simple, and declarative code. For brevity, first, we will pull in the ranges
namespace:

#include <ranges>

using namespace std::ranges;

We'll leave the code-defining merchants, items, and stores as-is. Let's start our
modifications by using the get_featured_items_for_store function:

Items get_featured_items_for_store(const Store &store) {
 auto items = store.items | views::filter(&Item::featured) |
 views::transform([](const auto &item) {
 return gsl::not_null<const Item *>(&item);
 });
 return Items(std::begin(items), std::end(items));
}

Leveraging C++ Language Features Chapter 5

[151]

As you can see, making a range out of a container is straightforward: just pass it to a pipe
operator. Instead of our hand-crafted loop to filter featured elements, we can use the
views::filter expression, passing it a member pointer as the predicate. Due to the magic
of std::invoke under the hood, this will correctly filter out all items that have our
Boolean data member set to false.

Next, we need to convert each item into a gsl::not_null pointer so that we can avoid
unnecessary item copies. Finally, we return a vector of such pointers, the same as in our
base code.

Now, let's see how we can use the preceding function to obtain all the featured items from
all our stores:

Items get_all_featured_items(const Stores &stores) {
 auto all_featured = stores | views::transform([](auto elem) {
 return get_featured_items_for_store(*elem);
 });

 auto ret = Items{};
 for_each(all_featured, [&](auto elem) {
 ret.reserve(ret.size() + elem.size());
 copy(elem, std::back_inserter(ret));
 });
 return ret;
}

Here, we created a range from all the stores and transformed them using the function we
created in the previous step. Because we needed to dereference each element first, we used
a helper lambda. Views are lazily evaluated, so each transform will be done only when it is
about to be consumed. This can sometimes save you lots of time and computations:
assuming you would only want the first N items, you can skip the unnecessary calls to
get_featured_items_for_store.

Once we have our lazy view, similar to our base implementation, we can reserve space in
the vector and copy items there from each nested vector in the all_featured view. Range
algorithms are more concise to use if you take the whole container. Look how copy doesn't
require us to write std::begin(elem) and std::end(elem).

Now that we have our items, let's simplify our sorting code by using ranges to process
them:

void order_items_by_date_added(Items &items) {
 sort(items, greater{}, &Item::date_added);
}

Leveraging C++ Language Features Chapter 5

[152]

Again, you can see how ranges can help you write more concise code. The preceding copy
and the sort here are both range algorithms, as opposed to views. They are eager and allow
you to use projections. In our case, we just passed another member of our item class so that
it can be used for comparison when sorting. Effectively, each item will be projected as just
its date_added, which will then be compared using greater{}.

But wait – our items are actually gsl::not_null pointers to Item. How does this work? It
turns out that our projection will dereference the gsl::not_null pointer first because of
the cleverness of std::invoke. Neat!

The last change that we can make is in our "rendering" code:

void render_item_gallery([[maybe_unused]] const Items &items) {
 copy(items,
 std::ostream_iterator<gsl::not_null<const Item *>>(std::cout,
"\n"));
}

Here, ranges just help us remove some boilerplate code.

When you run our updated version of the code, you should get the same output as in the
base case.

If you were expecting more from ranges than just concise code, there's good news: they can
be used even more efficiently in our case.

Reducing memory overhead and increasing
performance using ranges
You already know that using lazy evaluation in std::ranges::views can help with
performance by eliminating unnecessary compute. It turns out we can also use ranges to
reduce the memory overhead in our example. Let's revisit our code for obtaining featured
items from a store. It can be shortened down to the following:

auto get_featured_items_for_store(const Store &store) {
 return store.items | views::filter(&Item::featured) |
 views::transform(
 [](const auto &item) { return gsl::not_null(&item); });
}

Leveraging C++ Language Features Chapter 5

[153]

Note that our function no longer returns items, instead relying on C++14's auto return type
deduction. In our case, instead of returning a vector, our code will return a lazy view.

Let's learn how to consume this for all stores:

Items get_all_featured_items(const Stores &stores) {
 auto all_featured = stores | views::transform([](auto elem) {
 return get_featured_items_for_store(*elem);
 }) |
 views::join;
 auto as_items = Items{};
 as_items.reserve(distance(all_featured));
 copy(all_featured, std::back_inserter(as_items));
 return as_items;
}

Now, because our preceding function returns a view instead of the vector, we end up with
a view of views after calling transform. This means we can use yet another standard view
called join to join our nested views into just one that's unified.

Next, we use std::ranges::distance to preallocate space in our destination vector, after
which we make our copy. Some ranges are sized, in which case you could call
std::ranges::size instead. The resulting code has just one call to reserve, which
should give us a nice performance boost.

This concludes introducing ranges to our code. Since we ended this section on a
performance-related note, let's talk about one more topic that's important for this aspect of
C++ programming.

Moving computations at compile time
Starting with the advent of modern C++ in the early 2000s, C++ programming became more
about computing things during compilation instead of deferring them to runtime. It's much
cheaper to detect errors during compilation than to debug them later on. Similarly, it's
much faster to have the result ready before the program is started instead of calculating it
later on.

At first, there was template metaprogramming, but with C++11 onward, each new standard
brought additional features for compile-time compute: be it type traits, constructs such
as std::enable_if or std::void_t, or C++20's consteval for computing stuff only at
compile time.

Leveraging C++ Language Features Chapter 5

[154]

One feature that improved over the years was the constexpr keyword and its related
code. C++20 really improved and extended constexpr. Now, you can not only write
regular simple constexpr functions thanks to the previous standards (quite an
improvement from C++11's single-expression ones), but you can also use dynamic
allocations and exceptions inside them, not to mention std::vector and std::string!

There's more: even virtual functions can now be constexpr: overload resolution happens
as usual, but if a given one is constexpr, it can get called at compile time.

Yet another improvement was made to standard algorithms. Their non-parallel versions are
all ready for you to use in your compile-time code. Consider the following example, which
can be used to check if a given merchant is present in a container:

#include <algorithm>
#include <array>

struct Merchant { int id; };

bool has_merchant(const Merchant &selected) {
 auto merchants = std::array{Merchant{1}, Merchant{2}, Merchant{3},
 Merchant{4}, Merchant{5}};
 return std::binary_search(merchants.begin(), merchants.end(), selected,
 [](auto a, auto b) { return a.id < b.id; });
}

As you can see, we're doing a binary search for an array of merchants, sorted by their IDs.

To gain insight into the code and its performance, we recommend that you take a quick
look at the assembly that this code generates. Along with the advent of compile-time
computations and chasing performance, one of the invaluable tools that was developed was
the https://godbolt. org site. It can be used to quickly play with code to see how different
architectures, compilers, flags, library versions, and implementations influence the
generated assembly.

We tested the preceding code using GCC trunk (before GCC 11 was officially released) with
-O3 and --std=c++2a. In our case, we checked the generated assembly with the following
code:

int main() { return has_merchant({4}); }

https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org

Leveraging C++ Language Features Chapter 5

[155]

You can see the few dozens of assembly lines using the following Godbolt: https:/ /
godbolt.org/z/PYMTYx.

But wait – you could say that there's a function call in the assembly, so maybe we could inline it so
it can be optimized better? That would be a valid point. Often, this helps a lot, although now,
we just get the assembly inlined (see: https:/ /godbolt. org/ z/hPadxd).

So, now, try changing the signature to the following:

constexpr bool has_merchant(const Merchant &selected)

constexpr functions are implicitly inline, so we removed that keyword. If we look into the
assembly, we will see that some magic happened: the search was optimized away! As you
can see at https:// godbolt. org/ z/ v3hj3E, all the assembly that was left was as follows:

main:
 mov eax, 1
 ret

The compiler optimized our code so that the only thing left is our pre-computed result
being returned. That's pretty impressive, isn't it?

Helping the compiler help you by using const
Compilers can optimize pretty well, even if you don't give them inline or constexpr
keywords, as in the preceding example. One thing that helps them achieve performance for
you is marking variables and functions as const. Perhaps even more importantly, it also
helps you avoid making mistakes in your code. Many languages have immutable variables
by default, which can lead to fewer bugs, code that's easier to reason about, and often faster
multi-threaded performance.

Even though C++ has mutable variables by default and you need to explicitly type const,
we encourage you to do so. It can really help you stop making tricky typos related to
modifying a variable that you shouldn't.

Using const (or constexpr) code is part of a bigger philosophy called type safety. Let's
say a few words about it.

https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/PYMTYx
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/hPadxd
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E
https://godbolt.org/z/v3hj3E

Leveraging C++ Language Features Chapter 5

[156]

Leveraging the power of safe types
C++ relies heavily on mechanisms that help you write type-safe code. Language constructs
such as explicit constructors and conversion operators have been baked into the language
for a long time. More and more safe types are being introduced to the standard library.
There's optional to help you avoid referencing empty values, string_view to help you
avoid going out of a range, and any as a safe wrapper for any type, just to name a few.
Moreover, with its zero-cost abstractions, it's recommended that you create your own types
that are useful and hard or impossible to misuse.

Often, using C-style constructs can lead to type-unsafe code. One example would be C-style
casts. They can resolve to a const_cast, static_cast, reinterpret_cast, or one of
these two combined with a const_cast. Accidentally writing to a const object that was
const_cast is undefined behavior. So is reading memory returned from a
reinterpret_cast<T>, if T was not the original type of the object (C++20's
std::bit_cast can help here). Both of those cases are much easier avoided if C++ casts are
used.

C was perhaps too permissive when it came to types. Fortunately, C++ introduces many
type-safe alternatives to problematic C constructs. There are streams and std::format
instead of printf et al., and there's std::copy and other similar algorithms instead of the
unsafe memcpy. Finally, there are templates instead of functions taking a void * (and paying
a price in terms of performance). With C++, templates get even more type safety through a
feature called concepts. Let's see how we can improve our code by using them.

Constraining template parameters
The first way concepts can improve your code is by making it more generic. Do you
remember the cases where you needed to change the container type in one place, which
caused a cascade of changes in other places too? If you weren't changing the container to
one with totally different semantics and that you had to use in a different way, that means
your code may not have been generic enough.

On the other hand, have you ever written a template or sprinkled auto over your code and
later wondered if your code would break if someone changed the underlying type?

Leveraging C++ Language Features Chapter 5

[157]

Concepts are all about putting the right level of constraints onto the types you're operating
on. They constrain what types your template can match, and are checked at compile time.
For instance, let's say you write the following:

template<typename T>
void foo(T& t) {...}

Now, you can write the following instead:

void foo(std::swappable auto& t) {...}

Here, foo() must be passed a type that supports std::swap to work.

Do you recall some templates that matched just too many types? Previously, you could use
std::enable_if, std::void_t, or if constexpr to constrain them. However, writing
enable_if statements was a bit cumbersome and could slow down your compilation
times. Here, concepts come to the rescue once more due to their conciseness and how they
express their intent clearly.

There are a few dozen standard concepts in C++20. Most of them live in the <concepts>
header and can be divided into four categories:

Core language concepts, such as derived_from, integral, swappable,
and move_constructible
Comparison concepts, such as boolean-testable,
equality_comparable_with, and totally_ordered
Object concepts, such as movable, copyable, semiregular, and regular
Callable concepts, such as invokable, predicate, and strict_weak_order

Additional ones are defined in the <iterator> header. These can be divided into the
following categories:

Indirect callable concepts, such
as indirect_binary_predicate and indirectly_unary_invocable
Common algorithm requirements, such as indirectly_swappable,
permutable, mergeable, and sortable

Finally, a dozen can be found in the <ranges> header. Examples include range (duh),
contiguous_range, and view.

Leveraging C++ Language Features Chapter 5

[158]

If that's not enough for your needs, you can declare your own concepts similarly to how the
standard defines the ones we just covered. For instance, the movable concept is
implemented like so:

template <class T>
concept movable = std::is_object_v<T> && std::move_constructible<T> &&
std::assignable_from<T&, T> && std::swappable<T>;

Furthermore, if you look at std::swappable, you'll see the following:

template<class T>
concept swappable = requires(T& a, T& b) { ranges::swap(a, b); };

This means a type, T, will be swappable if ranges::swap(a, b) compiles for two
references of this type.

When defining your own concepts, be sure that you cover the semantic
requirements for them. Specifying and using a concept when defining an
interface is a promise that's made to the consumers of that interface.

Often, you can go with the so-called shorthand notation in declarations for brevity:

void sink(std::movable auto& resource);

For readability and type safety, it's recommended that you use auto together with a
concept to constrain the type and let your readers know the kind of object they're dealing
with. Code written in this manner will retain the perks of auto-like genericity. You can use
this in both regular functions and lambdas.

A great bonus of using concepts is shorter error messages. It's not uncommon to cut a few
dozens and dozens of lines about one compilation error down to just a few lines. Yet
another bonus is that you can overload on concepts.

Now, let's go back to our Dominican Fair example. This time, we'll add some concepts to
see how they can improve our implementation.

First, let's make get_all_featured_items return just a range of items. We can do so by
adding the concept to the return type, like so:

range auto get_all_featured_items(const Stores &stores);

Leveraging C++ Language Features Chapter 5

[159]

So far, so good. Now, let's add yet another requirement to this type that will be enforced
when we call order_items_by_date_added: our range must be sortable.
std::sortable has already been defined for a range iterator, but for our convenience, let's
define a new concept called sortable_range:

template <typename Range, typename Comp, typename Proj>
concept sortable_range =
 random_access_range<Range> &&std::sortable<iterator_t<Range>, Comp,
Proj>;

Similar to its standard library counterpart, we can accept a comparator and a projection
(which we introduced with ranges). Our concept is satisfied by (will be matched by) types
that satisfy the random_access_range concept, as well as having an iterator that satisfies
the aforementioned sortable concept. It's as simple as that.

When defining concepts, you can also use the requires clause to specify additional
constraints. For instance, if you want our range to store elements with a date_added
member only, you could write the following:

template <typename Range, typename Comp>
concept sortable_indirectly_dated_range =
 random_access_range<Range> &&std::sortable<iterator_t<Range>, Comp> &&
requires(range_value_t<Range> v) { { v->date_added }; };

However, in our case, we don't need to constrain the type that much, as you should leave
some flexibility when you're using concepts and define them so that it will make sense to
reuse them.

What's important here is that you can use the requires clause to specify what code should
be valid to call on your type when it meets the requirements for a concept. If you want, you
can specify constraints on the type that's returned by each subexpression; for instance, to
define something incrementable, you could use the following:

requires(I i) {
 { i++ } -> std::same_as<I>;
}

Now that we have our concept, let's redefine the order_items_by_date_added function:

void order_items_by_date_added(
 sortable_range<greater, decltype(&Item::date_added)> auto &items) {
 sort(items, greater{}, &Item::date_added);
}

Leveraging C++ Language Features Chapter 5

[160]

Now, our compiler will check if any range we pass to it is a sortable one and contains a
date_added member that can be sorted using std::ranges::greater{}.

If we were to use the more constrained concept here, the function would look like this:

void order_items_by_date_added(
 sortable_indirectly_dated_range<greater> auto &items) {
 sort(items, greater{}, &Item::date_added);
}

Finally, let's redo our rendering function:

template <input_range Container>
requires std::is_same_v<typename Container::value_type,
 gsl::not_null<const Item *>> void
render_item_gallery(const Container &items) {
 copy(items,
 std::ostream_iterator<typename Container::value_type>(std::cout,
"\n"));
}

Here, you can see that a concept name can be used instead of the typename keyword in a
template declaration. One line below this, you can see that the requires keyword can also
be used to further constrain the appropriate types based on their traits. This can be handy if
you don't want to specify a new concept.

That's it for concepts. Now, let's write some modular C++ code.

Writing modular C++
The last big feature of C++ we'll discuss in this chapter is modules. They are yet one more
addition to C++20 that has a great impact on building and partitioning code.

C++ has used #include for a really long time now. However, this textual form of
dependency inclusion has its flaws, as listed here:

Due to the need to process lots of text (even a Hello World after preprocessing
is around half a million lines of code), it's slow. This leads to one-definition rule
(ODR) violations.
The order of your includes matters, but it shouldn't. This one is twice as bad as
the preceding one as it also leads to cyclic dependencies.

Leveraging C++ Language Features Chapter 5

[161]

Finally, it's hard to encapsulate stuff that just needs to be in header files. Even if
you put some stuff in a detailed namespace, someone will use it, as Hyrum's law
predicts.

Fortunately, this is when modules enter the game. They should solve the aforementioned
flaws, bringing a great speedup to build times and better C++ scalability when it comes to
building. With modules, you only export what you want to export, which results in good
encapsulation. Having a specific order of dependency inclusion is no longer an issue too, as
the order of imports doesn't matter.

Unfortunately, at the time of writing, compiler support for modules is still
only partially done. This is why we decided to just showcase what was
already available in GCC 11. Sadly, this means that stuff such as module
partitions won't be covered here.

Each module, after compilation, will be compiled to not only the object file but also a
module interface file. This means that instead of parsing a file with all of its dependencies,
compilers can quickly know what types and functions a given module contains. All you
need to do is to type the following:

import my_module;

You can use it once my_module has been compiled and available. The module itself should
be defined in a .cppm file, but those are still not supported by CMake. You might be better
off just naming them .cpp for the time being.

Without further ado, let's return to our Dominican Fair example and show how to use them
in practice.

First, let's create our first module for the customer code, starting with the following
directive:

module;

This statement marks that from this point on, everything will be private in this module.
This marks a good place to put your includes and other content that won't be exported.

Next, we must specify the name of the exported module:

export module customer;

Leveraging C++ Language Features Chapter 5

[162]

This will be the name we'll use to import the module later. This line must come before the
exported contents. Now, let's specify what our module will actually export, prefixing the
definitions with the export keyword:

export using CustomerId = int;

export CustomerId get_current_customer_id() { return 42; }

And done! Our first module is ready to be used. Let's create another one for the merchant:

module;

export module merchant;

export struct Merchant {
 int id;
};

Pretty similar to our first module, here, we specified the name and the type to be exported
(as opposed to a type alias and a function for the first one). You can export other
definitions, such as templates, too. It gets tricky with macros, though, as you need to import
<header_file> for them to be visible.

By the way, a good advantage of modules is that they don't allow macros to propagate to
imported modules. This means that when you write code such as the following, the module
won't have MY_MACRO defined:

#define MY_MACRO
import my_module;

It helps to have determinism in modules as it protects you from breaking code in other
modules.

Now, let's define a third module for our stores and items. We won't discuss exporting other
functions, enums, and other types as it won't differ from the previous two modules. What's
interesting is how the module file starts. First, let's include what we need in our private
module section:

module;

#include <chrono>
#include <iomanip>
#include <optional>
#include <string>
#include <vector>

Leveraging C++ Language Features Chapter 5

[163]

In C++20, standard library headers are not modules yet, but this will likely change in the
near future.

Now, let's see what happens next:

export module store;

export import merchant;

This is the interesting part. Our store module imports the merchant module we defined
previously and then reexports it as part of the store's interface. This can be handy if your
module is a facade for other ones, such as in module partitions in the near future (also part
of C++20). When available, you will be able to split your module across multiple files. One
of them could contain the following:

export module my_module:foo;

export template<typename T> foo() {}

As we discussed previously, it would then be exported by the main file of your module as
follows:

export module my_module;

export import :foo;

This concludes modules and the big C++ features that we planned for this chapter. Let's
summarize what we've learned.

Summary
In this chapter, we learned about many C++ features and their impact on writing concise,
expressive, and performant C++ code. We learned about providing proper C++ component
interfaces. You're now able to apply principles such as RAII to write elegant code that's free
from resource leaks. You also know how to leverage types such as std::optional to
express your intent better in your interfaces.

Leveraging C++ Language Features Chapter 5

[164]

Next, we demonstrated how to use features such as generic and template lambdas, as well
as if constexpr for writing less code that will work with many types. You're now also
able to define objects in a clear manner using designated initializers.
Afterward, you learned how to write simple code in a declarative style using standard
ranges, how to write code that can be executed at both compile time and runtime using
constexpr, and how to write more constrained templated code using concepts.

Finally, we demoed how to write modular code with C++ modules. In the next chapter,
we'll discuss how to design C++ code so that we can build upon the available idioms and
patterns.

Questions
How can we ensure that each file that our code will open will be closed when it's1.
not being used anymore?
When should you use "naked" pointers in C++ code?2.
What is a deduction guide?3.
When should you use std::optional and gsl::not_null?4.
How are range algorithms different than views?5.
How can you constrain your type by doing more than just specifying the6.
concept's name when you're defining a function?
How is import X different than import <X>?7.

Further reading
C++ Core Guidelines, the section on Concepts: https:/ /isocpp. github. io/
CppCoreGuidelines/ CppCoreGuidelines#Rt- concepts

libstdc++'s implementation of std::chrono: https:/ /code. woboq. org/ gcc/
libstdc++- v3/ include/ std/ chrono. html

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html
https://code.woboq.org/gcc/libstdc++-v3/include/std/chrono.html

6
Design Patterns and C++

C++ is not just an object-oriented language, and it doesn't just offer dynamic polymorphism,
so design in C++ is not just about the Gang of Four patterns. In this chapter, you will learn
about the commonly used C++ idioms and design patterns and where to use them.

The following topics will be covered in this chapter:

Writing idiomatic C++
Curiously recurring template pattern
Creating objects
Tracking state and visiting objects in C++
Dealing with memory efficiently

That's quite a list! Let's not waste time and jump right in.

Technical requirements
The code from this chapter requires the following tools to build and run:

A compiler supporting C++20
CMake 3.15+

The source code snippets from the chapter can be found at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter06.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter06

Design Patterns and C++ Chapter 6

[166]

Writing idiomatic C++
If you're familiar with object-oriented programming languages, you must have heard of the
Gang of Four's design patterns. While they can be implemented in C++ (and often are), this
multi-paradigm language often takes a different approach for achieving the same goals. If
you want to beat the performance of the so-called coffee-based languages such as Java or
C#, sometimes paying the cost of virtual dispatch is too much. In many cases, you'll know
upfront what types you'll deal with. If that happens, you can often write more performant
code using the tools available both in the language and in the standard library. Out of
many, there's a group that we will start this chapter with – the language idioms. Let's start
our journey by looking at a few of them.

By definition, an idiom is a construct that recurs in a given language, an expression that's
specific to the language. "Native speakers" of C++ should know its idioms by intuition. We
already mentioned smart pointers, which are one of the most common ones. Let's now
discuss a similar one.

Automating scope exit actions using RAII guards
One of the most powerful expressions in C++ is the brace closing a scope. This is the place
where destructors get called and the RAII magic happens. To tame this spell, you don't
need to use smart pointers. All you need is an RAII guard – an object that, when
constructed, will remember what it needs to do when destroyed. This way, regardless of
whether the scope exits normally or by an exception, the work will happen automatically.

The best part – you don't even need to write an RAII guard from scratch. Well-tested
implementation already exists in various libraries. If you're using GSL, which we
mentioned in the previous chapter, you can use gsl::finally(). Consider the following
example:

using namespace std::chrono;

void self_measuring_function() {
 auto timestamp_begin = high_resolution_clock::now();

 auto cleanup = gsl::finally([timestamp_begin] {
 auto timestamp_end = high_resolution_clock::now();
 std::cout << "Execution took: " <<
duration_cast<microseconds>(timestamp_end - timestamp_begin).count() << "
us";
 });

Design Patterns and C++ Chapter 6

[167]

 // perform work
 // throw std::runtime_error{"Unexpected fault"};
}

Here, we take a timestamp at the start of the function and another one at the end. Try
running this example and see how uncommenting the throw statement affects the
execution. In both cases, our RAII guard will properly print the execution time (assuming
the exception is caught somewhere).

Let's now discuss a few more popular C++ idioms.

Managing copyability and movability
When designing a new type in C++, it's important to decide whether it should be copyable
and movable. Even more important is implementing those semantics for a class correctly.
Let's discuss those issues now.

Implementing non-copyable types
There are cases when you don't want your class to be copied. Classes that are very
expensive to copy are one example. Another would be those subject to error due to slicing.
In the past, a common way to prevent such objects from copying was by using the non-
copyable idiom:

struct Noncopyable {
 Noncopyable() = default;
 Noncopyable(const Noncopyable&) = delete;
 Noncopyable& operator=(const Noncopyable&) = delete;
};

class MyType : NonCopyable {};

Note, however, that such a class is also not movable, although it's easy to not notice it when
reading the class definition. A better approach would be to just add the two missing
members (the move constructor and move assignment operator) explicitly. As a rule of
thumb, when declaring such special member functions, always declare all of them. This
means that from C++11 onward, the preferred way would be to write the following:

struct MyTypeV2 {
 MyTypeV2() = default;
 MyTypeV2(const MyTypeV2 &) = delete;
 MyTypeV2 & operator=(const MyTypeV2 &) = delete;
 MyTypeV2(MyTypeV2 &&) = delete;

Design Patterns and C++ Chapter 6

[168]

 MyTypeV2 & operator=(MyTypeV2 &&) = delete;
};

This time, the members were defined directly in the target type without the helper
NonCopyable type.

Adhering to the rules of three and five
There's one more thing to mention when discussing special member functions: if you don't
delete them and are providing your own implementations, most probably you need to
define all of them, including the destructor, too. This was called the rule of three in C++98
(due to the need to define three functions: the copy constructor, the copy assignment
operator, and the destructor) and since C++11's move operations, it is now replaced by the
rule of five (the two additional ones being the move constructor and the move assignment
operator). Applying these rules can help you avoid resource management issues.

Adhering to the rule of zero
If, on the other hand, you're good to go with just the default implementations of all special
member functions, then just don't declare them at all. This is a clear sign that you want the
default behavior. It's also the least confusing. Consider the following type:

class PotentiallyMisleading {
public:
 PotentiallyMisleading() = default;
 PotentiallyMisleading(const PotentiallyMisleading &) = default;
 PotentiallyMisleading &operator=(const PotentiallyMisleading &) =
default;
 PotentiallyMisleading(PotentiallyMisleading &&) = default;
 PotentiallyMisleading &operator=(PotentiallyMisleading &&) = default;
 ~PotentiallyMisleading() = default;

private:
 std::unique_ptr<int> int_;
};

Design Patterns and C++ Chapter 6

[169]

Even though we defaulted all the members, the class is still non-copyable. That's because it
has a unique_ptr member that is non-copyable itself. Fortunately, Clang will warn you
about this, but GCC does not by default. A better approach would be to apply the rule of
zero and instead write the following:

class RuleOfZero {
 std::unique_ptr<int> int_;
};

Now we have less boilerplate code and by looking at the members, it's easier to notice that
it does not support copying.

There's one more important idiom to know about when it comes to copying that you'll get
to know in a minute. Before that happens, we shall touch on yet another idiom, which can
(and should) be used to implement the first one.

Using hidden friends
In essence, hidden friends are non-member functions defined in the body of the type that
declares them as a friend. This makes such functions impossible to call in ways other than
by using Argument-Dependent Lookup (ADL), effectively making them hidden. Because
they reduce the number of overloads a compiler considers, they also speed up compilation.
A bonus of this is that they provide shorter error messages than their alternatives. Their last
interesting property is that they cannot be called if an implicit conversion should happen
first. This can help you avoid such accidental conversions.

Although friends in C++ are generally not recommended, things look differently for hidden
friends; if the advantages from the previous paragraph don't convince you, you should also
know that they should be the preferred way of implementing customization points. Now,
you're probably wondering what those customization points are. Briefly speaking, they are
callables used by the library code that the user can specialize in for their types. The
standard library reserves quite a lot of names for those, such as begin, end, and their
reverse and const variations, swap, (s)size, (c)data, and many operators, among
others. If you decide to provide your own implementation for any of those customization
points, it had better behave as the standard library expects.

Design Patterns and C++ Chapter 6

[170]

Okay, enough theory for now. Let's see how to provide a customization point specialization
using a hidden friend in practice. For example, let's create an oversimplified class to
manage arrays of types:

template <typename T> class Array {
public:
 Array(T *array, int size) : array_{array}, size_{size} {}

 ~Array() { delete[] array_; }

 T &operator[](int index) { return array_[index]; }
 int size() const { return size_; }

 friend void swap(Array &left, Array &right) noexcept {
 using std::swap;
 swap(left.array_, right.array_);
 swap(left.size_, right.size_);
 }

private:
 T *array_;
 int size_;
};

As you can see, we defined a destructor, which means we should provide other special
member functions too. We implement them in the next section, using our hidden friend
swap. Note that despite being declared in the body of our Array class, this swap function is
still a non-member function. It accepts two Array instances and doesn't have access to this.

Using the std::swap line makes the compiler first look for swap functions in the
namespaces of the swapped members. If not found, it will fall back to std::swap. This is
called the two-step ADL and fallback idiom, or two-step for short, because we first make
std::swap visible, and then call swap. The noexcept keyword tells the compiler that our
swap function does not throw, which allows it to generate faster code in certain situations.
Aside from swap, always mark your default and move constructors with this keyword too
for the same reason.

Now that we have a swap function, let's use it to apply another idiom to our Array class.

Design Patterns and C++ Chapter 6

[171]

Providing exception safety using the copy-and-
swap idiom
As we mentioned in the previous section, because our Array class defines a destructor,
according to the rule of five, it should also define other special member functions. In this
section, you'll learn about an idiom that lets us do this without boilerplate, while also
adding strong exception safety as a bonus.

If you're not familiar with the exception safety levels, here's a quick recap of the levels your
functions and types can offer:

No guarantee: This is the most basic level. No guarantees are made about the
state of your object after an exception is thrown while it's being used.
Basic exception safety: Side effects are possible, but your object won't leak any
resources, will be in a valid state, and will contain valid data (not necessarily the
same as before the operation). Your types should always offer at least this level.
Strong exception safety: No side effects will happen. The object's state will be the
same as before the operation.
No-throw guarantee: Operations will always succeed. If an exception is thrown
during the operation, it will be caught and handled internally so the operation
does not throw exceptions outside. Such operations can be marked as noexcept.

So, how can we kill these two birds with one stone and write no-boilerplate special
members while also providing strong exception safety? It's pretty easy, actually. As we
have our swap function, let's use it to implement the assignment operators:

 Array &operator=(Array other) noexcept {
 swap(*this, other);
 return *this;
 }

In our case, a single operator suffices for both the copy and move assignments. In the copy
case, we take the parameter by value, so this is where a temporary copy is being made.
Then, all we need to do is swap the members. We have not only achieved strong exception
safety but were also able to not throw from the assignment operator's body. However, an
exception can still be thrown right before the function gets called, when the copy happens.
In the case of the move assignment, no copy is made as taking by value will just take the
moved object.

Now, let's define the copy constructor:

 Array(const Array &other) : array_{new T[other.size_]},
size_{other.size_} {

Design Patterns and C++ Chapter 6

[172]

 std::copy_n(other.array_, size_, array_);
 }

This guy can throw depending on T and because it allocates memory. Now, let's define the
move constructor too:

 Array(Array &&other) noexcept
 : array_{std::exchange(other.array_, nullptr)},
size_{std::exchange(other.size_, 0)} {}

Here, we use std::exchange so that our members get initialized and other's members
get cleaned up, all on the initialization list. The constructor is declared noexcept for
performance reasons. For instance, std::vector can move their elements when they grow
only if they're noexcept move-constructible, and will copy otherwise.

That's it. We've created an array class providing strong exception safety with little effort
and no code duplication.

Let's now tackle yet another C++ idiom, which can be spotted in a few places in the
standard library.

Writing niebloids
Niebloids, named after Eric Niebler, are a type of function object that the standard uses for
customization points from C++17 onward. With the introduction of standard ranges
described in Chapter 5, Leveraging C++ Language Features, their popularity started to grow,
but they were first proposed by Niebler back in 2014. Their purpose is to disable ADL
where it's not wanted so overloads from other namespaces are not considered by the
compiler. Remember the two-step idiom from the previous sections? Because it's
inconvenient and easy to forget, the notion of customization point objects was introduced. In
essence, these are function objects performing the two-step for you.

If your libraries should provide customization points, it's probably a good idea to
implement them using niebloids. All the customization points in the standard library
introduced in C++17 and later are implemented this way for a reason. Even if you just need
to create a function object, still consider using niebloids. They offer all the good parts of
ADL while reducing the drawbacks. They allow specialization and together with concepts
they give you a way to customize the overload set of your callables. They also allow better
customization of algorithms, all at the slight cost of writing a bit more verbose code than
usual.

Design Patterns and C++ Chapter 6

[173]

In this section, we'll create a simple range algorithm that we'll implement as a niebloid.
Let's call it contains as it will simply return a Boolean value denoting whether a given
element is found in the range or not. First, let's create the function object itself, starting with
the declaration of its iterator-based call operator:

namespace detail {
struct contains_fn final {
 template <std::input_iterator It, std::sentinel_for<It> Sent, typename T,
 typename Proj = std::identity>
 requires std::indirect_binary_predicate<
 std::ranges::equal_to, std::projected<It, Proj>, const T *> constexpr
bool
 operator()(It first, Sent last, const T &value, Proj projection = {})
const {

It looks verbose, but all this code has a purpose. We make our struct final to aid the
compiler in generating more efficient code. If you look at the template parameters, you'll
see an iterator and a sentinel – the basic building blocks of each standard range. The
sentinel is often an iterator, but it can be any semiregular type that can be compared with
the iterator (a semiregular type is copyable and default-initializable). Next, T is the type of
element to search for, while Proj denotes a projection – an operation to apply to each range
element before comparison (the default of std::identity simply passes its input as
output).

After the template parameters, there come the requirements for them; the operator requires
that we can compare the projected value and the searched-for value for equality. After
those constraints, we simply specify the function parameters.

Let's now see how it's implemented:

 while (first != last && std::invoke(projection, *first) != value)
 ++first;
 return first != last;
 }

Here, we simply iterate over the elements, invoking the projection on each element and
comparing it with the searched-for value. We return true if found and false otherwise
(when first == last).

Design Patterns and C++ Chapter 6

[174]

The preceding function would work even if we didn't use standard ranges; we also need an
overload for ranges. Its declaration can be as follows:

 template <std::ranges::input_range Range, typename T,
 typename Proj = std::identity>
 requires std::indirect_binary_predicate<
 std::ranges::equal_to,
 std::projected<std::ranges::iterator_t<Range>, Proj>,
 const T *> constexpr bool
 operator()(Range &&range, const T &value, Proj projection = {}) const {

This time, we take a type satisfying the input_range concept, the element value, and the
type of projection as template parameters. We require that the range's iterator after calling
the projection can be compared for equality with objects of type T, similarly as before.
Finally, we use the range, the value, and the projection as our overload's parameters.

The body of this operator will be pretty straightforward, too:

 return (*this)(std::ranges::begin(range), std::ranges::end(range),
value,
 std::move(projection));
 }
};
} // namespace detail

We simply call the previous overload using an iterator and sentinel from the given range,
while passing the value and our projection unchanged. Now, for the last part, we need to
provide a contains niebloid instead of just the contains_fn callable:

inline constexpr detail::contains_fn contains{};

By declaring an inline variable named contains of type contains_fn, we allow anyone
to call our niebloid using the variable name. Now, let's call it ourselves to see whether it
works:

int main() {
 auto ints = std::ranges::views::iota(0) | std::ranges::views::take(5);

 return contains(ints, 42);
}

And that's it. Our ADL-inhibiting functor works as intended.

Design Patterns and C++ Chapter 6

[175]

If you think all of this is a tad too verbose, then you might be interested in tag_invoke,
which might become part of the standard at some point in the future. Refer to the Further
reading section for a paper on this topic and a YouTube video that explains ADL, niebloids,
hidden friends, and tag_invoke nicely.

Let's now move on to yet another useful C++ idiom.

Policy-based design idiom
Policy-based design was first introduced by Andrei Alexandrescu in his excellent Modern
C++ Design book. Although published in 2001, many ideas showed in it are still used today.
We recommend reading it; you can find it linked in the Further reading section at the end of
this chapter. The policy idiom is basically a compile-time equivalent of the Gang of Four's
Strategy pattern. If you need to write a class with customizable behavior, you can make it a
template with the appropriate policies as template parameters. A real-world example of
this could be standard allocators, passed as a policy to many C++ containers as the last
template parameter.

Let's return to our Array class and add a policy for debug printing:

template <typename T, typename DebugPrintingPolicy = NullPrintingPolicy>
class Array {

As you can see, we can use a default policy that won't print anything.
NullPrintingPolicy can be implemented as follows:

struct NullPrintingPolicy {
 template <typename... Args> void operator()(Args...) {}
};

As you can see, regardless of the arguments given, it won't do anything. The compiler will
completely optimize it out, so no overhead will be paid when the debug printing feature is
not used.

If we want our class to be a bit more verbose, we can use a different policy:

struct CoutPrintingPolicy {
 void operator()(std::string_view text) { std::cout << text << std::endl;
}
};

Design Patterns and C++ Chapter 6

[176]

This time, we'll simply print the text passed to the policy to cout. We also need to modify
our class to actually use our policy:

 Array(T *array, int size) : array_{array}, size_{size} {
 DebugPrintingPolicy{}("constructor");
 }

 Array(const Array &other) : array_{new T[other.size_]},
size_{other.size_} {
 DebugPrintingPolicy{}("copy constructor");
 std::copy_n(other.array_, size_, array_);
 }

 // ... other members ...

We simply call the policy's operator(), passing the text to be printed. Since our policies
are stateless, we can instantiate it each time we need to use it without extra cost. An
alternative could also be to just call a static function from it.

Now, all we need to do is to instantiate our Array class with the desired policy and use it:

Array<T, CoutPrintingPolicy>(new T[size], size);

One drawback of using compile-timed policies is that the template instantiations using
different policies are of different types. This means more work is required to, for instance,
assign from a regular Array class to one with CoutPrintingPolicy. To do so, you would
need to implement assignment operators as template functions with the policy as the
template parameter.

Sometimes an alternative to using policies is to use traits. As an example, take
std::iterator_traits, which can be used to use various information about iterators
when writing algorithms that use them. An example could be
std::iterator_traits<T>::value_type, which can work for both custom iterators
defining a value_type member, and simple ones such as pointers (in which case
value_type would refer to the pointed-to type).

Enough about policy-based design. Next on our list is a powerful idiom that can be applied
in multiple scenarios.

Design Patterns and C++ Chapter 6

[177]

Curiously recurring template pattern
Despite having pattern in its name, the Curiously Recurring Template Pattern (CRTP) is an
idiom in C++. It can be used to implement other idioms and design patterns and to apply
static polymorphism, to name a few areas. Let's start with this last one as we'll cover the
others later on.

Knowing when to use dynamic versus static
polymorphism
When mentioning polymorphism, many programmers will think of dynamic
polymorphism, where the information needed to perform a function call is gathered at
runtime. In contrast to this, static polymorphism is about determining the calls at compile
time. An advantage of the former is that you can modify the list of types at runtime,
allowing extending your class hierarchies through plugins and libraries. The big advantage
of the second is that it can get better performance if you know the types upfront. Sure, in
the first case you can sometimes expect your compiler to devirtualize your calls, but you
cannot always count on it doing so. However, in the second case, you can get longer
compilation times.

Looks like you cannot win in all cases. Still, choosing the right type of polymorphism for
your types can go a long way. If performance is at stake, we strongly suggest you consider
static polymorphism. CRTP is an idiom that can be used to apply it.

Many design patterns can be implemented in one way or another. As the cost of dynamic
polymorphism is not always worth it, the Gang of Four design patterns are often not the
best solution in C++. If your type hierarchy should be extended at runtime, or compile times
are a much bigger issue than performance for you (and you don't plan on using modules
any time soon), then the classical implementations of the Gang of Four patterns may be a
good fit. Otherwise, you can try to implement them using static polymorphism or by
applying simpler C++-focused solutions, some of which we describe in this chapter. It's all
about choosing the best tool for the job.

Implementing static polymorphism
Let's now implement our statically polymorphic class hierarchy. We'll need a base template
class:

template <typename ConcreteItem> class GlamorousItem {
public:

Design Patterns and C++ Chapter 6

[178]

 void appear_in_full_glory() {
 static_cast<ConcreteItem *>(this)->appear_in_full_glory();
 }
};

The template parameter for the base class is the derived class. This may seem odd at first,
but it allows us to static_cast to the correct type in our interface function, in this case,
named appear_in_full_glory. We then call the implementation of this function in a
derived class. Derived classes could be implemented like so:

class PinkHeels : public GlamorousItem<PinkHeels> {
public:
 void appear_in_full_glory() {
 std::cout << "Pink high heels suddenly appeared in all their beauty\n";
 }
};

class GoldenWatch : public GlamorousItem<GoldenWatch> {
public:
 void appear_in_full_glory() {
 std::cout << "Everyone wanted to watch this watch\n";
 }
};

Each of these classes derives from our GlamorousItem base class using itself as the
template argument. Each also implements the required function.

Note that, as opposed to dynamic polymorphism, the base class in CRTP is a template, so
you'll get a different base type for each of your derived classes. This means you can't easily
create a container of your GlamorousItem base class. What you can do, however, is several
things:

Store them in a tuple.
Create a std::variant of your derived classes.
Add one common class to wrap all instantiations of Base. You can use a variant
for this one as well.

In the first case, we could use the class as follows. First, create the tuple of instances of
base:

template <typename... Args>
using PreciousItems = std::tuple<GlamorousItem<Args>...>;

auto glamorous_items = PreciousItems<PinkHeels, GoldenWatch>{};

Design Patterns and C++ Chapter 6

[179]

Our type-aliased tuple will be able to store any glamorous items. Now, all we need to do is
to call the interesting function:

 std::apply(
 []<typename... T>(GlamorousItem<T>... items) {
 (items.appear_in_full_glory(), ...); },
 glamorous_items);

Because we're trying to iterate a tuple, the easiest way to do so is to call std::apply, which
invokes the given callable on all the elements of the given tuple. In our case, the callable is a
lambda that accepts only GlamorousItem base class. We use fold expressions, introduced
in C++17, to ensure our function will be called for all elements.

If we were to use a variant instead of a tuple, we'd need to use std::visit, like so:

 using GlamorousVariant = std::variant<PinkHeels, GoldenWatch>;
 auto glamorous_items = std::array{GlamorousVariant{PinkHeels{}},
GlamorousVariant{GoldenWatch{}}};
 for (auto& elem : glamorous_items) {
 std::visit([]<typename T>(GlamorousItem<T> item){
item.appear_in_full_glory(); }, elem);
 }

The std::visit function basically takes the variant and calls the passed lambda on the
object stored in it. Here, we create an array of our glamorous variants, so we can just iterate
over it like over any other container, visiting each variant with the appropriate lambda.

If you find it not intuitive to write from the interface user's perspective, consider this next
approach, which wraps the variant into yet another class, in our case called
CommonGlamorousItem:

class CommonGlamorousItem {
public:
 template <typename T> requires std::is_base_of_v<GlamorousItem<T>, T>
 explicit CommonGlamorousItem(T &&item)
 : item_{std::forward<T>(item)} {}
private:
 GlamorousVariant item_;
};

To construct our wrapper, we use a forwarding constructor (templated T&& being its
parameter). We then forward instead of moving to create the item_ wrapped variant, as
this way we only move r-value inputs. We also constrain the template parameters, so on
one hand, we only wrap the GlamorousItem base class and on the other, our template is
not used as a move or copy constructor.

Design Patterns and C++ Chapter 6

[180]

We also need to wrap our member function:

 void appear_in_full_glory() {
 std::visit(
 []<typename T>(GlamorousItem<T> item) {
 item.appear_in_full_glory(); },
 item_);
 }

This time, the std::visit call is an implementation detail. The user can use this wrapper
class in the following way:

auto glamorous_items = std::array{CommonGlamorousItem{PinkHeels{}},
 CommonGlamorousItem{GoldenWatch{}}};
 for (auto& elem : glamorous_items) {
 elem.appear_in_full_glory();
 }

This approach lets the user of the class write easy-to-understand code, but still keep the
performance of static polymorphism.

To offer a similar user experience, albeit with worse performance, you can also use a
technique called type erasure, which we'll discuss next.

Interlude – using type erasure
Although type erasure isn't related to CRTP, it fits in nicely with our current example,
which is why we're showing it here.

The type erasure idiom is about hiding the concrete type under a polymorphic interface. A
great example of this approach can be found in Sean Parent's talk Inheritance Is The Base
Class of Evil from the GoingNative 2013 conference. We highly recommend you watch it in
your spare time; you can find a link to it in the Further reading section. In the standard
library, you can find it in std::function, std::shared_ptr's deleter, or std::any,
among others.

The convenience of use and flexibility comes at a price – this idiom needs to use pointers
and virtual dispatch, which makes the mentioned utilities from the standard library bad to
use in performance-oriented use cases. Beware.

Design Patterns and C++ Chapter 6

[181]

To introduce type erasure to our example, we no longer need CRTP. This time, our
GlamorousItem class will wrap dynamically polymorphic objects in a smart pointer:

class GlamorousItem {
public:
 template <typename T>
 explicit GlamorousItem(T t)
 : item_{std::make_unique<TypeErasedItem<T>>(std::move(t))} {}

 void appear_in_full_glory() { item_->appear_in_full_glory_impl(); }

private:
 std::unique_ptr<TypeErasedItemBase> item_;
};

This time, we store a pointer to base (TypeErasedItemBase), which will point to derived
wrappers for our items (TypeErasedItem<T>s). The base class can be defined as follows:

 struct TypeErasedItemBase {
 virtual ~TypeErasedItemBase() = default;
 virtual void appear_in_full_glory_impl() = 0;
 };

Each derived wrapper needs to implement this interface, too:

 template <typename T> class TypeErasedItem final : public
TypeErasedItemBase {
 public:
 explicit TypeErasedItem(T t) : t_{std::move(t)} {}
 void appear_in_full_glory_impl() override { t_.appear_in_full_glory();
}

 private:
 T t_;
 };

The base class's interface is implemented by calling the function from the wrapped object.
Note that the idiom is called "type erasure" because the GlamorousItem class doesn't know
what T it is actually wrapping. The information type gets erased when the item gets
constructed, but it all works because T implements the required methods.

The concrete items can be implemented in a simpler manner, as shown next:

class PinkHeels {
public:
 void appear_in_full_glory() {
 std::cout << "Pink high heels suddenly appeared in all their beauty\n";

Design Patterns and C++ Chapter 6

[182]

 }
};

class GoldenWatch {
public:
 void appear_in_full_glory() {
 std::cout << "Everyone wanted to watch this watch\n";
 }
};

This time, they don't need to inherit from any base. All we need is duck typing – if it quacks
like a duck, it's probably a duck. And if it can appear in full glory, it's probably glamorous.

Our type-erased API can be used as follows:

 auto glamorous_items =
 std::array{GlamorousItem{PinkHeels{}}, GlamorousItem{GoldenWatch{}}};
 for (auto &item : glamorous_items) {
 item.appear_in_full_glory();
 }

We just create an array of our wrappers and iterate over it, all using simple, value-based
semantics. We find it the most pleasant to use, as the polymorphism is hidden from the
caller as an implementation detail.

However, a big drawback of this approach is, as we mentioned before, poor performance.
Type erasure comes at a price, so it should be used sparingly and definitely not in the hot
path.

Now that we've described how to wrap and erase types, let's switch to discussing how to
create them.

Creating objects
In this section, we'll discuss common solutions to problems related to object creation. We'll
discuss various types of object factories, go through builders, and touch on composites and
prototypes. However, we'll take a slightly different approach than the Gang of Four when
describing their solutions. They proposed complex, dynamically polymorphic class
hierarchies as proper implementations of their patterns. In the C++ world, many patterns
can be applied to real-world problems without introducing as many classes and the
overhead of dynamic dispatch. That's why in our case, the implementations will be
different and in many cases simpler or more performant (although more specialized and
less "generic" in the Gang of Four sense). Let's dive right in.

Design Patterns and C++ Chapter 6

[183]

Using factories
The first type of creational patterns we'll discuss here are factories. They're useful when the
object construction can be done in a single step (a pattern useful if it cannot be covered
right after factories), but when the constructor just isn't good enough on its own. There are
three types of factories – factory methods, factory functions, and factory classes. Let's
introduce them one by one.

Using factory methods
Factory methods, also called the named constructor idiom, are basically member functions
that call a private constructor for you. When do we use them? Here are a few scenarios:

When there are many different ways to construct an object, which would make
errors likely. For example, imagine constructing a class for storing different color
channels for a given pixel; each channel is represented by a one-byte value. Using
just a constructor would make it too easy to pass the wrong order of channels, or
values meant for a different color palette entirely. Also, switching the pixel's
internal representation of colors would get tricky pretty fast. You could argue
that we should have different types representing colors in those different
formats, but often, using a factory method is a valid approach as well.
When you want to force the object to be created on the heap or in another
specific memory area. If your object takes up loads of space on the stack and
you're afraid you'll run out of stack memory, using a factory method is a
solution. The same if you require all instances to be created in some area of
memory on a device, for instance.
When constructing your object can fail, but you cannot throw exceptions. You
should use exceptions instead of other methods of error handling. When used
properly, they can yield cleaner and better-performing code. However, some
projects or environments require that exceptions are disabled. In such cases,
using a factory method will allow you to report errors happening during
construction.

A factory method for the first case we described could look as follows:

class Pixel {
public:
 static Pixel fromRgba(char r, char b, char g, char a) {
 return Pixel{r, g, b, a};
 }
 static Pixel fromBgra(char b, char g, char r, char a) {
 return Pixel{r, g, b, a};

Design Patterns and C++ Chapter 6

[184]

 }

 // other members

private:
 Pixel(char r, char g, char b, char a) : r_(r), g_(g), b_(b), a_(a) {}
 char r_, g_, b_, a_;
}

This class has two factory methods (actually, the C++ standard doesn't recognize the term
method, calling them member functions instead): fromRgba and fromBgra. Now it's harder to
make a mistake and initialize the channels in the wrong order.

Note that having a private constructor effectively inhibits any class from inheriting from
your type, as without access to its constructor, no instances can be created. If that's your
goal and not a side effect, however, you should prefer to just mark your class as final.

Using factory functions
As opposed to using factory member functions, we can also implement them using non-
member ones. This way, we can provide better encapsulation, as described by Scott Meyers
in his article linked in the Further reading section.

In the case of our Pixel, we could also create a free function to fabricate its instances. This
way, our type could have simpler code:

struct Pixel {
 char r, g, b, a;
};

Pixel makePixelFromRgba(char r, char b, char g, char a) {
 return Pixel{r, g, b, a};
}

Pixel makePixelFromBgra(char b, char g, char r, char a) {
 return Pixel{r, g, b, a};
}

Using this approach makes our design conform to the open-closed principle described in
Chapter 1, Importance of Software Architecture and Principles of Great Design. It's easy to add
more factory functions for other color palettes without the need to modify the Pixel struct
itself.

Design Patterns and C++ Chapter 6

[185]

This implementation of Pixel allows the user to initialize it by hand instead of using one of
our provided functions. If we want, we can inhibit this behavior by changing the class
declaration. Here's how it could look after the fix:

struct Pixel {
 char r, g, b, a;

private:
 Pixel(char r, char g, char b, char a) : r(r), g(g), b(b), a(a) {}
 friend Pixel makePixelFromRgba(char r, char g, char b, char a);
 friend Pixel makePixelFromBgra(char b, char g, char r, char a);
};

This time, our factory functions are friends of our class. However, the type is no longer an
aggregate, so we can no longer use aggregate initialization (Pixel{}), including designated
initializers. Also, we gave up on the open-closed principle. The two approaches offer
different trade-offs, so choose wisely.

Choosing the return type of a factory
Yet another thing you should choose when implementing an object factory is the actual
type it should return. Let's discuss the various approaches.

In the case of Pixel, which is a value type and not a polymorphic one, the simplest
approach works the best – we simply return by value. If you produce a polymorphic type,
return it by a smart pointer (never use a naked pointer for this as this will yield memory
leaks at some point). If the caller should own the created object, usually returning it in
unique_ptr to the base class is the best approach. In the not-so-common cases where your
factory and the caller must both own the object, use shared_ptr or another reference-
counted alternative. Sometimes it's enough that the factory keeps track of the object but
doesn't store it. In such cases, store weak_ptr inside the factory and return shared_ptr
outside.

Some C++ programmers would argue that you should return specific types using an out
parameter, but that's not the best approach in most cases. In the case of performance,
returning by value is usually the best choice, as compilers will not make extra copies of
your object. If the issue is with the type being non-copyable, from C++17 onward, the
standard specifies where copy elision is mandatory, so returning such types by value is
usually not an issue. If your function returns multiple objects, use a pair, tuple, struct, or
container.

Design Patterns and C++ Chapter 6

[186]

If something goes wrong during construction, you have several choices:

Return std::optional of your type if there's no need to provide error
messages to the caller.
Throw an exception if errors during construction are rare and should be
propagated.
Return absl::StatusOr of your type if errors during construction are common
(see Abseil's documentation for this template in the Further reading section).

Now that you know what to return, let's discuss our last type of factories.

Using factory classes
Factory classes are types that can fabricate objects for us. They can help decouple
polymorphic object types from their callers. They can allow for using object pools (in which
reusable objects are kept so that you don't need to constantly allocate and free them) or
other allocation schemes. Those are just a few examples of how they can be useful. Let's
take a closer look at yet another one. Imagine you need to create different polymorphic
types based on input parameters. In some cases, a polymorphic factory function such as the
one shown next is not enough:

std::unique_ptr<IDocument> open(std::string_view path) {
 if (path.ends_with(".pdf")) return std::make_unique<PdfDocument>();
 if (name == ".html") return std::make_unique<HtmlDocument>();

 return nullptr;
}

What if we wanted to open other kinds of documents as well, such as OpenDocument text
files? It may be ironic to discover that the preceding open factory is not open for extension.
It might not be a big issue if we own the codebase, but if the consumers of our library need
to register their own types, this can be an issue. To solve it, let's use a factory class that will
allow registering functions to open different kinds of documents, as shown next:

class DocumentOpener {
public:
 using DocumentType = std::unique_ptr<IDocument>;
 using ConcreteOpener = DocumentType (*)(std::string_view);

private:
 std::unordered_map<std::string_view, ConcreteOpener> openerByExtension;
};

Design Patterns and C++ Chapter 6

[187]

The class doesn't do much yet, but it has a map from extensions to functions that should be
called to open files of given types. Now we'll add two public member functions. The first
one will register new file types:

 void Register(std::string_view extension, ConcreteOpener opener) {
 openerByExtension.emplace(extension, opener);
 }

Now we have a way of filling the map. The second new public function will open the
documents using an appropriate opener:

 DocumentType open(std::string_view path) {
 if (auto last_dot = path.find_last_of('.');
 last_dot != std::string_view::npos) {
 auto extension = path.substr(last_dot + 1);
 return openerByExtension.at(extension)(path);
 } else {
 throw std::invalid_argument{"Trying to open a file with no
extension"};
 }
 }

Basically, we extract the extension from the file path, throw an exception if it's empty, and if
not, we look for an opener in our map. If found, we use it to open the given file, and if not,
the map will throw another exception for us.

Now we can instantiate our factory and register custom file types such as the
OpenDocument text format:

auto document_opener = DocumentOpener{};

document_opener.Register(
 "odt", [](auto path) -> DocumentOpener::DocumentType {
 return std::make_unique<OdtDocument>(path);
 });

Notice that we're registering a lambda because it can be converted to our ConcreteOpener
type, which is a function pointer. However, if our lambda had state, this wouldn't be the
case. In such a situation, we would need to use something to wrap us up. One such thing
could be std::function, but the drawback of this would be the need to pay the cost of
type erasure each time we would want to run the function. In the case of opening files,
that's probably okay. If you need better performance, however, consider using a type such
as function_ref.

Design Patterns and C++ Chapter 6

[188]

An example implementation of this utility proposed to the C++ standard (not yet accepted)
can be found on Sy Brand's GitHub repo referred to in the Further reading section.

Okay, now that we have our opener registered in the factory, let's use it to open a file and
extract some text out of it:

 auto document = document_opener.open("file.odt");
 std::cout << document->extract_text().front();

And that's all! If you want to provide the consumers of your library with a way to register
their own types, they must have access to your map at runtime. You can either provide
them with an API to reach it or make the factory static and allow them to register from
anywhere in the code.

That does it for factories and building objects in a single step. Let's discuss another popular
pattern to be used if factorys aren't a good fit.

Using builders
Builders are similar to factories, a creational pattern coming from the Gang of Four. Unlike
factories, they can help you build more complex objects: those that cannot be built in a
single step, such as types assembled from many separate parts. They also provide you with
a way to customize the construction of objects. In our case, we'll skip designing complex
hierarchies of builders. Instead, we'll show how a builder can help. We'll leave
implementing hierarchies to you, as an exercise.

Builders are needed when an object cannot be produced in a single step, but having a fluent
interface can just make them pleasant to use if the single step is not trivial. Let's
demonstrate creating fluent builder hierarchies using CRTP.

In our case, we'll create a CRTP, GenericItemBuilder, that we'll use as our base builder,
and FetchingItemBuilder, which will be a more specialized one that can fetches data
using a remote address if that's a supported feature. Such specializations can even live in
different libraries, for instance, consuming different APIs that may or may not be available
at build time.

Design Patterns and C++ Chapter 6

[189]

For demo purposes, we'll build instances of our Item struct from Chapter 5, Leveraging C++
Language Features:

struct Item {
 std::string name;
 std::optional<std::string> photo_url;
 std::string description;
 std::optional<float> price;
 time_point<system_clock> date_added{};
 bool featured{};
};

If you want, you can enforce that Item instances are built using a builder by making the
default constructor private and making the builders friends:

 template <typename ConcreteBuilder> friend class GenericItemBuilder;

Our builder's implementation can be started as follows:

template <typename ConcreteBuilder> class GenericItemBuilder {
public:
 explicit GenericItemBuilder(std::string name)
 : item_{.name = std::move(name)} {}
protected:
 Item item_;

Although it's generally not recommended to create protected members, we want our
descendant builders to be able to reach our item. An alternative would be to use just the
public methods of our base builder in derived ones.

We take the name in the builder's constructor, as it's a single input coming from the user
that needs to be set when we create our item. This way, we make sure that it will be set. An
alternative would be to check whether it's okay at the final stage of building, when the
object is being released to the user. In our case, the build step can be implemented as
follows:

 Item build() && {
 item_.date_added = system_clock::now();
 return std::move(item_);
 }

We enforce that the builder is "consumed" when this method is called; it must be an r-value.
This means we can either use the builder in one line or move it in the last step to mark its
end of work. We then set the creation time for our item and move it outside of the builder.

Design Patterns and C++ Chapter 6

[190]

Our builder's API could offer functions such as the following:

 ConcreteBuilder &&with_description(std::string description) {
 item_.description = std::move(description);
 return static_cast<ConcreteBuilder &&>(*this);
 }

 ConcreteBuilder &&marked_as_featured() {
 item_.featured = true;
 return static_cast<ConcreteBuilder &&>(*this);
 }

Each of them returns the concrete (derived) builder object as an r-value reference. Perhaps
counterintuitively, this time such a return type should be preferred to returning by value.
This is to avoid unnecessary copies of item_ when building. On the other hand, returning
by an l-value reference could lead to dangling references and would make calling build()
harder because the returned l-value reference wouldn't match the expected r-value one.

The final builder type could look as follows:

class ItemBuilder final : public GenericItemBuilder<ItemBuilder> {
 using GenericItemBuilder<ItemBuilder>::GenericItemBuilder;
};

It's just a class that reuses the constructors from our generic builder. It can be used as
follows:

 auto directly_loaded_item = ItemBuilder{"Pot"}
 .with_description("A decent one")
 .with_price(100)
 .build();

As you can see, the final interface can be called using function chaining and the method
names make the whole invocation fluent to read, hence the name fluent interfaces.

What if we were to not load each item directly, but rather use a more specialized builder
that could load parts of the data from a remote endpoint? We could define it as follows:

class FetchingItemBuilder final
 : public GenericItemBuilder<FetchingItemBuilder> {
public:
 explicit FetchingItemBuilder(std::string name)
 : GenericItemBuilder(std::move(name)) {}

 FetchingItemBuilder&& using_data_from(std::string_view url) && {
 item_ = fetch_item(url);
 return std::move(*this);

Design Patterns and C++ Chapter 6

[191]

 }
};

We also use CRTP to inherit from our generic builder and also enforce giving us a name.
This time, however, we extend the base builder with our own function to fetch the contents
and put them in the item we're building. Thanks to CRTP, when we call a function from our
base builder, we'll get the derived one returned, which makes the interface much easier to
use. It can be called in the following manner:

 auto fetched_item =
 FetchingItemBuilder{"Linen blouse"}
 .using_data_from("https://example.com/items/linen_blouse")
 .marked_as_featured()
 .build();

All nice and dandy!

Builders can also come in handy if you need to always create immutable objects. As the
builder has access to private members of the class, it can modify them, even if the class
doesn't provide any setters for them. That's of course not the only case when you can
benefit from using them.

Building with composites and prototypes
A case where you would need to use a builder is when creating a composite. A composite is
a design pattern in which a group of objects is treated as one, all sharing the same interface
(or the same base type). An example would be a graph, which you could compose out of
subgraphs, or a document, which could nest other documents. When you would call
print() on such an object, all its sub-objects would get their print() functions called in
order to print the whole composite. The builder pattern can be useful for creating each sub-
object and composing them all together.

Prototype is yet another pattern that can be used for object construction. If your type is very
costly to create anew, or you just want to have a base object to build upon, you might want
to use this pattern. It boils down to providing a way to clone your object, which you could
later either use on its own or modify so it becomes what it should be. In the case of a
polymorphic hierarchy, just add clone() like so:

class Map {
public:
 virtual std::unique_ptr<Map> clone() const;
 // ... other members ...
};

Design Patterns and C++ Chapter 6

[192]

class MapWithPointsOfInterests {
public:
 std::unique_ptr<Map> clone() override const;
 // ... other members ...
private:
 std::vector<PointOfInterest> pois_;
};

Our MapWithPointsOfInterests object could clone the points too, so we don't need to
re-add each of them manually. This way, we can have some default provided to the end
user when they create their own map. Note also that in some cases, instead of using a
prototype, a simple copy constructor would suffice.

We have now covered object creation. We touched on variants along the way, so why not
revisit them (pun intended) to see how else they can help us?

Tracking state and visiting objects in C++
State is a design pattern meant to help change the behavior of an object when its internal
state changes. The behavior for different states should be independent of each other so that
adding new states doesn't affect the current ones. The simple approach of implementing all
the behavior in the stateful object doesn't scale and is not open for extension. Using the state
pattern, new behavior can be added by introducing new state classes and defining the
transitions between them. In this section, we'll show a way to implement states and a state
machine leveraging std::variant and statically polymorphic double dispatch. In other
words, we'll build a finite state machine by joining the state and visitor patterns in a C++
way.

First, let's define our states. In our example, let's model the states of a product in a store.
They can be as follows:

namespace state {

struct Depleted {};

struct Available {
 int count;
};

struct Discontinued {};
} // namespace state

Design Patterns and C++ Chapter 6

[193]

Our states can have properties of their own, such as the count of items left. Also, as
opposed to dynamically polymorphic ones, they don't need to inherit from a common base.
Instead, they are all stored in one variant, as shown next:

using State = std::variant<state::Depleted, state::Available,
state::Discontinued>;

Aside from states, we also need events for state transitions. Check the following code:

namespace event {

struct DeliveryArrived {
 int count;
};

struct Purchased {
 int count;
};

struct Discontinued {};

} // namespace event

As you can see, our events can also have properties and don't inherit from a common base.
Now, we need to implement the transitions between the states. This can be done as follows:

State on_event(state::Available available, event::DeliveryArrived
delivered) {
 available.count += delivered.count;
 return available;
}

State on_event(state::Available available, event::Purchased purchased) {
 available.count -= purchased.count;
 if (available.count > 0)
 return available;
 return state::Depleted{};
}

If a purchase is made, the state can change, but it can also stay the same. We can also use
templates to handle several states at once:

template <typename S> State on_event(S, event::Discontinued) {
 return state::Discontinued{};
}

Design Patterns and C++ Chapter 6

[194]

If an item gets discontinued, it doesn't matter what state it was in. Okay, let's now
implement the last supported transition:

State on_event(state::Depleted depleted, event::DeliveryArrived delivered)
{
 return state::Available{delivered.count};
}

The next piece of the puzzle we need is a way to define multiple call operators in one object
generically so that the best matching overload can be called. We'll use it later to call the
transitions we just defined. Our helper can look as follows:

template<class... Ts> struct overload : Ts... { using Ts::operator()...; };
template<class... Ts> overload(Ts...) -> overload<Ts...>;

We create an overload struct that will provide all the call operators passed to it during
construction, using variable templates, a fold expression, and a class template argument
deduction guide. For a more in-depth explanation of this, along with an alternative way of
implementing visitation, refer to Bartłomiej Filipek's blog post in the Further reading section.

We can now start implementing the state machine itself:

class ItemStateMachine {
public:
 template <typename Event> void process_event(Event &&event) {
 state_ = std::visit(overload{
 [&](const auto &state) requires std::is_same_v<
 decltype(on_event(state, std::forward<Event>(event))), State> {
 return on_event(state, std::forward<Event>(event));
 },
 [](const auto &unsupported_state) -> State {
 throw std::logic_error{"Unsupported state transition"};
 }
 },
 state_);
 }

private:
 State state_;
};

Design Patterns and C++ Chapter 6

[195]

Our process_event function will accept any of our defined events. It will call an
appropriate on_event function using the current state and the passed event and switch to
the new state. If an on_event overload is found for the given state and event, the first
lambda will get called. Otherwise, the constraint won't be satisfied and the second, more
generic overload will get called. This means if there's an unsupported state transition, we'll
just throw an exception.

Now, let's provide a way to report the current state:

 std::string report_current_state() {
 return std::visit(
 overload{[](const state::Available &state) -> std::string {
 return std::to_string(state.count) +
 " items available";
 },
 [](const state::Depleted) -> std::string {
 return "Item is temporarily out of stock";
 },
 [](const state::Discontinued) -> std::string {
 return "Item has been discontinued";
 }},
 state_);
 }

Here, we use our overload to pass three lambdas, each returning a report string generated
by visiting our state object.

We can now call our solution:

 auto fsm = ItemStateMachine{};
 std::cout << fsm.report_current_state() << '\n';
 fsm.process_event(event::DeliveryArrived{3});
 std::cout << fsm.report_current_state() << '\n';
 fsm.process_event(event::Purchased{2});
 std::cout << fsm.report_current_state() << '\n';
 fsm.process_event(event::DeliveryArrived{2});
 std::cout << fsm.report_current_state() << '\n';
 fsm.process_event(event::Purchased{3});
 std::cout << fsm.report_current_state() << '\n';
 fsm.process_event(event::Discontinued{});
 std::cout << fsm.report_current_state() << '\n';
 // fsm.process_event(event::DeliveryArrived{1});

Design Patterns and C++ Chapter 6

[196]

Upon running, this will yield the following output:

Item is temporarily out of stock
3 items available
1 items available
3 items available
Item is temporarily out of stock
Item has been discontinued

That is, unless you uncomment the last line with the unsupported transition, in which case
an exception will be thrown at the end.

Our solution is much more performant than dynamic polymorphism-based ones, although
the list of supported states and events is constrained to those provided at compile time. For
more information on states, variants, and the various ways of visitations, see Mateusz
Pusz's talk from CppCon 2018, also listed in the Further reading section.

Before we close this chapter, one last thing we'd like for you to learn about is handling
memory. Let's begin our last section.

Dealing with memory efficiently
Even if you don't have very limited memory, it's a good idea to look at how you use it.
Usually, memory throughput is the performance bottleneck of modern-day systems, so it's
always important to make good use of it. Performing too many dynamic allocations can
slow down your program and lead to memory fragmentation. Let's learn a few ways to
mitigate those issues.

