Other useful configuration commands > Wo r ki n g Wit h Fi I e S
R ddtd CG mp e List (.J|| keg—vo.lue con.figurotions
$ git config --list

+ Get the value of a single key Adding and removing files ’
$ git config --get <key>

[ ] * Add a file or directory to git for tracking
It Cheat Sheet
Setting aliases for common commands .

If you find yourself using a command frequently, git lets you set an alias for that command to surface it more quickly « Add all untracked and tracked files inside the current directory to git
$ git add .
° (] . . . ¢
* Create an alias named gc for the “git commit” command
LeCI rn Glt Onllne qt WWW.DthCdmp.Com $ git 1 1 bg 1 ali 9 ¢ * Remove a file from a working directory or staging area
git config --global alias.gc commili

$ git rm <<filename_or_dir>
$ gc -m “New commit” .

Saving and working with changes
* Create an alias named ga for the “git add” command

What is Version Control? oIt contle “glebal atias.ga add T 47 chnges 1 the localepostony

¢ Saving a snapshot of the staged changes with a custom message
$ git commit -m “[Commit messagel”

Version control systems are tools that manage changes made to files and directories in a

. . . » Staging changes in all tracked files and committing with a message
project. They allow you to keep track of what you did W.hen, undo any changes you decide S tht iS a qu nChr) § git add —am *[Comnit message]”
you don't want, and collaborate at scale with others. This cheat sheet focuses on one of the o

* Editing the message of the latest commit
$ git commit --amend -m “[New commit messagel]”

most popular one, Git.

Branches are special “copies” of

the code base which allow you to Continue working on

Main branch the main channel A note on stashes

and new features in an isolated

Saving staged and unstaged changes to stash for a later use (see
below for the explanation of a stash)
$ git stash

Stashing staged, unstaged and untracked files as well
$ git stash -u

Stashing everything (including ignored files)
$ git stash --all

Reapply previously stashed changes and empty the stash
$ git stash pop

Reapply previously stashed changes and keep the stash
$ git stash apply

Dropping changes in the stash
$ git stash drop

Show uncommitted changes since the last commit
$ git diff

Show the differences between two commits (should provide the
commit IDs)
$ git diff <id_1> <id_2>

> K D f' 't' work on different parts of a project ¢ y
eU e I n I IO n S O_O_‘Oi Git stash allows you to temporarily save edits you've made to your working copy so you can

environment. Changes made to the

Throughout this cheat sheet, you’ll find git-specific terms and jargon being used. Here’s a run-down of files in a branch won’t affect the
all the terms you may encounter main branch” which is the main 0 O O Merge the
project development channel. T T new Branches
Basic definitions Main branch  Work on experiment
a new

* Local repo or repository: A local directory containing code and files for the project experiment « List all branches .

* Remote repository: An online version of the local repository hosted on services like GitHub, GitLab, and BitBucket $ git branch

* Cloning: The act of making a clone or copy of a repository in a new directory $ g%t branch --list

$ git branch -a (shows remote branches as well) .

Commit: A snapshot of the project you can come back to

Branch: A copy of the project used for working in an isolated environment without affecting the main project « Create a new local branch named new_branch without checking

out that branch o
$ git branch <new_branch>

Git merge: The process of combining two branches together

3 Git Basics

More advanced definitions

g . . . . . . . ¢ Switch into an existing branch named <branch>
 .gitignore file: A file that lists other files you want git not to track (e.g. large data folders, private info, and any local

$ git checkout <branch> .
files that shouldn’t be seen by the public.) What is a repositorg?
 Staging area: a cache that holds changes you want to commit next. A repository or a repo is any location that stores code and the necessary files that allow it to run without errors. A repo * Create a new local branch and switch into it
* Git stash: another type of cache that holds unwanted changes you may want to come back later can be both local and remote. A local repo is typically a directory on your machine while a remote repo is hosted on $ git checkout -b <new_branch>
e Commit ID or hash: a unique identifier for each commit, used for switching to different save points. servers like GitHub :

« Safe delete a local branch (prevents deleting unmerged changes)
$ git branch -d <branch>

HEAD (always capitalized letters): a reference name for the latest commit, to save you having to type Commit IDs.

