
What is Version Control?
Version control systems are tools that manage changes made to files and directories in a
project. They allow you to keep track of what you did when, undo any changes you decide
you don't want, and collaborate at scale with others. This cheat sheet focuses on one of the
most popular one, Git.

Git Cheat Sheet
Learn Git online at www.DataCamp.com

> Key Definitions
Throughout this cheat sheet, you’ll find git-specific terms and jargon being used. Here’s a run-down of
all the terms you may encounter

Basic definition
 Local repo or repository: A local directory containing code and files for the projec
 Remote repository: An online version of the local repository hosted on services like GitHub, GitLab, and BitBucke
 Cloning: The act of making a clone or copy of a repository in a new director
 Commit: A snapshot of the project you can come back t
 Branch: A copy of the project used for working in an isolated environment without affecting the main projec
 Git merge: The process of combining two branches together

More advanced definition
 .gitignore file: A file that lists other files you want git not to track (e.g. large data folders, private info, and any local

files that shouldn’t be seen by the public.
 Staging area: a cache that holds changes you want to commit next
 Git stash: another type of cache that holds unwanted changes you may want to come back late
 Commit ID or hash: a unique identifier for each commit, used for switching to different save points.
 HEAD (always capitalized letters): a reference name for the latest commit, to save you having to type Commit IDs.

HEAD~n syntax is used to refer to older commits (e.g. HEAD~2 refers to the second-to-last commit).

> Working With Files

Adding and removing file

 Add a file or directory to git for tracking

$ git add <filename_or_dir

 Add all untracked and tracked files inside the current directory to git

$ git add

 Remove a file from a working directory or staging area

$ git rm <<filename_or_dir>

Saving and working with change

 See changes in the local repository

$ git statu

 Saving a snapshot of the staged changes with a custom message

$ git commit -m “[Commit message]

 Staging changes in all tracked files and committing with a message

$ git add -am “[Commit message]

 Editing the message of the latest commit

$ git commit --amend -m “[New commit message]”

 List all branches

$ git branch

$ git branch --list

$ git branch -a

 Create a new local branch named new_branch without checking  
out that branch

$ git branch <new_branch

 Switch into an existing branch named <branch>

$ git checkout <branch

 Create a new local branch and switch into it

$ git checkout -b <new_branch

 Safe delete a local branch (prevents deleting unmerged changes)

$ git branch -d <branch

 Force delete a local branch (whether merged or unmerged)

$ git branch -D <branch>

(shows remote branches as well

 List all commits with their author, commit ID, date and message

$ git lo

 List one commit per line

$ git log --oneline [-n

 Log all commits with diff information:

$ git log --stat

(-n tag can be used to limit the number of
commits displayed (e.g. -5))

 Checking out (switching to) older commits

$ git checkout HEAD~

 Checks out the third-to-last commit.

$ git checkout <commit_id

 Undo the latest commit but leave the working directory
unchanged

$ git reset HEAD~1

You can undo as many commits as you want by changing the
number after the tilde.

 Download all commits and branches from the <remote> without
applying them on the local repo

$ git fetch <remote

 Only download the specified <branch> from the <remote>

$ git fetch <remote> <branch>

 Saving staged and unstaged changes to stash for a later use (see
below for the explanation of a stash)

$ git stas

 Stashing staged, unstaged and untracked files as well

$ git stash -

 Stashing everything (including ignored files)

$ git stash --al

 Reapply previously stashed changes and empty the stash

$ git stash po

 Reapply previously stashed changes and keep the stash

$ git stash appl

 Dropping changes in the stash

$ git stash dro

 Show uncommitted changes since the last commit

$ git dif

 Show the differences between two commits (should provide the
commit IDs)

$ git diff <id_1> <id_2>

 Rename the current branch to <new_name>

$ git branch -m <new_name

 Push a copy of local branch named branch to the remote repo

$ git push <remote_repo> branch

 Delete a remote branch named branch
$ git push <remote_repo> :branch

$ git push <remote_repo> --delete branc

 Merging a branch into the main branch

$ git checkout main

$ git merge <other_branch

 Merging a branch and creating a commit message

$ git merge --no-ff <other_branch

 Compare the differences between two branches

$ git diff <branch_1> <branch_2

 Compare a single <file> between two branches

$ git diff <branch_1> <branch_2> <file>

 (-d tag only works locally)

 Log commits after some date

$ git log --oneline --after=”YYYY-MM-DD

 Log commits before some date

$ git log --oneline --before=”last year”

(A sample value can be 4th of October,
2020 - “2020-10-04” or keywords such as “yesterday”, “last
month”, etc.)