Reducing dynamic allocations using SSO/SOO
Dynamic allocations can sometimes cause you other trouble than just throwing when you
construct objects despite not having enough memory. They often cost you CPU cycles and
can cause memory fragmentation. Fortunately, there is a way to protect against it. If you've
ever used std::string (post GCC 5.0), you most probably used an optimization called
Small String Optimization (SSO). This is one example of a more general optimization
named Small Object Optimization (SSO), which can be spotted in types such as Abseil's
InlinedVector. The main idea is pretty straightforward: if the dynamically allocated object is
small enough, it should be stored inside the class that owns it instead of being dynamically
allocated. In std::string's case, usually, there's a capacity, length, and the actual string to
store. If the string is short enough (in GCC's case, on 64-bit platforms, it's 15 bytes), it will
be stored in some of those members.

Design Patterns and C++ Chapter 6

[197]

Storing objects in place instead of allocating them somewhere else and storing just the
pointer has one more benefit: less pointer chasing. Each time you need to reach to data
stored behind a pointer, you increase the pressure on the CPU caches and risk needing to
fetch data from the main memory. If this is a common pattern, it can influence the overall
performance of your app, especially if the pointed-to addresses aren't guessed by the CPU's
prefetcher. Using techniques such as SSO and SOO are invaluable in reducing those issues.

Saving memory by herding COWs
If you used GCC's std::string before GCC 5.0, you might have used a different
optimization called Copy-On-Write (COW). The COW string implementation, when it had
multiple instances created with the same underlying character array, was actually sharing
the same memory address for it. When the string was written to, the underlying storage
was copied — hence the name.

This technique helped save memory and keep the caches hot, and often offered solid
performance on a single thread. Beware of using it in multi-threaded contexts, though. The
need for using locks can be a real performance killer. As with any performance-related
topic, it's best to just measure whether in your case it's the best tool for the job.

Let's now discuss a feature of C++17 that can help you achieve good performance with
dynamic allocations.

Leveraging polymorphic allocators
The feature we're talking about is polymorphic allocators. To be specific, the
std::pmr::polymorphic_allocator and the polymorphic
std::pmr::memory_resource class that the allocator uses to allocate memory.

In essence, it allows you to easily chain memory resources to make the best use of your
memory. Chains can be as simple as one resource that reserves a big chunk and distributes
it, falling back to another that simply calls new and delete if it depletes memory. They can
also be much more complex: you can build a long chain of memory resources that handle
pools of different sizes, offer thread-safety only when needed, bypass the heap and go for
the system's memory directly, return you the last freed chunk of memory to provide cache
hotness, and do other fancy stuff. Not all of these capabilities are offered by the standard
polymorphic memory resources, but thanks to their design, it's easy to extend them.

Let's first tackle the topic of memory arenas.

Design Patterns and C++ Chapter 6

[198]

Using memory arenas
A memory arena, also called a region, is just a large chunk of memory that exists for a
limited time. You can use it to allocate smaller objects that you use for the lifetime of the
arena. Objects in the arena can be either deallocated as usual or erased all at once in a
process called winking out. We'll describe it later on.

Arenas have several great advantages over the usual allocations and deallocations – they
increase performance because they limit the memory allocations that need to grab upstream
resources. They also reduce fragmentation of memory, because any fragmentation that
would happen will happen inside the arena. Once an arena's memory is released, the
fragmentation is no more as well. A great idea is to create separate arenas per thread. If
only a single thread uses an arena, it doesn't need to use any locking or other thread-safety
mechanisms, reducing thread contention and giving you a nice boost in performance.

If your program is single-threaded, a low-cost solution to increase its performance could be
as follows:

 auto single_threaded_pool = std::pmr::unsynchronized_pool_resource();
 std::pmr::set_default_resource(&single_threaded_pool);

The default resource if you won't set any explicitly will be new_delete_resource, which
calls new and delete each time just like regular std::allocator does, and with all the
thread-safety it provides (and costs).

If you use the preceding code snippet, all the allocations done using pmr allocators would
be done with no locks. You still need to actually use the pmr types, though. To do so with
standard containers, for instance, you need to simply pass
std::pmr::polymorphic_allocator<T> as the allocator template parameter. Many
standard containers have pmr-enabled type aliases. The two variables created next are of
the same type and both will use the default memory resource:

 auto ints = std::vector<int,
std::pmr::polymorphic_allocator<int>>(std::pmr::get_default_resource());
 auto also_ints = std::pmr::vector<int>{};

The first one gets the resource passed explicitly, though. Let's now go through the resources
available in pmr.

Design Patterns and C++ Chapter 6

[199]

Using the monotonic memory resource
The first one we'll discuss is std::pmr::monotonic_buffer_resource. It's a resource
that only allocates memory and doesn't do anything on deallocation. It will only deallocate
memory when the resource is destructed or on an explicit call to release(). This,
connected with no thread safety, makes this type extremely performant. If your application
occasionally needs to perform a task that does lots of allocations on a given thread, then
releases all the objects used at once afterward, using monotonic resources will yield great
gains. It's also a great base building block for chains of resources.

Using pool resources
A common combo of two resources is to use a pool resource on top of a monotonic buffer
resource. The standard pool resources create pools of different-sized chunks. There are two
types in std::pmr, unsynchronized_pool_resource for use when only one thread
allocates and deallocates from it and synchronized_pool_resource for multi-threaded
use. Both should provide you with much better performance compared to the global
allocator, especially when using the monotonic buffer as their upstream resource. If you
wonder how to chain them, here's how:

 auto buffer = std::array<std::byte, 1 * 1024 * 1024>{};
 auto monotonic_resource =
 std::pmr::monotonic_buffer_resource{buffer.data(), buffer.size()};
 auto pool_options = std::pmr::pool_options{.max_blocks_per_chunk = 0,
 .largest_required_pool_block = 512};
 auto arena =
 std::pmr::unsynchronized_pool_resource{pool_options,
&monotonic_resource};

We create a 1 MB buffer for the arena to reuse. We pass it to a monotonic resource, which is
then passed to an unsynchronized pool resource, creating a simple yet efficient chain of
allocators that won't call new until all the initial buffer is used up.

You can pass a std::pmr::pool_options object to both the pool types to limit the max
count of blocks of a given size (max_blocks_per_chunk) or the size of the largest block
(largest_required_pool_block). Passing 0 causes the implementation's default to be
used. In the case of GCC's library, the actual blocks per chunk differ depending on the
block size. If the max size is exceeded, the pool resource will allocate directly from its
upstream resource. It also goes to the upstream resource if the initial memory was depleted.
In this case, it allocates geometrically growing chunks of memory.

Design Patterns and C++ Chapter 6

[200]

Writing your own memory resource
If the standard memory resources don't suit all your needs, you can always create a custom
one quite simply. For instance, a good optimization that not all standard library
implementations offer is to keep track of the last chunks of a given size that were released
and return them back on the next allocations of given sizes. This Most Recently Used
cache can help you increase the hotness of data caches, which should help your app's
performance. You can think of it as a set of LIFO queues for chunks.

Sometimes you might also want to debug allocations and deallocations. In the following
snippet, I have written a simple resource that can help you with this task:

class verbose_resource : public std::pmr::memory_resource {
 std::pmr::memory_resource *upstream_resource_;
public:
 explicit verbose_resource(std::pmr::memory_resource *upstream_resource)
 : upstream_resource_(upstream_resource) {}

Our verbose resource inherits from the polymorphic base resource. It also accepts an
upstream resource, which it will use for actual allocations. It has to implement three private
functions – one for allocating, one for deallocating, and one for comparing instances of the
resource itself. Here's the first one:

private:
 void *do_allocate(size_t bytes, size_t alignment) override {
 std::cout << "Allocating " << bytes << " bytes\n";
 return upstream_resource_->allocate(bytes, alignment);
 }

All it does is print the allocation size on the standard output and then use the upstream
resource to allocate memory. The next one will be similar:

 void do_deallocate(void *p, size_t bytes, size_t alignment) override {
 std::cout << "Deallocating " << bytes << " bytes\n";
 upstream_resource_->deallocate(p, bytes, alignment);
 }

We log how much memory we deallocate and use the upstream to perform the task. Now
the last required function is stated next:

 [[nodiscard]] bool
 do_is_equal(const memory_resource &other) const noexcept override {
 return this == &other;
 }

Design Patterns and C++ Chapter 6

[201]

We simply compare the addresses of the instances to know whether they're equal. The
[[nodiscard]] attribute helps us be sure that the caller actually consumes the returned
value, which can help us avoid accidental misuse of our function.

That's it. For a powerful feature such as the pmr allocators, the API isn't that complex now,
isn't it?

Aside from tracking allocations, we can also use pmr to guard us against allocating when
we shouldn't.

Ensuring there are no unexpected allocations
The special std::pmr::null_memory_resource() will throw an exception when anyone
tries to allocate memory using it. You can safeguard from performing any allocations using
pmr by setting it as the default resource as shown next:

std::pmr::set_default_resource(null_memory_resource());

You can also use it to limit allocation from the upstream when it shouldn't happen. Check
the following code:

 auto buffer = std::array<std::byte, 640 * 1024>{}; // 640K ought to be
enough for anybody
 auto resource = std::pmr::monotonic_buffer_resource{
 buffer.data(), buffer.size(), std::pmr::null_memory_resource()};

If anybody tries to allocate more than the buffer size we set, std::bad_alloc would be
thrown.

Let's move on to our last item in this chapter.

Winking out memory
Sometimes not having to deallocate the memory, as the monotonic buffer resource does, is
still not enough for performance. A special technique called winking out can help here.
Winking out objects means that they're not only not deallocated one by one, but their
constructors aren't called too. The objects simply evaporate, saving time that would
normally be spent calling destructors for each object and their members (and their
members...) in the arena.

Design Patterns and C++ Chapter 6

[202]

NOTE: This is an advanced topic. Be careful when using this technique,
and only use it if the possible gain is worth it.

This technique can save your precious CPU cycles, but it's not always possible to use it.
Avoid winking out memory if your objects handle resources other than memory.
Otherwise, you will get resource leaks. The same goes if you depend on any side effects the
destructors of your objects would have.

Let's now see winking out in action:

 auto verbose = verbose_resource(std::pmr::get_default_resource());
 auto monotonic = std::pmr::monotonic_buffer_resource(&verbose);
 std::pmr::set_default_resource(&monotonic);

 auto alloc = std::pmr::polymorphic_allocator{};
 auto *vector = alloc.new_object<std::pmr::vector<std::pmr::string>>();
 vector->push_back("first one");
 vector->emplace_back("long second one that must allocate");

Here, we created a polymorphic allocator by hand that'll use our default resource – a
monotonic one that logs each time it reaches upstream. To create objects, we'll use a C++20
addition to pmr, the new_object function. We create a vector of strings. We can pass the
first one using push_back, because it's small enough to fit into the small-string buffer we
have thanks to SSO. The second string would need to allocate a string using the default
resource and only then pass it to our vector if we used push_back. Emplacing it causes the
string to be constructed inside the vector's functions (not before the call), so it will use the
vector's allocator. Finally, we don't call the destructors of allocated objects anywhere, and
just deallocate everything at once, when we exit the scope. This should give us hard-to-beat
performance.

That was the last item on our list for this chapter. Let's summarize what we've learned.

Design Patterns and C++ Chapter 6

[203]

Summary
In this chapter, we went through various idioms and patterns used in the C++ world. You
should now be able to write fluent, idiomatic C++. We've demystified how to perform
automatic cleanup. You can now write safer types that properly move, copy, and swap.
You learned how to use ADL to your advantage both with compilation times and writing
customization points. We discussed how to choose between static and dynamic
polymorphism. We also learned how to introduce policies to your types, when to use type
erasure, and when not.

What's more, we discussed how to create objects using factories and fluent builders.
Moreover, using memory arenas for this is also no longer arcane magic. So is writing state
machines using tools such as variants.

We did all that as well as touching on extra topics down the road. Phew! The next stop on
our journey will be about building your software and packaging it.

Questions
What are the rules of three, five, and zero?1.
When do we use niebloids versus hidden friends?2.
How can arrays interfaces be improved to be more production-ready?3.
What are fold expressions?4.
When shouldn't you use static polymorphism?5.
How can we save on one more allocation in the winking out example?6.

Further reading
tag_invoke: A general pattern for supporting customisable functions, Lewis Baker, Eric1.
Niebler, Kirk Shoop, ISO C++ proposal, https:/ /wg21. link/ p1895

tag_invoke :: niebloids evolved, Gašper Ažman for the Core C++ Conference,2.
YouTube video, https:/ / www. youtube. com/ watch? v=oQ26YL0J6DU

Inheritance Is The Base Class of Evil, Sean Parent for the GoingNative 20133.
Conference, Channel9 video, https:/ /channel9. msdn. com/ Events/
GoingNative/ 2013/ Inheritance- Is- The-Base- Class- of-Evil

https://wg21.link/p1895
https://wg21.link/p1895
https://wg21.link/p1895
https://wg21.link/p1895
https://wg21.link/p1895
https://wg21.link/p1895
https://wg21.link/p1895
https://wg21.link/p1895
https://wg21.link/p1895
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://www.youtube.com/watch?v=oQ26YL0J6DU
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil

Design Patterns and C++ Chapter 6

[204]

Modern C++ Design, Andrei Alexandrescu, Addison-Wesley, 20014.
How Non-Member Functions Improve Encapsulation, Scott Meyers, Dr. Dobbs article,5.
https:// www. drdobbs. com/ cpp/ how- non-member- functions- improve- encapsu/
184401197

Returning a Status or a Value, Status User Guide, Abseil documentation, https:/ /6.
abseil.io/ docs/ cpp/ guides/ status#returning- a-status- or-a- value

function_ref, GitHub repository, https:/ /github. com/ TartanLlama/7.
function_ ref

How To Use std::visit With Multiple Variants, Bartłomiej Filipek, post on Bartek's8.
coding blog, https:/ / www. bfilipek. com/ 2018/ 09/visit- variants. html

CppCon 2018: Mateusz Pusz, Effective replacement of dynamic polymorphism with9.
std::variant, YouTube video, https:/ /www. youtube. com/ watch? v= gKbORJtnVu8

https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://abseil.io/docs/cpp/guides/status#returning-a-status-or-a-value
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://github.com/TartanLlama/function_ref
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8
https://www.youtube.com/watch?v=gKbORJtnVu8

7
Building and Packaging

As an architect, you will need to know about all the elements that make up the build
process. This chapter will explain all the elements that make up the build process. From
compiler flags to automation scripts and beyond, we will guide you to the point where each
possible module, service, and artifact is versioned and stored in a central location ready for
deployment. We will mainly focus on CMake.

In this chapter, you'll learn about the following:

What compiler flags you should consider using
How to create build systems based on Modern CMake
How to build reusable components
How to use external code in CMake cleanly
How to create DEB and RPM packages, as well as NSIS installers, using CPack
How to use the Conan package manager for installing your dependencies and for
creating your own packages

After reading this chapter, you'll know how to write state-of-the-art code for building and
packaging your project.

Technical requirements
To replicate the examples from this chapter, you should install a recent version of GCC and
Clang, CMake 3.15 or higher, Conan, and Boost 1.69.

The source code snippets from the chapter can be found at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter07.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter07

Building and Packaging Chapter 7

[206]

Getting the most out of compilers
Compilers are one of the most important tools in every programmer's workshop. That's
why getting to know them well can help you out in many different ways, on countless
occasions. In this section, we'll describe a few tips to use them effectively. This will only
touch the tip of the iceberg as whole books can be written about these tools and their vast
variety of available flags, optimizations, functionalities, and other specifics. GCC even has a
wiki page with a list of books about compilers! You can find it in the Further reading section
at the end of this chapter.

Using multiple compilers
One of the things you should consider in your build process is using multiple compilers
instead of just one, the reason being the several benefits that come with it. One of them is
that they can detect different issues with your code. For instance, MSVC has signedness
checks enabled by default. Using several compilers can help with potential portability
issues you may encounter in the future, especially when a decision is made to also compile
your code on a different OS, such as moving from Linux to Windows or the other way. To
make such efforts at no cost, you should strive to write portable, ISO C++-compliant code.
One of the benefits of Clang is that it strives for compliance with the C++ standards more
than GCC. If you're using MSVC, try adding the /permissive- option (available since
Visual Studio 17; enabled by default for projects created using version 15.5+). For GCC, try
not to use the GNU variants when choosing the C++ standard for your code (for example,
prefer -std=c++17 to -std=gnu++17). If performance is your goal, being able to build
your software with a wide range of compilers will also allow you to pick the one that will
offer the fastest binaries for your specific use cases.

Regardless of which compiler you choose for your release builds, consider
using Clang for development. It runs on macOS, Linux, and Windows,
supports the same set of flags as GCC, and aims to provide the fastest
build times and concise compilation errors.

If you're using CMake, you have two common ways to add another compiler. One is to
pass the appropriate compilers when invoking CMake, like so:

mkdir build-release-gcc
cd build-release-gcc
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_COMPILER=/usr/bin/gcc -
DCMAKE_CXX_COMPILER=/usr/bin/g++

Building and Packaging Chapter 7

[207]

It's also possible to just set CC and CXX before invoking CMake, but those variables are not
honored on all platforms (such as macOS).

Another approach is to use toolchain files. It's probably an overkill if you just need to use a
different compiler, but it's the go-to solution when you want to cross-compile. To use a
toolchain file, you should pass it as a CMake argument: -
DCMAKE_TOOLCHAIN_FILE=toolchain.cmake.

Reducing build times
Every year, programmers spend countless hours waiting for their builds to complete.
Reducing build times is an easy way to improve the productivity of whole teams, so let's
discuss a few approaches to doing it.

Using a fast compiler
One of the simplest ways to have faster builds is sometimes to upgrade your compiler. For
instance, by upgrading Clang to 7.0.0, you could shave up to 30% off of build times using
Precompiled Header (PCH) files. Since Clang 9, it has gained the -ftime-trace option,
which can provide you with information on the compilation times of all the files it
processes. Other compilers have similar switches, too: check out GCC's -ftime-report or
MSVC's /Bt and /d2cgsummary. Often you can get faster compiles by switching the
compiler, which is especially useful on your development machine; for example, Clang
usually compiles code faster than GCC.

Once you have a fast compiler, let's take a look at what it needs to compile.

Rethinking templates
Different parts of the compilation process take a different amount of time to complete. This
is especially important for compile-time constructs. One of Odin Holmes' interns, Chiel
Douwes, created the so-called Rule of Chiel based on benchmarking the compile-time costs
of various template operations. This, and other type-based template metaprogramming
tricks, can be seen in the Type Based Template Metaprogramming is Not Dead lecture by Odin
Holmes. From fastest to slowest, they are as follows:

Looking up a memoized type (for example, a template instantiation)
Adding a parameter to an alias call
Adding a parameter to a type

Building and Packaging Chapter 7

[208]

Calling an alias
Instantiating a type
Instantiating a function template
Using SFINAE (Substitution Failure Is Not an Error)

To demonstrate this rule, consider the following code:

template<bool>
 struct conditional {
 template<typename T, typename F>
 using type = F;
 };

 template<>
 struct conditional<true> {
 template<typename T, typename F>
 using type = T;
 };

 template<bool B, typename T, typename F>
 using conditional_t = conditional::template type<T, F>;

It defines a conditional template alias, which stores a type that resolves as T if condition
B is true, and to F otherwise. The traditional way to write such a utility would be as follows:

template<bool B, class T, class F>
 struct conditional {
 using type = T;
 };

 template<class T, class F>
 struct conditional<false, T, F> {
 using type = F;
 };

 template<bool B, class T, class F>
 using conditional_t = conditional<B,T,F>::type;

However, this second way is slower to compile than the first because it relies on creating
template instances instead of type aliases.

Let's now take a look at what tools and their features you can use to keep compile times
low.

Building and Packaging Chapter 7

[209]

Leveraging tools
A common technique that can make your builds faster is to use a single compilation unit
build, or unity build. It won't speed up every project, but it may be worth a shot if there's
plenty of code in your header files. Unity builds work by just including all your .cpp files
in one translation unit. Another similar idea is to use pre-compiled headers. Plugins such as
Cotire for CMake will handle both of these techniques for you. CMake 3.16 also adds native
support for unity builds, which you can enable either for one
target, set_target_properties(<target> PROPERTIES UNITY_BUILD ON), or
globally by setting CMAKE_UNITY_BUILD to true. If you just want PCHs, you might want
to take a look into CMake 3.16's target_precompile_headers.

If you feel like you are including too much in your C++ files, consider
using a tool named include-what-you-use to tidy them up. Preferring
forward declaring types and functions to including header files can also
go a long way in reducing the compilation times.

If your project takes forever to link, there are some ways to deal with this as well. Using a
different linker, such as LLVM's LLD or GNU's Gold, can help a lot, especially since they
allow multi-threaded linking. If you can't afford to use a different linker, you can always
experiment with flags such as -fvisibility-hidden or -fvisibility-inlines-
hidden and mark only the functions you want to have visible in your shared library with
an appropriate annotation in the source code. This way, the linker will have less work to
perform. If you're using link-time optimization, try to only do that for the builds that are
performance-critical: those that you plan to profile and those meant for production.
Otherwise, you'll probably just waste your developers' time.

If you're using CMake and aren't tied to a specific generator (for example, CLion requires
using the Code::Blocks generator), you can replace the default Make generator with a
faster one. Ninja is a great one to start with as it was created specifically to reduce build
times. To use it, just pass -G Ninja when invoking CMake.

There are still two more great tools that will surely give you a boost. One of them is Ccache.
It's a tool that runs its cache of C and C++ compilation outputs. If you're trying to build the
same thing twice, it will get the results from the cache instead of running the compilation. It
keeps the statistics, such as cache hits and misses, can remember the warnings that it
should emit when compiling a specific file, and has many configuration options that you
can store in the ~/.ccache/ccache.conf file. To obtain its statistics, just run ccache --
show-stats.

Building and Packaging Chapter 7

[210]

The second tool is IceCC (or Icecream). It's a fork of distcc, essentially a tool to distribute
your builds across hosts. With IceCC, it's easier to use a custom toolchain. It runs the iceccd
daemon on each host and an icecc-scheduler service that manages the whole cluster. The
scheduler, unlike in distcc, makes sure to only use the idle cycles on each machine, so you
won't end up overloading other people's workstations.

To use both IceCC and Ccache for your CMake builds, just add -
DCMAKE_C_COMPILER_LAUNCHER="ccache;icecc" -

DCMAKE_CXX_COMPILER_LAUNCHER="ccache;icecc" to your CMake invocation. If you're
compiling on Windows, instead of the last two tools, you could use clcache and
Incredibuild or look for other alternatives.

Now that you know how to build fast, let's move on to another important topic.

Finding potential code issues
Even the quickest builds aren't worth much if your code has bugs. There are dozens of flags
to warn you of potential issues in your code. This section will try to answer which ones you
should consider enabling.

First, let's start with a slightly different matter: how not to get warned about issues with
code from other libraries. Getting warned about issues that you can't really fix isn't useful.
Fortunately, there are compiler switches to disable such warnings. In GCC, for instance,
you have two types of include files: regular (passed using -I) and system ones (passed
using -isystem). If you specify a directory using the latter, you won't get warnings from
the headers it contains. MSVC has an equivalent for -isystem: /external:I.
Additionally, it has other flags to handle external includes, such
as /external:anglebrackets, which tells the compiler to treat all files included using
angle brackets as external ones, thus disabling warnings for them. You can specify a
warning level for external files. You can also keep warnings coming from template
instantiations caused by your code using /external:templates-. If you're looking for a
portable way to mark include paths as system/external ones, and you're using CMake,
you can add the SYSTEM keyword to a target_include_directories directive.

Building and Packaging Chapter 7

[211]

Speaking of portability, if you want to be conformant to a C++ standard (and you should),
consider adding -pedantic to your compile options for GCC or Clang, or the
/permissive- option for MSVC. This way, you'll get informed about every non-standard
extension that you might be using. If you're using CMake, add the following line for each of
your targets, set_target_properties(<target> PROPERTIES CXX_EXTENSIONS
OFF), to disable compiler-specific extensions.

If you're using MSVC, strive to compile your code with /W4, since it enables most of the
important warnings. For GCC and Clang, try to use -Wall -Wextra -Wconversion -
Wsign-conversion. The first one, despite its name, enables only some common warnings.
The second, however, adds another bunch of warnings. The third one is based on the tips
from a great book by Scott Meyers, titled Effective C++ (it's a set of good warnings, but check
that it's not too noisy for your needs). The last two are about type conversions and
signedness conversions. All those flags together create a sane safety net, but you can, of
course, look for more flags to enable. Clang has a -Weverything flag. Try to periodically
run a build with it to discover new, potential warnings that could be worth enabling in
your codebase. You might be surprised at how many messages you get with this flag,
although enabling some of the warning flags might not be worth the hassle. An MSVC
alternative is named /Wall. Take a look at the following tables to see some other
interesting options that are not enabled by the preceding 9:

GCC/Clang:

Flag Meaning

-Wduplicated-cond
Warn when the same condition is used in if and else-if
blocks.

-Wduplicated-branches Warn if both branches contain the same source code.

-Wlogical-op
Warn when operands in logical operations are the same and
when a bitwise operator should be used instead.

-Wnon-virtual-dtor
Warn when a class has virtual functions but not a virtual
destructor.

-Wnull-dereference
Warn about null dereferences. This check may be inactive in
unoptimized builds.

-Wuseless-cast Warn when casting to the same type.

-Wshadow
A whole family of warnings about declarations that shadow
other, previous declarations.

Building and Packaging Chapter 7

[212]

MSVC:

Flag Meaning
/w44640 Warn on non-thread-safe static member initialization.

One last thing worth mentioning is the question: to -Werror (or /WX on MSVC) or not to -
Werror? This really depends on your personal preferences as issuing errors instead of
warnings has its pros and cons. On the plus side, you won't let any of your enabled
warnings slip by. Your CI build will fail and your code won't compile. When running
multi-threaded builds, you won't lose any warnings in the quickly passing compilation
messages. However, there are some minuses too. You won't be able to upgrade your
compiler if it enables any new warnings or just detects more issues. The same goes for
dependencies, which can deprecate some functions they provide. You won't be able to
deprecate anything in your code if it's used by other parts of your project. Fortunately, you
can always use a mixed solution: strive to compile with -Werror, but disable it when you
need to do the things it inhibits. This requires discipline, as if any new warnings are to slip
in, you may have a hard time eliminating them.

Using compiler-centric tools
Nowadays, compilers allow you to do much more with them than a few years back. This is
owing to the introduction of LLVM and Clang. By providing APIs and a modular
architecture allowing easy reuse, caused tools such as sanitizers, automatic refactoring, or
code completion engines to flourish. You should consider taking advantage of what this
compiler infrastructure offers you. Use clang-format to ensure all the code in your code
base conforms to a given standard. Consider adding pre-commit hooks using the pre-
commit tool to reformat new code before commit. You can also add Python and CMake
formatters to the mix. Statically analyze the code using clang-tidy – a tool that actually
understands your code instead of just reasoning about it. There's a ton of different checks
this tool can perform for you, so be sure to customize the list and options to your specific
needs. You can also run nightly or weekly tests of your software with sanitizers enabled.
This way, you can detect threading issues, undefined behavior, memory access,
management issues, and more. Running tests using debug builds can also be of value if
your release builds have assertions disabled.

If you think that more could be done, you can consider writing your own code
refactorizations using Clang's infrastructure. There's already a clang-rename tool if you
want to see how to create an LLVM-based tool of your own. Additional checks and fix-its
for clang-tidy are also not that hard to create, and they can save you hours of manual labor.

Building and Packaging Chapter 7

[213]

You can integrate many tools into your building process. Let's now discuss the heart of the
process: the build system.

Abstracting the build process
In this section, we'll delve into CMake scripts, the de facto standard build system generator
used for C++ projects worldwide.

Introducing CMake
What does it mean that CMake is a build system generator and not a build system per se?
Simply that CMake can be used to generate various types of build systems. You can use it
to generate Visual Studio projects, Makefile projects, Ninja-based ones, Sublime, Eclipse,
and a few others.

CMake comes with a set of other tools, such as CTest for executing tests and CPack for
packaging and creating setup programs. CMake itself allows exporting and installing
targets too.

CMake's generators can be either single-configuration, such as Make or NMAKE, or multi-
configuration, such as Visual Studio. For single-configuration ones, you should pass the
CMAKE_BUILD_TYPE flag when running the generation for the first time in a folder. For
instance, to configure a debug build, you could run cmake <project_directory> -
DCMAKE_BUILD_TYPE=Debug. Other predefined configurations are Release,
RelWithDebInfo (release with debug symbols), and MinSizeRel (release optimized for
minimum binary size). To keep your source directories clean, always create a separate build
folder and run CMake generation from there.

Although it's possible to add your own build type, you should really strive not to do so, as
this makes using some IDEs much harder and doesn't scale. A much better option is to use,
well, option.

CMake files can be written in two styles: an obsolete one, based on variables, and a target-
based Modern CMake style. We'll focus just on the latter here. Try to avoid setting things
through global variables, as this causes issues when you want to reuse your targets.

Building and Packaging Chapter 7

[214]

Creating CMake projects
Each CMake project should have the following lines in their top-level CMakeLists.txt
file:

cmake_minimum_required(VERSION 3.15...3.19)

project(
 Customer
 VERSION 0.0.1
 LANGUAGES CXX)

Setting a minimum and a maximum supported version is important as it influences how
CMake will behave by setting policies. You can also set them manually if needed.

The definition of our project specifies its name, version (which will be used to populate a
few variables), and the programming languages that CMake will use to build the project
(which populates many more variables and finds the required tools).

A typical C++ project has the following directories:

cmake: For CMake scripts
include: For public headers, usually with a subfolder named after the project
src: For source files and private headers
test: For tests

You can use the CMake directory to store your custom CMake modules. To have easy
access to scripts from this directory, you can add it to CMake's include() search path like
so:

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake"

When including CMake modules, you can omit the .cmake suffix. This
means include(CommonCompileFlags.cmake) is equal to just
include(CommonCompileFlags).

Distinguishing between CMake directory variables
Navigating through the directories in CMake has a common pitfall that not everyone is
aware of. When writing CMake scripts, try to distinguish between the following built-in
variables:

Building and Packaging Chapter 7

[215]

PROJECT_SOURCE_DIR: The directory where the project command was last
called from a CMake script.
PROJECT_BINARY_DIR: Like the preceding one, but for the build directory tree.
CMAKE_SOURCE_DIR: Top-level source directory (this may be in another project
that just adds ours as a dependency/subdirectory).
CMAKE_BINARY_DIR: Like CMAKE_SOURCE_DIR, but for the build directory tree.
CMAKE_CURRENT_SOURCE_DIR: The source directory corresponding to the
currently processed CMakeLists.txt file.
CMAKE_CURRENT_BINARY_DIR: The binary (build) directory
matching CMAKE_CURRENT_SOURCE_DIR.
CMAKE_CURRENT_LIST_DIR: The directory of CMAKE_CURRENT_LIST_FILE. It
can be different from the current source directory if the current CMake script was
included from another one (common for CMake modules that are included).

Having cleared that up, let's now start navigating through those directories.

In your top-level CMakeLists.txt file, you will probably want to call
add_subdirectory(src) so that CMake will process that directory.

Specifying CMake targets
In the src directory, you should have another CMakeLists.txt file, this time probably
defining a target or two. Let's add an executable for a customer microservice for the
Dominican Fair system we mentioned earlier in the book:

add_executable(customer main.cpp)

Source files can be specified as in the preceding code line or added later using
target_sources.

A common CMake antipattern is the use of globs to specify source files. A big drawback of
using them is that CMake will not know if a file was added until it reruns generation. A
common consequence of that is that if you pull changes from a repository and simply build,
you can miss compiling and running new unit tests or other code. Even if you used globs
with CONFIGURE_DEPENDS, the build time will get longer because globs must be checked as
part of each build. Besides, the flag may not work reliably with all generators. Even the
CMake authors discourage using it in favor of just explicitly stating the source files.

Building and Packaging Chapter 7

[216]

Okay, so we defined our sources. Let's now specify that our target requires C++17 support
from the compiler:

target_compile_features(customer PRIVATE cxx_std_17)

The PRIVATE keyword specifies that this is an internal requirement, that is, just visible to
this specific target and not to any targets that will depend on it. If you were writing a
library that provided a user with a C++17 API, you could use the INTERFACE keyword. To
specify both the interface and internal requirements, you could use the PUBLIC keyword.
When the consumer links to our target, CMake will then automatically require C++17
support for it as well. If you were writing a target that is not built (that is, a header-only
library or an imported target), using the INTERFACE keyword is usually enough.

You should also note that specifying that our target wants to use C++17 features doesn't
enforce the C++ standard or disallow compiler extensions for our target. To do so, you
should instead call the following:

set_target_properties(customer PROPERTIES
 CXX_STANDARD 17
 CXX_STANDARD_REQUIRED YES
 CXX_EXTENSIONS NO
)

If you want to have a set of compiler flags to pass to each target, you can store them in a
variable and call the following if you want to create a target that has those flags set as
INTERFACE and doesn't have any source and uses this target in target_link_libraries:

target_compile_options(customer PRIVATE ${BASE_COMPILE_FLAGS})

The command automatically propagates include directories, options, macros, and other
properties, aside from just adding a linker flag. Speaking of linking, let's create a library
that we shall link with:

add_library(libcustomer lib.cpp)
add_library(domifair::libcustomer ALIAS libcustomer)
set_target_properties(libcustomer PROPERTIES OUTPUT_NAME customer)
...
target_link_libraries(customer PRIVATE libcustomer)

add_library can be used to create static, shared, object, and interface (think header-only)
libraries, as well as defining any imported libraries.

The ALIAS version of it creates a namespaced target, which helps debug many CMake
issues and is a recommended Modern CMake practice.

Building and Packaging Chapter 7

[217]

Because we gave our target a lib prefix already, we set the output name to have
libcustomer.a instead of liblibcustomer.a.

Finally, we link our executable with the added library. Try to always specify the PUBLIC,
PRIVATE, or INTERFACE keyword for the target_link_libraries command as this is
crucial for CMake to effectively manage the transitivity of the target dependencies.

Specifying the output directories
Once you build your code using commands such as cmake --build ., you might want to
know where to find the build artifacts. By default, CMake will create them in a directory
matching the source directory they were defined in. For instance, if you have a
src/CMakeLists.txt file with an add_executable directive, then the binary will land in
your build directory's src subdirectory by default. We can override this using code such as
the following:

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/bin)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/lib)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/lib)

This way, the binaries and DLL files will land in the bin subdirectory of your project's
build directory, while static and shared Linux libraries will be placed in the lib
subdirectory.

Using generator expressions
Setting compile flags in a way to support both single- and multi-configuration generators
can be tricky, as CMake executes if statements and many other constructs at configure
time, not at build/install time.

This means that the following is a CMake antipattern:

if(CMAKE_BUILD_TYPE STREQUAL Release)
 target_compile_definitions(libcustomer PRIVATE RUN_FAST)
endif()

Building and Packaging Chapter 7

[218]

Instead, generator expressions are the proper way to achieve the same goal, as they're being
processed at a later time. Let's see an example of their use in practice. Assuming you want
to add a preprocessor definition just for your Release configuration, you could write the
following:

target_compile_definitions(libcustomer PRIVATE
"$<$<CONFIG:Release>:RUN_FAST>")

This will resolve to RUN_FAST only when building that one selected configuration. For
others, it will resolve to an empty value. It works for both single- and multi-configuration
generators. That's not the only use case for generator expressions, though.

Some aspects of our targets may vary when used by our project during builds and by other
projects when the target is installed. A good example is include directories. A common
way to deal with this in CMake is as follows:

target_include_directories(
 libcustomer PUBLIC $<INSTALL_INTERFACE:include>
 $<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include>)

In this case, we have two generator expressions. The first one tells us that when installed,
the include files can be found in the include directory, relative to the install prefix (the
root of the installation). If we're not installing, this expression will become an empty one.
This is why we have another expression for building. This one will resolve as the include
subdirectory of the directory where the last used project() was found.

Don't use target_include_directories with a path outside of your
module. If you do, you're stealing someone's headers instead of explicitly
declaring a library/target dependency. This is a CMake antipattern.

CMake defines many generator expressions that you can use to query the compiler and
platform, as well as the targets (such as full name, the list of object files, any property
values, and so on). Aside from these, there are expressions that run Boolean operations, if
statements, string comparisons, and more.

Building and Packaging Chapter 7

[219]

Now, for a more complex example, assuming you'd like to have a set of compile flags that
you use across your targets and that depend on the compiler used, you could define it as
follows:

list(
 APPEND
 BASE_COMPILE_FLAGS
"$<$<OR:$<CXX_COMPILER_ID:Clang>,$<CXX_COMPILER_ID:AppleClang>,$<CXX_COMPIL
ER_ID:GNU>>:-Wall;-Wextra;-pedantic;-Werror>"
 "$<$<CXX_COMPILER_ID:MSVC>:/W4;/WX>")

This will append one set of flags if the compiler is Clang or AppleClang or GCC and
another one if MSVC is being used instead. Note that we separate the flags with a
semicolon because that's how CMake separates elements on a list.

Let's now see how we could add external code for our projects to use.

Using external modules
There are several ways for you to fetch the external projects you depend on. For instance,
you could add them as a Conan dependency, use CMake's find_package to look for a
version provided by the OS or installed in another way, or fetch and compile the
dependency yourself.

The key message of this section is: if you can, you should use Conan. This way, you'll end
up using one version of the dependency that matches your project's and its dependencies'
requirements.

If you're aiming to support multiple platforms, or even multiple versions of the same
distribution, using Conan or compiling everything yourself are the ways to go. This way,
you'll use the same dependency version regardless of the OS you compile on.

Let's discuss a few ways of grabbing your dependencies offered by CMake itself, and then
jump to using the multi-platform package manager named Conan.

Fetching dependencies
One of the possible ways to prepare your dependencies from the source is to use CMake's
built-in FetchContent module. It will download your dependencies and then build them
for you as a regular target.

Building and Packaging Chapter 7

[220]

The feature arrived in CMake 3.11. It's a replacement for the ExternalProject module,
which had many flaws. One of them was that it cloned the external repository during build
time, so CMake couldn't reason about the targets that the external project defined, as well
as about their dependencies. This made many projects resort to manually defining the
include directories and library paths of such external targets and ignoring their required
interface compilation flags and dependencies completely. Ouch. FetchContent doesn't
have such issues, so it's recommended you use it instead.

Before we show how to use it, you must know that both FetchContent
and ExternalProject (as well as using Git submodules and similar
methods) have one important flaw. If you have many dependencies using
the same third-party library themselves, you might end up with having
multiple versions of the same project, such as a few versions of Boost.
Using package managers such as Conan can help you avoid such issues.

For the sake of an example, let's demonstrate how to integrate GTest into your project
using the aforementioned FetchContent feature. First, create a FetchGTest.cmake file
and put it in the cmake directory in our source tree. Our FetchGTest script will be defined
as follows:

include(FetchContent)

 FetchContent_Declare(
 googletest
 GIT_REPOSITORY https://github.com/google/googletest.git
 GIT_TAG dcc92d0ab6c4ce022162a23566d44f673251eee4)

 FetchContent_GetProperties(googletest)
 if(NOT googletest_POPULATED)
 FetchContent_Populate(googletest)
 add_subdirectory(${googletest_SOURCE_DIR} ${googletest_BINARY_DIR}
 EXCLUDE_FROM_ALL)
 endif()

 message(STATUS "GTest binaries are present at ${googletest_BINARY_DIR}")

First, we include the built-in FetchContent module. Once the module is loaded, we
declare the dependency using FetchContent_Declare. Now, let's name our dependency
and specify the repository that CMake will clone, along with the revision that it will check
out.

Building and Packaging Chapter 7

[221]

Now, we can read the properties of our external library and populate (that is, check it out)
it if that wasn't done already. Once we have the sources, we can process them using
add_subdirectory. The EXCLUDE_FROM_ALL option will tell CMake to not build those
targets if they're not needed by other targets when we run a command such as make all.
After successfully processing the directory, our script will print a message denoting the
directory in which GTests libraries will land after being built.

If you're not fond of building your dependencies together with your project, perhaps the
next way of integrating your dependencies will be more suitable for you.

Using find scripts
Assuming your dependency is available somewhere on your host, you can just call
find_package to try to search for it. If your dependency provides a config or targets files
(more on those later), then just writing this one simple command is all you need. That is, of
course, assuming that the dependencies are already available on your machine. If not, it's
your responsibility to install them before running CMake for your project.

To create the preceding files, your dependency would need to use CMake, which is not
always the case. How could you deal with those libraries that don't use CMake? If the
library is popular, chances are someone already created a find script for you to use. The
Boost libraries in versions older than 1.70 were a common example of this approach.
CMake comes with a FindBoost module that you can execute by just running
find_package(Boost).

To find Boost using the preceding module, you would first need to install it on your
system. After that, in your CMake lists, you should set any options that you find
reasonable. For instance, to use dynamic and multi-threaded Boost libraries, not linked
statically to the C++ runtime, specify the following:

set(Boost_USE_STATIC_LIBS OFF)
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)

Then, you need to actually search for the library, as shown next:

find_package(Boost 1.69 EXACT REQUIRED COMPONENTS Beast)

Here, we specified that we want to just use Beast, a great networking library that comes as
part of Boost. Once found, you could link it to your target as follows:

target_link_libraries(MyTarget PUBLIC Boost::Beast)

Building and Packaging Chapter 7

[222]

Now that you know how to properly use a find script, let's learn how to write one on your
own.

Writing find scripts
If your dependency is neither providing config and target files nor has anyone written a
find module for it, you can always write such a module yourself.

This is not something you'll do very often, so we'll try to just skim the topic. For an in-depth
description, you should also read the guidelines in the official CMake documentation
(linked in the Further reading section) or just look at a few find modules installed with
CMake (usually in a directory such as /usr/share/cmake-3.17/Modules on Unix
systems). For simplicity, we assume there's just one configuration of your dependency that
you'd like to find, but it's possible to find Release and Debug binaries separately. This will
result in different targets with different associated variables being set.

The script name determines the argument you'll pass to find_package; for example, if you
wish to end up with find_package(Foo), then your script should be named
FindFoo.cmake.

A good practice is to start your script with a reStructuredText section describing what
your script will actually do, which variables it will set, and so on. An example of such a
description could be as follows:

 #.rst:
 # FindMyDep
 # ----------
 #
 # Find my favourite external dependency (MyDep).
 #
 # Imported targets
 # ^^^^^^^^^^^^^^^^
 #
 # This module defines the following :prop_tgt:`IMPORTED` target:
 #
 # ``MyDep::MyDep``
 # The MyDep library, if found.
 #

Usually, you'll also want to describe the variables your script will set:

 # Result variables
 # ^^^^^^^^^^^^^^^^
 #

Building and Packaging Chapter 7

[223]

 # This module will set the following variables in your project:
 #
 # ``MyDep_FOUND``
 # whether MyDep was found or not
 # ``MyDep_VERSION_STRING``
 # the found version of MyDep

If MyDep has any dependencies itself, now is the time to find them:

find_package(Boost REQUIRED)

Now we can start our search for the library. A common way to do so is to use pkg-config:

find_package(PkgConfig)
pkg_check_modules(PC_MyDep QUIET MyDep)

If pkg-config has information on our dependency, it will set some variables we can use to
find it.

A good idea might be to have a variable that the user of our script can set to point us to the
location of the library. As per CMake conventions, it should be named MyDep_ROOT_DIR.
To provide CMake with this variable, the user can either invoke CMake with -
DMyDep_ROOT_DIR=some/path, modify the variable in CMakeCache.txt in their build
directory, or use the ccmake or cmake-gui programs.

Now, we can actually search for the headers and libraries of our dependency using the
aforementioned paths:

find_path(MyDep_INCLUDE_DIR
 NAMES MyDep.h
 PATHS "${MyDep_ROOT_DIR}/include" "${PC_MyDep_INCLUDE_DIRS}"
 PATH_SUFFIXES MyDep
)

 find_library(MyDep_LIBRARY
 NAMES mydep
 PATHS "${MyDep_ROOT_DIR}/lib" "${PC_MyDep_LIBRARY_DIRS}"
)

Then, we need to also set the found version, as we promised in the header of our script. To
use the one found from pkg-config, we could write the following:

set(MyDep_VERSION ${PC_MyDep_VERSION})

Building and Packaging Chapter 7

[224]

Alternatively, we can just manually extract the version either from the contents of the
header file, from components of the library path, or using any other means. Once this is
done, let's leverage CMake's built-in scripts to decide whether the library was successfully
found while handling all the possible parameters to the find_package invocation:

include(FindPackageHandleStandardArgs)

find_package_handle_standard_args(MyDep
 FOUND_VAR MyDep_FOUND
 REQUIRED_VARS
 MyDep_LIBRARY
 MyDep_INCLUDE_DIR
 VERSION_VAR MyDep_VERSION
)

As we decided to provide a target and not just a bunch of variables, now it's time to define
it:

if(MyDep_FOUND AND NOT TARGET MyDep::MyDep)
 add_library(MyDep::MyDep UNKNOWN IMPORTED)
 set_target_properties(MyDep::MyDep PROPERTIES
 IMPORTED_LOCATION "${MyDep_LIBRARY}"
 INTERFACE_COMPILE_OPTIONS "${PC_MyDep_CFLAGS_OTHER}"
 INTERFACE_INCLUDE_DIRECTORIES "${MyDep_INCLUDE_DIR}"
 INTERFACE_LINK_LIBRARIES Boost::boost
)
endif()

Finally, let's hide our internally used variables with users who don't want to deal with
them:

mark_as_advanced(
 MyDep_INCLUDE_DIR
 MyDep_LIBRARY
)

Now, we have a complete find module that we can use in the following way:

find_package(MyDep REQUIRED)
target_link_libraries(MyTarget PRIVATE MyDep::MyDep)

This is how you can write the find module yourself.

Don't write Find*.cmake modules for your own packages. Those are
meant for packages that don't support CMake. Instead, write a
Config*.cmake module (as described later in this chapter).

Building and Packaging Chapter 7

[225]

Let's now show how to use a proper package manager instead of doing the heavy lifting
yourself.

Using the Conan package manager
Conan is an open source, decentralized package manager for native packages. It supports
multiple platforms and compilers. It can also integrate with multiple build systems.

If a package has not already been built for your environment, Conan will handle building it
on your machine instead of downloading the already-built version. Once built, you can
upload it to either the public repositories, your own conan_server instance, or an
Artifactory server.

Preparing Conan profiles
If this is the first time you're running Conan, it will create a default profile based on your
environment. You might want to modify some of its settings either by creating a new
profile or by updating the default one. Assuming we're using Linux and want to compile
everything using GCC 9.x, we could run the following:

 conan profile new hosacpp
 conan profile update settings.compiler=gcc hosacpp
 conan profile update settings.compiler.libcxx=libstdc++11 hosacpp
 conan profile update settings.compiler.version=10 hosacpp
 conan profile update settings.arch=x86_64 hosacpp
 conan profile update settings.os=Linux hosacpp

If our dependencies come from other repositories than the default ones, we can add those
using conan remote add <repo> <repo_url>. You might want to use this to configure
your company's one, for instance.

Now that we've set Conan up, let's show how to grab our dependencies using Conan and
integrate all of this into our CMake scripts.

Specifying Conan dependencies
Our project relies on the C++ REST SDK. To tell this to Conan, we need to create a file called
conanfile.txt. In our case, it will contain the following:

 [requires]
 cpprestsdk/2.10.18

Building and Packaging Chapter 7

[226]

 [generators]
 CMakeDeps

You can specify as many dependencies as you want here. Each of them can have either a
fixed version, a range of the fixed versions, or a tag such as latest. After the @ sign, you can
find the company that owns the package and the channel that allows you to select a specific
variant of the package (usually stable and testing).

The generators section is where you specify what build systems you want to use. For
CMake projects, you should use CMakeDeps. You can also generate lots of others, including
ones for generating compiler arguments, CMake toolchain files, Python virtual
environments, and many more.

In our case, we don't specify any additional options, but you could easily add this section
and configure variables for your packages and for their dependencies. For instance, to
compile our dependency as a static library, we could write the following:

 [options]
 cpprestsdk:shared=False

Once we have conanfile.txt in place, let's tell Conan to use it.

Installing Conan dependencies
To use our Conan packages in CMake code, we must first install them. In Conan, this
means downloading the sources and building them or downloading prebuilt binaries, as
well as creating configuration files that we'll use in CMake. To make Conan handle this for
us after we have created our build directory, we should cd into it and simply run the
following:

conan install path/to/directory/containing/conanfile.txt --build=missing -s
build_type=Release -pr=hosacpp

By default, Conan wants to download all the dependencies as prebuilt binaries. If the server
doesn't have them prebuilt, Conan will build them instead of bailing out as we passed the -
-build=missing flag. We tell it to grab the release versions built using the same compiler
and environment as we have in our profile. You can install packages for more than one
build type by simply invoking another commands with build_type set to other CMake
build types. This can help you quickly switch between them if needed. If you want to use
the default profile (the one Conan can detect for you automatically), just don't pass the -pr
flag.

Building and Packaging Chapter 7

[227]

If the CMake generator we plan to use was not specified in conanfile.txt, we can
append it to the preceding command. For instance, to use the compiler_args generator,
we should append --generator compiler_args. Later you could use what it produced
by passing @conanbuildinfo.args to your compiler invocation.

Using Conan targets from CMake
Once Conan finishes downloading, building, and configuring our dependencies, we need
to tell CMake to use them.

If you're using Conan with the CMakeDeps generator, be sure to specify a
CMAKE_BUILD_TYPE value. In other cases, CMake will be unable to use the packages
configured by Conan. An example invocation (from the same directory you ran Conan)
could be as follows:

cmake path/to/directory/containing/CMakeLists.txt -
DCMAKE_BUILD_TYPE=Release

This way, we would build our project in release mode; we must use one of the types we
installed using Conan. To find our dependencies, we can just use CMake's find_package:

list(APPEND CMAKE_PREFIX_PATH "${CMAKE_BINARY_DIR}")
find_package(cpprestsdk CONFIG REQUIRED)

First, we add the root build directory to the path CMake will try to find package config files
in. Then, we find the package config files generated by Conan.

To pass Conan-defined targets as our targets' dependencies, it's best to use the namespaced
target name:

 target_link_libraries(libcustomer PUBLIC cpprestsdk::cpprest)

This way, we'll get an error during CMake's configuration when the package is not found.
Without the alias, we'd get an error when trying to link.

Now that we have compiled and linked our targets just the way we wanted, it's time to put
them to the test.

Building and Packaging Chapter 7

[228]

Adding tests
CMake has its own test driver program named CTest. It's easy to add new test suites to it
from your CMakeLists either on your own or using the many integrations provided by
testing frameworks. Later in the book, we'll discuss testing in depth, but let's first show
how to quickly and cleanly add unit tests based on the GoogleTest, or GTest, testing
framework.

Usually, to define your tests in CMake, you'll want to write the following:

 if(CMAKE_PROJECT_NAME STREQUAL PROJECT_NAME)
 include(CTest)
 if(BUILD_TESTING)
 add_subdirectory(test)
 endif()
 endif()

The preceding snippet will first check whether we are the main project that's being built or
not. Usually, you just want to run tests for your project and omit even building the tests for
any third-party components you use. This is why the project name is checked.

If we are to run our tests, we include the CTest module. This loads the whole testing
infrastructure CTest offers, defines its additional targets, and calls a CMake function called
enable_testing, which will, among other things, enable the BUILD_TESTING flag. This
flag is cached, so you can disable all testing when building your project by simply passing a
-DBUILD_TESTING=OFF argument to CMake when generating the build system.

All such cached variables are actually stored in a text file named CMakeCache.txt in your
build directory. Feel free to modify the variables there to change what CMake does; it won't
overwrite the settings there until you remove the file. You can do so using ccmake, cmake-
gui, or just by hand.

If BUILD_TESTING is true, we simply process the CMakeLists.txt file in our test
directory. It could look like so:

 include(FetchGTest)
 include(GoogleTest)

 add_subdirectory(customer)

Building and Packaging Chapter 7

[229]

The first include calls the script for providing us GTest that we described previously. After
fetching GTest, our current CMakeLists.txt loads some helper function defined in the
GoogleTest CMake module by invoking include(GoogleTest). This will enable us to
integrate our tests into CTest more easily. Finally, let's tell CMake to dive into a directory
that contains some tests by calling add_subdirectory(customer).

The test/customer/CMakeLists.txt file will simply add an executable with tests that is
compiled with our predefined set of flags and links to the tested module and GTest. Then,
we call the CTest helper function that discovers the defined tests. All of this is just four lines
of CMake code:

 add_executable(unittests unit.cpp)
 target_compile_options(unittests PRIVATE ${BASE_COMPILE_FLAGS})
 target_link_libraries(unittests PRIVATE domifair::libcustomer gtest_main)
 gtest_discover_tests(unittests)

Voilà!

You can now build and execute your tests by simply going to the build directory and
calling the following:

 cmake --build . --target unittests
 ctest # or cmake --build . --target test

You can pass a -j flag for CTest. It works just like with Make or Ninja invocations –
parallelizes the test execution. If you want to have a shorter command for building, just run
your build system, that is, by invoking make.

In scripts, it's usually better to use the longer form of the command; this
will make your scripts independent of the build system used.

Once your tests have passed, we can now think about providing them to a wider audience.

Reusing quality code
CMake has built-in utilities that can come a long way when it comes to distributing the
results of your builds. This section will describe installing and exporting utilities and the
differences between them. Later sections will show you how to package your code using
CPack, and how to do it using Conan.

Building and Packaging Chapter 7

[230]

Installing and exporting is not that important for microservices per se, but it's very useful if
you're delivering libraries for others to reuse.

Installing
If you have written or used Makefiles, you've most probably invoked make install at
one point and seen how the deliverables of a project were installed either in the OS
directories or in another directory of your choosing. If you're using make with CMake,
using the steps from this section will allow you to install the deliverables in the same way.
If not, you'll still be able to call the install target, of course. Aside from that, in both cases,
you will then have an easy way to leverage CPack for creating packages based on your
installation commands.

If you're on Linux, it's probably a good idea to preset some installation directories based on
the conventions of the OS by calling the following:

include(GNUInstallDirs)

This will make the installer use a directory structure made of bin, lib, and similar other
directories. Such directories can be also set manually using a few CMake variables.

Creating an install target consists of a few more steps. First and foremost is to define the
targets we want to install, which in our case will be the following:

install(
 TARGETS libcustomer customer
 EXPORT CustomerTargets
 LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
 ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
 RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR})

This tells CMake to expose our library and executable defined earlier in this chapter as
CustomerTargets, using the directories we set earlier.

If you plan to install different configurations of your library to different folders, you could
use a few invocations of the preceding command, like so:

 install(TARGETS libcustomer customer
 CONFIGURATIONS Debug
 # destinations for other components go here...
 RUNTIME DESTINATION Debug/bin)
 install(TARGETS libcustomer customer
 CONFIGURATIONS Release
 # destinations for other components go here...

Building and Packaging Chapter 7

[231]

 RUNTIME DESTINATION Release/bin)

You can notice that we specify the directories for executables and libraries, but not for
include files. We need to provide them in another command, like so:

 install(DIRECTORY ${PROJECT_SOURCE_DIR}/include/
 DESTINATION include)

This means that the top-level include directory's contents will be installed in the include
directory under the installation root. The slash after the first path fixes some path issues, so
take note to use it.

So, we have our set of targets; now we need to generate a file that another CMake project
could read to understand our targets. This can be done in the following way:

 install(
 EXPORT CustomerTargets
 FILE CustomerTargets.cmake
 NAMESPACE domifair::
 DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Customer)

This command takes our target set and creates a CustomerTargets.cmake file that will
contain all the info about our targets and their requirements. Each of our targets will get
prefixed with a namespace; for example, customer will become domifair::customer.
The generated file will get installed in a subdirectory of the library folder in our installation
tree.

To allow dependant projects to find our targets using CMake's find_package command,
we need to provide a CustomerConfig.cmake file. If your target doesn't have any
dependencies, you can just export the preceding targets directly to that file instead of the
targets file. Otherwise, you should write your own config file that will include the
preceding targets file.

In our case, we want to reuse some CMake variables, so we need to create a template and
use the configure_file command to fill it in:

 configure_file(${PROJECT_SOURCE_DIR}/cmake/CustomerConfig.cmake.in
 CustomerConfig.cmake @ONLY)

Our CustomerConfig.cmake.in file will begin by dealing with our dependencies:

 include(CMakeFindDependencyMacro)

 find_dependency(cpprestsdk 2.10.18 REQUIRED)

Building and Packaging Chapter 7

[232]

The find_dependency macro is a wrapper for find_package that is meant to be used in
config files. Although we relied on Conan to provide us with the C++ REST SDK 2.10.18 as
defined in conanfile.txt, here we need to specify the dependency once more. Our
package can be used on another machine, so we require that our dependency is installed
there too. If you want to use Conan on the target machine, you can install the C++ REST
SDK as follows:

conan install cpprestsdk/2.10.18

After dealing with the dependencies, our config file template will include the targets file
that we created earlier:

if(NOT TARGET domifair::@PROJECT_NAME@)
 include("${CMAKE_CURRENT_LIST_DIR}/@PROJECT_NAME@Targets.cmake")
endif()

When configure_file executes, it will replace all those @VARIABLES@ with the contents
of their matching ${VARIABLES} defined in our project. This way, based on our
CustomerConfig.cmake.in file template, CMake will create a CustomerConfig.cmake
file.

When finding a dependency using find_package, you'll often want to specify a version of
the package to find. To support that in our package, we must create a
CustomerConfigVersion.cmake file. CMake offers us a helper function that will create
this file for us. Let's use it as follows:

 include(CMakePackageConfigHelpers)
 write_basic_package_version_file(
 CustomerConfigVersion.cmake
 VERSION ${PACKAGE_VERSION}
 COMPATIBILITY AnyNewerVersion)

The PACKAGE_VERSION variable will get populated according to the VERSION argument we
passed when calling project at the top of our top-level CMakeLists.txt file.

AnyNewerVersion COMPATIBILITY means our package will be accepted by any package
search if it is newer or the same as the requested version. Other options include
SameMajorVersion, SameMinorVersion, and ExactVersion.

Once we have created our config and config version files, let's tell CMake that they should
be installed along with the binaries and our target file:

install(FILES ${CMAKE_CURRENT_BINARY_DIR}/CustomerConfig.cmake
 ${CMAKE_CURRENT_BINARY_DIR}/CustomerConfigVersion.cmake
 DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Customer)

Building and Packaging Chapter 7

[233]

One last thing we should install is the license for our project. We'll leverage CMake's
command for installing files to put them in our documentation directory:

install(
 FILES ${PROJECT_SOURCE_DIR}/LICENSE
 DESTINATION ${CMAKE_INSTALL_DOCDIR})

That's all you need to know to successfully create an install target in the root of your OS.
You may ask how to install the package into another directory, such as just for the current
user. To do so, you would need to set the CMAKE_INSTALL_PREFIX variable, for example,
when generating the build system.

Note that if we don't install into the root of our Unix tree, we'll have to provide the
dependent project with a path to the installation directory, such as by setting
CMAKE_PREFIX_PATH.

Let's now look at yet another way you could reuse what you just built.

Exporting
Exporting is a technique to add information about a package that you built locally to
CMake's package registry. This is useful when you want your targets to be visible right
from their build directories, even without installation. A common use for exporting is when
you have several projects checked out on your development machine and you build them
locally.

It's quite easy to add support for this mechanism from your CMakeLists.txt files. In our
case, it can be done in this way:

export(
 TARGETS libcustomer customer
 NAMESPACE domifair::
 FILE CustomerTargets.cmake)

set(CMAKE_EXPORT_PACKAGE_REGISTRY ON)
export(PACKAGE domifair)

This way, CMake will create a targets file similar to the one from the Installing section,
defining our library and executable targets in the namespace we provided. From CMake
3.15, the package registry is disabled by default, so we need to enable it by setting the
appropriate preceding variable. Then, we can put the information about our targets right
into the registry by exporting our package.

Building and Packaging Chapter 7

[234]

Note that we now have a targets file without a matching config file. This means that if
our targets depend on any external libraries, they must be found before our package is
found. In our case, the calls must be ordered in the following way:

 find_package(cpprestsdk 2.10.18)
 find_package(domifair)

First, we find the C++ REST SDK, and only afterward do we look for our package that
depends on it. That's all you need to know to start exporting your targets. Much easier than
installing them, isn't it?

Let's now move on to a third way of exposing your targets to the external world.

Using CPack
In this section, we'll describe how to use CPack, the packaging tool that comes with CMake.

CPack allows you to easily create packages in various formats, ranging from ZIP and TGZ
archives through to DEB and RPM packages, and even installation wizards such as NSIS or
a few OS X-specific ones. Once you have your installation logic in place, it's not hard to
integrate the tool. Let's show how to use CPack to package our project.

First, we need to specify variables that CPack will use when creating the packages:

 set(CPACK_PACKAGE_VENDOR "Authors")
 set(CPACK_PACKAGE_CONTACT "author@example.com")
 set(CPACK_PACKAGE_DESCRIPTION_SUMMARY
 "Library and app for the Customer microservice")

We need to give some information by hand, but some variables can be filled based on our
project version specified when we defined our project. There are many more CPack
variables and you can read about all of them in the CPack link in the Further reading section
at the end of the chapter. Some of them are common for all package generators, while some
are specific to a few of them. For instance, if you plan to use the installers, you could set the
following two:

set(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE")
set(CPACK_RESOURCE_FILE_README "${PROJECT_SOURCE_DIR}/README.md")

Building and Packaging Chapter 7

[235]

Once you've set all the interesting variables, it's time to choose the generators for CPack to
use. Let's start with putting some basic ones in CPACK_GENERATOR, a variable CPack relies
on:

list(APPEND CPACK_GENERATOR TGZ ZIP)

This will cause CPack to generate those two types of archives based on the installation steps
we defined earlier in the chapter.

You can select different package generators based on many things, for example, the tools
available on the machine you're running on. An example would be to create Windows
installers when building on Windows and a DEB or RPM package if building on Linux with
the appropriate tools installed. For instance, if you're running Linux, you could check
whether dpkg is installed and if so, create DEB packages:

 if(UNIX)
 find_program(DPKG_PROGRAM dpkg)
 if(DPKG_PROGRAM)
 list(APPEND CPACK_GENERATOR DEB)
 set(CPACK_DEBIAN_PACKAGE_DEPENDS "${CPACK_DEBIAN_PACKAGE_DEPENDS}
libcpprest2.10 (>= 2.10.2-6)")
 set(CPACK_DEBIAN_PACKAGE_SHLIBDEPS ON)
 else()
 message(STATUS "dpkg not found - won't be able to create DEB
packages")
 endif()

We used the CPACK_DEBIAN_PACKAGE_DEPENDS variable to make the DEB package require
the C++ REST SDK to be installed first.

For RPM packages, you could manually check for rpmbuild:

 find_program(RPMBUILD_PROGRAM rpmbuild)
 if(RPMBUILD_PROGRAM)
 list(APPEND CPACK_GENERATOR RPM)
 set(CPACK_RPM_PACKAGE_REQUIRES "${CPACK_RPM_PACKAGE_REQUIRES} cpprest
>= 2.10.2-6")
 else()
 message(STATUS "rpmbuild not found - won't be able to create RPM
packages")
 endif()
 endif()

Building and Packaging Chapter 7

[236]

Nifty, right?

These generators offer a plethora of other useful variables, so feel free to look at CMake's
documentation if you need anything more than those basic needs described here.

One last thing when it comes variables – you can also use them to avoid accidentally
packaging undesired files. This can be done by using the following:

set(CPACK_SOURCE_IGNORE_FILES /.git /dist /.*build.* /\\\\.DS_Store)

Once we have all that in place, we can include CPack itself from our CMake lists:

include(CPack)

Remember to always do this as the last step, as CMake won't propagate any variables you
used later to CPack.

To run it, directly invoke either just cpack or the longer form that will also check whether
anything needs rebuilding first: cmake --build . --target package. You can easily
override the generators if you just need to rebuild one type of package using the -G flag, for
example, -G DEB to build just the DEB package, -G WIX -C Release to pack a release
MSI executable, or -G DragNDrop to obtain a DMG installer.

Let's now discuss a more barbaric way of building packages.

Packaging using Conan
We already showed how to install our dependencies using Conan. Now, let's dive into
creating our own Conan packages.

Let's create a new top-level directory in our project, simply named conan, where we will
store the files needed for packaging using this tool: a script for building our package and an
environment to test it.

Building and Packaging Chapter 7

[237]

Creating the conanfile.py script
The most important file required for all Conan packages is conanfile.py. In our case,
we'll want to fill in some of its details using CMake variables, so let's create a
conanfile.py.in file instead. We'll use it to create the former file by adding the following
to our CMakeLists.txt files:

configure_file(${PROJECT_SOURCE_DIR}/conan/conanfile.py.in
 ${CMAKE_CURRENT_BINARY_DIR}/conan/conanfile.py @ONLY)

Our file will begin with some boring Python imports, such as those required by Conan for
CMake projects:

 import os
 from conans import ConanFile, CMake

Now we need to create a class that defines our package:

class CustomerConan(ConanFile):
 name = "customer"
 version = "@PROJECT_VERSION@"
 license = "MIT"
 author = "Authors"
 description = "Library and app for the Customer microservice"
 topics = ("Customer", "domifair")

First, we start with a bunch of generic variables, taking the project version from our CMake
code. Usually, the description will be a multi-line string. The topics are useful for finding
our library on sites such as JFrog's Artifactory and can tell the readers what our package is
about. Let's now go through other variables:

 homepage = "https://example.com"
 url =
"https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-Cpp
/"

homepage should point to, well, the home page of your project: where the docs, tutorials,
FAQs, and similar stuff are placed. The url one, on the other hand, is where the package
repository is placed. Many open source libraries have their code in one repo and the
packaging code in another. A common case is when the package is being built by the
central Conan package server. In this case, url should point to
https://github.com/conan-io/conan-center-index.

Building and Packaging Chapter 7

[238]

Going forward, we can now specify how our package is being built:

 settings = "os", "compiler", "build_type", "arch"
 options = {"shared": [True, False], "fPIC": [True, False]}
 default_options = {"shared": False, "fPIC": True}
 generators = "CMakeDeps"
 keep_imports = True # useful for repackaging, e.g. of licenses

settings will determine whether the package needs to be built or an already-built version
can be downloaded.

options and the default_options values can be whatever you like. shared and fPIC
are the two that most packages provide, so let's follow this convention.

Now that we have defined our variables, let's start writing methods that Conan will use to
package our software. First, we specify our libraries that consumers of our package should
link against:

 def package_info(self):
 self.cpp_info.libs = ["customer"]

The self.cpp_info object allows setting much more than that, but this is the bare
minimum. Feel free to take a look at other properties in Conan's documentation.

Next, let's specify what other packages requires:

 def requirements(self):
 self.requires.add('cpprestsdk/2.10.18')

This time, we grab the C++ REST SDK directly from Conan instead of specifying what
packages the OS's package manager should depend on. Now, let's specify how (and where)
CMake should generate our build system:

 def _configure_cmake(self):
 cmake = CMake(self)
 cmake.configure(source_folder="@CMAKE_SOURCE_DIR@")
 return cmake

In our case, we simply point it to the source directory. Once the build system is configured,
we will need to actually build our project:

 def build(self):
 cmake = self._configure_cmake()
 cmake.build()

Building and Packaging Chapter 7

[239]

Conan also supports non-CMake-based build systems. After building our package, it's
packaging time, which requires us to provide yet another method:

 def package(self):
 cmake = self._configure_cmake()
 cmake.install()
 self.copy("license*", ignore_case=True, keep_path=True)

Note how we're using the same _configure_cmake() function to both build and package
our project. Aside from installing binaries, we also specify where the licenses should be
deployed. Finally, let's tell Conan what it should copy when installing our package:

 def imports(self):
 self.copy("license*", dst="licenses", folder=True,
ignore_case=True)

 # Use the following for the cmake_multi generator on Windows
and/or Mac OS to copy libs to the right directory.
 # Invoke Conan like so:
 # conan install . -e CONAN_IMPORT_PATH=Release -g cmake_multi
 dest = os.getenv("CONAN_IMPORT_PATH", "bin")
 self.copy("*.dll", dst=dest, src="bin")
 self.copy("*.dylib*", dst=dest, src="lib")

The preceding code specifies where to unpack the license files, as well as libraries, and
executables when installing the library.