HEAD~n syntax is used to refer to older commits (e.g. HEAD~2 refers to the second-to-last commit). Creating local repositories .
 Clone a repository from remote hosts (GitHub, GitLab, DagsHub, etc.) - Force delete a local branch (whether merged or unmerged)
$ git clone <remote_repo_url> $ git branch -D <branch>

Initialize git tracking inside the current directory
$ git init

3 |nstalling Git

Pulling changes

Create a git-tracked repository inside a new directory

On OS X — Using an installer On Linux sp s .
. . $ git init [dir_name] ¢ Download all commits and branches from the <remote> without .
1. Download the for Mac $ sudo apt-get install git i th the local
applying them on the local repo

2. Follow the prompts « Clone only a specific branch $ git fetch <remote>

On Windows $ git clone -branch <branch_name> <repo_url> .
On OS X — Using Homebrew 1. Download the latest [Git For Windowd installer + Only download the specified <branch> from the <remote>
$ brew install git 2. Follow the prompts . $ git fetch <remote> <branch>

Cloning into a specified directory
$ git clone <repo_url> <dir_name>

Logging and reviewing work
Check if installation successful (On any platform)

$ git --version A note on cloning

. ) . ¢ List all commits with their author, commit ID, date and message .
There are two primary methods of cloning a repository - HTTPS syntax and

Go to file $ git log

SSH syntax. While SSH cloning is generally considered a bit more secure

return to your work later. Stashing is especially useful when you are not yet ready to commit
changes you've done, but would like to revisit them at a later time.

Rename the current branch to <new_name>
$ git branch -m <new_name>

Push a copy of local branch named branch to the remote repo
$ git push <remote_repo> branch~

Delete a remote branch named branch (-d tag only works locally)
$ git push <remote_repo> :branch
$ git push <remote_repo> --delete branch

Merging a branch into the main branch
$ git checkout main
$ git merge <other_branch>

Merging a branch and creating a commit message
$ git merge --no-ff <other_branch>

Compare the differences between two branches
$ git diff <branch_1> <branch_2>

Compare a single <file> between two branches
$ git diff <branch_1> <branch_2> <file>

Merge the fetched changes if accepted
$ git merge <remote>/<branch>

A more aggressive version of fetch which calls fetch and merge
simultaneously
$ git pull <remote>

Log commits after some date (A sample value can be 4th of October,
2020 - "2020-10-04" or keywords such as “yesterday”, “last
month”, etc. )

because you have to use an SSH key for authentication, HTTPS cloning is Clone ® + List one commit per line (-n tag can be used to limit the number of $ git log --oneline --after="YYYY-MM-DD”
* ® much simpler and the recommended cloning option by GitHub. commits displayed (e.g. -5))
> ett I n g p It HTTPS  GitHub CLI $ git log --oneline [-n] » Log commits before some date (Both --after and --before tags
HTTPS can be used for date ranges)
) ) _ https://github. con/datacanp/airbyte—co || (] « Log all commits with diff information: $ git log --oneline --before="last year”
$ git clone https://github.com/your_username/repo_name.git Use Git or checkout with SVN using the web URL. $ git log --stat
If you are working in a team on a single repo, it is important for others to know who made certain
changes to the code. So, Git allows you to set user credentials such as name, email, etc.. SSH G Open with GitHub Desktop
$ git clone git@github.com:user_name/repo_name.git .
Set your basic information [) Download ZIP Reversing changes
» Configure your email
$ git config user.email [your.email@domain.com] + Checking out (switching to) older commits + Discard all changes of the latest commit (no easy recovery)
. . S it checkout HEAD~3 it t --hard HEAD~1
» Configure your name Managing remote repositories $ git checkout , $ git reset —-har
. . . e Checks out the third-to-last commit.
it config user.name [your-name] * List t git checkout <commit_id> Instead of HEAD~n, you can provide commit hash as well. Changes after
$ git remote that commit will be destroyed.
Important tags to determine the scope of configurations * Undo the latest commit but leave the working directory
Git lets you use tags to determine the scope of the information you’re using during setup « Create a new connection called <remote> to a remote repository on servers like GitHub, GitLab, DagsHub, etc. ;”Ch"”ged * Undo a single given commit, without modifying commits that come
. it reset HEAD~1 after it (a safe reset
$ git remote add <remote> <url_to_remote> g § git (Pevept [Cgmmit 1d]
e Local directory, single project (this is the default tag) You can undo as many commits as you want by changing the
$ git config --local user.email “my_email@example.com” * Remove a connection to a remote repo called <remote> number after the tilde. May result in revert conflicts
 All git projects under the current user $ git remote rm <remote>
$ git config --global user.email “my_email@example.com”
» For all users on the current machine * Rename a remote connection
$ git config --system user.email “my_email@example.com” $ git remote rename <old_name> <new_name>

D: Learn Data Skills Online at www.DataCamp.com


https://sourceforge.net/projects/git-osx-installer/files/
https://git-scm.com/download/win