(Both --after and --before tags
can be used for date ranges)

 Discard all changes of the latest commit (no easy recovery)

$ git reset --hard HEAD~1

 Undo a single given commit, without modifying commits that come
after it (a safe reset)

$ git revert [commit_id]

Instead of HEAD~n, you can provide commit hash as well. Changes after
that commit will be destroyed

May result in revert conflicts

 Merge the fetched changes if accepted

$ git merge <remote>/<branch

 A more aggressive version of fetch which calls fetch and merge
simultaneously

$ git pull <remote>

What is a repository?

A repository or a repo is any location that stores code and the necessary files that allow it to run without errors. A repo
can be both local and remote. A local repo is typically a directory on your machine while a remote repo is hosted on
servers like GitHub

Creating local repositories
 Clone a repository from remote hosts (GitHub, GitLab, DagsHub, etc.)

$ git clone <remote_repo_url

 Initialize git tracking inside the current directory

$ git ini

 Create a git-tracked repository inside a new directory

$ git init [dir_name

 Clone only a specific branch

$ git clone -branch <branch_name> <repo_url

 Cloning into a specified directory

$ git clone <repo_url> <dir_name>

> Git Basics

Managing remote repositorie
 List remote repos

$ git remot

 Create a new connection called <remote> to a remote repository on servers like GitHub, GitLab, DagsHub, etc.

$ git remote add <remote> <url_to_remote

 Remove a connection to a remote repo called <remote>

$ git remote rm <remote

 Rename a remote connection

$ git remote rename <old_name> <new_name>

A note on cloning

There are two primary methods of cloning a repository - HTTPS syntax and
SSH syntax. While SSH cloning is generally considered a bit more secure
because you have to use an SSH key for authentication, HTTPS cloning is
much simpler and the recommended cloning option by GitHub.

HTTPS

$ git clone https://github.com/your_username/repo_name.git

SSH

$ git clone git@github.com:user_name/repo_name.git

A note on stashes

Git stash allows you to temporarily save edits you've made to your working copy so you can
return to your work later. Stashing is especially useful when you are not yet ready to commit
changes you've done, but would like to revisit them at a later time.

Learn Data Skills Online at www.DataCamp.com

Branches

Logging and reviewing work

Reversing changes

Pulling changes

Other useful configuration command

 List all key-value configurations

$ git config --lis

 Get the value of a single key

$ git config --get <key>

Setting aliases for common commands

 Create an alias named gc for the “git commit” command

$ git config --global alias.gc commit

$ gc -m “New commit

 Create an alias named ga for the “git add” command

$ git config --global alias.ga add

If you find yourself using a command frequently, git lets you set an alias for that command to surface it more quickl

> Installing Git
On OS X — Using an installe
 Download the installer for Ma
 Follow the prompts

On OS X — Using Homebrew

$ brew install git

On Linux

$ sudo apt-get install git

On Window
 Download the latest Git For Windows installe
 Follow the prompts

Check if installation successful (On any platform)

$ git --version

> What is a Branch?
Branches are special “copies” of
the code base which allow you to
work on different parts of a project
and new features in an isolated
environment. Changes made to the
files in a branch won’t affect the
“main branch” which is the main
project development channel.

Main branch

Main branch Work on  
a new

experiment

Merge the
new

experiment

Continue working on
the main channel

> Setting Up Git

Set your basic informatio
 Configure your email

$ git config user.email [your.email@domain.com
 Configure your name

$ git config user.name [your-name]

Important tags to determine the scope of configurations

Git lets you use tags to determine the scope of the information you’re using during setu

 Local directory, single project (this is the default tag)

$ git config --local user.email “my_email@example.com

 All git projects under the current user

$ git config --global user.email “my_email@example.com

 For all users on the current machine

$ git config --system user.email “my_email@example.com”

If you are working in a team on a single repo, it is important for others to know who made certain
changes to the code. So, Git allows you to set user credentials such as name, email, etc..

https://sourceforge.net/projects/git-osx-installer/files/
https://git-scm.com/download/win