Now that we know how to build a Conan package, let's also see how to test whether it
works as desired.

Testing our Conan package
Once Conan builds our package, it should test whether it was properly built. In order to do
so, let's start by creating a test_package subdirectory in our conan directory.

It will also contain a conanfile.py script, but this time a shorter one. It should start as
follows:

import os

from conans import ConanFile, CMake, tools

Building and Packaging Chapter 7

[240]

class CustomerTestConan(ConanFile):
 settings = "os", "compiler", "build_type", "arch"
 generators = "CMakeDeps"

Nothing too fancy here. Now, we should provide the logic to build the test package:

 def build(self):
 cmake = CMake(self)
 # Current dir is "test_package/build/<build_id>" and
 # CMakeLists.txt is in "test_package"
 cmake.configure()
 cmake.build()

We'll write our CMakeLists.txt file in a sec. But first, let's write two more things: the
imports method and the test method. The imports method can be written as follows:

 def imports(self):
 self.copy("*.dll", dst="bin", src="bin")
 self.copy("*.dylib*", dst="bin", src="lib")
 self.copy('*.so*', dst='bin', src='lib')

Then we have the heart of our package testing logic – the test method:

 def test(self):
 if not tools.cross_building(self.settings):
 self.run(".%sexample" % os.sep)

We want to run it only if we're building for our native architecture. Otherwise, we would
most probably be unable to run the compiled executable.

Let's now define our CMakeLists.txt file:

 cmake_minimum_required(VERSION 3.12)
 project(PackageTest CXX)

 list(APPEND CMAKE_PREFIX_PATH "${CMAKE_BINARY_DIR}")

 find_package(customer CONFIG REQUIRED)

 add_executable(example example.cpp)
 target_link_libraries(example customer::customer)

 # CTest tests can be added here

Building and Packaging Chapter 7

[241]

Simple as that. We link to all the Conan libraries provided (in our case, just our Customer
library).

Finally, let's write our example.cpp file with just enough logic to check whether the
package was successfully created:

 #include <customer/customer.h>

 int main() { responder{}.prepare_response("Conan"); }

Before we start running all this, there are a few small changes that we need to make in our
main tree of CMake lists. Let's now see how to export Conan targets from our CMake file
properly.

Adding Conan packaging code to our CMakeLists
Remember that installation logic we wrote in the Reusing quality code section? If you're
relying on Conan for packaging, you probably don't need to run the bare CMake exporting
and installation logic. Assuming you want to only export and install if Conan is not used,
you need to modify the section of your CMakeLists described in the Installing subsection
previously to look similar to this:

if(NOT CONAN_EXPORTED)
 install(
 EXPORT CustomerTargets
 FILE CustomerTargets.cmake
 NAMESPACE domifair::
 DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Customer)

 configure_file(${PROJECT_SOURCE_DIR}/cmake/CustomerConfig.cmake.in
 CustomerConfig.cmake @ONLY)

 include(CMakePackageConfigHelpers)
 write_basic_package_version_file(
 CustomerConfigVersion.cmake
 VERSION ${PACKAGE_VERSION}
 COMPATIBILITY AnyNewerVersion)

 install(FILES ${CMAKE_CURRENT_BINARY_DIR}/CustomerConfig.cmake
 ${CMAKE_CURRENT_BINARY_DIR}/CustomerConfigVersion.cmake
 DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Customer)
 endif()

 install(
 FILES ${PROJECT_SOURCE_DIR}/LICENSE

Building and Packaging Chapter 7

[242]

 DESTINATION
$<IF:$<BOOL:${CONAN_EXPORTED}>,licenses,${CMAKE_INSTALL_DOCDIR}>)

Adding an if statement and a generator expression is a reasonable price for having clean
packages, and that's all we needed to do.

One last thing to make our lives easier – a target that we could build in order to create the
Conan package. We can define it as follows:

add_custom_target(
 conan
 COMMAND
 ${CMAKE_COMMAND} -E copy_directory
${PROJECT_SOURCE_DIR}/conan/test_package/
 ${CMAKE_CURRENT_BINARY_DIR}/conan/test_package
 COMMAND conan create . customer/testing -s build_type=$<CONFIG>
 WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/conan
 VERBATIM)

Now, when we run cmake --build . --target conan (or ninja conan if we're using
that generator and want a short invocation), CMake will copy our test_package directory
to the build folder, build our Conan package, and test it using the copied files.

All done!

One last remark: what we described here is just the tip of the iceberg when
it comes to creating Conan packages. For more information, please refer to
Conan's documentation. You can find a link in the Further reading section.

Summary
In this chapter, you've learned a lot about building and packaging your code. You're now
able to write faster-building template code, know how to choose the tools to compile your
code faster (you'll learn more about tooling in the next chapter), and know when to use
forward declarations instead of #include directives.

Aside from that, you can now define your build targets and test suites using Modern
CMake, manage external dependencies using find modules and FetchContent, create
packages and installers in various formats, and last but not least, use Conan to install your
dependencies and create your own artifacts.

Building and Packaging Chapter 7

[243]

In the next chapter, we will look at how to write code that would be easy to test.
Continuous integration and continuous deployment are useful only if you have good test
coverage. Continuous deployment without comprehensive testing will allow you to
introduce new bugs to production much quicker. This is not our goal when we design
software architecture.

Questions
What's the difference between installing and exporting your targets in CMake?1.
How do you make your template code compile faster?2.
How do you use multiple compilers with Conan?3.
What do you do if you'd like to compile your Conan dependencies with the pre-4.
C++11 GCC ABI?
How to ensure we force a specific C++ standard in CMake?5.
How would you build documentation in CMake and ship it along with your6.
RPM package?

Further reading
List of compiler books on GCC's wiki: https:/ /gcc. gnu. org/ wiki/
ListOfCompilerBooks

Type Based Template Metaprogramming is Not Dead, a lecture by Odin Holmes,
C++Now 2017: https:/ /www. youtube. com/ watch? v= EtU4RDCCsiU

The Modern CMake online book: https:/ /cliutils. gitlab. io/ modern- cmake

Conan documentation: https:/ /docs. conan. io/en/ latest/

CMake documentation on creating find scripts: https:/ /cmake. org/ cmake/ help/
v3.17/ manual/ cmake- developer. 7.html? highlight= find#a- sample- find-
module

https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://gcc.gnu.org/wiki/ListOfCompilerBooks
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://www.youtube.com/watch?v=EtU4RDCCsiU
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://cliutils.gitlab.io/modern-cmake
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://docs.conan.io/en/latest/
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module
https://cmake.org/cmake/help/v3.17/manual/cmake-developer.7.html?highlight=find#a-sample-find-module

3
Section 3: Architectural Quality

Attributes
This section focuses more on high-level concepts that together make a software project a
success. Where possible, we will also show tooling that helps in maintaining the high
quality we want to achieve.

This section contains the following chapters:

Chapter 8, Writing Testable Code
Chapter 9, Continuous Integration and Continuous Deployment
Chapter 10, Security in Code and Deployment
Chapter 11, Performance

8
Writing Testable Code

The ability to test code is the most important quality of any software product. Without
proper testing, it is prohibitively expensive to refactor the code or to improve any other
part of it, such as its security, scalability, or performance. In this chapter, we'll learn how to
design and manage automated tests and how to correctly use fakes and mocks when it is
necessary to do so.

The following topics will be covered in this chapter:

Why do you test code?
Introducing testing frameworks
Understanding mocks and fakes
Test-driven class design
Automating tests for continuous integration/continuous deployment

Technical requirements
The sample code for this chapter can be found at https:/ /github. com/PacktPublishing/
Software-Architecture- with- Cpp/ tree/ master/ Chapter08.

The software that we will be using in this chapter's examples is as follows:

GTest 1.10+
Catch2 2.10+
CppUnit 1.14+
Doctest 2.3+
Serverspec 2.41+
Testinfra 3.2+
Goss 0.3+

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter08

Writing Testable Code Chapter 8

[246]

CMake 3.15+
Autoconf
Automake
Libtool

Why do you test code?
Software engineering and software architecture is a very complex matter, and the natural
way to deal with uncertainties is to insure yourself against potential risks. We do it all the
time with life insurance, health insurance, and car insurance. Yet when it comes to software
development, we tend to forget about all the safety precautions and just hope for an
optimistic outcome.

Knowing that things not only may but will go wrong, it is unbelievable that the topic of
testing software is still a controversial one. Whether it's from having a lack of skill or from a
lack of budget, there are still projects that lack even some of the most basic tests. And when
the client decides to change the requirements, a simple correction may result in endless
reworks and firefights.

The time that's saved from not implementing proper testing is lost when the first rework
happens. If you think this rework will not happen very soon, you are most probably very
mistaken. In the agile environment we live in nowadays, reworks are a part of our daily
life. Our knowledge about the world and our customers' changes means that the
requirements change, and with that comes making changes to our code.

Therefore, testing's main purpose is to protect your precious time later in the project. Sure,
it's an investment early on when you have to implement various tests instead of focusing
solely on the features, but it's an investment you won't regret. Like an insurance policy,
testing takes a little from your budget when things go according to plan, but when things
go bad, you'll get a generous payout.

The testing pyramid
There are different types of testing you may encounter when designing or implementing a
software system. Each of the classes serves a slightly different purpose. They can be
categorized as follows:

Unit testing: Code
Integration testing: Design

Writing Testable Code Chapter 8

[247]

System testing: Requirements
Acceptance testing (end-to-end or E2E): Client needs

This distinction is arbitrary and you may often see other layers of the pyramid, as follows:

Unit testing
Service testing
UI testing (end-to-end or E2E)

Here, unit testing refers to the same layer as in the previous example. Service testing refers
to a combination of integration testing and system testing. On the other hand, UI testing
refers to acceptance testing. The following diagram shows the testing pyramid:

Figure 8.1 – Testing pyramid

It's worth noting that unit tests are not only the cheapest to build but that they also execute
pretty quickly and can often run in parallel. This means they make for a great continuous
integration gating mechanism. Not only that, but they also often provide the best feedback
about the health of your system. Higher-level tests are not only harder to write properly,
but they also may be less robust. This can lead to flickering test results, with one in every
few test runs failing. If the failure in the higher-level test is not correlated with any failure
at the unit test level, chances are that the problem may be with the test itself and not in the
system under test.

Writing Testable Code Chapter 8

[248]

We don't want to say that the higher-level tests are entirely useless and that you should
only focus on writing unit tests. That's not the case. The pyramid has its shape because
there should be a solid base covered by unit tests. On that base, however, you should also
have all the higher-level tests in an appropriate proportion. After all, it is not very hard to
imagine a system where all the unit tests are passing, but the system itself doesn't provide
any value to the customer. An extreme example would be a perfectly working backend
without any user interface (be it graphical or in the form of an API) present. Sure, it passes
all the unit tests, but that's no excuse!

As you may imagine, the opposite of the testing pyramid is known as an ice cone, and it is
an antipattern. Violating the testing pyramid often leads to fragile code and hard to trace
bugs. This makes debugging much more expensive and doesn't introduce savings in test
development either.

Non-functional testing
What we've already covered are so-called functional tests. Their aim is to check whether the
system under test fulfills the functional requirements. But there are also other types of
requirements besides functional ones that we may want to control. Some of them are as
follows:

Performance: Your application may behave according to requirements in terms
of functionality but still be unusable for end users due to weak performance. We
will focus more on improving performance in Chapter 11, Performance.
Endurance: Even if your system can be really performant, it doesn't mean it can
survive a continuously high workload. And when it does, can it survive some of
the malfunctionings of the components? When we embrace the idea that every
piece of software is vulnerable and may break at any given moment, we start
designing systems that can be failure-resistant. This is a concept that the Erlang
ecosystem embraces, but the concept itself is not limited to that environment
alone. In Chapter 13, Designing Microservices, and Chapter 15, Cloud-Native
Design, we will mention a bit more about designing systems that are fault-
tolerant and the role of chaos engineering.
Security: Nowadays, there should be no need to repeat that security is crucial.
But since it still isn't treated with all the seriousness the matter requires, we will
bore you with saying this yet again. Every system that is connected to the
network can – and most probably will – be broken. Performing security tests
early on during development gives the same benefits as other kinds of tests: you
can catch problems before they are too expensive to fix.

Writing Testable Code Chapter 8

[249]

Availability: Whereas poor performance may discourage your end users from
using your product, poor availability may prevent them from even accessing said
product. While availability problems may arise due to performance overload,
there are also other causes of lost availability.
Integrity: Your customers' data should not only be safe from outside attackers. It
should also be safe from any alterations or losses due to software malfunction.
Protection against bit rot, snapshotting, and backups are ways to prevent
integrity loss. By comparing the current version with previously recorded
snapshots, you can make sure if the difference resulted only from the action that
was taken or whether it was caused by errors.
Usability: Even a product that ticks all of the previous boxes may still be
unsatisfactory for the users if it has a clunky interface and unintuitive interaction.
Usability tests are mostly performed manually. It's important to perform a
usability assessment each time the UI or the workflow of the system changes.

Regression testing
Regression tests are usually end-to-end tests that should prevent you from making the
same mistake twice. When you (or your QA team or customers) discover a bug in a
production system, it is not sufficient to apply a hotfix and forget all about it.

One of the things you need to do is write a regression test that should prevent the same
error from ever entering the production system again. Good regression tests can even
prevent the same class of errors from entering production. After all, once you know what
you did wrong, you can imagine other ways to mess things up. Another thing you can do is
perform root cause analysis.

Root cause analysis
Root cause analysis is a process that helps you uncover what the original source of the
problem was, not only its manifestation. The most common way to perform root cause
analysis is to use the method of 5 Whys, which was made famous by the Toyota company.
This method consists of peeling off all the superficial layers of the problem's manifestation
to uncover the root cause hidden underneath. You do this by asking "why" at each layer
until you find the root cause you are looking for.

Let's look at an example of this method in action.

Writing Testable Code Chapter 8

[250]

The problem: We didn't get payments for some of the transactions:

Why? The system didn't send the appropriate emails to the customers.1.

Why? The email sending system doesn't support special characters in customers'2.
names.

Why? The email sending system wasn't tested properly.3.

Why? There was no time for proper testing due to a need to develop new4.
features.

Why? Our time estimates for the features were incorrect.5.

In this example, the problem with time estimates may be the root cause of the bug that was
found in the production system. But it may as well be another layer to peel. The framework
gives you a heuristic that should work most of the time, but if you don't feel entirely sure
that what you got is what you are looking for, you can keep on peeling additional layers
until you find what caused all the trouble.

Given that many bugs result from the exact same and often repeatable root causes, finding
the root cause is extremely beneficial because you can protect yourself from making the
same mistake in the future on several different levels. This is the principle of defense in depth
when it's applied to software testing and problem-solving.

The groundwork for further improvement
Having your code tested protects you from making accidental errors. But it also opens up
different possibilities. When your code is covered by test cases, you don't have to fear
refactoring. Refactoring is the process of transforming code that does its job into code that is
functionally similar, except it has better internal organization. You may be wondering why
you need to change the code's organization. There are several reasons for this.

First of all, your code may no longer be readable, which means every modification takes too
much time. Second, fixing a bug you are about to fix will make some other features behave
incorrectly as the code gathered too many workarounds and special cases over time. Both
of those reasons can be summed up as productivity improvements. They will make
maintenance cheaper in the long run.

Writing Testable Code Chapter 8

[251]

But apart from productivity, you may also want to improve performance. This can mean
either runtime performance (how the application behaves in production) or compile-time
performance (which is basically another form of productivity improvement).

You can refactor for runtime performance by replacing the current suboptimal algorithms
with more efficient ones or by changing the data structures that are used through the
module you are refactoring.

Refactoring for compile-time performance usually consists of moving parts of code to
different compilation units, reorganizing headers, or reducing dependencies.

No matter what your end goal is, refactoring is generally a risky business. You take
something that mostly works correctly and can end up either with a better version or a
worse one. How would you know which case is yours? Here, testing comes to the rescue.

If the current feature set is thoroughly covered and you want to fix the recently uncovered
bug, all you need to do is add another test case that will fail at that time. The moment your
entire test suite starts passing again means your refactoring efforts were successful.

The worst-case scenario is that you have to abort the refactoring process in case you cannot
satisfy all the test cases in a specified timeframe. You would undertake a similar procedure
if you wanted to improve performance, but instead of unit tests (or end-to-end tests), you
would focus on performance testing.

With the recent rise of automated tools that aid in refactoring (such as ReSharper
C++: https://www. jetbrains. com/ resharper- cpp/ features/ ReSharper C++:) and code
maintenance, you can even go as far as outsourcing a part of coding solely to the external
software services. Services such as Renovate (https:/ /renovatebot. com/), Dependabot
(https://dependabot. com), and Greenkeeper (https:/ /greenkeeper. io/) may soon
support C++ dependencies. Having solid test coverage will let you use them without the
fear of breaking your application during dependency updates.

Since keeping your dependencies up to date in terms of security vulnerabilities is
something you should always consider, such services can reduce the burden significantly.
Therefore, testing not only protects you from making mistakes, but it reduces the effort
necessary to introduce new features. It can also help you improve your code base and keep
it stable and secure!

Now that we understand the need for testing, we want to start writing our own tests. It is
possible to write tests without any external dependencies. However, we'd like to focus just
on the testing logic. We're not interested in the details of managing test results and
reporting. Therefore, we will select a testing framework to handle this tedious job for us. In
the next section, we will introduce some of the most popular testing frameworks.

https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://www.jetbrains.com/resharper-cpp/features/
https://renovatebot.com/
https://renovatebot.com/
https://renovatebot.com/
https://renovatebot.com/
https://renovatebot.com/
https://renovatebot.com/
https://renovatebot.com/
https://renovatebot.com/
https://dependabot.com
https://dependabot.com
https://dependabot.com
https://dependabot.com
https://dependabot.com
https://dependabot.com
https://dependabot.com
https://greenkeeper.io/
https://greenkeeper.io/
https://greenkeeper.io/
https://greenkeeper.io/
https://greenkeeper.io/
https://greenkeeper.io/
https://greenkeeper.io/
https://greenkeeper.io/

Writing Testable Code Chapter 8

[252]

Introducing testing frameworks
As for the frameworks, the current de facto standard is Google's GTest. Together with its
counterpart GMock, they form a small suite of tools that allow you to follow the best
practices of testing in C++.

Other popular alternatives to GTest/GMock duo are Catch2, CppUnit, and Doctest.
CppUnit has been available for a long time, but its lack of recent releases means we don't
recommend it for fresh projects. Both Catch2 and Doctest support the modern C++
standards – in particular, C++14, C++17, and C++20.

To compare these testing frameworks, we will use the same codebase that we want to test.
Using it as a basis, we will then implement tests in each of the frameworks.

GTest examples
Here is an example test for our customer library written in GTest:

#include "customer/customer.h"

#include <gtest/gtest.h>

TEST(basic_responses,
given_name_when_prepare_responses_then_greets_friendly) {
 auto name = "Bob";
 auto code_and_string = responder{}.prepare_response(name);
 ASSERT_EQ(code_and_string.first, web::http::status_codes::OK);
 ASSERT_EQ(code_and_string.second, web::json::value("Hello, Bob!"));
}

Most of the tasks that are commonly done during testing have been abstracted. We're
mostly focused on providing the action we want to test (prepare_response) and the
desired behavior (both ASSERT_EQ lines).

Catch2 examples
Here is an example test for our customer library written in Catch2:

#include "customer/customer.h"

#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
 // this in one cpp file
#include "catch2/catch.hpp"

Writing Testable Code Chapter 8

[253]

TEST_CASE("Basic responses",
 "Given Name When Prepare Responses Then Greets Friendly") {
 auto name = "Bob";
 auto code_and_string = responder{}.prepare_response(name);
 REQUIRE(code_and_string.first == web::http::status_codes::OK);
 REQUIRE(code_and_string.second == web::json::value("Hello, Bob!"));
}

It looks pretty similar to the previous one. Some keywords differ (TEST and TEST_CASE)
and there's a slightly different way to check the results (REQUIRE(a == b) instead of
ASSERT_EQ(a,b)). Both are pretty compact and readable anyway.

CppUnit examples
Here is an example test for our customer library written in CppUnit. We will split it into
several snippets.

The following code block prepares us to use the constructs from the CppUnit library:

#include <cppunit/BriefTestProgressListener.h>
#include <cppunit/CompilerOutputter.h>
#include <cppunit/TestCase.h>
#include <cppunit/TestFixture.h>
#include <cppunit/TestResult.h>
#include <cppunit/TestResultCollector.h>
#include <cppunit/TestRunner.h>
#include <cppunit/XmlOutputter.h>
#include <cppunit/extensions/HelperMacros.h>
#include <cppunit/extensions/TestFactoryRegistry.h>
#include <cppunit/ui/text/TextTestRunner.h>

#include "customer/customer.h"

using namespace CppUnit;
using namespace std;

Next, we must define the test class and implement the method that will execute our test
case. After that, we must register the class so that we can use it in our test runner:

class TestBasicResponses : public CppUnit::TestFixture {
 CPPUNIT_TEST_SUITE(TestBasicResponses);
 CPPUNIT_TEST(testBob);
 CPPUNIT_TEST_SUITE_END();

 protected:
 void testBob();

Writing Testable Code Chapter 8

[254]

};

void TestBasicResponses::testBob() {
 auto name = "Bob";
 auto code_and_string = responder{}.prepare_response(name);
 CPPUNIT_ASSERT(code_and_string.first == web::http::status_codes::OK);
 CPPUNIT_ASSERT(code_and_string.second == web::json::value("Hello,
Bob!"));
}

CPPUNIT_TEST_SUITE_REGISTRATION(TestBasicResponses);

Finally, we must provide the behavior of our test runner:

int main() {
 CPPUNIT_NS::TestResult testresult;

 CPPUNIT_NS::TestResultCollector collectedresults;
 testresult.addListener(&collectedresults);

 CPPUNIT_NS::BriefTestProgressListener progress;
 testresult.addListener(&progress);

 CPPUNIT_NS::TestRunner testrunner;
testrunner.addTest(CPPUNIT_NS::TestFactoryRegistry::getRegistry().makeTest(
));
 testrunner.run(testresult);

 CPPUNIT_NS::CompilerOutputter compileroutputter(&collectedresults,
std::cerr);
 compileroutputter.write();

 ofstream xmlFileOut("cppTestBasicResponsesResults.xml");
 XmlOutputter xmlOut(&collectedresults, xmlFileOut);
 xmlOut.write();

 return collectedresults.wasSuccessful() ? 0 : 1;
}

Compared to the previous two examples, there's a lot of boilerplate in here. The test itself,
however, looks pretty similar to the previous example.

Writing Testable Code Chapter 8

[255]

Doctest examples
Here is an example test for our customer library written in Doctest:

#include "customer/customer.h"

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest/doctest.h>

TEST_CASE("Basic responses") {
 auto name = "Bob";
 auto code_and_string = responder{}.prepare_response(name);
 REQUIRE(code_and_string.first == web::http::status_codes::OK);
 REQUIRE(code_and_string.second == web::json::value("Hello, Bob!"));
}

Once again, it's quite clean and easy to understand. The main selling point of Doctest is that
it's the fastest both at compile-time and at runtime compared to the other similarly-featured
alternatives.

Testing compile-time code
Template metaprogramming allows us to write C++ code that is executed during compile-
time as opposed to the usual execution time. The constexpr keyword, which was added in
C++11, allows us to use even more compile-time code, and consteval keyword from
C++20 aims to give us greater control over the way the code is evaluated.

One of the problems with compile-time programming is that there is no easy way to test it.
While unit testing frameworks for execution time code are abundant (as we just saw), there
are not that many resources regarding compile-time programming. Part of this may stem
from the fact that compile-time programming is still considered complicated and only
aimed at experts.

Just because something isn't easy doesn't mean it is impossible, though. Just like execution
time tests rely on assertions being checked during runtime, you can check your compile-
time code for correct behavior using static_assert, which was introduced
alongside constexpr in C++11.

The following is a simple example of using static_assert:

#include <string_view>

constexpr int generate_lucky_number(std::string_view name) {
 if (name == "Bob") {

Writing Testable Code Chapter 8

[256]

 number = number * 7 + static_cast<int>(letter);
 }
 return number;
}

static_assert(generate_lucky_number("Bob") == 808);

Since we can compute each value tested here during compile time, we can effectively use
the compiler as our testing framework.

Understanding mocks and fakes
As long as you are testing functions that do not interact too much with the outside world,
things are pretty easy. The problems start when the units you are testing interface with
third-party components such as databases, HTTP connections, and specific files.

On one hand, you want to see how your code behaves due to various circumstances. On the
other hand, you don't want to wait for the database to boot, and you definitely don't want
to have several databases containing different versions of data so that you can check all the
necessary conditions.

How can we deal with such cases? The idea is not to execute the actual code that triggers all
those side effects but instead use test doubles. Test doubles are constructions in code that
mimic the actual API, except they don't perform actions of the mimicked functions or
objects.

The most common test doubles are mocks, fakes, and stubs. Many people tend to mistake
one for another as they are similar, though not the same.

Different test doubles
Mocks are test doubles that register all the received calls but do nothing more than that.
They do not return any value and they do not change state in any way. They are useful
when we have a third-party framework that is supposed to call our code. By using mocks,
we can observe all the calls and are thus able to verify that the framework behaves as
expected.

Writing Testable Code Chapter 8

[257]

Stubs are a bit more complicated when it comes to their implementation. They return
values, but those values are predefined. It may seem surprising that the
StubRandom.randomInteger() method always returns the same value (for example, 3),
but it may be a sufficient stub implementation when we are testing the type of the returned
value or the fact that it does return a value at all. The exact value may not be that
important.

Finally, fakes are objects that have a working implementation and behave mostly like the
actual production implementation. The main difference is that fakes may take various
shortcuts, such as avoiding calling the production database or filesystem.

When implementing the Command Query Separation (CQS) design pattern, you will
usually want to double queries with stubs and commands with mocks.

Other uses for test doubles
Fakes can also be used, to a limited extent, outside of testing. In-memory processing data
without resorting to database access can also be great for prototyping or when you're
hitting performance bottlenecks.

Writing test doubles
To write test doubles, we typically use an external library, just as we do with unit tests.
Some of the most popular solutions are as follows:

GoogleMock (also known as gMock), which is now a part of the GoogleTest
library: https:/ /github. com/ google/ googletest.
Trompeloeil, which focuses on C++14, integrates well with many testing libraries,
such as Catch2, doctest, and GTest: https:/ /github. com/ rollbear/ trompeloeil.

The code in the following sections will show you how to use both GoogleMock
and Trompeloeil.

GoogleMock example
Since GoogleMock is part of GoogleTest, we will present them together:

#include "merchants/reviews.h"

#include <gmock/gmock.h>

https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil

Writing Testable Code Chapter 8

[258]

#include <merchants/visited_merchant_history.h>

#include "fake_customer_review_store.h"

namespace {

class mock_visited_merchant : public i_visited_merchant {
 public:
 explicit mock_visited_merchant(fake_customer_review_store &store,
 merchant_id_t id)
 : review_store_{store},
 review_{store.get_review_for_merchant(id).value()} {
 ON_CALL(*this, post_rating).WillByDefault([this](stars s) {
 review_.rating = s;
 review_store_.post_review(review_);
 });
 ON_CALL(*this, get_rating).WillByDefault([this] { return
review_.rating; });
 }

 MOCK_METHOD(stars, get_rating, (), (override));
 MOCK_METHOD(void, post_rating, (stars s), (override));

 private:
 fake_customer_review_store &review_store_;
 review review_;
};

} // namespace

class history_with_one_rated_merchant : public ::testing::Test {
 public:
 static constexpr std::size_t CUSTOMER_ID = 7777;
 static constexpr std::size_t MERCHANT_ID = 1234;
 static constexpr const char *REVIEW_TEXT = "Very nice!";
 static constexpr stars RATING = stars{5.f};

 protected:
 void SetUp() final {
 fake_review_store_.post_review(
 {CUSTOMER_ID, MERCHANT_ID, REVIEW_TEXT, RATING});

 // nice mock will not warn on "uninteresting" call to get_rating
 auto mocked_merchant =
 std::make_unique<::testing::NiceMock<mock_visited_merchant>>(
 fake_review_store_, MERCHANT_ID);

 merchant_index_ = history_.add(std::move(mocked_merchant));

Writing Testable Code Chapter 8

[259]

 }

 fake_customer_review_store fake_review_store_{CUSTOMER_ID};
 history_of_visited_merchants history_{};
 std::size_t merchant_index_{};
};

TEST_F(history_with_one_rated_merchant,
 when_user_changes_rating_then_the_review_is_updated_in_store) {
 const auto &mocked_merchant = dynamic_cast<const mock_visited_merchant
&>(
 history_.get_merchant(merchant_index_));
 EXPECT_CALL(mocked_merchant, post_rating);

 constexpr auto new_rating = stars{4};
 static_assert(RATING != new_rating);
 history_.rate(merchant_index_, stars{new_rating});
}

TEST_F(history_with_one_rated_merchant,
when_user_selects_same_rating_then_the_review_is_not_updated_in_store) {
 const auto &mocked_merchant = dynamic_cast<const mock_visited_merchant
&>(
 history_.get_merchant(merchant_index_));
 EXPECT_CALL(mocked_merchant, post_rating).Times(0);

 history_.rate(merchant_index_, stars{RATING});
}

GTest is the most popular C++ testing framework at the time of writing this book. Its
integration with GMock means that GMock is probably already available for you in your
project. This combination is intuitive to use and fully-featured, so there's no reason to look
for alternatives if you're already invested in GTest.

Trompeloeil example
To contrast this example with the previous one, this time, we are using Trompeloeil for test
doubles and Catch2 as a testing framework:

#include "merchants/reviews.h"

#include "fake_customer_review_store.h"

// order is important
#define CATCH_CONFIG_MAIN
#include <catch2/catch.hpp>

Writing Testable Code Chapter 8

[260]

#include <catch2/trompeloeil.hpp>

#include <memory>

#include <merchants/visited_merchant_history.h>

using trompeloeil::_;

class mock_visited_merchant : public i_visited_merchant {
 public:
 MAKE_MOCK0(get_rating, stars(), override);
 MAKE_MOCK1(post_rating, void(stars s), override);
};

SCENARIO("merchant history keeps store up to date", "[mobile app]") {
 GIVEN("a history with one rated merchant") {
 static constexpr std::size_t CUSTOMER_ID = 7777;
 static constexpr std::size_t MERCHANT_ID = 1234;
 static constexpr const char *REVIEW_TEXT = "Very nice!";
 static constexpr stars RATING = stars{5.f};

 auto fake_review_store_ = fake_customer_review_store{CUSTOMER_ID};
 fake_review_store_.post_review(
 {CUSTOMER_ID, MERCHANT_ID, REVIEW_TEXT, RATING});

 auto history_ = history_of_visited_merchants{};
 const auto merchant_index_ =
 history_.add(std::make_unique<mock_visited_merchant>());

 auto &mocked_merchant = const_cast<mock_visited_merchant &>(
 dynamic_cast<const mock_visited_merchant &>(
 history_.get_merchant(merchant_index_)));

 auto review_ = review{CUSTOMER_ID, MERCHANT_ID, REVIEW_TEXT, RATING};
 ALLOW_CALL(mocked_merchant, post_rating(_))
 .LR_SIDE_EFFECT(review_.rating = _1;
 fake_review_store_.post_review(review_););
 ALLOW_CALL(mocked_merchant, get_rating()).LR_RETURN(review_.rating);

 WHEN("a user changes rating") {
 constexpr auto new_rating = stars{4};
 static_assert(RATING != new_rating);

 THEN("the review is updated in store") {
 REQUIRE_CALL(mocked_merchant, post_rating(_));
 history_.rate(merchant_index_, stars{new_rating});
 }
 }

Writing Testable Code Chapter 8

[261]

 WHEN("a user selects same rating") {
 THEN("the review is not updated in store") {
 FORBID_CALL(mocked_merchant, post_rating(_));
 history_.rate(merchant_index_, stars{RATING});
 }
 }
 }
}

One of the great features of Catch2 is that it makes it easy to write behavior-driven
development-style tests, such as the one shown here. If you prefer this style, then Catch2
with Trompeloeil would be a good choice as they integrate very well.

Test-driven class design
It's not enough to distinguish between different types of tests and learn a particular testing
framework (or several). When you start testing your actual code, you will soon notice that
not all classes can be tested easily. Sometimes, you may feel the need to access private
attributes or methods. Resist this urge if you want to maintain the principles of good
architecture! Instead, consider either testing the business requirements that are available
through the type's public API or refactoring the type so that there's another unit of code
you can test.

When tests and class design clash
The problem you may be facing is not that the testing frameworks are inadequate. Usually,
what you encounter is inappropriately designed classes. Even though your classes may
behave correctly and may look correct unless they allow for testing, they are not designed
correctly.

However, this is good news. It means that you can repair the problem before it's
inconvenient to do so. The class design will probably haunt you later on when you start
building a class hierarchy based on it. Fixing the design during test implementation will
simply reduce the possible technological debt.

Writing Testable Code Chapter 8

[262]

Defensive programming
Unlike its name may suggest, defensive programming is not a security feature. Its name
comes from defending your classes and functions from being used contrary to their original
intention. It's not directly related to testing, but it's a great design pattern to use since it
improves your code's quality, making your project future-proof.

Defensive programming starts with static typing. If you create a function that handles a
custom-defined type as a parameter, you must make sure nobody will call it with some
accidental value. A user will have to consciously check what the function expects and
prepare the input accordingly.

In C++, we can also leverage type-safety features when we're writing template code. When
we're creating a container for our customers' reviews, we could accept a list of any type and
copy from it. To get nicer errors and well-crafted checks, we could write the following:

class CustomerReviewStore : public i_customer_review_store {
 public:
 CustomerReviewStore() = default;
 explicit CustomerReviewStore(const std::ranges::range auto
&initial_reviews) {
 static_assert(is_range_of_reviews_v<decltype(initial_reviews)>,
 "Must pass in a collection of reviews");
 std::ranges::copy(begin(initial_reviews), end(initial_reviews),
 begin(reviews_));
 }
 // ...
 private:
 std::vector<review> reviews_;
};

The explicit keyword protects us from unwanted implicit casts. By specifying that our
input parameter satisfies the range concept, we ensure that we're only going to compile
with a valid container. Thanks to using concepts, we can get clearer error messages from
our defense against invalid use. Using static_assert in our code is also a great defensive
measure as it allows us to provide a nice error message if needed. Our
is_range_of_reviews check could be implemented as follows:

template <typename T>
constexpr bool is_range_of_reviews_v =
 std::is_same_v<std::ranges::range_value_t<T>, review>;

This way, we ensure that the range we got actually contains reviews of the type we desire.

Writing Testable Code Chapter 8

[263]

Static typing will not prevent invalid runtime values from being passed to the function.
That's why the next form of defensive programming is checking preconditions. This way,
your code will fail as soon as the first sign of a problem arises, which is always better than
returning an invalid value that propagates to other parts of the system. Until we have
contracts in C++, we can use the GSL library we mentioned in earlier chapters to check the
pre- and post-conditions of our code:

void post_review(review review) final {
 Expects(review.merchant);
 Expects(review.customer);
 Ensures(!reviews_.empty());

 reviews_.push_back(std::move(review));
}

Here, by using the Expects macro, we're checking that our incoming review actually has
the IDs of the merchant and reviewer set. Aside from the cases where it doesn't, we are also
defending ourselves against cases where adding a review to our storage failed when we use
the Ensures post-condition macro.

When it comes to runtime checks, one of the first things that comes to mind is checking
whether one or more attributes is not a nullptr. The best way to guard yourself against
this problem is to distinguish nullable resources (those that can take nullptr as value)
from non-nullable ones. There's a great tool you can use for this, and is available in the
standard library from C++17: std::optional. If you can, use it in all the APIs that you
design.

The boring refrain – write your tests first
This has been said many times, yet many people tend to "forget" this rule. When you
actually write your tests, the first thing you must do is reduce the risk of creating classes
that are hard to test. You start with API usage and need to bend the implementation to best
serve the API. This way, you usually end up with APIs that are both more pleasant to use
and easier to test. When you're implementing test-driven development (TDD) or writing
tests before code, you'll also end up implementing dependency injection, which means
your classes can be more loosely coupled.

Doing this the other way around (writing your classes first and only then adding unit tests
to them) may mean that you up with code that is easier to write but harder to test. And
when testing gets harder, you may feel the temptation to skip it.

Writing Testable Code Chapter 8

[264]

Automating tests for continuous
integration/continuous deployment
In the next chapter, we will focus on continuous integration and continuous deployment
(CI/CD). For a CI/CD pipeline to work properly, you need to have a set of tests that catch
the bugs before they enter production. It is up to you and your team to make sure all the
business requirements are properly expressed as tests.

Tests are useful on several levels. With behavior-driven development, which we mentioned
in the previous section, business requirements form a basis for automated tests. But the
system you are building doesn't consist solely of business requirements. You want to make
sure all the third-party integrations are working as expected. You want to make sure all
your subcomponents (such as microservices) can actually interface with each other. Finally,
you want to make sure that the functions and classes you are building are free of any bugs
you could have imagined.

Each test that you can automate is a candidate for a CI/CD pipeline. Each of them also has
its place somewhere in this pipeline. For example, end-to-end tests make the most sense
after the deployment as acceptance tests. On the other hand, unit tests make the most sense
when they're executed directly after compilation. After all, our aim is to break the circuit as
soon as we find any possible divergence from the specification.

You don't have to run all the tests that you have automated each time you run a CI/CD
pipeline. It's better if the runtime of each pipeline is relatively short. Ideally, it should finish
within a couple of minutes from the commit. How can we make sure everything is properly
tested, then, if we want to keep the runtime minimal?

One answer is to prepare different suites of tests for different purposes. For example, you
can have minimal tests for commits to a feature branch. With many commits coming to
feature branches every day, this means they will only be tested briefly and that the answer
will be available fast. Merging feature branches to the shared development branch then
requires a slightly larger set of test cases. This way, we make sure we haven't broken
anything that other team members will be using. Finally, a more extensive set of cases will
be run for merges to production branches. After all, we want the production branches to be
tested thoroughly, even if the testing takes quite a long time.

Another answer is to use the trimmed-down set of test cases for CI/CD purposes and have
an additional continuous testing process. This process runs regularly and performs in-
depth checks on the current state of a particular environment. The tests can go as far as
security tests and performance tests and may thus assess the eligibility of the environment
to be promoted.

Writing Testable Code Chapter 8

[265]

Promotion occurs when we select an environment and acknowledge that this environment
has all the qualities to become a more mature environment. For example, that development
environment can become the next staging environment, or that staging environment can
become the next production environment. If this promotion happens automatically, it is
also a good practice to provide automatic rollback in case the subtle differences (such as in
terms of domain name or traffic) make the freshly promoted environment no longer pass
the tests.

This also presents another important practice: to always run tests on the production
environment. Such tests have to be the least intrusive, of course, but they should tell you
that your system is performing correctly at any given time.

Testing the infrastructure
If you want to incorporate the concepts of configuration management, Infrastructure as
Code, or immutable deployments into the software architecture of your application, you
should also consider testing the infrastructure itself. There are several tools you can use to
do this, including Serverspec, Testinfra, Goss, and Terratest, which are among some of the
more popular ones.

These tools slightly differ in scope, as stated here:

Serverspec and Testinfra focus more on testing the actual state of the servers that
are configured via configuration management, such as Salt, Ansible, Puppet, and
Chef. They're written in Ruby and Python, respectively, and they plug into the
languages' testing engines. This means RSPec for Serverspec and Pytest for
Testinfra.
Goss is a bit different both in terms of scope and form. Besides testing the
servers, you can also use Goss to test the containers you use in your project with
the dgoss wrapper. As for its form, it doesn't use the imperative code you would
see in Serverspec or Testinfra. Rather, similar to Ansible or Salt, it uses a YAML
file to describe the desired state we want to check for. If you're already using a
declarative approach to configuration management (such as the aforementioned
Ansible or Salt), Goss may be more intuitive and thus a much better fit for
testing.
Finally, Terratest is a tool that allows you to test the output of Infrastructure as
Code tools such as Packer and Terraform (hence the name). Just like Serverspec
and Testinfra use their language testing engines to write tests for servers,
Terratest leverages Go's testing package to write the appropriate test cases.

Writing Testable Code Chapter 8

[266]

Let's see how can we use each of these tools to validate that the deployment went on
according to plan (at least from the infrastructure's point of view).

Testing with Serverspec
The following is an example of a test for Serverspec that checks the availability of Git in a
specific version and the Let's Encrypt configuration file:

We want to have git 1:2.1.4 installed if we're running Debian
describe package('git'), :if => os[:family] == 'debian' do
 it { should be_installed.with_version('1:2.1.4') }
end
We want the file /etc/letsencrypt/config/example.com.conf to:
describe file('/etc/letsencrypt/config/example.com.conf') do
 it { should be_file } # be a regular file
 it { should be_owned_by 'letsencrypt' } # owned by the letsencrypt user
 it { should be_mode 600 } # access mode 0600
 it { should contain('example.com') } # contain the text example.com
 # in the content
end

The Ruby DSL syntax should be readable even by those who do not use Ruby daily. You
may need to get used to writing the code.

Testing with Testinfra
The following is an example of a test for Testinfra that checks the availability of Git in a
specific version and the Let's Encrypt configuration file:

We want Git installed on our host
def test_git_is_installed(host):
 git = host.package("git")
 # we test if the package is installed
 assert git.is_installed
 # and if it matches version 1:2.1.4 (using Debian versioning)
 assert git.version.startswith("1:2.1.4")
We want the file /etc/letsencrypt/config/example.com.conf to:
def test_letsencrypt_file(host):
 le = host.file("/etc/letsencrypt/config/example.com.conf")
 assert le.user == "letsencrypt" # be owned by the letsencrypt user
 assert le.mode == 0o600 # access mode 0600
 assert le.contains("example.com") # contain the text example.com in the
contents

Writing Testable Code Chapter 8

[267]

Testinfra uses plain Python syntax. It should be readable, but just like Serverspec, you may
need some training to confidently write tests in it.

Testing with Goss
The following is an example of a YAML file for Goss that checks the availability of Git in a
specific version and the Let's Encrypt configuration file:

We want Git installed on our host
package:
 git:
 installed: true # we test if the package is installed
 versions:
 - 1:2.1.4 # and if it matches version 1:2.1.4 (using Debian versioning)
file:
 # We want the file /etc/letsencrypt/config/example.com.conf to:
 /etc/letsencrypt/config/example.com.conf:
 exists: true
 filetype: file # be a regular file
 owner: letsencrypt # be owned by the letsencrypt user
 mode: "0600" # access mode 0600
 contains:
 - "example.com" # contain the text example.com in the contents

YAML's syntax will probably require the least preparation both to read it and write it.
However, if your project already uses Ruby or Python, you may want to stick to Serverspec
or Testinfra when it comes to writing more complicated tests.

Summary
This chapter focused both on the architectural and technical aspects of testing different
parts of the software. We looked at the testing pyramid to understand how different kinds
of tests contribute to the overall health and stability of a software project. Since testing can
be both functional and non-functional, we saw some examples of both these types.

One of the most important things to remember from this chapter is that tests are not the end
stage. We want to have them not because they bring immediate value, but because we can
use them to check for known regressions, when refactoring, or when we're changing the
behavior of existing parts of the system. Tests can also prove useful when we want to
perform root cause analysis as they can quickly verify different hypotheses.

Writing Testable Code Chapter 8

[268]

Having established the theoretical requirements, we showed examples of the different
testing frameworks and libraries we can use to write test doubles. Even though writing
tests first and their implementation later requires some practice, it has an important benefit.
This benefit is a better class design.

Finally, to highlight that modern architecture is something more than just software code,
we also looked at a few tools for testing infrastructure and deployment. In the next
chapter, we will see how continuous integration and continuous deployment bring better
service quality and robustness to the applications you will architect.

Questions
What is the base layer of the testing pyramid?1.
What kinds of non-functional tests are there?2.
What is the name of the famous method for root cause analysis?3.
Is it possible to test the compile-time code in C++?4.
What should you use when you're writing unit tests for code with external5.
dependencies?
What is the role of unit tests in continuous integration/continuous deployment?6.
What are some tools that allow you to test infrastructure code?7.
Is it a good idea to access the class's private attributes and methods in a unit test?8.

Further reading
Testing C++ Code: https:/ /www. packtpub. com/ application- development/ modern- c-
programming-cookbook

Test Doubles: https:/ /martinfowler. com/ articles/ mocksArentStubs. html

Continuous Integration/Continuous Deployment: https:/ /www. packtpub. com/
virtualization-and- cloud/ hands- continuous- integration- and- delivery and https:/ /
www.packtpub.com/ virtualization- and- cloud/ cloud- native- continuous- integration-
and-delivery

https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://www.packtpub.com/application-development/modern-c-programming-cookbook
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery

9
Continuous Integration and

Continuous Deployment
In one of the previous chapters on building and packaging, we learned about different
build systems and different packaging systems that our application can use. Continuous
Integration (CI) and Continuous Deployment (CD) allow us to use knowledge of building
and packaging to improve service quality and the robustness of the application we are
developing.

Both CI and CD rely on good test coverage. CI uses mostly unit tests and integration tests,
whereas CD depends more on smoke tests and end-to-end tests. You learned more about
the different aspects of testing in Chapter 8, Writing Testable Code. With this knowledge,
you are ready to build a CI/CD pipeline.

In this chapter, we'll cover the following topics:

Understanding CI
Reviewing code changes
Exploring test-driven automation
Managing deployment as code
Building deployment code
Building a CD pipeline
Using immutable infrastructure

Continuous Integration and Continuous Deployment Chapter 9

[270]

Technical requirements
The sample code of this chapter can be found at https:/ /github. com/ PacktPublishing/
Software-Architecture- with- Cpp/ tree/ master/ Chapter09.

To understand the concepts explained in this chapter, you'll require the following
installations:

A free GitLab account
Ansible version 2.8+
Terraform version 0.12+
Packer version 1.4+

Understanding CI
CI is the process of shortening the integration cycles. Whereas in traditional software, many
different features could have been developed separately and only integrated prior to
release, in projects developed with CI, integration can occur several times a day. Usually,
each change a developer makes is tested and integrated at the same time as it is committed
to the central repository.

Since testing occurs just after development, the feedback loop is much quicker. This lets
developers fix bugs more easily (as they usually still remember what was changed). In
contrast to the traditional approach of testing just prior to release, CI saves a lot of work
and improves the quality of software.

Release early, release often
Have you ever heard the saying "release early, release often"? This is a software
development philosophy that emphasizes the importance of short release cycles. Short
release cycles, in turn, provide a much shorter feedback loop between planning,
development, and validation. When something breaks, it should break as early as possible
so that the costs of fixing the problem are relatively small.

This philosophy was popularized by Eric S. Raymond (also known as ESR) in his 1997
essay entitled The Cathedral and the Bazaar. There's also a book with the same title that
contains this and other essays by the author. Considering ESR's activity within open source
movements, the "release early, release often" mantra became synonymous with how open
source projects operated.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter09

Continuous Integration and Continuous Deployment Chapter 9

[271]

Some years later, the same principle moved beyond just open source projects. With the
rising interest in Agile methodologies, such as Scrum, the "release early, release often"
mantra became synonymous with development sprints that end with a product increment.
This increment is, of course, a software release, but usually, there are many other releases
that happened during the sprint.

How can you achieve such short release cycles? One answer is to rely on automation as
much as possible. Ideally, every commit to the code repository should end as a release.
Whether this release ends up facing the customers is another matter. What's important is
that every code change can result in a usable product.

Of course, building and releasing every single commit to the public would be a tedious job
for any developer. Even when everything is scripted, this can add unnecessary overhead to
the usual chores. This is why you would want to set up a CI system to automate the
releases for you and your development team.

Merits of CI
CI is the concept of integrating the work of several developers, at least daily. As already
discussed, sometimes it can mean several times a day. Every commit that enters the
repository is integrated and validated separately. The build system checks whether the
code can be built without errors. The packaging system may create a package that is ready
to be saved as an artifact or even deployed later on when CD is used. Finally, the
automated tests check that no known regression occurred in relation to the change. Let's
now see its merits in detail:

CI allows for the rapid solving of problems. If one of the developers forgot a
semicolon at the end of the line, the compiler on the CI system will catch that
error right away before this incorrect code reaches other developers, thereby
impeding their work. Of course, developers should always build the changes and
test them before committing the code, but minor typos can go unnoticed on the
developer's machine and enter the shared repository anyway.
Another benefit of using CI is that it prevents the common "works on my
machine" excuse. If a developer forgets to commit a necessary file, the CI system
will fail to build the changes, yet again preventing them from spreading further
and causing mischief to the whole team. The special configuration of one
developer's environment also stops being an issue. If a change builds on two
machines, the developer's computer and the CI system, we are safe to assume
that it should build on other machines as well.

Continuous Integration and Continuous Deployment Chapter 9

[272]

Gating mechanism
If we want CI to bring value beyond simply building packages for us, we need a gating
mechanism. This gating mechanism will allow us to discern good code changes from bad
ones, thus keeping our application safe from modifications that would render it useless. For
this to happen, we need a comprehensive suite of tests. Such a suite allows us to
automatically recognize when a change is problematic, and we're able to do it quickly.

For individual components, unit tests play the role of a gating mechanism. A CI system can
discard any changes that do not pass unit tests or any changes that do not reach a certain
code coverage threshold. At the time of building individual components, a CI system may
also use integration tests to further ensure that the changes are stable, not only by
themselves but also are acting properly together.

Implementing the pipeline with GitLab
Throughout this chapter, we will use popular open source tools to build a full CI/CD
pipeline consisting of gating mechanisms, automated deployment, and also showing the
concepts of infrastructure automation.

The first such tool is GitLab. You may have heard about it as a Git hosting solution, but in
reality, it's much more than that. GitLab comes in several distributions, namely, the
following:

An open source solution that you can host on your own premises
Self-hosted paid versions that offer additional features over the open source
community edition
And finally, a Software-as-as-Service (SaaS) managed offer hosted under
https:// gitlab. com

For the requirements of this book, each of the distributions has all the necessary features.
We will, therefore, focus on the SaaS version, as this requires the least amount of
preparation.

Although https:/ /gitlab. com is mainly targeted at open source projects, you can also
create private projects and repositories if you don't feel like sharing your work with the
entire world. This allows us to create a new private project in GitLab and populate it with
the code we have already demonstrated in Chapter 7, Building and Packaging.

https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com

Continuous Integration and Continuous Deployment Chapter 9

[273]

A lot of modern CI/CD tools could work instead of GitLab CI/CD. Examples include
GitHub Actions, Travis CI, CircleCI, and Jenkins. We've chosen GitLab as it can be used
both in SaaS form and on-premises, so should accommodate a lot of different use cases.

We will then use our previous build system to create a simple CI pipeline in GitLab. These
pipelines are described in the YAML file as a series of steps and metadata. An example
pipeline building all the requirements, as well as the sample project from Chapter
7, Building and Packaging, would look like the following:

We want to cache the conan data and CMake build directory
cache:
 key: all
 paths:
 - .conan
 - build

We're using conanio/gcc10 as the base image for all the subsequent
commands
default:
 image: conanio/gcc10

stages:
 - prerequisites
 - build

before_script:
 - export CONAN_USER_HOME="$CI_PROJECT_DIR"

Configure conan
prerequisites:
 stage: prerequisites
 script:
 - pip install conan==1.34.1
 - conan profile new default || true
 - conan profile update settings.compiler=gcc default
 - conan profile update settings.compiler.libcxx=libstdc++11 default
 - conan profile update settings.compiler.version=10 default
 - conan profile update settings.arch=x86_64 default
 - conan profile update settings.build_type=Release default
 - conan profile update settings.os=Linux default
 - conan remote add trompeloeil
https://api.bintray.com/conan/trompeloeil/trompeloeil || true

Build the project
build:
 stage: build
 script:

Continuous Integration and Continuous Deployment Chapter 9

[274]

 - sudo apt-get update && sudo apt-get install -y docker.io
 - mkdir -p build
 - cd build
 - conan install ../ch08 --build=missing
 - cmake -DBUILD_TESTING=1 -DCMAKE_BUILD_TYPE=Release ../ch08/customer
 - cmake --build .

Saving the preceding file as .gitlab-ci.yml in the root directory of your Git repository
will automatically enable CI in GitLab and run the pipeline with each subsequent commit.

Reviewing code changes
Code reviews can be used both with CI systems and without them. Their main purpose is
to double-check each change introduced to the code to make sure that it is correct, that it
fits the application's architecture, and that it follows the project's guidelines and best
practices.

When used without CI systems, it is often the reviewer's task to test the change manually
and verify it is working as expected. CI reduces this burden, letting software developers
focus on the logical structure of the code.

Automated gating mechanisms
Automated tests are only one example of a gating mechanism. When their quality is high
enough, they can guarantee the code works according to design. But there's still a difference
between code that works correctly and good code. As you've learned from this book so far,
code can be considered good if it fulfills several values. Being functionally correct is just
one of them.

There are other tools that can help achieve the desired standard of your code base. Some of
them have been covered in previous chapters, so we won't go into the details. Keep in mind
that using linters, code formatters, and static analysis in your CI/CD pipeline is a great
practice. While static analysis can act as a gating mechanism, you can apply linting and
formatting to each commit that enters the central repository to make it consistent with the
rest of the code base. You will find more on linters and formatters in the appendix.

Ideally, this mechanism will only have to check whether the code has already been
formatted, as the formatting step should be done by developers before pushing the code to
the repository. When using Git as a version control system, the mechanism of Git Hooks
can prevent committing code without running the necessary tools on it.

Continuous Integration and Continuous Deployment Chapter 9

[275]

But automated analysis can only get you so far. You can check that the code is functionally
complete, that it is free of known bugs and vulnerabilities, and that it fits within the coding
standard. This is where manual inspection comes in.

Code review – the manual gating mechanism
Manual inspection of a code change is often known as a code review. The aim of the code
review is to identify problems, both with the implementation of specific subsystems and
adherence to the overall architecture of the application. Automated performance tests may
or may not discover potential problems with a given function. Human eyes, on the other
hand, can usually spot a sub-optimal solution to the problem. Whether it is the wrong data
structure or an algorithm with unnecessarily high computational complexity, a good
architect should be able to pinpoint the problem.

But it isn't just the architect's role to perform code reviews. Peer reviews, that is, code
reviews performed by peers of the author, also have their place in the development process.
Such reviews are valuable not just because they allow colleagues to find bugs in each
other's code. The more important aspect is the fact that many teammates are suddenly
aware of what everybody else is doing. This way, when there is an absence in the team
(whether because of a long meeting, vacation, or job rotation), another team member can
substitute for the missing one. Even if they're not an expert on the topic, every other
member at least knows where the interesting code is located and everyone should be able
to remember the last changes to the code. This means both the time when they happened
and the scope and content of those changes.

With more people aware of how the insides of your application appear, it is also more
probable that they can figure out a correlation between recent changes in one component
and a freshly discovered bug. Even though every person on your team probably
has different experience, they can pool their resources when everyone knows the code quite
thoroughly.

So code reviews can check whether the change fits within the desired architecture and
whether its implementation is correct. We call such a code review an architectural review,
or an expert's review.

Another type of code review, the peer review, not only helps uncover bugs, but also raises
awareness within the team about what other members are working on. If necessary, you
can also perform a different kind of expert review when dealing with changes that integrate
with external services.

Continuous Integration and Continuous Deployment Chapter 9

[276]

As each interface is a source of potential problems, changes close to the interface level
should be treated as especially dangerous. We advise you to supplement the usual peer
review with an expert coming from the other side of the interface. For example, if you are
writing a producer's code, ask a consumer for a review. This way, you ensure you won't
miss some vital use case that you may consider very improbable, but that the other side
uses constantly.

Different approaches to a code review
You will most often conduct code reviews asynchronously. This means that the
communication between the author of the change under review and the reviewers does not
happen in real time. Instead, each of the actors posts their comments and suggestions at any
given time. Once there are no more comments, the author reworks the original change and
once again puts it under review. This can take as many rounds as necessary until everyone
agrees that no further corrections are necessary.

When a change is particularly controversial and an asynchronous code review takes too
much time, it is beneficial to conduct a code review synchronously. This means a meeting
(in-person or remotely) to resolve any opposing views on the way forward. This will
happen in particular when a change contradicts one of the initial decisions due to the new
knowledge acquired while implementing the change.

There are some dedicated tools aimed solely at code reviews. More often, you will want to
use a tool that is built into your repository server, which includes services such as the
following:

GitHub
Bitbucket
GitLab
Gerrit

All of the preceding offer both Git hosting and code review. Some of them go even further,
providing a whole CI/CD pipeline, issue management, wiki, and much more.

When you use the combined package of code hosting and code review, the default
workflow is to push the changes as a separate branch and then ask the project's owner to
merge the changes in a process known as a pull request (or a merge request). Despite the
fancy name, the pull request or merge request informs the project owner that you have
code that you wish to merge with the main branch. This means that the reviewers should
review your changes to make sure everything is in order.

Continuous Integration and Continuous Deployment Chapter 9

[277]

Using pull requests (merge requests) for a code
review
Creating pull requests or merge requests with systems such as GitLab is very easy. First of
all, when we push a new branch to the central repository from the command line, we can
observe the following message:

remote:
remote: To create a merge request for fix-ci-cd, visit:
remote:
https://gitlab.com/hosacpp/continuous-integration/merge_requests/new?merge_
request%5Bsource_branch%5D=fix-ci-cd
remote:

If you previously had CI enabled (by adding the .gitlab-ci.yml file), you'll also see that
the newly pushed branch has been subjected to the CI process. This occurs even before you
open a merge request, and it means you can postpone tagging your colleagues until you get
information from CI that every automated check has passed.

The two main ways to open a merge request are as follows:

By following the link mentioned in the push message
By navigating to merge requests in the GitLab UI and selecting the Create merge
request button or the New merge request button

When you submit the merge request, having completed all the relevant fields, you will see
that the status of the CI pipeline is also visible. If the pipeline fails, merging the change
wouldn't be possible.

Exploring test-driven automation
CI mainly focuses on the integration part. It means building the code of different
subsystems and making sure it works together. While tests are not strictly required to
achieve this purpose, running CI without them seems like a waste. CI without automated
tests makes it easier to introduce subtle bugs to code while giving a false sense of security.

That's one of the reasons why CI often goes hand in hand with continuous testing, which
we'll cover in this next section.

Continuous Integration and Continuous Deployment Chapter 9

[278]

Behavior-driven development
So far, we have managed to set up a pipeline that we can call continuous building. Each
change we make to the code ends up being compiled, but we don't test it any further. Now
it's time to introduce the practice of continuous testing. Testing on a low level will also act
as a gating mechanism to automatically reject all the changes that do not satisfy
requirements.

How can you check whether a given change satisfies requirements? This is best achieved by
writing tests based on these requirements. One of the ways to do this is by following
Behavior-Driven Development (BDD). The concept of BDD is to encourage deeper
collaboration between the different actors in an Agile project.

Unlike the traditional approach, where tests are written either by developers or the QA
team, with BDD, the tests are created collaboratively by the following individuals:

Developers
QA engineers
Business representatives.

The most common way to specify tests for BDD is to use the Cucumber framework, which
uses plain English phrases to describe the desired behavior of any part of the system. These
sentences follow a specific pattern that can then be turned into working code, integrating
with the testing framework of choice.

There is official support for C++ in the Cucumber framework and it's based on CMake,
Boost, GTest, and GMock. After specifying the desired behavior in the cucumber format
(which uses a domain-specific language known as Gherkin), we also need to provide the
so-called step definitions. Step definitions are the actual code corresponding to the actions
described in the cucumber specification. For example, consider the following behavior
expressed in Gherkin:

language: en
Feature: Summing
In order to see how much we earn,
Sum must be able to add two numbers together

Scenario: Regular numbers
 Given I have entered 3 and 2 as parameters
 When I add them
 Then the result should be 5

Continuous Integration and Continuous Deployment Chapter 9

[279]

We can save it as a sum.feature file. In order to generate a valid C++ code with tests, we
would use the appropriate step definitions:

#include <gtest/gtest.h>
#include <cucumber-cpp/autodetect.hpp>

#include <Sum.h>

using cucumber::ScenarioScope;

struct SumCtx {
 Sum sum;
 int a;
 int b;
 int result;
};

GIVEN("^I have entered (\\d+) and (\\d+) as parameters$", (const int a,
const int b)) {
 ScenarioScope<SumCtx> context;

 context->a = a;
 context->b = b;
}

WHEN("^I add them") {
 ScenarioScope<SumCtx> context;

 context->result = context->sum.sum(context->a, context->b);
}

THEN("^the result should be (.*)$", (const int expected)) {
 ScenarioScope<SumCtx> context;

 EXPECT_EQ(expected, context->result);
}

When building an application from scratch, it's a good idea to follow the BDD pattern. This
book aims to show the best practices you can use in such a greenfield project. But it doesn't
mean you can't try our examples in an existing project. CI and CD can be added at any
given time during the life cycle of the project. Since it's always a good idea to run your tests
as often as possible, using a CI system just for the purpose of continuous testing is almost
always a good idea.

Continuous Integration and Continuous Deployment Chapter 9

[280]

If you don't have behavior tests, you shouldn't need to worry. You can add them later and,
for the moment, just focus on those tests you already have. Whether they are unit tests or
end-to-end tests, anything that helps you assess the state of your application is a good
candidate for the gating mechanism.

Writing tests for CI
For CI, it's best to focus on unit tests and integration tests. They work on the lowest possible
level, which means they're usually quick to execute and have the smallest requirements.
Ideally, all unit tests should be self-contained (no external dependencies like a working
database) and able to run in parallel. This way, when the problem appears on the level
where unit tests are able to catch it, the offending code would be flagged in a matter of
seconds.

There are some people who say that unit tests only make sense in interpreted languages or
languages with dynamic typing. The argument goes that C++ already has testing built-in by
means of the type system and the compiler checking for erroneous code. While it's true that
type checking can catch some bugs that would require separate tests in dynamically typed
languages, this shouldn't be used as an excuse not to write unit tests. After all, the purpose
of unit tests isn't to verify that the code can execute without any problems. We write unit
tests to make sure our code not only executes, but also fulfills all the business requirements
we have.

As an extreme example, take a look at the following two functions. Both of them are
syntactically correct and they use proper typing. However, just by looking at them, you can
probably guess which one is correct and which isn't. Unit tests help to catch this kind of
misbehavior:

int sum (int a, int b) {
 return a+b;
}

The preceding function returns a sum of the two arguments provided. The following one
returns just the value of the first argument:

int sum (int a, int b) {
 return a;
}

Even though the types match and the compiler won't complain, this code wouldn't perform
its task. To distinguish useful code from erroneous code, we use tests and assertions.

Continuous Integration and Continuous Deployment Chapter 9

[281]

Continuous testing
Having already established a simple CI pipeline, it is very easy to extend it with testing.
Since we are already using CMake and CTest for the building and testing process, all we
need to do is add another step to our pipeline that will execute the tests. This step may look
like this:

Run the unit tests with ctest
test:
 stage: test
 script:
 - cd build
 - ctest .

An entire pipeline will therefore appear as follows:

cache:
 key: all
 paths:
 - .conan
 - build

default:
 image: conanio/gcc9

stages:
 - prerequisites
 - build
 - test # We add another stage that tuns the tests

before_script:
 - export CONAN_USER_HOME="$CI_PROJECT_DIR"

prerequisites:
 stage: prerequisites
 script:
 - pip install conan==1.34.1
 - conan profile new default || true
 - conan profile update settings.compiler=gcc default
 - conan profile update settings.compiler.libcxx=libstdc++11 default
 - conan profile update settings.compiler.version=10 default
 - conan profile update settings.arch=x86_64 default
 - conan profile update settings.build_type=Release default
 - conan profile update settings.os=Linux default
 - conan remote add trompeloeil
https://api.bintray.com/conan/trompeloeil/trompeloeil || true

Continuous Integration and Continuous Deployment Chapter 9

[282]

build:
 stage: build
 script:
 - sudo apt-get update && sudo apt-get install -y docker.io
 - mkdir -p build
 - cd build
 - conan install ../ch08 --build=missing
 - cmake -DBUILD_TESTING=1 -DCMAKE_BUILD_TYPE=Release ../ch08/customer
 - cmake --build .

Run the unit tests with ctest
test:
 stage: test
 script:
 - cd build
 - ctest .

This way, each commit will not only be subjected to the build process, but also to testing. If
one of the steps fails, we will be notified which one was the source of the failure and we
could see in the dashboard which steps were successful.

Managing deployment as code
With changes tested and approved, now it's time to deploy them to one of the operating
environments.

There are many tools to help with deployment. We decided to provide examples with
Ansible as this doesn't require any setup on the target machines besides a functional
Python installation (which the majority of UNIX systems already have anyway). Why
Ansible? It is very popular in the configuration management space and it's backed up by a
trustworthy open source company (Red Hat).

Using Ansible
Why not use something that's already available, such as Bourne shell script or PowerShell?
For simple deployments, shell scripts may be a better approach. But as our deployment
process becomes more complex, it is much harder to handle every possible initial state
using the shell's conditional statements.

Continuous Integration and Continuous Deployment Chapter 9

[283]

Dealing with differences between initial states is actually something Ansible is especially
good at. Unlike traditional shell scripts, which use the imperative form (move this file, edit
that file, run a particular command), Ansible playbooks, as they are called, use the
declarative form (make sure the file is available in this path, make sure the file contains
specified lines, make sure the program is running, make sure the program completes
successfully).

This declarative approach also helps to achieve idempotence. Idempotence is a feature of a
function that means applying the function several times over will have exactly the same
results as a single application. If the first run of an Ansible playbook introduces some
changes to the configuration, each subsequent run will already start in the desired state.
This prevents Ansible from performing any additional changes.

In other words, when you invoke Ansible, it will first assess the current state of all the
machines you wish to configure:

If any of them requires any changes, Ansible will only run the tasks required to
achieve the desired state.
If there's no need to modify a particular thing, Ansible won't touch it. Only when
the desired and actual states differ will you see Ansible taking action to converge
the actual state toward the desired one described by the contents of the playbook.

How Ansible fits with the CI/CD pipeline
Ansible's idempotence makes it a great target to use in CI/CD pipelines. After all, there's no
risk in running the same Ansible playbook multiple times even if nothing changes between
the two runs. If you use Ansible for your deployment code, creating a CD is just a matter of
preparing appropriate acceptance tests (such as smoke tests or end-to-end tests).

The declarative approach may require changing the way you think about deployments, but
the gains are well worth it. Besides running playbooks, you can also use Ansible to perform
one-off commands on remote machines, but we won't cover this use case as it doesn't really
help with deployments.

Everything you can do with a shell you can do with Ansible's shell module. That's
because, in the playbooks, you write tasks specifying which modules they use and their
respective parameters. One such module is the aforementioned shell module, which
simply executes the provided parameters in a shell on a remote machine. But what makes
Ansible not only convenient but also cross-platform (at least when different UNIX
distributions are concerned) is the availability of modules to manipulate common concepts
such as user administration, package management, and similar instances.

Continuous Integration and Continuous Deployment Chapter 9

[284]

Using components to create deployment code
In addition to the regular modules provided in the standard library, there are also third-
party components to allow for code reuse. You can test such components individually,
which also makes your deployment code more robust. Such components are called roles.
They contain a set of tasks to make a machine fit to take on a specific role, such
as webserver, db, or docker. While some roles prepare the machine to provide particular
services, other roles may be more abstract, such as the popular ansible-hardening role.
This has been created by the OpenStack team and it makes it much harder to break into a
machine secured by using this role.

When you start to understand the language Ansible uses, all the playbooks cease to be just
the scripts. In turn, they will become the documentation of the deployment process. You
can either use them verbatim by running Ansible, or you can read the described tasks and
perform all the operations manually, for example, on an offline machine.

There is one risk related to using Ansible for deployment in your team. Once you start
using it, you have to make sure that everyone on the team is able to use it and modify the
relevant tasks. DevOps is a practice the whole team has to follow; it cannot be implemented
only partially. When the application's code changes considerably, requiring appropriate
changes on the deployment side, the person responsible for changes in the application
should also supply the changes in the deployment code. Of course, this is something that
your tests can verify, so the gating mechanism can reject the changes that are incomplete.

One noteworthy aspect of Ansible is that it can run both in a push and pull model:

The push model is when you run Ansible on your own machine or in the CI
system. Ansible then connects to the target machine, for example, over an SSH
connection, and performs the necessary steps on the target machine.
In the pull model, the whole process is initiated by the target machine. Ansible's
component, ansible-pull, runs directly on the target machine and checks the
code repository to establish whether there's been any update to the particular
branch. After refreshing the local playbook, Ansible performs all the steps as
usual. This time, both the controlling component and the actual execution
happen on the same machine. Most of the time, you will want to run ansible-
pull periodically, for example, from within a cron job.

Continuous Integration and Continuous Deployment Chapter 9

[285]

Building deployment code
In its simplest form, deployment with Ansible may consist of copying a single binary to the
target machine and then running that binary. We can achieve this with the following
Ansible code:

tasks:
 # Each Ansible task is written as a YAML object
 # This uses a copy module
 - name: Copy the binaries to the target machine
 copy:
 src: our_application
 dest: /opt/app/bin/our_application
 # This tasks invokes the shell module. The text after the `shell:` key
 # will run in a shell on target machine
 - name: start our application in detached mode
 shell: cd /opt/app/bin; nohup ./our_application </dev/null >/dev/null
2>&1 &

Every single task starts with a hyphen. For each of the tasks, you need to specify the
module it uses (such as the copy module or the shell module), along with its parameters
(if applicable). A task may also have a name parameter, which makes it easier to reference
the task individually.

Building a CD pipeline
We have reached the point when we can safely build a CD pipeline using the tools we
learned about in this chapter. We already know how CI operates and how it helps to reject
changes that are unsuitable for release. The section on test automation presented different
ways of making the rejection process more robust. Having smoke tests or end-to-end tests
allows us to go beyond CI and to check whether the whole deployed service satisfies
requirements. And with deployment code, we can not only automate the process of
deployment, but also prepare a rollback when our tests begin to fail.

Continuous Integration and Continuous Deployment Chapter 9

[286]

Continuous deployment and continuous delivery
By a funny coincidence, the abbreviation CD can mean two different things. The concepts
of continuous delivery and Continuous deployment are pretty similar, but they have some
subtle differences. Throughout the book, we are focusing on the concept of continuous
deployment. This is the automated process that originates when a person pushes a change
into the central repository and finishes with the change successfully deployed to the
production environment with all the tests passing. We can therefore say that this is an end-
to-end process as the developer's work travels all the way to the customer without manual
intervention (following the code review, of course). You may have heard the term GitOps
to relate to such an approach. As all operations are automated, pushing to a specified
branch in Git triggers the deployment scripts.

Continuous delivery doesn't go that far. Like CD, it features a pipeline able to release the
final product and test it, but the final product is never automatically delivered to the
customers. It can be delivered to the QA first or to the business for internal use. Ideally, the
delivered artifact is ready to be deployed in the production environment as soon as the
internal clients accept it.

Building an example CD pipeline
Let's put all of these skills together once again using the GitLab CI as an example to build
our pipeline. Following the testing step, we will add two more steps, one that creates the
package and another one that uses Ansible to deploy this package.

All we need for the packaging step is the following:

Package the application and publish the artifact
package:
 stage: package
 # Use cpack for packaging
 script:
 - cd build
 - cpack .
 # Save the deb package artifact
 artifacts:
 paths:
 - build/Customer*.deb

Continuous Integration and Continuous Deployment Chapter 9

[287]

When we add the package step containing artifacts definitions, we'll be able to download
them from the dashboard.

With this, we can invoke Ansible as part of the deployment step:

Deploy using Ansible
deploy:
 stage: deploy
 script:
 - cd build
 - ansible-playbook -i localhost, ansible.yml

The final pipeline would then look like the following:

cache:
 key: all
 paths:
 - .conan
 - build

default:
 image: conanio/gcc9

stages:
 - prerequisites
 - build
 - test
 - package
 - deploy

before_script:
 - export CONAN_USER_HOME="$CI_PROJECT_DIR"

prerequisites:
 stage: prerequisites
 script:
 - pip install conan==1.34.1
 - conan profile new default || true
 - conan profile update settings.compiler=gcc default
 - conan profile update settings.compiler.libcxx=libstdc++11 default
 - conan profile update settings.compiler.version=10 default
 - conan profile update settings.arch=x86_64 default
 - conan profile update settings.build_type=Release default
 - conan profile update settings.os=Linux default
 - conan remote add trompeloeil
https://api.bintray.com/conan/trompeloeil/trompeloeil || true

build:

Continuous Integration and Continuous Deployment Chapter 9

[288]

 stage: build
 script:
 - sudo apt-get update && sudo apt-get install -y docker.io
 - mkdir -p build
 - cd build
 - conan install ../ch08 --build=missing
 - cmake -DBUILD_TESTING=1 -DCMAKE_BUILD_TYPE=Release ../ch08/customer
 - cmake --build .

test:
 stage: test
 script:
 - cd build
 - ctest .

Package the application and publish the artifact
package:
 stage: package
 # Use cpack for packaging
 script:
 - cd build
 - cpack .
 # Save the deb package artifact
 artifacts:
 paths:
 - build/Customer*.deb

Deploy using Ansible
deploy:
 stage: deploy
 script:
 - cd build
 - ansible-playbook -i localhost, ansible.yml

To see the whole example, go to the repository from the Technical requirements section for
the original sources.

Using immutable infrastructure
If you are sufficiently confident with your CI/CD pipeline, you may go one step further.
Instead of deploying artifacts of the application, you can deploy artifacts of the system.
What's the difference? We will come to know about this in the following sections.

Continuous Integration and Continuous Deployment Chapter 9

[289]

What is immutable infrastructure?
Previously, we focused on how to make your application's code deployable on the target
infrastructure. The CI system created software packages (such as containers) and those
packages were then deployed by the CD process. Each time the pipeline ran, the
infrastructure stayed the same, but the software differed.

The point is, if you are using cloud computing, you can treat infrastructure just like any
other artifact. Instead of deploying a container, you can deploy an entire Virtual
Machine (VM), for example, as an AWS EC2 instance. You can build such a VM image
upfront as yet another element of your CI process. This way, versioned VM images, as well
as the code required to deploy them, become your artifacts, and not the containers
themselves.

There are two tools, both authored by HashiCorp, that deal with precisely this scenario.
Packer helps to create VM images in a repeatable way, storing all the instructions as code,
usually in the form of a JSON file. Terraform is an Infrastructure as Code tool, which means
it's used to provision all the necessary infrastructure resources. We will use the output from
Packer as input for Terraform. This way, Terraform will create an entire system consisting
of the following:

Instance groups
Load balancers
VPCs
Other cloud elements while using the VMs containing our own code

The title of this section may confuse you. Why is it called immutable infrastructure while
we are clearly advocating to change the entire infrastructure after every commit? The
concept of immutability may be clearer to you if you've studied functional languages.

A mutable object is one whose state we can alter. In infrastructure, this is pretty easy to
understand: you can log in to the VM and download a more recent version of the code. The
state is no longer the same as it was prior to your intervention.

An immutable object is one whose state we cannot alter. It means we have no means of
logging in to the machines and changing things. Once we deploy a VM from an image, it
stays like that until we destroy it. This may sound terribly cumbersome, but in fact, it solves
a few problems of software maintenance.

Continuous Integration and Continuous Deployment Chapter 9

[290]

The benefits of immutable infrastructure
First of all, immutable infrastructure makes the concept of configuration drift obsolete.
There is no configuration management so there can also be no drift. The upgrade is much
safer as well because we cannot end up in a half-baked state. That is the state that's neither
the previous version nor the next version, but something in between. The deployment
process provides binary information: either the machine is created and operational or it
isn't. There's no other way.

For immutable infrastructure to work without affecting uptime, you also need the
following:

Load balancing
Some degree of redundancy

After all, the upgrade process consists of taking down an entire instance. You cannot rely
on this machine's address or anything that's particular to that one machine. Instead, you
need to have at least a second one that will handle the workload while you replace the
other one with the more recent version. When you finish upgrading the one machine, you
can repeat the same process with another one. This way, you will have two upgraded
instances without losing the service. Such a strategy is known as the rolling upgrade.

As you can realize from the process, immutable infrastructure works best when dealing
with stateless services. When your service has some form of persistence, things become
tougher to implement properly. In that case, you usually have to split the persistence level
into a separate object, for example, an NFS volume containing all of the application data.
Such volumes can be shared across all the machines in an instance group and each new
machine that comes up can access the common state left by the previous running
applications.

Building instance images with Packer
Considering our example application is already stateless, we can proceed with building an
immutable infrastructure on top of it. Since the artifacts Packer generates are VM images,
we have to decide on the format and the builder we would like to use.
Let's focus our example on Amazon Web Services, while keeping in mind that a similar
approach will also work with other supported providers. A simple Packer template may
look like this:

{
 "variables": {
 "aws_access_key": "",

Continuous Integration and Continuous Deployment Chapter 9

[291]

 "aws_secret_key": ""
 },
 "builders": [{
 "type": "amazon-ebs",
 "access_key": "{{user `aws_access_key`}}",
 "secret_key": "{{user `aws_secret_key`}}",
 "region": "eu-central-1",
 "source_ami": "ami-0f1026b68319bad6c",
 "instance_type": "t2.micro",
 "ssh_username": "admin",
 "ami_name": "Project's Base Image {{timestamp}}"
 }],
 "provisioners": [{
 "type": "shell",
 "inline": [
 "sudo apt-get update",
 "sudo apt-get install -y nginx"
]
 }]
}

The preceding code will build an image for Amazon Web Services using the EBS builder.
The image will reside in eu-central-1 region and will be based on ami-5900cc36, which
is a Debian Jessie image. We want the builder to be a t2.micro instance (that's a VM size
in AWS). To prepare our image, we run the two apt-get commands.

We can also reuse the previously defined Ansible code and, instead of using Packer to
provision our application, we can substitute Ansible as the provisioner. Our code will
appear as follows:

{
 "variables": {
 "aws_access_key": "",
 "aws_secret_key": ""
 },
 "builders": [{
 "type": "amazon-ebs",
 "access_key": "{{user `aws_access_key`}}",
 "secret_key": "{{user `aws_secret_key`}}",
 "region": "eu-central-1",
 "source_ami": "ami-0f1026b68319bad6c",
 "instance_type": "t2.micro",
 "ssh_username": "admin",
 "ami_name": "Project's Base Image {{timestamp}}"
 }],
 "provisioners": [{
 "type": "ansible",

Continuous Integration and Continuous Deployment Chapter 9

[292]

 "playbook_file": "./provision.yml",
 "user": "admin",
 "host_alias": "baseimage"
 }],
 "post-processors": [{
 "type": "manifest",
 "output": "manifest.json",
 "strip_path": true
 }]
}

The changes are in the provisioners block and also a new block, post-processors, is
added. This time, instead of shell commands, we are using a different provisioner that runs
Ansible for us. The post-processor is here to produce the results of the build in a machine-
readable format. Once Packer finishes building the desired artifact, it returns its ID and also
saves it in manifest.json. For AWS, this would mean an AMI ID that we can then feed to
Terraform.

Orchestrating the infrastructure with Terraform
Creating an image with Packer is the first step. After that, we would like to deploy the
image to use it. We can build an AWS EC2 instance based on the image from our Packer
template using Terraform.

Example Terraform code would look like the following:

Configure the AWS provider
provider "aws" {
 region = var.region
 version = "~> 2.7"
}

Input variable pointing to an SSH key we want to associate with the
newly created machine
variable "public_key_path" {
 description = <<DESCRIPTION
Path to the SSH public key to be used for authentication.
Ensure this keypair is added to your local SSH agent so provisioners can
connect.
Example: ~/.ssh/terraform.pub
DESCRIPTION

 default = "~/.ssh/id_rsa.pub"
}

Continuous Integration and Continuous Deployment Chapter 9

[293]

Input variable with a name to attach to the SSH key
variable "aws_key_name" {
 description = "Desired name of AWS key pair"
 default = "terraformer"
}

An ID from our previous Packer run that points to the custom base image
variable "packer_ami" {
}

variable "env" {
 default = "development"
}

variable "region" {
}

Create a new AWS key pair cotaining the public key set as the input
variable
resource "aws_key_pair" "deployer" {
 key_name = var.aws_key_name

 public_key = file(var.public_key_path)
}

Create a VM instance from the custom base image that uses the previously
created key
The VM size is t2.xlarge, it uses a persistent storage volume of 60GiB,
and is tagged for easier filtering
resource "aws_instance" "project" {
 ami = var.packer_ami

 instance_type = "t2.xlarge"

 key_name = aws_key_pair.deployer.key_name

 root_block_device {
 volume_type = "gp2"
 volume_size = 60
 }

 tags = {
 Provider = "terraform"
 Env = var.env
 Name = "main-instance"
 }
}

Continuous Integration and Continuous Deployment Chapter 9

[294]

This creates a key pair and an EC2 instance using this key pair. The EC2 instance is based
on AMI provided as a variable. When calling Terraform, we will set this variable to point to
the image generated by Packer.

Summary
By now, you should have learned how implementing CI at the beginning of the project can
help you save time in the long run. It can also reduce work in progress, especially when
paired with CD. In this chapter, we've presented useful tools that can help you implement
both of the processes.

We've shown how GitLab CI allows us to write pipelines in YAML files. We've discussed
the importance of code review and explained the differences between the various forms of
code review. We've introduced Ansible, which assists in configuration management and
the creation of deployment code. Finally, we tried Packer and Terraform to move our focus
from creating applications to creating systems.

The knowledge in this chapter is not unique to the C++ language. You can use it in projects
written in any language using any technology. The important thing that you should keep in
mind is this: all applications require testing. A compiler or a static analyzer is not enough to
validate your software. As an architect, you would also have to take into account not only
your project (the application itself), but also the product (the system your application will
work in). Delivering working code is no longer sufficient. Understanding the infrastructure
and the process of deployment is crucial as they are the new building blocks of modern
systems.

The next chapter is focused on the security of the software. We will cover the source code
itself, the operating system level, and the possible interactions with external services as well
as with end users.

Questions
In what ways does CI save time during development?1.
Do you require separate tools to implement CI and CD?2.
When does it make sense to perform a code review in a meeting?3.
What tools can you use to assess the quality of your code during CI?4.
Who participates in specifying the BDD scenarios?5.
When would you consider using immutable infrastructure? When would you6.

Continuous Integration and Continuous Deployment Chapter 9

[295]

rule it out?
How would you characterize the differences between Ansible, Packer, and7.
Terraform?

Further reading
Continuous integration/continuous deployment/continuous delivery:

https://www.packtpub.com/virtualization-and-cloud/hands-continuous
-integration-and-delivery

https:/ / www. packtpub. com/virtualization- and- cloud/ cloud- native-
continuous- integration- and- delivery

Ansible:

https:/ / www. packtpub. com/virtualization- and- cloud/ mastering-
ansible- third- edition

https:/ / www. packtpub. com/application- development/ hands-
infrastructure- automation- ansible- video

Terraform:

https:/ / www. packtpub. com/networking- and- servers/ getting- started-
terraform- second- edition

https:/ / www. packtpub. com/big- data- and- business- intelligence/ hands-
infrastructure- automation- terraform- aws- video

Cucumber:

https:/ / www. packtpub. com/web- development/ cucumber- cookbook

GitLab:

https:/ / www. packtpub. com/virtualization- and- cloud/ gitlab- quick-
start- guide

https:/ / www. packtpub. com/application- development/ hands- auto-
devops- gitlab- ci- video

https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/cloud-native-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/application-development/hands-infrastructure-automation-ansible-video
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/web-development/cucumber-cookbook
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/application-development/hands-auto-devops-gitlab-ci-video

10
Security in Code and

Deployment
After establishing the proper tests, it is necessary to perform a security audit to make sure
our application will not be used for malicious purposes. This chapter describes how to
assess the security of the code base, including both the internally developed software as
well as third-party modules. It will also show how to improve existing software both at the
code level and at the operating system level.

You'll learn how to design applications with a focus on security at each level, starting with
code, through to dependencies, architecture, and deployment.

The following topics will be covered in this chapter:

Checking the code security
Checking whether the dependencies are secure
Hardening your code
Hardening your environment

Technical requirements
Some of the examples used in this chapter require the compilers with the minimal versions
of the following:

GCC 10+
Clang 3.1+

The code present in the chapter has been placed on GitHub at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter10.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter10

Security in Code and Deployment Chapter 10

[297]

Checking the code security
In this chapter, we provide information on how to check your code, your dependencies,
and your environment for potential threats. Keep in mind, though, that following every
step outlined within this chapter won't necessarily protect you against all possible
problems. Our aim is to show you some possible dangers and the ways to deal with them.
Given this, you should always be conscious of the security of your system and make audits
a routine event.

Before the internet became ubiquitous, software authors weren't too concerned about the
security of their designs. After all, if the user presented malformed data, the user could
crash their own computer at most. In order to use software vulnerabilities to access
protected data, the attacker had to obtain physical access to the machines holding the data.

Even in software that was designed to be used within networks, security was often an
afterthought. Take the Hypertext Transfer Protocol (HTTP) as an example. Even though it
allows the password protection of some assets, all of the data is transferred in plain text.
This means everyone on the same network can eavesdrop on the data being transferred.

Today, we should embrace security right from the first stages of design and keep it in mind
at every stage of software development, operations, and maintenance. Most of the software
we produce every day is meant to, in one way or another, connect with other existing
systems.

By omitting security measures, we open up not only ourselves but also our partners to
potential attacks, data leaks, and, eventually, lawsuits. Keep in mind that failure to protect
personal data can result in a fine of several million US dollars.

Security-conscious design
How can we design an architecture for security? The best way to do this is to think like a
potential attacker. There are many ways in which you can break a box open but usually,
you will look for the cracks where different elements connect. (In the case of a box, this may
be between the lid and the bottom of the box.)

In software architecture, connections between elements are called interfaces. Since their
main role is to interact with the external world, they are the most vulnerable part of the
entire system. Making sure your interfaces are protected, intuitive, and robust will solve the
most obvious ways in which your software can be broken.

Security in Code and Deployment Chapter 10

[298]

Making interfaces easy to use and hard to misuse
To design interfaces in a way that would be both easy to use and hard to misuse, consider
the following exercise. Imagine you are a customer of your interface. You want to
implement an e-commerce store that uses your payment gateway, or maybe you want to
implement a VR application that connects with the Customer API of the example system
we've used throughout this book.

As a general rule regarding interface design, avoid the following traits:

Too many parameters passed to the function/method
Ambiguous names of parameters
Using output parameters
Parameters depending on other parameters

Why are these traits considered problematic?

The first one makes it hard to memorize not only the meaning but also the order
of the parameters. This can lead to errors in usage, which, in turn, may lead to
crashes and security issues.
The second trait has similar consequences to the first one. By making it less
intuitive to use your interface, you make it easier for the user to make mistakes.
The third trait is a variant of the second one but with an added twist. Not only
does the user have to remember which parameters are input and which are
output, but it is also necessary for the user to remember how the output should
be treated. Who manages the creation and deletion of the resources? How is this
achieved? What is the memory management model behind it?

With modern C++, it's easier than ever to return a value that contains all of the
necessary data. With pairs, tuples, and vectors, there is no excuse to use the
output parameters. Besides all of this, returning the value helps embrace the
practice of not modifying the state of an object. This, in turn, reduces
concurrency-related problems.

Finally, the last trait introduces unnecessary cognitive load, which, as in the
previous examples, can result in mistakes and eventually failures. Such code is
also harder to test and maintain as each change introduced has to take into
account all the possible combinations already available. Failure to properly
handle any combination is a potential threat to the system.

Security in Code and Deployment Chapter 10

[299]

The preceding rules apply to the external part of the interfaces. You should also apply
similar measures to the internal part by validating the inputs, making sure the values are
correct and sensible and preventing unwanted use of the services the interface provides.

Enabling automatic resource management
System instability may also result from memory leaks, data races, and deadlocks. All of
these symptoms are manifestations of poor resource management. Even though resource
management is a hard topic, there is a mechanism that can help you reduce the number of
problems. One such mechanism is automatic resource management.

In this context, a resource is something you gain access to via the operating system and you
have to make sure you use it correctly. This may mean using dynamically allocated
memory, open files, sockets, processes, or threads. All of these require specific actions to be
taken when you acquire them and when you release them. Some of them also require
specific actions during their lifetime. Failure to release such resources at the right time leads
to leaks. Since the resources are usually finite, in the long run, leaks will turn to unexpected
behavior when no new resources can be created.

Resource management is so important in C++ because, unlike many other high-level
languages, there is no garbage collection in C++ and the software developers are
responsible for the life cycle of the resources. Understanding this life cycle helps create
secure and stable systems.

The most common idiom of resource management is Resource Acquisition Is Initialization
(RAII). Although it originated in C++, it has also been used in other languages, such as Vala
and Rust. This idiom uses the object's constructor and destructor to allocate and free up
resources, respectively. This way, we can guarantee that the resource in use will be
properly freed when the object that holds it goes out of scope.

Some examples of using this idiom in the standard library are the std::unique_ptr
and std::shared_ptr smart pointer types. Other examples include mutexes
– std::lock_guard, std::unique_lock, and std:shared_lock – or files
– std::ifstream and std::ofstream.

The Guidelines Support Library (GSL), which we'll discuss at length shortly, also
implements a particularly useful guideline for automated resource management. By using
the gsl::finally() function in our code, we create a gsl::final_action() object with
some code attached to it. This code will be executed when the object's destructor is called.
This means the code will be executed both upon a successful return from the function as
well as when the stack unwinding happens during an exception.

Security in Code and Deployment Chapter 10

[300]

This approach shouldn't be used too often as it is generally a better idea to design your
classes with RAII in mind. But if you're interfacing with a third-party module and you want
to ensure the safety of your wrapper, finally() can help you get there.

As an example, consider that we have a payment operator that allows only a single
concurrent login per account. If we don't want to block the user from making future
payments, we should always log out as soon as we finish processing the transaction. This is
not a problem when we are on a happy path and everything goes according to our design.
But in the event of an exception, we also want to be safe and release the resource. Here's
how we could do it using gsl::finally():

TransactionStatus processTransaction(AccountName account, ServiceToken
token,
Amount amount)
{
 payment::login(account, token);
 auto _ = gsl::finally([] { payment::logout(); });
 payment::process(amount); // We assume this can lead to exception

 return TransactionStatus::TransactionSuccessful;
}

Regardless of what happens during the call to payment::process(), we can at least
guarantee that we log the user out as soon as we go out of processTransaction()'s
scope.

In short, using RAII makes you think more about the resource management during the
class design phase while you have full control of the code and think less about when you
(or other parties) use the interface when your intentions may no longer be as clear.

Drawbacks of concurrency and how to deal with it
While concurrency improves performance and resource utilization, it also makes your code
much harder to design and debug. This is because, unlike in a single-threaded flow, the
timing of operations cannot be determined upfront. In single-threaded code, you either
write to the resource or read from it, but you always know the order of the operations and
can, therefore, predict the state of the object.

With concurrency, several threads or processes can be either reading from an object or
modifying it at the same time. If the modifications aren't atomic, we can reach one of the
variants of the common update problem. Consider the following code:

TransactionStatus chargeTheAccount(AccountNumber acountNumber, Amount
amount)

Security in Code and Deployment Chapter 10

[301]

{
 Amount accountBalance = getAcountBalance(accountNumber);
 if (accountBalance > amount)
 {
 setAccountBalance(accountNumber, accountBalance - amount);
 return TransactionStatus::TransactionSuccessful;
 }
 return TransactionStatus::InsufficientFunds;
}

When calling the chargeTheAccount function from a non-concurrent code, everything
will end up well. Our program will check the account balance and charge it if possible. The
concurrent execution, however, can lead to a negative balance. This is because two threads
can one after another call getAccountBalance(), which will return the same amount,
such as 20. After performing that call, both threads check whether the current balance is
higher than the available amount. Finally, after the check, they modify the account
balance. Supposing both transactions are for the amount of 10, each thread will set the
balance to be 20 – 10 = 10. After both operations, the account has a balance of 10, even
though it should be 0!

To mitigate a similar class of problems, we can use solutions such as mutexes and critical
sections, atomic operations provided by CPU, or concurrency-safe data structures.

Mutexes, critical sections, and other similar concurrency design patterns prevent more than
one thread from modifying (or reading) the data. Even though they are useful when
designing concurrent applications, there is a trade-off associated with them. They
effectively make parts of your code single-threaded. This is because code guarded by
mutexes allows only a single thread to execute it; all of the others have to wait until the
mutex is released. And since we introduce waiting, we can make our code less performant
even though our original aim was to make it more performant.

Atomic operations mean using a single CPU instruction to get the desired effect. The term
can mean any high-level operation that transforms into a single CPU instruction. They are
particularly interesting when that single instruction achieves more than would be normally
possible. For example, compare-and-swap (CAS) is an instruction that compares the
memory location with a given value and modifies the contents of this location to the new
value only if the comparison proved successful. Since C++11, there's a <std::atomic>
header available that contains several atomic data types and operations. CAS, for instance,
is implemented as a compare_and_exchange_* set of functions.

Security in Code and Deployment Chapter 10

[302]

Finally, concurrency-safe data structures (also known as concurrent data structures)
provide safe abstractions for data structures that would otherwise require some sort of
synchronization. For example, the Boost.Lockfree (https:/ / www.boost. org/doc/ libs/ 1_
66_0/doc/html/lockfree. html) library provides concurrent queues and stacks for use with
multiple producers and multiple consumers. libcds (https:/ /github. com/ khizmax/ libcds)
also offers ordered lists, sets, and maps, but it hasn't been updated in a few years as of the
time of writing this book.

Useful rules to keep in mind when designing concurrent processing are as follows:

Consider whether you need concurrency in the first place.
Pass data by value rather than by pointer or reference. This prevents
modifications of the value when other threads are reading it.
If the size of the data makes it impractical to share by value, use shared_ptr.
This way, it's easier to avoid resource leaks.

Secure coding, the guidelines, and GSL
The Standard C++ Foundation released a set of guidelines to document the best practices
for building C++ systems. It is a Markdown document released on GitHub under https:/ /
github.com/isocpp/ CppCoreGuidelines. It is an evolving document without a release
schedule (unlike the C++ standard itself). The guidelines are aimed at modern C++, which
basically means code bases that implement at least C++11 features.

Many of the rules presented in the guidelines cover the topics that we present in this
chapter. For example, there are rules related to interface design, resource management, and
concurrency. The editors of the guidelines are Bjarne Stroustrup and Herb Sutter, both
respected members of the C++ community.

We won't go into detail describing the guidelines. We encourage you to read them yourself.
This book is inspired by many of the rules presented there and we follow them in our
examples.

To ease the use of these rules in various code bases, Microsoft released the Guidelines
Support Library (GSL) as an open source project hosted on https:/ /github. com/
microsoft/GSL. It is a header-only library that you can include in your project to use the
defined types. You can either include the whole GSL or selectively use only some of the
types you plan on using.

https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL

Security in Code and Deployment Chapter 10

[303]

What's also interesting about the library is the fact that it uses CMake for building, Travis
for continuous integration, and Catch for unit testing. It is, therefore, a good example of the
topics we've covered in Chapter 7, Building and Packaging, and Chapter 8, Writing Testable
Code, and Chapter 9, Continuous Integration and Continuous Deployment.

Defensive coding, validating everything
In a previous chapter on testability, we mentioned the method of defensive programming.
Even though this method is not strictly a security feature, it happens to help with creating a
robust interface. Such interfaces, in turn, increase the overall security of your system.

As a good heuristic, you can treat all the external data as unsafe. What we mean by external
data is every input coming to the system via some interface (either a programming interface
or user interface). To denote this, you can go as far as prefixing the appropriate types
as Unsafe, as follows:

RegistrationResult registerUser(UnsafeUsername username, PasswordHash
passwordHash)
{
 SafeUsername safeUsername = username.sanitize();
 try
 {
 std::unique_ptr<User> user = std::make_unique<User>(safeUsername,
passwordHash);
 CommitResult result = user->commit();
 if (result == CommitResult::CommitSuccessful)
 {
 return RegistrationResult::RegistrationSuccessful;
 }
 else
 {
 return RegistrationResult::RegistrationUnsuccessful;
 }
 }
 catch (UserExistsException _)
 {
 return RegistrationResult::UserExists;
 }
}

Security in Code and Deployment Chapter 10

[304]

If you have already read the guidelines, you will know that you should generally avoid
using the C API directly. Some of the functions in the C API can be used in an unsafe way
and require special care to use them defensively. It is much better to instead use respective
concepts from C++ that ensure better type safety as well as protection (for example, against
buffer overflow).

Another facet of defensive programming is the intelligent reuse of the existing code. Each
time you try to implement some technique, ensure nobody else has implemented it before
you. Writing a sorting algorithm yourself may be a fun challenge to do when you're
learning a new programming language, but for production code, it's much better to use the
sorting algorithms available in the standard library. The same goes for password hashing.
No doubt you can find some clever way to calculate the password hashes and store them in
a database but it is generally wiser to go with the tried and true (and don't forget peer-
reviewed!) bcrypt. Keep in mind that intelligent code reuse assumes you check and audit
the third-party solutions with the same due diligence as you would your own code. We will
dive deeper into this topic in the next section, Are my dependencies secure?.

It's worth noting that defensive programming shouldn't turn into paranoid programming.
Checking user input is a sane thing to do, while asserting whether an initialized variable is
still equal to the original value just after the initialization is going too far. You want to
control the integrity of your data and algorithms and the integrity of third-party solutions.
You don't want to verify the correctness of your compiler by embracing language features.

In short, it's a good idea from both a security and readability point of view to
use Expects() and Ensures() as presented in C++ Core Guidelines and to distinguish
between unsafe and safe data through typing and conversions.

The most common vulnerabilities
To check whether your code is safe against the most common vulnerabilities, you should
first learn about the said vulnerabilities. After all, a defense is only possible when you
know what the offense looks like. The Open Web Application Security Project (OWASP)
has cataloged the most common vulnerabilities and has published them at https:/ /www.
owasp.org/index. php/ Category:OWASP_ Top_ Ten_ Project. At the moment of writing this
book, those vulnerabilities are as follows:

Injection: Commonly known as SQL injection. It is not limited to SQL; this
vulnerability occurs when untrusted data is passed directly to an interpreter
(such as a SQL database, NoSQL database, shell, or eval function). The attacker
may this way gain access to parts of the system that should be protected.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Security in Code and Deployment Chapter 10

[305]

Broken Authentication: If authentication is improperly implemented, attackers
may use flaws to either compromise secret data or impersonate other users.
Sensitive Data Exposure: The lack of encryption and proper access rights may
lead to sensitive data being exposed publicly.
XML External Entities (XXE): Some XML processors may disclose the contents of
the server's filesystem or allow remote code execution.
Broken Access Control: When access control is not enforced properly, attackers
may gain access to files or data that should be restricted.
Security Misconfiguration: Using insecure defaults and improper care with
configuration are the most common sources of vulnerabilities.
Cross-Site Scripting (XSS): Including and executing untrusted external data,
especially with JavaScript, that allows control of the user's web browser.
Insecure Deserialization: Some flawed parsers may fall prey to denial of services
attacks or remote code execution.
Using Components with Known Vulnerabilities: A lot of the code in modern
applications comes as third-party components. These components should be
regularly audited and updated as known security flaws in a single dependency
can result in your entire application and data being compromised. Fortunately,
there are tools that help automate this.
Insufficient Logging & Monitoring: If your system is under attack and your
logging and monitoring is not very thorough, the attacker may obtain deeper
access and still become unnoticed.

We won't go into detail regarding each of the mentioned vulnerabilities. What we want to
highlight here is that you can prevent injection, XML external entities, and insecure
deserialization by following the defensive programing techniques we mentioned before. By
treating all external data as unsafe, you can first sanitize it by removing all the unsafe
content before you start the actual processing.

When it comes to insufficient logging and monitoring, we will go into detail in Chapter 15,
Cloud-Native Design. There we will present some possible approaches to observability,
including logging, monitoring, and distributed tracing.

Security in Code and Deployment Chapter 10

[306]

Checking whether the dependencies are
secure
In the early days of computers, all programs were monoliths without any external
dependencies. Ever since the dawn of operating systems, any non-trivial software is rarely
free from dependencies. Those dependencies can come in two forms: external dependencies
and internal ones:

External dependencies are those that should be present in the environment that
we run our application. Examples can include the aforementioned operating
systems, dynamically linked libraries, and other applications (such as a
database).
Internal dependencies are modules we want to reuse, so this will usually mean
static libraries or header-only libraries.

Both kinds of dependencies provide potential security risks. As each line of code increases
the risk of vulnerability, the more components you have, the higher the chance your system
may be susceptible to attack. In the following sections, we'll see how to check whether your
software is indeed susceptible to known vulnerabilities.

Common Vulnerabilities and Exposures
The first place to check for known security issues within software is the Common
Vulnerabilities and Exposures (CVE) list available at https:/ /cve. mitre. org/ . The list is
constantly updated by several institutions known as CVE Numbering Authorities (CNAs).
These institutions include vendors and projects, vulnerability researchers, national and
industry CERTs, and bug bounty programs.

The website also presents a search engine. With this, you can use several methods to learn
about the vulnerabilities:

You can enter the vulnerability number. These are prefixed by CVE with
examples including CVE-2014-6271, the infamous ShellShock, or CVE-2017-5715,
also known as Spectre).
You can enter the vulnerability common name, such as the previously mentioned
ShellShock or Spectre.
You can enter the name of the software you want to audit, such as Bash or Boost.

https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/

Security in Code and Deployment Chapter 10

[307]

For each search result, you can see the description as well as a list of references to other bug
trackers and related resources. The description usually lists versions affected by the
vulnerability, so you can check whether the dependency you are planning to use has been
already patched.

Automated scanners
There are tools that can help you to audit your list of dependencies. One such tool is
OWASP Dependency-Check (https:/ /www.owasp. org/index. php/OWASP_ Dependency_
Check). Although it only supports Java and .NET officially, it has experimental support for
Python, Ruby, Node.js, and C++ (when used with CMake or autoconf). Besides working as
a standalone tool, it has integrations for Continuous Integration/Continuous Deployment
(CI/CD) software such as Jenkins, SonarQube, and CircleCI.

Another tool that allows checking dependencies for known vulnerabilities is Snyk. This is a
commercial product with several levels of support. It also does more than the OWASP
Dependency-Check as Snyk can also audit container images and license compliance issues.
It also offers more integrations with third-party solutions.

Automated dependency upgrade management
Monitoring your dependencies for vulnerabilities is only the first step in making sure your
project is secure. After that, you need to take action and update the compromised
dependencies manually. As you might have expected, there are also automated solutions
just for that. One of them is Dependabot, which scans your source code repository and
issues a pull request whenever there's a security-related update available. At the moment of
writing this book, Dependabot does not support C++ yet. It can, however, be used with
other languages that your application may use. Other than that, it can scan Docker
containers for vulnerabilities found in base images.

Automated dependency management requires mature test support. Switching dependency
versions without tests may lead to instabilities and bugs. One protection against problems
related to dependency upgrades is using wrappers to interface with third-party code. Such
wrappers may have their own suite of tests that instantly tells us when an interface is
broken during an upgrade.

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check

Security in Code and Deployment Chapter 10

[308]

Hardening your code
You can reduce the number of common security vulnerabilities in your own code by using
modern C++ constructions as opposed to older C equivalents. Yet, there are always cases
when even more secure abstractions prove to be vulnerable as well. It is not enough to
choose the more secure implementation and decide you've done your best. Most of the
time, there are ways to further harden your code.

But what is code hardening? According to the definition, it is the process of reducing the
system's surface of vulnerability. Often, this means turning off the features you won't be
using and aiming for a simpler system over a complicated one. It may also mean using
tools to increase the robustness of the already-available functions.

Such tools may mean kernel patches, firewalls, and Intrusion Detection Systems (IDSes)
when applied at the operating system level. At the application level, it may mean various
buffer overrun and underflow protection mechanisms, using containers and Virtual
Machines (VMs) for privilege separation and process isolation, or enforcing encrypted
communication and storage.

In this section, we'll focus on some examples from the application level, while the next
section will focus on the operating system level.

Security-oriented memory allocator
If you are serious about protecting your application from heap-related attacks, such as heap
overflow, use-after-free, or double free, you may consider replacing your standard memory
allocator with a security-oriented version. Two projects that may be of interest are as
follows:

FreeGuard, available at https:/ /github. com/ UTSASRG/ FreeGuard and described
in a paper at https:/ /arxiv. org/ abs/ 1709. 02746

hardened_malloc from the GrapheneOS project, available at https:/ /github.
com/GrapheneOS/ hardened_ malloc

https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc

Security in Code and Deployment Chapter 10

[309]

FreeGuard was released in 2017 and it hasn't seen much change since then other than
sporadic bug fixes. hardened_malloc, on the other hand, is actively developed. Both
allocators are designed to act as drop-in replacements for the standard malloc(). You can
use them without modifying your application simply by setting
the LD_PRELOAD environment variable or adding the library to
the /etc/preload.so configuration file. While FreeGuard targets Linux with the Clang
compiler on 64-bit x86 systems, hardened_malloc aims at broader compatibility, though
at the moment supports mostly Android's Bionic, musl, and glibc. hardened_malloc is
also based on OpenBSD's alloc, with OpenBSD being the security-focused project itself.

Instead of replacing the memory allocator, you can replace the collections you use for their
safer equivalents. The SaferCPlusPlus (https:/ /duneroadrunner. github. io/
SaferCPlusPlus/) project provides substitutes for std::vector<>, std::array<>,
and std::string that can be used as drop-in replacements in the existing code. The
project also includes substitutes for basic types that guard against uninitialized use or sign
mismatch, concurrent data types, and replacements for pointers and references.

Automated checks
There are tools that can be especially helpful to ensure the security of the system you are
building. We will cover them in the following section.

Compiler warnings
While not necessarily a tool in itself, compiler warnings can be used and tweaked to
achieve even better output from the one tool every C++ developer will be using: the C++
compiler.

Since the compiler can already do some deeper checks than those required by the standard,
it is advised to take advantage of this possibility. When using a compiler such as GCC or
Clang, the recommended setting involves -Wall -Wextra flags. This will generate much
more diagnostics and result in warnings when your code doesn't follow the diagnostics. If
you want to be really strict, you can also enable -Werror, which will turn all the warnings
into errors and prevent the compilation of code that doesn't pass the enhanced diagnostics.
If you want to keep strictly to the standards, there are the -pedantic and -pedantic-
errors flags that will look for conformance against the standards.

https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/
https://duneroadrunner.github.io/SaferCPlusPlus/

Security in Code and Deployment Chapter 10

[310]

When using CMake for building, you can use the following function to enable these flags
during compilation:

add_library(customer ${SOURCES_GO_HERE})
target_include_directories(customer PUBLIC include)
target_compile_options(customer PRIVATE -Werror -Wall -Wextra)

This way, the compilation will fail unless you fix all the warnings (turned errors) reported
by the compiler.

You can also find suggested settings for toolchain hardening in these articles from OWASP
(https://www.owasp. org/ index. php/ C- Based_ Toolchain_ Hardening) and Red Hat
(https://developers. redhat. com/ blog/ 2018/ 03/ 21/compiler- and- linker- flags- gcc/).

Static analysis
One class of tools that can help with making your code more secure is the so-called Static
Application Security Testing (SAST) tools. They are a variant of static analysis tools only
focused on security aspects.

SAST tools integrate well into CI/CD pipelines as they are simply reading your source code.
The output is usually suitable for CI/CD as well since it highlights problems found in
particular places in the source code. On the other hand, static analysis may omit many
types of problems that cannot be found automatically or cannot be found solely with static
analysis. These tools are also oblivious to issues related to configuration, as configuration
files aren't represented in the source code itself.

Examples of C++ SAST tools include the following open source solutions:

Cppcheck (http:/ /cppcheck. sourceforge. net/), which is a general-purpose
static analysis tool focused on the low number of false positives
Flawfinder (https:/ /dwheeler. com/flawfinder/), which doesn't seem to be
actively maintained
LGTM (https:/ / lgtm. com/ help/ lgtm/ about- lgtm), supporting several different
languages and featuring automated analysis of pull requests
SonarQube (https:/ /www. sonarqube. org/), which has great CI/CD integration
and language coverage, and offers a commercial version as well

https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/help/lgtm/about-lgtm
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/

Security in Code and Deployment Chapter 10

[311]

There are also commercial solutions available:

Checkmarx CxSAST (https:/ /www.checkmarx. com/ products/ static-
application- security- testing/), which promises zero configuration and road
language coverage
CodeSonar (https:/ / www. grammatech. com/ products/ codesonar), which focuses
on in-depth analysis and finding the most flaws
Klocwork (https:/ / www. perforce. com/ products/ klocwork), which focuses on
accuracy
Micro Focus Fortify (https:/ / www.microfocus. com/ en- us/products/ static-
code-analysis- sast/ overview), with broad language support and integration of
other tools by the same manufacturer
Parasoft C/C++test (https:/ /www. parasoft. com/products/ ctest), which is an
integrated solution for static and dynamic analysis, unit testing, tracing, and
more
Polyspace Bug Finder from MathWorks (https:/ /www. mathworks. com/
products/ polyspace- bug- finder. html), with the integration of Simulink models
Veracode Static Analysis (https:/ / www.veracode. com/ products/ binary-
static-analysis- sast), which is a SaaS solution for static analysis
WhiteHat Sentinel Source (https:/ / www.whitehatsec. com/ platform/ static-
application- security- testing/), which also focuses on eliminating false
positives

Dynamic analysis
Just like static analysis is performed on the source code, dynamic analysis is performed on
the resulting binaries. The "dynamic" in the name refers to the observation of the code in
action processing the actual data. When focused on security, this class of tools can also be
called Dynamic Application Security Testing (DAST).

Their main advantage over their SAST counterparts is that they can find many flows that
cannot be seen from the source code analysis point of view. This, of course, introduces the
drawback that you have to run your application in order to perform the analysis. And as
we know, running an application can be both time- and memory-consuming.

DAST tools usually focus on web-related vulnerabilities such as XSS, SQL (and other)
injection, or disclosed sensitive information. We will focus more on one of the more
general-purpose dynamic analysis tools, Valgrind, in the next subsection.

https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.checkmarx.com/products/static-application-security-testing/
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.parasoft.com/products/ctest
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/
https://www.whitehatsec.com/platform/static-application-security-testing/

Security in Code and Deployment Chapter 10

[312]

Valgrind and Application Verifier
Valgrind is mostly known as a memory leak debugging tool. It is, in fact, an
instrumentation framework that helps to build dynamic analysis tools not necessarily
related to memory problems. Besides the memory error detector, the suite of tools currently
consists of a thread error detector, a cache and branch prediction profiler, and a heap
profiler. It's supported on various platforms on Unix-like operating systems (including
Android).

Essentially, Valgrind acts as a VM, first translating the binary into a simpler form called
intermediate representation. Instead of running the program on an actual processor, it gets
executed under this VM so each call can be can be analyzed and validated.

If you're developing on Windows, you can use Application Verifier (AppVerifier) instead
of Valgrind. AppVerifier can help you detect stability and security issues. It can monitor
running applications and user-mode drivers to look for memory issues such as leaks and
heap corruption, threading and locking issues, invalid use of handles, and more.

Sanitizers
Sanitizers are dynamic testing tools that are based on compile-time instrumentation of
code. They can help with the overall stability and security of the system, as well as avoiding
undefined behavior. At https:/ / github. com/ google/ sanitizers, you can find
implementations for LLVM (which Clang is based on) and GCC. They address problems
with memory access, memory leaks, data races and deadlocks, uninitialized memory use,
and undefined behavior.

AddressSanitizer (ASan) protects your code against issues related to memory addressing,
such as global-buffer-overflow, use-after-free, or stack-use-after-return. Even though it's
one of the fastest solutions of its kind, it still slows down the process about two times. It's
best to use it when running tests and doing development but turn it off in production
builds. You can turn it on for your builds by adding the -fsanitize=address flag to
Clang.

AddressSanitizerLeakSanitizer (LSan) integrates with ASan to find memory leaks. It is
enabled by default on x86_64 Linux and x86_64 macOS. It requires setting an environment
variable, ASAN_OPTIONS=detect_leaks=1. LSan performs leak detection at the end of the
process. LSan can also be used as a standalone library without AddressSanitizer, but this
mode is much less tested.

ThreadSanitizer (TSan), as we previously mentioned, detects problems with concurrency
such as data races and deadlocks. You can enable it with the -fsanitize=thread flag to
Clang.

https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers

Security in Code and Deployment Chapter 10

[313]

MemorySanitizer (MSan) focuses on bugs related to access to uninitialized memory. It
implements some of the features of Valgrind that we covered in the previous subsection.
MSan supports 64-bit x86, ARM, PowerPC, and MIPS platforms. You can enable it with
the -fsanitize=memory -fPIE -pie flag to Clang (which also turns on position-
independent executables, a concept we'll discuss later on).

Hardware-Assisted Address Sanitizer (HWASAN) is similar to the regular ASan. The
main difference is the use of hardware assistance when possible. This feature is, for now,
available only on 64-bit ARM architectures.

UndefinedBehaviorSanitizer (UBSan) looks for other possible causes of undefined
behavior, such as integer overflow, division by zero, or improper bit shift operations. You
can enable it with the -fsanitize=undefined flag to Clang.

Even though sanitizers can help you uncover many potential problems, they are only as
good as the tests that you run them against. When using the sanitizers, keep in mind to
keep the code coverage of your tests high because otherwise, you may get a false sense of
security.

Fuzz-testing
A subcategory of DAST tools, fuzz-testing checks the behavior of your application when
confronted with invalid, unexpected, random, or maliciously formed data. Such checks can
be especially useful when used against the interfaces that cross the trust boundary (such as
end user file upload forms or inputs).

Some interesting tools from this category include the following:

Peach Fuzzer: https:/ / www. peach. tech/ products/ peach- fuzzer/

PortSwigger Burp: https:/ / portswigger. net/ burp

The OWASP Zed Attack Proxy project: https:/ /www. owasp. org/ index. php/
OWASP_Zed_ Attack_ Proxy_ Project

Google's ClusterFuzz: https:/ /github. com/google/ clusterfuzz (and OSS-
Fuzz: https:/ /github. com/ google/ oss- fuzz)

Process isolation and sandboxing
If you want to run unverified software in your own environment, you may want to isolate
it from the rest of your system. Some ways to sandbox the executed code is via VMs,
containers, or micro VMs such as Firecracker (https:/ /firecracker- microvm. github. io/)
used by AWS Lambda.

https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/

Security in Code and Deployment Chapter 10

[314]

This way, the crashes, leaks, and security problems of one application won't propagate to
the entire system, rendering it either useless or compromised. As each process will have its
own sandbox, the worst-case scenario would be the loss of only this one service.

For C and C++ code, there is also Sandboxed API (SAPI; https:/ /
github.com/google/sandboxed-api) an open source project led by Google. It
allows building sandboxes not for entire processes but for libraries. It is
used by Google's own Chrome and Chromium web browsers, among others.

Even though VMs and containers can be a part of the process isolation strategy, don't
confuse them with microservices, which often use similar building blocks. Microservices
are an architectural design pattern and they don't automatically equal better security.

Hardening your environment
Even if you take the necessary precautions to ensure that your dependencies and code are
free from known vulnerabilities, there still exists an area that can compromise your security
strategy. All applications need an execution environment and this can mean either a
container, VMs, or an operating system. Sometimes, this can also mean the underlying
infrastructure as well.

It's not enough to make your application hardened to the maximum when the operating
system it runs on has open access. This way, instead of targeting your application, the
attacker can gain unauthorized access to the data directly from the system or infrastructure
level.

This section will focus on some techniques of hardening that you can apply at this lowest
level of execution.

Static versus dynamic linking
Linking is the process that occurs after compilation when the code you've written is
brought together with its various dependencies (such as the standard library). Linking can
occur at build time, at load time (when the operating system executes the binary), or at
runtime, as is the case with plugins and other dynamic dependencies. The last two use
cases are only possible with dynamic linking.

So, what is the difference between dynamic and static linking? With static linking, the
contents of all the dependencies are copied to the resulting binary. When the program is
loaded, the operating system places this single binary in the memory and executes it. Static
linking is performed by programs called linkers as the last step of the build process.

https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api

Security in Code and Deployment Chapter 10

[315]

Because each executable has to contain all the dependencies, statically linked programs
tend to be big. This has its upside as well; since everything needed to execute the problem
is already available in a single place, the execution can be faster and it always takes the
same amount of time to load the program into memory. Any changes in the dependencies
require recompilation and relinking; there is no way to upgrade one dependency without
changing the resulting binary.

In dynamic linking, the resulting binary contains the code you've written, but instead of the
contents of the dependencies, there are only references to the actual libraries that need to be
loaded separately. During load time, it is the task of the dynamic loader to find the
appropriate libraries and load them to memory alongside your binary. When several
applications are running simultaneously and each of them is using similar dependencies
(such as a JSON parsing library or JPEG processing library), the dynamically liked binaries
will result in lower memory usage. This is due to the fact that only a single copy of a given
library can be loaded into memory. In contrast, with statically linked binaries, the same
libraries would be loaded over and over again as part of the resulting binaries. When you
need to upgrade one of your dependencies, you can do so without touching any other
component of your system. The next time your application is loaded into memory, it will
reference the newly upgraded component automatically.

Static and dynamic linking also have security implications. It is easier to gain unauthorized
access to dynamically linked applications. This can be achieved by substituting a
compromised dynamic library in place of a regular one or by preloading certain libraries
into each newly executed process.

When you combine static linking with containers (explained in detail in a later chapter),
you get small, secure, sandboxed execution environments. You may even go further and
use such containers with microkernel-based VMs that reduce the attack surface
considerably.

Address space layout randomization
Address Space Layout Randomization (ASLR) is a technique used to prevent memory-
based exploits. It works by replacing the standard memory layout of the program and data
with a randomized one. This means an attacker cannot reliably jump to a particular
function that would otherwise be present on a system without ASLR.

Security in Code and Deployment Chapter 10

[316]

This technique can be made even more effective when combined with no-execute (NX) bit
support. The NX bit marks certain pages in the memory, such as the heap and stack, as
containing only data that cannot be executed. NX bit support has been implemented in
most mainstream operating systems and can be used whenever hardware supports it.

DevSecOps
To deliver software increments on a predictable basis, it is best to embrace the DevOps
philosophy. In short, DevOps means breaking the traditional model by encouraging
communication between business, software development, software operations, quality
assurance, and clients. DevSecOps is a form of DevOps that also emphasizes the need to
design with security in mind at each step of the process.

This means that the application you are building has observability built-in from the
beginning, leverages CI/CD pipelines, and is scanned for vulnerabilities on a regular basis.
DevSecOps gives developers a voice in the design of the underlying infrastructure, and it
gives operations experts a voice in the design of the software packages that make up the
application. Since every increment represents a working system (albeit not fully functional),
security audits are performed regularly and therefore take less time than normal. This
results in faster and more secure releases and allows for quicker reactions to security
incidents.

Summary
In this chapter, we discussed different aspects of a secure system. Since security is a
complex topic, you cannot approach it only from the angle of your own application. All
applications nowadays function in some environment and it is important to either control
this environment and shape it according to your requirements or to shield yourself from the
environment by sandboxing and isolating the code.

Having read this chapter, you are now ready to search for the vulnerabilities in your
dependencies and in your own code. You know how to design systems for increased
security and what tools to use in order to find possible flaws. Maintaining security is a
constant process but a good design can reduce the work further down the road.

The next chapter will deal with scalability and the various challenges that we may face
when growing our system.

Security in Code and Deployment Chapter 10

[317]

Questions
Why is security important in modern systems?1.
What are some challenges of concurrency?2.
What are the C++ Core Guidelines?3.
What's the difference between secure coding and defensive coding?4.
How can you check whether your software contains known vulnerabilities?5.
What's the difference between static and dynamic analysis?6.
What's the difference between static and dynamic linking?7.
How you can use the compiler to fix security problems?8.
How can you implement security awareness in your CI pipeline?9.

Further reading
Cybersecurity in general:

https:// www. packtpub. com/ eu/ networking- and- servers/ hands-
cybersecurity- architects

https:// www. packtpub. com/ eu/ networking- and- servers/ information-
security- handbook

https:// www. owasp. org/ index. php/ Main_ Page

https:// www. packtpub. com/ eu/ networking- and- servers/ practical- security-
automation- and- testing

Concurrency:

https:// www. packtpub. com/ eu/ application- development/ concurrent-
patterns- and- best- practices

https:// www. packtpub. com/ eu/ application- development/ mastering- c-
multithreading

Operating system hardening:

https:// www. packtpub. com/ eu/ networking- and- servers/ mastering- linux-
security- and- hardening

https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/hands-cybersecurity-architects
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.packtpub.com/eu/networking-and-servers/information-security-handbook
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/networking-and-servers/practical-security-automation-and-testing
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/concurrent-patterns-and-best-practices
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/application-development/mastering-c-multithreading
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/eu/networking-and-servers/mastering-linux-security-and-hardening

11
Performance

One of the most common reasons to choose C++ as a key programming language for a
project is due to performance requirements. C++ has a clear edge over the competition
when it comes to performance, but achieving the best results requires understanding
relevant problems. This chapter focuses on increasing the performance of C++ software.
We'll start by showing you tools for measuring performance. We'll show you a few
techniques for increasing single-threaded compute speed. Then we'll discuss how to make
use of parallel computing. Finally, we'll show how you can use C++20's coroutines for non-
preemptive multitasking.

The following topics will be covered in this chapter:

Measuring performance
Helping the compiler generate performant code
Parallelizing computations
Using coroutines

First, let's specify what you'll need to run the examples in this chapter.

Technical requirements
To replicate the examples from this chapter, you should install the following:

CMake 3.15+
A compiler supporting C++20's ranges and coroutines, for instance, GCC 10+

The source code snippets from the chapter can be found at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter11.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter11

Performance Chapter 11

[319]

Measuring performance
To effectively improve the performance of your code, you must start by measuring how it
performs. Without knowing where the actual bottlenecks are, you will end up optimizing
the wrong places, losing time, and getting surprised and frustrated that your hard work
gave little to no gains. In this section, we'll show how to properly measure performance
using benchmarks, how to successfully profile your code, and how to gain insights into
performance in distributed systems.

Performing accurate and meaningful
measurements
For accurate and repeatable measurements, you might also want to put your machine into
performance mode instead of the usual default power-saving one. If you require low
latency from your system, you might want to disable power saving permanently on both
the machines you benchmark on and in your production environment. Many times this
may mean going into BIOS and configuring your server properly. Note that this may not be
possible if you use a public cloud provider. If you have root/admin permissions on your
machine, the OS can often steer some of the settings too. For instance, you can force your
CPU to run with its maximum frequency on a Linux system by running the following:

sudo cpupower frequency-set --governor performance

Moreover, to obtain meaningful results, you might want to perform measurements on a
system that as closely resembles your production environment as possible. Aside from
configuration, aspects such as the different speeds of RAM, the number of CPU caches, and
the microarchitecture of your CPUs can also skew your results and lead you to incorrect
conclusions. The same goes for the hard drive setup and even the network topology and
hardware used. The software you build on also plays a crucial role: from the firmware
used, through the OS and kernel, all the way up the software stack to your dependencies.
It's best to have a second environment that's identical to your production one and governed
using the same tools and scripts.

Now that we have a solid environment for taking measurements, let's see what we can
actually measure.

Performance Chapter 11

[320]

Leveraging different types of measuring tools
There are several ways to measure performance, each focusing on a different scope. Let's go
through them one by one.

Benchmarks can be used to time the speed of your system in a pre-made test. Usually, they
result in either a time to finish or another performance metric such as orders processed per
second. There are several types of benchmarks:

Microbenchmarks, which you can use to measure the execution of a small code
fragment. We'll cover them in the next section.
Simulations, which are synthetic tests on a larger scale with artificial data. They
can be useful if you don't have access to the target data or your target hardware.
For instance, when you are planning to check the performance of hardware that
you're working on, but it doesn't exist yet, or when you plan to handle incoming
traffic, but can only assume how the traffic will look.
Replays, which can be a very accurate way of measuring performance under the
real-life workload. The idea is to record all the requests or workloads coming into
the production system, often with timestamps. Such dumps can then later be
"replayed" into the benchmarked system, respecting the time differences between
them, to check how it performs. Such benchmarks can be great to see how
potential changes to code or the environment can influence the latency and
throughput of your system.
Industry-standard, which is a good way to see how our product performs
compared to its competitors. Examples of such benchmarks include SuperPi for
CPUs, 3D Mark for graphic cards, and ResNet-50 for artificial intelligence
processors.

Aside from benchmarking, another type of tool that is invaluable when it comes to
measuring performance is profilers. Instead of just giving you overall performance metrics,
profilers allow you to examine what your code is doing and look for bottlenecks. They're
useful for catching unexpected things that slow your system down. We'll cover them in
more detail later in this chapter.

Performance Chapter 11

[321]

The last way to grasp your system's performance is tracing. Tracing is essentially a way to
log your system's behavior during execution. By monitoring how long it takes for a request
to complete various steps of processing (such as being handled by different types of
microservices), you can gain insight into what parts of your system need to improve their
performance, or how well your system deals with different kinds of requests: either
different types or those that get accepted or rejected. We'll cover tracing later in this chapter
– right after profiling.

Let's now say a few more words on microbenchmarks.

Using microbenchmarks
Microbenchmarks are used to measure how fast a "micro" fragment of code can perform. If
you're wondering how to implement a given functionality or how fast different third-party
libraries deal with the same task, then they're the perfect tool for the job. While they're not
representative of a realistic environment, they're well suited to perform such small
experiments.

Let's show how to run such experiments using one of the most commonly used frameworks
to create microbenchmarks in C++: Google Benchmark.

Setting up Google Benchmark
Let's start by introducing the library into our code by using Conan. Put the following in
your conanfile.txt:

[requires]
benchmark/1.5.2

[generators]
CMakeDeps

We're going to use the CMakeDeps generator as it's the recommended CMake generator in
Conan 2.0. It relies on CMake's find_package feature to use the packages installed by our
barbaric dependency manager. To install the dependencies in their release versions, run the
following:

cd <build_directory>
conan install <source_directory> --build=missing -s build_type=Release

Performance Chapter 11

[322]

If you're using a custom Conan profile, remember to add it here as well.

Using it from your CMakeLists.txt file is also pretty straightforward, as shown next:

list(APPEND CMAKE_PREFIX_PATH "${CMAKE_BINARY_DIR}")
find_package(benchmark REQUIRED)

First, we add our build directory to CMAKE_PREFIX_PATH so that CMake can find the
config and/or target files produced by Conan. Next, we just use them to find our
dependency.

As we're going to create several microbenchmarks, we could use a CMake function to help
us with defining them:

function(add_benchmark NAME SOURCE)
 add_executable(${NAME} ${SOURCE})
 target_compile_features(${NAME} PRIVATE cxx_std_20)
 target_link_libraries(${NAME} PRIVATE benchmark::benchmark)
endfunction()

The function will be able to create single-translation-unit microbenchmarks, each using
C++20 and linked to the Google Benchmark library. Let's now use it to create our first
microbenchmark executable:

add_benchmark(microbenchmark_1 microbenchmarking/main_1.cpp)

Now we're ready to put some code in our source file.

Writing your first microbenchmark
We'll try to benchmark how much faster a lookup takes when it's done using bisection in a
sorted vector as compared to just going through it linearly. Let's start with code that will
create the sorted vector:

using namespace std::ranges;

template <typename T>
auto make_sorted_vector(std::size_t size) {
 auto sorted = std::vector<T>{};
 sorted.reserve(size);

 auto sorted_view = views::iota(T{0}) | views::take(size);
 std::ranges::copy(sorted_view, std::back_inserter(sorted));
 return sorted;
}

Performance Chapter 11

[323]

Our vector will contain size elements with all the numbers from 0 to size - 1 in ascending
order. Let's now specify the element we're looking for and the container size:

constexpr auto MAX_HAYSTACK_SIZE = std::size_t{10'000'000};
constexpr auto NEEDLE = 2137;

As you can see, we'll benchmark how long it takes to find a needle in a haystack. The
simple linear search can be implemented as follows:

void linear_search_in_sorted_vector(benchmark::State &state) {
 auto haystack = make_sorted_vector<int>(MAX_HAYSTACK_SIZE);
 for (auto _ : state) {
 benchmark::DoNotOptimize(find(haystack, NEEDLE));
 }
}

Here, we can see the first use of Google Benchmark. Each microbenchmark should accept
State as an argument. This special type does the following:

Contains information about the iterations performed and the time spent on the
measured computation
Counts the bytes processed if wanted
Can return other state information, such as the need to run further (through the
KeepRunning() member function)
Can be used to pause and resume the timing of an iteration (through the
PauseTiming() and ResumeTiming() member functions, respectively)

The code in our loop will be measured, making as many iterations as desired, based on the
total allowed time to run this particular benchmark. The creation of our haystack is outside
the loop and won't be measured.

Inside the loop, there's a sink helper named DoNotOptimize. Its purpose is to ensure the
compiler doesn't get rid of our computations as it can prove that they are irrelevant outside
of this scope. In our case, it will mark the result of std::find necessary, so the actual code
to find the needle is not optimized away. Using tools such as objdump or sites such as
Godbolt and QuickBench allows you to peek if the code you want to run wasn't optimized
out. QuickBench has the additional advantage of running your benchmarks in the cloud
and sharing their results online.

Back to our task at hand, we have a microbenchmark for the linear search, so let's now time
the binary search in another microbenchmark:

void binary_search_in_sorted_vector(benchmark::State &state) {
 auto haystack = make_sorted_vector<int>(MAX_HAYSTACK_SIZE);

Performance Chapter 11

[324]

 for (auto _ : state) {
 benchmark::DoNotOptimize(lower_bound(haystack, NEEDLE));
 }
}

Our new benchmark is pretty similar. It only differs in the function used: lower_bound
will perform a binary search. Note that similar to our base example, we don't even check if
the iterator returned points to a valid element in the vector, or to its end. In the case of
lower_bound, we could check if the element under the iterator is actually the one we're
looking for.

Now that we have the microbenchmark functions, let's create actual benchmarks out of
them by adding the following:

BENCHMARK(binary_search_in_sorted_vector);
BENCHMARK(linear_search_in_sorted_vector);

If the default benchmark settings are okay with you, that's all you need to pass. As the last
step, let's add a main() function:

BENCHMARK_MAIN();

Simple as that! Alternatively, you can link our program with benchmark_main instead.
Using Google Benchmark's main() function has the advantage of providing us with some
default options. If you compile our benchmark and run it passing --help as a parameter,
you'll see the following:

benchmark [--benchmark_list_tests={true|false}]
 [--benchmark_filter=<regex>]
 [--benchmark_min_time=<min_time>]
 [--benchmark_repetitions=<num_repetitions>]
 [--benchmark_report_aggregates_only={true|false}]
 [--benchmark_display_aggregates_only={true|false}]
 [--benchmark_format=<console|json|csv>]
 [--benchmark_out=<filename>]
 [--benchmark_out_format=<json|console|csv>]
 [--benchmark_color={auto|true|false}]
 [--benchmark_counters_tabular={true|false}]
 [--v=<verbosity>]

This is a nice set of features to use. For example, when designing experiments, you can use
the benchmark_format switch to get a CSV output for easier plotting on a chart.

Performance Chapter 11

[325]

Let's now see our benchmark in action by running the compiled executable with no
command-line arguments. A possible output from running ./microbenchmark_1 is as
follows:

2021-02-28T16:19:28+01:00
Running ./microbenchmark_1
Run on (8 X 2601 MHz CPU s)
Load Average: 0.52, 0.58, 0.59

Benchmark Time CPU Iterations

linear_search_in_sorted_vector 984 ns 984 ns 746667
binary_search_in_sorted_vector 18.9 ns 18.6 ns 34461538

Starting with some data about the running environment (the time of benchmarking, the
executable name, the server's CPUs, and the current load), we get to the results of each
benchmark we defined. For each benchmark, we get the average wall time per iteration, the
average CPU time per iteration, and the number of iterations that the benchmark harness
ran for us. By default, the longer a single iteration, the fewer iterations it will go through.
Running more iterations ensures you get more stable results.

Passing arbitrary arguments to a microbenchmark
If we were to test more ways of dealing with our problem at hand, we could look for a way
to reuse the benchmark code and just pass it to the function used to perform the lookup.
Google Benchmark has a feature that we could use for that. The framework actually lets us
pass any arguments we want to the benchmark by adding them as additional parameters to
the function signature.

Let's see how a unified signature for our benchmark could look with this feature:

void search_in_sorted_vector(benchmark::State &state, auto finder) {
 auto haystack = make_sorted_vector<int>(MAX_HAYSTACK_SIZE);
 for (auto _ : state) {
 benchmark::DoNotOptimize(finder(haystack, NEEDLE));
 }
}

You can notice the new finder parameter to the function, which is used in the spot where
we previously called either find or lower_bound. We can now make our two
microbenchmarks using a different macro than we did last time:

BENCHMARK_CAPTURE(search_in_sorted_vector, binary, lower_bound);
BENCHMARK_CAPTURE(search_in_sorted_vector, linear, find);

Performance Chapter 11

[326]

The BENCHMARK_CAPTURE macro accepts the function, a name suffix, and the arbitrary
number of parameters. If we wanted more, we could just pass them here. Our benchmark
function could be a regular function or a template – both are supported. Let's now see what
we get when running the code:

Benchmark Time CPU Iterations

search_in_sorted_vector/binary 19.0 ns 18.5 ns 28000000
search_in_sorted_vector/linear 959 ns 952 ns 640000

As you can see the arguments passed to the functions are not part of the name, but the
function name and our suffix are.

Let's now see how we can further customize our benchmarks.

Passing numeric arguments to a microbenchmark
A common need when designing experiments like ours is to check it on different sizes of
arguments. Such needs can be addressed in Google Benchmark in a number of ways. The
simplest is to just add a call to Args() on the object returned by the BENCHMARK macros.
This way, we can pass a single set of values to use in a given microbenchmark. To use the
passed value, we'd need to change our benchmark function as follows:

void search_in_sorted_vector(benchmark::State &state, auto finder) {
 const auto haystack = make_sorted_vector<int>(state.range(0));
 const auto needle = 2137;
 for (auto _ : state) {
 benchmark::DoNotOptimize(finder(haystack, needle));
 }
}

The call to state.range(0) will read the 0-th argument passed. An arbitrary number can
be supported. In our case, it's used to parameterize the haystack size. What if we wanted to
pass a range of value sets instead? This way, we could see how changing the size influences
the performance more easily. Instead of calling Args, we could call Range on the
benchmark:

constexpr auto MIN_HAYSTACK_SIZE = std::size_t{1'000};
constexpr auto MAX_HAYSTACK_SIZE = std::size_t{10'000'000};

BENCHMARK_CAPTURE(search_in_sorted_vector, binary, lower_bound)
 ->RangeMultiplier(10)
 ->Range(MIN_HAYSTACK_SIZE, MAX_HAYSTACK_SIZE);
BENCHMARK_CAPTURE(search_in_sorted_vector, linear, find)

Performance Chapter 11

[327]

 ->RangeMultiplier(10)
 ->Range(MIN_HAYSTACK_SIZE, MAX_HAYSTACK_SIZE);

We specify the range boundaries using a predefined minimum and maximum. We then tell
the benchmark harness to create the ranges by multiplying by 10 instead of the default
value. When we run such benchmarks, we could get the following results:

Benchmark Time CPU Iterations

search_in_sorted_vector/binary/1000 0.2 ns 19.9 ns 34461538
search_in_sorted_vector/binary/10000 24.8 ns 24.9 ns 26352941
search_in_sorted_vector/binary/100000 26.1 ns 26.1 ns 26352941
search_in_sorted_vector/binary/1000000 29.6 ns 29.5 ns 24888889
search_in_sorted_vector/binary/10000000 25.9 ns 25.7 ns 24888889
search_in_sorted_vector/linear/1000 482 ns 474 ns 1120000
search_in_sorted_vector/linear/10000 997 ns 1001 ns 640000
search_in_sorted_vector/linear/100000 1005 ns 1001 ns 640000
search_in_sorted_vector/linear/1000000 1013 ns 1004 ns 746667
search_in_sorted_vector/linear/10000000 990 ns 1004 ns 746667

When analyzing those results, you might be wondering why the linear search doesn't show
us linear growth. That's because we look for a constant value of the needle that can be
spotted at a constant position. If the haystack contains our needle, we need the same
number of operations to find it regardless of the haystack size, so the execution time stops
growing (but can still be subject to small fluctuations).

Why not play with the needle position as well?

Generating the passed arguments programmatically
Generating both the haystack sizes and needle positions might be the easiest when done in
a simple function. Google Benchmark allows such scenarios, so let's show how they work in
practice.

Let's first rewrite our benchmark function to use two parameters passed in each iteration:

void search_in_sorted_vector(benchmark::State &state, auto finder) {
 const auto needle = state.range(0);
 const auto haystack = make_sorted_vector<int>(state.range(1));
 for (auto _ : state) {
 benchmark::DoNotOptimize(finder(haystack, needle));
 }
}

Performance Chapter 11

[328]

As you can see, state.range(0) will mark our needle position, while state.range(1)
will be the haystack size. This means we need to pass two values each time. Let's create a
function that generates them:

void generate_sizes(benchmark::internal::Benchmark *b) {
 for (long haystack = MIN_HAYSTACK_SIZE; haystack <= MAX_HAYSTACK_SIZE;
 haystack *= 100) {
 for (auto needle :
 {haystack / 8, haystack / 2, haystack - 1, haystack + 1}) {
 b->Args({needle, haystack});
 }
 }
}

Instead of using Range and RangeMultiplier, we write a loop to generate the haystack
sizes, this time increasing them by 100 each time. When it comes to the needles, we use
three positions in proportionate positions of the haystack and one that falls outside of it. We
call Args on each loop iteration, passing both the generated values.

Now, let's apply our generator function to the benchmarks we define:

BENCHMARK_CAPTURE(search_in_sorted_vector, binary,
lower_bound)->Apply(generate_sizes);
BENCHMARK_CAPTURE(search_in_sorted_vector, linear,
find)->Apply(generate_sizes);

Using such functions makes it easy to pass the same generator to many benchmarks.
Possible results of such benchmarks are as follows:

Benchmark Time CPU Iterations

search_in_sorted_vector/binary/125/1000 20.0 ns 20.1 ns 37333333
search_in_sorted_vector/binary/500/1000 19.3 ns 19.0 ns 34461538
search_in_sorted_vector/binary/999/1000 20.1 ns 19.9 ns 34461538
search_in_sorted_vector/binary/1001/1000 18.1 ns 18.0 ns 40727273
search_in_sorted_vector/binary/12500/100000 35.0 ns 34.5 ns 20363636
search_in_sorted_vector/binary/50000/100000 28.9 ns 28.9 ns 24888889
search_in_sorted_vector/binary/99999/100000 31.0 ns 31.1 ns 23578947
search_in_sorted_vector/binary/100001/100000 29.1 ns 29.2 ns 23578947
// et cetera

Now we have a pretty well-defined experiment for performing the searches. As an exercise,
run the experiment on your own machine to see the complete results and try to draw some
conclusions from the results.

Performance Chapter 11

[329]

Choosing what to microbenchmark and optimize
Running such experiments can be educative and even addictive. However, keep in mind
that microbenchmarks shouldn't be the only type of performance testing in your project. As
Donald Knuth famously said:

We should forget about small efficiencies, say about 97% of the time: premature optimization is the
root of all evil

This means that you should microbenchmark only code that matters, especially code on
your hot path. Larger benchmarks, along with tracing and profiling, can be used to see
where and when to optimize instead of guessing and optimizing prematurely. First,
understand how your software executes.

NOTE: There's one more point we want to make regarding the quote
above. It doesn't mean you should allow premature pessimization. Poor
choice of data structures or algorithms, or even small inefficiencies that
spread all your code, can sometimes influence the overall performance of
your system. For instance, performing unnecessary dynamic allocations,
although it might not look that bad at first, can lead to heap fragmentation
over time and cause you serious trouble if your app should run for long
periods of time. Overuse of node-based containers can lead to more cache
misses too. Long story short, if it's not a big effort to write efficient code
instead of less efficient code, go for it.

Let's now learn what to do if your project has spots that need to maintain good
performance over time.

Creating performance tests using benchmarks
Similar to having unit tests for precise testing and functional tests for larger-scale testing of
your code's correctness, you can use microbenchmarks and larger benchmarks to test your
code's performance.

If you have tight constraints on the execution time for certain code paths, having a test that
ensures the limit is met can be very useful. Even if you don't have such specific constraints,
you might be interested in monitoring how the performance changes across code changes.
If after a change your code runs slower than before by a certain threshold, the test could be
marked as failed.

Performance Chapter 11

[330]

Although also a useful tool, remember that such tests are prone to the boiling frog effect:
degrading the performance slowly over time can go unnoticed, so be sure to monitor the
execution times occasionally. When introducing performance tests to your CI, be sure to
always run them in the same environment for stable results.

Let's now discuss the next type of tools in our performance shed.

Profiling
While benchmarks and tracing can give you an overview and specific numbers for a given
scope, profilers can help you analyze where those numbers came from. They are an
essential tool if you need to gain insight into your performance and improve it.

Choosing the type of profiler to use
There are two types of profilers available: instrumentation profilers and sampling ones.
One of the better-known instrumentation profilers is Callgrind, part of the Valgrind suite.
Instrumentation profilers have lots of overhead because they need to, well, instrument your
code to see what functions you call and how much each of them takes. This way, the results
they produce contain even the smallest functions, but the execution times can be skewed by
this overhead. It also has the drawback of not always catching input/output (I/O) slowness
and jitters. They slow down the execution, so while they can tell you how often you call a
particular function, they won't tell you if the slowness is due to waiting on a disk read to
finish.

Due to the flaws of instrumentation profilers, it's usually better to use sampling profilers
instead. Two worth mentioning are the open source perf for profiling on Linux systems and
Intel's proprietary tool called VTune (free for open source projects). Although they can
sometimes miss key events due to the nature of sampling, they should usually give you a
much better view of where your code spends time.

If you decide to use perf, you should know that you can either use it by invoking perf
stat, which gives you a quick overview of statistics like CPU cache usage, or perf
record -g and perf report -g to capture and analyze profiling results.

If you want a solid overview of perf, please watch Chandler Carruth's video, which shows
the tool's possibilities and how to use it, or take a look at its tutorial. Both are linked in the
Further reading section.

Performance Chapter 11

[331]

Preparing the profiler and processing the results
When analyzing profiling results, you may often want to perform some preparation,
cleanup, and processing. For instance, if your code mostly spends time spinning around,
you might want to filter that out. Before even starting the profiler, be sure to compile or
download as many debug symbols as you can, both for your code, your dependencies, even
the OS libraries, and kernel. Also, it's essential you disable frame pointer optimizations. On
GCC and Clang, you can do so by passing the -fno-omit-frame-pointer flag. It won't
affect performance much but will give you much more data about the execution of your
code. When it comes to post-processing of the results, when using perf, it's usually a good
idea to create flame graphs from the results. Brendan Gregg's tool from the Further reading
section is great for that. Flame graphs are a simple and effective tool to see where the
execution takes too much time, as the width of each item on the graph corresponds to the
resource usage. You can have flame graphs for CPU usage, as well as for resources such as
memory usage, allocations, and page faults, or the time spent when the code is not
executing such as staying blocked during system calls, on mutexes, I/O operations, and the
like. There are also ways to perform diffs on the generated flame graphs.

Analyzing the results
Keep in mind that not all performance issues will show up on such graphs and not all can
be found using profilers. While with some experience you'll be able to see that you could
benefit from setting affinity to your threads or changing which threads execute on specific
NUMA nodes, it might not always be that obvious to see that you've forgotten to disable
power-saving features or would benefit from enabling or disabling hyper-threading.
Information about the hardware you're running on is useful, too. Sometimes you might see
the SIMD registers of your CPU being used, but the code still doesn't run at its full speed:
you might be using SSE instructions instead of AVX ones, AVX instead of AVX2, or AVX2
instead of AVX512. Knowing what specific instructions your CPU is capable of running can
be golden when you analyze the profiling results.

Solving performance issues also requires a bit of experience. On the other hand, sometimes
experience can lead you to false assumptions. For instance, in many cases, using dynamic
polymorphism will hurt your performance; there are cases where it doesn't slow down
your code. Before jumping to conclusions, it might be worth profiling the code and gaining
knowledge about the various ways a compiler can optimize code and the limits of those
techniques. Talking specifically about virtualization, it's often beneficial to mark your
classes of virtual member functions as final when you don't want other types to inherit and
override them, respectively. This tends to help the compilers in lots of cases.

Performance Chapter 11

[332]

Compilers can also optimize much better if they "see" what type the object is: if you create a
type in scope and call its virtual member function, the compiler should be able to deduce
which function should be called. GCC tends to devirtualize better than other compilers. For
more information on this, you can refer to Arthur O'Dwyer's blog post from the Further
reading section.

As with other types of tools presented in this section, try not to rely only on your profiler.
Improvements in profiling results are not a guarantee that your system got faster. A better-
looking profile can still not tell you the whole story. And the better performance of one
component doesn't necessarily mean the whole system's performance improved. This is
where our last type of tool can come in use.

Tracing
The last technique we'll discuss in this section is meant for distributed systems. When
looking at the overall system, often deployed in the cloud, profiling your software on one
box won't tell you the whole story. In such a scope, your best bet would be to trace the
requests and responses flowing through your system.

Tracing is a way to log the execution of your code. It's often used when a request (and
sometimes its response) has to flow through many parts of your system. Usually, such
messages are being traced along the route, with timestamps being added at interesting
points of execution.

Correlation IDs
One common addition to timestamps is correlation IDs. Basically, they're unique identifiers
that get assigned to each traced message. Their purpose is to correlate the logs produced by
different components of your system (like different microservices) during the processing of
the same incoming request and sometimes for the events it caused, too. Such IDs should be
passed with the message everywhere it goes, for example, by appending to its HTTP
header. Even when the original request is gone, you could add its correlation ID to each of
the responses produced.

By using correlation IDs, you can track how messages for a given request propagate
through the system and how long it took for different parts of your system to process it.
Often you'll want additional data to be gathered along the way, like the thread that was
used to perform the computation, the type, and count of responses produced for a given
request, or the names of the machines it went through.

Performance Chapter 11

[333]

Tools like Jaeger and Zipkin (or other OpenTracing alternatives) can help you to add
tracing support to your system fast.

Let's now tackle a different subject and say a few words about code generation.

Helping the compiler generate performant
code
There are many things that can help your compiler generate efficient code for you. Some
boil down to steering it properly, others require writing your code in a compiler-friendly
way.

It's also important to know what you need to do on your critical path and to design it
efficiently. For instance, try to avoid virtual dispatch there (unless you can prove it's being
devirtualized), and try not to allocate new memory on it. Often, the clever design of code to
avoid locking (or at least using lock-free algorithms) is helpful. Generally speaking,
everything that can worsen your performance should be kept outside your hot path.
Having both your instruction and data caches hot is really going to pay out. Even attributes
such as [[likely]] and [[unlikely]] that hint to the compiler which branch it should
expect to be executed can sometimes change a lot.

Optimizing whole programs
An interesting way to increase the performance of many C++ projects is to enable link-time
optimization (LTO). During compilation, your compiler doesn't know how the code will
get linked with other object files or libraries. Many opportunities to optimize arise only at
this point: when linking, your tools can see the bigger picture of how the parts of your
program interact with each other. By enabling LTO, you can sometimes grab a significant
improvement in performance with very little cost. In CMake projects, you can enable LTO
by setting either the global CMAKE_INTERPROCEDURAL_OPTIMIZATION flag or by setting
the INTERPROCEDURAL_OPTIMIZATION property on your targets.

One drawback of using LTO is that it makes the building process longer. Sometimes a lot
longer. To mitigate this cost for developers, you may want to only enable this optimization
for builds that undergo performance testing or are meant to be released.

Performance Chapter 11

[334]

Optimizing based on real-world usage patterns
Another interesting way to optimize your code is to use Profile-Guided Optimization
(PGO). This optimization is actually a two-step one. In the first step, you need to compile
your code with additional flags that cause the executable to gather special profiling
information during runtime. You should then execute it under the expected production
load. Once you're done with it, you can use the gathered data to compile the executable a
second time, this time passing a different flag that instructs the compiler to use the gathered
data to generate code better suited for your profile. This way, you'll end up with a binary
that's prepared and tuned to your specific workload.

Writing cache-friendly code
Both those types of optimization can be of use, but there's one more important thing that
you need to keep in mind when working on performant systems: cache friendliness. Using
flat data structures instead of node-based ones means that you need to perform less pointer
chasing at runtime, which helps your performance. Using data that's contiguous in
memory, regardless of whether you're reading it forward or backward, means your CPU's
memory prefetcher can load it before it's used, which can often make a huge difference.
Node-based data structures and the mentioned pointer chasing cause random memory
access patterns that can "confuse" the prefetcher and make it impossible for it to prefetch
correct data.

If you want to see some performance results, please refer to the C++ Containers Benchmark
linked in the Further reading section. It compares various usage scenarios of std::vector,
std::list, std::deque, and plf::colony. If you don't know that last one, it's an
interesting "bag"-type container with great fast insertion and deletion of large data.

When choosing from associative containers, you'll most often want to use "flat"
implementations instead of node-based ones. This means that instead of using
std::unordered_map and std::unordered_set, you might want to try out ones like
tsl::hopscotch_map or Abseil's flat_hash_map and flat_hash_set.

Techniques such as putting colder instructions (such as exception handling code) in a non-
inline function can help to increase the hotness of your instruction cache. This way, lengthy
code for handling rare cases will not be loaded in the instruction cache, leaving space for
more code that should be there, which can also improve your performance.

Performance Chapter 11

[335]

Designing your code with data in mind
If you want to help your caches, another technique that can be helpful is data-oriented
design. Often, it's a good idea to store members used more often close to each other in
memory. Colder data can often be placed in another struct and just be connected with the
hotter data by an ID or a pointer.

Sometimes, instead of the more commonly spotted arrays of objects, using objects of arrays
can yield better performance. Instead of writing your code in an object-oriented manner,
split your object's data member across a few arrays, each containing data for multiple
objects. In other words, take the following code:

struct Widget {
 Foo foo;
 Bar bar;
 Baz baz;
};

auto widgets = std::vector<Widget>{};

And consider replacing it with the following:

struct Widgets {
 std::vector<Foo> foos;
 std::vector<Bar> bars;
 std::vector<Baz> bazs;
};

This way, when processing a specific set of data points against some objects, the cache
hotness increases and so does the performance. If you don't know whether this will yield
more performance from your code, measure.

Sometimes even reordering members of your types can give you better performance. You
should take into account the alignment of your types of data members. If performance
matters, usually it's a good idea to order them so that the compiler doesn't need to insert
too much padding between the members. Thanks to that, the size of your data type can be
smaller, so many such objects can fit into one cache line. Consider the following example
(let's assume we're compiling for the x86_64 architecture):

struct TwoSizesAndTwoChars {
 std::size_t first_size;
 char first_char;
 std::size_t second_size;
 char second_char;
};
static_assert(sizeof(TwoSizesAndTwoChars) == 32);

Performance Chapter 11

[336]

Despite the sizes being 8 bytes each and chars being just 1 byte each, we end up with 32
bytes in total! That's because second_size must start on an 8-byte aligned address, so after
first_char, we get 7 bytes of padding. The same goes for second_char, as types need to
be aligned with respect to their largest data type member.

Can we do better? Let's try switching the order of our members:

struct TwoSizesAndTwoChars {
 std::size_t first_size;
 std::size_t second_size;
 char first_char;
 char second_char;
};
static_assert(sizeof(TwoSizesAndTwoChars) == 24);

By simply putting the biggest members first, we were able to cut the size of our structure by
8 bytes, which is 25% of its size. Not bad for such a trivial change. If your goal is to pack
many such structs in a contiguous block of memory and iterate through them, you could
see a big performance boost of that code fragment.

Let's now talk about another way to improve your performance.

Parallelizing computations
In this section, we'll discuss a few different ways to parallelize computations. We will start
with a comparison between threads and processes, after which we'll show you the tools
available in the C++ standard, and last but not least, we'll say a few words about the
OpenMP and MPI frameworks.

Before we start, let's say a few words on how to estimate the maximum possible gains you
can have from parallelizing your code. There are two laws that can help us here. The first is
Amdahl's law. It states that if we want to speed up our program by throwing more cores at
it, then the part of our code that must remain sequential (cannot be parallelized) will limit
our scalability. For instance, if 90% of your code is parallelizable, then even with infinite
cores you can still get only up to a 10x speedup. Even if we cut down the time to execute
that 90% to zero, the 10% of the code will always remain there.

Performance Chapter 11

[337]

The second law is Gustafson's law. It states that every large-enough task can be efficiently
parallelized. This means that by increasing the size of the problem, we can obtain better
parallelization (assuming we have free computing resources to use). In other words,
sometimes it's better to add more capabilities to be run in the same time frame instead of
trying to reduce the execution time of existing code. If you can cut the time of a task by half
by doubling the cores, at some point, doubling them again and again will get you
diminishing returns, so their processing power can be better spent elsewhere.

Understanding the differences between threads
and processes
To parallelize computations efficiently, you need to also understand when to use processes
to perform computation and when threads are the better tool for the job. Long story short, if
your only target is to actually parallelize work, then it's best to start with adding extra
threads up to the point where they don't bring extra benefits. At such a point, add more
processes on other machines in your network, each with multiple threads too.

Why is that? Because processes are more heavyweight than threads. Spawning a process
and switching between them takes longer than creating and switching between threads.
Each process requires its own memory space, while threads within the same process share
their memory. Also, inter-process communication is slower than just passing variables
between threads. Working with threads is easier than it is with processes, so the
development will be faster too.

Processes, however, also have their uses in the scope of a single application. They're great
for isolating components that can independently run and crash without taking down the
whole application with them. Having separate memory also means one process can't snoop
another one's memory, which is great when you need to run third-party code that could
turn out to be malicious. Those two reasons are why they're used in web browsers, among
other apps. Aside from that, it's possible to run different processes with different OS
permissions or privileges, which you can't achieve with multiple threads.

Let's now discuss a simple way to parallelize work in the scope of a single machine.

Performance Chapter 11

[338]

Using the standard parallel algorithms
If the computations you perform can be parallelized, there are two ways you can use that to
your advantage. One is by replacing your regular calls to standard library algorithms with
parallelizable ones. If you're not familiar with parallel algorithms, they were added in
C++17 and in essence are the same algorithms, but you can pass each of them an execution
policy. There are three execution policies:

std::execution::seq: The sequenced policy for the plain-old execution of an
algorithm in a non-parallelized way. This one we know too well.
std::execution::par: A parallel policy that signals that the execution may be
parallelized, usually using a thread pool under the hood.
std::execution::par_unseq: A parallel policy that signals that the execution
may be parallelized and vectorized.
std::execution::unseq: A C++20 addition to the family. This policy signals
that the execution can be vectorized, but not parallelized.

If the preceding policies are not enough for you, additional ones may be provided by a
standard library implementation. Possible future additions may include ones for CUDA,
SyCL, OpenCL, or even artificial intelligence processors.

Let's now see the parallel algorithms in action. As an example, to sort a vector in a parallel
way, you can write the following:

std::sort(std::execution::par, v.begin(), v.end());

Simple and easy. Although in many cases this will yield better performance, in some cases
you might be better off executing the algorithms in the traditional way. Why? Because
scheduling work on more threads requires additional work and synchronization. Also,
depending on the architecture of your app, it may influence the performance of other
already existing threads and flush their cores' data caches. As always, measure first.

Parallelizing computations using OpenMP and
MPI
An alternative to using the standard parallel algorithms would be to leverage OpenMP's
pragmas. They're an easy way to parallelize many types of computations by just adding a
few lines of code. And if you want to distribute your code across a cluster, you might want
to see what MPI can do for you. Those two can also be joined together.

Performance Chapter 11

[339]

With OpenMP, you can use various pragmas to easily parallelize code. For instance, you
can write #pragma openmp parallel for before a for loop to get it executed using
parallel threads. The library can do much more, such as executing computations on GPUs
and other accelerators.

Integrating MPI into your project is harder than just adding an appropriate pragma. Here,
you'll need to use the MPI API in your code base to send or receive data between processes
(using calls such as MPI_Send and MPI_Recv), or perform various gather and reduce
operations (calling MPI_Bcast and MPI_Reduce, among other functions in this family).
Communication can be done point to point or to all clusters using objects called
communicators.

Depending on your algorithm implementation, MPI nodes can all execute the same code or
it can vary when needed. The node will know how it should behave based on its rank: a
unique number assigned when the computations start. Speaking of which, to start a process
using MPI, you should run it through a wrapper, like so:

$ mpirun --hostfile my_hostfile -np 4 my_command --with some ./args

This would read hosts from said file one by one, connect to each of them, and run four
instances of my_command on each with the args passed.

There are many implementations of MPI. One of the most notable is OpenMPI (don't
confuse that with OpenMP). Among some useful features, it offers fault tolerance. After all,
it's not uncommon for a node to go down.

The last tool we'd like to mention in this section is GNU Parallel, which you might find
useful if you want to easily span processes that perform work by spawning parallel
processes. It can be used both on a single machine and across a compute cluster.

Speaking about different ways to execute code, let's now discuss one more big topic from
C++20: coroutines.

Using coroutines
Coroutines are functions that can suspend their execution and resume it later on. They
allow writing asynchronous code in a very similar manner to how you would write
synchronous code. Compared to writing asynchronous code with std::async, this allows
writing cleaner code that's easier to understand and maintain. There's no need to write
callbacks anymore, and no need to deal with the verbosity of std::async with promises
and futures.

Performance Chapter 11

[340]

Aside from all that, they can also often provide you with much better performance.
std::async based code usually has more overhead for switching threads and waiting.
Coroutines can resume and suspend very cheaply even compared to the overhead of calling
functions, which means they can yield better latency and throughput. Also, one of their
design goals was to be highly scalable, even to billions of concurrent coroutines.

Figure 11.1 – Calling and executing coroutines is different from using regular functions as they can be suspended and resumed

C++ coroutines are stackless, which means their state is not stored on the calling thread's
stack. This gives them an interesting property: several different threads can pick up the
execution of a coroutine. In other words, even though it looks like the coroutine function
body would be executed sequentially, parts of it can be executed in different threads. This
makes it possible to leave parts of the function to be executed on dedicated threads. For
instance, I/O operations can be done in a dedicated I/O thread.

To check whether a function is a C++ coroutine, you need to look for one of the following
keywords in its body:

co_await, which suspends the coroutine.
co_yield for returning a value to the caller and suspending the coroutine.
Similar to Python's yield keyword used in generators. Allows generating values
lazily.
co_return, which returns a value and finishes executing the coroutine. It's a
coroutine equivalent of the return keyword.

Whenever a function body has one of those keywords, the function automatically becomes
a coroutine. Although this means it's an implementation detail, there's one more hint that
you can use: coroutine return types must satisfy certain requirements, which we'll discuss
later on.

Performance Chapter 11

[341]

Coroutines are first-class citizens in the C++ world. This means you can get their address,
use them as function arguments, return them from functions, and store them in objects.

In C++, you could write coroutines even before C++20. This was possible thanks to libraries
such as Boost.Coroutine2, or Bloomberg's Quantum. The latter was even used to implement
CoroKafka – a library for efficiently dealing with Kafka streams using coroutines. With the
advent of standard C++ coroutines, new libraries started popping up. Now, we're going to
show you one of them.

Distinguishing between cppcoro utilities
It's hard to write coroutine-based code from scratch. C++20 only offers the fundamental
utilities for writing coroutines, so we need a set of primitives to use when writing our own
coroutines. The cppcoro library created by Lewis Baker is one of the most commonly used
coroutine frameworks for C++. In this section, we'll showcase the library and demonstrate
how to use it when writing coroutine-based code.

Let's start with an overview of the coroutine types the library offers us:

task<>: For scheduling work to be executed later – starts executing when it's
co_awaited for.
shared_task<>: A task that multiple coroutines can await. It can be copied so
that multiple coroutines reference the same result. Doesn't offer any thread-safety
on its own.
generator: Produces a sequence of Ts lazily and synchronously. It's effectively a
std::range: it has a begin() returning an iterator and an end() returning a
sentinel.
recursive_generator: Similar to generator<T>, but can yield either a T
or recursive_generator<T>. Has some extra overhead.
async_generator: Similar to generator<T>, but values may be produced
asynchronously. This means that, as opposed to generator, asynchronous
generators can use co_await in their bodies.

You should use those types as return types for your coroutines. Usually, in your generators
(coroutines returning one of the preceding generator types), you'd want to return values
using co_yield (similar to in Python generators). In your tasks, however, usually, you'll
want to schedule work with co_await.

Performance Chapter 11

[342]

The library actually offers many more programming abstractions than just the preceding
coroutine types. It also provides the following types:

Awaitables types that you can co_await on, such as coroutine-flavored events
and synchronization primitives: mutexes, latches, barriers, and so on.
Cancellation-related utilities, essentially allowing you to cancel the execution of
your coroutines.
Schedulers – objects allowing you to schedule work through them, such
as static_thread_pool, or ones for scheduling work on a specific thread.
I/O and networking utilities, allowing you to read from and write to files and IP
sockets.
Meta-functions and concepts, such as awaitable_traits, Awaitable, and
Awaiter.

Aside from the preceding utilities, cppcoro offers us functions – utilities for using other
classes and steering execution, such as the following:

sync_wait: Block until the passed awaitable completes.
when_all, when_all_ready: Return an awaitable that completes when all the
passed awaitables complete. The difference between those two is in handling
failures of the sub-awaitables. when_all_ready will complete even in the event
of failures and the caller can examine each result, while when_all will rethrow
an exception if any of the sub-awaitables throws one (it's impossible to know
which one did, though). It will also cancel any incomplete tasks.
fmap: Similarly to functional programming, applies a function to an awaitable.
You can think of it as transforming a task of one type into a task of another. For
example, you can serialize types returned by your coroutines by calling
fmap(serialize, my_coroutine()).
resume_on: Instructs the coroutine which scheduler to use to continue execution
once some work is completed. This enables you to execute certain work in certain
execution contexts, such as running I/O-related tasks on a dedicated I/O thread.
Note that this means a single C++ function (coroutine) can execute its parts on
separate threads. Can be "piped" with computations similarly to std::ranges.
schedule_on: Instructs the coroutine which scheduler to use to start some work.
Commonly used as auto foo = co_await schedule_on(scheduler,
do_work());.

Before we start using those utilities together, let's say a few more words about awaitables.

Performance Chapter 11

[343]

Looking under the hood of awaitables and
coroutines
Aside from cppcoro, the standard library offers two more trivial awaitables:
suspend_never and suspend_always. By looking at them, we can see how to implement
our own awaitables when needed:

struct suspend_never {
 constexpr bool await_ready() const noexcept { return true; }
 constexpr void await_suspend(coroutine_handle<>) const noexcept {}
 constexpr void await_resume() const noexcept {}
};

struct suspend_always {
 constexpr bool await_ready() const noexcept { return false; }
 constexpr void await_suspend(coroutine_handle<>) const noexcept {}
 constexpr void await_resume() const noexcept {}
};

When typing co_await, you tell the compiler to first call the awaiter's await_ready(). If
it says the awaiter is ready by returning true, await_resume() will get called. The return
type of await_resume() should be the type the awaiter is actually producing. If the
awaiter was not ready, the program will instead execute await_suspend(). After it's
done, we have three cases:

await_suspend returns void: The execution will always suspend afterwards.
await_suspend returns bool: The execution will suspend or not depending on
the returned value.
await_suspend returns std::coroutine_handle<PromiseType>: Another
coroutine will get resumed.

There's much more going on with coroutines under the hood. Even though coroutines don't
use the return keyword, the compiler will generate code under the hood to make them
compile and work. When using keywords such as co_yield, it will rewrite them to calls to
the appropriate member functions of helper types. For instance, a call to co_yield x is
equivalent to co_await promise.yield_value(x). If you want to learn more about
what's happening exactly and write your own coroutine types, refer to the Your First
Coroutine article from the Further reading section.

Performance Chapter 11

[344]

Okay, let's now use all this knowledge to write our own coroutines. We'll create a simple
application that mimics doing meaningful work. It will use a thread pool to fill a vector
with some numbers.

Our CMake target will look as follows:

add_executable(coroutines_1 coroutines/main_1.cpp)
target_link_libraries(coroutines_1 PRIVATE cppcoro fmt::fmt
Threads::Threads)
target_compile_features(coroutines_1 PRIVATE cxx_std_20)

We'll link to the cppcoro library. In our case, we're using Andreas Buhr's fork of cppcoro, as
it is a well-maintained fork of Lewis Baker's repository and supports CMake.

We'll also link to the excellent {fmt} library for text formatting. If your standard library
offers C++20's string formatting, you can use that instead.

Last but not least, we're going to need a threading library – after all, we want to use
multiple threads in a pool.

Let's start our implementation with some constants and a main function:

inline constexpr auto WORK_ITEMS = 5;

int main() {
 auto thread_pool = cppcoro::static_thread_pool{3};

We want to produce five items using three pooled threads. cppcoro's thread pool is a neat
way to schedule work. By default, it creates as many threads as your machine has hardware
ones. Moving onward, we need to specify our work:

 fmt::print("Thread {}: preparing work\n", std::this_thread::get_id());
 auto work = do_routine_work(thread_pool);

 fmt::print("Thread {}: starting work\n", std::this_thread::get_id());
 const auto ints = cppcoro::sync_wait(work);

We'll sprinkle our code with log messages so you can better see what's going on in which
thread. This will help us better understand how coroutines work. We create work by calling
a coroutine named do_routine_work. It returns us the coroutine, which we run using the
sync_wait blocking function. A coroutine won't start executing until it is actually being
awaited. This means that our actual work will start inside this function call.

Performance Chapter 11

[345]

Once we have our results, let's log them:

 fmt::print("Thread {}: work done. Produced ints are: ",
 std::this_thread::get_id());
 for (auto i : ints) {
 fmt::print("{}, ", i);
 }
 fmt::print("\n");

No voodoo magic here. Let's define our do_routine_work coroutine:

cppcoro::task<std::vector<int>>
do_routine_work(cppcoro::static_thread_pool &thread_pool) {
 auto mutex = cppcoro::async_mutex{};
 auto ints = std::vector<int>{};
 ints.reserve(WORK_ITEMS);

It returns a task, which produces some integers. Because we're going to use the thread pool,
let's use cppcoro's async_mutex to synchronize the threads. Let's now start using the pool:

 fmt::print("Thread {}: passing execution to the pool\n",
 std::this_thread::get_id());

 co_await thread_pool.schedule();

You might be surprised that the schedule() call doesn't pass in any callable to execute. In
the coroutine's case, we're actually making our current thread suspend the coroutine and
start executing its caller. This means it will now wait for the coroutine to finish (somewhere
in the sync_wait call).

In the meantime, a thread from our pool will resume the coroutine – simply continuing to
execute its body. Here's what we've prepared for it:

 fmt::print("Thread {}: running first pooled job\n",
 std::this_thread::get_id());

 std::vector<cppcoro::task<>> tasks;
 for (int i = 0; i < WORK_ITEMS; ++i) {
 tasks.emplace_back(
 cppcoro::schedule_on(thread_pool, fill_number(i, ints, mutex)));
 }
 co_await cppcoro::when_all_ready(std::move(tasks));
 co_return ints;

Performance Chapter 11

[346]

We create a vector of tasks to execute. Each task fills one number in ints under the mutex.
The schedule_on call runs the filling coroutine using another thread from our pool.
Finally, we wait for all the results. At this point, our tasks start executing. Finally, as our
coroutine is a task, we use co_return .

Don't forget to co_return the produced value. If we removed the
co_return ints; line from our example, we would simply return a
default constructed vector. The program would run, happily print the
empty vector, and exit with code 0.

Our last step is to implement the coroutine that will produce a number:

cppcoro::task<> fill_number(int i, std::vector<int> &ints,
 cppcoro::async_mutex &mutex) {
 fmt::print("Thread {}: producing {}\n", std::this_thread::get_id(), i);
 std::this_thread::sleep_for(
 std::chrono::milliseconds((WORK_ITEMS - i) * 200));

This one is a task that doesn't return any value. Instead, it will add it to our vector. Its hard
work will actually be done by dozing off for a number of milliseconds. After the wake-up,
the coroutine will continue with more productive endeavors:

 {
 auto lock = co_await mutex.scoped_lock_async();
 ints.emplace_back(i);
 }

It will lock the mutex. In our case, it's just an await. When the mutex is locked, it will add a
number to our vector – the same number it was called with.

NOTE: Remember to co_await. If you forget and your awaitable allows
that (perhaps because its okay to not consume each awaitable), then you
might skip some essential computations. In our example, this could mean
not locking a mutex.

Let's finish the coroutine's implementation now:

 fmt::print("Thread {}: produced {}\n", std::this_thread::get_id(), i);
 co_return;

Just a simple status print and a co_return to mark the coroutine as complete. Once it
returns, the coroutine frame can be destroyed, freeing the memory occupied by it.

Performance Chapter 11

[347]

That's all. Let's now run our code and see what happens:

Thread 140471890347840: preparing work
Thread 140471890347840: starting work
Thread 140471890347840: passing execution to the pool
Thread 140471890282240: running first pooled job
Thread 140471890282240: producing 4
Thread 140471881828096: producing 1
Thread 140471873373952: producing 0
Thread 140471890282240: produced 4
Thread 140471890282240: producing 3
Thread 140471890282240: produced 3
Thread 140471890282240: producing 2
Thread 140471881828096: produced 1
Thread 140471873373952: produced 0
Thread 140471890282240: produced 2
Thread 140471890347840: work done. Produced ints are: 4, 3, 1, 0, 2,

Our main thread was used to fire up the work on the pool and then waited for the results to
come. Then, our three threads from the pool were producing numbers. The last task
scheduled was actually the first one that ran, producing the number 4. This is because it
was the one that continued executing do_routine_work all the time: first, it scheduled all
other tasks on the pool, then started performing the first task when when_all_ready was
called. Later on, the execution continued with the first free thread taking the next task
scheduled on the pool until the whole vector was filled. Finally, the execution returned to
our main thread.

This concludes our short example. And with it, we conclude our last section of this chapter.
Let's now summarize what we've learned.

Summary
In this chapter, we've learned what types of tools can help us achieve better performance
with our code. We learned how to perform experiments, write performance tests, and look
for performance bottlenecks. You're now able to write microbenchmarks using Google
Benchmark. Moreover, we discussed how to profile your code and how (and why) to
implement distributed tracing of your system. We also discussed parallelizing your
computations using both standard library utilities and external solutions. Last but not least,
we introduced you to coroutines. You now know what C++20 brings to the coroutine table,
as well as what you can find in the cppcoro library. You've also learned how to write your
own coroutines.

Performance Chapter 11

[348]

The most important lesson from this chapter is: when it comes to performance, measure
first and optimize later. This will help you maximize the impact of your work.

That's it for performance – the last of quality attributes we wanted to discuss in our book. In
the next chapter, we'll start moving into the world of services and the cloud. We'll start by
discussing service-oriented architecture.

Questions
What can we learn from the performance results from this chapter's1.
microbenchmarks?
Is how we traverse a multi-dimensional array important for performance?2.
Why/why not?
In our coroutines example, why can't we create our thread pool inside the3.
do_routine_work function?
How can we rework our coroutine example so it uses a generator instead of just4.
tasks?

Further reading
When can the C++ compiler devirtualize a call?, blog post, Arthur O'Dwyer,
https:// quuxplusone. github. io/blog/ 2021/ 02/ 15/devirtualization/

CppCon 2015: Chandler Carruth "Tuning C++: Benchmarks, and CPUs, and
Compilers! Oh My!", YouTube video, https:/ /www. youtube. com/ watch? v=
nXaxk27zwlk

Tutorial, Perf Wiki, https:/ /perf. wiki. kernel. org/ index. php/ Tutorial

CPU Flame Graphs, Brendan Gregg, http:/ /www. brendangregg. com/
FlameGraphs/ cpuflamegraphs. html

C++ Containers Benchmark, blog post, Baptiste Wicht, https:/ /baptiste- wicht.
com/posts/ 2017/ 05/ cpp- containers- benchmark- vector- list- deque- plf-
colony.html

Your First Coroutine, blog post, Dawid Pilarski, https:/ /blog. panicsoftware.
com/your- first- coroutine

https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://quuxplusone.github.io/blog/2021/02/15/devirtualization/
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://www.youtube.com/watch?v=nXaxk27zwlk
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://baptiste-wicht.com/posts/2017/05/cpp-containers-benchmark-vector-list-deque-plf-colony.html
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine
https://blog.panicsoftware.com/your-first-coroutine

4
Section 4: Cloud-Native Design

Principles
This section focuses on the modern architectural style that originated with distributed
systems and within cloud environments. It shows concepts such as service-oriented
architecture, microservices including containers, and various messaging systems.

This section contains the following chapters:

Chapter 12, Service-Oriented Architecture
Chapter 13, Designing Microservices

Chapter 14, Containers
Chapter 15, Cloud-Native Design

https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=39&action=edit
https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=39&action=edit

12
Service-Oriented Architecture

A very common architecture for distributed systems is Service-Oriented Architecture
(SOA). It's not a new invention, as this architectural style is almost as old as computer
networking. There are many aspects of SOA ranging from an Enterprise Service Bus (ESB)
to cloud-native microservices.

If your applications include web, mobile, or Internet-of-Things (IoT) interfaces, this
chapter will help you understand how they can be built with a focus on modularity and
maintainability. As most of the current systems work in a client-server (or other network
topology) manner, learning about SOA principles will help you design and improve such
systems.

The following topics will be covered in this chapter:

Understanding SOA
Adopting messaging principles
Using web services
Leveraging managed services and cloud providers

Technical requirements
Most of the examples presented in this chapter do not require any specific software. For an
AWS API example, you will need the AWS SDK for C++, which can be found at https:/ /
aws.amazon.com/sdk- for- cpp/ .

The code present in the chapter has been placed on GitHub at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter12.

https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-cpp/
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter12

Service-Oriented Architecture Chapter 12

[351]

Understanding Service-Oriented Arcitecture
Service-Oriented Architecture is an example of a software design that features loosely
coupled components that provide services to each other. The components use a shared
communication protocol, usually over a network. In this design, services mean units of
functionality that can be accessed outside of the originating component. An example of a
component could be a mapping service that provides a map of the area in response to
geographical coordinates.

According to the definition, a service has four properties:

It is a representation of business activity with a defined outcome.
It is self-contained.
It is opaque to its users.
It may be composed of other services.

Implementation approaches
Service-Oriented Architecture does not regulate how to approach the service orientation.
It's a term that may be applied to many different implementations. There are discussions on
whether some approaches actually should be considered to be Service-Oriented
Architecture. We don't want to take part in these discussions, only to highlight some of the
approaches that often are mentioned as SOA approaches.

Let's compare some of them.

Enterprise Service Bus
ESB is often the first association when someone says Service-Oriented Architecture. It's one
of the oldest approaches to implementing SOA.

ESB draws an analogy from computer hardware architecture. Hardware architecture uses
computer buses such as PCI to achieve modularity. This way, third-party providers are able
to implement modules (such as graphic cards, sound cards, or I/O interfaces)
independently of the motherboard manufacturer as long as everyone is adhering to the
standards required by the bus.

Service-Oriented Architecture Chapter 12

[352]

Much like the PCI, the ESB architecture aims to build a standard, general-purpose way to
allow for the interaction of loosely coupled services. Such services are expected to be
developed and deployed independently. It should also be possible to combine
heterogeneous services.

As with SOA itself, ESB is not defined by any global standard. To implement ESB, it is
necessary to establish an additional component in the system. This component is the bus
itself. The communication over ESB is event-driven and often achieved with the means of
message-oriented middleware and message queues, which we'll discuss in later chapters.

The Enterprise Service Bus component serves the following roles:

Controlling the deployment and versioning of services
Maintaining service redundancy
Routing messages between services
Monitoring and controlling the message exchange
Resolving contention between the components
Providing common services, such as event handling, encryption, or message
queuing
Enforcing Quality of Service (QOS)

There are both proprietary commercial products as well as open source ones that
implement the Enterprise Service Bus functionality. Some of the most popular open source
products are the following:

Apache Camel
Apache ServiceMix
Apache Synapse
JBoss ESB
OpenESB
Red Hat Fuse (based on Apache Camel)
Spring Integration

The most popular commercial products are the following:

IBM Integration Bus (replacing IBM WebSphere ESB)
Microsoft Azure Service Bus
Microsoft BizTalk Server
Oracle Enterprise Service Bus
SAP Process Integration

Service-Oriented Architecture Chapter 12

[353]

As with all the patterns and products that we present in this book, you will have to
consider the strengths and weaknesses before deciding to go with a particular
architecture. Some of the benefits of introducing Enterprise Service Bus are as follows:

Better scalability of services
Distributed workload
Can focus on configuration rather than implementing custom integration in
services
An easier way to design loosely coupled services
Services are replaceable
Built-in redundancy capability

The disadvantages, on the other hand, mostly revolve around the following:

A single point of failure – the ESB component's failure means the outage of an
entire system.
The configuration is more complex, which impacts maintenance.
Message queuing, message translation, and other services provided by ESB may
reduce performance or even become a bottleneck.

Web services
Web services are another popular implementation of Service-Oriented Architecture. By
their definition, web services are services offered by one machine to another machine (or
operator) where communication occurs over World Wide Web protocols. Even though
W3C, the governing body concerning the World Wide Web, allows the use of other
protocols such as FTP or SMTP, web services typically use HTTP as transport.

Although it is possible to implement web services using proprietary solutions, most
implementations are based on open protocols and standards. Although many of the
approaches are often referred to as web services, they are fundamentally different from
each other. Later in the chapter, we will describe the various approaches in detail. For now,
let's focus on their common features.

Service-Oriented Architecture Chapter 12

[354]

Benefits and disadvantages of web services
The benefits of web services are as follows:

Using popular web standards
A lot of tooling
Extensibility

Given next are the disadvantages:

A lot of overhead.
Some implementations are too complex (for example, SOAP/WSDL/UDDI
specifications).

Messaging and streaming
We've mentioned message queues and message brokers already when covering the
Enterprise Service Bus architecture. Other than as part of an ESB implementation,
messaging systems may also be standalone architectural elements.

Message queues
Message queues are components used for Inter-Process Communication (IPC). As the
name suggests, they use the queue data structure to pass messages between different
processes. Usually, message queues are a part of Message-Oriented Middleware (MOM)
designs.

On the lowest level, message queues are available in UNIX specifications, both in System V
and in POSIX. While they are interesting when implementing IPC on a single machine, we
would like to focus on message queues that are suitable for distributed computing.

There are currently three standards used in open source software that are related to
message queuing:

Advanced Message Queuing Protocol (AMQP), a binary protocol operating on1.
the application layer of the 7-Layer OSI model. Popular implementations include
the following:

Apache Qpid
Apache ActiveMQ
RabbitMQ

Service-Oriented Architecture Chapter 12

[355]

Azure Event Hubs
Azure Service Bus

Streaming Text Oriented Messaging Protocol (STOMP), a text-based protocol2.
similar to HTTP (uses verbs such as CONNECT, SEND, SUBSCRIBE). Popular
implementations include the following:

Apache ActiveMQ
RabbitMQ
syslog-ng

MQTT, a lightweight protocol aimed at embedded devices. Popular3.
implementations include home automation solutions such as the following:

OpenHAB
Adafruit IO
IoT Guru
Node-RED
Home Assistant
Pimatic
AWS IoT
Azure IoT Hub

Message brokers
Message brokers deal with the translation, validation, and routing of messages in a
messaging system. Like message queues, they are parts of MOM.

Using message brokers, you can minimize the application's awareness regarding other
parts of the system. This leads to designing loosely coupled systems, as message brokers
take all the burden related to common operations on messages. It is known as a Publish-
Subscribe (PubSub) design pattern.

Brokers typically manage message queues for receivers but are also able to perform
additional functions, such as the following:

Translating messages from one representation to another
Validating the message sender, receiver, or contents
Routing messages to one or more destinations

Service-Oriented Architecture Chapter 12

[356]

Aggregating, decomposing, and recomposing messages in transit
Retrieving data from external services
Augmenting and enriching messages through interaction with external services
Handling and responding to errors and other events
Providing different routing patterns, such as PubSub

Popular implementations of message brokers are the following:

Apache ActiveMQ
Apache Kafka
Apache Qpid
Eclipse Mosquitto MQTT Broker
NATS
RabbitMQ
Redis
AWS ActiveMQ
AWS Kinesis
Azure Service Bus

Cloud computing
Cloud computing is a broad term with a lot of different meanings. Initially, the term
cloud referred to a layer of abstraction that the architecture shouldn't be too worried about.
This could, for example, mean servers and network infrastructure managed by a dedicated
operations team. Later, service providers started applying the term cloud computing to
their own products that abstracted the underlying infrastructure with all its complexities.
Instead of having to configure each piece of infrastructure individually, it was possible to
use a simple Application Programming Interface (API) to set up all the necessary
resources.

Nowadays, cloud computing has grown to include many novel approaches to application
architecture. It may consist of the following:

Managed services, such as databases, cache layers, and message queues
Scalable workload orchestration
Container deployment and orchestration platforms
Serverless computing platforms

Service-Oriented Architecture Chapter 12

[357]

The most important thing to remember when considering cloud adoption is that hosting
your application in the cloud requires an architecture designed specifically for the cloud.
Most often, it also means architecture designed specifically for the given cloud provider.

This means choosing a cloud provider is not just a decision about whether one choice is
better than another at a given moment in time. It means that the future cost of switching a
provider may be too big to warrant the move. Migration between providers requires
architectural changes and for a working application, they may outweigh the savings
expected from the migration.

There is also another consequence of cloud architecture design. For legacy applications, it
means that in order to take advantage of the cloud benefits, the applications would first
have to be rearchitected and rewritten. Migration to the cloud is not just a matter of
copying binary and configuration files from on-premises hosting to virtual machines
managed by a cloud provider. Such an approach would only mean a waste of money as
cloud computing is only cost-effective if your applications are scalable and cloud-aware.

Cloud computing doesn't necessarily mean using external services and leasing machines
from third-party providers. There are also solutions such as OpenStack that run on-
premises, which allow you to leverage the benefits of cloud computing using the servers
you already own.

We will cover managed services later in this chapter. Containers, cloud-native design, and
serverless architecture will have their own dedicated chapters later in the book.

Microservices
There is some debate regarding whether microservices are a part of SOA or not. Most of the
time, the term SOA is pretty much equivalent to the ESB design. Microservices are in many
respects the opposite of ESB. This leads to opinions that microservices are a distinct pattern
from SOA, being the next step in the evolution of software architecture.

We believe that they are, in fact, a modern approach to SOA that aims to eliminate some of
the problems featured in ESB. After all, microservices fit within the definition of Service-
Oriented Architecture very well.

Microservices are the subject of the next chapter.

Service-Oriented Architecture Chapter 12

[358]

Benefits of Service-Oriented Architecture
Splitting the system's functionality over multiple services has several benefits. First of all,
each service can be maintained and deployed separately. This helps the team focus on a
given task, without the need to understand every possible interaction within the system. It
also enables agile development as tests only have to cover a particular service, not the
entire system.

The second benefit is that the modularity of the services helps create a distributed system.
With a network (usually based on the Internet Protocol) as a means of communication,
services can be split between different machines to provide scalability, redundancy, and
better resource usage.

Implementing new features and maintaining the existing software is a difficult task when
there are many producers and many consumers for each service. This is why SOA
encourages the use of documented and versioned APIs.

Another way to make it easier for both service producers and consumers to interact is by
using established protocols that describe how to pass data and metadata between different
services. These protocols may include SOAP, REST, or gRPC.

The use of APIs and standard protocols makes it easy to create new services that provide
added value over the existing ones. Considering we have a service, A, that returns our
geographical location and another service, B, that provides the current temperature for a
given location, we can invoke A and use its response in a request to B. This way, we get the
current temperature for the current location without implementing the entire logic on our
own.

All of the complexity and implementation details of both services are unknown to us and
we treat them as black boxes. The maintainers of both services may also introduce new
functionality and release new versions of the services without the need to inform us about
it.

Testing and experimenting with Service-Oriented Architecture is also easier than with
monolithic applications. A small change in a single place doesn't require the recompilation
of an entire code base. It is often possible to invoke services in an ad hoc manner using
client tools.

Let's return to our example with the weather and geographical location service. If both
services are exposing a REST API, we are able to build a prototype using nothing more than
a cURL client to send appropriate requests manually. When we confirm that the response is
satisfactory, we may then start writing code that will automate the entire operation and
possibly expose the results as another service.

Service-Oriented Architecture Chapter 12

[359]

To get the benefits of SOA, we need to remember that all of the services
have to be loosely coupled. If services depend on each other's
implementation, it means they are no longer loosely coupled and are
tightly coupled instead. Ideally, any given service should be replaceable
by a different analogous service without impacting the operation of the
entire system.

In our weather and location example, this means that reimplementing a location service in a
different language (say, switching from Go to C++) should not affect the downstream
consumers of that service as long as they use the established API.

It is possible to still introduce breaking changes in the API by releasing a new API version.
A client connecting to version 1.0 would observe the legacy behavior while clients
connecting to 2.0 would benefit from bugfixes, better performance, and other
improvements that come at the cost of compatibility.

For services relying on HTTP, API versioning usually occurs at the URI level. So a version
1.0, 1.1, or 1.2 API can be accessed when calling https:/ / service. local/ v1/ customer
while the version 2.0 API resides at https:/ / service. local/ v2/ customer. An API
gateway, HTTP proxy, or a load balancer is then able to route the requests to appropriate
services.

Challenges with SOA
Introducing an abstraction layer always comes at a cost. The same rule applies to Service-
Oriented Architecture. It's easy to see the abstraction costs when looking at Enterprise
Service Bus, web services, or message queues and brokers. What may be less obvious is that
microservices also come at a cost. Their cost is related to the Remote Procedure Call (RPC)
frameworks they use and the resource consumption related to service redundancy and
duplication of their functionality.

Another target of criticism related to SOA is the lack of uniform testing frameworks.
Individual teams that develop the services of an application may use tooling unknown to
other teams. Other issues related to testing are that the heterogeneous nature and
interchangeability of components mean there is a huge set of combinations to test. Some
combinations may introduce edge cases that are not typically observed.

As the knowledge about particular services is mostly concentrated in a single team, it is
much harder to understand how an entire application works.

https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v1/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer
https://service.local/v2/customer

Service-Oriented Architecture Chapter 12

[360]

When the SOA platform is developed during the lifetime of an application, it may
introduce the need for all the services to update their version to target the recent platform
development. This means that instead of introducing new features, developers would be
focused on making sure their application functions correctly after the changes to the
platform. In an extreme case, maintenance costs may rise drastically for those services that
don't see new releases and are constantly patched to adhere to platform requirements.

Service-Oriented Architecture follows Conway's law, described in Chapter 2, Architectural
Styles.

Adopting messaging principles
As we've mentioned previously in this chapter, messaging has many different use cases,
ranging from IoT and sensor networks to microservices-based distributed applications
running in the cloud.

One of the benefits of messaging is that it is a neutral way to connect services implemented
using different technologies. When developing an SOA, each service is typically developed
and maintained by a dedicated team. Teams may choose the tools they feel comfortable
with. This applies to programming languages, third-party libraries, and build systems.

Maintaining a uniform set of tools may be counter-productive as different services may
have different needs. For example, a kiosk application may require a Graphical User
Interface (GUI) library such as Qt. A hardware controller that is a part of the same
application will have other requirements, possibly linking to the hardware manufacturer's
third-party components. These dependencies may then impose some restrictions that
cannot be satisfied for both components simultaneously (for example, a GUI application
may require a recent compiler, while the hardware counterpart may be pinned to an older
one). Using messaging systems to decouple these components lets them have separate life
cycles.

Some use cases for messaging systems include the following:

Financial operations
Fleet monitoring
Logistics capturing
Processing sensor
Data order fulfillment
Task queuing

Service-Oriented Architecture Chapter 12

[361]

The following sections focus on the messaging systems designed for low overhead and
message systems with brokers used for distributed systems.

Low-overhead messaging systems
Low-overhead messaging systems are typically used in environments that either require a
small footprint or low latency. These are usually sensor networks, embedded solutions, and
IoT devices. They are less common in cloud-based and distributed services, but it's still
possible to use them in such solutions.

MQTT
MQTT stands for Message Queuing Telemetry Transport. It is an open standard both
under OASIS and ISO. MQTT uses the PubSub model usually over TCP/IP, but it can also
work with other transport protocols.

As the name suggests, MQTT's design goals are a low-code footprint and the possibility of
running in low-bandwidth locations. There is a separate specification called MQTT-SN,
which stands for MQTT for Sensor Networks. It focuses on battery-powered embedded
devices without the TCP/IP stack.

MQTT uses a message broker that receives all the messages from the client and routes those
messages to their destinations. QoS is provided on three levels:

At most once delivery (no guarantee)
At least once delivery (acknowledged delivery)
Exactly once delivery (assured delivery)

It should be no surprise that MQTT is especially popular with various IoT applications. It's
supported by OpenHAB, Node-RED, Pimatic, Microsoft Azure IoT Hub, and Amazon IoT.
It's also popular with instant messaging, being used in ejabberd and Facebook Messanger.
Other use cases include carsharing platforms, logistics, and transportation.

The two most popular C++ libraries supporting this standard are Eclipse Paho and
mqtt_cpp based on C++14 and Boost.Asio. For Qt applications, there's also qmqtt.

Service-Oriented Architecture Chapter 12

[362]

ZeroMQ
ZeroMQ is a brokerless messaging queue. It supports common messaging patterns, such as
PubSub, client/server, and several others. It is independent of a particular transport and
may be used with TCP, WebSockets, or IPC.

The main idea, contained in the name, is that ZeroMQ requires zero brokers and zero
administration. It is also advocated as providing zero latency, which means no latency is
added coming from the presence of a broker.

The low-level library is written in C, and it has implementations for various popular
programming languages, including C++. The most popular implementation for C++ is
cppzmq, which is a header-only library targeting C++11.

Brokered messaging systems
The two most popular messaging systems that don't focus on low overhead are AMQP-
based RabbitMQ and Apache Kafka. Both are mature solutions that are extremely popular
in a lot of different designs. Many articles focus on superiority in a particular area of either
RabbitMQ or Apache Kafka.

This is a slightly incorrect point of view as both messaging systems are based on different
paradigms. Apache Kafka focuses on streaming vast amounts of data and storing the
stream in persistent memory to allow future replay. RabbitMQ, on the other hand, is often
used as a message broker between different microservices or a task queue to handle
background jobs. For this reason, routing in RabbitMQ is much more advanced than the
one present in Apache Kafka. Kafka's primary use cases are data analysis and real-time
processing.

While RabbitMQ uses the AMQP protocol (and supports other protocols as well, such as
MQTT and STOMP), Kafka uses its own protocol based on TCP/IP. This means that
RabbitMQ is interoperable with other existing solutions based on these supported
protocols. If you write an application that uses AMQP to interact with RabbitMQ, it should
be possible to migrate it later to use Apache Qpid, Apache ActiveMQ, or managed
solutions from AWS or Microsoft Azure.

The scaling concerns could also drive the choice of one message broker over another. The
architecture of Apache Kafka allows for easy horizontal scaling, which means adding more
machines to the existing pool of workers. RabbitMQ, on the other hand, was designed with
vertical scaling in mind, which means adding more resources to the existing machine,
rather than adding more machines of similar sizes.

Service-Oriented Architecture Chapter 12

[363]

Using web services
As mentioned earlier in the chapter, the common characteristic of web services is that they
are based on standard web technologies. Most of the time, this will mean the Hypertext
Transfer Protocol (HTTP) and this is the technology we will focus on. Although it is
possible to implement web services based on different protocols, such services are
extremely rare and therefore out of our scope.

Tools for debugging web services
One of the major benefits of using HTTP as transport is the wide availability of tools. For
the most part, testing and debugging a web service may be performed using nothing more
than a web browser. Apart from that, there are a lot of additional programs that may be
helpful in automation. These include the following:

The standard Unix file downloader wget
The modern HTTP client curl
Popular open source libraries such as libcurl, curlpp, C++ REST SDK, cpr (C++
HTTP requests library), and NFHTTP
Testing frameworks such as Selenium or Robot Framework
Browser extensions such as Boomerang
Standalone solutions such as Postman and Postwoman
Dedicated testing software including SoapUI and Katalon Studio

HTTP-based web services work by returning an HTTP response to an HTTP request that
uses appropriate HTTP verbs (such as GET, POST, and PUT). The semantics of how the
request and the response should look and what data they should convey differs from
implementation to implementation.

Most implementations fall into one of two categories: XML-based web services and JSON-
based web services. JSON-based web services are currently displacing XML-based ones, but
it is still common to find services that use XML formats.

For dealing with data encoded with either JSON or XML, additional tools such as
xmllint, xmlstarlet, jq, and libxml2 may be required.

Service-Oriented Architecture Chapter 12

[364]

XML-based web services
The first web services that gained traction were primarily based on XML. XML or
eXtensible Markup Language was at the time the interchange format of choice in
distributed computing and in the web environment. There were several different
approaches to designing services with an XML payload.

It is possible that you may want to interact with existing XML-based web services that are
developed either internally within your organization or externally. However, we advise
you to implement new web services using more lightweight methods, such as JSON-based
web services, RESTful web services, or gRPC.

XML-RPC
One of the first standards that emerged was called XML-RPC. The idea behind the project
was to provide an RPC technology that would compete with the then prevalent Common
Object Model (COM), and CORBA. The aim was to use HTTP as a transport protocol and
make the format human-readable and human-writable as well as parsable to machines. To
achieve that, XML was chosen as the data encoding format.

When using XML-RPC, the client that wants to perform a remote procedure call sends an
HTTP request to the server. The request may have multiple parameters. The server answers
with a single response. The XML-RPC protocol defines several data types for parameters
and results.

Although SOAP features similar data types, it uses XML schema definitions, which make
the messages much less readable than the ones in XML-RPC.

Relationship to SOAP
Since XML-RPC is no longer actively maintained, there aren't any modern C++
implementations for the standard. If you want to interact with XML-RPC web services from
modern code, the best way may be to use the gSOAP toolkit that supports XML-RPC and
other XML web service standards.

The main criticism of XML-RPC was that it didn't give much value over sending plain XML
requests and responses while making the messages significantly larger.

As the standard evolved, it became SOAP. As SOAP it formed the basis for the W3C web
services stack of protocols.

Service-Oriented Architecture Chapter 12

[365]

SOAP
The original abbreviation of SOAP stood for Simple Object Access Protocol. The
abbreviation was dropped in version 1.2 of the standard. It's an evolution of the XML-RPC
standard.

SOAP consists of three parts:

The SOAP envelope, defining the message's structure and processing rules
The SOAP header rules defining application-specific data types (optional)
The SOAP body, which carries remote procedure calls and responses

Here's an example SOAP message using HTTP as transport:

POST /FindMerchants HTTP/1.1
Host: www.domifair.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 345
SOAPAction: "http://www.w3.org/2003/05/soap-envelope"

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header>
 </soap:Header>
 <soap:Body xmlns:m="https://www.domifair.org">
 <m:FindMerchants>
 <m:Lat>54.350989</m:Lat>
 <m:Long>18.6548168</m:Long>
 <m:Distance>200</m:Distance>
 </m:FindMerchants>
 </soap:Body>
</soap:Envelope>

The example uses standard HTTP headers and the POST method to call a remote
procedure. One header that is unique to SOAP is the SOAPAction. It points to a
URI identifying the intent of the action. It is up to the clients to decide how to interpret this
URI.

soap:Header is optional so we leave it empty. Together with soap:Body, it is contained
within soap:Envelope. The main procedure call takes place within soap:Body. We
introduce our own XML namespace that is specific to the Dominican Fair application. The
namespace points to the root of our domain. The procedure we call is FindMerchants and
we provide three arguments: latitude, longtitude, and distance.

Service-Oriented Architecture Chapter 12

[366]

As SOAP was designed to be extensible, transport-neutral, and independent of the
programming model, it also led to the creation of other accompanying standards. This
means it is usually necessary to learn all the related standards and protocols before using
SOAP.

This is not a problem if your application makes extensive use of XML and your
development team is familiar with all the terms and specifications. However, if all you
want is to expose an API for a third party, a much easier approach would be to build a
REST API as it is much easier to learn for both producers and consumers.

WSDL
Web Services Description Language (WSDL) provides a machine-readable description of
how services can be called and how messages should be formed. Like the other W3C web
services standards, it is encoded in XML.

It is often used with SOAP to define interfaces that the web service offers and how they
may be used.

Once you define your API in WSDL, you may (and should!) use automated tooling to help
you create code out of it. For C++, one framework with such tools is gSOAP. It comes with a
tool named wsdl2h, which will generate a header file out of the definition. You can then
use another tool, soapcpp2, to generate bindings from the interface definition to your
implementation.

Unfortunately, due to the verbosity of the messages, the size and bandwidth requirements
for SOAP services are generally huge. If this is not an issue, then SOAP can have its uses. It
allows for both synchronous and asynchronous calls, as well as stateful and stateless
operations. If you require rigid, formal means of communication, SOAP can provide them.
Just make sure to use version 1.2 of the protocol due to the many improvements it
introduces. One of them is the enhanced security of the services. Another is the improved
definition of services themselves, which aids interoperability, or the ability to formally
define the means of transportation (allowing for the usage of message queues), to name just
a few.

UDDI
The next step after documenting the web service interfaces is service discovery, which
allows applications to find and connect to the services implemented by other parties.

Service-Oriented Architecture Chapter 12

[367]

Universal Description, Discovery, and Integration (UDDI) is a registry for WSDL files
that may be searched manually or automatically. As with the other technologies discussed
in this section, UDDI uses an XML format.

UDDI registry may be queried with SOAP messages for automated service discovery. Even
though UDDI provided the logical extensions of WSDL, its adoption in the open was
disappointing. It is still possible to find UDDI systems used internally by companies.

SOAP libraries
Two of the most popular libraries for SOAP are Apache Axis and gSOAP.

Apache Axis is suitable for implementing both SOAP (including WSDL) and REST web
services. It's worth noting that the library hasn't seen a new release for over a decade.

gSOAP is a toolkit that allows for creating and interacting with XML-based web services
with a focus on SOAP. It handles data binding, SOAP and WSDL support, JSON and RSS
parsing, UDDI APIs, and several other related web services standards. Although it doesn't
use modern C++ features, it is still actively maintained.

JSON-based web services
JSON stands for JavaScript Object Notation. Contrary to what the name suggests, it is not
limited to JavaScript. It is language-independent. Parsers and serializers for JSON exist in
most programming languages. JSON is much more compact than XML.

Its syntax is derived from JavaScript as it was based on a JavaScript subset.

Supported data types for JSON are the following:

Number: The exact format may vary between implementations; defaults to the
double-precision floating-point in JavaScript.
String: Unicode-encoded.
Boolean: Using true and false values.
Array: May be empty.
Object: A map with key-value pairs.
null: Representing an empty value.

Service-Oriented Architecture Chapter 12

[368]

The Packer configuration presented in Chapter 9, Continuous Integration/Continuous
Deployment, is an example of a JSON document:

{
 "variables": {
 "aws_access_key": "",
 "aws_secret_key": ""
 },
 "builders": [{
 "type": "amazon-ebs",
 "access_key": "{{user `aws_access_key`}}",
 "secret_key": "{{user `aws_secret_key`}}",
 "region": "eu-central-1",
 "source_ami": "ami-5900cc36",
 "instance_type": "t2.micro",
 "ssh_username": "admin",
 "ami_name": "Project's Base Image {{timestamp}}"
 }],
 "provisioners": [{
 "type": "ansible",
 "playbook_file": "./provision.yml",
 "user": "admin",
 "host_alias": "baseimage"
 }],
 "post-processors": [{
 "type": "manifest",
 "output": "manifest.json",
 "strip_path": true
 }]
}

One of the standards using JSON as a format is the JSON-RPC protocol.

JSON-RPC
JSON-RPC is a JSON-encoded remote procedure call protocol similar to XML-RPC and
SOAP. Unlike its XML predecessor, it requires little overhead. It is also very simple while
maintaining the human-readability of XML-RPC.

This is how our previous example expressed in a SOAP call will look with JSON-RPC 2.0:

{
 "jsonrpc": "2.0",
 "method": "FindMerchants",
 "params": {
 "lat": "54.350989",

Service-Oriented Architecture Chapter 12

[369]

 "long": "18.6548168",
 "distance": 200
 },
 "id": 1
}

This JSON document still requires proper HTTP headers, but even with the headers, it is
still considerably smaller than the XML counterpart. The only metadata present is the file
with the JSON-RPC version and the request ID. The method and params fields are pretty
much self-explanatory. The same can't always be said about SOAP.

Even though the protocol is lightweight, easy to implement, and easy to use, it hasn't seen
widespread adoption when compared to both SOAP and REST web services. It was
released much later than SOAP and around the same time that REST services started to get
popular. While REST quickly rose to success (possibly due to its flexibility), JSON-RPC
failed to get similar traction.

Two useful implementations for C++ are libjson-rpc-cpp and json-rpc-cxx. json-rpc-cxx is a
modern reimplementation of the previous library.

REpresentational State Transfer (REST)
An alternative approach to web services is REpresentional State Transfer (REST). Services
that conform to this architectural style are often called RESTful services. The main
difference between REST and SOAP or JSON-RPC is that REST is based almost entirely on
HTTP and URI semantics.

REST is an architectural style defining a set of constraints when implementing web services.
Services that conform to this style are called RESTful. These constraints are as follows:

Must use a client-server model.
Statelessness (neither the client nor the server needs to store the state related to
their communication).
Cacheability (responses should be defined as cacheable or non-cacheable to
benefit from standard web caching to improve scalability and performance).
Layered system (proxies and load balancers should by no means affect the
communication between the client and server).

Service-Oriented Architecture Chapter 12

[370]

REST uses HTTP as the transport protocol with URIs representing resources and HTTP
verbs that manipulate the resources or invoke operations. There is no standard regarding
how each HTTP method should behave, but the semantics most often agreed on are the
following:

POST – Create a new resource.
GET – Retrieve an existing resource.
PATCH – Update an existing resource.
DELETE – Delete an existing resource.
PUT – Replace an existing resource.

Due to reliance on web standards, RESTful web services can reuse existing components
such as proxies, load balancers, and the cache. Thanks to the low overhead, such services
are also very performant and efficient.

Description languages
Just like with XML-based web services, RESTful services can be described in both a
machine and human-readable way. There are a few competing standards available, with
OpenAPI being the most popular.

OpenAPI
OpenAPI is a specification overseen by the OpenAPI Initiative, part of the Linux
Foundation. It used to be known as the Swagger Specification as it used to be a part of the
Swagger framework.

The specification is language agnostic. It uses JSON or YAML input to generate
documentation of methods, parameters, and models. This way, using OpenAPI helps to
keep the documentation and source code up to date.

There is a good selection of tools compatible with OpenAPI, such as code generators,
editors, user interfaces, and mock servers. The OpenAPI generator can generate code for
C++ using either cpp-restsdk or Qt 5 for client implementation. It can also generate server
code using Pistache, Restbed, or Qt 5 QHTTPEngine. There's also a convenient OpenAPI
editor available online: https:/ / editor. swagger. io/ .

https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/

Service-Oriented Architecture Chapter 12

[371]

An API documented with OpenAPI would look like the following:

{
 "openapi": "3.0.0",
 "info": {
 "title": "Items API overview",
 "version": "2.0.0"
 },
 "paths": {
 "/item/{itemId}": {
 "get": {
 "operationId": "getItem",
 "summary": "get item details",
 "parameters": [
 "name": "itemId",
 "description": "Item ID",
 "required": true,
 "schema": {
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "example": {
 "itemId": 8,
 "name", "Kürtőskalács",
 "locationId": 5
 }
 }
 }
 }
 }
 }
 }
 }
}

The first two fields (openapi and info) are metadata describing the document. The paths
field contains all of the possible paths that correspond to the resources and methods of the
REST interface. In the preceding example, we are only documenting a single path (/item)
and a single method (GET). This method takes itemId as a required parameter. We provide
a single possible response code, which is 200. A 200 response contains a body that is a
JSON document itself. The value associated with the example key is the example payload
of a successful response.

Service-Oriented Architecture Chapter 12

[372]

RAML
A competing specification, RAML, stands for RESTful API Modeling Language. It uses
YAML for description and enables discovery, code reuse, and pattern-sharing.

The rationale behind establishing RAML was that while OpenAPI is a great tool to
document existing APIs, it was not, at the time, the best way to design new APIs. Currently,
the specification is being considered to become a part of the OpenAPI Initiative.

A RAML document may be converted to OpenAPI to make use of the available tooling.

Here's an example of an API documented with RAML:

#%RAML 1.0

title: Items API overview
version: 2.0.0

annotationTypes:
 oas-summary:
 type: string
 allowedTargets: Method

/item:
 get:
 displayName: getItem
 queryParameters:
 itemId:
 type: string
 responses:
 '200':
 body:
 application/json:
 example: |
 {
 "itemId": 8,
 "name", "Kürtőskalács",
 "locationId": 5
 }
 description: 200 response
 (oas-summary): get item details

This example describes the same interface documented previously with OpenAPI. When
serialized in YAML, both OpenAPI 3.0 and RAML 2.0 look very similar. The main
difference is that OpenAPI 3.0 requires the use of JSON schema for documenting structures.
With RAML 2.0, you can reuse the existing XML Schema Definition (XSD), which makes it
easier to migrate from XML-based web services or to include external resources.

Service-Oriented Architecture Chapter 12

[373]

API Blueprint
API Blueprint presents a different approach to the preceding two specifications. Instead of
relying on either JSON or YAML, it uses Markdown to document data structures and
endpoints.

Its approach is similar to the test-driven development methodology, as it encourages
designing contracts before implementing features. This way, it is easier to test whether the
implementation actually fulfills the contract.

Just like with RAML, it is possible to convert the API Blueprint specification to OpenAPI as
well as the other way round. There is also a command-line interface and a C++ library for
parsing API Blueprints, called Drafter, which you can use in your code.

An example of a simple API documented with API Blueprint looks like the following:

FORMAT: 1A

Items API overview

/item/{itemId}

GET

+ Response 200 (application/json)

 {
 "itemId": 8,
 "name": "Kürtőskalács",
 "locationId": 5
 }

In the preceding, we see that a GET method directed at the /item endpoint should result in
a response code of 200. Below that is the JSON message that corresponds to the one our
service will typically return.

API Blueprint allows for more natural documentation. The main disadvantage is that it is
the least popular of the formats described so far. This means both the documentation and
tooling are nowhere near the quality of OpenAPI.

RSDL
Similar to WSDL, RSDL (or RESTful Service Description Language), is an XML
description for web services. It is language-independent and designed to be both human-
and machine-readable.

Service-Oriented Architecture Chapter 12

[374]

It's much less popular than the previously presented alternatives. It is also much harder to
read, especially compared to API Blueprint or RAML.

Hypermedia as the Engine of Application State
Although providing a binary interface such as a gRPC-based one can give you great
performance, in many cases, you'll still want to have the simplicity of a RESTful
interface. Hypermedia as the Engine of Application State (HATEOAS) can be a useful
principle to implement if you want an intuitive REST-based API.

Just as you would open a web page and navigate based on the hypermedia shown, you can
write your services with HATEOAS to achieve the same thing. This promotes the
decoupling of server and client code and allows a client to quickly know what requests are
valid to send, which is often not the case with binary APIs. The discovery is dynamic and
based on the hypermedia provided.

If you take a typical RESTful service, when executing an operation, you get JSON with data
such as an object's state. With HATEOAS, aside from that, you would get a list of links
(URLs) showing you the valid operations you can run on said object. The links
(hypermedia) are the engine of the application. In other words, the available actions are
determined by the state of the resources. While the term hypermedia may sound strange in
this context, it basically means linking to the resources, including text, images, and video.

For example, if we have a REST method allowing us to add an item by using the PUT
method, we could add a return parameter that links to the resource created that way. If we
use JSON for serialization, this could take the following form:

{
 "itemId": 8,
 "name": "Kürtőskalács",
 "locationId": 5,
 "links": [
 {
 "href": "item/8",
 "rel": "items",
 "type" : "GET"
 }
]
}

Service-Oriented Architecture Chapter 12

[375]

There is no universally accepted method of serializing HATEOAS hypermedia. On the one
hand, it makes it easier to implement regardless of the server implementation. On the other
hand, the client needs to know how to parse the response to find the relevant traversal data.

One of the benefits of HATEOAS is that it makes it possible to implement the API changes
on the server side without necessarily breaking the client code. When one of the endpoints
gets renamed, the new endpoint is referenced in subsequent responses, so the client is
informed where to direct further requests.

The same mechanism may provide features such as paging or make it easy to discover
methods available for a given object. Getting back to our item example, here's a possible
response we could receive after making a GET request:

{
 "itemId": 8,
 "name": "Kürtőskalács",
 "locationId": 5,
 "stock": 8,
 "links": [
 {
 "href": "item/8",
 "rel": "items",
 "type" : "GET"
 },
 {
 "href": "item/8",
 "rel": "items",
 "type" : "POST"
 },
 {
 "href": "item/8/increaseStock",
 "rel": "increaseStock",
 "type" : "POST"
 },
 {
 "href": "item/8/decreaseStock",
 "rel": "decreaseStock",
 "type" : "POST"
 }
]
}

Service-Oriented Architecture Chapter 12

[376]

Here, we got links to two methods responsible for modifying the stock. If the stock is no
longer available, our response will look like this (note that one of the methods is no longer
advertised):

{
 "itemId": 8,
 "name": "Kürtőskalács",
 "locationId": 5,
 "stock": 0,
 "links": [
 {
 "href": "items/8",
 "rel": "items",
 "type" : "GET"
 },
 {
 "href": "items/8",
 "rel": "items",
 "type" : "POST"
 },
 {
 "href": "items/8/increaseStock",
 "rel": "increaseStock",
 "type" : "POST"
 }
]
}

One of the significant problems related to HATEOAS is that the two design principles seem
to be at odds with each other. Adding traversable hypermedia would be much easier to
consume if it were always presented in the same format. The freedom of expression here
makes it harder to write clients unaware of the server's implementation.

Not all RESTful APIs can benefit from introducing this principle – by introducing
HATEOAS you commit to writing clients in a specific manner so that they're able to benefit
from this API style.

REST in C++
Microsoft's C++ REST SDK is currently one of the best ways to implement RESTful APIs in
C++ applications. Also known as cpp-restsdk, it is the library that we're using in this book
to illustrate various examples.

Service-Oriented Architecture Chapter 12

[377]

GraphQL
A recent alternative to REST web services is GraphQL. The QL in the name stands for
Query Language. Rather than relying on the server to serialize and present the necessary
data, in GraphQL clients query and manipulate the data directly. Apart from the reversal of
responsibility, GraphQL also features mechanisms that make it easier to work with data.
Typing, static validation, introspection, and schemas are all parts of the specification.

There are server implementations of GraphQL available for a lot of languages including
C++. One of the popular implementations is cppgraphqlgen from Microsoft. There are also
many tools that help with development and debugging. What's interesting is that you can
use GraphQL to query the database directly thanks to products such as Hasura or
PostGraphile, which add the GraphQL API on top of a Postgres database.

Leveraging managed services and cloud
providers
Service-Oriented Architecture may be extended to the current cloud computing trend.
While Enterprise Service Bus features services usually developed in-house, with cloud
computing it is possible to use the services provided by one or more cloud providers.

While designing an application architecture for cloud computing, you should always
consider the managed services offered by the provider before implementing any
alternatives. For example, before you decide that you want to host your own PostgreSQL
database with selected plugins, make sure you understand the trade-offs and costs when
compared to a managed database hosting offered by your provider.

The current cloud landscape provides a lot of services designed to handle popular use cases
such as the following:

Storage
Relational databases
Document (NoSQL) databases
In-memory cache
Email
Message queues
Container orchestration
Computer vision

Service-Oriented Architecture Chapter 12

[378]

Natural language processing
Text-to-speech and speech-to-text
Monitoring, logging, and tracing
Big data
Content delivery networks
Data analytics
Task management and scheduling
Identity management
Key and secret management

Due to the huge choice of available third-party services, it is clear how cloud computing fits
within Service-Oriented Architecture.

Cloud computing as an extension of SOA
Cloud computing is an extension of virtual machine hosting. What differentiates cloud
computing providers from traditional VPS providers is two things:

Cloud computing is available via an API, which makes it a service in itself.
Besides virtual machine instances, cloud computing offers additional services
such as storage, managed databases, programmable networking, and many
others. All of them are also available via an API.

There are several ways you can use the cloud provider's API to feature in your application,
which we will now present.

Using API calls directly
If your cloud provider offers an API accessible in your language of choice, you can interact
with the cloud resources directly from your application.

Example: you have an application that allows users to upload their own pictures. This
application uses the Cloud API to create a storage bucket for each newly registered user:

#include <aws/core/Aws.h>
#include <aws/s3/S3Client.h>
#include <aws/s3/model/CreateBucketRequest.h>

#include <spdlog/spdlog.h>

Service-Oriented Architecture Chapter 12

[379]

const Aws::S3::Model::BucketLocationConstraint region =
 Aws::S3::Model::BucketLocationConstraint::eu_central_1;

bool create_user_bucket(const std::string &username) {
 Aws::S3::Model::CreateBucketRequest request;

 Aws::String bucket_name("userbucket_" + username);
 request.SetBucket(bucket_name);

 Aws::S3::Model::CreateBucketConfiguration bucket_config;
 bucket_config.SetLocationConstraint(region);
 request.SetCreateBucketConfiguration(bucket_config);

 Aws::S3::S3Client s3_client;
 auto outcome = s3_client.CreateBucket(request);

 if (!outcome.IsSuccess()) {
 auto err = outcome.GetError();
 spdlog::error("ERROR: CreateBucket: {}: {}",
 err.GetExceptionName(),
 err.GetMessage());
 return false;
 }

 return true;
}

In this example, we have a C++ function that creates an AWS S3 bucket named after the
username provided in the parameter. This bucket is configured to reside in a given region.
If the operation fails, we want to get the error message and log it using spdlog.

Using API calls through a CLI tool
Some operations don't have to be performed during the runtime of your application. They
are typically run during the deployment and therefore may be automated in shell scripts,
for example. One such use case is invoking a CLI tool to create a new VPC:

gcloud compute networks create database --description "A VPC to access the
database from private instances"

We use the gcloud CLI tool from Google Cloud Platform to create a network called
database that will be used to handle traffic from the private instances to the database.

Service-Oriented Architecture Chapter 12

[380]

Using third-party tools that interact with the Cloud API
Let's look at an example of running HashiCorp Packer to build a virtual machine instance
image that is preconfigured with your application:

{
 variables : {
 do_api_token : {{env `DIGITALOCEAN_ACCESS_TOKEN`}} ,
 region : fra1 ,
 packages : "customer"
 version : 1.0.3
 },
 builders : [
 {
 type : digitalocean ,
 api_token : {{user `do_api_token`}} ,
 image : ubuntu-20-04-x64 ,
 region : {{user `region`}} ,
 size : 512mb ,
 ssh_username : root
 }
],
 provisioners: [
 {
 type : file ,
 source : ./{{user `package`}}-{{user `version`}}.deb ,
 destination : /home/ubuntu/
 },
 {
 type : shell ,
 inline :[
 dpkg -i /home/ubuntu/{{user `package`}}-{{user `version`}}.deb
]
 }
]
}

In the preceding code, we provide the required credentials and region and employ a
builder to prepare an instance from the Ubuntu image for us. The instance we are
interested in needs to have 512 MB RAM. Then, we provide the instance first by sending a
.deb package to it, and then by executing a shell command to install this package.

Service-Oriented Architecture Chapter 12

[381]

Accessing the cloud API
Accessing cloud computing resources via an API is one of the most important features that
distinguish it from traditional hosting. Using an API means you are able to create and
delete instances at will without the intervention of an operator. This way, it becomes very
easy to implement features such as load-based autoscaling, advanced deployments (Canary
releases or Blue-Green), and automated development and testing environments for an
application.

Cloud providers usually expose their APIs as RESTful services. On top of that, they often
also provide client libraries for several programming languages. While all of the three most
popular providers support C++ as a client library, the support from smaller vendors may
vary.

If you're thinking about deploying your C++ application to the cloud and plan on using the
Cloud API, make sure your provider has released a C++ Software Development Kit (SDK).
It is still possible to use the Cloud API without an official SDK, for example, using the CPP
REST SDK library, but keep in mind this would require a lot more work to implement.

To access the Cloud SDK, you will also need access control. Typically, there are two ways
your application can be authenticated to use the Cloud API:

By providing an API token

The API token should be secret and never stored as part of the version control
system or inside a compiled binary. To prevent theft, it should also be encrypted
at rest.

One of the ways to pass the API token securely to the application is by means of a
security framework such as HashiCorp Vault. It is programmable secret storage
with built-in lease time management and key rotation.

By being hosted on an instance with appropriate access rights

Many cloud providers allow giving access rights to particular virtual machine
instances. This way, an application hosted on such an instance doesn't have to
authenticate using a separate token. Access control is then based on the instance
the cloud API request originates from.

This approach is easier to implement since it doesn't have to factor in the need for
secret management. The downside is that when the instance becomes
compromised, the access rights will be available to all of the applications running
there, not just the application you've deployed.

Service-Oriented Architecture Chapter 12

[382]

Using the cloud CLI
The Cloud CLI is typically used by human operators to interact with the Cloud API.
Alternatively, it may be used for scripting or using the Cloud API with languages that are
officially unsupported.

As an example, the following Bourne Shell script creates a resource group in the Microsoft
Azure cloud and then creates a virtual machine belonging to that resource group:

#!/bin/sh
RESOURCE_GROUP=dominicanfair
VM_NAME=dominic
REGION=germanynorth

az group create --name $RESOURCE_GROUP --location $REGION

az vm create --resource-group $RESOURCE_GROUP --name $VM_NAME --image
UbuntuLTS --ssh-key-values dominic_key.pub

When looking for documentation on how to manage cloud resources, you will encounter a
lot of examples using the Cloud CLI. Even if you wouldn't normally use the CLI, instead
preferring a solution such as Terraform, having the Cloud CLI at hand may help you with
debugging infrastructure problems.

Using tools that interact with the Cloud API
You have already learned about the dangers of vendor lock-in when using products from
cloud providers. Typically, each cloud provider will offer a different API and a different
CLI to all the others. There are cases where smaller providers offer abstraction layers that
allow accessing their products via an API similar to that of the well-known providers. This
approach aims to help with migrating the application from one platform to another.

Such instances are rare, though, and in general, tools used to interact with services from
one provider are incompatible with those from another provider. This is a problem not only
when you consider migration from one platform to the next. It may also be problematic if
you want to host your application on a variety of providers.

For this purpose, there's a new set of tools, collectively known as Infrastructure as
Code (IaC) tools, that offer an abstraction layer on top of different providers. These tools
are not necessarily limited to cloud providers either. They're usually general-purpose and
help to automate many different layers of your application's architecture.

In Chapter 9, Continuous Integration and Continuous Deployment, we briefly covered some of
them.

https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=33&action=edit

Service-Oriented Architecture Chapter 12

[383]

Cloud-native architecture
New tools allow architects and developers to abstract the infrastructure even more and
build, first and foremost, with the cloud in mind. Popular solutions such as Kubernetes and
OpenShift are driving this trend, but the landscape consists of a lot of smaller players as
well. The last chapter of this book is dedicated to cloud-native design and describes this
modern approach to building applications.

Summary
In this chapter, we have learned about different approaches to implementing Service-
Oriented Architecture. Since a service may interact with its environment in different ways,
there are many architectural patterns to choose from. We've learned about the benefits and
disadvantages of the most popular ones.

We have focused on the architectural and implementational aspects of some of the widely
popular approaches: message queues, web services including REST, and using managed
services and cloud platforms. Other approaches that we will dig even deeper into will be
presented in the standalone chapters, such as microservices and containers.

In the next chapter, we'll look into microservices.

Questions
What are the properties of a service in Service-Oriented Architecture?1.
What are some benefits of web services?2.
When are microservices not a good choice?3.
What are some of the use cases of message queues?4.
What are some of the benefits of choosing JSON over XML?5.
How does REST build on web standards?6.
How do cloud platforms differ from traditional hosting?7.

Service-Oriented Architecture Chapter 12

[384]

Further reading
SOA Made Simple: https:/ /www. packtpub. com/product/ soa- made- simple/
9781849684163

SOA Cookbook: https:/ /www. packtpub. com/ product/ soa- cookbook/
9781847195487

https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-made-simple/9781849684163
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487
https://www.packtpub.com/product/soa-cookbook/9781847195487

13
Designing Microservices

With the increasing popularity of microservices, we would like to dedicate to them an
entire chapter of this book. When discussing architecture, you will probably at some point
hear, "Should we use microservices for that?" This chapter will show you how to migrate an
existing application to a microservices architecture and how to build a new application that
leverages microservices.

The following topics will be covered in this chapter:

Diving into microservices
Building microservices
Observing microservices
Connecting microservices
Scaling microservices

Technical requirements
Most of the examples presented in this chapter do not require any specific software. For the
redis-cpp library, check https:/ / github. com/ tdv/ redis- cpp.

The code present in the chapter has been placed on GitHub at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter13.

Diving into microservices
While microservices are not tied to any particular programming language or technology, a
common choice when implementing microservices has been the Go language. That does not
mean that other languages are not suitable for microservices development – quite the
contrary. The low computational and memory overhead of C++ makes it an ideal candidate
for microservices.

https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter13

Designing Microservices Chapter 13

[386]

But first, we will start with a detailed view of some of the pros and cons of microservices.
After that, we'll focus on design patterns that are often associated with microservices (as
opposed to the general design patterns covered in Chapter 4, Architectural and System
Design).

The benefits of microservices
You may often hear about microservices in superlatives. It is true that they can bring some
benefits and here are some of them.

Modularity
Since the entire application is split into many relatively small modules, it is easier to
understand what each microservice does. The natural consequence of this understanding is
that it is also easier to test individual microservices. Testing is also aided by the fact that
each microservice typically has a limited scope. After all, it's easier to test just the calendar
application than to test the entire Personal Information Management (PIM) suite.

This modularity, however, comes at some cost. Your teams may have a much better
understanding of individual microservices, but at the same time they may find it harder to
grasp how the entire application is composed. While it shouldn't be necessary to learn all
the internal details of the microservices that form an application, the sheer number of
relationships between components presents a cognitive challenge. It's good practice to use
microservices contracts when using this architectural approach.

Scalability
It is easier to scale applications that are limited in scope. One reason for that is that there are
fewer potential bottlenecks.

Scaling smaller pieces of a workflow is also more cost-effective. Imagine a monolithic
application responsible for managing a trade fair. Once the system starts showing
performance issues, the only way to scale is to bring in a bigger machine for the monolith to
run on. This is called vertical scaling.

With microservices, the first advantage is that you can scale horizontally, that is, bring in
more machines instead of a bigger machine (which is usually cheaper). The second
advantage comes from the fact that you only need to scale those parts of the application
that are having performance issues. This also contributes to money saved on infrastructure.

Designing Microservices Chapter 13

[387]

Flexibility
Microservices, when properly designed, are less susceptible to vendor lock-in. When you
decide you want to switch one of the third-party components, you don't have to do the
entire painful migration all at once. Microservices design takes into account that you need
to use interfaces, so the only part that requires modification is the interface between your
microservice and the third-party component.

The components may also migrate one by one, some still using the software from the old
provider. This means you can separate the risk of introducing breaking changes in many
places at once. What's more, you can combine this with the canary deployments pattern to
manage risk with even more granularity.

This flexibility is not related just to single services. It may also mean different databases,
different queueing and messaging solutions, or even entirely different cloud platforms.
While different cloud platforms typically offer different services and APIs to use them, with
a microservices architecture, you can start migrating your workload piece by piece and test
it independently on a new platform.

When rewrites are necessary due to performance issues, scalability, or available
dependencies, it is much faster to rewrite a microservice than a monolith.

Integration with legacy systems
Microservices are not necessarily an all-or-nothing approach. If your application is well-
tested and migration to microservices may create a lot of risks, there's no pressure to
dismantle the working solution altogether. It is even better to split only the parts that
require further development and introduce them as microservices that the original
monolith will use.

By following this approach, you will gain the benefits of the agile release cycle associated
with microservices, while at the same time avoiding creating a new architecture from
scratch and basically rebuilding an entire application. If something is already working well,
it's better to focus on how to add new features without breaking the good parts, rather than
starting from scratch. Be careful here, as starting from scratch is often used as an ego boost!

Designing Microservices Chapter 13

[388]

Distributed development
The times of development teams being small and colocated are long gone. Remote work
and distributed development are a fact even in traditional office-based companies. Giants
such as IBM, Microsoft, and Intel have people from different locations working together on
a single project.

Microservices allow for smaller and more agile teams, which makes distributed
development much easier. When it's no longer necessary to facilitate communication
between a group of 20 or more people, it's also easier to build self-organized teams that
require less external management.

Disadvantages of microservices
Even if you think you may need microservices due to their benefits, keep in mind that they
also have some serious drawbacks. In short, they are definitely not for everyone. Larger
companies can generally offset these drawbacks, but smaller companies often don't have
this luxury.

Reliance on a mature DevOps approach
Building and testing microservices should be much faster than performing similar
operations on big, monolithic applications. But in order to achieve agile development, this
building and testing would need to be performed much more often.

While it may be sensible to deploy the application manually when you are dealing with a
monolith, the same approach will lead to a lot of problems if applied to microservices.

In order to embrace the microservices in your development, you have to ensure that your
team has a DevOps mindset and understands the requirements of both building and
running the microservice. It's not enough to simply hand the code to someone else and
forget about it.

The DevOps mindset will help your team to automate as much as possible. Developing
microservices without a continuous integration/continuous delivery pipeline is probably
one of the worst possible ideas in software architecture. Such an approach will bring all the
other disadvantages of microservices without enabling most of the benefits.

Designing Microservices Chapter 13

[389]

Harder to debug
Microservices require introducing observability. Without it, when something breaks, you're
never sure where to start looking for the potential root cause. Observability is a way to
deduce the state of your application without the need to run a debugger or log to the
machines your workload is running on.

A combination of log aggregation, application metrics, monitoring, and distributed tracing
is a prerequisite to manage microservices-based architecture. This is especially true once
you consider that autoscaling and self-healing may even prevent you from accessing
individual services if they start crashing.

Additional overhead
Microservices should be lean and agile. And that's usually true. However, microservices-
based architecture usually requires additional overhead. The first layer of overhead is
related to the additional interfaces used for microservices communication. RPC libraries
and API providers and consumers have to be multiplied not only by the number of
microservices but also by the number of their replicas. Then there are auxiliary services,
such as databases, message queues, and so on. Those services also include observability
facilities that usually consist of both storage facilities and individual collectors that gather
data.

The costs that you optimize with better scaling may be outweighed by the costs required to
run the entire fleet of services that don't bring immediate business value. What's more, it
may be hard for you to justify these costs (both in terms of infrastructure and development
overhead) to the stakeholders.

Design patterns for microservices
A lot of general design patterns apply to microservices as well. There are also some design
patterns that are typically associated with microservices. The patterns presented here are
useful for both greenfield projects as well as migration from monolithic applications.

Decomposition patterns
These patterns relate to the ways in which microservices are decomposed. We want to
ensure the architecture is stable and the services are loosely coupled. We also want to make
sure that services are cohesive and testable. Finally, we want autonomous teams to fully
own one or more services.

Designing Microservices Chapter 13

[390]

Decomposition by business capability
One of the decomposition patterns requires decomposition by business capability. Business
capability relates to what a business does in order to produce value. Examples of business
capabilities are merchant management and customer management. Business capabilities are
often organized in a hierarchy.

The main challenge when applying this pattern is to correctly identify the business
capabilities. This requires an understanding of the business itself and may benefit from
cooperation with a business analyst.

Decomposition by subdomain
A different decomposition pattern is related to the Domain-Driven Design (DDD)
approach. To define services, it is necessary to identify DDD subdomains. Just like business
capability, identifying subdomains requires knowledge of the business context.

The main difference between the two approaches is that with decomposing by business
capability, the focus is more on the organization of the business (its structure), whereas
with decomposing by subdomain, the focus is on the problems that the business tries to
solve.

Database per service pattern
Storing and handling data is a complex issue in every software architecture. Wrong choices
may impact scalability, performance, or maintenance costs. With microservices, there's an
added complexity coming from the fact that we want the microservices to be loosely
coupled.

This leads to a design pattern where each microservice connects to its own database so it is
independent of any changes introduced by the other services. While this pattern adds some
overhead, its additional benefit is that you can optimize the schema and indexes for each
microservice individually.

Since databases tend to be pretty huge pieces of infrastructure, this approach may not be
feasible, so sharing a database between microservices is an understandable trade-off.

Designing Microservices Chapter 13

[391]

Deployment strategies
With microservices running on multiple hosts, you will probably wonder which is the
better way to allocate resources. Let's compare the two possible approaches.

Single service per host
Using this pattern, we allow each host to only serve a particular type of microservice. The
main benefit is that you can tweak the machine to better fit the desired workload and
services are well isolated. When you provide extra-large memory or fast storage, you'll be
sure that it is used only for the microservice that needs it. The service is also unable to
consume more resources than provisioned.

The downside of this approach is that some of the hosts may be under-utilized. One
possible workaround is to use the smallest possible machines that still satisfy the
microservice requirements and scale them when necessary. This workaround, however,
does not solve the issue of additional overhead on the host itself.

Multiple services per host
An opposite approach is hosting multiple services per host. This helps to optimize the
utilization of the machines but it also comes with some drawbacks. First of all, different
microservices may require different optimizations, so hosting them on a single host will
still be impossible. What's more, with this approach, you lose control of the host allocation,
so the problems in one microservice may cause outages in a colocated microservice even if
the latter would be otherwise unaffected.

Another problem is the dependency conflict between the microservices. When the
microservices are not isolated from one another, the deployment has to take into account
different possible dependencies. This model is also less secure.

Observability patterns
In the previous section, we mentioned that microservices come at a price. This price
includes the requirement to introduce observability or risk losing the ability to debug your
applications. Here are some patterns related to observability.

Designing Microservices Chapter 13

[392]

Log aggregation
Microservices use logging just like monolithic applications. Instead of storing the logs
locally, the logs are aggregated and forwarded to a central facility. This way, the logs are
available even if the service itself is down. Storing logs in a centralized manner also helps
correlate data coming from different microservices.

Application metrics
To make decisions based on data, you first need some data to act on. Collecting application
metrics helps to understand the application behavior as used by the actual users, and not in
synthetic tests. The approaches to collect those metrics are push (where an application
actively calls the performance monitoring service) and pull (where the performance
monitoring service regularly checks the configured endpoints).

Distributed tracing
Distributed tracing helps not only to investigate performance issues but also to gain better
insight into the application behavior under real-world traffic. Unlike logging, which collects
pieces of information from a single point, tracing is concerned with the entire life cycle of a
single transaction, starting at the point where it originates from a user action.

Health check APIs
Since microservices are often targets of automation, they need to have the ability to
communicate their internal state. Even if the process is present in the system, it doesn't
mean the application is operational. The same goes for an open network port; the
application may be listening, but it is not yet able to respond. Health check APIs provide a
way for external services to determine whether the application is ready to process the
workload. Self-healing and autoscaling use health checks to determine when an
intervention is needed. The base premise is that a given endpoint (such as /health) returns
an HTTP code 200 when the application behaves as expected and a different code (or does
not return at all) if any problem is found.

Now that all the pros, cons, and patterns are known to you, we'll show you how you can
split the monolithic application and turn it into microservices part by part. The presented
approaches are not limited to just microservices; they may be useful in other cases as well,
including monolithic applications.

Designing Microservices Chapter 13

[393]

Building microservices
There are a lot of opinions concerning monolithic applications. Some architects believe that
monoliths are inherently evil because they don't scale well, are tightly coupled, and are
hard to maintain. There are others who claim that the performance benefits coming from
monoliths counterbalance their shortcomings. It's a fact that tightly coupled components
require much less overhead in terms of networking, processing power, and memory than
their loosely coupled counterparts.

As each application has unique business requirements and operates in a unique
environment when it comes to stakeholders, there is no universal rule regarding which
approach is better suited. Even more confusing is the fact that after the initial migration
from monoliths to microservices, some companies started consolidating microservices into
macroservices. This was because the burden of maintaining thousands of separate software
instances proved to be too big to handle.

The choice of one architecture over another should always come from the business
requirements and careful analysis of different alternatives. Putting ideology before
pragmatism usually results in a lot of waste within an organization. When a team tries to
adhere to a given approach at all costs, without considering different solutions or diverse
external opinions, that team is no longer fulfilling its obligations to deliver the right tools
for the right job.

If you are developing or maintaining a monolith, you may consider improving its
scalability. The techniques presented in this section aim to solve this problem while also
making your application easier to migrate to microservices if you decide so.

The three primary causes of bottlenecks are as follows:

Memory
Storage
Computing

We will show you how to approach each of them to develop scalable solutions based on
microservices.

Outsourcing memory management
One of the ways to help microservices scale is to outsource some of their tasks. One such
task that may hinder scaling efforts is memory management and caching data.

Designing Microservices Chapter 13

[394]

For a single monolithic application, storing cached data directly in the process memory is
not a problem as the process will be the only one accessing the cache anyway. But with
several replicas of a process, this approach starts to show some problems.

What if one replica has already computed a piece of a workload and stored it in a local
cache? The other replica is unaware of this fact and has to compute it again. This way, your
application wastes both computational time (as the same task has to be performed multiple
times) and memory (as the results are also stored with each replica separately).

To mitigate such challenges, consider switching to an external in-memory store rather than
managing the cache internally within an application. Another benefit of using an external
solution is that the life cycle of your cache is no longer tied to the life cycle of your
application. You can restart and deploy new versions of your application and the values
already stored in the cache are preserved.

This may also result in shorter startup times as your application no longer needs to perform
the computing during startup. Two popular solutions for in-memory cache are Memcached
and Redis.

Memcached
Memcached, released in 2003, is the older product of the two. It's a general-purpose,
distributed key-value store. The original goal of the project was to offload databases used in
web applications by storing the cached values in memory. Memcached is distributed by
design. Since version 1.5.18, it is possible to restart the Memcached server without losing
the contents of the cache. This is possible through the use of RAM disk as a temporary
storage space.

It uses a simple API that can be operated via telnet or netcat or using bindings for many
popular programming languages. There aren't any bindings specifically for C++, but it's
possible to use the C/C++ libmemcached library.

Redis
Redis is a newer project than Memcached with the initial version released in 2009. Since
then, Redis has replaced the usage of Memcached in many cases. Just like Memcached, it is
a distributed, general-purpose, in-memory key-value store.

Designing Microservices Chapter 13

[395]

Unlike Memcached, Redis also features optional data durability. While Memcached
operates on keys and values being simple strings, Redis also supports other data types,
such as the following:

Lists of strings
Sets of strings
Sorted sets of strings
Hash tables where keys and values are strings
Geospatial data (since Redis 3.2)
HyperLogLogs

The design of Redis makes it a great choice for caching session data, caching web pages,
and implementing leaderboards. Apart from that, it may also be used for message
queueing. The popular distributed task queue library for Python, Celery, uses Redis as one
of the possible brokers, along with RabbitMQ and Apache SQS.

Microsoft, Amazon, Google, and Alibaba all offer Redis-based managed services as part of
their cloud platforms.

There are many implementations of a Redis client in C++. Two interesting ones are the
redis-cpp library (https:/ / github. com/ tdv/ redis- cpp) written using C++17 and
QRedisClient (https:/ /github. com/ uglide/ qredisclient) using the Qt toolkit.

The following example of redis-cpp usage taken from the official documentation
illustrates how to use it to set and get some data in the store:

#include <cstdlib>
#include <iostream>

#include <redis-cpp/execute.h>
#include <redis-cpp/stream.h>

int main() {
 try {
 auto stream = rediscpp::make_stream("localhost", "6379");

 auto const key = "my_key";

 auto response = rediscpp::execute(*stream, "set", key,
 "Some value for 'my_key'", "ex",
 "60");

 std::cout << "Set key '" << key << "': "
 << response.as<std::string>()

https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/tdv/redis-cpp
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient
https://github.com/uglide/qredisclient

Designing Microservices Chapter 13

[396]

 << std::endl;

 response = rediscpp::execute(*stream, "get", key);
 std::cout << "Get key '" << key << "': "
 << response.as<std::string>()
 << std::endl;
 } catch (std::exception const &e) {
 std::cerr << "Error: " << e.what() << std::endl;
 return EXIT_FAILURE;
 }
 return EXIT_SUCCESS;
}

As you can see, the library handles processing different data types. The example sets the
value to a list of strings.

Which in-memory cache is better?
For most applications, Redis would be a better choice nowadays. It has a better user
community, a lot of different implementations, and is well-supported. Other than that, it
features snapshots, replication, transactions, and the pub/sub model. It is possible to embed
Lua scripts with Redis and the support for geospatial data makes it a great choice for geo-
enabled web and mobile applications.

However, if your main goal is to cache the results of database queries in web applications,
Memcached is a simpler solution with much less overhead. This means it should use the
resources better as it doesn't have to store type metadata or perform conversions between
different types.

Outsourcing storage
Another possible limitation when introducing and scaling microservices is storage.
Traditionally, local block devices have been used for storing objects that don't belong to the
database (such as static PDF files, documents, or images). Even nowadays, block storage is
still very popular with both local block devices and network filesystems such as NFS or
CIFS.

While NFS and CIFS are the domain of Network-Attached Storage (NAS), there are also
protocols related to a concept operating on a different level: Storage Area Network (SAN).
Some of the popular ones are iSCSI, Network Block Device (NBD), ATA over Ethernet,
Fibre Channel Protocol, and Fibre Channel over Ethernet.

Designing Microservices Chapter 13

[397]

A different approach features clustered filesystems designed for distributed computing:
GlusterFS, CephFS, or Lustre. All of these, however, operate as block devices exposing the
same POSIX file API to the user.

A fresh point of view on storage has been proposed as part of Amazon Web Services.
Amazon Simple Storage Service (S3) is object storage. An API provides access to objects
stored in buckets. This is different from the traditional filesystem as there is no distinction
between files, directories, or inodes. There are buckets and keys that point to objects and
objects are binary data stored by the service.

Outsourcing computing
One of the principles of microservices is that a process should only be responsible for doing
a single piece of the workflow. A natural step while migrating from monoliths to
microservices would be to define possible long-running tasks and split them into
individual processes.

This is the concept behind task queues. Task queues handle the entire life cycle of
managing tasks. Instead of implementing threading or multiprocessing on your own, with
task queues, you delegate the task to be performed, which is then asynchronously handled
by the task queue. The task may be performed on the same machine as the originating
process but it may also run on a machine with dedicated requirements.

The tasks and their results are asynchronous, so there is no blocking in the main process.
Examples of popular task queues in web development are Celery for Python, Sidekiq for
Ruby, Kue for Node.js, and Machinery for Go. All of them can be used with Redis as a
broker. Unfortunately, there aren't any similar mature solutions available for C++.

If you are seriously considering taking this route, one possible approach would be to
implement a task queue directly in Redis. Redis and its API provide the necessary
primitives to support such a behavior. Another possible approach is to use one of the
existing task queues, such as Celery, and invoke them by directly calling Redis. This,
however, is not advised, as it depends on the implementation details of the task queue
rather than the documented public API. Yet another approach is to interface the task queue
using bindings provided by SWIG or similar methods.

Designing Microservices Chapter 13

[398]

Observing microservices
Each microservice you build needs to follow the general architectural design patterns. The
main distinction between microservices and traditional applications is the need for
implementing observability for the former.

This section focuses on some approaches to observability. We describe here several open
source solutions that you might find useful when designing your system.

Logging
Logging is a topic that should be familiar to you even if you've never designed
microservices. Logs (or log files) store the information about the events happening in a
system. The system may mean your application, the operating system your application
runs on, or the cloud platform you use for deployment. Each of these components may
provide logs.

Logs are stored as separate files because they provide a permanent record of all the events
taking place. When the system becomes unresponsive, we want to query the logs and figure
out the possible root cause of the outage.

This means that logs also provide an audit trail. Because the events are recorded in
chronological order, we are able to understand the state of the system by examining the
recorded historical state.

To help with debugging, logs are usually human-readable. There are binary formats for
logs, but such formats are rather rare when using files to store the logs.

Logging with microservices
This approach to logging itself doesn't differ much from the traditional approach. Rather
than using text files to store the logs locally, microservices usually print logs to stdout. A
unified logging layer is then used to retrieve the logs and process them. To implement
logging, you need a logging library that you can configure to suit your needs.

Designing Microservices Chapter 13

[399]

Logging in C++ with spdlog
One of the popular and fast logging libraries for C++ is spdlog. It's built using C++11 and
can be used either as a header-only library or as a static library (which reduces compile
time).

Some interesting features of spdlog include the following:

Formatting
Multiple sinks:

Rotating files
Console
Syslog
Custom (implemented as a single function)

Multi-threaded and single-threaded versions
Optional asynchronous mode

One feature that might be missing from spdlog is the direct support for Logstash or
Fluentd. If you want to use one of these aggregators, it is still possible to configure spdlog
with file sink output and use Filebeat or Fluent Bit to forward the file contents to the
appropriate aggregator.

Unified logging layer
Most of the time, we won't be able to control all of the microservices that we use. Some of
them will use one logging library, while others would use a different one. On top of that,
the formats will be entirely different and so will their rotation policies. To make things
worse, there are still operating system events that we want to correlate with application
events. This is where the unified logging layer comes into play.

One of the unified logging layer’s purposes is to collect logs from different sources. Such
unified logging layer tools provide many integrations and understand different logging
formats and transports (such as file, HTTP, and TCP).

The unified logging layer is also capable of filtering the logs. We may want filtering to
satisfy compliance, anonymize the personal details of our customers, or protect the
implementation details of our services.

Designing Microservices Chapter 13

[400]

To make it easier to query the logs at a later time, the unified logging layer can also perform
translation between formats. Even if the different services that you use store the logs in
JSON, CSV, and the Apache format, the unified logging layer solution is able to translate
them all to JSON to give them structure.

The final task of the unified logging layer is forwarding the logs to their next destination.
Depending on the complexity of the system, the next destination may be a storage facility
or another filtering, translation, and forwarding facility.

Here are some interesting components that let you build the unified logging layer.

Logstash
Logstash is one of the most popular unified logging layer solutions. Currently, it is owned
by Elastic, the company behind Elasticsearch. If you've heard of the ELK stack (now known
as the Elastic Stack), Logstash is the "L" in the acronym.

Logstash was written in Ruby and then has been ported to JRuby. This unfortunately
means that it is rather resource-intensive. For this reason, it is not advisable to run Logstash
on each machine. Rather, it is meant to be used mainly as a log forwarder with lightweight
Filebeat deployed to each machine and performing just the collection.

Filebeat
Filebeat is part of the Beats family of products. Their aim is to provide a lightweight
alternative to Logstash that may be used directly with the application.

This way, Beats provide low overhead that scales well, whereas a centralized Logstash
installation performs all the heavy lifting, including translation, filtering, and forwarding.

Apart from Filebeat, the other products from the Beats family are as follows:

Metricbeat for performance
Packetbeat for network data
Auditbeat for audit data
Heartbeat for uptime monitoring

Fluentd
Fluentd is the main competitor of Logstash. It is also the tool of choice of some cloud
providers.

Designing Microservices Chapter 13

[401]

Thanks to its modular approach with the use of plugins, you can find plugins for data
sources (such as Ruby applications, Docker containers, SNMP, or MQTT protocols), data
outputs (such as Elastic Stack, SQL Database, Sentry, Datadog, or Slack), and several other
kinds of filters and middleware.

Fluentd should be lighter on resources than Logstash, but it is still not a perfect solution for
running at scale. The counterpart to Filebeat that works with Fluentd is called Fluent Bit.

Fluent Bit
Fluent Bit is written in C and provides a faster and lighter solution that plugs into Fluentd.
As a log processor and forwarder, it also features many integrations for inputs and outputs.

Besides log collection, Fluent Bit can also monitor CPU and memory metrics on Linux
systems. It might be used together with Fluentd or it can forward directly to Elasticsearch
or InfluxDB.

Vector
While Logstash and Fluentd are stable, mature, and tried solutions, there are also newer
propositions in the unified logging layer space.

One of them is Vector, which aims to handle all of the observability data in a single tool. To
differentiate from the competition, it focuses on performance and correctness. This is also
reflected in the choice of technology. Vector uses Rust for the engine and Lua for scripting
(as opposed to the custom domain-specific languages used by Logstash and Fluentd).

At the moment of writing, it hasn't yet reached a stable 1.0 version, so at this point, it
shouldn't be considered production-ready.

Log aggregation
Log aggregation solves another problem that arises from too much data: how to store and
access the logs. While the unified logging layer makes logs available even in the event of
machine outage, it is the task of log aggregation to help us quickly find the information that
we are looking for.

The two possible products that allow storing, indexing, and querying huge amounts of data
are Elasticsearch and Loki.

Designing Microservices Chapter 13

[402]

Elasticsearch
Elasticsearch is the most popular solution for self-hosted log aggregation. This is the "E" in
the (former) ELK Stack. It features a great search engine based on Apache Lucene.

As the de facto standard in its niche, Elasticsearch has a lot of integrations and has great
support both from the community and as a commercial service. Some cloud providers offer
Elasticsearch as a managed service, which makes it easier to introduce Elasticsearch in your
application. Other than that, Elastic, the company that makes Elasticsearch, offers a hosted
solution that is not tied to any particular cloud provider.

Loki
Loki aims to address some of the shortcomings found in Elasticsearch. The focus area for
Loki is horizontal scalability and high availability. It’s built from the ground up as a cloud-
native solution.

The design choices for Loki are inspired by both Prometheus and Grafana. This shouldn't
be a surprise since it is developed by the team responsible for Grafana.

While Loki should be a stable solution, it is not as popular as Elasticsearch, which means
some integrations might be missing and the documentation and community support won't
be on the same level as for Elasticsearch. Both Fluentd and Vector have plugins that
support Loki for log aggregation.

Log visualization
The last piece of the logging stack we want to consider is log visualization. This helps us to
query and analyze the logs. It presents the data in an accessible way so it can be inspected
by all the interested parties, such as operators, developers, QA, or business.

Log visualization tools allow us to create dashboards that make it even easier to read the
data we are interested in. With that, we are able to explore the events, search for
correlations, and find outlying data from a simple user interface.

There are two major products dedicated to log visualization.

Kibana
Kibana is the final element of the ELK Stack. It provides a simpler query language on top of
Elasticsearch. Even though you can query and visualize different types of data with Kibana,
it is mostly focused on logs.

Designing Microservices Chapter 13

[403]

Like the rest of the ELK Stack, it is currently the de facto standard when it comes to
visualizing logs.

Grafana
Grafana is another data visualization tool. Until recently, it was mostly focused on time-
series data from performance metrics. However, with the introduction of Loki, it may now
also be used for logs.

One of its strengths is that it’s built with pluggable backends in mind, so it’s easy to switch
the storage to fit your needs.

Monitoring
Monitoring is the process of collecting performance-related metrics from the system. When
paired with alerting, monitoring helps us understand when our system behaves as
expected and when an incident happens.

The three types of metrics that would interest us the most are as follows:

Availability, which lets us know which of our resources are up and running, and
which of them have crashed or became unresponsive.
Resource utilization gives us insight into how the workload fits into the system.
Performance, which shows us where and how to improve service quality.

The two models of monitoring are push and pull. In the former, each monitored object (a
machine, an application, and a network device) pushes data to the central point
periodically. In the latter, the objects present the data at the configured endpoints and the
monitoring agent scrapes the data regularly.

The pull model makes it easier to scale. This way, multiple objects won't be clogging the
monitoring agent connection. Instead, multiple agents may collect the data whenever
ready, thus better utilizing the available resources.

Two monitoring solutions that feature C++ client libraries are Prometheus and InfluxDB.
Prometheus is an example of a pull-based model and it focuses on collecting and storing
time-series data. InfluxDB by default uses a push model. Besides monitoring, it is also
popular for the Internet of Things, sensor networks, and home automation.

Designing Microservices Chapter 13

[404]

Both Prometheus and InfluxDB are typically used with Grafana for visualizing data and
managing dashboards. Both have alerting built-in, but they can also integrate with the
external alerting system through Grafana.

Tracing
Traces provide information that is generally lower-level to that of event logs. Another
important distinction is that traces store the ID of every single transaction so it is easy to
visualize the entire workflow. This ID is commonly known as the trace ID, transaction ID,
or correlation ID.

Unlike event logs, traces are not meant to be human-readable. They are processed by a
tracer. When implementing tracing, it is necessary to use a tracing solution that integrates
with all the possible elements of the system: frontend applications, backend applications,
and databases. This way, tracing helps to pinpoint the exact cause of lagging performance.

OpenTracing
One of the standards in distributed tracing is OpenTracing. This standard was proposed by
the authors of Jaeger, one of the open-source tracers.

OpenTracing supports many different tracers apart from Jaeger and it supports many
different programming languages. The most important ones include the following:

Go
C++
C#
Java
JavaScript
Objective-C
PHP
Python
Ruby

The most important feature of OpenTracing is that it is vendor-neutral. This means that
once we instrument our application, we won’t need to modify the entire codebase to switch
to a different tracer. This way, it prevents vendor lock-in.

Designing Microservices Chapter 13

[405]

Jaeger
Jaeger is a tracer that can be used with various backends, including Elasticsearch,
Cassandra, and Kafka.

It is natively compatible with OpenTracing, which shouldn't be a surprise. Since it is a
Cloud Native Computing Foundation-graduated project, it has great community support,
which also translates to good integration with other services and frameworks.

OpenZipkin
OpenZipkin is the main competitor for Jaeger. It has been on the market for a longer time.
Although this should mean it is a more mature solution, its popularity is fading when
compared to Jaeger. Particularly, the C++ in OpenZipkin isn't actively maintained, which
may cause future problems with maintenance.

Integrated observability solutions
If you don't want to build the observability layer on your own, there are some popular
commercial solutions that you might consider. They all operate in a software-as-a-service
model. We won't go into a detailed comparison here, as their offerings may change
drastically after the writing of this book.

These services are as follows:

Datadog
Splunk
Honeycomb

In this section, you have seen implementing observability in Microservices. Next, we'll
move on to learn how to connect microservices.

Connecting microservices
Microservices are so useful because they can be connected in many different ways with
other services, thus creating new value. However, as there is no standard for microservices,
there is not a single way to connect to them.

Designing Microservices Chapter 13

[406]

This means that most of the time when we want to use a particular microservice, we have
to learn how to interact with it. The good news is that although it is possible to implement
any communication method in microservices, there are a few popular approaches that most
microservices follow.

How to connect microservices is just one of the relevant questions when designing
architecture around them. The other is what to connect with and where. This is where
service discovery comes into play. With service discovery, we let the microservices use
automated means of discovering and connecting to other services within our application.

These three questions, how, what, and where, will be our next topic. We will introduce
some of the most popular methods of communication and discovery used by modern
microservices.

Application programming interfaces (APIs)
Just like software libraries, microservices often expose APIs. These APIs make it possible to
communicate with the microservices. Since the typical manner of communication utilizes
computer networking, the most popular form of an API is the web API.

In the previous chapter, we already covered some possible approaches with web services.
Nowadays, microservices typically use web services based on REpresentational State
Transfer (REST).

Remote procedure calls
While web APIs such as REST allow easy debugging and great interoperability, there's a lot
of overhead related to data translation and using HTTP for transport.

This overhead may be too much for some microservices, which is the reason for lightweight
Remote Procedure Calls (RPCs).

Apache Thrift
Apache Thrift is an interface description language and binary communication protocol. It is
used as an RPC method that allows creating distributed and scalable services built in a
variety of languages.

It supports several binary protocols and transport methods. Native data types are used for
each programming language, so it is easy to introduce even in an existing codebase.

Designing Microservices Chapter 13

[407]

gRPC
If you really care about performance, often you'll find that text-based solutions don't work
for you. REST, however elegant and easily understandable, may turn out to be too slow for
your needs. If that's the case, you should try to build your API around binary protocols.
One of them, which is growing in popularity, is gRPC.

gRPC, as its name suggests, is an RPC system that was initially developed by Google. It
uses HTTP/2 for transport, and Protocol Buffers as an Interface Description Language
(IDL) for interoperability between multiple programming languages, and for data
serialization. It's possible to use alternative technologies for this, for example, FlatBuffers.
gRPC can be used both synchronously and in an asynchronous manner and allows creating
both simple services and streaming ones.

Assuming you've decided to use protobufs, our Greeter service definition can look like
this:

service Greeter {
 rpc Greet(GreetRequest) returns (GreetResponse);
}

message GreetRequest {
 string name = 1;
}

message GreetResponse {
 string reply = 1;
}

Using the protoc compiler, you can create data access code from this definition. Assuming
you want to have a synchronous server for our Greeter, you can create the service in the
following way:

class Greeter : public Greeter::Service {
 Status sendRequest(ServerContext *context, const GreetRequest
*request,
 GreetReply *reply) override {
 auto name = request->name();
 if (name.empty()) return Status::INVALID_ARGUMENT;
 reply->set_result("Hello " + name);
 return Status::OK;
 }
};

Designing Microservices Chapter 13

[408]

Then, you have to build and run the server for it:

int main() {
 Greeter service;
 ServerBuilder builder;
 builder.AddListeningPort("localhost", grpc::InsecureServerCredentials());
 builder.RegisterService(&service);

 auto server(builder.BuildAndStart());
 server->Wait();
}

Simple as that. Let's now take a look at a client to consume this service:

 #include <grpcpp/grpcpp.h>

 #include <string>

 #include "grpc/service.grpc.pb.h"

 using grpc::ClientContext;
 using grpc::Status;

 int main() {
 std::string address("localhost:50000");
 auto channel =
 grpc::CreateChannel(address, grpc::InsecureChannelCredentials());
 auto stub = Greeter::NewStub(channel);

 GreetRequest request;
 request.set_name("World");

 GreetResponse reply;
 ClientContext context;
 Status status = stub->Greet(&context, request, &reply);

 if (status.ok()) {
 std::cout << reply.reply() << '\n';
 } else {
 std::cerr << "Error: " << status.error_code() << '\n';
 }
 }

This was a simple, synchronous example. To make it work asynchronously, you'll need to
add tags and CompletionQueue, as described on gRPC's website.

Designing Microservices Chapter 13

[409]

One interesting feature of gRPC is that it is available for mobile applications on Android
and iOS. This means that if you use gRPC internally, you don't have to provide an
additional server to translate the traffic from your mobile applications.

In this section, you learned the most popular methods of communication and discovery
utilized by microservices. Next, we'll see how microservices can be scaled.

Scaling microservices
One of the significant benefits of microservices is that they scale more efficiently than
monoliths. Given the same hardware infrastructure, you could theoretically be able to get
more performance out of microservices than monoliths.

In practice, the benefits are not that straightforward. Microservices and related helpers also
provide overhead that for smaller-scale applications may be less performant than an
optimal monolith.

Remember that even if something looks good "on paper," it doesn't mean it will fly. If you
want to base your architectural decisions on scalability or performance, it is better to
prepare calculations and experiments. This way, you'll act based on data, not just emotion.

Scaling a single service per host deployment
For a single service per host deployment, scaling a microservice requires adding or
removing additional machines that host the microservice. If your application is running on
a cloud architecture (public or private), many providers offer a concept known as
autoscaling groups.

Autoscaling groups define a base virtual machine image that will run on all grouped
instances. Whenever a critical threshold is reached (for example, 80% CPU use), a new
instance is created and added to the group. Since autoscaling groups run behind a load
balancer, the increasing traffic then gets split between both the existing and the new
instances, thus reducing the mean load on each one. When the spike in traffic subsides, the
scaling controller shuts down the excess machines to keep the costs low.

Designing Microservices Chapter 13

[410]

Different metrics can act as triggers for the scaling event. The CPU load is one of the easiest
to use, but it may not be the most accurate one. Other metrics, such as the number of
messages in a queue, may better fit your application.

Here's an excerpt from a Terraform configuration for a scaler policy:

autoscaling_policy {
 max_replicas = 5
 min_replicas = 3
 cooldown_period = 60
 cpu_utilization {
 target = 0.8
 }
}

It means that at any given time, there will be at least three instances running and at most
five instances. The scaler will trigger once the CPU load hits at least an 80% average for all
the group instances. When that happens, a new instance is spun up. The metrics from the
new machine will only be collected after it has been running for at least 60 seconds (the
cooldown period).

Scaling multiple services per host deployment
This mode of scaling is also suitable for multiple services per host deployment. As you can
probably imagine, this isn't the most efficient method. Scaling an entire set of services based
only on a reduced throughput of a single one is similar to scaling monoliths.

If you're using this pattern, a better way to scale your microservices is to use an
orchestrator. If you don't want to use containers, Nomad is a great choice that works with a
lot of different execution drivers. For containerized workloads, either Docker Swarm or
Kubernetes will help you. Orchestrators are a topic that we'll come back to in the next two
chapters.

Summary
Microservices are a great new trend in software architecture. They could be a good fit
provided you make sure you know about the hazards and prepare for them. This chapter
explained the common design and migration patterns that help to introduce microservices.
We've also covered advanced topics such as observability and connectivity that are crucial
when establishing microservices-based architectures.

Designing Microservices Chapter 13

[411]

By now, you should be able to design and decompose applications into individual
microservices. Each microservice is then capable of processing a single piece of workload.

While microservices are valid on their own, they're especially popular in combination with
containers. Containers are the subject of the next chapter.

Questions
Why do microservices help you better use the system resources?1.
How can microservices and monoliths coexist (in an evolving system)?2.
Which types of teams benefit the most from microservices?3.
Why is it necessary to have a mature DevOps approach when introducing4.
microservices?
What is a unified logging layer?5.
How do logging and tracing differ?6.
Why may REST not be the best choice for connecting microservices?7.
What are the deployment strategies for microservices? What are the benefits of8.
each of them?

Further reading
Mastering Distributed Tracing: https:/ /www. packtpub. com/ product/ mastering-
distributed- tracing/ 9781788628464

Hands-On Microservices with Kubernetes: https:/ /www. packtpub. com/ product/
hands-on- microservices- with- kubernetes/ 9781789805468

Microservices by Martin Fowler: https:/ /martinfowler. com/ articles/
microservices. html

Microservice architecture: https:/ /microservices. io/

https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://www.packtpub.com/product/hands-on-microservices-with-kubernetes/9781789805468
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/

14
Containers

Transitioning from development to production has always been a painful process. It
involves a lot of documentation, hand-offs, installation, and configuration. Since every
programming language produces software that behaves slightly differently, the
deployment of heterogenous applications is always difficult.

Some of these problems have been mitigated by containers. With containers, the installation
and configuration is mostly standardized. There are several ways for how to deal with
distribution, but this issue also has some standards to follow. This makes containers a great
choice for organizations that want to increase the cooperation between development and
operations.

The following topics will be covered in this chapter:

Building containers
Testing and integrating containers
Understanding container orchestration

Technical requirements
The examples listed in this chapter require the following:

Docker 20.10
manifest-tool (https:/ / github. com/ estesp/ manifest- tool)
Buildah 1.16
Ansible 2.10
ansible-bender
CMake 3.15

The code present in the chapter has been placed on GitHub at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter14.

https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter14

Containers Chapter 14

[413]

Reintroducing containers
Containers are making a lot of buzz recently. One might think they are a brand new
technology that was not available before. However, that is not the case. Before the rise of
Docker and Kubernetes, the dominating players in the industry at the moment, there were
already solutions such as LXC, which offered a lot of similar features.

We can trace the origins of separating one execution environment from another with the
chroot mechanism available in UNIX systems since 1979. Similar concepts were also used in
FreeBSD jails and Solaris Zones.

The main task of the container is to isolate one execution environment from another. This
isolated environment can have its own configuration, different applications, and even
different user accounts than the host environment.

Even though the containers are isolated from the host, they usually share the same
operating system kernel. This is the main differentiator from virtualized environments.
Virtual machines have dedicated virtual resources, which means they are separated at the
hardware level. Containers are separated at the process level, which means there is less
overhead to run them.

The ability to package and run another operating system that is already optimized and
configured for running your application is a strong advantage of containers. Without
containers, the build and deploy process usually consists of several steps:

The application is built.1.
The example configuration files are provided.2.
Installation scripts and associated documentation is prepared.3.
The application is packaged for a target operating system (such as Debian or Red4.
Hat).
The packages are deployed to the target platform.5.
Installation scripts prepare the basis for the application to run.6.
The configuration has to be tweaked to fit the existing system.7.

When you switch to containers, there is less of a need for a robust installation script. The
application will only target a single well-known operating system – the one present in the
container. The same goes for configuration: instead of preparing many configurable
options, the application is pre-configured for the target operating system and distributed
alongside it. The deployment process consists only of unpacking the container image and
running the application process inside it.

Containers Chapter 14

[414]

While containers and microservices are often thought to be the same thing, they are not.
Moreover, containers may mean application containers or operating system containers, and
only application containers fit well with microservices. The following sections will tell you
why. We'll describe the different container types that you can encounter, show you how
they relate to microservices, and explain when it's best to use them (and when to avoid
them).

Exploring the container types
Of the containers described so far, operating system containers are fundamentally different
from the current container trend led by Docker, Kubernetes, and LXD. Instead of focusing
on recreating an entire operating system with services such as syslog and cron, application
containers focus on running a single process within a container – just the application.

Proprietary solutions replace all the usual OS-level services. These solutions provide a
unified way to manage the applications within a container. For example, instead of using
syslog to handle logs, the standard output of the process with PID 1 is considered as
application logs. Instead of using a mechanism such as init.d or systemd, the application
container's lifecycle is handled by the runtime application.

Since Docker is at the moment the dominant solution for application containers, we will
mostly use it as an example throughout this book. To make the picture complete, we will
present viable alternatives, as they may be better suited to your needs. Since the project and
specification are open source, these alternatives are compatible with Docker and can be
used as replacements.

Later in this chapter, we will explain how to use Docker to build, deploy, run, and manage
application containers.

The rise of microservices
The success of Docker coincided with the rise of the adoption of microservices. It is no
surprise since microservices and application containers fit together naturally.

Without application containers, there was no easy and unified way to package, deploy, and
maintain microservices. Even though individual companies developed some solutions to fix
these problems, none was popular enough to approach being an industry standard.

Containers Chapter 14

[415]

Without microservices, the application containers were pretty limited. The software
architecture focused on building entire systems explicitly configured for the given set of
services running there. Replacing one service with another required a change of the
architecture.

When brought together, application containers provide a standard way for the distribution
of microservices. Each microserver comes with its own configuration embedded, so
operations such as autoscaling or self-healing no longer require knowledge about an
underlying application.

You can still use microservices without application containers and you can use application
containers without hosting microservices in them. For instance, even though neither
PostgreSQL databases nor Nginx web servers were designed as microservices, they are
typically used in application containers.

Choosing when to use containers
There are several benefits to the container approach. OS containers and application
containers also have some different use cases in which their strengths lie.

The benefits of containers
When compared to virtual machines, the other popular way of isolating environments,
containers require less overhead during runtime. Unlike virtual machines, there is no need
to run a separate version of an operating system kernel and use the hardware or software
virtualization techniques. Application containers also do not run other operating system
services that are typically found in virtual machines such as syslog, cron, or init.
Additionally, application containers offer smaller images as they do not usually have to
carry an entire operating system copy. In extreme examples, an application container can
consist of a single statically linked binary.

At this point, you may wonder why to bother with containers at all if there is just a single
binary inside? There is one particular benefit of having a unified and standardized way to
build and run containers. As containers have to follow specific conventions, it is easier to
orchestrate them than regular binaries, which can have different expectations regarding
logging, configuration, opening ports, and so on.

Containers Chapter 14

[416]

Another thing is that containers provide a built-in means of isolation. Each container has its
own namespace for processes and a namespace for user accounts, among others. This
means that the process (or processes) from one container has no notion of the processes on
the host or in the other containers. The sandboxing can go even further as you can assign
memory and a CPU quota to your containers with the same standard user interface
(whether it is Docker, Kubernetes, or something else).

The standardized runtime also means higher portability. Once a container is built, you can
typically run it on different operating systems without modifications. This also means what
runs in operations is very close or identical to what runs in development. Issue
reproduction is more effortless and so is debugging.

The disadvantages of containers
Since there is a lot of pressure nowadays to move workloads to containers, you want to
understand all the risks associated with such migration as an architect. The benefits are
touted everywhere and you probably already understand them.

The main obstacle to container adoption is that not all applications can be easily migrated
to containers. This is especially true of application containers that are designed with
microservices in mind. If your application is not based on microservices architecture,
putting it into containers may introduce more problems than it will solve.

If your application already scales well, uses TCP/IP-based IPC, and is mostly stateless, the
move to containers should not be challenging. Otherwise, each of these aspects would pose
a challenge and prompt a rethink of the existing design.

Another problem associated with containers is persistent storage. Ideally, containers should
have no persistent storage of their own. This makes it possible to take advantage of fast
startups, easy scaling, and flexible scheduling. The problem is that applications providing
business value cannot exist without persistent storage.

This drawback is usually mitigated by making most containers stateless and relying on an
external non-containerized component to store the data and the state. Such an external
component can be either a traditional self-hosted database or a managed database from a
cloud provider. Going in either direction requires you to reconsider the architecture and
modify it accordingly.

Containers Chapter 14

[417]

Since application containers follow specific conventions, the application has to be modified
to follow these conventions. For some applications, it will be a low-effort task. For others,
such as multiprocess components using in-memory Inter-Process Communication (IPC), it
will be complicated.

One point often omitted is that application containers work great as long as the applications
inside them are native Linux applications. While Windows containers are supported, they
are neither convenient nor as supported as their Linux counterparts. They also require
licensed Windows machines running as hosts.

It is easier to enjoy the application containers' benefits if you are building a new application
from scratch and can base your design on this technology. Moving an existing application
to application containers, especially if it is complicated, will require a lot more work and
possibly also a revamp of the entire architecture. In such a case, we advise you to consider
all the benefits and disadvantages extra carefully. Making a wrong decision may harm your
product's lead time, availability, and budget.

Building containers
Application containers are the focus of this section. While OS containers mostly follow
system programming principles, application containers bring new challenges and patterns.
Also, they provide specialized build tools to deal with those challenges. The primary tool
we will consider is Docker, as it's the current de facto standard for building and running
application containers. We will also present some alternative approaches to building
application containers.

Unless otherwise noted, whenever we use the word "containers" from now on, it relates to
"application containers."

In this section, we will focus on different approaches to using Docker for building and
deploying containers.

Container images explained
Before we describe container images and how to build them, it is vital to understand the
distinction between containers and container images. There is often confusion between the
terms, especially during informal conversations.

Containers Chapter 14

[418]

The difference between a container and a container image is the same as between a running
process and an executable file.

Container images are static: They're snapshots of a particular filesystem and associated
metadata. The metadata describes, among other things, what environmental variables are
set during runtime or which program to run when the container is created from the image.

Containers are dynamic: They are running a process contained within the container image.
We can create containers from the container images and we can also create container
images by snapshotting a running container. The container image build process consists, in
fact, of creating several containers, executing commands inside them, and snapshotting
them after the command finishes.

To distinguish between the data introduced by the container image and the data generated
during runtime, Docker uses union mount filesystems to create different filesystem layers.
These layers are also present in the container images. Typically, each build step of the
container image corresponds to a new layer in the resulting container image.

Using Dockerfiles to build an application
The most common way to build an application container image using Docker is to use a
Dockerfile. Dockerfile is an imperative language describing the operations required to
produce the resulting image. Some of the operations create new filesystem layers; others
operate on metadata.

We will not go into details and specifics related to Dockerfiles. Instead, we will show
different approaches to containerizing a C++ application. For this, we need to introduce
some syntax and concepts related to Dockerfiles.

Here is an example of a very simple Dockerfile:

FROM ubuntu:bionic

RUN apt-get update && apt-get -y install build-essentials gcc

CMD /usr/bin/gcc

Typically, we can divide a Dockerfile into three parts:

Importing the base image (the FROM instruction)
Performing operations within the container that will result in a container image
(the RUN instruction)
Metadata used during runtime (the CMD command)

Containers Chapter 14

[419]

The latter two parts may well be interleaved, and each of them may comprise one or more
instructions. It is also possible to omit any of the later parts as only the base image is
mandatory. This does not mean you cannot start with an empty filesystem. There is a
special base image named scratch exactly for this purpose. Adding a single statically
linked binary to an otherwise empty filesystem could look like the following:

FROM scratch

COPY customer /bin/customer

CMD /bin/customer

In the first Dockerfile, the steps we take are the following:

Import the base Ubuntu Bionic image.1.
Run a command inside the container. The results of the command will create a2.
new filesystem layer inside the target image. This means the packages installed
with apt-get will be available in all the containers based on this image.
Set the runtime metadata. When creating a container based on this image, we3.
want to run GCC as the default process.

To build an image from a Dockerfile, you will use the docker build command. It takes
one required argument, the directory containing the build context, which means the
Dockerfile itself and other files you want to copy inside the container. To build a Dockerfile
from a current directory, use docker build.

This will build an anonymous image, which is not very useful. Most of the time, you want
to use named images. There is a convention to follow when naming container images and
that's what we'll cover in the next section.

Naming and distributing images
Each container image in Docker has a distinctive name consisting of three elements: the
name of the registry, the name of the image, a tag. Container registries are object
repositories holding container images. The default container registry for Docker is
docker.io. When pulling an image from this registry, we may omit the registry name.

Our previous example with ubuntu:bionic has the full name of
docker.io/ubuntu:bionic. In this example, ubuntu is the name of the image, while
bionic is a tag that represents a particular version of an image.

Containers Chapter 14

[420]

When building an application based on containers, you will be interested in storing all the
registry images. It is possible to host your private registry and keep your images there or
use a managed solution. Popular managed solutions include the following:

Docker Hub
quay.io
GitHub
Cloud providers (such as AWS, GCP, or Azure)

Docker Hub is still the most popular one, though some public images are migrating to
quay.io. Both are general-purpose and allow the storage of public and private images.
GitHub or cloud providers will be mainly attractive to you if you are already using a
particular platform and want to keep your images close to the CI pipeline or the
deployment targets. It is also helpful if you want to reduce the number of individual
services you use.

If none of the solutions appeal to you, hosting your own local registry is also very easy and
requires you to run a single container.

To build a named image, you need to pass the -t argument to the docker build
command. For example, to build an image named dominicanfair/merchant:v2.0.3,
you will use docker build -t dominicanfair/merchant:v2.0.3 ..

Compiled applications and containers
When building container images for applications in interpreted languages (such as Python
or JavaScript), the approach is mostly the same:

Install dependencies.1.
Copy source files to the container image.2.
Copy the necessary configuration.3.
Set the runtime command.4.

For compiled applications, however, there's an additional step of compiling the application
first. There are several possible ways to implement this step, each of them with their pros
and cons.

Containers Chapter 14

[421]

The most obvious approach is to install all the dependencies first, copy the source files, and
then compile the application as one of the container build steps. The major benefit is that
we can accurately control the toolchain's contents and configuration and therefore have a
portable way to build an application. However, the downside is too big to ignore: the
resulting container image contains a lot of unnecessary files. After all, we will need neither
source code nor the toolchain during runtime. Due to the way overlay filesystems work, it
is impossible to remove the files after being introduced in a previous layer. What is more,
the source code in the container may prove to be a security risk if an attacker manages to
break into the container.

Here's how it can look:

FROM ubuntu:bionic

RUN apt-get update && apt-get -y install build-essentials gcc cmake

ADD . /usr/src

WORKDIR /usr/src

RUN mkdir build && \
 cd build && \
 cmake .. -DCMAKE_BUILD_TYPE=Release && \
 cmake --build . && \
 cmake --install .

CMD /usr/local/bin/customer

Another obvious approach, and the one we discussed earlier, is building the application on
the host machine and only copying the resulting binaries inside the container image. This
requires fewer changes to the current build process when one is already established. The
main drawback is that you have to match the same set of libraries on your build machines
as you do in your containers. If you're running, for example, Ubuntu 20.04 as your host
operating system, your containers will have to be based on Ubuntu 20.04 as well.
Otherwise, you risk incompatibilities. With this approach, it is also necessary to configure
the toolchain independently of the container.

Just like this:

FROM scratch

COPY customer /bin/customer

CMD /bin/customer

Containers Chapter 14

[422]

A slightly more complicated approach is to have a multi-stage build. With multi-stage
builds, one stage may be dedicated to setting up the toolchain and compiling the project,
while another stage copies the resulting binaries to their target container image. This has
several benefits over the previous solutions. First of all, the Dockerfiles now control both
the toolchain and the runtime environment, so every step of the build is thoroughly
documented. Second of all, it is possible to use the image with the toolchain to ensure
compatibility between development and the Continuous Integration/Continuous
Deployment (CI/CD) pipeline. This way also makes it easier to distribute upgrades and
fixes to the toolchain itself. The major downside is that the containerized toolchain may not
be as comfortable to use as a native one. Also, build tools are not particularly well-suited to
application containers, which require that there's one process running per container. This
may lead to unexpected behavior whenever some of the processes crash or are forcefully
stopped.

A multi-stage version of the preceding example would look like this:

FROM ubuntu:bionic AS builder

RUN apt-get update && apt-get -y install build-essentials gcc cmake

ADD . /usr/src

WORKDIR /usr/src

RUN mkdir build && \
 cd build && \
 cmake .. -DCMAKE_BUILD_TYPE=Release && \
 cmake --build .

FROM ubuntu:bionic

COPY --from=builder /usr/src/build/bin/customer /bin/customer

CMD /bin/customer

The first stage, starting at the first FROM command sets up the builder, adds the sources, and
builds the binaries. Then, the second stage, starting at the second FROM command, copies
the resulting binary from the previous stage without copying the toolchain or the sources.

Containers Chapter 14

[423]

Targeting multiple architectures with manifests
Application containers with Docker are typically used on x86_64 (also known as AMD64)
machines. If you are only targeting this platform, you have nothing to worry about.
However, if you are developing IoT, embedded, or edge applications, you may be
interested in multi-architecture images.

Since Docker is available on many different CPU architectures, there are several ways to
approach image management on multiple platforms.

One way to handle images built for different targets is by using the image tags to describe a
particular platform. Instead of merchant:v2.0.3, we could have merchant:v2.0.3-
aarch64. Although this approach may seem to be the easiest to implement, it is, in fact, a
bit problematic.

Not only do you have to change the build process to include the architecture in the tagging
process. When pulling the images to run them, you will also have to take care to manually
append the expected suffix everywhere. If you are using an orchestrator, you won't be able
to share the manifests between the different platforms in a straightforward way, as the tags
will be platform-specific.

A better way that doesn't require modifying the deployment step is to use manifest-tool
(https://github.com/ estesp/ manifest- tool). The build process at first looks similar to
the one suggested previously. Images are built separately on all the supported architectures
and pushed to the registry with a platform suffix in their tags. After all the images are
pushed, manifest-tool merges the images to provide a single multi-architecture one.
This way, each supported platform is able to use the exact same tag.

An example configuration for manifest-tool is provided here:

image: hosacpp/merchant:v2.0.3
manifests:
 - image: hosacpp/merchant:v2.0.3-amd64
 platform:
 architecture: amd64
 os: linux
 - image: hosacpp/merchant:v2.0.3-arm32
 platform:
 architecture: arm
 os: linux
 - image: hosacpp/merchant:v2.0.3-arm64
 platform:
 architecture: arm64
 os: linux

https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool
https://github.com/estesp/manifest-tool

Containers Chapter 14

[424]

Here, we have three supported platforms, each with their respective suffix
(hosacpp/merchant:v2.0.3-amd64, hosacpp/merchant:v2.0.3-arm32,
and hosacpp/merchant:v2.0.3-arm64). Manifest-tool combines the images built for
each platform and produces a hosacpp/merchant:v2.0.3 image that we can use
everywhere.

Another possibility is to use Docker's built-in feature called Buildx. With Buildx, you can
attach several builder instances, each of which targets a required architecture. What's
interesting is that you don't need to have native machines to run the builds; you can also
use the QEMU emulation or cross-compilation in a multi-stage build. Although it is much
more powerful than the previous approach, Buildx is also quite complicated. At the time of
writing, it requires Docker experimental mode and Linux kernel 4.8 or later. It requires you
to set up and manage builders and not everything behaves in an intuitive way. It's possible
it will improve and become more stable in the near future.

An example code to prepare the build environment and build a multi-platform image may
look like the following:

create two build contexts running on different machines
docker context create \
 --docker host=ssh://docker-user@host1.domifair.org \
 --description="Remote engine amd64" \
 node-amd64
docker context create \
 --docker host=ssh://docker-user@host2.domifair.org \
 --description="Remote engine arm64" \
 node-arm64

use the contexts
docker buildx create --use --name mybuild node-amd64
docker buildx create --append --name mybuild node-arm64

build an image
docker buildx build --platform linux/amd64,linux/arm64 .

As you can see, this may be a little confusing if you're used to the regular docker build
command.

Containers Chapter 14

[425]

Alternative ways to build application containers
Building container images with Docker requires the Docker daemon to be running. The
Docker daemon requires root privileges, which may pose security problems in some setups.
Even though the Docker client that does the building may be run by an unprivileged user,
it is not always feasible to install the Docker daemon in the build environment.

Buildah
Buildah is an alternative tool to build container images that can be configured to run
without root access. Buildah can work with regular Dockerfiles, which we discussed earlier.
It also presents its own command-line interface that you can use in shell scripts or other
automation you find more intuitive. One of the previous Dockerfiles rewritten as a shell
script using the buildah interface will look like this:

#!/bin/sh

ctr=$(buildah from ubuntu:bionic)

buildah run $ctr -- /bin/sh -c 'apt-get update && apt-get install -y build-
essential gcc'

buildah config --cmd '/usr/bin/gcc' "$ctr"

buildah commit "$ctr" hosacpp-gcc

buildah rm "$ctr"

One interesting feature of Buildah is that it allows you to mount the container image
filesystem into your host filesystem. This way, you can use your host's commands to
interact with the contents of the image. If you have software you don't want (or can't due to
licensing restrictions) put within the container, it's still possible to invoke it outside of the
container when using Buildah.

Ansible-bender
Ansible-bender uses Ansible playbooks and Buildah to build container images. All of the
configuration, including base images and metadata, is passed as a variable within the
playbook. Here is our previous example converted to Ansible syntax:

- name: Container image with ansible-bender
 hosts: all

Containers Chapter 14

[426]

 vars:
 ansible_bender:
 base_image: python:3-buster

 target_image:
 name: hosacpp-gcc
 cmd: /usr/bin/gcc
 tasks:
 - name: Install Apt packages
 apt:
 pkg:
 - build-essential
 - gcc

As you see, the ansible_bender variable is responsible for all the configuration specific to
containers. The tasks presented below are executed inside the container based on
base_image.

One thing to note is that Ansible requires a Python interpreter present in the base image.
This is why we had to change ubuntu:bionic used in previous examples to python:3-
buster. ubuntu:bionic is an Ubuntu image without a Python interpreter preinstalled.

Others
There are also other ways to build container images. You can use Nix to create a filesystem
image and then put it inside the image using Dockerfile's COPY instruction, for example.
Going further, you can prepare a filesystem image by any other means and then import it
as a base container image using docker import.

Choose whichever solution fits your particular needs. Keep in mind that building with a
Dockerfile using docker build is the most popular approach and hence it is the best-
documented one and the best supported. Going with Buildah is more flexible and allows
you to better fit creating container images into your build process. Finally, ansible-
bender may be a good solution if you're already heavily invested in Ansible and you want
to reuse already available modules.

Containers Chapter 14

[427]

Integrating containers with CMake
In this section, we'll demonstrate how to create a Docker image by working with CMake.

Configuring the Dockerfile with CMake
First, and foremost, we'll need a Dockerfile. Let's use yet another CMake input file for this:

configure_file(${CMAKE_CURRENT_SOURCE_DIR}/Dockerfile.in
 ${PROJECT_BINARY_DIR}/Dockerfile @ONLY)

Note that we're using PROJECT_BINARY_DIR to not overwrite any Dockerfiles created by
other projects in the source tree if our project is part of a bigger one.

Our Dockerfile.in file will look as follows:

FROM ubuntu:latest
ADD Customer-@PROJECT_VERSION@-Linux.deb .
RUN apt-get update && \
 apt-get -y --no-install-recommends install ./Customer-
@PROJECT_VERSION@-Linux.deb && \
 apt-get autoremove -y && \
 apt-get clean && \
 rm -r /var/lib/apt/lists/* Customer-@PROJECT_VERSION@-Linux.deb
ENTRYPOINT ["/usr/bin/customer"]
EXPOSE 8080

First, we specify that we'll take the latest Ubuntu image, install our DEB package on it along
with its dependencies, and then tidy up. It's important to update the package manager
cache in the same step as installing the package to avoid issues with stale caches due to
how layers in Docker work. Cleanup is also performed as part of the same RUN command
(in the same layer) so that the layer size is smaller. After installing the package, we make
our image run the customer microservice when it is started. Finally, we tell Docker to
expose the port that it will be listening on.

Now, back to our CMakeLists.txt file.

Containers Chapter 14

[428]

Integrating containers with CMake
For CMake-based projects, it is possible to include a build step responsible for building the
containers. For that, we need to tell CMake to find the Docker executable and bail out if it
doesn't. We can do this using the following:

find_program(Docker_EXECUTABLE docker)
 if(NOT Docker_EXECUTABLE)
 message(FATAL_ERROR "Docker not found")
 endif()

Let's revisit the example from one of Chapter 7, Building and Packaging. There, we built a
binary and a Conan package for the customer application. Now, we want to package this
application as a Debian archive and build a Debian container image with a pre-installed
package for the customer application.

To create our DEB package, we need a helper target. Let's use
CMake's add_custom_target functionality for this:

add_custom_target(
 customer-deb
 COMMENT "Creating Customer DEB package"
 COMMAND ${CMAKE_CPACK_COMMAND} -G DEB
 WORKING_DIRECTORY ${PROJECT_BINARY_DIR}
 VERBATIM)
 add_dependencies(customer-deb libcustomer)

Our target invokes CPack to create just the one package that's interesting for us and
omitting the rest. We want the package to be created in the same directory as the Dockerfile
for convenience. The VERBATIM keyword is recommended as, with it, CMake will escape
problematic characters. If it's not specified, the behavior of your scripts may vary across
different platforms.

The add_dependencies call will make sure that before CMake builds the customer-deb
target, libcustomer is already built. As we now have our helper target, let's use it when
creating the container image:

add_custom_target(
 docker
 COMMENT "Preparing Docker image"
 COMMAND ${Docker_EXECUTABLE} build ${PROJECT_BINARY_DIR}
 -t dominicanfair/customer:${PROJECT_VERSION} -t
dominicanfair/customer:latest
 VERBATIM)
 add_dependencies(docker customer-deb)

Containers Chapter 14

[429]

As you can see, we invoke the Docker executable we found earlier in the directory
containing our Dockerfile and DEB package, to create an image. We also tell Docker to tag
our image as both the latest and with the version of our project. Finally, we ensure the DEB
package will be built when we invoke our Docker target.

Building the image is as simple as make docker if make is the generator you chose. If you
prefer the full CMake command (for example, to create generator-agnostic scripts), the
invocation is cmake --build . --target docker.

Testing and integrating containers
Containers fit very well with CI/CD pipelines. Since they mostly require no further
dependencies other than the container runtime itself, they can be easily tested. Worker
machines don't have to be provisioned to fulfill the testing needs, so adding more nodes is
much easier. What is more, all of them are general-purpose so that they may act both as
builders, test runners, and even deployment executors without any prior configuration.

Another great benefit of using containers in CI/CD is the fact that they are isolated from
one another. This means multiple copies running on the same machine should not interfere.
That is true unless the tests require some resources from the host operating system, such as
port forwarding or volume mounting. Therefore it's best to design tests so that such
resources are not necessary (or at least they don't clash). Port randomization is a helpful
technique to avoid clashes, for example.

Runtime libraries inside containers
The choice of containers may influence the choice of a toolchain and, therefore, C++
language features available to the application. Since containers are typically Linux-based,
the system compiler available is usually GNU GCC with glibc as a standard library.
However, some Linux distributions popular with containers, such as Alpine Linux, are
based on a different standard library, musl.

If you are targeting such a distribution, make sure the code you'll be using, whether
developed in-house or from third-party providers, is compatible with musl. The main
advantage of both musl and Alpine Linux is that it results in much smaller container
images. For example, a Python image built for Debian Buster is around 330 MB, the
slimmed-down Debian version is around 40 MB, while the Alpine version is only around 16
MB. Smaller images mean less wasted bandwidth (for uploads and downloads) and quicker
updates.

Containers Chapter 14

[430]

Alpine may also introduce some unwanted traits, such as longer build times, obscure bugs,
or reduced performance. If you want to use it to reduce the size, run proper tests to make
sure the application behaves without problems.

To reduce your images' size even more, you may consider ditching the underlying
operating system altogether. What we mean by operating system here is all the userland
tools ordinarily present in a container, such as a shell, package manager, and shared
libraries. After all, if your application is the only thing that's going to be running,
everything else is unnecessary.

It is typical for Go or Rust applications to provide a static build that is self-sufficient and
can form a container image. While this might not be as straightforward in C++, it is worth
considering.

There are a few drawbacks related to decreasing the image size as well. First of all, if you
decide to go with Alpine Linux, keep in mind it is not as popular as, say, Ubuntu, Debian,
or CentOS. Although it is often a platform of choice for container developers, it's very
unusual for any other purpose.

This means that there might be new compatibility problems, mostly stemming from the fact
it's not based on the de facto standard glibc implementation. If you rely on third-party
components, the provider may not offer support for this platform.

If you decide to go down the single statically linked binary inside the container image
route, there are also some challenges to consider. First of all, you are discouraged from
statically linking glibc as it makes internal use of dlopen to handle Name Service Switch
(NSS) and iconv. If your software relies on DNS resolving or character set conversion,
you'll have to provide a copy of glibc and the relevant libraries anyway.

Another point to consider is that shell and package managers are often used for debugging
containers that misbehave. When one of your containers is acting strangely, you may start
another process inside the container and figure out what is happening inside by using
standard UNIX tools such as ps, ls, or cat. To run such an application inside the
container, it has to be present in the container image first. Some workarounds allow the
operator to inject debugging binaries inside the running container, but none of them are
well-supported at the moment.

Containers Chapter 14

[431]

Alternative container runtimes
Docker is the most popular way to build and run containers, but since the container
standard is open, there are also alternative runtimes that you may use. The main
replacement for Docker that offers a similar user experience is Podman. Together with
Buildah, described in the previous section, they are tools aimed to replace Docker
altogether.

The added benefit is that they don't require an additional daemon running on a host machine, as
Docker does. Both also have support (although it is not yet mature) for rootless operations,
which makes them a better fit for security-critical operations. Podman accepts all the
commands you would expect the Docker CLI to take, so you can simply use it as an alias
this way.

Another approach to containers that aims to provide better security is the Kata Containers
initiative. Kata Containers uses lightweight virtual machines to leverage the hardware
virtualization required for an additional level of isolation between the containers and the
host operating system.

Cri-O and containerd are also popular runtimes used by Kubernetes.

Understanding container orchestration
Some of the containers' benefits only become apparent when you are using a container
orchestrator to manage them. An orchestrator keeps track of all the nodes that will be
running your workload, and it also monitors the health and status of the containers spread
across these nodes.

More advanced features, for example, high availability, require the proper setup of the
orchestrator, which typically means dedicating at least three machines for the control plane
and another three machines for worker nodes. The autoscaling of nodes, in addition to the
autoscaling of containers, also requires the orchestrator to have a driver able to control the
underlying infrastructure (for example, by using the cloud provider's API).

Here, we will cover some of the most popular orchestrators that you can choose from to
base your system on. You will find more practical information on Kubernetes in the next
chapter, Chapter 15, Cloud-Native Design. Here, we give you an overview of the possible
choices.

https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=41&action=edit

Containers Chapter 14

[432]

The presented orchestrators operate on similar objects (services, containers, batch jobs)
although each may behave differently. The available features and operating principles vary
between them. What they have in common is that you typically write a configuration file
that declaratively describes the required resources and then you apply this configuration
using a dedicated CLI tool. To illustrate the differences between the tools, we provide an
example configuration specifying a web application introduced before (the merchant
service) and a popular web server, Nginx, to act as a proxy.

Self-hosted solutions
Whether you are running your application on-premises, in a private cloud, or in a public
cloud, you may want to have tight control over the orchestrator of your choice. The
following is a collection of self-hosted solutions in this space. Keep in mind that most of
them are also available as managed services. However, going with self-hosted helps you
prevent vendor lock-in, which may be desirable for your organization.

Kubernetes
Kubernetes is probably the best-known orchestrator of all the ones that we mention here. It
is prevalent, which means there is a lot of documentation and community support if you
decide to implement it.

Even though Kubernetes uses the same application container format as Docker, this is
basically where all the similarities end. It is impossible to use standard Docker tools to
interact with Kubernetes clusters and resources directly. There is a new set of tools and
concepts to learn when using Kubernetes.

Whereas with Docker, the container is the main object you will operate on, with
Kubernetes, the smallest piece of the runtime is called a Pod. A Pod may consist of one or
more containers that share mount points and networking resources. Pods in themselves are
rarely of interest as Kubernetes also has higher-order concepts such as Replication
Controllers, Deployment Controllers, or DaemonSets. Their role is to keep track of the pods
and ensure the desired number of replicas is running on the nodes.

The networking model in Kubernetes is also very different from Docker. With Docker, you
can forward ports from a container to make it accessible from different machines. With
Kubernetes, if you want to access a pod, you typically create a Service resource, which may
act as a load balancer to handle the traffic to the pods that form the service's backend.
Services may be used for pod-to-pod communication, but they may also be exposed to the
internet. Internally, Kubernetes resources perform service discovery using DNS names.

Containers Chapter 14

[433]

Kubernetes is declarative and eventually consistent. This means that instead of directly
creating and allocating resources, you only have to provide the description of the desired
end state and Kubernetes will do the work required to bring the cluster to the desired state.
Resources are often described using YAML.

Since Kubernetes is highly extensible, there are a lot of associated projects developed under
the Cloud Native Computing Foundation (CNCF), which turn Kubernetes into a provider-
agnostic cloud development platform. We will present Kubernetes in more detail in the
next chapter, Chapter 15, Cloud Native Design.

Here's how the resource definition looks for Kubernetes using YAML (merchant.yaml):

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: dominican-front
 name: dominican-front
spec:
 selector:
 matchLabels:
 app: dominican-front
 template:
 metadata:
 labels:
 app: dominican-front
 spec:
 containers:
 - name: webserver
 imagePullPolicy: Always
 image: nginx
 ports:
 - name: http
 containerPort: 80
 protocol: TCP
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
 labels:
 app: dominican-front
 name: dominican-front
spec:
 ports:
 - port: 80
 protocol: TCP

Containers Chapter 14

[434]

 targetPort: 80
 selector:
 app: dominican-front
 type: ClusterIP

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: dominican-merchant
 name: merchant
spec:
 selector:
 matchLabels:
 app: dominican-merchant
 replicas: 3
 template:
 metadata:
 labels:
 app: dominican-merchant
 spec:
 containers:
 - name: merchant
 imagePullPolicy: Always
 image: hosacpp/merchant:v2.0.3
 ports:
 - name: http
 containerPort: 8000
 protocol: TCP
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
 labels:
 app: dominican-merchant
 name: merchant
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 8000
 selector:
 app: dominican-merchant
 type: ClusterIP

To apply this configuration and orchestrate the containers, use kubectl apply -f
merchant.yaml.

Containers Chapter 14

[435]

Docker Swarm
Docker Engine, also required to build and run Docker containers, comes pre-installed with
its own orchestrator. This orchestrator is Docker Swarm, and its main feature is high
compatibility with existing Docker tools by using the Docker API.

Docker Swarm uses the concept of Services to manage health checks and autoscaling. It
supports rolling upgrades of the services natively. Services are able to publish their ports,
which will then be served by Swarm's load balancer. It supports storing configs as objects
for runtime customization and has basic secret management built in.

Docker Swarm is much simpler and less extensible than Kubernetes. This could be an
advantage if you do not want to learn about all the details of Kubernetes. However, the
main disadvantage is a lack of popularity, which means it is harder to find relevant
material about Docker Swarm.

One of the benefits of using Docker Swarm is that you don't have to learn new commands.
If you're already used to Docker and Docker Compose, Swarm works with the same
resources. It allows specific options that extend Docker to handle deployments.

Two services orchestrated with Swarm would look like this (docker-compose.yml):

version: "3.8"
services:
 web:
 image: nginx
 ports:
 - "80:80"
 depends_on:
 - merchant
 merchant:
 image: hosacpp/merchant:v2.0.3
 deploy:
 replicas: 3
 ports:
 - "8000"

To apply the configuration, you run docker stack deploy --compose-file docker-
compose.yml dominican.

Containers Chapter 14

[436]

Nomad
Nomad is different from the previous two solutions, as it is not focused solely on
containers. It is a general-purpose orchestrator with support for Docker, Podman, Qemu
Virtual Machines, isolated fork/exec, and several other task drivers. Nomad is a solution
worth learning about if you want to gain some of the advantages of container orchestration
without migrating your application to containers.

It is relatively easy to set up and integrates well with other HashiCorp products such as
Consul for service discovery and Vault for secret management. Like Docker or Kubernetes,
Nomad clients can run locally and connect to the server responsible for managing your
cluster.

There are three job types available in Nomad:

Service: A long-lived task that should not exit without manual intervention (for
example, a web server or a database).
Batch: A shorter-lived task that can complete within as little as a few minutes. If
the batch job returns an exit code indicating an error, it is either restarted or
rescheduled according to configuration.
System: A task that it is necessary to run on every node in the cluster (for
example, logging agent).

Compared to other orchestrators, Nomad is relatively easy to install and maintain. It is also
extensible when it comes to task drivers or device plugins (used to access dedicated
hardware such as GPUs or FPGAs). It lacks in community support and third-party
integrations when compared to Kubernetes. Nomad does not require you to redesign the
application's architecture to access the provided benefits, which is often the case with
Kubernetes.

To configure the two services with Nomad, we need two configuration files. The first one is
nginx.nomad:

job "web" {
 datacenters = ["dc1"]
 type = "service"
 group "nginx" {
 task "nginx" {
 driver = "docker"
 config {
 image = "nginx"
 port_map {
 http = 80
 }

Containers Chapter 14

[437]

 }
 resources {
 network {
 port "http" {
 static = 80
 }
 }
 }
 service {
 name = "nginx"
 tags = ["dominican-front", "web", "nginx"]
 port = "http"
 check {
 type = "tcp"
 interval = "10s"
 timeout = "2s"
 }
 }
 }
 }
}

The second describes the merchant application, so it's called merchant.nomad:

job "merchant" {
 datacenters = ["dc1"]
 type = "service"
 group "merchant" {
 count = 3
 task "merchant" {
 driver = "docker"
 config {
 image = "hosacpp/merchant:v2.0.3"
 port_map {
 http = 8000
 }
 }
 resources {
 network {
 port "http" {
 static = 8000
 }
 }
 }
 service {
 name = "merchant"
 tags = ["dominican-front", "merchant"]
 port = "http"

Containers Chapter 14

[438]

 check {
 type = "tcp"
 interval = "10s"
 timeout = "2s"
 }
 }
 }
 }
}

To apply the configuration, you run nomad job run merchant.nomad && nomad job
run nginx.nomad.

OpenShift
OpenShift is Red Hat's commercial container platform built on Kubernetes. It includes a lot
of additional components that are useful in the everyday operations of Kubernetes clusters.
You get a container registry, a build tool similar to Jenkins, Prometheus for monitoring,
Istio for service mesh, and Jaeger for tracing. It is not fully compatible with Kubernetes so it
shouldn't be thought of as a drop-in replacement.

It is built on top of existing Red Hat technology such as CoreOS and Red Hat Enterprise
Linux. You can use it on-premises, within Red Hat Cloud, on one of the supported public
cloud providers (including AWS, GCP, IBM, and Microsoft Azure), or as a hybrid cloud.

There is also an open source community-supported project called OKD, which forms the
basis of Red Hat's OpenShift. If you do not require commercial support and other benefits
of OpenShift, you may still use OKD for your Kubernetes workflow.

Managed services
As previously mentioned, some of the aforementioned orchestrators are also available as
managed services. Kubernetes, for instance, is available as a managed solution in multiple
public cloud providers. This section will show you some of the different approaches to
container orchestration, which are not based on any of the solutions mentioned above.

Containers Chapter 14

[439]

AWS ECS
Before Kubernetes released its 1.0 version, Amazon Web Services proposed its own
container orchestration technology called Elastic Container Service (ECS). ECS provides an
orchestrator that monitors, scales, and restarts your services when needed.

To run containers in ECS, you need to provide the EC2 instances on which the workload
will run. You are not billed for the orchestrator's use, but you are billed for all the AWS
services that you typically use (the underlying EC2 instances, for example, or an RDS
database).

One of the significant benefits of ECS is its excellent integration with the rest of the AWS
ecosystem. If you are already familiar with AWS services and invested in the platform, you
will have less trouble understanding and managing ECS.

If you do not require many of the Kubernetes advanced features and its extensions, ECS
may be a better choice as it's more straightforward and more comfortable to learn.

AWS Fargate
Another managed orchestrator offered by AWS is Fargate. Unlike ECS, it does not require
you to provision and pay for the underlying EC2 instances. The only components you are
focused on are the containers, the network interfaces attached to them, and IAM
permissions.

Fargate requires the least amount of maintenance compared to other solutions and is the
easiest to learn. Autoscaling and load-balancing are available out of the box thanks to the
existing AWS products in this space.

The main downside here is the premium that you pay for hosting your services when
compared to ECS. A straight comparison is not possible as ECS requires paying for the EC2
instances, while Fargate requires paying for the memory and CPU usage independently.
This lack of direct control over your cluster may easily lead to high costs once your services
start to autoscale.

Azure Service Fabric
The problem with all of the preceding solutions is that they mostly target Docker
containers, which are first and foremost Linux-centric. Azure Service Fabric, on the other
hand, is a Windows-first product backed by Microsoft. It enables running legacy Windows
apps without modifications, which may help you migrate your application if it relies on
such services.

Containers Chapter 14

[440]

As with Kubernetes, Azure Service Fabric is not so much a container orchestrator in itself,
but rather a platform on top of which you can build your applications. One of the building
blocks happens to be containers, so it works fine as an orchestrator.

With the recent introduction of Azure Kubernetes Service, the managed Kubernetes
platform in the Azure cloud, there is less need for using Service Fabric.

Summary
When you are an architect of modern software, you have to take into account modern
technologies. Taking them into account doesn't mean following the trends blindly; it means
being able to objectively assess whether a particular proposition makes sense in your case
or not.

Both microservices, presented in the previous chapters, and containers, presented in this
chapter, are worth considering and understanding. Are they worth implementing as well?
It depends heavily on what type of product you are designing. If you've read this far, you
are ready to make the decision for yourself.

The next chapter is dedicated to cloud-native design. A very interesting but also a complex
topic that ties in service-oriented architecture, CI/CD, microservices, containers, and cloud
services. As it turns out, the great performance of C++ is a welcome feature for some of the
cloud-native building blocks.

Questions
How do application containers differ from operating system containers?1.
What are some early examples of sandboxing environments in UNIX systems?2.
Why are containers a good fit for microservices?3.
What are the main differences between containers and virtual machines?4.
When are application containers a bad choice?5.
What are some tools to build multi-platform container images?6.
Besides Docker, what are some other container runtimes?7.
What are some popular orchestrators?8.

Containers Chapter 14

[441]

Further reading
Learning Docker - Second Edition: https:/ /www. packtpub. com/ product/ learning-
docker-second- edition/ 9781786462923

Learn OpenShift: https:/ /www. packtpub. com/product/ learn- openshift/
9781788992329

Docker for Developers: https:/ /www.packtpub. com/ product/ docker- for-
developers/ 9781789536058

https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learning-docker-second-edition/9781786462923
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/learn-openshift/9781788992329
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058

15
Cloud-Native Design

As the name suggests, cloud-native design describes the application's architecture built,
first and foremost, to operate in the cloud. It is not defined by a single technology or
language, but rather takes advantage of all that the modern cloud platforms offer.

This may mean a combination of using Platform-as-a-Service (PaaS) whenever necessary,
multi-cloud deployments, edge computing, Function-as-a-Service (FaaS), static file
hosting, microservices, and managed services. It transcends the boundaries of traditional
operating systems. Instead of targeting the POSIX API and UNIX-like operating systems,
cloud-native developers build on higher-level concepts using libraries and frameworks
such as boto3, Pulumi, or Kubernetes.

The following topics will be covered in this chapter:

Understanding cloud-native
Using Kubernetes to orchestrate cloud-native workloads
Connecting services with a service mesh
Observability in distributed systems
Going GitOps

By the end of the chapter, you'll have a good understanding of how modern trends in
software architecture can be used in your applications.

Technical requirements
Some of the examples in this chapter require Kubernetes 1.18.

The code present in the chapter has been placed on GitHub at https:/ /github. com/
PacktPublishing/Software- Architecture- with- Cpp/ tree/ master/ Chapter15.

https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15
https://github.com/PacktPublishing/Software-Architecture-with-Cpp/tree/master/Chapter15

Cloud-Native Design Chapter 15

[443]

Understanding cloud-native
Whereas it is possible to migrate an existing application to run in the cloud, such migration
won't make the application cloud-native. It would be running in the cloud, but the
architectural choices would still be based on the on-premises model.

In short, cloud-native applications are distributed by nature, loosely coupled, and are
scalable. They're not tied to any particular physical infrastructure and don't require the
developers to even think about specific infrastructure. Such applications are usually web-
centric.

In this chapter, we'll go over some examples of cloud-native building blocks and describe
some cloud-native patterns.

Cloud-Native Computing Foundation
One proponent of cloud-native design is the Cloud Native Computing
Foundation (CNCF), which hosts the Kubernetes project. CNCF is home to various
technologies, making it easier to build cloud-native applications independent of the cloud
vendor. Examples of such technologies include the following:

Fluentd, a unified logging layer
Jaeger, for distributed tracing
Prometheus, for monitoring
CoreDNS, for service discovery

Cloud-native applications are typically built with application containers, often running on
top of the Kubernetes platform. However, this is not a requirement, and it's entirely
possible to use many of the CNCF frameworks outside Kubernetes and containers.

Cloud as an operating system
The main trait of cloud-native design is to treat the various cloud resources as the building
blocks of your application. Individual virtual machines (VMs) are seldom used in cloud-
native design. Instead of targeting a given operating system running on some instances,
with a cloud-native approach, you target either the cloud API directly (for example, with
FaaS) or some intermediary solution such as Kubernetes. In this sense, the cloud becomes
your operating system, as the POSIX API no longer limits you.

Cloud-Native Design Chapter 15

[444]

As containers changed the approach to building and distributing software, it is now
possible to free yourself from thinking about the underlying hardware infrastructure. Your
software is not working in isolation, so it's still necessary to connect different services,
monitor them, control their life cycle, store data, or pass the secrets. This is something that
Kubernetes provides and it's one of the reasons why it became so popular.

As you can probably imagine, cloud-native applications are web- and mobile-first. Desktop
applications can also benefit from having some cloud-native components, but it's a less
common use case.

It's still possible to use hardware and other low-level access in cloud-native applications. If
your workload requires the use of the GPU, this should not prevent you from going cloud-
native. What's more, cloud-native applications can be built on-premises if you want access
to custom hardware unavailable elsewhere. The term is not limited to the public cloud, but
rather to the way of thinking about different resources.

Load balancing and service discovery
Load balancing is an essential part of distributed applications. It not only spreads the
incoming requests across a cluster of services, which is essential for scaling, but can also
help the responsiveness and availability of the applications. A smart load balancer can
gather metrics to react to patterns in incoming traffic, monitor the state of the servers in its
cluster, and forward requests to the less loaded and faster responding nodes – avoiding the
currently unhealthy ones.

Load balancing brings more throughput and less downtime. By forwarding requests to
many servers, a single point of failure is eliminated, especially if multiple load balancers are
used, for example, in an active-passive scheme.

Load balancers can be used anywhere in your architecture: you can balance the requests
coming from the web, requests done by web servers to other services, requests to cache or
database servers, and whatever else suits your requirements.

There are a few things to remember when introducing load balancing.
One of them is session persistence—make sure all requests from the same
customer go to the same server, so the carefully chosen pink stilettos
won't disappear from their basket in your e-commerce site. Sessions can
get tricky with load balancing: take extra care to not mix sessions, so
customers won't suddenly start being logged into each other's profiles –
countless companies stumbled upon this error before, especially when
adding caching into the mix. It's a great idea to combine the two; just
make sure it is done the right way.

Cloud-Native Design Chapter 15

[445]

Reverse proxies
Even if you want to deploy just one instance of your server, it might be a good idea to add
yet another service in front of it instead of the load balancer—a reverse proxy. While a
proxy usually acts on behalf of the client sending some requests, a reverse proxy acts on
behalf of the servers handling those requests, hence the name.

Why use it, you ask? There are several reasons and uses for such a proxy:

Security: The address of your server is now hidden, and the server can be
protected by the proxy's DDoS prevention capabilities.
Flexibility and scalability: You can modify the infrastructure hidden behind the
proxy in any way you want and when you want.
Caching: Why bother the server if you already know what answer it will give?
Compression: Compressing data will reduce the bandwidth needed, which may
be especially useful for mobile users with poor connectivity. It can also lower
your networking costs (but will likely cost you compute power).
SSL termination: Reduce the backend server's load by taking its burden to
encrypt and decrypt network traffic.

An example of a reverse proxy is NGINX. It also provides load balancing capabilities, A/B
testing, and much more. One of its other capabilities is service discovery. Let's see how it
can be helpful.

Service Discovery
As the name suggests, Service Discovery (SD) allows for automatically detecting instances
of specific services in a computer network. Instead of hardcoding a domain name or IP
where the service should be hosted, the caller must only be pointed to a service registry.
Using this approach, your architecture gets a lot more flexible, as now all the services you
use can be easily found. If you design a microservice-based architecture, introducing SD
really goes a long way.

There are several approaches to SD. In client-side discovery, the caller contacts the SD
instance directly. Each service instance has a registry client, which registers and de-registers
the instance, handles heartbeats, and others. While quite straightforward, in this approach,
each client has to implement the service discovery logic. Netflix Eureka is an example of a
service registry commonly used in this approach.

Cloud-Native Design Chapter 15

[446]

An alternative is to use server-side discovery. Here, a service registry is also present, along
with the registry clients in each service instance. The callers, however, don't contact it
directly. Instead, they connect to a load balancer, for example, the AWS Elastic Load
Balancer, which, in turn, either calls a service registry or uses its built-in service registry
before dispatching the client calls to specific instances. Aside from AWS ELB, NGINX and
Consul can be used to provide server-side SD capabilities.

We now know how to find and use our services efficiently, so let's learn how best to deploy
them.

Using Kubernetes to orchestrate cloud-
native workloads
Kubernetes is an extensible open source platform for automating and managing container
applications. It is sometimes referred to as k8s since it starts with 'k,' ends with 's,' and there
are eight letters in the middle.

Its design is based on Borg, a system used internally by Google. Some of the features
present in Kubernetes are as follows:

Autoscaling of applications
Configurable networking
Batch job execution
Unified upgrading of applications
The ability to run highly available applications on top of it
The declarative configuration

There are different ways to run Kubernetes in your organization. Choosing one over the
other requires you to analyze additional costs and benefits related to them.

Kubernetes structure
While it is possible to run Kubernetes on a single machine (for example, using minikube,
k3s, or k3d), it is not recommended to do so in production. Single-machine clusters have
limited functionality and no failover mechanisms. A typical size for a Kubernetes cluster is
six machines or more. Three of the machines then form the control plane. The other three
are worker nodes.

Cloud-Native Design Chapter 15

[447]

The minimum requirement of three machines comes from the fact that this is the minimal
number to provide high availability. It is possible to have the control plane nodes also
available as worker nodes, although this is not encouraged.

Control plane
In Kubernetes, you rarely interact with individual worker nodes. Instead, all the API
requests go to the control plane. The control plane then decides on the actions to take based
on the requests, and then it communicates with the worker nodes.

The interaction with the control plane can take several forms:

Using the kubectl CLI
Using a web dashboard
Using the Kubernetes API from inside an application other than kubectl

Control plane nodes usually run the API server, scheduler, a configuration store (etcd), and
possibly some additional processes to handle the specific needs. For example, Kubernetes
clusters deployed in a public cloud such as Google Cloud Platform have cloud controllers
running on control plane nodes. The cloud controller interacts with the cloud provider's
API to replace the failed machines, provision load balancers, or assign external IP
addresses.

Worker nodes
The nodes that form the control plane and the worker pool are the actual machines the
workload will run on. They may be physical servers that you host on-premises, VMs hosted
privately, or VMs from your cloud provider.

Every node in a cluster runs at least the three programs as listed follows:

A container runtime (for example, Docker Engine or cri-o) that allows the
machine to handle the application containers
A kubelet, which is responsible for receiving requests from the control plane and
manages the individual containers based on those requests
A kube-proxy, which is responsible for networking and load balancing on the
node level

Cloud-Native Design Chapter 15

[448]

Possible approaches to deploying Kubernetes
As you may have realized from reading the previous section, there are different possible
ways to deploy Kubernetes.

One of them is to deploy it to bare-metal servers hosted on-premises. One of the benefits is
that this may be cheaper for large-scale applications than what the cloud providers offer.
This approach has one major drawback—you will require an operator to provide the
additional nodes whenever necessary.

To mitigate this issue, you can run a virtualization appliance on top of your bare-metal
servers. This makes it possible to use the Kubernetes built-in cloud controller
to provision the necessary resources automatically. You still have the same control over the
costs, but there's less manual work. Virtualization adds some overhead, but in most cases,
this should be a fair trade-off.

If you are not interested in hosting the servers yourself, you can deploy Kubernetes to run
on top of VMs from a cloud provider. By choosing this route, you can use some of the
existing templates for optimal setup. There are Terraform and Ansible modules available to
build a cluster on popular cloud platforms.

Finally, there are the managed services available from the major cloud players. You only
have to pay for the worker nodes in some of them, while the control plane is free of charge.

Why would you choose self-hosted Kubernetes over the managed services when operating
in a public cloud? One of the reasons may be a specific version of Kubernetes that you
require. Cloud providers are typically a bit slow when it comes to introducing updates.

Understanding the Kubernetes concepts
Kubernetes introduces some concepts that may sound unfamiliar or be confusing if you
hear them for the first time. When you learn their purpose, it should be easier to grasp what
makes Kubernetes special. Here are some of the most common Kubernetes objects:

A container, specifically, an application container, is a method of distributing and
running a single application. It contains the code and configuration necessary to
run the unmodified application anywhere.
A Pod is a basic Kubernetes building block. It is atomic and consists of one or
more containers. All the containers inside the pod share the same network
interfaces, volumes (such as persistent storage or secrets), and resources (CPU
and memory).

Cloud-Native Design Chapter 15

[449]

A deployment is a higher-level object that describes the workload and its life cycle
features. It typically manages a set of pod replicas, allows for rolling upgrades,
and manages the rollbacks in case of failure. This is what makes it easy to scale
and manage the life cycle of Kubernetes applications.
A DaemonSet is a controller similar to a deployment in that it manages where the
pods are distributed. While deployments are concerned with keeping a given
number of replicas, DaemonSets spreads the pods across all worker nodes. The
primary use case is to run a system-level service, such as a monitoring or logging
agent on each node.
Jobs are designed for one-off tasks. Pods in deployments restart automatically
when the containers inside them terminate. They are suitable for all the always-
on services that listen on network ports for requests. However, deployments are
unsuited for batch jobs, such as thumbnail generation, which you want to run
only when required. Jobs create one or more pods and watch them until they
complete a given task. When a specific number of successful pods terminate, the
job is considered complete.
CronJobs, as the name suggests, are the jobs that are run periodically within the
cluster.
Services represent a particular function performed within a cluster. They have a
network endpoint associated with them (which is usually load balanced).
Services may be performed by one or more pods. The life cycle of services is
independent of the life cycles of the many pods. Since pods are transient, they
may be created and destroyed at any time. Services abstract the individual pods
to allow for high availability. Services have their own IP addresses and DNS
names for ease of use.

Declarative approach
We've covered the differences between declarative and imperative approaches earlier
in Chapter 9, Continuous Integration/Continuous Deployment. Kubernetes takes the
declarative approach. Instead of giving instructions regarding the steps that need to be
taken, you provide the resources that describe your cluster's desired state. It is up to the
control plane to allocate internal resources so that they fulfill your needs.

It is possible to add the resources using the command line directly. This can be quick for
testing, but you want to have a trail of the resources you created most of the time. Thus,
most people work with manifest files, which provide a coded description of the resources
required. Manifests are typically YAML files, but it is also possible to use JSON.

https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=33&action=edit
https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=33&action=edit

Cloud-Native Design Chapter 15

[450]

Here's an example YAML manifest with a single Pod:

apiVersion: v1
kind: Pod
metadata:
 name: simple-server
 labels:
 app: dominican-front
spec:
 containers:
 - name: webserver
 image: nginx
 ports:
 - name: http
 containerPort: 80
 protocol: TCP

The first line is mandatory, and it tells which API version will be used in the manifest.
Some resources are only available in extensions, so this is the information for the parser on
how to behave.

The second line describes what resource we are creating. Next, there is metadata and the
specification of the resource.

A name is mandatory in metadata as this is the way to distinguish one resource from
another. If we wanted to create another pod with the same name, we would get an error
stating that such a resource already exists. The label is optional and useful when writing
selectors. For example, if we wanted to create a service that allows connection to the pod,
we would use a selector matching label app with a value equal to dominican-front.

The specification is also the mandatory part as it describes the actual content of the
resource. In our example, we list all the containers that are running inside the pod. To be
precise, one container named webserver using an image, nginx, from Docker Hub. Since
we want to connect to the Nginx web server from the outside, we also expose the container
port 80 on which the server is listening. The name in the port description is optional.

Kubernetes networking
Kubernetes allows for pluggable network architectures. Several drivers exist that may be
used depending on requirements. Whichever driver you select, some concepts are
universal. The following are the typical networking scenarios.

Cloud-Native Design Chapter 15

[451]

Container-to-container communication
A single pod may host several different containers. Since the network interface is tied to the
pod and not to the containers, each container operates in the same networking namespace.
This means various containers may address one another using localhost networking.

Pod-to-pod communication
Each pod has an internal cluster-local IP address assigned. The address does not persist
once the pod has been deleted. One pod can connect to another's exposed ports when it
knows the other's address as they share the same flat network. You can think of pods as
VMs hosting containers with regard to this communication model. This is rarely used as the
preferred method is pod-to-service communication.

Pod-to-service communication
Pod-to-service communication is the most popular use case for communication within the
cluster. Each service has an individual IP address and a DNS name assigned to it. When a
pod connects to a service, the connection is proxied to one of the pods in the group selected
by the service. Proxying is a task of the kube-proxy tool described earlier.

External-to-internal communication
External traffic typically comes to the cluster via the means of load balancers. These are
either tied to or handled by specific services or ingress controllers. When the externally
exposed services handle the traffic, it behaves like pod-to-service communication. With the
ingress controller, you have additional features available that allow for routing,
observability, or advanced load balancing.

When is using Kubernetes a good idea?
Introducing Kubernetes within an organization requires some investment. There are many
benefits provided by Kubernetes, such as autoscalability, automation, or deployment
scenarios. However, these benefits may not justify the necessary investment.

Cloud-Native Design Chapter 15

[452]

This investment concerns several areas:

Infrastructure costs: The costs associated with running the control plane and the
worker nodes may be relatively high. Additionally, the costs may rise if you
want to use various Kubernetes expansions, such as GitOps or a service
mesh (described later). They also require additional resources to run and provide
more overhead on top of your application's regular services. Apart from the
nodes themselves, you should also factor in other costs. Some of the Kubernetes
features work best when deployed to a supported cloud provider. This means
that in order to benefit from those features, you'd have to go down one of the
following routes:

a. Move your workload to the specifically supported cloud.

b. Implement your own drivers for a cloud provider of your choice.

c. Migrate your on-premises infrastructure to a virtualized API-enabled
environment such as VMware vSphere or OpenStack.

Operations costs: The Kubernetes cluster and associated services require
maintenance. Even though you get less maintenance for your applications, this
benefit is slightly offset by the cost of keeping the cluster running.
Education costs: Your entire product team has to learn new concepts. Even if you
have a dedicated platform team that will provide developers with easy-to-use
tools, developers would still require a basic understanding of how the work they
do influences the entire system and which API they should use.

Before you decide on introducing Kubernetes, consider first whether you can afford the
initial investment it requires.

Observability in distributed systems
Distributed systems such as cloud-native architecture pose some unique challenges. The
sheer number of different services working at any given time makes it very inconvenient to
investigate how well the components perform.

In monolithic systems, logging and performance monitoring are usually enough. With a
distributed system, even logging requires a design choice. Different components produce
different log formats. Those logs have to be stored somewhere. Keeping them together with
a service that delivers them will make it challenging to get the big picture in an outage case.
Besides, since microservices may be short-lived, you will want to decouple the life cycle of
logs from the life cycle of a service that provides them or a machine that hosts the service.

Cloud-Native Design Chapter 15

[453]

In Chapter 13, Designing Microservices, we described how a unified logging layer helps
manage the logs. But logs only show what happens at a given point in the system. To see
the picture from a single transaction point of view, you require a different approach.

This is where tracing comes in.

How tracing differs from logging
Tracing is a specialized form of logging. It provides lower-level information than logs. This
may include all the function calls, their parameters, their size, and execution time. They also
contain the unique ID of the transaction being processed. These details make it possible to
reassemble them and see the life cycle of a given transaction as it passes through your
system.

Performance information present in tracing helps you with uncovering bottlenecks and
sub-optimal components in the system.

While logs are often read by operators and developers, they tend to be human-readable.
There are no such requirements for tracing. To view the traces, you will use a dedicated
visualization program. This means that even though traces are more detailed, they may also
take up less space than logs.

The following diagram is an overview of a single trace:

Figure 15.1 – Single trace

Two services communicate over a network. In Service A, we have one parent span that
contains a child span and a single log. Child spans usually correspond to deeper function
calls. A log represents the smallest piece of information. Each of them is timed and may
contain additional information.

Cloud-Native Design Chapter 15

[454]

The network call to Service B preserves the span context. Even though Service B is executed
in a different process on another machine, all of the information can be later reassembled as
the transaction ID is preserved.

A piece of bonus information that we get from reassembling traces is the dependency graph
between the services in our distributed system. As traces contain the entire call chain, it is
possible to visualize this information and inspect unexpected dependencies.

Choosing a tracing solution
There are several possible solutions to choose from when implementing tracing. As you
may imagine, there are both self-hosted and managed tools that you can use to instrument
your applications. We will briefly describe the managed ones and focus on the self-hosted
ones.

Jaeger and OpenTracing
One of the standards in distributed tracing is OpenTracing proposed by the authors of
Jaeger. Jaeger is a tracer built for cloud-native applications. It addresses the problems of
monitoring distributed transactions and propagating the tracing context. It's useful for the
following purposes:

Performance or latency optimization
Performing a root cause analysis
Analyzing the inter-service dependencies

OpenTracing is an open standard presenting an API that is independent of the tracer used.
This means that when your application is instrumented using OpenTracing, you avoid
lock-in to one particular vendor. If, at some point, you decide to switch from Jaeger to
Zipkin, DataDog, or any other compatible tracer, you won't have to modify the entire
instrumentation code.

There are many client libraries compatible with OpenTracing. You can also find many
resources, including tutorials and articles that explain how to implement the API for your
needs. OpenTracing officially supports the following languages:

Go
JavaScript
Java
Python

Cloud-Native Design Chapter 15

[455]

Ruby
PHP
Objective-C
C++
C#

There are also unofficial libraries available, and specific applications can export
OpenTracing data as well. This includes Nginx and Envoy, both popular web proxies.

Jaeger also accepts samples in Zipkin format. We will cover Zipkin in the next section.
What it means is that you don't have to rewrite the instrumentation from one format to
another if you (or any of your dependencies) already use Zipkin. For all new applications,
OpenTracing is the recommended approach.

Jaeger scales well. You can run it as a single binary or a single application container if you
want to evaluate it. You may configure Jaeger for production use to use its own backend or
a supported external one, such as Elasticsearch, Cassandra, or Kafka.

Jaeger is a CNCF graduated project. This means it has reached a similar level of maturity to
Kubernetes, Prometheus, or Fluentd. Because of this, we expect it to gain even more
support in other CNCF applications.

Zipkin
The main competitor for Jaeger is Zipkin. It's an older project, which also means it is more
mature. Usually, more senior projects are also better supported, but in this case, the
endorsement of CNCF plays in Jaeger's favor.

Zipkin uses its proprietary protocol to handle tracing. It has OpenTracing support
available, but it may not be at the same maturity and support level as the native Jaeger
protocol. As we've mentioned earlier, it is also possible to configure Jaeger to collect traces
in Zipkin format. This means the two are, at least to some point, interchangeable.

The project is hosted under the Apache foundation, but is not considered a CNCF project.
When developing cloud-native applications, Jaeger is a better alternative. If you are looking
instead for an all-purpose tracing solution, it is worth considering Zipkin as well.

One drawback is that Zipkin doesn't have a supported C++ implementation. There are
unofficial libraries, but they don't seem to be well-supported. Using a C++ OpenTracing
library is the preferred way to instrument the C++ code.

Cloud-Native Design Chapter 15

[456]

Instrumenting an application with OpenTracing
This section will illustrate how to add instrumentation with Jaeger and OpenTracing to an
existing application. We'll use the opentracing-cpp and jaeger-client-cpp libraries.

First, we want to set up the tracer:

#include <jaegertracing/Tracer.h>

void setUpTracer()
{
 // We want to read the sampling server configuration from the
 // environment variables
 auto config = jaegertracing::Config;
 config.fromEnv();
 // Jaeger provides us with ConsoleLogger and NullLogger
 auto tracer = jaegertracing::Tracer::make(
 "customer", config, jaegertracing::logging::consoleLogger());
 opentracing::Tracer::InitGlobal(
 std::static_pointer_cast<opentracing::Tracer>(tracer));
}

The two preferred methods for configuring a sampling server are either by using the
environment variable, as we did, or by using a YAML configuration file. When using
environment variables, we will have to set them up before running the application. The
most important ones are as follows:

JAEGER_AGENT_HOST: The hostname where the Jaeger agent is located
JAEGER_AGENT_POR: The port on which the Jaeger agent is listening
JAEGER_SERVICE_NAME: The name of our application

Next, we configure the tracer and supply the logging implementation. It is possible to
implement a custom logging solution if the available ConsoleLogger is not enough. For
container-based applications with a unified logging layer, the ConsoleLogger should be
enough.

When we have the tracer set up, we want to add spans to the functions that we want to be
instrumented. The following code does just that:

auto responder::respond(const http_request &request, status_code status,
 const json::value &response) -> void {
 auto span = opentracing::Tracer::Global()->StartSpan("respond");
 // ...
}

Cloud-Native Design Chapter 15

[457]

This span may be used later to create child spans within a given function. It may also be
propagated to deeper function calls as a parameter. This is how it appears:

auto responder::prepare_response(const std::string &name, const
std::unique_ptr<opentracing::Span>& parentSpan)
 -> std::pair<status_code, json::value> {
 auto span = opentracing::Tracer::Global()->StartSpan(
 "prepare_response", { opentracing::ChildOf(&parentSpan->context())
});
 return {status_codes::OK,
 json::value::string(string_t("Hello, ") + name + "!")};
}

auto responder::respond(const http_request &request, status_code status)
 -> void {
 auto span = opentracing::Tracer::Global()->StartSpan("respond");
 // ...
 auto response = this->prepare_response("Dominic", span);
 // ...
}

Context propagation happens when we call the opentracing::ChildOf function. We
may also pass the context over network calls using the inject() and extract() calls.

Connecting services with a service mesh
Microservices and cloud-native design come with their own set of problems.
Communication between different services, observability, debugging, rate limiting,
authentication, access control, and A/B testing may be challenging even with a limited
number of services. When the number of services rises, so does the complexity of the
aforementioned requirements.

That's where a service mesh enters the fray. In short, a service mesh trades off some
resources (necessary to run the control plane and sidecars) for an automated and centrally
controlled solution to the aforementioned challenges.

Cloud-Native Design Chapter 15

[458]

Introducing a service mesh
All the requirements we mentioned in the introduction to this chapter used to be coded
within the application itself. As it turns out, many may be abstracted as they are shared
across many different applications. When your application consists of many services,
adding new features to all of them starts to be costly. With a service mesh, you may control
these features from a single point instead.

Since a containerized workflow already abstracts some of the runtime and some
networking, a service mesh takes the abstraction to another level. This way, the application
within a container is only aware of what happens at the application level of the OSI
networking model. The service mesh handles lower levels.

Setting up a service mesh allows you to control all network traffic in a new way and gives
you better insights into this traffic. The dependencies become visible, as does the flow,
shape, and amount of traffic.

Not only is the flow of traffic handled by the service mesh. Other popular patterns, such as
circuit breaking, rate limiting, or retries, don't have to be implemented by each application
and configured separately. This is also a feature that can be outsourced to the service mesh.
Similarly, A/B testing or canary deployments are the use cases that a service mesh is able to
fulfill.

One of the benefits of the service mesh, as previously mentioned, is greater control. Its
architecture typically consists of a manageable edge proxy for external traffic and internal
proxies usually deployed as sidecars along each microservice. This way, the networking
policies can be written as code and stored alongside all the other configuration in a single
place. Rather than having to switch on mutual TLS encryption for two of the services you
want to connect, you only have to enable the feature once in your service mesh
configuration.

Next, we'll cover some of the service mesh solutions.

Cloud-Native Design Chapter 15

[459]

Service mesh solutions
All of the solutions described here are self-hosted.

Istio
Istio is a powerful collection of service mesh tools. It allows you to connect microservices
through the deployment of Envoy proxies as sidecar containers. Because Envoy is
programmable, the Istio control plane's configuration changes are communicated to all the
proxies, which then reconfigure themselves accordingly.

The Envoy proxies are, among other things, responsible for handing encryption and
authentication. With Istio, enabling mutual TLS between your services requires a single
switch in the configuration for the majority of the time. If you don't want mTLS between all
your services, you may also select those that demand this additional protection while
allowing unencrypted traffic between everything else.

Istio also helps with observability. First of all, the Envoy proxies export proxy-level metrics
compatible with Prometheus. There are also service-level metrics and control plane metrics
exported by Istio. Next, there are distributed traces that describe the traffic flow within the
mesh. Istio can serve the traces to different backends: Zipkin, Jaeger, Lightstep, and
Datadog. Finally, there are Envoy access logs, which show every call in a format similar to
Nginx.

It's possible to visualize your mesh using Kiali, an interactive web interface. This way, you
can see a graph of your services, including information such as whether the encryption is
enabled, what the size of the flow between different services is, or what's the health check
status of each of them is.

The authors of Istio claim that this service mesh should be compatible with different
technologies. At the time of writing, the best documented, best integrated, and best tested is
the integration with Kubernetes. Other supported environments are on-premises, general-
purpose clouds, Mesos, and Nomad with Consul.

If you work in an industry concerned with compliance (such as financial institutions), then
Istio can help in these aspects.

Envoy
While Envoy is not a service mesh in itself, it is worth mentioning in this section due to its
use in Istio.

Cloud-Native Design Chapter 15

[460]

Envoy is a service proxy that acts much like Nginx or HAProxy. The main difference is that
it can be reconfigured on the fly. This happens programmatically via an API and does not
require the configuration file to be changed and the daemon to then be reloaded.

Interesting facts regarding Envoy are its performance and popularity. According to tests
performed by SolarWinds, Envoy beats the competition when it comes to performance as a
service proxy. This competition includes HAProxy, Nginx, Traefik, and AWS Application
Load Balancer. Envoy is much younger than the established leaders in this space, such as
Nginx, HAProxy, Apache, and Microsoft IIS, but this didn't stop Envoy from entering the
top 10 list of most-used web servers, according to Netcraft.

Linkerd
Before Istio became synonymous with a service mesh, this field was represented by
Linkerd. There is some confusion regarding the naming, as the original Linkerd project was
designed to be platform-agnostic and targeted the Java VM. This meant that it was
resource-heavy and often sluggish. The newer version, called Linkerd2, has been rewritten
to address these issues. Linkerd2, as opposed to the original Linkerd, is only focused on
Kubernetes.

Both Linkerd and Linkerd2 use their own proxy solution instead of relying on an existing
project such as Envoy. The rationale for that is that a dedicated proxy (versus a general-
purpose Envoy) offers better security and performance. An interesting feature of Linkerd2
is that the company that developed it also offers paid support.

Consul service mesh
A recent addition to the service mesh space is the Consul service mesh. This is a product
from HashiCorp, a well-established cloud company known for such tools as Terraform,
Vault, Packer, Nomad, and Consul.

Just like the other solutions, it features mTLS and traffic management. It's advertised as a
multi-cloud, multi-data center, and multi-region mesh. It integrates with different
platforms, data plane products, and observability providers. At the time of writing, the
reality is a bit more modest as the main supported platforms are Nomad and Kubernetes,
while the supported proxies are either the built-in proxy or Envoy.

If you are considering using Nomad for your application, then the Consul service mesh
may be a great choice and a good fit as both are HashiCorp products.

Cloud-Native Design Chapter 15

[461]

Going GitOps
The last topic that we would like to cover in this chapter is GitOps. Even though the term
sounds new and trendy, the idea behind it is not entirely novel. It's an extension of the well-
known Continuous Integration/Continuous Deployment (CI/CD) pattern. Or maybe an
extension is not a good description.

While CI/CD systems usually aim to be very flexible, GitOps seeks to minimize the number
of possible integrations. The two main constants are Git and Kubernetes. Git is used for
version control, release management, and environment separation. Kubernetes is used as a
standardized and programmable deployment platform.

This way, the CI/CD pipeline becomes almost transparent. It's the opposite approach to that
of imperative code handling all the stages of the build. To allow such a level of abstraction,
you will typically need the following:

Infrastructure as Code to allow the automated deployment of all the necessary
environments
A Git workflow with feature branches and pull requests or merge requests
A declarative workflow configuration, which is already available in Kubernetes

The principles of GitOps
Since GitOps is an extension of the established CI/CD pattern, it may not be very clear to
distinguish between the two. Here are some of the GitOps principles that differentiate this
approach from general-purpose CI/CD.

Declarative description
The main difference between a classical CI/CD system and GitOps lies in the mode of
operation. Most CI/CD systems are imperative: they consist of a sequence of steps to be
taken in order for a pipeline to succeed.

Even the pipeline's notion is imperative as it implies an object that has an entry, a set of
connections, and a sink. Some of the steps may be performed in parallel, but a process has
to stop and wait for the depending step to finish whenever there is a dependency.

In GitOps, the configuration is declarative. This refers to the entire state of your system –
the applications, their configuration, monitoring, and dashboards. It is all treated as code,
giving it the same features as regular application code.

Cloud-Native Design Chapter 15

[462]

The system's state versioned in Git
Since the state of your system is written in code, you derive some benefits from that fact.
Features such as easier auditing, code reviews, and version control are now applicable not
just to the application code. The consequence is that in case anything goes wrong, reverting
back to a working state requires a single git revert command.

You can use the power of Git's signed commits and SSH and GPG keys to give control over
different environments. By adding a gating mechanism that makes sure only the commits
meeting required standards can be pushed to the repository, you also eliminate many
accidental errors that may result from running commands manually using ssh or kubectl.

Auditable
Everything that you store in your version control systems becomes auditable. Before
introducing a new code, you perform a code review. When you notice a bug, you can revert
the change that introduced it or get back to the last working version. Your repository
becomes the single point of truth regarding your entire system.

It's already useful when applied to the application code. However, extending the ability to
audit configuration, helper services, metrics, dashboards, and even deployment strategies
makes it even more powerful. You no longer have to ask yourself, "OK, so why did this
configuration end up in production?" All you have to do is check the Git log.

Integrated with established components
Most CI/CD tools introduce proprietary configuration syntax. Jenkins uses Jenkins DSL.
Each of the popular SaaS solutions uses YAML, but the YAML files are incompatible with
each other. You can't switch from Travis to CircleCI or from CircleCI to GitLab CI without
rewriting your pipelines.

This has two drawbacks. One is the obvious vendor lock-in. The other is the need to learn
the configuration syntax to use the given tool. Even if most of your pipeline is already
defined elsewhere (shell scripts, Dockerfiles, or Kubernetes manifests), you still need to
write some glue code to instruct the CI/CD tool to use it.

It's different with GitOps. Here, you don't write explicit instructions or use proprietary
syntax. Instead, you reuse other common standards, such as Helm or Kustomize. There's
less to learn, and the migration process is much more comfortable. Also, GitOps tools
usually integrate well with other components from the CNCF ecosystem, so you can get
your deployment metrics stored in Prometheus and auditable with Grafana.

Cloud-Native Design Chapter 15

[463]

Configuration drift prevention
Configuration drift happens when a given system's current state differs from the desired
state as described in the repository. Multiple causes are contributing to the configuration
drift.

For example, let's consider a configuration management tool with a VM-based workload.
All of the VMs start in the same state. As the CM runs for the first time, it brings the
machines to the desired state. But if an auto-update agent is running on those machines by
default, this agent may update some of the packages on its own, without considering the
desired state from the CM. Moreover, as network connectivity may be fragile, some of the
machines may update to a newer version of a package, while others won't.

One of the updated packages may be incompatible with the pinned package that your
application requires in extreme cases. Such a situation will break the entire CM workflow
and leave your machine in an unusable state.

With GitOps, an agent is always running inside your system that keeps track of the current
state and the desired state of the system. If the current state suddenly differs from the
desired one, an agent may fix it or issue an alert regarding configuration drift.

Preventing configuration drift adds another layer of self-healing to your system. If you're
running Kubernetes, you already have self-healing on the pod level. Whenever a pod fails,
another one is recreated in its place. If you are using a programmable infrastructure
underneath (such as a cloud provider or OpenStack on-premises), you also have self-
healing capabilities of your nodes. With GitOps, you get the self-healing for workloads and
its configuration.

The benefits of GitOps
As you can imagine, the described features of GitOps afford several benefits. Here are some
of them.

Increased productivity
CI/CD pipelines already automate a lot of usual tasks. They reduce lead time by helping get
more deployments. GitOps adds a feedback loop that prevents configuration drift and
allows self-healing. This means that your team can ship quicker and worry less about
introducing potential problems as they are easy to revert. This, in turn, means that the
development throughput increases and you can introduce new features faster and with
more confidence.

Cloud-Native Design Chapter 15

[464]

Better developer experience
With GitOps, developers don't have to worry about building containers or using kubectl to
control the cluster. Deploying new features requires just the use of Git, which is already a
familiar tool in most environments.

This also means that onboarding is quicker since new hires don't have to learn a lot of new
tools in order to be productive. GitOps uses standard and consistent components, so
introducing changes to the operations side should not impact developers.

Higher stability and reliability
Using Git to store the state of your system means you have access to an audit log. This log
contains a description of all the changes introduced. If your task tracking system integrates
with Git (which is a good practice), you can typically tell which business feature is related
to the system's change.

With GitOps, there is less need to allow manual access to the nodes or the entire cluster,
which reduces the chance of accidental errors originating from running an invalid
command. Those random errors that get into the system are easily fixed by using Git's
powerful revert feature.

Recovery from a severe disaster (such as losing the entire control plane) is also a lot easier.
All it requires is setting up a new clean cluster, installing a GitOps operator there, and
pointing it to the repository with your configuration. After a short while, you have an exact
replica of your previous production system, all without manual intervention.

Improved security
A reduced need to give access to the cluster and nodes means improved security. There is
less to worry about in terms of lost or stolen keys. You avoid a situation where someone
retains access to your production environment even though this person is no longer
working on the team (or in the company).

When it comes to access to the system, the single point of truth is handled by the Git
repository. Even if a malicious actor decides to introduce a backdoor into your system, the
change required will undergo a code review. Impersonating another developer is also more
challenging when your repository uses GPG-signed commits with strong verification.

Cloud-Native Design Chapter 15

[465]

So far, we've mainly covered the benefits from the development and operations point of
view. But GitOps also benefits the business. It affords business observability in the system,
something that was hard to achieve before.

It's easy to track the features present in a given release as they are all stored in Git. Since Git
commits a link to the task tracker, business people can get preview links to see how the
application looks in various development stages.

It also gives clarity that allows the following common questions to be answered:

What's running in production?
Which tickets have been resolved with the last release?
Which change might be responsible for service degradations?

The questions for all those answers may even be presented in a friendly dashboard.
Naturally, the dashboard itself can be stored in Git as well.

GitOps tools
The GitOps space is a new and growing one. There are already tools that can be considered
stable and mature. Here are some of the most popular ones.

FluxCD
FluxCD is an opinionated GitOps operator for Kubernetes. Selected integrations provide
core functionality. It uses Helm charts and Kustomize to describe the resources.

Its integration with Prometheus adds observability to the deployment process. To help with
maintenance, FluxCD features a CLI.

ArgoCD
Unlike FluxCD, it offers a broader choice of tools to use. This might be useful if you're
already using Jsonnet or Ksonnet for your configuration. Like FluxCD, it integrates with
Prometheus and features a CLI.

At the time of writing this book, ArgoCD is a more popular solution than FluxCD.

Cloud-Native Design Chapter 15

[466]

Jenkins X
Contrary to what the name might suggest, Jenkins X doesn't have much in common with
the well-known Jenkins CI system. It is backed by the same company, but the entire
concepts of Jenkins and Jenkins X are totally different.

While the other two tools are purposefully small and self-contained, Jenkins X is a complex
solution with many integrations and a broader scope. It supports the triggering of custom
build tasks, making it look like a bridge between a classic CI/CD system and GitOps.

Summary
Congratulations on reaching the end of the chapter! Using modern C++ is not limited to
understanding the recently added language features. Your applications will run in
production. As an architect, it's also your choice to make sure the runtime environment
matches requirements. In the few previous chapters, we described some popular trends in
distributed applications. We hope this knowledge will help you decide which one is the
best fit for your product.

Going cloud-native brings a lot of benefits and can automate a good chunk of your
workflow. Switching custom-made tools to industry standards makes your software more
resilient and easier to update. In this chapter, we have covered the pros, cons, and use cases
of popular cloud-native solutions.

Some, such as distributed tracing with Jaeger, bring immediate benefits to most projects.
Others, such as Istio or Kubernetes, perform best in large-scale operations. After reading
this chapter, you should have sufficient knowledge to decide whether introducing cloud-
native design into your application is worth the cost.

Questions
What's the difference between running your applications in your cloud and1.
making them cloud-native?
How can you run cloud-native applications on-premises?2.
What's the minimal highly available cluster size for Kubernetes?3.
Which Kubernetes object represents a microservice that allows network4.
connections?

Cloud-Native Design Chapter 15

[467]

Why is logging not sufficient in distributed systems?5.
How does a service mesh help with building secure systems?6.
How does GitOps increase productivity?7.
What's the standard CNCF project for monitoring?8.

Further reading
Mastering Kubernetes: https:/ / www.packtpub. com/ product/ mastering-
kubernetes- third- edition/ 9781839211256

Mastering Distributed Tracing: https:/ /www. packtpub. com/ product/ mastering-
distributed- tracing/ 9781788628464

Mastering Service Mesh: https:/ /www. packtpub. com/ product/ mastering-
service- mesh/ 9781789615791

https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-distributed-tracing/9781788628464
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791
https://www.packtpub.com/product/mastering-service-mesh/9781789615791

Appendix A
Thank you for coming this far on this journey through software architecture. Our goal in
writing this book was to help you make informed decisions regarding the design of your
applications and systems. By now, you should feel confident when deciding whether to
choose IaaS, PaaS, SaaS, or FaaS.

There are a lot of things we haven't even touched on in this book as they were extensive
and out of the scope of the book. Either we had too little experience with the given topic, or
we thought that it was too niche. There are also areas that we felt were very important, but
we couldn't find the right place for them in the chapters. You'll find them in this appendix.

Designing data storage
Let's now discuss the storage for your application. First let's decide whether you should go
with SQL, NoSQL, or something else.

A good rule of thumb is to decide on the technology according to the size of your database.
For small databases, say, those whose size will never grow into the terabyte area, going
with SQL is a valid approach. If you have a very small database or want to create an in-
memory cache, you can try SQLite. If you plan to go into single terabytes, again
guaranteeing that the size will never get bigger than that, your best bet would be to go with
NoSQL. It's possible in some cases to still stick to SQL databases, but it gets expensive
quickly because of the costs of hardware, as you'll need a beast of a server for your master
node. Even if it's not an issue, you should measure whether the performance is enough for
your needs and be prepared for long maintenance windows. In some cases, it may also suit
you to just run a cluster of SQL machines using technologies such as Citus, which is, in
essence, a sharded PostgreSQL. However, usually, it's just cheaper and simpler to go with
NoSQL in such cases. If the size of your database exceeds 10 TBs or you need to ingest data
in real time, consider using a data warehouse instead of NoSQL.

Appendix A

[469]

Which NoSQL technology should I use?
The answer to this question depends on several factors. A few are listed here:

If you want to store time series (save increments at small, regular intervals), then
the best option would be to use InfluxDB or VictoriaMetrics.
If you need something similar to SQL but could live without joins, or in other
words, if you plan to store your data in columns, you can try out Apache
Cassandra, AWS DynamoDB, or Google's BigTable.
If that's not the case, then you should think about whether your data is a
document without a schema, such as JSON or some kind of application logs. If
that's the case, you could go with Elasticsearch, which is great for such flexible
data and provides a RESTful API. You could also try out MongoDB, which stores
its data in Binary JSON (BSON) format and allows MapReduce.

OK, but what if you don't want to store documents? Then you could opt for object storage,
especially if your data is large. Usually, going with a cloud provider is OK in this case,
which means that using Amazon's S3 or Google's Cloud Storage or Microsoft's Blob storage
should help your case. If you want to go with something local, you could use OpenStack's
Swift or deploy Ceph.

If file storage is also not what you're looking for, then perhaps your case is just about
simple key-value data. Using such storage has its benefits as it's fast. This is why many
distributed caches are built using it. Notable technologies include Riak, Redis, and
Memcached (this last one is not suitable for persisting data).

Aside from the previously mentioned options, you could consider using a tree-based
database such as BerkeleyDB. Those databases are basically specialized key-value storage
with path-like access. If trees are too restricting for your case, you might be interested in
graph-oriented databases such as Neo4j or OrientDB.

Serverless architecture
While related to cloud-native design, serverless architecture is a popular topic on its own. It
gained a lot of popularity since the introduction of FaaS or CaaS products, such as AWS
Lambda, AWS Fargate, Google Cloud Run, and Azure Functions.

Serverless is mostly an evolution of PaaS products such as Heroku. It abstracts the
underlying infrastructure so that developers can focus on the application and not on
infrastructural choices.

Appendix A

[470]

An additional benefit of serverless over older PaaS solutions is that you don't have to pay
for what you don't use. Rather than paying for a given service level, you typically pay for
the actual execution time of the deployed workload with serverless. If you only want to run
a given piece of code once a day, you don't need to pay a monthly fee for an underlying
server.

While we didn't get into too much detail about serverless, it is rarely used with C++. When
it comes to FaaS, only AWS Lambda currently supports C++ as a possible language. Since
containers are language-agnostic, you can use C++ applications and functions with CaaS
products such as AWS Fargate, Azure Container Instances, or Google Cloud Run.

Serverless functions may still be relevant to you if you want to run non-C++ auxiliary code
used along with your C++ application. Maintenance tasks and scheduled jobs are an
excellent fit for serverless and they usually don't require the performance or efficiency of
C++ binaries.

Communication and culture
The focus of this book is software architecture. Why would we want to mention
communication and culture in a book around software, then? If you think about it, all
software is written by people for people. The human aspect is prevalent and yet we often
fail to admit it.

As an architect, your role won't be to figure out the best approach to solving a given
problem. You'll also have to communicate your proposed solution to your team members.
Often, the choices you make will result from previous conversations.

These are the reasons communication and team culture also play a role in software
architecture.

In one of the early chapters, we've mentioned Conway's Law. This law states that the
architecture of the software system reflects the organization that's working on it. This
means that building great products requires building great teams and understanding
psychology.

If you want to be a great architect, learning people skills may be as important as learning
technical ones.

Appendix A

[471]

DevOps
We've used the term DevOps (and DevSecOps) several times within this book. This topic
deserves some additional space, in our opinion. DevOps is an approach to building
software products that breaks with traditional silo-based development.

In the waterfall model, teams operated on single aspects of work independently of each
other. The development team would write code, QA would test and validate the code, and
security and compliance would come after that. Eventually, the operations team would take
care of maintenance. The teams rarely communicated, and even then, it was usually a very
formal process.

Knowledge about particular fields of expertise was only available to the teams responsible
for a given piece of the workflow. Developers knew very little about QA and next to
nothing about operations. While this setup was very convenient, the modern landscape
requires more agility than the waterfall model can provide.

That's why a new model of working was proposed, one that encourages more
collaboration, better communication, and lots of knowledge sharing between different
stakeholders of a software product. While DevOps refers to bringing together developers
and operations, what it means is bringing everyone closer.

Developers start working with QA and security even before they write the first lines of
code. Operation engineers are more familiar with the code base. Businesses can easily track
the progress of a given ticket and, in some cases, can even do a deployment preview in a
self-service manner.

DevOps has become synonymous with using particular tools such as Terraform or
Kubernetes. But DevOps is by no means the same as using any specific tools. Your
organization can follow the DevOps principles without using Terraform or Kubernetes, and
it can use Terraform and Kubernetes while not practicing DevOps.

One of the principles of DevOps is that it encourages improved information flow among
the product's stakeholders. With that, it's possible to fulfill another principle: reduce
wasteful activities that don't bring value to the end product.

When you're building modern systems, it is worth doing so using modern methodology.
Migrating an existing organization to DevOps may require a massive mindset shift, so it is
not always possible. It's worth pursuing when starting a greenfield project that you have
control over.

Assessments

Chapter 1
Why should you care about software architecture?1.

Architecture allows you to achieve and maintain the requisite qualities
of software. Being mindful and caring about it prevents a project from
having accidental architecture, thereby losing quality, and also
prevents software decay.

Should the architect be the ultimate decision maker in an Agile team?2.
No. Agile is about empowering the whole team. An architect brings
their experience and knowledge to the table, but if a decision has to be
accepted by the whole team, the team should own it, not just the
architect. Considering the needs of stakeholders is also of great
importance here.

How does the Single Responsibility Principle (SRP) relate to cohesion?3.
Following the SRP leads to better cohesion. If a component starts
having multiple responsibilities, usually it becomes less cohesive. In
such instances, it's best to just refactor it into multiple components,
each having a single responsibility. This way, we increase
cohesiveness, so the code becomes easier to understand, develop, and
maintain.

During what phases of a project's lifetime can benefit be derived from having an4.
architect?

An architect can bring value to a project from its inception until the
time it goes into maintenance. The most value can be achieved during
the early phases of the project's development, as this is where key
decisions about how it should look will be taken. However, this
doesn't mean that architects cannot be valuable during development.
They can keep the project on the right course and on track. By aiding
decisions and overseeing the project, they ensure that the code doesn't
end up with accidental architecture and is not subject to software
decay.

Assessments

[473]

What's the benefit of following the SRP?5.
Code that follows the SRP is easier to understand and maintain. This
also means that it has fewer bugs.

Chapter 2
What are the traits of a RESTful service?1.

Obviously, the use of REST APIs.
Statelessness – Each request contains all the data required for its
processing. Remember, this doesn't mean that RESTful services cannot
use databases, quite the opposite.
Using cookies instead of keeping sessions.

What toolkit can you use to assist you in creating a resilient distributed2.
architecture?

Simian Army by Netflix.
Should you use centralized storage for your microservices? Why/why not?3.

Microservices should use decentralized storage. Each microservice
should choose the storage type that suits it best, as this leads to
increased efficiency and scalability.

When should you write a stateful service instead of a stateless one?4.
Only when it's not reasonable to have a stateless one and you won't
need to scale. For instance, when the client and service have to keep
their state in sync or when the state to send would be enormous.

How does a broker differ from a mediator?5.
A mediator "mediates" between services, so it needs to know how to
process each request. A broker only knows where to send each request,
so it's a lightweight component. It can be used to create a publisher-
subscriber (pub-sub) architecture.

What is the difference between an N-tier and an N-layer architecture?6.
Layers are logical and specify how you organize your code. Tiers are
physical and specify how you run your code. Each tier has to be
separated by others, either by being run in a different process, or even
on a different machine.

Assessments

[474]

How should you approach replacing a monolith with a microservice-based7.
architecture?

Incrementally. Carve small microservices out of the monolith. You can
use the strangler pattern described in Chapter 4, Architectural and
System Design, to help you with this.

Chapter 3
What are quality attributes?1.

Traits, or qualities, that a system may have. Often called "ilities," as
many of them have this postfix in their names, for instance, portability.

What sources should you use when gathering requirements?2.
The context of your system, existing documentation, and the system's
stakeholders.

How should you be able to tell whether a requirement is architecturally3.
significant?

Architecturally significant requirements (ASRs) often require a
separate software component, impact a large part of the system, are
hard to achieve, and/or force you to make trade-offs.

How should you document graphically the functional requirements various4.
parties may have regarding your system?

Prepare a use case diagram.
When is development view documentation useful?5.

In cases where you're developing a large system with many modules
and need to communicate global constraints and common design
choices to all the software teams.

How should you automatically check whether your code's API documentation is6.
out of date?

Doxygen has built-in checks, like the one that warns you about
mismatches between the function signatures and their parameters in
comments.

How should you show on a diagram that a given operation is handled by7.
different components of the system?

Use one of the UML interaction diagrams for this purpose. Sequence
diagrams are a good choice, although communication diagrams can be
fine in certain scenarios, too.

Assessments

[475]

Chapter 4
What is event sourcing?1.

This is an architectural pattern that relies on keeping track of events
that change the state of the system instead of keeping track of the state
per se. It brings benefits such as lower latency, free audit logs, and
debugability.

What are the practical consequences of the CAP theorem?2.
As network partitions happen, if you want a distributed system, you'll
need to choose between consistency and availability. In cases of
partitions, you can either return stale data, an error, or risk timeouts.

What can you use Netflix's Chaos Monkey for?3.
It can help you prepare for unexpected downtime of your services.

Where can caching be applied?4.
Either on your client's side, in front of web servers, databases, or
applications, or on a host near your potential client, depending on
your needs.

How should you prevent your app from going down when an entire data center5.
does?

By using geodes.
Why should you use an API gateway?6.

To simplify client code, as it doesn't need to hardcode the addresses of
your service instances.

How can Envoy help you to achieve various architectural goals?7.
It aids your system's fault tolerance by providing backpressure, circuit
breaking, automatic retries, and outlier detection.
It aids deployability by allowing canary releases and blue-green
deployments.
It also offers load balancing, tracing, monitoring, and metrics.

Chapter 5
How should you ensure each file of our code that's open, will be closed when no1.
longer in use?

By using the RAII idiom; for instance, by using std::unique_ptr,
which will close it in its destructor.

Assessments

[476]

When should you use "naked" pointers in C++ code?2.
Only to pass optional (nullable) references.

What is a deduction guide?3.
A way of telling the compiler what parameters it should deduce for a
template. They can be implicit or user-defined.

When should you use std::optional, and when should you4.
use gsl::not_null?

The former is for cases where we want to pass the contained value
around. The latter just passes the pointer to it. Also, the former can be
empty, while the latter will always point to an object.

How do range algorithms differ from views?5.
Algorithms are eager, while views are lazy. Algorithms also allow the
use of projections.

How should you constrain your type more than just by specifying the concept6.
name when you're defining a function?

By using a requires clause.
How does import X differ from import <X>?7.

The latter allows macros from the imported X header to be visible.

Chapter 6
What are the rules of three, five, and zero?1.

Best practices to follow for writing types with unsurprising semantics
and fewer bugs.

When should you use niebloids versus hidden friends?2.
Niebloids "disable" ADL, while hidden friends rely on it to be found.
The former can therefore speed up compilation (fewer overloads to
consider), while the latter can help you implement customization
points.

How can an Array interface be improved to be more production-ready?3.
begin, end, and their constant and reverse equivalents should be
added so it can be used like a proper container. Traits such
as value_type, pointer, and iterator can be useful to reuse it in
generic code. Sprinkling the members with constexpr and noexcept
could aid safety and performance. The const overload for
operator[] is also missing.

Assessments

[477]

What are fold expressions?4.
Expressions that fold, or reduce, a parameter pack over a binary
functor. In other words, statements that apply a given operation to all
the passed variadic template arguments so that a single value (or
void) is produced.

When shouldn't you use static polymorphism?5.
When you need to provide the consumers of your code with a way to
add more types at runtime.

How can we save on one more allocation in the winking out example?6.
By avoiding the resizing of the vector when adding elements.

Chapter 7
What's the difference between installing and exporting your targets in CMake?1.

Exporting means the targets will be available for other projects that try
to find our package, even if our code is not installed. CMake's package
registry can be used to store data about locations of the exported
targets. The binaries never leave the build directory. Installation
requires the targets to be copied somewhere and, if it's not a system
directory, setting up paths to the config files or the targets themselves.

How should you make your template code compile faster?2.
Follow the Rule of Chiel.

How should you use multiple compilers with Conan?3.
Use Conan profiles.

What should you do if you'd like to compile your Conan dependencies with the4.
pre-C++11 GCC ABI?

Set compiler.libcxx to libstdc++ instead of libstdc++11.
How should you ensure that you force a specific C++ standard in CMake?5.

By calling set_target_properties(our_target PROPERTIES
CXX_STANDARD our_required_cxx_standard

CXX_STANDARD_REQUIRED YES CXX_EXTENSIONS NO).

Assessments

[478]

How should you build documentation in CMake and ship it along with your6.
RPM package?

Create a target to generate the documentation as described in Chapter
3, Functional and Nonfunctional Requirements, install it
to CMAKE_INSTALL_DOCDIR, and then make sure the path is not
specified in the CPACK_RPM_EXCLUDE_FROM_AUTO_FILELIST
variable.

Chapter 8
What is the base layer of the testing pyramid?1.

Unit tests.
What kinds of non-functional tests are there?2.

Performance, endurance, security, availability, integrity, and usability.
What is the name of a famous method for root cause analysis?3.

5 whys
Is it possible to test compile-time code in C++?4.

Yes, for example, using static_assert.
What should you use when writing unit tests for code with external5.
dependencies?

Test doubles such as mocks and fakes.
What is the role of unit tests in Continuous Integration/Continuous Deployment?6.

They are the basis of a gating mechanism and act as an early warning
feature.

Name some tools that allow the testing of infrastructure code.7.
Serverspec, Testinfra, Goss.

Is it a good idea to access the class's private attributes and methods in a unit test?8.
You should design classes in such a way that you never have to access
their private attributes directly.

https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=26&action=edit
https://cdp.packtpub.com/hands_on_software_architecture_with_c__/wp-admin/post.php?post=26&action=edit

Assessments

[479]

Chapter 9
In what ways does Continuous Integration save time during development?1.

It allows you to catch bugs earlier and fix them before they enter
production.

Do you need separate tools to implement Continuous Integration and2.
Continuous Deployment?

The pipelines are usually written using a single tool; multiple tools are
used for actual testing and deployment.

When does it make sense to perform a code review in a meeting?3.
When an asynchronous code review is taking too long.

What tools can you use to assess the quality of your code during Continuous4.
Integration?

Tests, static analysis.
Who participates in specifying BDD scenarios?5.

Developers, QA, the business.
When should you consider using immutable infrastructure? When should you6.
rule it out?

It is best used with stateless services or services that can outsource
storage using a database or a network storage. It is not suitable for
stateful services.

How would you characterize the differences between Ansible, Packer, and7.
Terraform?

Ansible is designed for the configuration management of existing
VMs, Packer is for building cloud VM images, and Terraform is for
building the cloud infrastructure (such as networks, VMs, and load
balancers).

Chapter 10
Why is security important in modern systems?1.

Modern systems are typically connected to a network and are therefore
potentially vulnerable to external attacks.

What are some of the challenges associated with concurrency?2.
Code is harder to design and to debug. Update problems may arise.

What are the C++ core guidelines?3.
Best practices that document how to build C++ systems.

Assessments

[480]

What's the difference between secure coding and defensive coding?4.
Secure coding offers robustness to end users, whereas defensive
coding offers robustness to interface consumers.

How should you check whether your software contains known vulnerabilities?5.
By using a CVE database or an automated scanner such as OWASP
Dependency-Check or Snyk.

What's the difference between static and dynamic analysis?6.
Static analysis is performed on source code without executing it.
Dynamic analysis requires execution.

What's the difference between static and dynamic linking?7.
With static linking, the executable contains all the code necessary to
run the application. With dynamic linking, some parts of the code (the
dynamic libraries) are shared between different executables.

How can you use the compiler to fix security problems?8.
Modern compilers include sanitizers that check for certain flaws.

How can you implement security awareness in your Continuous Integration9.
pipeline?

By using automated tools that scan for vulnerabilities and perform all
kinds of static and dynamic analysis.

Chapter 11
What can we learn from the performance results from this chapter's1.
microbenchmarks?

The fact that a binary search is a lot faster than a linear search, even if
the number of elements to check is not that high. This means that
computational complexity (aka the Big O) matters. Probably on your
machine, even the longest search on the biggest dataset for a binary
search was still faster than the shortest one for a linear search!
Depending on your cache sizes, you may have also noticed how
increasing the required memory caused slowdowns when the data
could no longer fit in specific cache levels.

Is how we traverse a multi-dimensional array important for performance?2.
Why/why not?

It's crucial, as we may access the data linearly in memory, which the
CPU prefetcher would like and reward us with better performance, or
jump through the memory, hindering thereby our performance.

Assessments

[481]

In our coroutines example, why can't we create our thread pool inside the3.
do_routine_work function?

Because of lifetime issues.
How can we rework our coroutine example so that it uses a generator instead of4.
just tasks?

The body of the generator would need to co_yield. Also, the threads
from our pool would need to synchronize, probably using an atomic.

Chapter 12
What are the properties of a service in service-oriented architecture?1.

It is a representation of business activity with a defined outcome.
It is self-contained.
It is opaque to its users.
It may be composed of other services

What are some of the benefits of web services?2.
They are easy to debug using common tools, they work well with
firewalls, and they may take advantage of existing infrastructure, such
as load balancing, caching, and CDNs.

When are microservices not a good choice?3.
When the cost of RPC and redundancy outweighs the benefits.

What are some of the use cases of message queues?4.
IPC, transactional services, IoT.

What are some of the benefits of choosing JSON over XML?5.
JSON requires lower overhead, is gaining in popularity over XML, and
should be easier to read by a human.

How does REST build on web standards?6.
It uses HTTP verbs and URLs as building blocks.

How do cloud platforms differ from traditional hosting?7.
Cloud platforms offer easy-to-use APIs, meaning the resources can be
programmed.

Assessments

[482]

Chapter 13
How do microservices help you to use the system's resources better?1.

It is easier to scale just the resources that are lacking instead of entire
systems.

How can microservices and monoliths coexist (in an evolving system)?2.
New features may be developed as microservices, while some features
may be split and outsourced from the monolith.

Which types of teams benefit the most from microservices?3.
Cross-functional autonomous teams following DevOps principles.

Why is it necessary to have a mature DevOps approach when introducing4.
microservices?

Testing and deploying lots of microservices is almost impossible to be
effected manually by separate teams.

What is a unified logging layer?5.
It is a configurable facility for collecting, processing, and storing logs.

How do logging and tracing differ?6.
Logging is usually human-readable and focused on operations,
whereas tracing is usually machine-readable and focused on
debugging.

Why might REST not be the best choice for connecting microservices?7.
It may provide bigger overhead compared to gRPC, for example.

What are the deployment strategies for microservices? What are the benefits of8.
each of them?

Single service per host – easier to tweak the machines to the workload.
Multiple services per host – better utilization of resources.

Chapter 14
How do application containers differ from operating system containers?1.

Application containers are designed to host a single process, while
operating system containers usually run all the processes typically
available in a Unix system.

What are some early examples of sandboxing environments in Unix systems?2.
chroot, BSD Jails, Solaris Zones.

Assessments

[483]

Why are containers a good fit for microservices?3.
They offer a unified interface to run applications regardless of the
underlying technology.

What are the main differences between containers and virtual machines?4.
Containers are more lightweight as they don't require a hypervisor, a
copy of an operating system kernel, or auxiliary processes, such as an
init system or syslog.

When are application containers a bad choice?5.
When you want to put a multi-process application in a single
container.

Name some tools for building multi-platform container images.6.
manifest-tool, docker buildx.

Besides Docker, what are some other container runtimes?7.
Podman, containerd, CRI-O.

What are some popular orchestrators?8.
Kubernetes, Docker Swarm, Nomad.

Chapter 15
What's the difference between running your applications in the cloud and1.
making them cloud-native?

Cloud-native design encompasses modern technologies such as
containers and serverless that break the dependency on virtual
machines.

Can you run cloud-native applications on-premises?2.
Yes, it's possible with solutions such as OpenStack, for example.

What's the minimum highly available (HA) cluster size for Kubernetes?3.
The minimum HA cluster requires three nodes in the control plane and
three worker nodes.

Which Kubernetes object represents a microservice that allows network4.
connections?

Service.

Assessments

[484]

Why is logging insufficient in distributed systems?5.
Gathering logs and looking for correlations between them in
distributed systems is problematic. Distributed tracing is better suited
for certain use cases.

How does a service mesh help with building secure systems?6.
A service mesh abstracts connectivity between different systems,
which allows encryption and auditing to be applied.

How does GitOps increase productivity?7.
It uses a familiar tool, Git, to handle the CI/CD without the need to
write dedicated pipelines.

What's the standard CNCF project for monitoring?8.
Prometheus.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

C++ High Performance - Second Edition
Björn Andrist , Viktor Sehr

ISBN: 978-1-83921-654-1

Write specialized data structures for performance-critical code
Use modern metaprogramming techniques to reduce runtime calculations
Achieve efficient memory management using custom memory allocators
Reduce boilerplate code using reflection techniques
Reap the benefits of lock-free concurrent programming
Gain insights into subtle optimizations used by standard library algorithms
Compose algorithms using ranges library
Develop the ability to apply metaprogramming aspects such as constexpr,
constraints, and concepts
Implement lazy generators and asynchronous tasks using C++20 coroutines

https://www.packtpub.com/product/c-high-performance-second-edition/9781839216541

Other Books You May Enjoy

[487]

Modern C++ Programming Cookbook - Second Edition
Marius Bancila

ISBN: 978-1-80020-898-8

Understand the new C++20 language and library features and the problems they
solve
Become skilled at using the standard support for threading and concurrency for
daily tasks
Leverage the standard library and work with containers, algorithms, and
iterators
Solve text searching and replacement problems using regular expressions
Work with different types of strings and learn the various aspects of compilation
Take advantage of the file system library to work with files and directories
Implement various useful patterns and idioms
Explore the widely used testing frameworks for C++

https://www.packtpub.com/product/modern-c-programming-cookbook-second-edition/9781800208988

Other Books You May Enjoy

[488]

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com

Index

4
4 + 1 model 67, 68, 71
4 + 1 model, views
 development view 69
 logical view 68
 physical view 70
 process view 69

A
acceptance testing 247
accurate measurement
 performing 319
active-active failover 106
active-passive failover 106
Address Space Layout Randomization (ASLR)

315

AddressSanitizer (ASan) 312
AddressSanitizerLeakSanitizer (LSan) 312
Advanced Message Queuing Protocol (AMQP)

354

Agile principle
 architecture, developing with 12
Agile projects
 architecture, documenting 76
American equivalent (DoDAF) 67
Ansible-bender 425
Ansible
 advantages 284
 using 282
 using, in CI/CD pipeline 283
anti-corruption layer 114
Apache Thrift 406
API Blueprint 373
API documentation
 generating, from code 83, 84, 85, 86, 87, 88, 89
API gateways 130, 131

API management (APIM) 129, 130
APIM tools
 components 129
application containers, building ways
 about 425
 Ansible-bender, using 425
 Buildah, using 425
 docker build, using 426
 Nix, using 426
Application Programming Interface (API)
 about 356, 358
application programming interfaces (APIs) 406
Application Programming Interfaces (APIs)
 components 129
 designing 134
Application Verifier (AppVerifier) 312
approaches, for reducing build times
 fast compiler, using 207
 templates, rethinking 207, 208
 tools, leveraging 209, 210
arbitrary arguments
 passing, to microbenchmarks 325
architectural styles
 scaling 42
 transitioning to 42
architecturally significant requirements (ASRs)
 about 54
 indicators 56, 57
 recognizing 55, 56, 57, 58
architecture fundamentals,
 exploring 10
architecture, designing for code security
 automatic resource management, enabling 299
 interface usage, making 298
 traits 298
architecture, documenting
 4 + 1 model 67, 68, 71

[490]

 about 66
 C4 model 72, 74, 75
 in Agile projects 76
Argument-Dependent Lookup (ADL) 169
argument-dependent lookup (ADL) 136
automated gating mechanisms 274
automated scanners 307
awaitables 343, 344, 345, 346, 347
AWS Elastic Container Service (ECS) 439
AWS Fargate 439

B
back pressure 108
Backends for Frontends (BFFs) 48, 49
benchmarks, types
 industry-standard 320
 microbenchmarks 320
 replays 320
 simulations 320
benchmarks
 performance tests, creating with 329
best practices, for building C++ systems 302
black boxes 358
blue-green deployments 127
Breathe 83
British Ministry of Defence (MODAF) 67
Broken Access Control 305
Broken Authentication 305
brokered messaging systems 362
build times
 reducing 207
Buildah 425
builders
 using 188, 190
bulkheads 111
Business Process Execution Language (BPEL) 43
Business Process Management (BPM) 43

C
C++ application performance, patterns
 CQRS 116, 117, 118
 CQS 118, 119
 event sourcing 119
C++ application performance
 about 115

 caching 119, 120
 event sourcing 116
 measuring 319
 measuring, with microbenchmarks 321
 measuring, with profiling 330
 measuring, with tracing 332
C++
 containers interfaces, specifying 135, 136, 137
 logging in, with spdlog 399
 objects, visiting 192, 194, 196
 philosophy 14, 16
 RESTful APIs, implementing 376
C4 model 72, 74, 75
C4 model, diagram types
 about 72
 code diagrams 74
 component diagram 74
 container diagram 74
caches, types
 application caches 120
 CDNs 120
 client-side caches 120
 database caches 120
 web server caches 120
caches, updating approaches
 cache-aside 121
 write-behind approach 121
 write-through approach 120
caches
 updating 120
caching 119, 120
canary releases 127, 128
CAP theorem 101, 102
cascading failures
 avoiding 111
 avoiding, with bulkhead 111
 avoiding, with circuit breaker pattern 111
Catch2
 examples 252
Ccache 209
CD pipeline
 building 285, 286, 288
Checkmarx CxSAST
 reference link 311
choreography-based sagas 103

[491]

circuit breaker pattern 111
Clang 206
class design 261
Class Template Argument Deduction (CTAD) 138
cloud computing
 about 356, 357
 as extension, of SOA 378
Cloud Native Computing Foundation (CNCF) 433,

443

cloud provider's API
 accessing 381
 API calls directly, using 378, 379
 API calls, using through CLI tool 379
 third-party tools, using that interact with 380
 tools, using that interact with 382
 using 378, 382
cloud providers
 leveraging 377, 378
cloud-native architecture 383
cloud-native workloads
 orchestrating, with Kubernetes 446
cloud-native, as operating system
 load balancing 444
 service directory 444
cloud-native
 about 443
 using, as operating system 443
CMake
 about 213
 build process, abstracting 213
 Conan targets, using from 227
 containers, integrating with 427, 428, 429
 directory variables, distinguishing between 214,

215

 Dockerfile, configuring with 427
 output directories, specifying 217
 projects, creating 214
 targets, specifying 215, 216, 217
CMakeLists
 Conan packaging code, adding 241
code changes
 reviewing 274
code hardening 308
code review
 about 275

 aim 275
 approaches 276
 pull requests (merge requests), using 277
 tools 276
code security
 architecture, designing 297
 checking 297
code testing
 need for 246
CodeSonar
 reference link 311
cohesion 27, 29
command-based sagas 103
command-query responsibility segregation (CQRS)

116

command-query separation (CQS) 118, 257
Common Object Model (COM) 364
Common Vulnerabilities and Exposures (CVE)
 URL 306
Communications Platform as a Service (CPaaS)

96

compensating transactions 103
compile-time code
 testing 255
compiled applications 420
compiler generate performant code
 cache-friendly code, writing 334
 designing, with data in mind 335, 336
 helping 333
 optimizing, based on real-world usage patterns

334

 programs, optimizing 333
compiler-centric tools
 using 212
compiler
 optimizing, with const 155
 using 206
composites
 about 191
 creating, with builder 191
computations
 moving, at compile time 153, 155
Conan package manager
 dependencies, installing 226
 dependencies, specifying 225
 profiles, preparing 225

[492]

 using 225
Conan package
 conanfile.py script, creating 237, 239
 testing 239, 241
 using 236
Conan packaging code
 adding, to CMakeLists 241
Conan targets
 using, from CMake 227
concepts 156
concurrency view 79
concurrency
 dealing with 300, 302
 drawbacks 300, 302
concurrent processing
 designing, rules 302
consensus
 achieving 106
constraints
 about 55
 budget 55
 time 55
Consul service mesh 460
consumers
 competing 113
container images
 distributing 419
 naming 419
container orchestration
 about 431
 managed services 438
 self-hosted solutions 432
Containers as a Service (CaaS) 95
containers interfaces
 specifying, in C++ 135, 136, 137
containers
 about 413, 414, 420
 alternative runtimes 431
 and compiled applications 422
 benefits 415
 build and deploy process 413
 building 417
 disadvantages 416, 417
 integrating 429
 integrating, with CMake 427, 428, 429

 runtime libraries 430
 selecting 415
 testing 429
 types 414
 versus container images 417
Content Delivery Networks (CDNs) 98
Continuous Delivery (CD) 286
Continuous Deployment (CD) 286
Continuous Integration (CI)
 about 270
 gating mechanisms 272
 merits 271
 short release cycles 270
 tests, writing 280
continuous integration/continuous deployment

(CI/CD) pipeline
 about 429
 tests, automating for 264, 265
continuous testing 281, 282
copy-and-swap idiom
 used, for providing exception safety 171, 172
Copy-On-Write (COW)
 herding, to save memory 197
coroutines
 about 343, 344, 345, 346, 347
 types 342
 using 339, 340
coupling 26, 27
CPack
 using 234, 236
cpp-restsdk 376
cppcheck
 URL 310
cppcoro utilities
 distinguishing 341, 342
CppDepend 82
CppUnit
 examples 253, 254
Cross-Site Scripting (XSS) 305
Curiously Recurring Template Pattern (CRTP) 17,

177

Customer Relationship Management (CRM)
system 96

CVE Numbering Authorities (CNAs) 306

[493]

D
data transfer object (DTO) 116
declarative code
 versus imperative code 143
 writing 143, 145
decomposition patterns, for microservices
 by business capability 390
 by subdomain 390
deduction guides 138
defensive programming 262, 263, 303, 304
Dependabot
 reference link 251
dependencies
 automated upgrade management 307
 security, checking 306
dependency inversion principle 21, 24, 25
deployment code
 Ansible, using 282, 283
 Ansible, using in CI/CD pipeline 283
 building 285
 creating, with components 284
 managing 282
deployment strategies, for microservices
 multiple services per host 391
 single service per host 391
deployment view 80, 81
development view 79
DevSecOps 316
distributed computing
 misconceptions 97, 98, 99, 100, 101
 misconceptions, avoiding 97
distributed systems
 characteristics 93
 observability 452
 service models 93
Docker Swarm 435
Dockerfiles
 using, to build applications 418, 419
Doctest
 examples 255
document, views
 about 76, 77
 concurrency view 79
 deployment view 80, 81

 development view 79
 functional view 77, 78
 information view 78
 operational view 80, 81
documentation
 diagrams, generating from code 82
 generating 81
documenting requirements
 sections 66
domain-driven design (DDD) 13, 14, 390
don't repeat yourself (DRY) rule 25
drawing tool
 URL 72
dynamic allocations
 reducing, with SSO/SSO 196
Dynamic Application Security Testing (DAST) 311
dynamic polymorphism
 versus static polymorphism 177

E
Easy Approach to Requirements Syntax (EARS)

63

Elasticsearch 402
Elasticsearch, Logstash, Kibana (ELK) 100
Enterprise Service Bus (ESB)
 about 40, 351, 353, 357
 benefits 353
 commercial products 352
 component 352
 disadvantages 353
 source products 352
Envoy 460
event-based architecture
 broker-based topologies 43
 even sourcing 46
 event sourcing 44
 exploring 42
 mediator-based topologies 43
 topologies 43, 44
event-based sagas 103
eventual consistency 101, 102
exception safety levels
 basic exception safety 171
 no guarantee 171
 no-throw guarantee 171

[494]

 strong exception safety 171
execution environment
 hardening 314
external configuration store 128
external modules
 Conan package manager, using 225
 dependencies, fetching 219, 220, 221
 find scripts, using 221
 find scripts, writing 222, 224
 tests, adding 228, 229
 using 219

F
factories
 using 183
factory classes
 using 186, 188
factory functions
 using 184, 185
factory methods
 using 183, 184
failover 105
fakes 256, 257
fault detection 109
fault detection, ways
 heartbeat mechanism 109
 leaky bucket counter 110
 sidecar design pattern 109
fault tolerance 105
fault-tolerant systems, creating ways
 back pressure 108
 master-slave replication 107
 multi-master replication 107
 queue-based load leveling pattern 107, 108
 redundancy 105
 replication 106
fault-tolerant systems
 building 105
faults impact, minimizing ways
 call, retrying 110
 cascading failures, avoiding 111
 Geodes 112
faults impact
 minimizing 110
featured items gallery

 showcasing 145, 147, 148, 150
Filebeat 400
find scripts
 using 221, 222
 writing 222, 224
Firecracker
 URL 313
first microbenchmark
 writing 322, 323, 324
flawfinder
 URL 310
Fluent Bit 401
Fluentd 400, 401
FreeGuard
 URL 308
Function as a Service (FaaS) model 96, 97
functional requirements 53, 54
functional view 77, 78
fundamentals, good architecture
 business and technical environments 11
 context 11
 stakeholders 11
fuzz-testing
 about 313
 tools 313

G
Gang of Four (GoF) 32
GCC 206
generator expressions
 using 217, 219
Geodes 112
GitLab
 pipeline, implementing with 272, 274
 reference link 272
GitOps principles
 auditable 462
 configuration drift prevention 463
 declarative description 461
 integrated, with established components 462
 system's state versioned 462
GitOps
 about 461
 benefits 463, 465
 principles 461

[495]

 tools 465
Google Benchmark
 setting up 321, 322
Google's ClusterFuzz
 URL 313
GoogleMock
 example 257
 reference link 257
Goss
 about 265
 using, for testing 267
Grafana 403
GraphQL 377
Greenkeepr
 reference link 251
gRPC 407, 408, 409
GTest
 about 220, 259
 examples 252
Guideline Support Library (GSL) 34, 140, 299,

302

H
Hardware-Assisted Address Sanitizer (HWASAN)

313

heartbeat 109
heartbeat mechanism 109
hidden friends
 using 169, 170
hot standby 105
hybrid deployment 94
Hypermedia as the Engine of Application State

(HATEOAS) 374, 375, 376
Hypertext Transfer Protocol (HTTP) 297

I
Icecream (IceCC) 210
idiomatic C++, writing
 about 166
 copyability, managing 167
 exception safety, providing with copy-and-swap

idiom 171, 172
 hidden friends, using 169
 movability, managing 167
 niebloids, writing 172, 174

 policy-based design idiom 175, 176
 scope exit actions, with RAII guards 166
immutable infrastructure
 about 289
 benefits 290
 infrastructure, orchestrating with Terraform 292
 instance images, building with Parker 290, 292
 using 288
imperative code
 versus declarative code 143
in-memory cache
 deciding 396
include directories 218
include-what-you-use tool 209
information view 78
Infrastructure as a Service (IaaS) model 94, 95
Infrastructure as Code (IaC) tools 382
infrastructure
 testing 265
Insecure Deserialization 305
integration testing 247
Inter-Process Communication (IPC) 354, 417
Interface Description Language (IDL) 407
interface segregation principle 20, 21
interfaces
 about 297
 pointers, using 138, 139
Intrusion Detection Systems (IDSes) 308
investment concern areas, Kubernetes
 education costs 452
 infrastructure costs 452
 operations costs 452
Istio 459

J
Jaeger
 about 405, 454, 455
 Zipkin 455
job types, Nomad
 batch 436
 service 436
 system 436
JSON-based web services
 about 367, 368
 JSON-RPC protocol 368, 369

[496]

 types 367
JSON-RPC protocol 368, 369

K
Kata Containers 431
Kibana 402
Klocwork
 reference link 311
Kubernetes networking
 about 450
 container-to-container communication 451
 external-to-internal communication 451
 pod-to-pod communication 451
 pod-to-service communication 451
Kubernetes
 about 432, 433, 434
 control plane 447
 declarative approach 449, 450
 deploying, approaches 448
 objects 448
 structure 446
 using, benefits 451
 using, to orchestrate cloud-native workloads 446
 worker nodes 447

L
layered architecture
 about 46, 47, 48
 Backends for Frontends (BFFs) 48, 49
lazy loading 121
leader election pattern
 selecting 106
leaky bucket counter 110
legacy systems, risks avoiding ways
 anti-corruption layer 114
 strangler pattern 114
legacy systems
 transitioning from 114
LGTM
 reference link 310
link-time optimization (LTO) 333
Linkerd 460
Linkerd2 460
Liskov Substitution Principle (LSP) 19
load balancer 107

log aggregation, components
 Elasticsearch 402
 Loki 402
log visualization, components
 Grafana 403
 Kibana 402
Logstash 400
Loki 402
low-overhead messaging systems 361

M
managed services, container orchestration
 about 438
 AWS ECS 439
 AWS Fargate 439
 Azure Service Fabric 439
managed services
 leveraging 377, 378
manifests
 multiple architectures, targeting with 423, 424
master-master failover 106
master-slave failover 106
master-slave replication 107
meaningful measurement
 performing 319
measuring tools, types
 leveraging 320, 321
Memcached 394
memory management, of microservices
 in-memory cache, deciding 396
 Memcached 394
 Redis 394, 396
memory
 dealing with 196
MemorySanitizer (MSan) 313
message brokers
 about 355
 implementing 356
message queues 354, 355
Message Queuing Telemetry Transport (MQTT)

361

Message-Oriented Middleware (MOM) 354
messaging principles
 adopting 360
messaging systems

[497]

 use cases 360
Micro Focus Fortify
 reference link 311
microbenchmarks
 about 320
 arbitrary arguments, passing to 325
 numeric arguments, passing to 326, 327
 selecting 329
 using 321
microservices, benefits
 about 386
 distributed development 388
 flexibility 387
 integrating, with legacy systems 387
 modularity 386
 scalability 386
microservices, design patterns
 about 389
 database per service pattern 390
 decomposition patterns 389
 deployment strategies 391
 observability patterns 391
microservices, disadvantages
 about 388
 additional overhead 389
 harder to debug 389
 reliance, on mature DevOps approach 388
microservices
 about 37, 38, 357, 385, 414, 415
 advantages 38
 application programming interfaces (APIs) 406
 architectural styles, using 41
 building 393
 characteristics 39, 41
 connecting 405, 406
 disadvantages 38
 integrated observability solutions 405
 log aggregation 401
 log visualization 402
 logging with 398
 logging, in C++ with spdlog 399
 memory management, outsourcing 393, 394
 monitoring 403, 404
 multiple services per host deployment, scaling

410

 observing 398
 Remote Procedure Calls (RPCs) 406
 scaling 409
 single service per host deployment, scaling 409,

410

 storage compute, outsourcing 397
 storage, outsourcing 396, 397
 tracing 404
 unified logging layer 399, 400
mocks 256
modular C++
 writing 160, 162, 163
module-based architecture 50
monoliths 36, 37
MPI
 using, for parallelize computations 338, 339
MSVC 206
multi-master replication 107
multiple compilers
 using 206
multiple services per host deployment
 scaling 410

N
namespaces
 leveraging 140, 141
Network Block Device (NBD) 396
Network-Attached Storage (NAS) 396
NGINX 445
niebloids
 writing 172, 175
Ninja 209
no-execute (NX) bit support 316
Nomad 436, 438
non-copyable types
 implementing 167
non-functional requirements 54
non-functional requirements, subgroups
 constraints 55
 quality attributes 54
non-functional testing 248
numeric arguments, passing to microbenchmarks
 about 326, 327
 passed arguments, generating practically 327,

328

[498]

O
object factory
 return type, selecting 185
objects
 creating 182
observability patterns, for microservices
 application metrics 392
 distributed tracing 392
 health check APIs 392
 log aggregation 392
on-premises model
 about 94
 using 94
one-definition rule (ODR) 160
Open Service Gateway Initiative (OSGi) 50
Open Web Application Security Project (OWASP)

304

Open-Closed Principle (OCP) 18, 19
OpenAPI 370, 371
OpenMP
 using, for parallelize computations 338, 339
OpenShift 438
OpenTracing
 about 404, 454
 application, instrumenting with 456, 457
 programming languages 404
 supported languages 454
OpenZipkin 405
operational view 80, 81
optimization
 selecting 329
optional class members 143
optional function parameters 142
optional function return values 142
optional parameters
 leveraging 141
orchestration-based sagas 103
outlier detection 109
OWASP Dependency-Check
 URL 307
OWASP Zed Attack Proxy project
 URL 313

P
Packer
 instance images, building with 290, 292
parallelize computations
 about 336
 threads, versus processes 337
 with MPI 338, 339
 with OpenMP 338, 339
 with standard parallel algorithms 338
Parasoft C/C++test
 reference link 311
Peach Fuzzer
 URL 313
peer review 275
performance tests
 creating, with benchmarks 329
Personal Information Management (PIM) 386
pipes and filters pattern 112
Platform as a Service (PaaS) model
 about 95
 using 95
point
 infrastructure, orchestrating 294
polymorphic allocators
 leveraging 197
 memory arenas, using 198
 memory resource, writing 200, 201
 memory, winking 201
 monotonic memory resource, using 199
 no unexpected allocations, ensuring 201
 pool resources, using 199
Polyspace Bug Finder
 reference link 311
PortSwigger Burp
 URL 313
postconditions
 specifying 140
potential code issues
 finding 210, 212
precautions, software architecture
 accidental architecture 10
 software architecture 10
Precompiled Header (PCH) 207
preconditions

[499]

 specifying 140
process isolation 314
Profile-Guided Optimization (PGO) 334
profiler
 preparing 331
 results, analyzing 331, 332
 results, processing 331
 type, selecting 330
profiling 330
prototypes
 creating, with builder 191
pull requests (merge requests)
 using, for code review 277

Q
quality attributes (QAs) 54
quality code
 exporting 233
 installing 230, 232, 233
 reusing 229
Quality of Service (QoS) 361
queue-based load leveling pattern 107, 108, 113

R
RAII guards
 used, for automating scope exit actions 166
RAML 372
Redis 394, 396
redundancy
 about 105
 consensus, achieving 106
 leader election pattern, selecting 106
refactoring 250, 251
region 198
regression testing 249
Remote Procedure Calls (RPCs)
 about 406
 Apache Thrift 406
 gRPC 407, 408, 409
Renovate
 reference link 251
replication 106
REpresentational State Transfer (REST),

description languages
 API Blueprint 373

 OpenAPI 370, 371
 RAML 372
 RESTful Service Description Language (RSDL)

373

REpresentational State Transfer (REST)
 about 35, 369, 406
 description languages 370
requirements documentation
 about 61
 context, documenting 62
 functional requirements, documenting 63
 functional requirements, formats 64
 generating 82
 in Agile projects, documenting 65, 66
 non-functional requirements, documenting 64
 scope, documenting 62
 version history, managing 64, 65
requirements gathering, techniques
 context, knowing 58
 existing documentation, knowing 59
 stakeholders requirements, gathering 60, 61
 stakeholders, knowing 60
requirements gathering
 from various sources 58
requirements, types
 about 53
 functional requirements 53, 54
 non-functional requirements 54
ReSharper C++
 reference link 251
Resource Acquisition Is Initialization (RAII)
 about 299
 leveraging 134, 135
RESTful APIs
 implementing, in C++ applications 376
RESTful Service Description Language (RSDL)

373

reverse proxies, uses
 caching 445
 compression 445
 flexibility and scalability 445
 security 445
 SSL termination 445
root cause analysis 249, 250
rule of five

[500]

 adhering to 168
rule of three
 adhering to 168
rule of zero
 adhering to 168, 169

S
SaferCPlusPlus
 URL 309
saga patterns
 about 102
 choreography-based sagas 103
 orchestration-based sagas 103
Sandboxed API (SAPI)
 URL 314
sandboxing 313
sanitizers 312
secure coding 302
Security Misconfiguration 305
security-oriented memory allocator 308
self-hosted services, container orchestration
 Docker Swarm 435
 Kubernetes 432, 434
 Nomad 436, 438
 OpenShift 438
Sensitive Data Exposure 305
serverless architecture 96, 97
Serverspec
 about 265
 using, for testing 266
Service Discovery (SD) 445
Service Level Agreement (SLA) 105
service mesh solutions
 Consul service mesh 460
 Envoy 459
 Istio 459
 Linkerd 460
service mesh
 about 458
 services, connecting with 457
 solutions 459
service models
 about 93
 Function as a Service (FaaS) model 96, 97
 Infrastructure as a Service (IaaS) model 94, 95

 on-premises model 94
 Platform as a Service (PaaS) model 95
 serverless architecture 96, 97
 Software as a Service (SaaS) model 96
 using 93
service testing 247
Service-Oriented Architecture (SOA), approaches
 cloud computing 356, 357
 Enterprise Service Bus (ESB) 351, 353
 messaging 354
 microservices 357
 streaming 354
 web services 353
Service-Oriented Architecture (SOA)
 about 351
 approaches, implementing 351
 benefits 358, 359
 challenges 359
 cloud computing, as extension of 378
services 37
sidecar design pattern 109
Simple Object Access Protocol (SOAP)
 about 365, 366
 libraries 367
 XML-RPC, relationship to 364
Simple Storage Service (S3) 397
Single Responsibility Principle (SRP) 17, 33
single service per host deployment
 scaling 409, 410
Small Object Optimization (SOO)
 dynamic allocation, reducing with 196
Small String Optimization (SSO)
 dynamic allocation, reducing with 196
Snyk 307
software architecture
 about 8
 importance 9, 10
 viewing, scopes 9
Software as a Service (SaaS) model
 about 96
 using 96
Software Defined Networking (SDN) 50
SOLID principles 17
SonarQube
 reference link 310

[501]

spdlog
 C++, logging in with 399
SQL injection 304
standard parallel algorithms
 used, for parallelize computations 338
standard ranges
 memory overhead, reducing with 152
 performance, increasing with 152
 using 150, 152
state
 tracking 192, 194, 196
stateful approaches
 versus stateless approaches 32, 33, 34
stateful services 34
stateless approaches
 versus stateful approaches 32, 33, 34
stateless services 34
Static Application Security Testing (SAST)
 about 310
 examples 310
static linking
 versus dynamic linking 314
static polymorphism
 implementing 177, 179, 180
 versus dynamic polymorphism 177
Storage Area Network (SAN) 396
strangler pattern 114
Streaming Text Oriented Messaging Protocol

(STOMP) 355
Substitution Failure Is Not an Error (SFINAE) 208
system deployment, patterns
 external configuration store 128
 sidecar pattern 122
 zero-downtime deployments 126
system deployment
 about 121
 proxy, reversing with Envoy 122, 123, 125, 126
 service, deploying with tracing 122, 123, 125,

126

system integration 112
system integration, patterns
 consumers, competing 113
 transitioning, form legacy systems 114
system testing 247
system's availability

 calculating 104
system
 making, available 104
 making, fault tolerant 104

T
Terraform
 infrastructure, orchestrating 292
Terratest 265
test doubles
 about 256
 uses 257
 writing 257
test-driven automation
 behavior-driven development 278, 280
 exploring 277
test-driven class design 261
test-driven development (TDD) 263
Testinfra
 about 265
 using, for testing 266
testing frameworks
 about 252
 Catch2 examples 252
 CppUnit examples 253, 254
 Doctest examples 255
 GTest examples 252
testing pyramid 246
 about 247
tests
 automating, for continuous integration/continuous

deployment 264, 265
 writing 263
ThreadSanitizer (TSan) 312
toolchain hardening, setting
 reference link 310
tools, for checking system security
 about 309
 compiler warnings 309
 dynamic analysis 311
 static analysis 310
tools, GitOps
 ArgoCD 465
 FluxCD 465
 Jenkins X 466

tracing solution
 selecting 454
tracing
 about 332, 404
 Jaeger 405
 OpenTracing 404
 OpenZipkin 405
 versus logging 453, 454
 with correlation IDs 332
transactions
 compensating 102
transition requirements 60
Trompeloeil
 example 259, 261
 reference link 257
two-phase commits (2PCs) 102
type erasure
 using 180, 182
type safety
 power, leveraging 156
 template parameters, constraining 156, 158,

160

U
UndefinedBehaviorSanitizer (UBSan) 313
unified logging layer, components
 Filebeat 400
 Fluent Bit 401
 Fluentd 400, 401
 Logstash 400
 Vector 401
Unified Modeling Language (UML) 68
unit testing 247
Universal Description, Discovery, and Integration

(UDDI) 366

V
Valgrind 312

Vector 401
Veracode Static Analysis
 reference link 311
views
 selecting, for documents 76, 77
Virtual Machines (VMs) 308
vulnerabilities 304

W
Web Services Description Language (WSDL) 366
web services
 about 353
 benefits 354
 debugging, tools 363
 disadvantages 354
 using 363
WhiteHatSentinel Source
 reference link 311
winking out technique 201
write-back 121

X
XML External Entities (XXE) 305
XML-based web services 364
XML-RPC
 about 364
 relationship to Simple Object Access Protocol

(SOAP) 364

Z
zero-downtime deployments 126
zero-downtime deployments, risk minimizing ways
 blue-green deployments 127
 canary releases 127, 128
ZeroMQ 362
Zipkin
 about 455
 drawback 455

	Cover
	Title Page
	Copyrights
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1: Concepts and Components of Software Architecture
	Chapter 1: Importance of Software Architecture and Principles of Great Design
	Technical requirements
	Understanding software architecture
	Different ways to look at architecture

	Learning the importance of proper architecture
	Software decay
	Accidental architecture

	Exploring the fundamentals of good architecture
	Architecture context
	Stakeholders
	Business and technical environments

	Developing architecture using Agile principles
	Domain-driven design

	The philosophy of C++
	Following the SOLID and DRY principles
	Single responsibility principle
	Open-closed principle
	Liskov substitution principle
	Interface segregation principle
	Dependency inversion principle
	The DRY rule

	Coupling and cohesion
	Coupling
	Cohesion

	Summary
	Questions
	Further reading

	Chapter 2: Architectural Styles
	Technical requirements
	Deciding between stateful and stateless approaches
	Stateless and stateful services

	Understanding monoliths—why they should be avoided, and recognizing exceptions
	Understanding services and microservices
	Microservices
	Benefits and disadvantages of microservices
	Characteristics of microservices
	Microservices and other architectural styles
	Scaling microservices
	Transitioning to microservices

	Exploring event-based architecture
	Common event-based topologies
	Event sourcing

	Understanding layered architecture
	Backends for Frontends

	Learning module-based architecture
	Summary
	Questions
	Further reading

	Chapter 3: Functional and Nonfunctional Requirements
	Technical requirements documentation from sources, you must have
	Understanding the types of requirements
	Functional requirements
	Nonfunctional requirements
	Quality attributes
	Constraints

	Recognizing architecturally significant requirements
	Indicators of architectural significance
	Hindrances in recognizing ASRs and how to deal with them

	Gathering requirements from various sources
	Knowing the context
	Knowing existing documentation
	Knowing your stakeholders
	Gathering requirements from stakeholders

	Documenting requirements
	Documenting the context
	Documenting the scope
	Documenting functional requirements
	Documenting nonfunctional requirements
	Managing the version history of your documentation
	Documenting requirements in Agile projects
	Other sections

	Documenting architecture
	Understanding the 4+1 model
	Understanding the C4 model
	Documenting architecture in Agile projects

	Choosing the right views to document
	Functional view
	Information view
	Concurrency view
	Development view
	Deployment and operational views

	Generating documentation
	Generating requirements documentation
	Generating diagrams from code
	Generating (API) documentation from code

	Summary
	Questions
	Further reading

	Section 2: The Design and Development of C++ Software
	Chapter 4: Architectural and System Design
	Technical requirements
	Understanding the peculiarities of distributed systems
	Different service models and when to use them
	On-premises model
	Infrastructure as a Service (IaaS) model
	Platform as a Service (PaaS) model
	Software as a Service (SaaS) model
	Function as a Service (FaaS) model and serverless architecture

	Avoiding the fallacies of distributed computing
	The network is reliable
	Latency is zero
	Bandwidth is infinite
	The network is secure
	Topology doesn't change
	There is one administrator
	Transport cost is zero
	The network is homogeneous

	CAP theorem and eventual consistency
	Sagas and compensating transactions
	Choreography-based sagas
	Orchestration-based sagas

	Making your system fault tolerant and available
	Calculating your system's availability
	Building fault-tolerant systems
	Redundancy
	Leader election
	Consensus

	Replication
	Master-slave replication
	Multi-master replication

	Queue-based load leveling
	Back pressure

	Detecting faults
	Sidecar design pattern
	Heartbeat mechanism
	Leaky bucket counter

	Minimizing the impact of faults
	Retrying the call
	Avoiding cascading failures
	Circuit breaker
	Bulkhead

	Geodes

	Integrating your system
	Pipes and filters pattern
	Competing consumers
	Transitioning from legacy systems
	Anti-corruption layer
	Strangler pattern

	Achieving performance at scale
	CQRS and event sourcing
	Command-query responsibility segregation
	Command-query separation
	Event sourcing

	Caching
	Updating caches
	Write-through approach
	Write-behind approach
	Cache-aside

	Deploying your system
	The sidecar pattern
	Deploying a service with tracing and a reverse proxy using Envoy

	Zero-downtime deployments
	Blue-green deployments
	Canary releases

	External configuration store

	Managing your APIs
	API gateways

	Summary
	Questions
	Further reading

	Chapter 5: Leveraging C++ Language Features
	Technical requirements
	Designing great APIs
	Leveraging RAII
	Specifying the interfaces of containers in C++
	Using pointers in interfaces
	Specifying preconditions and postconditions
	Leveraging inline namespaces
	Leveraging std::optional
	Optional function parameters
	Optional function return values
	Optional class members

	Writing declarative code
	Showcasing a featured items gallery
	Introducing standard ranges
	Reducing memory overhead and increasing performance using ranges

	Moving computations at compile time
	Helping the compiler help you by using const

	Leveraging the power of safe types
	Constraining template parameters

	Writing modular C++
	Summary
	Questions
	Further reading

	Chapter 6: Design Patterns and C++
	Technical requirements
	Writing idiomatic C++
	Automating scope exit actions using RAII guards
	Managing copyability and movability
	Implementing non-copyable types
	Adhering to the rules of three and five
	Adhering to the rule of zero

	Using hidden friends
	Providing exception safety using the copy-and-swap idiom
	Writing niebloids
	Policy-based design idiom

	Curiously recurring template pattern
	Knowing when to use dynamic versus static polymorphism
	Implementing static polymorphism
	Interlude – using type erasure

	Creating objects
	Using factories
	Using factory methods
	Using factory functions
	Choosing the return type of a factory
	Using factory classes

	Using builders
	Building with composites and prototypes

	Tracking state and visiting objects in C++
	Dealing with memory efficiently
	Reducing dynamic allocations using SSO/SOO
	Saving memory by herding COWs
	Leveraging polymorphic allocators
	Using memory arenas
	Using the monotonic memory resource
	Using pool resources
	Writing your own memory resource
	Ensuring there are no unexpected allocations
	Winking out memory

	Summary
	Questions
	Further reading

	Chapter 7: Building and Packaging
	Technical requirements
	Getting the most out of compilers
	Using multiple compilers
	Reducing build times
	Using a fast compiler
	Rethinking templates
	Leveraging tools

	Finding potential code issues
	Using compiler-centric tools

	Abstracting the build process
	Introducing CMake
	Creating CMake projects
	Distinguishing between CMake directory variables
	Specifying CMake targets
	Specifying the output directories

	Using generator expressions

	Using external modules
	Fetching dependencies
	Using find scripts
	Writing find scripts
	Using the Conan package manager
	Preparing Conan profiles
	Specifying Conan dependencies
	Installing Conan dependencies
	Using Conan targets from CMake

	Adding tests

	Reusing quality code
	Installing
	Exporting
	Using CPack

	Packaging using Conan
	Creating the conanfile.py script
	Testing our Conan package
	Adding Conan packaging code to our CMakeLists

	Summary
	Questions
	Further reading

	Section 3: Architectural Quality Attributes
	Chapter 8: Writing Testable Code
	Technical requirements
	Why do you test code?
	The testing pyramid
	Non-functional testing
	Regression testing
	Root cause analysis
	The groundwork for further improvement

	Introducing testing frameworks
	GTest examples
	Catch2 examples
	CppUnit examples
	Doctest examples
	Testing compile-time code

	Understanding mocks and fakes
	Different test doubles
	Other uses for test doubles
	Writing test doubles
	GoogleMock example
	Trompeloeil example

	Test-driven class design
	When tests and class design clash
	Defensive programming
	The boring refrain – write your tests first

	Automating tests for continuous integration/continuous deployment
	Testing the infrastructure
	Testing with Serverspec
	Testing with Testinfra
	Testing with Goss

	Summary
	Questions
	Further reading

	Chapter 9: Continuous Integration and Continuous Deployment
	Technical requirements
	Understanding CI
	Release early, release often
	Merits of CI
	Gating mechanism
	Implementing the pipeline with GitLab

	Reviewing code changes
	Automated gating mechanisms
	Code review – the manual gating mechanism
	Different approaches to a code review
	Using pull requests (merge requests) for a code review

	Exploring test-driven automation
	Behavior-driven development
	Writing tests for CI
	Continuous testing

	Managing deployment as code
	Using Ansible
	How Ansible fits with the CI/CD pipeline
	Using components to create deployment code

	Building deployment code
	Building a CD pipeline
	Continuous deployment and continuous delivery
	Building an example CD pipeline

	Using immutable infrastructure
	What is immutable infrastructure?
	The benefits of immutable infrastructure
	Building instance images with Packer
	Orchestrating the infrastructure with Terraform

	Summary
	Questions
	Further reading

	Chapter 10: Security in Code and Deployment
	Technical requirements
	Checking the code security
	Security-conscious design
	Making interfaces easy to use and hard to misuse
	Enabling automatic resource management
	Drawbacks of concurrency and how to deal with it

	Secure coding, the guidelines, and GSL
	Defensive coding, validating everything
	The most common vulnerabilities

	Checking whether the dependencies are secure
	Common Vulnerabilities and Exposures
	Automated scanners
	Automated dependency upgrade management

	Hardening your code
	Security-oriented memory allocator
	Automated checks
	Compiler warnings
	Static analysis
	Dynamic analysis
	Valgrind and Application Verifier
	Sanitizers
	Fuzz-testing

	Process isolation and sandboxing

	Hardening your environment
	Static versus dynamic linking
	Address space layout randomization
	DevSecOps

	Summary
	Questions
	Further reading

	Chapter 11: Performance
	Technical requirements
	Measuring performance
	Performing accurate and meaningful measurements
	Leveraging different types of measuring tools
	Using microbenchmarks
	Setting up Google Benchmark
	Writing your first microbenchmark
	Passing arbitrary arguments to a microbenchmark
	Passing numeric arguments to a microbenchmark
	Generating the passed arguments programmatically

	Choosing what to microbenchmark and optimize
	Creating performance tests using benchmarks

	Profiling
	Choosing the type of profiler to use
	Preparing the profiler and processing the results
	Analyzing the results

	Tracing
	Correlation IDs

	Helping the compiler generate performant code
	Optimizing whole programs
	Optimizing based on real-world usage patterns
	Writing cache-friendly code
	Designing your code with data in mind

	Parallelizing computations
	Understanding the differences between threads and processes
	Using the standard parallel algorithms
	Parallelizing computations using OpenMP and MPI

	Using coroutines
	Distinguishing between cppcoro utilities
	Looking under the hood of awaitables and coroutines

	Summary
	Questions
	Further reading

	Section 4: Cloud-Native Design Principles
	Chapter 12: Service-Oriented Architecture
	Technical requirements
	Understanding Service-Oriented Arcitecture
	Implementation approaches
	Enterprise Service Bus
	Web services
	Benefits and disadvantages of web services

	Messaging and streaming
	Message queues
	Message brokers

	Cloud computing
	Microservices

	Benefits of Service-Oriented Architecture
	Challenges with SOA

	Adopting messaging principles
	Low-overhead messaging systems
	MQTT
	ZeroMQ

	Brokered messaging systems

	Using web services
	Tools for debugging web services
	XML-based web services
	XML-RPC
	Relationship to SOAP

	SOAP
	WSDL
	UDDI
	SOAP libraries

	JSON-based web services
	JSON-RPC

	REpresentational State Transfer (REST)
	Description languages
	OpenAPI
	RAML
	API Blueprint
	RSDL

	Hypermedia as the Engine of Application State
	REST in C++

	GraphQL

	Leveraging managed services and cloud providers
	Cloud computing as an extension of SOA
	Using API calls directly
	Using API calls through a CLI tool
	Using third-party tools that interact with the Cloud API
	Accessing the cloud API
	Using the cloud CLI
	Using tools that interact with the Cloud API

	Cloud-native architecture

	Summary
	Questions
	Further reading

	Chapter 13: Designing Microservices
	Technical requirements
	Diving into microservices
	The benefits of microservices
	Modularity
	Scalability
	Flexibility
	Integration with legacy systems
	Distributed development

	Disadvantages of microservices
	Reliance on a mature DevOps approach
	Harder to debug
	Additional overhead

	Design patterns for microservices
	Decomposition patterns
	Decomposition by business capability
	Decomposition by subdomain

	Database per service pattern
	Deployment strategies
	Single service per host
	Multiple services per host

	Observability patterns
	Log aggregation
	Application metrics
	Distributed tracing
	Health check APIs

	Building microservices
	Outsourcing memory management
	Memcached
	Redis
	Which in-memory cache is better?

	Outsourcing storage
	Outsourcing computing

	Observing microservices
	Logging
	Logging with microservices
	Logging in C++ with spdlog
	Unified logging layer
	Logstash
	Filebeat
	Fluentd
	Fluent Bit
	Vector

	Log aggregation
	Elasticsearch
	Loki

	Log visualization
	Kibana
	Grafana

	Monitoring
	Tracing
	OpenTracing
	Jaeger
	OpenZipkin

	Integrated observability solutions

	Connecting microservices
	Application programming interfaces (APIs)
	Remote procedure calls
	Apache Thrift
	gRPC

	Scaling microservices
	Scaling a single service per host deployment
	Scaling multiple services per host deployment

	Summary
	Questions
	Further reading

	Chapter 14: Containers
	Technical requirements
	Reintroducing containers
	Exploring the container types
	The rise of microservices
	Choosing when to use containers
	The benefits of containers
	The disadvantages of containers

	Building containers
	Container images explained
	Using Dockerfiles to build an application
	Naming and distributing images
	Compiled applications and containers
	Targeting multiple architectures with manifests
	Alternative ways to build application containers
	Buildah
	Ansible-bender
	Others

	Integrating containers with CMake
	Configuring the Dockerfile with CMake
	Integrating containers with CMake

	Testing and integrating containers
	Runtime libraries inside containers
	Alternative container runtimes

	Understanding container orchestration
	Self-hosted solutions
	Kubernetes
	Docker Swarm
	Nomad
	OpenShift

	Managed services
	AWS ECS
	AWS Fargate
	Azure Service Fabric

	Summary
	Questions
	Further reading

	Chapter 15: Cloud-Native Design
	Technical requirements
	Understanding cloud-native
	Cloud-Native Computing Foundation
	Cloud as an operating system
	Load balancing and service discovery
	Reverse proxies
	Service Discovery

	Using Kubernetes to orchestrate cloud-native workloads
	Kubernetes structure
	Control plane
	Worker nodes

	Possible approaches to deploying Kubernetes
	Understanding the Kubernetes concepts
	Declarative approach

	Kubernetes networking
	Container-to-container communication
	Pod-to-pod communication
	Pod-to-service communication
	External-to-internal communication

	When is using Kubernetes a good idea?

	Observability in distributed systems
	How tracing differs from logging
	Choosing a tracing solution
	Jaeger and OpenTracing
	Zipkin

	Instrumenting an application with OpenTracing

	Connecting services with a service mesh
	Introducing a service mesh
	Service mesh solutions
	Istio
	Envoy

	Linkerd
	Consul service mesh

	Going GitOps
	The principles of GitOps
	Declarative description
	The system's state versioned in Git
	Auditable
	Integrated with established components
	Configuration drift prevention

	The benefits of GitOps
	Increased productivity
	Better developer experience
	Higher stability and reliability
	Improved security

	GitOps tools
	FluxCD
	ArgoCD
	Jenkins X

	Summary
	Questions
	Further reading

	Appendix A
	Assessments
	About Packt
	Other Books You May Enjoy
	Index

